

Kamil Janowski

CLOUD PLATFORM COMPARISON FOR MALWARE
DEVELOPMENT

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2019

ABSTRACT

Janowski, Kamil
Cloud Platform comparison for malware development
Jyväskylä: University of Jyväskylä, 2019, 64 pp.
Web intelligence and service engineering, Cyber Security, Master’s Thesis
Supervisor(s): Khriyenko Oleksiy

The cloud platforms such as AWS, Google Cloud or Azure are designed to

cover most popular cases in terms of web development. They provide services

that make it easy to create a new user based on his email address, provide tools

for inter-service communication, tools to manage the access rights of different

users. Malware and botnet development however is more of a corner case,

where the client application running on the victim’s machine does not have an

email address or a google account to authenticate itself and it does not run di-

rectly in the cloud, what can make it more difficult to manage the appropriate

access rights. Also, the potential attacker may not want to write his own self-

contained service, since, especially when managing a large number of clients, it

might be much cheaper to run the backend serverlessly.

The big security companies always aim to lower the cost of development

and maintenance of bots in order to provide their customers with their penetra-

tion expertise faster and cheaper.

The paper collects he data through the compilation of scientific publica-

tions regarding the botnet architecture and communication, as well as technical

documentations regarding each of the cloud platforms discussed in the paper.

Additionally proofs of concept are implemented for each of the proposed archi-

tecture in order to verify the validity of the approach, as well as measure the

performance of the proposed solution and uncover hidden costs related to run-

ning the application in the cloud.

The following paper explores possible malware backend architectures for

different cloud platforms, aiming to optimise the performance, minimize the

development time while keeping the code easy to maintain and to minimize the

execution cost.

After implementing proofs of concept for the standalone server-based

CnC application as well as serverless running on GCP, AWS and Azure, it has

been concluded that Azure is in fact the best platform for this sort of implemen-

tation due to simplicity of the architecture as well as ease of the implementation,

while halving the execution costs compared to the standalone approach.

Keywords: malware, botnet, development, cloud, CnC, backend, serverless,

cloud, Google Cloud, Azure

FIGURES

FIGURE 1: Gartner's Cloud Platform Market Shares in 2017 19

FIGURE 2: Standalone CnC - single instance design ... 22

FIGURE 3: Standalone CnC with load balancing ... 23

FIGURE 4: Resource consumption test sequence diagram 25

FIGURE 5: Standalone CnC memory consumption ... 25

FIGURE 6: Standalone CnC CPU usage ... 26

FIGURE 7: Standalone CnC client response times.. 27

FIGURE 8: AWS IAM .. 37

FIGURE 9: AWS IoT-based CnC design ... 43

FIGURE 10: AWS-based client response times ... 44

FIGURE 11 Azure-based CnC design ... 51

TABLES

TABLE 1 Single CnC instance costs .. 28

TABLE 2 Multi-instance CnC costs ... 28

TABLE 3 AWS IoT-based solution cost estimation .. 46

TABLE 4 Azure cost estimation ... 53

TABLE 5 Comparison of working solutions .. 55

TABLE OF CONTENTS

ABSTRACT
FIGURES
TABLES

1 INTRODUCTION .. 7

1.1 Research Problem .. 8

1.2 Research Objective ... 8

1.3 Research Question ... 9

1.4 Key Definition .. 9

1.4.1 Hacker .. 9

1.4.2 Botnet ... 10

1.4.3 Bot ... 10

1.4.4 Serverless computing ... 10

1.4.5 Cloud Computing .. 10

1.4.6 Malware ... 11

1.4.7 CnC server ... 11

1.4.8 DDoS attack ... 11

1.4.9 Serverless Framework ... 11

1.4.10 GCP .. 11

1.4.11 AWS ... 12

1.4.12 EC2 ... 12

1.5 Structure of the thesis .. 12

2 THEORETICAL BACKGROUND ... 13

2.1 Common botnet architectures .. 13

2.1.1 Centralised architecture .. 13

2.1.2 Peer to Peer (P2P) Architecture .. 14

2.1.3 Hybrid architecture .. 15

2.2 Common botnet use-cases .. 15

2.3 Command delivery methods ... 15

2.3.1 HTTP notifications ... 16

2.3.2 WebSocket notifications .. 16

2.3.3 IRC notifications ... 17

2.3.4 MQTT notifications .. 17

3 METHODOLOGY .. 17

3.1 Purpose of the study.. 17

3.2 Research approach ... 18

3.3 Research method .. 19

3.4 Data collection .. 20

4 FINDINGS – CASE STUDY ON 3 PLATFORMS 21

4.1 Standalone CnC server .. 21

4.1.1 Design .. 21

4.1.2 Resource consumption .. 24

4.1.3 Performance .. 27

4.1.4 Cost estimation ... 28

4.2 Google Cloud Platform-based approach .. 29

4.2.1 Serverless application engines.. 30

4.2.1.1 Google App Engine ... 30

4.2.1.2 Cloud functions ... 30

4.2.2 Authentication .. 30

4.2.3 Push notifications ... 32

4.2.4 Google Cloud Platform summary.. 34

4.3 AWS-based approach .. 35

4.3.1 Serverless applications .. 35

4.3.2 Authentication .. 35

4.3.3 Push Notifications .. 38

4.3.4 Design .. 42

4.3.5 Performance .. 44

4.3.6 Cost estimation ... 45

4.3.7 AWS Summary ... 46

4.4 Azure-based approach .. 47

4.4.1 Serverless applications .. 47

4.4.2 Push notifications and service-specific authentication and
authorization ... 47

4.4.3 Design .. 50

4.4.4 Performance .. 51

4.4.5 Cost estimation ... 52

4.4.6 Development ... 53

4.4.7 Azure summary .. 54

5 CONCLUSION ... 54

1 INTRODUCTION

The popularity of computing clouds have increased drastically during the re-

cent years. It is perfectly understandable, taken into account that renting the

infrastructure from a cloud provider tends to be significantly cheaper than

maintaining it inside the company. Things like the rental of the server room,

electricity consumed by the servers, cooling of the server room and salaries of

people responsible for the maintenance of the servers generate unnecessary

overhead in terms of costs of maintenance, which can be drastically reduced

when switching to the cloud, while in the same time providing higher availabil-

ity and better monitoring of the hosted services. Furthermore the cloud provid-

ers constantly introduce new solutions allowing to reduce the maintenance

costs even further. As we can read in “Serverless Computing: Economic and

Architectural Impact” by Gajko Adzic and Robert Chatley (2017, p. 884):

Amazon Web Services unveiled their ‘Lambda’ platform in late 2014. Since then, each of
the major cloud computing infrastructure providers has released services supporting a
similar style of deployment and operation, where rather than deploying and running
monolithic services, or dedicated virtual machines, users are able to deploy individual
functions, and pay only for the time that their code is actually executing. These technolo-
gies are gathered together under the marketing term ‘serverless’ and the providers sug-
gest that they have the potential to significantly change how client/server applications
are designed, developed and operated.

It is important to note however that those technologies are not only available to

big corporations trying to lower their cost of server maintenance, but also to

hobby software developers and black hat hackers.

A successful attacker may have thousands of devices under his control. In

order to control such a large number of devices remotely a highly scalable

Command-and-Control (CnC) server is required. Scaling up the virtual ma-

chines (VM) however can be costly, while having only a small number of ad-

ministrators leads to a situation where most of the resources assigned to those

VMs are seriously underutilized. While all the remote malware subscribes to

the push notification service, it mostly just waits for a command to be generated

8

by an administrator. Effectively, while our CnC server has to be scalable in or-

der to maintain the connection to numerous clients, it requires fairly low com-

puting power until an administrator decides to generate certain load. This sug-

gests that the serverless approach could be applied in this case, what could po-

tentially not only save the attacker a lot of money, but also make such a large

scale attack possible in the first place.

1.1 Research Problem

There are many various cloud providers out there. While they all provide ser-

vices allowing to easily and quickly build secure web applications, the problem

of building a CnC server is more of a corner case, that is not necessarily proper-

ly addressed by certain clouds. This might yield it impossible to implement

such an application in a serverless manner at all, or require to make some com-

promises and implement workarounds for services that work in a different

manner than desired.

The problem is important to address as those are not only the “black hat

hackers” that seek to lower the cost of their attacks. There are various data secu-

rity companies that are frequently requested to perform attacks on their cus-

tomers in order to verify the security of their application or network infrastruc-

ture. Similarly, many “white hat hackers” work as freelancers. For those in par-

ticular lowering the cost of implementation and maintenance of the CnC server,

might determine if they’re going to make any income at all.

1.2 Research Objective

The main objective of the research is to find a way to use the cloud as a CnC

server without implementing any application that requires a constantly running

server in a Virtual Machine, as those are the main cost generators of the web

applications. For this reason we are going to investigate the serverless solutions

provided by various cloud platforms as well as other services that come with

9

specific clouds that could potentially allow us to set up the communication be-

tween the backend and the client application, enable the file transfer, make it

easy to manage the access rights of different clients as well as enable the client

management in as a whole. We are also going to take a closer look at how the

continuous deployment can be solved in various cloud systems.

Each of the approaches will be backed up by a small Prove of Concept

(POC) if possible at all. In order to optimise the development time and ensure

multi-platform and multi-cloud support of at least parts of our code, all solu-

tions will be implemented with Node.js.

1.3 Research Question

When focusing on various cloud platforms, such as Amazon Web Services

(AWS), Google Cloud Platform (GCP) and Azure the approach to the problem

of CnC application development might be completely different and the cost of

execution may different significantly as well. The question in this case is, which

one of the platforms is the best suited and the cheapest to run our CnC applica-

tion.

1.4 Key Definition

1.4.1 Hacker

Hacker is an attacker attempting to access resources of a remote machine. In

this thesis the term “hacker” will be used to describe the administrator of the

CnC server and in the same time the administrator of the botnet.

There are 2 types of hackers, commonly referred to as:

• the “white hat hackers” – usually a hired penetration tester who rather

than harming the victim, points out the security vulnerabilities his cus-

tomer faces

• the “black hat hacker” – an attacker with malicious intent

10

1.4.2 Botnet

A botnet is a network of private computers infected with malicious software

and controlled as a group without the owners' knowledge, e.g. to send spam.

1.4.3 Bot

A bot in this case is a single client application executing (and in some architec-

tures issuing) the commands on the infected device.

1.4.4 Serverless computing

The “serverless” computing is a marketing term that relates to developing sin-

gle functions, rather than a large monolithic application and then being charged

only for the actual execution time of the function, rather than for the constantly

running server that technically is still there, but is hidden from the service user.

The concept was originally introduced by Amazon in their AWS cloud in 2014

under the name of Lambda. Since then all major cloud providers introduced

various equivalents in their solutions. As many instances of lambda can be trig-

gered in parallel, this solutions is not only cheaper to execute, but also poten-

tially infinitely scalable. This is why it’s commonly used for a wide range of ap-

plications, starting with REST API call processing and ending with Big Data

event handling.

1.4.5 Cloud Computing

As Amazon defines it1:

Cloud computing is the on-demand delivery of compute power, database storage, appli-
cations, and other IT resources through a cloud services platform via the internet with
pay-as-you-go pricing.

1 https://aws.amazon.com/what-is-cloud-computing (24-06-2018)

11

1.4.6 Malware

Malware, or malicious software, is any program or file that is harmful to a

computer user. Malware includes computer viruses, worms, Trojan horses and

spyware. These malicious programs can perform a variety of functions, includ-

ing stealing, encrypting or deleting sensitive data, altering or hijacking core

computing functions and monitoring users' computer activity without their

permission.

1.4.7 CnC server

In “Survey on botnet: its architecture, detection, prevention and migration” by

Ihsan Ullah et al. (2013) the CnC servers are defined as centralised servers al-

lowing the malicious attacker to remotely control a number of clients applica-

tions that connect to it.

1.4.8 DDoS attack

DDoS stands for Distributed Denial of Service. It’s one of the common use-cases

of a botnet, where a number of bots are instructed to simultaneously send re-

quests to a specific server, yielding the server inaccessible for other users.

1.4.9 Serverless Framework

A popular framework allowing to easily specify the configuration, deployment

process and debugging process of serverless applications, while supporting a

large variety of different cloud providers.

1.4.10 GCP

GCP is short for Google Cloud Platform. It’s one of the platforms which will be

discussed in this paper.

12

1.4.11 AWS

AWS is short for Amazon Web Services. It’s one of the cloud platforms which

will be discussed in this paper.

1.4.12 EC2

EC2 is a short for Elastic Compute Cloud. It’s one of the services provided by

the Amazon platform. It allows to create a number of Virtual Private Servers

and/or Virtual Machines that can run the application of your choosing.

1.5 Structure of the thesis

In the beginning the thesis focuses on the theoretical background, allowing us

to better understand how botnets are designed and how the communication

between the Command & Control application and the bots is handled.

Next, in order to get a better understanding of the required implementa-

tion effort as well as related costs, we design the standalone platform-

independent CnC application and run the performance measurements. Once

that part is handled, we can easily compare this solution to some based on vari-

ous cloud-based serverless solutions. In the next 3 chapters we investigate the

serverless services, authentication methods and various command delivery

methods provided by the Google Cloud Platform, AWS and Azure. We propose

architectures for each of the platforms, implement proof of concepts, run per-

formance measurements and estimate the costs.

Finally in the end we compile all the results in order to determine which of

the cloud platforms appears the most suitable for the development of serverless

Command & Control applications.

13

2 THEORETICAL BACKGROUND

2.1 Common botnet architectures

As we can read from “Survey on botnet: its architecture, detection, prevention

and migration” by Ihsan Ullah et al. (2013, p. 661-662), as well as “Botnet Com-

munication Patterns” by Gernot Vormayr et al. (2017, p. 2772) there’s a number

of different architectures that can be developed depending on the attacker’s

needs.

2.1.1 Centralised architecture

The architecture assumes that there’s one CnC server that all the clients can

connect to. It tends to use either Internet Relay Chat (IRC) or HTTP as the

communication protocol. This solution tends to be the most commonly seen due

to the ease of implementation as well as high efficiency. The main drawback of

the approach is that it is fairly easy to detect. Each of the clients of the botnet

needs to have a hard-coded address of the server that it is going to communi-

cate with. Effectively simply editing the byte code of the application (or decom-

piling it, if possible) allow you to quickly read the address of the CnC server

and then block all the traffic to it. The address can also be seen through network

sniffing. This problem however can be mitigated through the use of Domain

Generator Algorithms (DGA).

DGAs generate different domain names based on a changing input. For

instance, a different domain could be used based on the current time. This then

requires all clients to have synchronized time down to one hour. While relying

on the system time might not necessarily be a good idea, as the system time

largely depends on the user-specified settings, it can be easily achieved by poll-

ing popular websites that contain such information.

14

2.1.2 Peer to Peer (P2P) Architecture

The approach allows to hide most of the network traffic by introducing the su-

pervisor-bot, who becomes responsible for delivering the command to other

clients, who later on can forward the command even further. While the source

of the command becomes fairly difficult to detect in this case, the actual deliv-

ery as well as the delivery of the result takes significantly more time than in the

centralised architecture. This makes such botnet difficult for the attacker to

manage. Also, it is important to note that the architecture is prone to the Sybil

attack, where the attacker subverts the reputation system of a P2P network by

creating a large number of pseudonymous identities, using them to gain a dis-

proportionately large influence.

In a fully meshed botnet every client is linked to every client. This way it is pos-

sible to reduce the latency as well as ensure that the removal of any number of

bots does not disrupt the communication. This solution however is not scalable

due to the number of required connections in larger botnet. Additionally, the

larger number of connections increases the visibility of the botnet. Also adding

or removing a single client generates a significant network traffic as all other

clients have to register the information about the new bot.

The topology unfortunately is difficult to implement due to the challenges of

finding the initial peers and reliably distributing commands to every bot.

The list of peers can be hard-coded directly in the executable or provided by a

cache server. The first solution however can work only in a very targeted attack

and should the botnet be detected, the list can be easily extracted from the code.

In the second case, the server is visible to the public internet and that brings

back all the issues related to the centralised architecture.

Finally, depending on the NAT configuration, not every computer has direct

access to the internet making it difficult to access from external network.

15

2.1.3 Hybrid architecture

Hybrid architecture combines both centralised architecture and the P2P one.

Instead of bots connecting directly to the CnC server, an additional proxy layer

consisting of bots connected in a P2P topology is added. Determining whether a

certain bot should behave only as proxy or P2P accessed worker can be done

based on the connectivity properties (such as when some of the infected devices

don’t have the direct access to the CnC server). In order to lower the probability

of detection of the CnC server, additional layers of P2P connection can be add-

ed, although that comes with the cost of increased latency.

2.2 Common botnet use-cases

According to the definition of botnet provided by Norton2 a botnet can be used

for purposes like:

• Executing a DDoS attacks

• Emailing spam to millions of internet users

• Generating fake Internet traffic on a third-party website for financial

gain.

• Replacing banner ads in your web browser specifically targeted at you.

• Pop-ups ads designed to get you to pay for the removal of the botnet

through a phony anti-spyware package.

2.3 Command delivery methods

There’s a number of different ways that a command can be delivered by CnC

server to a bot. As already mentioned in the introduction, HTTP and IRC proto-

cols are the most commonly used for this purpose, however those are not our

only options. As mentioned by Inmaculada Ayala et al. in “An empirical study

of power consumption of Web-based communications in mobile phones” (2017)

2 https://us.norton.com/internetsecurity-malware-what-is-a-botnet.html (07-07-2018)

16

WebSockets are also a common option for the message delivery both in case of

mobile applications as well as websites (and effectively botnet client). Also

what is available in most clouds are IoT services that can enable the communi-

cation with a remote client over the MQTT protocol. Let’s take a closer look at

each one of these approaches now

2.3.1 HTTP notifications

As mentioned by Inmaculada Ayala et al. the command delivery over the HTTP

protocol can be handled in two different ways: polling and long polling.

Inmaculada Ayala et al. defines the polling approach in the following way:

The polling mechanism is the simplest way to receive asynchronous data. The client polls
the server periodically (polling interval) for new content by sending HTTP requests, al-
lowing the server to respond with an HTTP response if new data is available. Each re-
quest attempts to pull any available data. If no data is available, the server returns an
empty response and the client waits for some time (polling interval) before sending an-
other (poll) HTTP request.

Whereas the long polling is defined as follows:

In order to alleviate client continuous polling, there exist different web models in which a
longheld HTTP request allows a web server to push data to a browser only when new da-
ta is available. One of the most common server push mechanisms is HTTP “Long Poll-
ing”, in which the server “holds open” (not immediately reply to) each HTTP request, re-
sponding only when there is new data to deliver. Then, there is always a pending request
to which the server can reply for the purpose of sending data as it is available, thereby
minimizing the latency in message delivery, and the use of processing/network re-
sources.

2.3.2 WebSocket notifications

Inmaculada Ayala et al. describes also the WebSocket-based approach to the

problem. With WebSocket protocol it is possible for the client to create a full-

duplex persistent TCP connection to the server.

Based on this connection, the Web server is able to actively send data to the client when-
ever it is available. Prior to data/message exchange, the WebSocket protocol requires an
initial handshake and the message exchange. The initial handshake uses the HTTPUp-
grade-request, which allows to switch from the HTTP to the WebSocket protocol. The
message exchange is executed in form of frames, which contain either text or binary data.

17

2.3.3 IRC notifications

IRC protocol is a simple plain text protocol operating over a persistent TCP

connection. Effectively, similarly to the WebSocket approach, the message is

delivered to the client as soon as it is available on the server.

2.3.4 MQTT notifications

As Konglong Tang et al. Define the MQTT protocol in ” Design and Implemen-

tation of Push Notification System Based on the MQTT Protocol” (2013), it’s a

protocol originally designed and developed by IBM, that allows the delivery of

push messages. MQTT can work in one of three modes of message delivery:

• At most once – the actual delivery depends only on the TCP connec-

tion and as a result some messages can be lost on the way

• At least once – the server ensures that the message is delivered, but

duplicates can happen

• Only once – the server ensures that the message is delivered exactly

one time

It is a particularly interesting protocol in our case, as the MQTT push notifica-

tion service is provided by every major cloud through IoT services.

3 METHODOLOGY

This part describes the methodology used for the study. It will go through the

full approach of conducting the study, the data collection methods, the research

methods and the purpose of the study.

3.1 Purpose of the study

The purpose is exploratory. The exploratory research, as the name already

implies, aims to explore the research questions rather than provide the ultimate

18

solution to the problem. This is important in this case, as there is are hundreds

of ways to implement a malware. It simply wouldn’t be feasible to go through

them all to find the one best solution.

The paper will compare various cloud platforms, services they provide

and the cost of their usage to find various possible architectures for our Com-

mand and Control server and effectively the malware communicating with it.

In the end we will also compare the cost of maintenance of different architec-

tural approaches. After all the very reason why designing a Cloud Platform-

specific CnC server makes sense is because it can drastically lower the execu-

tion costs.

It is also worth mentioning here that malware development is not among

any of the target applications of those cloud platforms. While they provide a

number of very convenient features useful for building robust web applications,

management of IoT devices and AI data processing, services that might turn out

to be essential to achieve our goals might simply not be in place. Should that

happen, the only way to execute our solution is to spawn a virtual machine in-

side that cloud, running a standalone CnC server, what defeats the purpose of

using that specific cloud.

3.2 Research approach

In the paper we will use the deductive approach. When utilizing the deductive

research approach we want to start with a hypothesis and the through data col-

lection we want to build a proven theory. In this case our hypothesis is that it is

possible to build a CnC solution using only the serverless technologies provid-

ed by various cloud platforms and therefore minimize the cost of execution of

the CnC application while keeping it scalable, what is necessary to manage a

large number of clients.

19

3.3 Research method

We will use a combination of the qualitative case study as well as the explorato-

ry research method. The qualitative case study method is used to collect the

data through in-depth investigation of multiple cases within one context.

The study will focus on three cases of three different clouds:

• Amazon Web Services (AWS)

• Google Cloud Platform (GCP)

• Microsoft Azure

FIGURE 1: Gartner's Cloud Platform Market Shares in 2017

As we can see in the Gartner’s report from the year 20173, these three have some

of the largest market shares. Each one of these clouds support serverless com-

puting in one way or another, whether those are lambdas, Google App Engine

or other form of serverless logic executor and after all those are the services this

study puts a lot of emphasis on. They all also provide various ways of message

delivery through various custom push notification services to HTTP and

MQTT-based IoT services. Some of them also provide other services that can

allow us to make our malware more effective (like for instance the P2P ser-

vices).

3 https://www.gartner.com/newsroom/id/3884500, 26.12.2018

20

The second part of the study is exploratory. There has been very little research

done related to building cloud-based serverless Command & Control applica-

tions. Most of the articles available on the topic focus on more traditional ap-

proaches where the standalone server is required. This is why we need to ex-

plore our options, propose completely new architectures and prove that they

are feasible to implement. This is why minimalistic implementations of each of

the proposed architectures will be provided, tested and discussed in more de-

tails.

3.4 Data collection

In exploratory case studies data often is collected through questionnaires, inter-

views and experiments. While the questionnaires and interviews make very

little sense in terms of technology-related studies, the experiments do.

In the study we will collect the data through:

• Already existing research papers, official cloud documentations and

blogs on related topics. Especially the blogs may prove to be very use-

ful as most framework and technology providers as well as data securi-

ty companies tend to describe on their blogs various approaches to var-

ious problems related to architecture, implementation and security

threats.

• Empirical implementation, to validate that the approach is actually fea-

sible. In the software development it is a very common case that a cer-

tain technology appears to solve the proposed problem, whereas dur-

ing the implementation of the solution it turns out that the selected

technology imposes certain limitations, yielding it inapplicable for the

specific problem. Effectively the only way of ensuring that the solu-

tions we will propose in this study are valid is to implement the proof

21

of concept for each one of them. Additionally the POC can give us in-

formation about performance of the proposed solution, point the hid-

den costs and show how much development effort is actually needed

to implement the solution in the first place.

4 FINDINGS – CASE STUDY ON 3 PLATFORMS

4.1 Standalone CnC server

In order to better understand the complexity of CnC applications as well

as evaluate the cost of their execution, let’s first analyse the standalone ap-

proach where we try to create our own CnC application running on a server.

Let us however not focus on any extreme examples just to prove the point on

the thesis. Technically we could create a Java application running on a Tomcat

server, but according to Oracle documentation4 we would need 512 MB of

memory just to run the server and then there are memory requirements of our

application on top of that. For this reason we’re going to build a small applica-

tion in Node.js instead. One that can integrate the whole server in it, without

relying on a third party one.

4.1.1 Design

While the list of common use cases of botnet is fairly long, most of them

can be handled in a similar way:

4 https://docs.oracle.com/cd/E13169_01/ales/docs22/installadmin/prepare.html,

07.08.2018

22

1. Client subscribes for the push notifications from the server over HTTP or

IRC protocol (as already mentioned before)

2. A request is issued by the administrator to the server

3. The server dispatches appropriate commands to the client

Effectively the most trivial CnC application could be essentially just one server

with all the clients connecting to it and waiting for the attacker to issue a com-

mand (FIGURE 2).

FIGURE 2: Standalone CnC - single instance design

This approach however has a drawback – there’s only so many clients that can

connect to the server in the same time. They all have to maintain an open TCP

connection in order to be able to react to the command as soon as possible and

once some data has to be transferred between the client and the server, there’s

also a limit imposed by the connection speed of the virtual machine running

our server application. We can obviously always configure the virtual machine

giving it higher bandwidth, but then we would end up paying for it at all times,

even when we don’t really use it. The same goes for all the other resources re-

23

quired to run the application. With just one server we cannot have green-blue

deployments. Also, single server is more error-prone. Should anything happen

to it, the entire CnC will go offline. For this reason it seems more reasonable to

have a number of VMs with lower amount of resources, that can be spawned

automatically by a load balancer when they’re needed. This however introduces

a difficulty. If there are multiple servers hidden behind a load balancer, then

they need to be able to exchange the information about the connected clients

between each other. Luckily there are multiple caching services out there that

can be used for this purpose. One of the most popular ones and provided out of

the box by most major cloud providers is Redis. Having that in mind, let’s up-

date the application design (FIGURE 3).

FIGURE 3: Standalone CnC with load balancing

24

This way we limited the cost of VMs required to run our CnC application, how-

ever in the same time we introduced the necessity of using the load balancer

and the Redis cache, which do not come for free either.

In the next sections let’s try to evaluate how much resources are needed in both

approaches in order to calculate the approximate cost of execution of the server-

based CnC application.

4.1.2 Resource consumption

In order to evaluate the resources actually needed to execute I wrote a minimal-

istic proof of concept in Node.js that can work either with or without the Redis

support. The implementation details can be looked up from appendix 1.

In order to evaluate the required resources, I will simulate 10000 client connec-

tions, issue a command to every bot and measure the memory consumption

and the processor usage of the CnC application process. The detailed descrip-

tion of how the test is executed is depicted in FIGURE 4, but the implementa-

tion details can be looked up from Appendix 2.

25

FIGURE 4: Resource consumption test sequence diagram

Following the testing method depicted in FIGURE 4 a number of results were

retrieved. FIGURE 5 and FIGURE 6 depict the resources that were consumed by

the server process during the measurement.

FIGURE 5: Standalone CnC memory consumption

26

FIGURE 6: Standalone CnC CPU usage

As can be seen from FIGURE 5, the memory consumption when using the ex-

ternal caching system is slightly higher. This is understandable as in that case

an additional library has to be initialized to enable the Redis support in the first

place. Also the caching process itself requires a little bit of memory that is going

to be released by the garbage collector only after a while. As a matter of fact we

can see from the graph that the further we go, the more irregular measurements

become, adding up to +/- 100MB delta between the lowest and highest meas-

urement. This indicates that the garbage collector tries to free the memory from

no longer necessary data. The detailed numbers of the measurement can be

looked up from the Appendix 3.

The FIGURE 6 which depicts the CPU usage is more sparse. The built-in

Node.js tool allowing to measure the resources used by a specific process re-

turns the percentage of CPU that is used at a certain time. The measurement has

been performed on a device with 2 core processor with 2.8GHz/core. As the

CnC server is not performing any calculations at all times, many of the meas-

urements return 0% CPU usage what in this case only indicates lower than

~28MHz usage. The detailed numerical results can be looked up from Appen-

dix 3.

27

4.1.3 Performance

The standalone approach, as opposed to other ones that will be discussed

later in this paper, does not require any internal network calls, apart from the

one to Redis (if enabled). This means that by definition this approach should

provide us with quicker response times. Let us however spend a moment to

measure the response times between the CnC server and the client in order to

see how much the latency changes from one approach to another.

In this test, in order to avoid the bias coming from the network latencies,

we will actually deploy our server to a remote host. In this case we will use the

an AWS EC2 server in eu-west-1 region. This means that the server is physically

located in Ireland. We will simulate one client connecting to the CnC server and

then measure the response time for issuing 1000 directory listing commands.

FIGURE 7: Standalone CnC client response times

As we can see in FIGURE 7, the responses, apart from a few exceptions

tend to be fairly quick. The median response time is equal to 212 milliseconds.

28

4.1.4 Cost estimation

The cost of execution can vary slightly depending on the server provider

that we would like to use. However, assuming that different providers use simi-

lar price lists in order to stay competitive, we’ll perform the calculation based

on the prices of only one of these providers – Amazon.

Amazon provides an easy to use price calculator that can be used to calcu-

late the price of AWS services usage. During the price calculation we’re going to

focus only on the services that are specific to the standalone approach. So we’re

going to skip the cost of S3 bucket that could be used for providing the client

updates, or Route 53 for generating the DNS domain, as these will also be need-

ed in case of serverless approach and we’re only interested in the cost difference

between the standalone application and the serverless one in this case. Also, the

prices can differ vastly between different regions. For the sake of clarity we’re

going to use the prices for the region eu-west-1 (Ireland).

TABLE 1 Single CnC instance costs

Single instance

Service Details Why it is needed Price (USD)

EC2
t2.small instance with
external IP address

t2.small instance provides 2GB of
memory. To provide for our 10000 bots
this is all we need and a little bit more

$21.96

Data transfer IN 100GB
The data transferred from the admin to
the server as well as the responses
generated by bots and bot registration

$0.00

Data transfer
OUT

100GB
The data transferred to bots and re-
sponse for the administrator

$8.91

 $30.87

TABLE 2 Multi-instance CnC costs

Multi-instance

Service Details Why it is needed Price (USD)

29

EC2
t2.nano instance with
external IP address

t2.nano instance provides
0.5GB of memory which is
sufficient for lower num-
ber of clients

$8.28

Data transfer IN 100GB

The data transferred from
the admin to the server as
well as the responses gen-
erated by bots and bot
registration

$0.00

Data transfer
OUT

100GB
The data transferred to
bots and response for the
administrator

$8.91

Redis cache $13.18

Load balancing $22.10
 $52.47

It’s important to notice that in the multi-instance approach the EC2 in-

stance cost is somewhat variable. The presented cost is for one virtual machine,

but more can be spawned by the load balancer at any time, should that be

needed, so that all clients can be managed efficiently.

Additionally, the presented costs are per region. This means that should

the administrator decide to deploy the application to multiple regions in hopes

to minimise the latency, the final price should be multiplied by the number of

regions in use.

4.2 Google Cloud Platform-based approach

Google Cloud Platform is a very convenient platform allowing the developers

to easily manage their web applications in the cloud environment. As we can

read in google documentation and marketing materials5, there are basically 2

ways to approach the problem of serverless development on Google Cloud

Platform:

• Applications running on App Engine

• Cloud Functions

5 https://cloud.google.com/serverless, https://cloud.google.com/functions/docs/ and

https://cloud.google.com/appengine/docs/, 17.03.2019

30

Let’s take a closer look at them.

4.2.1 Serverless application engines

4.2.1.1 Google App Engine

Google App Engine is advertised as a fully managed serverless application plat-

form, allowing you to deploy applications written in a number of popular pro-

gramming languages including among many Go, Java, JavaScript and Python.

It comes with a number of monitoring features, requires close to zero configura-

tion and allows easy deployments. The business logic execution on google app

engine can be triggered by either an HTTP request or a CRON scheduler.

It also provides us with Memcache, which can be extremely useful for storing

the state of a distributed application, as well as various permanent data stores.

4.2.1.2 Cloud functions

Cloud functions as of now are still in the beta version. Their support is greatly

limited compared to Google App Engine, as they don’t have very little monitor-

ing or external service integrations that comes out of the box. They’re designed

to be triggered by any of the following:

• HTTP request

• Cloud Storage event

• Pub/Sub notification

What they however lack in supportability, they make up with portability.

They’re fully supported by the Serverless framework and that allows the devel-

opers to easily switch from their previous cloud provider to GCP without hav-

ing to re-implement their application from scratch.

4.2.2 Authentication

When building a CnC application, in order to avoid a situation in which anoth-

er hacker or a security engineer tries to access the data that is meant for another

bot, or simply access the services provided by the CnC application despite not

31

being able to properly authenticate itself, it is important to use a proper way of

authentication of bots. As a result each bot needs to have some form of unique

credentials that will uniquely identify it in the botnet as well as ensure the ex-

plicit access to its own resources.

As we can read in Google Cloud documentation6 in GCP there’s a number of

ways an application can authenticate itself, starting with acquiring webservice

credentials, going through standard user authentication and ending with au-

thentication functionalities provided by the IoT service.

1. Service authentication – a special account that represents an application

as opposed to representing a user. You can use a service account by

providing its private key to your application, or by using the built-in

service accounts available when running on Google Cloud Functions,

Google App Engine, Google Compute Engine, or Google Kubernetes En-

gine.

2. User accounts - you can authenticate users directly to your application,

when the application needs to access resources on behalf of an end user.

Example use cases include:

• Your application needs to access Google BigQuery datasets that are in

projects owned by users of your application.

• Your application uses an API such as the Cloud Resource Manager

API, which can create and manage projects owned by a specific user.

The application would need to authenticate as a user to create projects

on their behalf.

• You plan to create development tools that create resources within pro-

jects.

3. An API key is a simple encrypted string that identifies a Google project

for quota and billing purposes. API keys can be used when calling

Google APIs that don't require authentication, and when using Google

Cloud Endpoints.

6 https://cloud.google.com/docs/authentication

32

After deeper investigation however it turns out that each one of these authenti-

cation methods have certain limitations that would make them difficult to use

in case of our application. Service authentication credentials cannot be generat-

ed through provided SDK, but instead have to be manually delivered to the

application. That would force us to either use the same credentials in all bots

(what defeats the purpose of authentication in the first place) or manually cre-

ate a set of credentials for each bot and then somehow deliver it remotely (not

really feasible). The user authentication requires a real google account. This

means that every bot would need to have a dedicated mailbox in order to be

able to log into the system. And finally the API Key, although the easiest to use,

is greatly limited in terms of what it can be used for. In particular, no push noti-

fication system provided by google can be accessed using the API Key.

What seems the most important to us are the push notifications though since

only they can deliver a remote command that should be executed on victim’s

device and there are several different services in Google Cloud that allow us to

deliver those. Some of them also introduce additional service-specific methods

of authentication.

4.2.3 Push notifications

As mentioned before, Google Cloud Platform provides a number of different

ways to deliver the remote command.

1. Pub/Sub service – the name suggests that this is specifically what we’re

looking for. After all we want our client to SUBscribe to a certain feed

and then PUBlish the remote commands into it. Unfortunately, when try-

ing to take it into use we find multiple issues with the service that yield it

unsuitable for our use case:

• It is originally designed to serve the noticiations to GCP-hosted appli-

cations. This can be worked around by providing the external applica-

tion with a set of service credentials, but as mentioned in the previous

33

chapter, introducing the service credentials to the client is not really

feasible.

• The undelivered messages are stored. The Pub/Sub service has a built-

in message queue that persists each undelivered message for up to 7

days7. This is problematic, taken into account that many of the devices

we issue a command to might be offline at the moment of the request.

This means that once the device goes online, we might end up deliver-

ing a number of commands that we’re no longer interested in and that

can possibly cause us harm if executed when not wanted. Say, you

want to start and then stop your DDOS attack, but one device starts it

on its own two days later. This can possibly lead to the exposure of our

botnet.

2. IoT Service – perhaps a somewhat unexpected ally in this sort of use

case, IoT service is capable of generating push notifications to the remote

clients connected to it. As a matter of fact it might be even better suited

for the job than the Pub/Sub service taken into account that the clients of

IoT Service are by design outside of the cloud. The IoT service introduces

one more form of authentication that is specifically designed to be used

with IoT – the client generates a key (any of the following formats:

RS256, ES256, RS256_X509, ES256_X509) that is later on registered in the

IoT service allowing the client to uniquely identify itself in the service. In

this case unfortunately we also end up hitting the wall due to a number

of incompatibilities with our use-case:

• The notification is only generated through device configuration

change. All configurations are permanently stored in the cloud and

versioned, leaving in the same time a clear trace of what we did to a

certain device.

7 https://cloud.google.com/pubsub/docs/subscriber, 23.12.2018

34

• We face a similar problem as we had with the Pub/Sub service – if the

device is offline at the time of notification publishing, then it still gets

delivered as soon as the device goes online again.

• Only one command can be delivered at a time. This makes it compli-

cated to perform quickly multiple operations one after another. Chanc-

es are that only the last one will be delivered in this case.

3. Firebase Cloud Messaging – Firebase is a whole another service provided

by Google that aims to provide a universal backend for android/web

applications. It greatly extends and simplifies the use of the Google

Cloud Platform, hiding some of the configuration complexity of GCP as

well as providing several additional services that are commonly used in

both android as well as in web applications. One of those services is the

Google Cloud Messaging service. This one meets all of our requirements.

The messages are not persisted. They are not getting delivered to the cli-

ent if issued while the client was offline. It allows us to generate multiple

notifications at once without waiting until the previous one generates a

response. The authentication however is a problem again. Firebase uses

multiple levels of authentication. First there’s the general application au-

thentication key, that can in fact be easily shared between all clients us-

ing the service. The issue is that in the end we want to authenticate the

specific client and in order to do that, Firebase either requires

Email/Password authentication, or a federated authentication from one

of the popular social media services, Facebook, Google+ or Twitter. Gen-

erating such accounts separately for each of our clients doesn’t quite feel

right.

4.2.4 Google Cloud Platform summary

While Google Cloud Platform sounds very promising, it is still one of

the youngest ones available on the market and it lacks crucial functionality in

35

the area of authentication as well as the delivery of the push notifications. De-

spite the best efforts of working around the limitations of the platform, it ap-

pears that GCP is not a suitable candidate for solving the problem of this thesis.

4.3 AWS-based approach

4.3.1 Serverless applications

In AWS, as opposed to GCP discussed in the previous chapter, there’s on-

ly one ultimate way of introducing the serverless backend logic – lambda. As

mentioned in “Serverless Computing: Economic and Architectural Impact” by

Gajko Adzic and Robert Chatley (2017, p. 884), Amazon was the first company

in 2014 to introduce an approach of deploying application logic without the

need to spawn a dedicated server. Once the research proved that Lambdas al-

low the users to save 66%-95% of the costs by redesigning their architecture to

the serverless approach (since the main idea is that you only pay for what you

use, instead of paying for the server all the time just to keep it running), all oth-

er major platforms started introducing similar solutions.

Lambdas, similarly like the Cloud Functions from the Google Cloud Plat-

form are essentially small functions aiming to accomplish one small pre-defined

goal. They can be triggered by a number of various events, starting with simple

HTTP requests and ending with batch operations on large data streams (AWS

Kinesis). In fact nearly every service on AWS can generate some sort of events

that can be used as Lambda triggers.

4.3.2 Authentication

With a large number of bots connecting to our CnC application we have to

make sure that we can send a command to a very specific one. It is also im-

portant that the bot doesn’t have a possibility to start listening to messages

meant for a different client. This could potentially allow a security engineer to

take the whole botnet down. This is why we have to introduce a form of au-

36

thentication that would allow us to uniquely identify a certain bot and assign

him certain access rights, that can allow him to access a push notification ser-

vice of a certain kind, but not wide enough to let him see messages that are not

meant for him.

Amazon introduces a number of different authentication methods de-

pending on what kind of application requires to get the access to certain ser-

vices provided by the platform.

1. IAM – Identity and Access Management

As we can read in the Amazon’s official documentation8: IAM service

forms the base of any other form of authentication in the AWS platform.

The IAM service aggregates various principals (either a human user or

an application) and upon every request to any of AWS services, it vali-

dates the requested action against a set of assigned policies, deciding

whether the user should be allowed or denied a certain action (see FIG-

URE 8).

2. Cognito

As we can read from AWS Cognito documentation9, Cognito allows us-

er-based authentication. As a matter of fact it can be considered as two

separate services:

• Cognito User Pool – essentially a database of users registered directly

in the system that is being developed on AWS.

• Cognito Identity Pool – a database of references to users that are physi-

cally stored in different systems. You will use the identity pool for in-

stance to authenticate the federated identity from Facebook or Google.

It also allows us to assign certain IAM roles and policies even to unau-

thenticated users, which is something that could be used in certain ar-

chitectures of our CnC application.

8 https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html and

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html, 26.12.2018
9 https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-

cognito.html, 26.12.2018

37

FIGURE 8: AWS IAM

Source: https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html

3. IoT thing authentication

As we can find in the official AWS documentation10 every Thing must

have a pre-generated certificate that is linked to a specific Policy that de-

fines what the device can do with the AWS account. Unlike the case of

GCP, Amazon provides the full SDK allowing to generate certificates, de-

fining policies and registering Things11, so that the Thing registration can

be easily automated through a Lambda. The Policy allows us in this case

10 https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html,

https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html,
26.12.2018

11 https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Iot.html, 26.12.2018

38

to specify what notification topics a certain Thing can register to, thus

providing us with a possibility to make sure that different clients cannot

start listening to messages that were not meant for them.

4.3.3 Push Notifications

There is a number of different ways to deliver a notification to an application in

AWS. Let’s take a closer look at them.

1. SNS – Simple Notification Service

As we can read from the official AWS documentation12, SNS is a service

allowing the developers to embrace the concept of event-driven compu-

ting. It allows to publish notifications for other services, message queues,

mobile applications and others. The very concept of the service suggests

that this is something that could be easily used for delivering the remote

commands to our bots.

The message delivery can be configured with a number of different retry

strategies13 allowing us to make sure that the command we issue is

properly delivered to designated recipients. Unfortunately, as soon as we

try to configure SNS for our use-case, we find out that the service is pri-

marily designed to deliver the messages to various services located with-

in the AWS platform and while the service is advertised for being able to

deliver the messages to external clients (in particular the mobile applica-

tions), it does so through integrations with external 3rd party platforms

which in fact are designed specifically to provide the messages to mobile

clients14. The integration with those however is fairly difficult without

the specialized mobile SDK, which will not be available for our desktop

clients. Additionally the security configuration of the service is fairly

complex. We don’t want different clients to be able to listen to messages

12 https://aws.amazon.com/sns/features, 06.01.2019
13 https://docs.aws.amazon.com/sns/latest/dg/DeliveryPolicies.html, 06.01.2019
14 https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-application-as-

subscriber.html, 06.01.2019

39

meant for other clients. This means that each one of these clients will re-

quire a separate IAM Role and Policy. While the creation of these could

be automated, it introduces a lot of mess in the system. Unfortunately

AWS does not allow you to separate different applications into separate

workspaces like the Google Cloud Platform does. This means that all ap-

plications hosted on AWS have to be placed in one shared account and as

a result the IAM management becomes extremely messy, especially

when one of the applications can dynamically generate thousands of en-

tries.

In conclusion the SNS service, despite a very suggestive name and ad-

vertisements suggesting that this might be the right service for the job, is

in fact not the right tool to deliver the commands to the remote clients.

2. AppSync

AppSync, a very recently released (13.04.2018) new AWS service, is ad-

vertised as a solution allowing you to easily build, among others, chat

applications15. As mentioned before, one of the most common protocols

allowing the delivery of commands to bots is IRC which is in fact de-

signed for online chat applications, hence this suggests that the service

might actually be what we’re looking for. As we can read in the AWS

documentation of the service16, the messages of AppSync are delivered

via MQTT over web socket. This is quite convenient since MQTT addi-

tionally allows us to monitor in real time which of the clients are current-

ly online and listening to new commands. The messages are delivered in

the format of GraphQL objects and are triggered upon stored data muta-

tion. This means that rather than explicitly generating a notification for

the client, we should modify the value in the underlying data store and

allow AppSync to generate the notification for us. While the AppSync

wizard, that we can find in the AWS admin console, only allows to de-

15 https://aws.amazon.com/appsync, 06.01.2019
16 https://docs.aws.amazon.com/appsync/latest/devguide/real-time-data.html,

06.01.2019

40

fine a DynamoDB database as the underlying data store, there’s still a

number of other resolvers to choose from, that can be used instead when

using command line tools, or CloudFormation template. One of the op-

tions is a simple AWS lambda. This means that we can in fact completely

mock the data store however we want in order to achieve the wanted re-

sult. After all, we probably don’t want to actually store every single

command that we issue for a bot. That would be just unnecessary waste

of disk space.

There are 4 ways of authenticating a client to the AppSync service17:

• API Key

• AWS IAM

• OpenID Connect provider

• Cognito user pools

As already discussed before, Cognito might be a somewhat uncomfortable

form of authentication in this case due to the requirement of providing ac-

tual user information, such as email and password. This is not necessarily

something that we want to generate for our bots. OpenID isn’t any better

considering that this service would have to be configured in a separate

VPS, as it’s not really a service provided by AWS. AWS IAM, as already

mentioned before, could potentially generate a lot mess, making it difficult

to manage the security as a whole in our AWS account. API Keys however

are easily generatable by a lambda. The keys however have the maximum

validity time of 365 days. This means that we have to explicitly introduce

the functionality to periodically rotate the API Keys in thousands of clients

while being able to identify them continuously as the same clients that just

started using a different API Key. Such functionality would require careful

investigation of all corner cases, like how do you do the rotation when the

client is offline for a prolonged period of time and the key expires before

the rotation was possible?

17 https://docs.aws.amazon.com/appsync/latest/devguide/security.html, 06.01.2019

41

In conclusion, the approach appears possible to implement, although it

feels a bit hacky. While the service appears to provide all the required fea-

tures, it clearly isn’t designed to deliver the remote commands. If we don’t

want to waste and pay for the disk space, we need to implement a custom

mocked data store in the form of a lambda and then we have to create a

mechanism allowing us to periodically rotate the API Keys.

3. IoT

AWS IoT service, similarly as AppSync communicates with the remote

clients via the MQTT protocol. This allows us to tell which of the clients

are online at all times. The service registers the remote clients as Things.

Each one of these can be easily assigned to a Thing Group, limiting the

mess within the AWS account. Thing Groups also allow us to easily issue

messages to a number of clients at once. The service provides 3 different

forms of communicating with Things:

• Shadows

• Jobs

• Simple push notifications

As we can read from the AWS IoT documentation18 shadows essentially

represent the configuration of the Thing. They’re represented by a simple JSON

document that stores the information of the requested configuration as well as

the last acknowledged by the client configuration. Every time a configuration is

changed, a notification is delivered to the client that needs to explicitly confirm

the receival of the new configuration. In that sense, the Thing Shadows work in

a similar manner as the IoT Configuration in Google Cloud Platform which we

discussed before and concluded that it’s not really appropriate for delivering

the remote commands to our clients.

Jobs are way closer to our desired effect19. A job can be represented by any

form of JSON document. It can be created in a way that it is delivered to any

18 https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html,

06.01.2019
19 https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html, 06.01.2019

42

number of Things and the execution progress can be tracked in real time, as

every Thing has to explicitly confirm the receival and execution of the Job. In

fact, in case of longer jobs, a Thing can report the exact progress of the job exe-

cution. As the progress of the jobs is trackable, they have to be stored, but since

they are stored directly in the IoT service, the user is not required to set up any

additional database or pay for the storage of such data.

The simple push notifications are also an option in AWS IoT service. In

that case the client has to subscribe for a specific topic that only he will be able

to access. This means that a specific IoT Policies have to be created for each

Thing separately, to make sure that they cannot listen to each-other’s communi-

cation channels. The command delivered this way doesn’t leave any trace on

AWS account of what we issued, what arguably might make it the best option

to deliver our messages.

In conclusion, AWS IoT service appears to be perfect for the use-case of

delivering the remote commands in a serverless manner. The Jobs and Push

Notifications allow us to handle the communication between a remote client

and the backend in a number of different ways.

4.3.4 Design

In the previous section we determined that the best way to deliver the remote

commands to the client in the AWS is through the usage of the Push Notifica-

tions generated by the IoT service. Let us now design how the whole applica-

tion could behave in such situation.

IoT service requires that the communication with the outside world is

handled through the SSH certificates. This means that our client should start by

generating one and uploading the public key to the cloud, where it will be reg-

istered within the IoT service. In order to handle it in a secure manner, we can

build a lambda triggerable by HTTP events that will receive the public key, reg-

ister it within the IoT service, create the Thing, and generate the IoT Policy that

specifies what Push Notification topics the thing is allowed to listen to.

43

Once the client is successfully registered, it can immediately subscribe to

his IoT topic directly within the IoT service. Then as soon as the command is

issued by an attacker, it gets delivered directly to the client, who in response

can generate a response back to the IoT service, that may again be delivered

back to the attacker.

FIGURE 9: AWS IoT-based CnC design

The Appendix 8 contains the backend implementation of the design from FIG-

URE 9. As we can see from the comparison with the standalone CnC server

(implementation provided in Appendix 1), the amount of required code is in-

comparably smaller and yet, thanks to the AWS cloud, it provides much wider

area of applications. Right now, we’re using only a small subset of functionality

of the IoT service, but introducing for instance video/audio streaming wouldn’t

require any additional work on the backend side, whereas in the standalone

solution it quite likely would require quite extensive changes, should we ever

decide to introduce it.

The proposed solution however is not necessarily very clean. It requires

the attacker to be directly connected to the IoT service in order to receive the

instant response. This means that should there be more than one administrator

44

of the botnet, there is a requirement of introducing separate IoT topics for each

one of them, to make sure that they don’t receive responses for requests they

didn’t send personally. The IoT Jobs make it much easier to track who exactly

issued a certain command, but they also leave a trace of what happened, which

is something we don’t necessarily want. Yet, it is necessary to create an IoT Job

in order to easily identify what response was issues for what request.

4.3.5 Performance

We measure the performance of the application by deploying it to Amazon’s

eu-west-1 region (just like we did in case of the standalone approach before).

The client will first register to the IoT service via lambda and then we will issue

1000 directory listing commands to estimate the time the client will need to

produce a response.

FIGURE 10: AWS-based client response times

As we can see from FIGURE 10 and FIGURE 7 the AWS-based approach is just

a little bit slower than the standalone approach despite the fact that the IoT ser-

vice that we make requests to still needs to internally consult the IAM service to

figure out if the client has access rights to subscribe and publish to certain top-

ics. Those internal requests however are performed within the same physical

45

data center, hence the latency is greatly limited. As a result median for the re-

sponse time in the AWS-based serverless approach for the CnC application is

only 256 milliseconds. Compared to the original 212 ms from the standalone

CnC the difference is nearly unnoticeable, except that in this approach we no

longer have the need for a VPS that would constantly run in the background to

maintain the connection with the bots.

4.3.6 Cost estimation

Similarly, like we previously did with the standalone approach, let’s try to es-

timate the cost of maintenance of the AWS IoT-oriented solution in order to de-

termine if the serverless approach actually proved to be as cheap as advertised.

Just like in the case of the standalone application, we’re going to use the

AWS price calculator20 in eu-west-1 region (Ireland) and we’re going to skip the

costs of S3 bucket as well as Route53 (DNS management) as those are only op-

tional for the CnC application. We’re going to estimate 1000 client registrations

through a lambda running on 128MB of memory, where a single registration

takes 2000ms of the lambda execution (during the tests the maximum execution

time observed was 1100ms). Unfortunately AWS doesn’t provide the price cal-

culator for the IoT service, but it does publish a price list21.

IoT service has 2 different kind of charges that we’re facing: the cost for main-

taining the connection to the service and the cost of actually issuing the mes-

sages.

20 https://s3.amazonaws.com/lambda-tools/pricing-calculator.html,

https://aws.amazon.com/lambda/pricing/, 06.01.2019
21 https://aws.amazon.com/iot-core/pricing/ (06.01.2019)

46

TABLE 3 AWS IoT-based solution cost estimation

Cost per 1000 executions

Service Details Reasoning
Price
(USD)

Lambda 128MB, 2000ms timeout

Lambda is responsible for performing
the registration in the IoT. The first 1M
executions each month however are
for free

$0.00

IoT
Maintaining the connec-
tion with all the clients

1000 clients connected for a month
24/7, each costing 0.08USD per million
minutes of connectivity

$3.46

IoT Issuing the messages Up to 1 billion messages costs 1USD $1.00

Api Gateway

HTTP events that trigger the lambda
are originally generated by the Api
Gateway - 3.50 USD per million re-
quests

$3.50

 $7.96

As can be seen from TABLE 3, the cost is drastically decreased compared

to the original standalone approach. In fact we have been able to lower the costs

by 84.8%. This is because we no longer need to pay for a number of virtual ma-

chines that have to run at all times despite the fact that they’re heavily un-

derutilized. Instead we only end up paying for the resources we actually use.

These numbers all in fact still rounded up. In our experiments the lambda

didn’t take 2000ms to register a new Thing. The computers running our client

will not be online 24/7 as many users tend to turn their computers off for the

night. As a result the more realistic price would be even lower.

4.3.7 AWS Summary

AWS proves to be a really powerful platform with a large number of inter-

changeable services allowing to minimize both the maintenance as well as the

development cost. The vast amount of services allows the end-developer to

write much less code while achieving the same or better result.

The AWS IoT service feels most intuitive and easy to configure. It also

provides the perfect base for the CnC applications by providing simple inter-

47

face for Thing provisioning and configuration as well as management of the

remote operations.

4.4 Azure-based approach

4.4.1 Serverless applications

Just like every other cloud platform discussed in this thesis, Azure also

provides its own serverless platform allowing the developer to specify the

backend logic without the necessity of implementing a full blown standalone

application – the Azure Functions. The platform however introduces a signifi-

cantly clearer manner of managing its functions in comparison to AWS and

GCP, as it introduces the concept of Function Apps, each of which can contain a

number of Azure Functions, while the application can be monitored as a whole.

Azure functions, similarly as AWS Lambdas, can be triggered by a wide

range of different triggers. While in our case HTTP request is the only one that

we need to initially issue a request, the full list includes 19 different kinds of

triggers22.

4.4.2 Push notifications and service-specific authentication and authoriza-

tion

It appears that Azure cloud has fewer services that seem interchangeable at the

first glance, compared to AWS. There are however two different services that

allow us to publish a notification to a remote application. Also each one of them

uses different form of authentication. It appears that Azure chooses a very dif-

ferent approach to authorization compared to other cloud platforms researched

in this paper. Instead of introducing the centralized IAM service, it follows the

concept of connection strings. Before a service can be used, the developer has to

define a specific configuration of the instance that is required. This results in the

22 https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings,

10.02.2019

48

generation of a new endpoint that is identified by a unique connection string,

which is necessary for the client to use the service.

1. SignalR – as we can see from the marketing page of the service23, SignalR

is a WebSocket-based message broker designed to build any applications

that require real-time updates, such as chats or games. As we can read in

the Azure documentation24 the service is well designed to be error-proof.

The network connection should never be considered as particularly sta-

ble and SignalR takes that fact very seriously. This is why whenever the

connection is dropped between the client and the service, the connection

data on the server side is not immediately disposed of. The client still has

all the information required to re-establish the connection and once it

does, it receives all the messages that were sent for him during the time

that the connection was down.

There are numerous tutorials showing how to easily create a group chat

using SignalR using just a few lines of code. The issue is that the group

chat messages are received by all clients that are connected to SignaR

endpoint. We don’t want that to happen with the remote bots. It looks

like the SignalR does not provide any authentication form on it’s own

though. Rather than that, it requires the user to specify an Azure Func-

tion that will allow the user to specify who he is and who he wants to

send the message to. Unfortunately for us however, only a limited num-

ber of authentication choices is supported in this case. As the official

documentation specifies25 the client has to be authenticated with one of

the following:

a. Azure Cloud Directory

b. Facebook

c. Twitter

23 https://dotnet.microsoft.com/apps/aspnet/real-time, 17.02.2019
24 https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-

api/handling-connection-lifetime-events, 17.02.2019
25 https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-authenticate-azure-

functions#log-into-azure-with-vs-code, 17.02.2019

49

d. Microsoft Account

e. Google

Unfortunately none of these area feasible option in case of a client that is

generated automatically and never truly gets registered by a human us-

er.

2. IoT Hub – another IoT service. Just like the Goggle and AWS ones, it

supports HTTP and MQTT protocols, allowing either long polling or

persistent connection. It uses just a slightly different approach for au-

thentication and authorization than SignalR. While the IoT Hub is repre-

sented by its own connection string, this one is meant to be used only for

administrative operations, such as registering a new device. Every device

however is represented by a separate unique connection string. While

this thing perhaps makes it a bit easier to implement the client side, as

you no longer need to generate any certificates, like you normally would

on AWS, on the server side it adds a new difficulty – you have to provide

the connection string to the Azure Function somehow. In other clouds

this is not an issue thanks to external IAM Service with which the appli-

cations don’t necessarily have to be informed of what they are allowed to

do.

The IoT Hub provides a number of different ways of communication

with the external client26:

a. Cloud-to-device messages – meant as one way communication, alt-

hough various telemetry operations from the client side are possible,

allowing the user to build some form of bi-directional communica-

tion.

b. Twin’s desired properties – similar to Shadows in AWS IoT service.

It’s meant to store and provide the configuration of the device. The

twin is represented by a JSON document specifying the current as

well as the requested client configuration. Once the user submits a

26 https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-c2d-guidance,

17.02.2019

50

new configuration change, the twin document is updated with the

last requested configuration. Then the notification about the configu-

ration change is sent to the device. Once the device confirms the re-

ceival of the new configuration the twin document is updated again

to reflect that fact.

c. Direct methods – option completely unavailable in other cloud plat-

forms. It is actually possible to expose a function on the client side in

such a way that it feels similar as calling any other function in the lo-

cal application. This introduces an extremely simple and intuitive

way of building the communication between the backend and the cli-

ent, where it’s the backend that has to initiate the communication.

4.4.3 Design

As established in the previous chapter, the most convenient way of handling

the communication with the remote clients is through the direct method calls

that are possible thanks to the Azure IoT Hub. Before that can happen however,

we have to register the client in the hub. That can be easily done inside an Az-

ure function that is triggered by an HTTP request. Once the function registers

the client, it returns to the caller a unique connection string that can be used to

establish the connection with the hub and expose functions to the cloud. Those

can then be easily accessed by other Azure Functions which are meant to be

used by an attacker.

51

FIGURE 11 Azure-based CnC design

Appendix 11 contains the implementation of the design depicted in the FIGURE

11. As can be seen from the code, the implementation of the Azure-based ap-

proach is even shorter than the one for AWS. This is because AWS requires the

user to explicitly create a certificate, Thing and correctly link them with the

IAM Policy. In Azure however the Thing can only ever upload the telemetries

to its own topic. It can upload a file, but also to a very specific place. The Thing

can never interact with any non-IoT services hosted in the cloud, hence there is

no need to specify any policy. There is no certificate, hence there is no need to

upload it anywhere. All this makes the Azure implementation so much simpler.

In addition to that the remote function invocation is significantly easier to use

and maintain than anything AWS has to offer. As a result once the administra-

tor calls the Azure Function to issue a command, the function can actually wait

until the client responds and then forward the response directly back to the

administrator as if it was just a simple single HTTP request.

4.4.4 Performance

We measure the performance of the Azure-based approach using the North Eu-

rope region which is physically located in Ireland, similarly as AWS’s eu-west-

52

1. This allows us to limit the bias caused by the distance between the data cen-

tres and the location of test execution.

The client will first register to the IoT Hub via Azure Function and then we will

issue 1000 directory listing commands to estimate the time the client will need

to produce a response.

FIGURE 12 Response time for Azure-based CnC

As can be seen from FIGURE 12, the Azure IoT Hub appears to be signifi-
cantly less performant than the IoT service provided by AWS. While the AWS
requests take around 256 ms, the median request to Azure takes 360 ms. While
for most use-cases it doesn’t make much of a difference, it is a clear indication
that the method is not necessarily the most efficient for heavier network opera-
tions, such as file transfer. Having said that, the cloud provides a number of
other services specifically designed for that.

4.4.5 Cost estimation

Similarly, as with the standalone and the AWS approaches, let’s try to estimate

the cost of maintenance of the Azure IoT Hub oriented solution in order to de-

termine if the serverless approach actually proved to be as cheap as advertised.

53

In order to perform the estimation, we’re going to use the Azure price calcula-

tor27 in the West Europe region (Ireland). We’re going to estimate 1000 client

registrations through an Azure Function running on 128MB of memory, where

a single registration takes 2000ms of the lambda execution.

Cost per 1000 executions

Service Details Reasoning
Pric

e (USD)

Azure func-
tion

128MB, 2000ms timeout

Function is responsible for performing
the registration in the IoT Hub. You
start paying for the function only after
the first million executions, when it
costs $0.2

$0.00

IoT
Unlimited number of
devices with up to 400
000 messages per day

 $25

 $25

TABLE 4 Azure cost estimation

As can be seen from TABLE 3 and TABLE 4, it is clear that the Azure ap-
proach is significantly more expensive than the one built on top of AWS, de-
spite the fact that the solution appears less performant. While the AWS solution
costs us only $7.96, Azure asks for more than 3 times that amount for a similar
service. It is still a half of the price of what the standalone CnC would cost us,
but it does introduce grater latencies.

4.4.6 Development

The technical documentation and articles related to Azure cloud make it very

clear that the solution has been built by Microsoft. It’s in many cases very chal-

lenging to find a decent tutorial or even an official documentation that is not

fully based on C# (a programming language developed by Microsoft). Then C#

unfortunately requires Microsoft Visual Studio, which does not come for free

and therefore is not necessarily easily accessible to many developers. The POC

for the Azure-based CnC has still been written in JavaScript, but has been based

greatly on GitHub examples that have been uploaded by Microsoft. The JS SDK

27 https://azure.microsoft.com/en-us/pricing/calculator/, 16.03.2019

54

online documentation however is fairly limited and difficult to understand on

its own.

Having said all that, it comes as a surprise that Azure implementation in-

deed is the least demanding. The platform services as such are extremely well

designed and easy to understand and as a result the amount of code required to

manage them, is absolutely minimal. In fact the combined number of lines of

code for both the POC client and the backend in the Azure approach was under

100.

4.4.7 Azure summary

As mentioned before, the Azure CnC application seems the slowest of all that

have been tested in this thesis. Also, while it is significantly cheaper to run than

the standalone CnC application, it is definitely not among the cheapest options,

due to the significant cost of the IoT Hub. The documentation regarding JavaS-

cript also lacks behind, making it challenging to develop anything in this par-

ticular language.

Having said all that, the Azure solution still produces substantial cost sav-

ings and 100ms higher latency is not anything problematic in many use cases.

Additionally, not everyone really likes programming JavaScript anyway, hence

as long as C# remains an option, Azure remains the platform that requires the

lest implementation. An experienced developer could implement a bot and the

appropriate backend using this platform in only 1 day which is a significant

improvement compared to the standalone CnC or the one specifically designed

for AWS and that completely justifies the execution cost.

5 CONCLUSION

In this thesis we compared 4 different approaches to the development of Com-

mand & Control applications:

55

• A standalone approach that requires the developer to implement an

entire service constantly running in the backend that is responsible for

bot registration and issuing the remote commands through the REST

interface

• A Google Cloud-based serverless approach, that in the end proved to

be extremely challenging to implement due to limited capabilities of

the platform

• An AWS-based serverless approach with the use of Lambdas and the

AWS IoT service

• An Azure-based approach with the use of Azure Functions and the IoT

Hub

We looked at the performance, costs related to the development and cost of

running the solution on each of the platforms.

 Standalone AWS Azure

Performance 212 ms 256 ms 360 ms

Cost $52.47 $7.96 $25

Difficulty/cost of

development

where 1 indicates

very easy/cheap

and 10 very diffi-

cult/expensive

10 5 2

TABLE 5 Comparison of working solutions

It has become clear that the standalone CnC, although the most performant, is

also the most expensive to develop in the first place and the most expensive to

run in the backend. We concluded that the Google Cloud-based CnC is not real-

ly feasible without a number of badly looking workarounds, due to the plat-

form limitations. The AWS-based serverless CnC, although slightly slower than

56

the standalone one, proved to be pretty efficient in terms of command delivery

and response. It is fairly simple to implement while keeping the project secure,

and is definitely the cheapest option when it comes to costs of the platform ser-

vices. The Azure-based CnC proved to be the least performant of all approaches

tested in this paper, but the amount of time to receive the response from the

client was still fairly reasonable. The cost of keeping the project running on Az-

ure is higher than on AWS, but it still halves the cost of the standalone ap-

proach, while keeping the cost of the development at minimum. In fact the Az-

ure implementation is the simplest of them all and the easiest to maintain for an

already experienced developer. The possibility of remote execution of locally

exposed functions and automatically receiving the returned value greatly sim-

plifies the architecture and the implementation of the solution. It almost feels

like the service was originally designed for CnC application development.

Therefore I conclude that despite the original assumption that AWS might be

the most appropriate platform for the Command & Control application devel-

opment for managing the botnet, the benefits of clear architecture and simplici-

ty of code on Azure cannot be overlooked and therefore it is the most appropri-

ate platform to build the serverless CnC application for.

57

DISCUSSION

The architecture and POCs proposed in the thesis are not the only ways of im-

plementing the serverless CnC application on each of the platforms. In fact the

proposed architectures were greatly simplified in order to minimize the devel-

opment time and in real life additional components would be added, such as a

database storing the details of each bot as well as the routing information,

should the bot use some form of P2P communication, or a lambda/azure func-

tion that would pre-process responses from bots.

Additionally, the proposed cloud platforms are not the only ones available

on the market, but only the most popular ones. This does not mean that other

cloud providers don’t provide services that could be cheaper or better suited for

the job. In fact even in case of the discussed platforms the cost and performance

of the provided services can vary depending on the region of hosting as no two

data centres ever use exactly the same physical infrastructure.

“Botnet Communication Patterns” by Gernot Vormayr et al. (2017, p. 2772)

mentions that moving from the start architecture to the hybrid one, where bots

can receive the CnC-issued commands over a number of P2P nodes, can be

more secure by lowering the chances of full botnet detection. This paper how-

ever does not cover this form of communication which might quite easily com-

plicate the implementation and require more complex architecture.

In that regard, more research might be needed to optimize and simplify

the application even further.

58

REFERENCES

Journal articles with doi:

Ihsan Ullah, Naveed Khan, Hatim A. Aboalsamh (2013). Survey on botnet: Its

architecture, detection, prevention and mitigation. 10th IEEE International

conference on networking, sensing and control (ICNSC), 660-665.

doi: 10.1109/ICNSC.2013.6548817

Vormayr, G., Zseby, T., & Fabini, J. (2017). Botnet communication patterns.

IEEE Communications surveys and tutorials, 19(4), 2768-2796.

doi: 10.1109/COMST.2017.2749442

Gajko Adzic, Robert Chatley (2017). Serverless computing: economic and archi-

tectural impact. Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, 884-889.

doi: 10.1145/3106237.3117767

Ayala, I., Amor, M., Fuentes, L., & Muñoz, D. (2017, November). An empirical

study of power consumption of Web-based communications in mobile

phones. In Dependable, Autonomic and Secure Computing, 15th Intl

Conf on Pervasive Intelligence & Computing, 3rd Intl Conf on Big Data

Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th Intl (pp. 861-

866). IEEE.

doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.144

Journal articles without doi:

Tang, K., Wang, Y., Liu, H., Sheng, Y., Wang, X., & Wei, Z. (2013, September).

Design and implementation of push notification system based on the

MQTT protocol. In International Conference on Information Science and

Computer Applications (ISCA 2013) (pp. 116-119).

Websites and technical documentation:

59

What is cloud computing. Retrieved on 24.06.2018 from source:

https://aws.amazon.com/what-is-cloud-computing

What is botnet. Retrieved on 07.07.2018 from source:

https://us.norton.com/internetsecurity-malware-what-is-a-botnet.html

Google. Serverless computing. Retrieved on 17.03.2019 from source:

https://cloud.google.com/serverless

Google. Google app engine documentation. Retrieved on 17.03.2019 from source:

https://cloud.google.com/appengine/docs/

Google. Google cloud function documentation. Retrieved on 17.03.2019 from

source: https://cloud.google.com/functions/docs/

Google. Authentication overview. Retrieved on 17.03.2019 from source:

https://cloud.google.com/docs/authentication

Google. Subscriber overview. Retrieved on 23.12.2018 from source:

https://cloud.google.com/pubsub/docs/subscriber

Amazon. What is IAM? Retrieved on 26.12.2018 from source:

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.ht

ml

Amazon. Understanding how IAM works. Retrieved on 26.12.2018 from source:

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-

structure.html

Amazon. What is Amazon Cognito? Retrieved on 26.12.2018 from source:

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-

amazon-cognito.html

Amazon. Security and Identity for AWS IoT. Retrieved on 26.12.2018 from source:

https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-

identity.html

Amazon. Class: AWS.Iot. Retrieved on 26.12.2018 from source:

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Iot.htm

l

60

Amazon. Amazon SNS features. Retrieved on 06.01.2019 from source:

https://aws.amazon.com/sns/features

Amazon. Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpoints.

Retrieved on 06.01.2019 from source:

https://docs.aws.amazon.com/sns/latest/dg/DeliveryPolicies.html

Amazon. Using Amazon SNS for User Notifications with a Mobile Application as a

Subscriber (Mobile Push). Retrieved on 06.01.2019 from source:

https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-application-as-

subscriber.html

Amazon. AWS AppSync. Retrieved on 06.01.2019 from source:

https://aws.amazon.com/appsync

Amazon. Security. Retrieved on 06.01.2019 from source:

https://docs.aws.amazon.com/appsync/latest/devguide/security.html

Amazon. What is AWS IoT? Retrieved on 06.01.2019 from source:

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-

iot.html

Amazon. Jobs. Retrieved on 06.01.2019 from source:

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

Amazon. AWS Lambda Pricing Calculator. Retrieved on 06.01.2019 from source:

https://s3.amazonaws.com/lambda-tools/pricing-calculator.html

Amazon. AWS Lambda Pricing. Retrieved on 06.01.2019 from source:

https://aws.amazon.com/lambda/pricing/

Amazon. AWS IoT Core Pricing. Retrieved on 06.01.2019 from source:

https://aws.amazon.com/iot-core/pricing/

Microsoft. Azure functions triggers and binding concepts. Retrieved on 10.02.2019

from source: https://docs.microsoft.com/en-us/azure/azure-

functions/functions-triggers-bindings

Microsoft. Real time ASP.NET with SignalR. Retrieved on 17.02.2019 from source:

https://dotnet.microsoft.com/apps/aspnet/real-time

61

Microsoft. Understanding and Handling Connection Lifetime Events in SignalR. Re-

trieved on 17.02.2019 from source: https://docs.microsoft.com/en-

us/aspnet/signalr/overview/guide-to-the-api/handling-connection-

lifetime-events

Microsoft. Tutorial: Azure SignalR Service authentication with Azure Functions.

Retrieved on 17.02.2019 from source https://docs.microsoft.com/en-

us/azure/azure-signalr/signalr-authenticate-azure-functions

Microsoft. Cloud-to-device communication guidance. Retrieved on 17.02.2019 from

source: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-

devguide-c2d-guidance

Microsoft. Pricing calculator. Retrieved on 16.03.2019 from source:

https://azure.microsoft.com/en-us/pricing/calculator/

APPENDICES

Appendix 1 Standalone CnC proof of concept

Description: In order to validate that the theorised standalone architecture is a

viable option, a proof of concept has been implemented and the implementa-

tion details can be looked up from the public Git repository.

URL: https://github.com/kamiljano/CloudDoorThesis/tree/master/poc/standalone

Appendix 2 Standalone CnC resource consumption measurement application

Description: In order to evaluate the resource consumption of the standalone

CnC application, an application needed to be implemented that would spawn a

the server and the number of clients that would connect to it and then measure

the server resource consumption. The implementation of the application can be

looked up from the public Git repository.

URL: https://github.com/kamiljano/CloudDoorThesis/tree/master/poc/standalone/e2e

62

Appendix 3 Standalone CnC resource consumption measurements

Description: The exact measurements generated by the application described in

Appendix 2 have been saved to an excel file and can be looked up from the pub-

lic Git repository

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/generatedStats/standalone/

resourceComparison.xlsx

Appendix 4 Standalone CnC performance measurements

Description: The exact performance measurements for Standalone CnC response

times, depicted in FIGURE 7.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/generatedStats/standalone/

performance.csv

Appendix 5 Standalone CnC performance measurement application

Description: Code of the application that enabled to perform the measurements

described in Appendix 4.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/poc/standalone/e2e/perform

anceTest.js

Appendix 6 AWS-based CnC performance measurements

Description: The exact performance measurements for the AWS-based CnC re-

sponse times, depicted in FIGURE 10.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/generatedStats/aws/perfor

mance.csv

63

Appendix 7 AWS-based CnC performance measurement application

Description: Code of the application that enabled to perform the measurements

described in Appendix 6.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/poc/aws/e2e/performanceTe

st.js

Appendix 8 AWS-based CnC backend

Description: Code of the serverless backend of the AWS IoT-based CnC.

URL:

https://github.com/kamiljano/CloudDoorThesis/tree/master/poc/aws/CloudDoorBacken

d

Appendix 9 Azure-based CnC performance measurements

Description: The exact performance measurements for the Azure-based CnC re-

sponse times.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/generatedStats/azure/perfor

mance.csv

Appendix 10 Azure-based CnC performance measurement application

Description: Code of the application that enabled to perform the measurements

described in Appendix 9.

URL:

https://github.com/kamiljano/CloudDoorThesis/blob/master/poc/azure/e2e/performance

Test.js

Appendix 11 Azure-based CnC backend

64

Description: Code of the serverless backend of the AWS IoT-based CnC.

URL: https://github.com/kamiljano/CloudDoorThesis/tree/master/poc/azure/backend

