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Abstract

Neutrino-nuclear responses associated with astro-neutrinos, single beta decays and double beta
decays are crucial in studies of neutrino properties of interest for astro-particle physics. The
present report reviews briefly recent studies of the neutrino-nuclear responses from both experi-
mental and theoretical points of view in order to obtain a consistent understanding of the many
facets of the neutrino-nuclear responses. Subjects discussed in this review include (i) experi-
mental studies of neutrino-nuclear responses by means of single beta decays, charge-exchange
nuclear reactions, muon- photon- and neutrino-nuclear reactions, and nucleon-transfer reactions,
(ii) implications of and discussions on neutrino-nuclear responses for single beta decays, for astro-
neutrinos, and for astro-neutrino nucleosynthesis, (iii) theoretical aspects of neutrino-nuclear
responses for beta and double beta decays, for nuclear muon capture and for neutrino-nucleus
scattering, and (iv) critical discussions on nucleonic and non-nucleonic spin-isospin correlations
and renormalization (quenching or enhancement) effects on the axial weak coupling. Remarks are
given on perspectives of experimental and theoretical studies of the neutrino-nuclear responses
and on future experiments of double beta decays.
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1. Introduction

1.1. Neutrino-nuclear responses and neutrino studies in nuclei

The neutrino is a key particle for astro-nuclear physics, particle physics and cosmology. It
is the elementary particle that has only a weak charge and has no electric charge and no color
charge. Thus, neutrino interactions with nuclei are extremely weak and experimental studies
related to the neutrino are hard.

The neutrino has been extensively studied experimentally and theoretically in the recent
4− 5 decades, but some fundamental properties of the neutrino and the astro-neutrino-nuclear
interaction are still not well understood. Several basic questions about the neutrino remain yet
unsolved. Some of them are as follows:

1. The nature of the neutrino, whether it is a Majorana particle (neutrino = antineutrino)
or a Dirac particle (neutrino 6= antineutrino).

2. The absolute mass scale and the mass hierarchy (spectrum), whether it is the normal or
the inverted mass hierarchy.

3. The lepton-sector CP phases, the Majorana phases, and the leptogenesis for the baryon
asymmetry.

4. The solar-neutrino sources and the fluxes, in particular the CNO-neutrino flux and pro-
duction.

5. The supernova-neutrino intensities, spectra, flavors and oscillations. Supernova-neutrino-
nuclear interactions and nucleosynthesis.

These questions can be studied well by investigating neutrino-related weak processes in nuclei
such as single beta decays (SBDs) and electron captures (ECs), inverse beta decays (IBDs) and
neutrinoless double beta decays (DBDs). The neutrino-nuclear responses are crucial for these
SBD/EC, IBD and DBD neutrino studies in nuclei.

Historical reviews and extensive previous works on the neutrino-nuclear responses are given in
[1, 2, 3, 4, 5] and references therein, those on astro-neutrinos in, e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14]
and references therein, and reviews on DBDs are given in, e.g. [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
and references therein. The solar neutrinos, supernova neutrinos and DBDs are also discussed
in [25, 26], and nuclear weak interactions and β/γ decays are treated in monographs [27, 28, 29].
The various aspects of the renormalization of the weak axial-vector coupling in beta and double
beta decays have been treated in the review [30]. Actually, we reviewed in Physics Report
effective couplings for β − γ transitions in 1978 [1], nuclear-structure aspects in DBDs [2] and
neutrino physics [15] in 1998 and low-energy neutrino nuclear responses [4] in 2000.

Nuclei are used as femto (10−15 m) laboratories to study neutrinos, as described in the DBD
review articles [4, 16, 18]. In the nuclear femto laboratory, the nucleons are in the good quantum
states of energy, spin, parity and isospin. Thus, the energy and the multipolarity of the weak
transitions involved in SBDs/ECs, IBDs and DBDs are well defined. In practice, the nuclear
femto laboratories with a large enhancement for neutrino signals and severe reduction for back-
ground (BG) signals are selected for neutrino studies since the neutrino signals are extremely
rare. The neutrino charged current (CC) processes of SBD/EC, IBD and neutrinoless DBD in
a nuclear femto laboratory are schematically illustrated in Fig. 1.
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Figure 1: Schematic CC-interaction processes in nuclear femto laboratories for IBD induced by astro-neutrinos
followed by SBD (left figure) and neutrinoless DBD (right figure). The meaning of the symbols is: p=proton,
n=neutron, e=electron, W=weak boson and ν = electron neutrino. Ms and Ms′ are the IBD and SBD nuclear
matrix elements (NMEs), respectively, and M0ν is the neutrinoless DBD NME.

Astro-neutrinos are studied by measuring astro-neutrino charged current (CC) interactions
in nuclei. The neutrino-induced IBD is given by A + νe → B + β−, with νe and β− being the
astro-neutrino and the β− ray. The interaction rate R(ν) is expressed as

R(ν) = g2
WG

νB(ν)I(ν) with B(ν) = (2Ji + 1)−1|Mν |2 , (1)

where gW is the weak coupling constant, Gν is the phase-space (kinematic) factor, I(ν) is the
astro-neutrino flux, B(ν) is the nuclear response, Mν is the nuclear matrix element (NME) and
2Ji + 1 is the spin factor with Ji being the spin of the initial state. The β− (electron) energy Ee
is given by using the incident astro-neutrino energy Eν as Ee = Eν − QEC with QEC being the
EC Q-value as shown in Fig. 1. The neutrino flux is derived from the measured IBD rate and
the nuclear response by using Eq. (1).

The nucleus (femto laboratory) to be used for the astro-neutrino study is the one with a
large response B(ν), a large phase-space factor Gν and a low Q value, QEC, to get a sufficient
interaction rate and a large signal energy, well above the background. If the residual nucleus B
is radioactive, the neutrino CC interaction (IBD) is followed by a successive SBD of B→C, as
shown in Fig. 1. Then one may study the IBD β ray in delayed coincidence with the SBD β
ray in order to select the rare IBD signal. So, the nuclear femto laboratory is effective in the
selection of the astro-neutrino signal and in the rejection of other background signals.

The neutrinoless DBD process is given by A → C + 2β−. The DBD transition rate for the
light-neutrino mass mechanism is expressed as

R(0ν) = g4
Aln(2)G0νB(0ν)(meff)2 with B(0ν) = (2Ji + 1)−1|M0ν |2 , (2)

where G0ν is the phase-space (kinematic) factor, meff is the effective ν mass and gA = 1.27 is the
axial-vector weak coupling in units of the vector coupling gV for a free nucleon. The rate is given
by ln(2)/T1/2 with T1/2 being the half-life, and the effective mass is expressed as meff = |∑U2

eimi|
with mi and Uei being the ith neutrino mass eigen state and the mixing amplitude [4, 16, 18].
The nuclear response B(0ν) is given by the square of the DBD NME M0ν in case of the 0+ → 0+

transition with 2Ji + 1 = 1 and the sum energy E of the DBD electrons is given by the DBD Q
value Qββ.

5
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The DBD transition rate is extremely small because it is mediated by a second-order weak
process and a small neutrino mass, and the signal energy is only a couple of MeV. Then DBD
nuclei (femto laboratories) to be used for the ν mass search are, like in the case of the astro-
neutrino study, nuclei with a large response B(0ν), i.e. a large NME M0ν , a large phase-space
factor G0ν and a large signal energy Qββ to get an adequate DBD rate and a summed electron
energy above the backgrounds.

In case of the light-Majorana-mass mode, the Majorana neutrino is exchanged between two
nucleons in a DBD nucleus. The nucleons are located so close, within a few fermi (10−15 m),
that the exchange is enhanced by a factor 104−5. On the other hand, the single β decay is
energetically forbidden to avoid the huge SBD background. So, the DBD femto laboratory acts
as a microscope with a filter to enhance the DBD signal and to reject backgrounds.

Actual signal (event) rates for astro-neutrino interactions and DBDs are very small. In the
case of astro-neutrino experiments with a large response of |Mν |2 = 0.62 and a large phase
space of g2

WG
ν = 10−44, the signal rate is around R(ν) = 40/ton-year for the pp solar neutrinos

including oscillations. In the case of the DBD experiment with a typical response of |M0ν |2 = 22,
including the renormalization (quenching) effect, and a large phase-space factor of g4

AG
0ν =

3 × 10−14/y, the signal rate is around R(0ν) = 3/ton-year for the effective ν mass of 25 meV.
Therefore, multi-ton-scale detectors (femto laboratories) are required for both astro-neutrino
and DBD experiments to get adequate signal rates. Here the neutrino-nuclear responses are key
elements for high-sensitivity astro-neutrino and DBD experiments.

1.2. Neutral-current and charged-current neutrino-nucleus interactions

Nuclear responses for solar, supernova, and generally astro-neutrinos are mediated by scat-
tering processes based on weak interactions. At the nuclear level, neutrino-nuclear responses
can be considered as mutual interactions of the hadronic and leptonic currents mediated by
the massive vector bosons Z0 (neutral-current, NC, processes) and W± (charged-current, CC,
processes) [31]. The leptonic and hadronic currents can be expressed as mixtures of vector and
axial-vector contributions [32, 33, 34]. For a NC neutrino-nuclear process one has the leptonic
current

JL,µ = ν̄l(x)γµ(1− γ5)νl(x) , (NC) (3)

and for the CC process one has

JL,µ = l̄(x)γµ(1− γ5)νl(x) + ν̄l(x)γµ(1− γ5)l(x) , (CC) (4)

where l = e, µ, τ is either the electron, muon or tau lepton and νl are the corresponding neutrinos
and γµ are the usual Dirac matrices with γ5 = iγ0γ1γ2γ3. The weak vector and axial-vector
coupling strengths gV and gA enter the theory when the hadronic current is renormalized at the
nucleon level [35]. The conserved vector-current hypothesis (CVC) [32] and partially conserved
axial-vector-current hypothesis (PCAC) [36, 37] yield the free-nucleon values gV = 1.00 and
gA = 1.27 [31] but for finite nuclei the value of gA is usually modified in order to account for
nuclear-model dependent modifications of transition operators when approximate many-body
calculations are performed. Then a quenched or enhanced value might be needed to reproduce
experimental observations [38, 39, 40].
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Since the vector bosons Z0 and W± have large mass and thus propagate only a short distance,
the hadronic current and the leptonic currents (3) and (4) can be considered to interact at a
point-like weak-interaction vertex with an effective coupling strength G, which for the NC and
CC processes has the value

G = GF = 1.1664× 10−5 GeV (NC) ; G = cos θCGF ≈ 1.03× 10−5 GeV , (CC) (5)

where GF is the Fermi constant and θC denotes the Cabibbo angle.
The parity non-conserving nature of the weak interaction forces the hadronic NC and CC

current JµH to be written at the quark level as a mixture of vector and axial-vector parts:

JµH = q̄f (x)γµ(1− γ5)qi(x) , (6)

where qi (qf ) is the initial-state (final-state) quark and the quark flavor changes in the CC
processes and remains the same in the NC processes.

Renormalization effects of strong interactions and energy scale of the processes must be taken
into account when moving from the quark level to the hadron level. Then the hadronic current
between nucleons Ni and Nf takes the rather complex form

JµH = N̄f (x)[V µ − Aµ]Ni(x) , (7)

where the nucleon type changes (does not change) for the CC (NC) processes. The vector-current
part can be written as

V µ = gV(q2)γµ + igM(q2)
σµν

2mN

qν (8)

and the axial-vector-current part as

Aµ = gA(q2)γµγ5 + gP(q2)qµγ5 . (9)

Here qµ is the 4-momentum transfer, q2 its magnitude, mN the nucleon mass (roughly 1 GeV)
and the weak couplings depend on the magnitude of the exchanged momentum. For the vector
and axial-vector couplings one usually adopts the dipole approximation

gV(q2) =
gV(

1 + q2/M2
V

)2 ; gA(q2) =
gA(

1 + q2/M2
A

)2 , (10)

where gV and gA are the weak vector and axial-vector coupling strengths at zero momentum
transfer (q2 = 0), respectively. For the vector and axial masses one usually takes MV = 840 MeV
[41] and MA ∼ 1 GeV [41, 42, 43] coming from the accelerator-neutrino phenomenology. For the
weak magnetism term one can take gM(q2) = (µp − µn)gV(q2) and for the induced pseudoscalar
term it is customary to adopt the Goldberger-Treiman relation [44] gP(q2) = 2mNgA(q2)/(q2 +
m2
π), where mπ is the pion mass and µp − µn = 3.70 is the anomalous magnetic moment of the

nucleon in units of the nuclear magneton µN. It should be noted that the β decays are low-energy
processes (few MeV) involving only the vector [first term in Eq. (8)] and axial-vector [first term
in Eq. (9)] parts at the limit q2 = 0 so that the q dependence of Eq. (10) does not play any

7
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role in the treatment of these processes in this chapter. Contrary to this, the 0νββ decays (see
Sec. 5) and nuclear muon-capture transitions (see Sec. 2.4) involve momentum transfers of the
order of 100 MeV and the full expression (7) is active with slow decreasing trend of the coupling
strengths according to Eq. (10).

At this point it may be noted that the hadron currents (8)-(10), valid up to momentum
transfers of about 400 MeV, can be derived in the context of chiral effective field theory. In
addition, meson-exchange currents (two-body currents) are also predicted. For axial currents
the first derivations were given by e.g. [45] and later in [46], extending to other currents. More
complete derivations are performed in [47] and [48].

1.3. Nuclear responses for astro-neutrinos and neutrino nucleosynthesis

Astro-neutrinos such as solar neutrinos and supernova neutrinos are interesting in view of
both neutrino physics and astrophysics. The observations of solar neutrinos provide evidences
for the neutrino matter oscillations as well as nuclear fusion reactions in the sun, and those of the
supernova neutrinos probe the explosion process, as described extensively in the review articles
[6, 7, 8, 9, 10]. So, these observations have opened the new field of neutrino astronomy. Neutrino
nucleosyntheses are found to be crucial for some isotopes, which are not produced otherwise, as
described in the review articles [11, 12, 13, 14].

High-precision studies of astro-neutrinos are important for investigating the matter oscilla-
tions in the sun and supernova explosions, the neutrino-production mechanisms for individual
neutrino sources, the temperatures at the neutrino-production (clear-out) sites, and also for eval-
uating the possible neutrino-nucleosynthesis rates. Experimental studies of the astro-neutrinos
are made by measuring neutrino interactions with atomic electrons and nuclei in astro-neutrino
detectors.

The CC interactions with nuclei are used to study low- and medium-energy astro-neutrinos,
depending on the CC threshold energy. Actually, the first observation of the solar neutrinos
was made by measuring the CC interaction with 37Cl [49]. We discuss in this review mainly
neutrino-nuclear responses for the CC interactions with nuclei.

Neutrino and antineutrino CC interactions on a nucleus A
ZX leading to a residual nucleus

A
Z+1X are expressed as

A
ZX + νe → A

Z+1 X + e− (NME Mν) (11)

A
Z+2 X + ν̄e → A

Z+1 X + e+ (NME M ν̄) , (12)

where Mν and M ν̄ are the corresponding NMEs. For the decay Q values, Qν and Qν̄ , the
corresponding threshold energies are given by −Qν and −Qν̄ . The ν and ν̄ CC processes are
inverse β− and β+ decays. The associated CC transitions are schematically illustrated in Fig. 2.

The pp, CNO and 7Be solar neutrinos are low-energy neutrinos. The CC response is mainly
the GT (Gamow-Teller Jπ = 1+) response B(GT). So, one needs a CC-interacting nucleus
with a rather low threshold energy of sub-MeV and a large GT response. The 8B solar-neutrino
energy extends to 15 MeV and the supernova neutrinos to a couple of 10 MeV, depending on
the temperature at the neutrino clear-out. Accordingly, the neutrino responses are B(Jπ) with
Jπ = 0+, 1±, 2±, 3±, depending on the ν and ν̄ energies.
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Figure 2: Schematic diagrams for the neutrino and antineutrino CC interactions and the DBD process. Here
Bi(α) is the neutrino response for the state i in the nucleus A

Z+1X.

The response for the ground-state transition may be obtained from the SBD/EC rate, while
neutrino responses for excited states have to be measured by using various kinds of charge-
exchange reactions (CERs). Since nuclear states (levels) in medium-heavy nuclei are located
close to each other in energy, high energy-resolution experiments with ∆E/E =a few 10 keV are
useful to study neutrino responses for individual states. The supernova-neutrino responses for
excited states are also studied by measuring γ decays if the states are bound, or neutron emissions
if the states are neutron-unbound. The NC interactions are also used to study astro-neutrinos
by measuring γ rays and particles following inelastic nuclear scatterings.

1.4. Neutrino-nuclear responses for double beta decays

Interest on double beta decay has revived with the discovery of the neutrino oscillations [50]
at the end of the 20th century, about 2 decades ago. The neutrino oscillations provide evidence
for the mass difference between the neutrino mass eigenstates. The non-zero mass enables
neutrinoless DBD if the neutrino is a Majorana particle in nature, i.e. a particle which is identical
with its anti-particle. DBDs are well described in recent review papers [2, 3, 15, 16, 17, 18, 23, 24]
and references therein.

Two-neutrino DBDs (2νββ) are followed by two neutrinos to conserve the lepton number L in
the standard electro-weak model (SM). On the other hand, neutrinoless DBDs (0νββ) with the
lepton-number violation of ∆L = ±2 are beyond SM, and open new astro- and particle-physics
fields.

The 0νββ process is expressed as

A
ZX→ A

Z±2 X + 2e∓ (NME M0ν) , (13)

where M0ν is the neutrinoless DBD NME. The 0νββ process has several unique features from
particle-physics and cosmology points of view.

(i) The neutrinoless DBD, if detected, provides evidence for the Majorana nature of the neu-
trino and the non-zero mass. It is a very sensitive probe to search for the Majorana mass,
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the lepton-sector CP phases , R-parity violating SUSY processes, heavy neutrinos, right-
handed weak interactions, the leptogenesis and other processes, which are all beyond the
SM.

(ii) In the light-neutrino exchange mechanism the effective neutrino mass meff , to be studied
via 0νββ decays, depends on the neutrino-mass hierarchy: the normal-hierarchy (NH), the
inverted-hierarchy (IH) or the quasi-degenerate (QD) mass pattern. The corresponding ef-
fective masses are around 1−5 meV, 15−45 meV, and 50−200 meV respectively, depending
on the neutrino-mixing phases. The QD mass may be constrained to be of the order of
100 meV or less by the cosmological mass density, depending strongly on the model for the
mass density. The IH mass may be studied by current high-sensitivity 0νββ experiments
with ton-scale DBD sources, depending largely on the values of the DBD NMEs.

(iii) The 0νββ effective mass depends on the mass hierarchy, the mixing phases and the min-
imum neutrino mass m0. In other words, they are constrained to some extent by the
0νββ-decay rate if the DBD NMEs are evaluated accurately enough.

(iv) The DBD process includes several mechanisms through which it can proceed. The me-
diators of the decay can be, e.g., the light Majorana mass, the heavy neutrino, SUSY
mechanisms and right-handed weak currents. In the recent approach of the chiral effec-
tive field theory (χEFT) [51, 52] new mechanisms, induced by lepton-number-violating
operators up to dimension nine, are discussed. Related to this, the model-independent
leading-order matrix elements of ππee operators have been evaluated in [54] using lattice-
QCD methods. This was done in order to determine the related low-energy constants to be
used, e.g. in the χEFT calculations on the nucleon and nucleus level in order to advance
towards the NMEs of 0νββ decays. The different mechanisms are identified experimen-
tally by investigating energy and angular correlations of the two β rays and the nucleus
dependence of the DBD rates if the DBD NMEs are evaluated precisely enough.

(v) In case of the light ν-mass mechanism, the mass sensitivity (minimum meff that can be
measured) is proportional to (M0ν)−1, while the DBD-detector mass (mass of the DBD
source isotope) required for a given meff is proportional to (M0ν)−4 in realistic experiments
[16, 18]. Thus, one needs to know precisely the DBD NMEs in order to design the DBD
detector for a given mass sensitivity and to extract the effective mass from the rate of the
neutrinoless DBD, once the process is observed.

(vi) The DBD NMEs are very sensitive to nuclear physics involved in DBDs such as the nucle-
onic and non-nucleonic spin-isospin correlations, nuclear structure, nuclear models, nuclear
medium effects, the renormalization (quenching) of the effective weak coupling in nuclei,
and so on. Accurate theoretical calculations of DBD NMEs, including the effective weak
coupling, however, are hard, and there are no experimental methods to directly measure
them. Thus various experimental inputs relevant to the DBD responses are useful to help
evaluate the DBD NMEs and to verify the correctness of the calculations.

10
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The 0νββ NME for the Majorana-neutrino mediated mode is conventionally expressed as

M0ν =

(
geff

A

gA

)2 [
M0ν

GT +
(
gV/g

eff
A

)2

M0ν
F +M0ν

T

]
, (14)

where M0ν
GT, M0ν

F and M0ν
T are the GT, Fermi and tensor NMEs and gV/g

eff
A is the ratio of the

vector to axial-vector weak couplings. The effective axial-vector coupling geff
A in units of the

coupling gA for a free nucleon stands for the renormalization (quenching) due to all kinds of
nucleonic (many-body effects), non-nucleonic correlations and nuclear-medium effects that are
not explicitly included in the model NMEs M0ν

GT and M0ν
T .

In case of the light-ν-mass-mediated process, the NMEs are written as

M0ν
GT =

∑

k

〈t±σhGT(r12, Ek)t±σ〉 , (15)

M0ν
F =

∑

k

〈t±hF(r12, Ek)t±〉 , (16)

M0ν
T =

∑

k

〈t±hT(r12, Ek)S12t±〉 , (17)

where hK(r12, Ek), K = GT,F,T, are the neutrino potentials with Ek being the intermediate-
state energy and r12 being the distance between the two nucleons involved in the 0νββ decay, and
S12 is the spin-tensor operator. The operator σ is the Pauli spin operator and t± is the isospin
raising/lowering operator. The neutrino potential is approximately expressed in a Coulomb
form of 1/r12. The magnitude of momentum p involved in the 0νββ transition is of the order
of 1/r12 = 10 − 200 MeV/c, and the involved angular momentum is in the range l~ = 0 − 6~.
Reliable evaluations of the NMEs M0ν

GT, M0ν
F and M0ν

T , and geff
A are crucial for the DBD response

of B(0ν) = |M0ν |2. The major NME in the neutrinoless NME M0ν (Eq. (14)) is the first term
of the axial-vector one (geff

A /gA)2M0ν
GT, which is renormalized (quenched) much by the factor

(geff
A /gA)2 due to the strong spin dependent correlations and nuclear medium effects. Then the

second term (gV/gA)2M0ν
F gets relatively important, and the reduction (quenching) factor for

the M0ν is somewhat modified, depending on the ratio M0ν
F /M0ν

GT.
DBDs to be studied in practice are the ground-state-to-ground-state 0+ → 0+ transitions

in even-even nuclei. The transition process is schematically shown in Fig. 2. Here the paired
neutrons (n1,n2) become paired protons (p1,p2) and a light Majorana neutrino is exchanged
(neutrino emission and absorption) between the two neutrons in case of the Majorana ν-mass
process. The light ν-mass DBD process is schematically expressed as a virtual-neutrino emission
from n1: A

ZX→ A
Z+1 X+ ν̄e+e

−, and the re-absorption into n2: A
Z+1 X+νe → A

Z+2 X+e−, as shown
in Fig. 2. This is possible in the case of a Majorana neutrino with non-zero mass, thus having
both the right-handed and left-handed helicities. In this sense, the NME M0ν is associated with
ν and ν̄ (single β±) NMEs for the neutrino emission and absorption processes. Accordingly, the
SBD NMEs of M(ν) and M(ν̄) are used to help evaluate/verify the DBD NME M0ν . In other
words, nuclear models with the nuclear interactions and the effective weak coupling used for the
M0ν calculation should be able to reproduce the relevant ν and ν̄ (single β±) NMEs.

11
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It is to be noted that the M0ν with the virtual-neutrino exchange is given by the sum of
DBD NMEs M0ν

i for all relevant intermediate states |i〉, and M0ν is associated with the ν and
ν̄ MNEs in the multipole and momentum ranges of l~ with l = 0− 6, and p = 10− 200 MeV/c.

The 2νββ process is expressed as

A
ZX→ A

Z+2 X + 2e− + 2ν̄e ,
A

Z+2 X→ A
ZX + 2e+ + 2νe , (NME M2ν) (18)

where M2ν is the corresponding NME. It is expressed as

M2ν =

(
geff

A

gA

)2∑

i

[
Mi(β

−)Mi(β
+)

∆i

]
, (19)

where Mi(β
−) and Mi(β

+) are GT NMEs for the ith intermediate state and ∆i = Ei +Q(ββ)/2
is the energy denominator. In this case, the NMEs for the relevant single β decays may be
used to help evaluate the DBD NME M2ν . In fact, one needs to take care of the relative
phases of the single β NMEs, depending on the models as discussed in section 5. The NMEs
M2ν are derived experimentally if the two-neutrino DBD rates are measured, and are used to
help evaluate the 0νββ NMEs M0ν , in particular the 0νββ GT NMEs in the 1+ intermediate
channel and the information on the effective coupling geff

A is obtained for the GT NME. Note
the different momentum-exchange scales of the 0νββ and 2νββ NMEs since for the 2νββ the
momentum-exchange scale is of the order of only few MeV.

1.5. Nucleonic and non-nucleonic correlations and nuclear medium effects

The neutrino CC and NC nuclear interactions involve nuclear spin (σ/2) and isospin (τ/2)
interaction operators, τ± and τ 3, for the CC and NC interactions. The isospin weak interactions
are of vector type and the isospin-spin interactions are of axial-vector type. Nuclear interactions
via π, ρ and other mesons include appreciable σ and τ interactions and thus the neutrino-nuclear
responses are necessarily sensitive to the nuclear τ and τσ correlations in a given nucleus, as
described in the reviews [1, 4]. Accordingly, the vector and axial-vector nuclear responses in
nuclei are modified from the single-quasiparticle (QP) responses due to the nucleonic and non-
nucleonic τ and τσ correlations and nuclear medium effects.

The τ and τσ nuclear interactions are associated with the τ and τσ symmetries, and thus
are repulsive in nature. They push up the τ and τσ strengths to the τ and τσ giant resonances
(GRs) in the high-excitation region. The GRs are collective (coherent) τ and τσ vibrations of
relevant nucleons [1, 4, 27, 28, 29]. Therefore, the τ and the τσ responses for low-lying states
are reduced with respect to the QP responses. They are discussed rather adequately by using a
schematic particle-hole model with separable τ and τσ interactions [1, 4, 55].

The isospin and spin transition (interaction) operators are expressed as

TSLJ = hατ
±fL(r)

[
σSYL

]
J
, (20)

where α = S, L, J stands for the transition mode with S, L, J being the spin, the multipolarity,
and the total angular momentum, respectively, and the square brackets stand for the angular-
momentum coupling [56]. Then the isospin-spin nuclear interaction of H = χαTα · Tα gives rise
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to the α-mode GR, as given by

[Hα, Tα] ≈ EαTα, |GRα〉 = Tα|0〉 , (21)

where GRα is the α-mode GR and Eα is the GR energy.
The simplest isospin GR is the Fermi GR with T000 = T−, where T− is the total isospin

operator, and the commutation relation of Eq. (21) holds well because of the isospin symmetry.
The Fermi GR is known as the sharp isobaric analogue state (IAS). The axial-vector GRs are
Gamow-Teller GR (GTR) with T101, isovector spin-dipole GR (IVSDR) with T112, and so on.
They are broad GRs, reflecting the incomplete super-multiplet (τσ) symmetry.

The reduction of the NMEs due to the τ and τσ correlations is a kind of nuclear τ and τσ
core-polarization effect [1, 4, 55] due to the destructive coupling with the relevant GRs. Then
the NME is schematically expressed as M(Tα) = keff

α MQP(Tα), where keff
α stands for the effective

weak coupling and MQP(Tα) is the QP NME without the τσ polarization. The coefficient keff
α

can be written by using the α-mode effective susceptibility.
It should be remarked that nucleons (proton, neutron) are dressed in meson clouds and thus

their interactions are modified more or less in the nuclear medium due to correlations with other
nucleons and mesons. Accordingly, the CC p ↔ n NMEs in the nuclear medium are different
from the NMEs for free nucleons since both the valence nucleons involved in the transition
and the others in the core are modified through the CC transition. Actually, these effects are
effectively included in the experimental NMEs.

The reduction of NMEs due to the spin-isospin correlations and the spin-isospin GRs are
incorporated by the pnQRPA (proton-neutron quasiparticle random-phase approximation, see
Sec. 3.1.1) through the spin-isospin interaction, while the non-nucleonic (∆ isobar, meson) and
the nuclear-medium effects by the effective axial-vector coupling geff

A are not. Experimental
studies of the NMEs for low-lying states and the strength distributions for the relevant GRs are
then important in order to understand the neutrino-nuclear responses in actual nuclei and to
help realistic theoretical evaluations for the relevant NMEs by pinning down the nucleonic and
non-nucleonic correlations and nuclear-medium effects.

Actually, neutrino responses for DBD and astro-neutrinos involve NMEs M in very wide
excitation E, momentum q, angular-momentum J and nuclear-mass A ranges. The values
for M , in particular those for the axial vector NMEs, are sensitive to all kinds of nucleonic
and non-nucleonic correlations and nuclear-medium effects. They are conventionally given as
M = (geff

A /gA)Mm, with Mm being the model matrix element and geff
A /gA is the renormalization

(quenching). The latter is the factor to incorporate such correlations and nuclear medium ef-
fects that are not explicitly included in the applied model, and it depends to some extent on
the model and the ranges of E, q, J, A in the studied problem. Accordingly extensive studies
have recently been made and are currently under progress to measure the values for NMEs M
by using various kinds of modern experimental probes and to evaluate them by more and more
realistic and elaborate theoretical models and experimental and theoretical considerations on
the ratio geff

A /gA. The present article aims to review the present status of these studies from a
wide perspective.
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The review is organized as follows: In Sec. 2 various experimental ways to study neutrino-
nuclear responses are described. They include single β/EC decays, nuclear CERs, muon-,
photon- and neutrino-induced reactions and nucleon transfer reactions. Neutrino-nuclear re-
sponses for allowed and forbidden β/EC decays and the spin-isospin GRs are discussed in Sec.
3, in particular in the view of the quenching or enhancement of the axial coupling. Nuclear
responses for astro-neutrinos and neutrino nucleosynthesis are described in section 4. Section
5 reports on neutrino-nuclear responses for DBD, including tables on the recent NME calcula-
tions, and brief overviews of two-neutrino and neutrinoless DBD experiments. Summary and
remarks are presented in Sec. 6 on perspectives of experimental and theoretical studies of the
neutrino-nuclear responses and on future DBD experiments.

2. Experimental methods for neutrino-nuclear responses

Neutrino-nuclear responses are NC and CC weak responses for nuclei (see Sec. 1.2). They
are discussed in terms of the responses for nucleons (protons and neutrons) embedded in nuclei
which are described in terms of nucleon-based nuclear many-body models. In fact, nucleons are
dressed in meson clouds and interact with neighboring nucleons in a nucleus, and accordingly the
related neutrino responses are different from those for free nucleons. Therefore, neutrino-nuclear
responses with weak couplings are sensitive to nuclear many-body correlations, non-nucleonic
degrees of freedom (isobar and others), nuclear-medium effects (meson exchanges) and adopted
nuclear models. Then experimental studies of the responses are valuable in order to obtain the
true responses in the nucleus and to help/confirm the theoretical evaluations for the neutrino-
nuclear responses, as discussed in the review articles [1, 4, 5, 16, 18, 23]. It is remarked here
that neutrino-nuclear responses and NMEs to be measured experimentally by SBDs, IBDs, two-
neutrino DBDs, nuclear CERs, muon-photo and neutron reactions and others are real responses
(NMEs) including effective weak coupling (renormalized/quenched gA).

2.1. Experimental probes for neutrino-nuclear responses

The weak processes via astro-ν and astro-ν̄ can be expressed as A
ZX + ν → A

ZX′ + ν ′ and
A
ZX + ν̄ → A

ZX′ + ν̄ ′ for NC processes, and A
ZX + νe → A

Z+1 X + e− and A
Z+1 X + ν̄e → A

ZX + e+

for CC processes. The NC process is a nucleon excitation process of N → N ′ with N and N ′

being nucleons in the nucleus, while the CC process is a charge-exchange process of p↔ n with
p and n being a proton and a neutron in the nucleus. The CC process for neutrinoless DBD is
A
ZX → A

Z±2X + 2e∓ with a two-nucleon charge exchange of (n1, n2)↔ (p1, p2) in the nucleus.
The nuclear responses are given by the product of the initial spin factor 1/(2Ji + 1) and the

square of the NME for N → N ′ and p↔ n processes in cases of the astro-neutrino NC and CC
interactions, and for (n1, n2)↔ (p1, p2) in case of the DBD. Here the DBD NMEs are associated
indirectly with the NMEs for p1 ↔ n1 and p2 ↔ n2 via the neutrino potential in case of the
neutrinoless DBD (0νββ) and directly with them in case of the two-neutrino DBD.

The weak responses for astro-neutrinos and DBDs have been studied experimentally by
using various kinds of weak, electromagnetic (EM) and nuclear-interaction probes. They are
schematically shown in Fig. 3.
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Figure 3: Experimental probes for neutrino-nuclear responses. A: leptons with weak interaction, B: photons with
EM interaction, C: nucleons and nuclei with strong/nuclear interaction. The notation is p: proton, n: neutron,
e: electron, W: weak boson, γ: gamma ray, and π, ρ : mesons.

Weak-interaction probes of ν and ν̄ beams are used as a direct way to study the weak
(neutrino) responses. The neutrino cross section, however, is extremely small because of the
weak interaction. It is of the order of 10−40 − 10−44 cm2, depending on the energy. Then high-
flux neutrino beams of the order of 1013−1015/sec and multi-ton-scale detectors are required for
the ν/ν̄-beam experiments in order to achieve adequate signal rates.

The single beta decay (SBD) and electron capture (EC) provide the CC neutrino n ↔ p
responses. They are limited mostly to allowed and first-forbidden transitions from the ground
and isomeric states to low-lying final states.

Negative muons are trapped in atomic orbits and are captured into nuclei via the weak
interaction mostly in case of medium-heavy and heavy nuclei with atomic numbers Z ≥ 20.
Ordinary (non-radiative) muon-capture reaction of A

ZX + µ− → A
Z−1 X + νµ is used to study

the antineutrino p → n response in wide energy (E = 1 − 70 MeV) and momentum (p =
30− 100 MeV/c) ranges.

Photons with EM interactions are also used to study the neutrino responses because the EM
interactions have similar spin-isospin and multipole transition operators as the weak interactions.
Electric and magnetic γ transitions are used to study vector and axial-vector weak responses,
respectively.

Nuclear reactions with nuclear/strong interactions are useful for studying the neutrino-
nuclear responses because of the large reaction/interaction cross section. The nuclear (strong)
interaction itself is different from the weak interaction in strength, but the interaction operators
include the spin, the isospin and the multipole terms in the similar fashion as the weak operators
at the level of one-nucleon processes. This is not so in the case of processes involving two-body
operators such as in the case of meson-exchange currents. The spin-flip and non-spin-flip inelas-
tic scatterings of p, n, d, and light ions are used to study vector and axial-vector NC responses,
respectively. Charge-exchange reactions (CERs) used for the CC-response studies are (p,n),
(3He,t) and others for (n → p) responses and (n,p), (d,2He), (t,3He), (7Li,7Be) and others for
(p→ n) responses.

High energy-resolution (3He,t) reactions with the 0.42− 0.45 GeV 3He beam at RCNP (Re-
search Center for Nuclear Physics at Osaka University, Japan [57]) have been extensively used
to study the n → p axial-vector responses since the spin-isospin interaction gets dominant at
this medium energy. The projectile 3He and the emitted t nucleus are charged particles, and
thus high-precision energy analyses of them are possible by using a magnetic spectrometer. This
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means that one can carry out high energy-resolution measurements required to separate the
individual final states. Nucleon-transfer reactions provide experimentally single-particle and
single-quasiparticle properties of nucleons in a nucleus, which are, in turn, used to evaluate the
neutrino-nuclear responses.

2.2. Single beta-decay and electron-capture experiments

2.2.1. Allowed and forbidden β/EC experiments

Single β and EC decays are used to study neutrino-nuclear responses. The current systematics
of log ft values [58] for allowed and forbidden decays are shown in Fig. 4. In this section we
briefly discuss three kinds of single-β and EC experiments relevant to neutrino response studies,
forbidden transitions in DBD nuclei, β spectrum shapes, and β specra of radio-active impurities
in neutrino detectors.

Neutrinoless DBDs involve NMEs with angular-momentum transfers of ∆J = 1−6. Some of
them are studied by measuring forbidden β and EC decays from intermediate nuclei. The decay
scheme for 96Zr is shown in Fig. 5. The ground-state-to-ground-state transition is 0+ → 6+. The
phase-space and spin differences predict that the decay to the 5+ state of 96Nb is most likely and
the estimated half-life is around 1020 years (see Sec. 3.5). Single β decay has been searched for
and a lower limit of tβ1/2 > 2.4× 1019 years has been given [59]. Additional constraints might be

set by taking into account geochemical half-life determinations with all their uncertainties [60].
A similar case can be made for 48Ca (see Sec. 3.5), see [61, 62] for the first and recent 2νββ
half-life data. A half-life limit of the β decay to the corresponding 5+ excited state of 48Ti results
in a lower limit of tβ1/2 > 2.5× 1020 years [63]. In both cases it seems that the β-decay half-life

is longer than the one for 2νββ decay [62, 64], see Sec. 3.5. In the case of DBD nuclei 130Te
and 136Xe, the fourth-forbidden unique transition 5+ → 0+ is involved, see Sec. 3.3. Decays for
50V with ∆J = 4 may give information on NMEs of highly-forbidden β transitions [65, 66]. EC
decays to the DBD nuclei 76Ge, 100Mo and others are of experimental and theoretical interest,
as also the charge-exchange reactions populating states in the DBD intermediate nuclei, see
Sec. 2.3.2.

Spectrum shapes for forbidden non-unique transitions provide information on axial-vector
NMEs relative to vector NMEs, as discussed in Sec. 3.6. The very low energy region has an
impact on the spectrum-shape determination as not all experiments will be able to measure the
spectrum over the full range. The 4-fold non-unique forbidden decays of 113Cd (1/2+ → 9/2+)
and 115In (9/2+ → 1/2+) are sensitive to the quenching of gA because the spectral shape will
change with the value of gA [67]. A measurement of 44 individual detectors in the COBRA
experiment indeed indicate a value for gA in the ISM and MQPM models of 0.915 ± 0.021
and 0.911 ± 0.009 respectively [68], which is lower than the free value. Half-lives of tβ1/2 =

8± 0.11(stat.)± 0.24(syst.)× 1015 years (113Cd) [69] and tβ1/2 = 4.41± 0.25× 1014 years (115In)

[70] have been derived experimentally. The decay of 115In to the first excited state of 115Sn with
the extremely small Q value is discussed in Sec. 3.4.1.

Various technologies are used for new measurements of the spectra. The KATRIN experiment
measures the tritium spectrum in order to explore the neutrino mass [71]. Other technologies
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Figure 4: Distribution of log ft values for allowed and super-allowed decays (left) and forbidden decays (right).
The Data are from the IAEA database. Plots: Courtesy S. Turkat.

Figure 5: Decay scheme of 96Zr. The GT transition to the 5+ state is most likely.
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used are metallic magnetic calorimeters (MMC), working at low temperatures, and the Si-PIPS
detectors.

Figure 6: Cryogenic MMC measurement of the β-decay spectrum of 36Cl, taken from [72].

The nuclei 40K, 210Bi, 39Ar among others are well known as potential background compo-
nents for neutrino and dark-matter searches. Then one needs the spectrum shape to evaluate
contributions from them as discussed in Sec. 3.6.1. A β spectrum of the 36Cl 2+ → 0+ transition,
obtained by the MMC method, is shown in Fig. 6. More spectra, like for 241Pu [73], have been
obtained. Recently, calculated spectra of first-forbidden unique decays of 39Ar and 42Ar have
been released [74], which allows to study backgrounds in large-scale argon-based experiments like
DEAP searching for dark matter. On the other hand, there is now the opportunity to measure
this shape with high precision.

2.2.2. Single β/EC and γ transitions in deformed nuclei

Weak and electromagnetic decays in deformed nuclei are relevant for nucleosyntheses induced
by supernova neutrinos. Open-shell nuclei with proton and neutron numbers far from magic num-
bers are likely deformed in shape due to the strong quadrupole interaction. In well-deformed
nuclei, the JK quantum number (projection of the angular momentum J on the intrinsic sym-
metry axis, note that JK is conventionally denoted as K.) is a good quantum number. Then
the JK selection rule is effective for weak and EM transitions, as also for neutrino CC and NC
responses in deformed nuclei. We first discuss briefly the JK selection rules in β/EC and EM
transitions in deformed nuclei around the mass number A = 160 − 190, and then discuss the
JK-hindered weak and EM responses for the 180mTa isotope of current astro-physics interest.

Experimental β/EC and EM transitions in the deformed nuclei are discussed in [75]. Recently
the JK selection rules for the β/EC and EM transitions in well-deformed nuclei have been derived
[76]. The experimental NMEs M(V1) for vector transitions (VL) of ∆J = L = 1, with J and L
being the spin and the multipolarity, are obtained from the observed β/EC-decay rates, as shown
in Fig. 7. The initial and final states involved in the transitions are simple two-quasiparticle (1
quasi-proton and 1 quasi-neutron) transitions in odd-odd nuclei. The JK selection rule requires
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∆JK − L = 0 with L = 1. The observed NMEs decrease as the deviation from ∆JK − 1 = 0
increases. The NMEs can be expressed as

M(V1) = M0(V1)F∆JK−1 , F ≈ 0.15 , (22)

where M0(V1) ≈ 7×10−3 is the intrinsic V1 NME in natural units and F is the reduction factor.
The V1 weak NMEs are reduced by a factor F = 0.15 and the transition rate (response) by a
factor 0.023 with every one unit of deviation from the JK selection rule.

JK‐L JK‐L

Figure 7: Left side: NMEs for JK-allowed and JK-forbidden VL weak vector decays with L = 1 in A = 170−182
nuclei. Right side: NMEs in units of MSP(EL) for JK-allowed and JK-forbidden E3 (L = 3) and E5 (L = 5)
transitions in A = 164− 186 nuclei.

The JK-allowed and JK-forbidden EM NMEs for E3 (L = 3) and E5 (L = 5) low-lying
transitions are obtained. The values in units of single-particle NMEs [75, 76] are shown in
Fig. 7. The EL NMEs are expressed as

M(EL) = M0(EL)F∆JK−L , F ≈ 0.16 , (23)

where M0(EL) ≈ 0.35MSP(EL) is the intrinsic EL NME and F is the reduction factor. The EL
NMEs are reduced by a factor F = 0.16 and the transition rate (response) by a factor 0.026
with every one unit of deviation from the JK selection rule. The EL reduction factor is nearly
the same as the factor for the weak V1 decays.

The 180Ta isotope is of current interest from the astro-nuclear and neutrino-nucleosynthesis
points of view. This is the rarest isotope with the probability of 2.4 × 10−12 per one Si atom
and the very small isotopic abundance ratio of 1.2 × 10−4 [77]. This nucleus is not produced
by ordinary s and r processes, but may possibly be produced by neutrino interactions. So the
neutrino-nuclear responses associated with the 180Ta production are interesting [78, 79, 80, 81].
The 180Ta ground state is unstable, but the 77 keV isomeric state is a long-lived state since the
isomeric transitions are JK-forbidden. The transition scheme is shown in Fig. 8.

The JK-hindered β/EC and EL γ decays from the isomeric state in 180Ta are evaluated by
using the JK selection rules. The evaluated β− and EC NMEs are [76]

M(V3) = 3.8× 10−13 (β−) ; M(V3) = 1.2× 10−12 (EC) . (24)
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Ground state band 
J=6  JK=0

180Ta isomer
J=9  JK=9

Figure 8: Left side: Angular momentum J and its projection JK on the symmetry axis. Right side: Beta- and
gamma-transition scheme for the ground and isomeric states in 180Ta. The spin-parity Jπ, the projection JK
and the energy in units of keV are shown. The transitions (blue lines) from the ground state are JK-allowed and
the transitions (red lines) from the isomeric state are JK-forbidden.

The log ft values and the half-lives are log ft = 29.9 and t1/2(β−) = 5.4 × 1023 y for the β−

branch, and log ft = 28.9 and t1/2(EC) = 1.4 × 1020 y for the EC branch. The EM transition
from the isomeric state with Jπ = 9−, JK = 9 to the 40 keV state with Jπ = 2+, JK = 1 is a
JK-forbidden E7 transition with ∆JK − L = 1. The E7 NME is evaluated as [76]

M(E7) = 1.3× 104 fm7 . (25)

The γ-decay half-life is t1/2(γ) = 1.4 × 1031 y, and the EM half-life, including the conversion
electron emission, is t1/2(E7) = 8 × 1018 y. The single β/EC and EM decay rates are, indeed,
of the same order of the magnitude as typical two-neutrino DBD rates. They have not been
observed experimentally yet. Several groups have searched for the γ rays following the β−/EC
decays as given in [82] and references therein. Lower limits of 2× 1017 y and 5.8× 1016 y for the
EC and β− decays, respectively, were recently reported [83].

2.3. Charge-exchange nuclear reactions

The nuclear (strong) interactions mediated by π, ρ and other mesons are different from the
weak interactions carried by the weak bosons in strength and interaction range. On the other
hand, they have common τ , σ and multipole-interaction operators, and accordingly have similar
τ , σ and multipole-interaction NMEs and nuclear responses. Therefore, direct nuclear reactions
induced by nuclear interactions are useful to study neutrino-nuclear responses induced by weak
interactions.

2.3.1. Neutrino responses by charge-exchange nuclear reactions (CERs)

Various types of charge-exchange reactions (CERs) for CC-response studies are described in
the review articles [4, 16, 18] and references therein. In this subsection we briefly discuss general
features of CERs for neutrino-response studies and recent CER experiments for astro-neutrino
and DBD responses. The nuclear reactions to be used for the neutrino-response studies are
medium-energy light-ion reactions, with the projectile energy per nucleon of E/A ≈ sub-GeV
and a mass range of A ≤ 20, in order to avoid multi-step reactions and nuclear distortions.
Merits of CERs for CC-response studies are as given below.
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(i) A large cross section of the order of 10−26 − 10−28 cm2/str for the nuclear reaction. This
is 1015 − 1020 orders of magnitude larger than that for the neutrino reaction induced by
the weak interaction. Then one can measure CER cross sections and nuclear responses for
individual nuclear states with good energy resolution and good statistics.

(ii) Medium-energy projectiles are used to cover wide regions of excitation energy of E ≈
0−40 MeV, the momentum of p ≈ 0−200 MeV/c and the angular momentum of l~ ≈ 0−6~.
The excitation energy and the spin of the final state are identified by measuring the energy
and angular distributions of the emitted particles.

(iii) The CC τ− responses are studied by using τ− type CERs of (p,n), (3He,t), (6Li,6He), (12C,
12B), etc., while CC τ+ responses are studied by using τ+ type CERs of (n,p), (d,2He),
(t,3He), (7Li,7Be), (12C,12N), and so on.

(iv) Vector τ± responses are studied by using CERs with isospin (τ) nuclear interactions, and
axial-vector τ±σ responses by CERs with isospin-spin (τσ) nuclear interactions. They are
also identified by measuring spin observables and spin-flip excitations in nuclear reactions.

The nuclear interactions associated with the vector (isospin) and axial-vector (isospin-spin)
excitations are the isospin Vτ and isospin-spin Vτσ interactions. The interaction is expressed in
terms of the central (C), spin-orbit (LS) and tensor (ST ) interactions as [84, 85, 86]

V eff = V C + V LS + V T, (26)

V C = V C(rij) + V C
σ (rij)σi · σj + V C

τ (rij)τiτj + V C
στ (rij)σi · σjτiτj , (27)

V LS =
[
V LS(rij) + V LS

τ (rij)τiτj
]
L · S , (28)

V T =
[
V LS(rij) + V LS

τ (rij)τiτj
]
STij . (29)

The central, LS, and tensor interactions show characteristic dependencies on the energy E
and the momentum transfer q as shown in Fig. 9. They are discussed in [84, 86, 87]. The isospin
interaction Vτ becomes small as the incident energy E increases, and the isospin-spin interaction
Vτσ stays rather constant as a function of the projectile energy. Then interaction Vτσ is of the
same order of magnitude as Vτ at E/A ≈ 30 MeV, while the Vτσ interaction is a factor 3 − 4
larger than Vτ at the medium energy E/A ≈ 140 − 180 MeV [88]. This feature is explained
in terms of the π and ρ meson-exchange potentials and the second-order effects of tensor force
[87]. In other words, the τσ and τ excitations are identified by observing the cross sections as
functions of the projectile energy. Noting that the cross section is proportional to the square
of the interaction strength, the medium-energy CERs with E/A = 100 − 300 MeV are used for
preferentially exciting the τσ mode as shown in Fig. 9. The distortion interaction (tC0 ) gets small
at the medium energy.

The reaction proceeds mainly by the central interactions at forward angles with q ≈ 0, while
the tensor interaction gets important at backward angles with q ≈ 0.5 fm−1 = 100 MeV/c, as
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Figure 9: Panel (a): Central interactions as function of the projectile energy. Panel (b): Central, tensor and LS
interactions as function of the momentum transfer q [86].

seen in Fig. 9. Let us consider first the CER with the central spin-isospin interaction. The
nuclear interaction for the CER of A(a, b)Bi to excite an ith final state in B is expressed as

Hα = χαQ
†
αQα, α = TSLJ , (30)

where χα is the interaction strength, Q†α and Qα are the projectile-nucleus and target-nucleus
transition operators, and α stands for the transition mode of TSLJ with T, S, L, J being the
isospin, the spin, the orbital angular momentum and the total angular momentum, respectively.
The transition operator is expressed as

Qα = τ±iLfL(r)
[
YLσ

S
]
J
, (31)

where S (= 0, 1) is the spin and fL(r) is the radial function, given as fL(r) = rL in the case of a
low-energy (long-wave-length) EM transition. The square brackets denote angular-momentum
coupling [56]. The Fermi (F, 0+), Gamow-Teller (GT, 1+), isovector spin-dipole (IVSD, 2−)
and isovector spin quadrupole (IVSQ, 3+) transition operators are QF = τ±, QGT = τ±σ1,
QSD = τ±i1f1(r)

[
Y1σ

1
]

2
, and QSQ = τ±i2f2(r)

[
Y2σ

1
]

3
, respectively.

The cross section for the α-mode transition to the ith final state is expressed as

dσi
dΩ

= Ki(α)Fi(α, q)Ji(α)2Bi(α) , (32)

where Ki(α) is a kinematic factor, Fi(α, q), with q being the momentum transfer, is the q-
dependent factor and Jα is the α-mode interaction integral. The nuclear response for the α-mode
CER excitation of A→ Bi is expressed by Bi(α) = (2Ji + 1)−1|Mi(α)|2 with Ji and Mi(α) being
the initial (target) state spin and the corresponding NME. The response for the projectile side
a → b is included in the interaction integral. The momentum transfer q is a simple function of
the angle θ of the emitted particle b, and the q-dependent factor Fi(α, q) stands for the angular
distribution of the emitted particle b. Actually, the q-dependent factor is modified more or less
by distortion potentials acting on the projectile a and the emitted particle b.

If the nuclear interaction, the initial and final wave functions involved in the CER and the
optical potential for the projectile and the emitted particle are well known, one can calculate the
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cross section by means of a DWBA (distorted wave born approximation) code. The transfered
angular momentum L is derived from the q-dependent factor Fi(α, q) (the angular distribution),
and the α-mode response Bi(α) is obtained by comparing the DWBA and observed cross sections.

Experimental studies of the CERs for simple F and GT states have been performed exten-
sively by using simple projectiles with A ≤ 3 and so on, as shown in the review papers [4, 16, 18].
Among them, (p,n) and (n,p) CERs have been used widely as simple nucleon CERs [89, 90].
Experimentally, the (p,n) and (n,p) reactions, however, involve the neutrons (neutral particles),
which are measured by means of the TOF (time of flight) method. Then the energy resolution is
limited to be of the order of a couple of sub-MeV. Thus they are used to study isolated low-lying
states and gross features of CER strength distributions.

Medium-energy (E = 100 − 200 MeV) (p,n) reactions have been used extensively at IUCF
(Indiana University Cyclotron Facility, 1976-2010) and other laboratories to study IASs and
GTRs and also some low-lying GT states. Here the q-dependent factor Fi(GT, q) is given ap-
proximately by the square of a spherical Bessel function with L = 0. Then the cross sections at
forward angles of θ ≈ 0 degrees, corrected for the kinematic factor Ki(α) and the q-dependent
factor Fi(GT, q), derived from the DWBA calculation, is given as

dσi
dΩ

Ki(GT)−1Fi(GT, q)−1 = Ji(GT)2Bi(GT) . (33)

The coefficient Ji(GT)2 is found to be nearly constant, being independent of the individual ith
states in various nuclei in case of the simple GT states with large B(GT) ≥ 0.1. They are
illustrated for various kinds of CERs in the review article [4] and references therein. This is the
so-called proportionality relation and is used to estimate the approximate response of Bi(GT) for
simple GT states from the measured cross section at θ = 0. Here the proportionality coefficient
Ji(GT)2 is obtained from the measured cross section for a reference state with the B(GT) known
from the β-decay ft value in the neighboring nucleus.

The CERs of (3He,t) and (t,3He), with a charged projectile and a charged emitted particle, are
much used for F and GT neutrino-response studies by means of magnetic analyzers for incident
beams and emitted particles [4, 91]. The cross sections, being corrected for the kinematic and
the DWBA q-dependent factors, are approximately proportional to the nuclear response Bi(α),
with the proportionality coefficient Ji(α)2. Then one can obtain the response from the measured
cross section by using the proportionality coefficient derived from a reference state as in the case
of the (p,n) and (n,p) reactions. The (p,n) and (3He,t) reactions have been compared against
each other in detail and they are consistent with each other after a momentum-dependent, yet
trivial, adjustment [92].

The proportionality relation may be used if the ith state of interest is excited mainly by the
central τσ interaction and the interaction integral Ji(α) for the ith state of interest is the same
as that for the reference state. This is the case for the simple spin-flip excitations with a large
response of Mi(α) ≥ 0.1.

Actually, nuclear states are not simple single-particle configurations, but include mixtures of
them. They are excited by the central τσ interaction and the tensor-type interaction, and the
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NME is effectively expressed as

M(α′) = M(τσ) + ktM
′(τσY2), (34)

where kt is the tensor-interaction strength relative to the central one, and M ′ is the NME for the
transition operator τf(r)[σY2]1. The strength of the tensor interaction itself is of the order of
kt ≈ 0.1. Then the second term of M ′(τσY2) gets important in case that the ∆l = 2 excitation
is appreciable and the first term is small. The contribution of the second term is seen in the
L = 2 component of the angular distribution as discussed in Sec. 4.2.1.

2.3.2. High energy-resolution CERs for neutrino-nuclear responses

Nuclear responses for astro-neutrinos and DBDs are studied by CERs on individual nuclear
states in the wide excitation and momentum regions of E = 0−40 MeV and p = 0−200 MeV/c,
which are just the regions appropriate for astro-neutrinos and DBDs.

Slit system   

Slit system

Slit system   

WS beam line and two arm spectrometers at RCNP

Slit system   

Figure 10: The high energy-resolution beam line and the spectrometer at RCNP.

High energy-resolution studies of the charged-particle (3He,t) CERs have been extensively
carried out at RCNP, Osaka University [57] by using medium-energy 3He projectiles with E =
420− 450 MeV for selective τσ excitations. The charged projectile 3He and the charged emitted
particle t are momentum-analyzed by means of the high energy-resolution beam line and the
Grand Raiden spectrometer. The achieved energy resolution of ∆E/E ≈ 5× 10−5 is an order of
magnitude better than that for standard magnetic analyzers, and is just the resolution around
30 keV required for studying individual states. The beam line and the spectrometer at RCNP
are shown in Fig. 10.
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Neutrino-response studies for the DBD nucleus 100Mo and the solar-neutrino nucleus 71Ga
were carried out by using the (3He,t) CERs in the 1990’s at RCNP [93, 94]. The (3He,t) CERs
have been shown to be useful for studying GT strengths [95]. Charged reaction particles are
measured also in coincidence with γ rays to identify the final state.

The (3He,t) CERs were measured on DBD nuclei of current interest for high-sensitivity DBD
experiments. They are 76Ge [96], 82Se [97], 96Zr [98], 100Mo [93, 99], 116Cd [93], 128,130Te [100],
136Xe [101] and 150Nd [102], which are all β−β−-decaying nuclei with a large phase-space factor
and a large Q value Qββ.

Figure 11: Energy spectrum of the 128,130Te(3He,t)128,130Xe CER [100].

The energy spectra for the 128,130Te(3He,t)128,130Xe at the emitted triton angles of θ ≈ 0− 4
degrees are shown in Fig. 11. Here the F (0+) and GT (1+) CERs with ∆L = 0 are characterized
by a large yield at the forward angles of θ = 0 − 0.5 degrees, while SD(2−) with ∆L = 1 and
SQ(3+) with ∆L = 2 have large yields at larger angles of θ = 1−3 degrees. Note that the Fermi
giant state of IAS (isobaric analogue state) appears as IAR (isobaric analogue resonance) in the
continuum region.

The observed spectra show discrete lines for GT, SD and SQ states at the low excitation
region of E = 0 − 4 MeV. The corresponding states are well excited by the στ interaction. At
the high-excitation region one sees the strong F (Fermi IAR), GT and IVSD giant resonances
of E ≥ 10 MeV, as discussed in Sec. 1. Most F, GT and IVSD strengths are pushed up into the
GR regions. No Fermi states are seen at the low-excitation region since all of the F strength is
concentrated in the IAS because of the good isospin symmetry. On the other hand some GT and
SD strengths remain in the low-lying states since the spin-isospin symmetry is not fully realized
in nuclei. These are common features of τ−-CERs on medium-heavy and heavy nuclei [1, 4].
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Figure 12: Angular distributions of the GT, SD, SQ, and IAR states from the 128,130Te(3He,t)128,130Xe [100].

The observed angular distributions are analyzed to identify the angular-momentum transfer
and the spin-parity to obtain the F, GT and SD strengths as shown in Fig. 12.

The GT strengths B(GT) are derived from the DWBA analyses of the angular distributions
for individual states [96, 97, 98, 99, 100, 101, 102]. The strength distributions are plotted as
function of the excitation energy in Fig. 13. The GT and SD states at the low-excitation region
depend on valence nucleons in individual nuclei. The GRs (IAS, GTR, IVSDR) are nuclear-core
vibrations, and thus are rather uniformly excited in all nuclei. The GT strengths are spread over
the low-excitation region in cases of 76Ge, 82Se, 128,130Te, 136Xe and 150Nd. Since the valence
neutrons and the valence protons in these nuclei are in the same major shell of N = 3 or N = 4,
there are many 1+ states excited by the τ− n→ p CER. On the other hand, there is only one GT
state with the transition (0g7/2)n → (0g9/2)p in 96Zr and 100Mo since the neutrons and protons
reside in the different major shells of N = 3 and N = 4, respectively.

The SD states play an important role for neutrino responses associated with the neutrinoless
DBDs and medium-energy astro-neutrinos. They are well excited by the (3He,t) CER, as shown
in Fig. 11. The configuration of the lowest SD 2− state is (0g9/2)n(0f5/2)p for 76Ge and 82Se, and
(1d5/2)n(1p1/2)p for 96Zr and 100Mo, and (0g7/2)n(0h11/2)p for 128,130Te and 136Xe.

The SD differential cross section with the angular-momentum transfer of L = 1 shows the
typical pattern of |j1(qR)|2, where j1(qR) is the spherical Bessel function with q and R being the
momentum transfer and the interaction nuclear radius. The cross section reaches its maximum
at the angle θ1 ≈ 2 degrees, corresponding to the momentum transfer q1 ≈ 60 MeV/c, as shown
in Fig. 12.
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Figure 13: GT strength (B(GT)) distributions plotted against the excitation energy for low-lying states in 76Ge,
82Se, 96Zr, 100Mo, 130Te and 136Xe.

If the experimental SD response BG(SD) is proportional to the SD cross section σ(SD) at
θ ≈ 2 deg., as the GT response B(GT) is proportional to the GT cross section σ(GT) at θ ≈ 0
deg., one gets BG(SD) = R[σ(SD)/σ(GT)]× B(GT), where R is the proportionality constant
for the SD cross section with respect to the GT one. Using the observed cross sections of
σ(SD), σ(GT) and the known B(GT), the values for BG(SD)/R were derived for the DBD nuclei
[103]. The SD NMEs MG(SD), derived as [BG(SD)]1/2, are indeed proportional to the model
NMEs M(SD) as shown in Fig. 14, and thus CERs are used to get the SD NMEs.

Figure 14: Experimental SD NMEs MG(SD) with R1/2 =0.86×10−3 are ploted against the model (FSQP, Fermi-
surface quasiparticle model, see Sec. 5.5.1) NMEs M(SD) for DBD nuclei of A: 76Ge, 82Se, B: 96Zr, 100Mo and
C: 128Te, 130Te, 136Xe [103].

Neutrino nuclear responses associated with medium-energy supernova neutrinos and neu-
trinoless DBDs involve medium-momentum and angular-momentum transfers of q = 20 −
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200 MeV/c and ∆l~ = 1−6~. Nuclear and muon CERs provide opportunities to study neutrino-
nuclear responses in a wider momentum-transfer region. So, it is of interest to investigate how
axial-vector responses with the axial-vector coupling are modified at the large momentum trans-
fer of q = 50− 100 MeV/c.
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Figure 15: Top: The 76Ge(3He,t) CER cross sections as functions of the momentum transfer q [96]. F 0+:
8.31 MeV IAS, GT 1+: the 0.12 MeV GT state, SD 2−: the ground SD state. The solid lines are the DWBA
calculations. Bottom: The ratio keff(q)/keff(q = 0) for α = F (IAS), GT (1st GT state), and SD (ground) states.
The red point is the normalization point at q = 0. See [104].

The (3He,t) CERs on DBD nuclei were measured for F(IAS, 0+), GT(1+) and SD(2−) states
in the angular range of θ = 0 − 4 degrees, corresponding to the momentum-transfer range of
q = 5−100 MeV/c, to study the momentum dependence of the neutrino-nuclear responses [104].
The q-dependent cross section for the ith final state is expressed by using Eq. (32) as

dσi
dΩ

= Ki(α)Fi(α, q)Ji(α)2κeff(q)2Bi(α) , (35)

where Ki(α) and Ji(α) with α =F,GT,SD are the kinematic factor and the volume integral of
the interaction, respectively. The kinematic q dependence is given by Fi(α, q) ≈ |JL(qR)|2 and
the q-dependent response is effectively expressed as κeff(q)2Bi(α), with Bi(α) being the nuclear
response at q = 0. The coefficient keff(q) stands for the effective q-dependent coupling.

The kinematic q dependence Fi(α, q) is given by the DWBA calculation, and the q-dependent
coupling κeff(q) manifests as deviation of the observed q (angular) distribution from the DWBA
calculation. Actually, the observed q dependencies (angular distributions) of the CER cross
sections for α =F,GT,SD responses are well reproduced by the DWBA calculations with constant
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κeff(q)2, as shown in Fig. 15. The GT and SD responses at the medium-momentum region of
q = 30− 100 MeV/c are found to be the same as the responses at q ≈ 0 [104]. The GT and SD
NMEs at q ≈ 0 for the DBD of other medium-heavy nuclei are experimentally available from
β/EC data. They are quenched with respect to the pnQRPA NMEs by a factor kNM(0) ≈ 0.6
at the β/EC point of q ≈ 0 [105, 106]. Thus the axial-vector weak coupling is considered to be
uniformly renormalized (quenched) by the coefficient kNM(q) ≈ 0.6 in the wide momentum region
of q = 0 − 100 MeV/c, which is the region of the neutrinoless DBDs and the medium-energy
supernova neutrinos.

2.3.3. Double charge-exchange nuclear reactions for DBD responses

Double charge-exchange reactions (DCERs) provide information on DBD responses, much
like the single CERs on SBD (single beta decay) responses. The DCER to be used to study
nuclear response for neutrinoless DBD is expressed as

A
ZX + a→ A

Z±2 X + b , (36)

where A
ZX and A

Z±2 X are the DBD initial and final nuclei, and a and b are the DCER projectile
and emitted nucleus. In case of A

ZX→ A
Z+2 X two neutrons in the initial nucleus A

ZX change to
two protons in the final nucleus A

Z+2 X, while two protons in the projectile nucleus a turn to two
neutrons in the emitted nucleus b.

The DCER and DBD involve common initial and final states, but their reaction and decay
mechanisms are different. The interaction involved in DCER is the nuclear interaction via π, ρ
and other mesons, while the one involved in DBD is the weak interaction via the exchange
of a charged weak boson. Actually, the nuclear-interaction operators are different from the
weak-interaction ones, depending much on the projectile energy and the momentum transfer.
The projectile and emitted nuclei involved in DCER are distorted much by nuclear potentials.
Therefore, it is not straightforward to relate the DCER cross section to the DBD transition rate.
In case of a medium-energy projectile with E/A =sub-GeV/nucleon, the τσ central interaction
dominates the nuclear interaction, and thus the double τσ flip process gets dominant in DCER.
Then one may get the double GT and double SD responses from the DCER cross section in the
low-momentum-transfer region (forward angle), which may be used to help evaluate the DBD
GT and SD responses.

The lightest-projectile DCER is the (3He,3n) reaction. This reaction involves 3 neutrons,
which are hard to measure experimentally with good energy resolution. Light heavy-ion reactions
to be used for DCERs are, e.g., (11B,11Li) and (18O,18Ne). DCER and DBD transition schemes
for 100Mo(11B,11Li)100Ru and 100Mo→ 100Ru + 2e− are shown in Fig. 16.

DCERs may excite strongly DIAS (double IAS), DGTR (double GTR), DIVSDR (double
IVSDR) and other double GRs, like the single CERs excite strongly single IAS, GTR, IVSDR
and other GRs. Thus DCERs may leave little strength to the ground and low-lying states, as
single CERs do. Accordingly, one may expect a similar feature in case of the neutrinoless DBD
and DCER responses, just as seen in the single β/EC and CER responses. The DBD followed
by 2 neutrinos (2νββ decay) is mainly a double-GT process, leaving little strength to the ground
state [107]. The DGT GR and DBD were discussed from a theoretical point of view in [107, 108].
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Figure 16: Left side: Schematic diagrams of DCER of AZX(11B,11Li) A
Z+2X and DBD of AZX→ A

Z+2X + 2e−. Right
side: DCER and DBD transition schemes: A

ZX and A
Z±2X are the DBD initial and final nuclei. The GR and

DGR are the giant resonance and the double GR excited from the initial nucleus. GR’ is the GR excited from
the intermediate state [107].

Theoretical discussions are made on heavy-ion CERs [109] and on relation of DCERs to DBD
responses in [110]. DBD NMEs M0ν are shown theoretically to be related with DGT centroid
energies in [111]. DCER experiments on medium-heavy DBD nuclei are interesting. So far
DCER experiments are mainly performed on light nuclei [112].

The (11B,11Li) DCER was studied at RCNP by using a medium-energy 11B beam with E/A =
80 MeV [113]. The emitted nucleus 11Li was analyzed by the high energy-resolution spectrometer
Grand Raiden and was identified by TOF and PI measurements. The DCER on 56Fe shows
double IAR (isobaric analogue resonance) and large amount of strength in the high excitation
region above 20 MeV, but no strength at the low-excitation region of E = 0 − 10 MeV. The
cross-section ratio for the low- to high-excitation regions is less than 0.05. The DCER strengths
are considered to be pushed up to the high-excitation double-GR region due to the repulsive τσ
interaction, like the single CER strengths are pushed up to the GR region (see Fig. 16). This
suggests a reduction of the DBD strength for the ground-state transition.

Extensive programs of DCERs are under progress at INFN-LNS Catania (Laboratori Nazion-
ali del Sud, [114]) to study DBD-neutrino responses [115]. The DCER of 40Ca(18O,18Ne)40Ar was
measured by using the 0.27 GeV 18O beam with E/A = 15 MeV [115]. The ground and low-lying
states in 40Ar were identified, and the angular distribution for the ground-state transition was
measured. Medium-energy heavy-ion DCERs for isotopes with large Tz are interesting in order
to see how the DCER strengths are concentrated in the possible double-GR regions.

2.4. Muon charge-exchange reactions for neutrino-nuclear responses

Muons (µ±, with mass mµ = 105.66 MeV) are charged heavy leptons with weak and EM
interactions. They have been extensively used as massive charged particles with EM interactions
to study EM responses in solid-state physics and also quarks and symmetries in particle physics.
In the present subsection we discuss neutrino-nuclear responses studied by using negative muons
as massive leptons for the studies of CC weak interaction. Possible usages of the muons to study
nuclear weak responses are discussed in the review articles on DBDs [16, 18, 23] and usages to
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neutrino-nuclear responses in [116]. Ordinary muon capture (OMC)1 reactions in nuclear physics
are reviewed in [117].

Low-energy muon (µ−) is trapped in one of the electron shells of the target atom, and then
decays down to the lowest muon orbit in the atom. It stays there mostly for sub-µ seconds, and
then decays via the weak interaction by two ways. One is the free decay into ν̄e + νµ + e and
the other is the µ-capture reaction (mainly OMC) into the nucleus. In most medium-heavy and
heavy nuclei with the atomic number Z ≥ 10, the muon capture (MC) dominates.

2.4.1. Muon charge-exchange reactions for astro-neutrinos and DBDs

The OMC is a kind of muon charge-exchange reaction via the charged weak-boson W+, where
the muon becomes the muon neutrino and a proton in a nucleus turns to a neutron. The OMC
is thus expressed as

A
ZX + µ− → A

Z−1 X + νµ , (37)

where A
ZX is the target nucleus and A

Z−1 X is the residual nucleus after the OMC. Then OMC is
used to study the corresponding astro-antineutrino response for A

ZX + ν̄e → A
Z−1 X + e+ and the

DBD β+ response for A
ZX→ A

Z−1 X + νe + e+ with A
Z−1 X being the DBD intermediate nucleus, as

discussed in Sec. 2.1. The muon response B(µ) is given by the OMC NME M(µ) and the spin
factor 2Ji + 1 for the initial state as

B(µ) = (2J + 1)−1|M(µ)|2 . (38)

The OMC on A
ZX populates various kinds of excited states in A

Z−1 X up to the Q value around
the muon mass of 106 MeV, in principle. In real nuclei, the excitation energy extends up to
around E = 70 MeV since excitations to higher states are suppressed by the small phase space
and the small nuclear response. The transferred momentum is p ≈ 10− 40 MeV/c. The energy
and the momentum are of the same order of magnitude as for the neutrinoless DBD virtual
neutrinos and medium-energy supernova neutrinos. Therefore the muon responses provide useful
information on the relevant DBD and supernova-neutrino responses [16, 18, 116] .

The excited states in the residual nucleus A
Z−1 X decay by emitting γ rays to the ground state

of A
Z−1 X if they are particle-bound states, while they de-excite by emitting a number (x) of

neutrons and/or protons if they are particle-unbound. Then the neutrino responses for the low-
lying bound states are studied by measuring the γ transitions from the bound states, and those
for the highly-excited states in the unbound region by measuring the emitted particles and/or
the β − γ rays following the particle emissions. The OMC and decay scheme is illustrated in
Fig. 17. The OMC γ-ray studies and the residual isotopes are discussed in the review article
[117] and references therein.

2.4.2. Muon charge-exchange reactions for low-lying bound states

In this subsection we give a brief overview of the formalism of the OMC and calculations
which are used to estimate capture rates to (low-lying) particle-bound states. In this review we

1To make a difference with the radiative muon-capture processes.
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Figure 17: CC excitation and neutron-emission scheme for OMC on 100Mo. The low-lying states in 100Nb decay
by emitting γ rays to the ground state of 100Nb. The highly-excited states around 30 MeV decay by emitting
3 neutrons and γ rays to the ground state in 97Nb. Insert: excitation of a low-lying state (L) by OMC (νµ), γ
decay (γ′) to L, and γ decay (γ) from L.

do not discuss the total muon-capture rates since the review [117] is rather exhaustive in both the
experimental and theoretical aspects of it. Theoretical approaches to the muon-capture problem
have been deviced in [118, 119, 120, 121, 122]. While the captures to individual states are rather
complex to describe, the total capture rates are much easier to calculate [123, 124]. An elegant
and powerful theory formulation was introduced in Ref. [119] and there the total capture rate
W was written as

W = 4P (αZm′µ)3 2Jf + 1

2Ji + 1

(
1− q

mµ + AM

)
q2 , (39)

where A is the mass number of the initial and final nuclei, Z the atomic number of the initial
nucleus, and m′µ = AMmµ(mµ + AM)−1 the reduced muon mass. Furthermore, α denotes
the fine-structure constant, M the average nucleon mass, mµ = Mµ − BK is the muon mass
Mµ corrected for the binding energy BK of the µ-atomic K orbit, and q the muon-neutrino
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momentum. The term P contains the OMC NMEs, and can be written as

P =
∑

κu

∣∣∣gVM[0lu]S0u(κ)δlu−

+ gAM[1lu]S1u(κ) +
gA

M
M[1l̄up]S ′1u(−κ)+

+
√

3
gVq

2M

(√
(l̄ + 1)/(2l̄ + 3)M[0l̄ + 1u+]δl̄+1,u+

+
√
l̄/(2l̄ − 1)M[0l̄ − 1u−]δl̄−1,u

)
S ′1u(−κ)+

+

√
3

2

gVq

M
(1− µp − µn)

(√
l̄ + 1W (11ul̄, 1l̄ + 1)M[1l̄ + 1u+]+

+
√
l̄W (11ul̄, 1, l̄ − 1)M[1, l̄ − 1u−]

)
S ′1u(−κ)+

− gA

M
M[0l̄up]S ′0u(−κ)δl̄u +

√
1

3

(gP − gA)q

2M
×

×
(
√

l̄ + 1

2l̄ + 1
M[1l̄ + 1u+] +

√
l̄

2l̄ + 1
M[1l̄ − 1u−]

)
×

× S ′0u(−κ)δl̄u

∣∣∣
2

,

(40)

where W (...) are the usual Racah coefficients, and the definitions for l̄, the matrix elements
M[kwu

(±
p

)
] and the geometric factors Sku(κ) and S ′ku(−κ) can be found in [119, 125]. The

coefficients gV and gA are the usual (effective) weak vector and axial-vector couplings. The CVC
and PCAC hypotheses dictate for a free nucleon the values gV(0) = 1.00 and gA(0) = 1.27 at
zero-momentum transfer and the dipole approximation [see Sec. 1.2, Eq. (10)] can be used for
finite momentum transfer. For the induced pseudoscalar coupling gP the Goldberger-Treiman
relation [44] gives gP/gA = 7.0. The OMC Q value (momentum of the emitted muon neutrino)
can be obtained from

q = (mµ −W0)

(
1− mµ −W0

2(Mf +mµ)

)
, (41)

where W0 = Mf −Mi+me+EX . Here Mf and Mi are the nuclear masses of the final and initial
nuclei, and EX is the excitation energy of the final-state nucleus.

Calculations for different mass regions of nuclei have been done along the years. In Table 1
a list of these calculations is given. The muon-capture transitions can be used to probe the
right-leg (the β+ side) virtual transitions of 0νββ decays and the value of the particle-particle
interaction parameter gpp of the pnQRPA (see Sec. 3.1.1), as discussed in [148, 149, 150]. The
muon capture can also give information on the in-medium renormalization of the axial current
(9) in the form of an effective gA [133, 140, 142, 151] and an effective gP (in fact in most cases the
ratio gP/gA) [120, 121, 122, 128, 129, 136, 138, 139, 140, 141, 142, 143, 144] at high (100 MeV)
momentum transfers, relevant for the studies of virtual transitions of the 0νββ decays. A recent
review on the renormalization of gP is given in [152].
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Table 1: List of OMC calculations of captures to low-lying bound states in nuclei.

Mass range References

A ≤ 20 [120],[126],[127],[128], [129],[130],[131], [132],[133],[134],[135],
[136],[137],[138]

A = 23− 40 [121],[122],[125],[135], [139],[140],[141],[142],[143], [144],[145],[146]
A = 36− 62 [135],[146],[147],[148]
A ≥ 76 [135],[146],[148],[149],[150]
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Figure 18: Cumulative sums of the individual contributions, at energies Ex (excitation energy in the nucleus
48Sc), to the multipole NMEs M0ν

GT(Jπ) for Jπ = 1+, 3+, 5+, 7+. The word “bare” refers to the bare Gamow-
Teller transition operator without contributions from core polarization and meson-exchange currents (see [148]).
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As mentioned in Sec. 2.4.1, the OMC can be used as a probe for the 0νββ decays since the
momentum exchanges in the two processes are of the same order of magnitude. The 0νββ NME
can be decomposed in the form

M0ν =
∑

Jπ

M0ν(Jπ) , (42)

where the multipole NMEs M0ν(Jπ) correspond to different multipole states Jπ of the interme-
diate nucleus. Each of these NMEs consists of contributions stemming from the individual Jπk
states, at energy E(Jπk ), where k denotes the kth state of multipolarity Jπ in the intermediate
nucleus. Summing these contributions over k gives the total multipole NME. In Fig. 18 a running
sum of these individual k contributions is given as a cumulative 0νββ double Gamow-Teller NME
(see Sec. 1.4, Eqs. (14) and Eqs. (15)) for the 0νββ decay of 48Ca. The contributions are given
as functions of the excitation energy in the intermediate nucleus 48Sc. The intermediate-state
wave functions have been calculated by using the ISM (interacting shell model, see Sec. 3.1.1)
using the FPBP interaction [153] in the 1p− 0f single-particle space. In this space one can only
construct positive-parity states (here 1+−7+) and four of the contributions, Jπ = 1+, 3+, 5+, 7+,
are shown in the figure. It is seen that the 1+ contributions are the largest having a saturation
at around

∣∣M0ν
GT(1+)

∣∣ ≈ 0.4.
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Figure 19: Upper panels: Contributions to the multipole NMEs
∣∣M0ν

GT(Jπ)
∣∣ for the intermediate states Jπ =

1+, 2+, 3+, 4+ as functions of the excitation energy Ex in the nucleus 48Sc. Lower panels: The OMC rates
WOMC, Eq. (39), to the low-lying of the excitation energy Ex in the nucleus 48Sc. A Gaussian smoothing of the
Jπ = 1+, 2+, 3+, 4+ intermediate states as functions contributions to the multipole NMEs and the OMC rates
has been applied and arbitrary units are used for the NME and OMC-rate values. The values gA/gV = 1.00 and
gP/gA = 7.0 were adopted in the calculations [148].

In Fig. 19 a comparison of the contributions to the multipole NMEs
∣∣M0ν

GT(Jπ)
∣∣, Jπ =
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1+, 2+, 3+, 4+, and the OMC rates to the same intermediate states has been performed. The
comparison has been done in arbitrary units just to show that both the multipole NMEs and the
OMC rates gather strong contributions from the same intermediate states in the nucleus 48Sc.
This means that the OMC can be used as a powerful probe of the strong intermediate contribu-
tions to the 0νββ NME (42). In other words, if a nuclear theory can predict the experimental
OMC distribution it may also predict well the contributions to the 0νββ NME.

4+ 0
24
11Na

1+ 0.392
2+ 0.523

2+ 1.108
1+ 1.282

3+ 1.316

0+ 24
12Mg

log f t =
5.812

λ μ =
2.7 1/ s

λ μ =
373 1/ s

λ μ = 835 1/ s

λ μ = 2591 1/ s

λ μ = 26286 1/ s

USDA

λ μ = 298 1/ s

4+ 0
24
11Na

1+ 0.472
2+ 0.563

2+ 1.341
1+ 1.347
3+ 1.345

0+ 24
12Mg

log f t=
5.8

λ μ =?

λ μ =?

λ μ =?

λ μ =?

λ μ =?λ μ =?

Exp.

Figure 20: OMC on 24Mg. Shown are the ISM-calculated OMC rates to individual low-lying 1+, 2+, 3+ and 4+

states in 24Na (left panel). The computed excitation energies in 24Na and the computed log ft of the Gamow-
Teller 1+

1 → 0+ transition are compared with the available data (right panel). The values gA/gV = 1.00 and
gP/gA = 7.0 were adopted in the calculations.

Finally, in Fig. 20, the ISM-computed capture rates to the low-lying Jπ = 1+, 2+, 3+, 4+

states in 24Na are shown. The ISM was used to compute also the energy spectrum in 24Na and
the rate of the Gamow-Teller decay from the first 1+ state in 24Na to the ground state of 24Mg.
Both the computed energy spectrum and the β-decay rate are in good agreement with the data.
It is seen that the by far strongest capture branch is the OMC to the second 1+ state. The
corresponding experimental OMC rates will be measured at RCNP, Osaka.

Experimentally, neutrino responses for low-lying bound states are studied by measuring the
emitted γ rays [154, 155], as shown in the insert of Fig. 17. However, the low-lying states are
populated not only directly by the OMC, but also by γ′ decays from higher bound states excited
by the OMC, and an accurate correction for the contributions from the higher states are hard
to achieve in practice. Extensive studies of OMC γ rays from and to individual low-lying states
are under progress by using the CAGRA γ-detector array at RCNP.

2.4.3. Muon-capture strength distributions and muon-capture giant resonances

The muon capture (MC) on A
ZX populates excited states in a wide excitation region of the

residual nucleus A
Z−1 X. They de-excite by emitting γ rays to the ground state of A

Z−1 X or by
emitting the 1st neutron to a state in a nucleus A−1

Z−1X, depending on whether the excitation

energy is below or above the 1st neutron-emission threshold energy. The residual nucleus A−1
Z−1X,

after the first neutron emission, de-excites by emitting γ rays to the ground state of A−1
Z−1X or
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by emitting a 2nd neutron, depending on whether the excitation energy is below or above the
2nd neutron-emission threshold-energy, and so on. Then, one finally ends up with the residual
isotopes of A−x

Z−1Y with x = 0,1,2,3,..., depending on the excitation energy E and the number
x of the emitted neutrons, as shown in Fig. 17. Here proton emissions are suppressed by the
Coulomb barrier in medium-heavy and heavy nuclei.

The neutron-number (x) and the mass-number (A − x) distributions reflect the strength
distribution B(µ,E) in the nucleus A

Z−1 X∗ after the MC [156]. The residual nucleus A−x
Z−1X

is identified by measuring prompt γ rays in A−x
Z−1X and/or delayed γ rays from A−x

Z−1X if it is
radioactive.

Figure 21: Energy spectrum of delayed γ rays from long-lived Nb residual isotopes (RIs) produced by MC on
100Mo [158].

The MC on 100Mo was studied at the MuSIC beam channel at RCNP and the D2 beam
channel in J-PARC MRL [157, 158]. The nucleus 100Mo is one of DBD nuclei, and is used also
for solar- and supernova-neutrino studies [16, 18, 159, 160]. The delayed γ-ray characteristics of
the residual radioactive isotopes of 100−zNb were measured as illustrated in Fig. 21 [158]. The
number of the Nb residual isotopes (RIs) 100−xNb produced by the MC on 100Mo was evaluated
from the observed γ-ray yields. The RI-mass (A − x) distribution with x being the number of
neutrons emitted from 100Nb is shown in Fig. 22. The 100−xNb yield at x = 0 is small, but jumps
up at x = 1, and decreases gradually as x increases down to the mass A = 95 at x = 5.

MC excitations are expressed in terms of the vector excitations with the spin transfers of
∆Jπ = 0+, 1−, 2+ and the axial-vector ones with ∆Jπ = 1+, 2−. Among them the 0+ Fermi and
the 1+ GT excitations are reduced much since the 0~ω Fermi and GT excitations for the β+ and
antineutrino responses are blocked by the neutron excess in medium-heavy nuclei of the present
interest.

The 1− strength with 1~ω jump is considered to produce a MC GR, like the photon-capture
(PC) can produce an E1 GR. The vector 2+ and axial-vector 2− strengths show broad GR-like
distributions similarly to the IVSDR. Accordingly, the MC strength distribution B(µ,E) can be
written as a sum of the two GR strengths of B1(µ,E) and B2(µ,E):

B(µ,E) = B1(µ,E) +B2(µ,E) , (43)

Bi(µ,E) =
Bi(µ)

(E − EGRi)2 + (Γi/2)2
, (44)
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Figure 22: Left side: Nb residual-isotope (RI) mass distribution for MC on 100Mo. The black and gray histograms
are the experimental and calculated relative yields. Right side: The MC strength distribution extracted from the
experimental RI distribution. GR1 and GR2 are the MC GRs at around 11− 14 MeV and 25− 35 MeV [158].

where E is the excitation energy, EGRi and Γi with i = 1, 2 are the GR energy and the width
for the ith GR.

The neutron-unbound state decays by emitting neutrons in the pre-equilibrium (PEQ) and
equilibrium (EQ) stages [29]. The spectrum of the first neutron is expressed as

S(En) = k
[
Enexp

(
− En
TEQ(E)

)
+ pEnexp

(
− En
TPEQ(E)

)]
, (45)

where En is the neutron kinetic energy, TEQ(E) and TPEQ(E) are the EQ and PEQ nuclear
temperatures and p is the fraction of the PEQ-neutron emission. The neutron emission from
the EQ stage is a kind of neutron evaporation from the thermal equilibrium phase. The EQ
temperature is expressed as TEQ(E) =

√
E/a with a being the level-density parameter [29].

After the 1st neutron emission, neutrons are emitted at the equilibrium stage if the residual
state is neutron-unbound. The observed RI mass-distribution is consistent with a calculation
based on the MC strength distribution and the EQ/PEQ neutron-emission model. The MC GR1
energy is given as EG1 ≈ 33A−1/5 MeV.

MCs in other nuclei have been studied as discussed in the review papers [117, 152]. The
one-neutron emission is dominant in most MCs, being consistent with the observations on 100Mo
and with the strong population of the MC GR1. In other words, the dominance of the residual
isotope of A−1

Z−1X by one neutron emission reflects and supports the strong excitation of the GR1
around 12 MeV.

The RCNP MuSIC DC-muon beam and the J-PARC MLF pulsed-muon beam are promising
for further studies of MC nuclear responses. Proton emission takes place, as well, in medium-
heavy and heavy nuclei after several neutron emissions if the proton binding energy becomes
lower than the neutron binding energy, and also in light nuclei where the Coulomb barrier
gets lower. The MC lifetime measurements provide the absolute MC strength (square of the
absolute MC NME). The absolute MC response, together with the MC strength distribution,
helps theories to better evaluate the β+ NMEs associated with the neutrinoless DBDs and the
NMEs related to astro-antineutrinos.
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2.5. Electromagnetic transitions and photo-nuclear reactions

EM interactions are given in terms of τ , σ and multipole operators, like the NC and CC
weak interactions. Therefore, EM photon probes are well suited for studying neutrino-nuclear
(weak) responses for astro-neutrinos and DBDs, as discussed in the review articles [16, 18]. The
EM and weak interactions and their transitions in nuclei are well described in [1, 4, 28, 29, 161]
and references therein. We discuss in this subsection the EM transitions and the photo-nuclear
reactions via IAS to study nuclear responses for astro-neutrinos and DBDs.

2.5.1. Electromagnetic interactions for neutrino-nuclear responses

The nuclear EM transitions and photo-nuclear reactions have the following specific features
for studying neutrino-nuclear responses:

(i) The EM and weak interactions are fundamental interactions based on the electro-weak
SU(3)×U(1) framework. The EM transition rates and the photo-nuclear cross sections are
many orders of magnitude stronger than those of the weak interactions. It is realistic to
carry out high-precision experiments of the EM transitions and the photo-nuclear reactions,
while experiments with the weakly-interacting neutrino probes are hard, as discussed in
Sec. 2.6.

(ii) The EM interaction is well known and the transition operator is expressed by the simple
τ , σ and multipole operators. The lowest-multipole transition is dominant because of the
long-wave-length nature of the photon. These features are different from the case of the
nuclear probes, as discussed in Sec. 2.3.

(iii) High-intensity photons with linear and circular polarizations are available from polarized
laser photons scattered off GeV electrons. High energy-resolution high-efficiency photon
detectors are used for studying the EM transitions. The weak vector and axial-vector
responses are studied by measuring electric and magnetic γ transitions, respectively.

(iv) EM transitions and photo-nuclear reactions via IAS provide unique opportunities for study-
ing analogous weak-transitions as discussed in [162] and these processes have been studied
experimentally in several works [163, 164, 165]. Recently, photo-nuclear reactions via IAS
are discussed theoretically to study DBD NMEs [166].

The weak transition operators to be studied by the EM transitions are expresses as [1, 4, 166],

T (VL) = gVτ
irLYL , (46)

T (AVL) = gAτ
irL−1

[
σYL−1

]
L
, (47)

where T (VL) and T (AVL) are the vector and axial-vector transition operators, respectively,
and gV and gA are the vector and axial-vector couplings, respectively. Furthermore, L is the
multipolarity, and the isospin operator is τ i = τ 3 for the NC interactions and τ i = τ± for the
CC interactions. The square brackets denote angular-momentum coupling. Here we consider
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the unique axial-vector transition with the multipole L composed by the spin 1 and the orbital
angular momentum L− 1.

The EM transition operators are expressed as

T (EL) = gELr
LYL , (48)

T (ML) = gSir
L−1
[
σYL−1

]
L

+ gLr
L−1
[
jYL−1

]
L
, (49)

gS =
e~

2Mc
[L(L+ 1)]1/2

[
gs
2
− gl
L+ 1

]
, gL =

2gl
L+ 1

, (50)

where gi with i = EL, S and L are the effective charge, the effective spin g factor and the effective
orbital g factor, respectively. The effective charge and g factors depend on the nucleon isospin
τ 3, τ 3 = 1/2 for neutron and τ 3 = −1/2 for proton. In the second term of Eq. (49) j = l + s
is the total angular momentum (sum of the orbital angular momentum and spin) and in case
of spin-stretched transitions, Ji → Jf = Ji ± 1, it vanishes. Then we get good correspondence
between the weak and EM transition operators in the case of one-body operators. Note this is not
so if two-body operators are involved, such as in the case of the meson-exchange currents. GT
T (AV1), first-forbidden T (V1) and unique first-forbidden T (AV2) weak NMEs are derived from
TM1, T (E1) and T (M2) γ-transition NMEs, respectively. The EM couplings gi with i = EL, S
and L are expressed by using the isovector(τ 3) and isoscalar(τ 0 = 1) EM couplings as

gi =
gi(IV)

2
τ 3 +

gi(IS)

2
τ 0, (51)

where gi(IV) and gi(IS) are the effective isovector and isoscalar EM couplings, respectively.
Experiments of the EM transition rates and the photo-nuclear cross sections provide the EM
and the corresponding weak NMEs to help evaluate and verify the relevant neutrino responses.

2.5.2. Electromagnetic transitions and photo-nuclear reactions via IAS

EM transitions and photo-nuclear reactions via IAS are used to selectively study the isovector
component of the EM NMEs, which are analogous to the weak (neutrino) interaction NMEs
[163, 164]. The weak (β) and EM (γ) NMEs are related by

〈f |gWm
β|i〉 ≈ gW

gEM

K〈f |gEMm
γ|IAS〉 , (52)

where gW is the weak coupling for a free nucleon and gEM is its electromagnetic coupling. The
β+-side CC NME associated with DBD and astro-ν̄ responses is obtained by measuring the
analogous EM γ NME from the IAS, as shown in Fig. 23.

The IAS in a medium-heavy nucleus is located in the same energy region as the broad E1
GR. Thus the IAS appears as IAR (isobaric analogue resonance) in the E1 GR region. Then
the cross section is written as [163, 164, 165]

dσ

dΩ
= K|AI

J |2 + ΣJ ′ |AGR
J ′ |2 + 2Re(AI

JA
GR
J ) , (53)
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Figure 23: Photo-nuclear reaction via IAS and DBD β transition schemes. A, B, and C are the DBD initial,
intermediate and final states, respectively. The photo-nuclear reaction on C proceeds via IAS of B. T and Tz are
the isospin and its third component in the state B.

where K is a kinematical factor, AI
J is the IAR amplitude with J being the IAR spin, AGR

J ′

is the E1 GR amplitude with spin J ′ and 2Re(AI
JA

GR
J ) is the interference term. The E1 GR

contributions are corrected for to get the IAR component from the cross section. The IAR cross
section at an energy E is given as

dσ

dΩ
= k(2J + 1)

ΓpΓγ
(E − Er)2 + (Γt)2/4

, (54)

where Γp, Γγ and Γt are the proton, γ and total widths, respectively, and Er is the IAR resonance
energy.

Non-unique first-forbidden β decays with ∆J = 1 include 3 NMEs: M(r), M(pe) (the velocity
component) and M(σ×r) [27], see operators in (96). Among them, M(r) is derived from the IAS
E1-γ NME MI(E1), which is obtained by measuring the γ decay or the photo-nuclear reaction
via the IAS.

The NME M(r) for the first-forbidden transition of 141Ce→ 141Pr was obtained by measuring
the E1-γ transition from the IAS of 141Ce [163, 164]. Here the IAS is excited by the proton-
capture reaction as a resonance (IAR) in the continuum region. The IAS EI-γ and the first-
forbidden β transitions are schematically shown in Fig. 24.

The measured cross section was analyzed in terms of the IAR and E1 GR terms to obtain
the γ width Γγ. The γ width is written in terms of the E1 NME MIA(E1) as

Γγ =
16π

9

(
Eγ
~c

)3

e2B(E1) ; B(E1) =
1

2Ji + 1
|MIA(E1)|2 , (55)

where Eγ is the γ-ray energy and Ji = 7/2 is the IAR spin. The obtained γ NME is MIA(E1) =
0.18± 0.2 fm. Then the corresponding β NME is obtained by correcting for the isospin factor of
(2T )1/2 = 5 as M(r) = 0.9± 0.2 e fm.

The β NME is expressed on the basis of the ξ approximation of ξ = αZ/2R� Eβ as

gVM(β) = −gVM(r)
(

Λ− gA

gV

Λ1 − 1
)

; Λ =
iM(pe)

ξM(r)
; Λ1 =

iM(σ × r)

M(r)
, (56)
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First forbidden -

IAR   14.95 MeV

141Pr

141Ce

T

p

E1 

140Ce + p→141Pr + 
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7/2 -

7/2 -

5/2 +

Figure 24: Excitation of the IAS of 141Ce by a proton-capture reaction on 140Ce and E1 γ decay from the IAR
to the ground state of 141Pr [163, 164].

where gA/gV = 1.27 is the axial-vector coupling in units of the vector one, gV. We use the
experimental value Λ = 2.6 [167], which is consistent with the CVC value of Λ = 2.4. Inserting
the present NME of M(r) = 0.9 fm and the β-decay NME of M(β) = 0.43 into Eq. (56), one
obtains the ratio Λ = iM(σ × r)/M(r) = 0.9, and then the axial-vector NME of M(σ × r) =
0.8 fm. The obtained β NME of M(r) is reduced by coefficients of kSP = 0.21 and kQP = 0.24
with respect to the single-particle (SP) and quasiparticle (QP) NMEs, respectively, and M(σ×r)
is also reduced by the similar coefficients of kSP = 0.18 and kQP = 0.21.

The IAS E1 γ transitions were studied in other nuclei, and the IAS E1 γ NMEs and the
corresponding β NMEs are shown to be reduced with respect to the QP NME by kQP ≈ 0.25
[1, 4, 163]. It is interesting to note that the non-unique and unique β MNEs and the E1 γ NMEs
are all uniformly reduced by a coefficient around 0.20 − 0.25 with respect to the QP NMEs,
suggesting uniform reduction effects due to the spin-isospin correlation and renormalization of
the weak and EM couplings [1, 4].

Nuclear responses for astro-neutrinos and DBDs are studied by measuring photo-nuclear
reactions through IARs [166], as shown in Fig. 23. The IARs in DBD nuclei of current interest
decay mainly by emitting one neutron. The energy-integrated cross section, being corrected for
the interference with the E1 GR, is expressed as

∫
σ(γ, n)dE =

S(2J + 1)π2

k2
γ

Γγ
Γn

Γt , (57)

where σ(γ, n) is the photo-neutron cross section, S is the spin factor, J is the IAS spin, kγ is
the photon momentum, and Γγ, Γn and Γt are γ, neutron and total widths, respectively. In the
medium-heavy nuclei, the neutron emission dominates since the proton emission is suppressed.
Then one can set Γt ≈ Γn and one gets Γγ from the integrated cross section. The EM NME is
derived from the IAR Γγ as shown in Eq. (55).

Medium-energy polarized photons are obtained from laser photons scattered off GeV elec-
trons. The spin and parity of the IAR are obtained from the angular distributions of the emitted
neutrons with respect to the photon-polarization axis y and the direction z [166]. The distribu-
tions for E1 photo-nuclear reactions on 76Se and 100Mo are shown in Fig. 25. They are used to
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Figure 25: Top: Angular distributions of the neutrons emitted from the photo-nuclear reactions via IARs in 82Se.
Bottom: As above in 100Mo [166].

evaluate the spin-parity of the IAS and the analogous state in the intermediate nucleus B. Astro-
neutrino and DBD responses for excited states in intermediate nuclei are studied by measuring
photo-nuclear reactions via the IARs of the excited states.

2.6. Neutrino-nuclear reactions for neutrino-nuclear responses

Neutrino-nuclear reactions with neutrino beams are used to study neutrino-nuclear responses.
The neutrino CC process is a kind of lepton CER, where the neutral lepton (neutrino) becomes
a charged lepton (electron) via the charged weak-boson exchange (see Sec. 1.2). The neutrino
CERs are free from uncertainties induced by nuclear-reaction mechanisms and nuclear interac-
tions involved in the nuclear CERs as discussed in Sec. 2.3.

Neutrino CC and NC cross-sections, however, are extremely small because the gauge bosons
are the heavy Z and W bosons. Therefore, one needs very intense ν and ν̄ beams and huge
detectors to measure the neutrino reactions. The responses on 12C have been studied by using
the neutrino beams at the Rutherford laboratory [168] and LANL [169]. Neutrino-response
studies by using intense neutrino beams extracted from high-intensity proton accelerators were
discussed in [170, 171], and those by using neutrinos from β beam in [172].

The neutrino reactions to be used for the NC and CC responses are

ν + A
ZX→ ν ′ + A

ZXk , νe + A
ZX→ e− + A

Z+1 Xk , (58)

ν̄ + A
ZX→ ν̄ ′ + A

ZX , ν̄e + A
ZX→ e+ + A

Z−1 X , (59)

where A
ZX is the target nucleus and A

Z′Xk is the kth state in the residual nucleus A
Z′X.

The neutrino-reaction cross section is given as

σk(α) = gWK(Eν)Fk(Eν , Z
′)Bk(α), (60)
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where gW is the weak coupling for a free nucleon, K(Eν) is a kinematic factor, Eν is the neutrino
energy, Fk(Eν , Z

′) is a phase-space factor and Bk(α) is the α-mode response (strength) for the
state k. Here the excitation modes to be considered are α =F(0+), GT(1+), D(1−), SD(0−, 1−,
2−), and so on. The NMEs are given by M(α) = [(2J + 1)B(α)]1/2.

Solar neutrinos are low-energy neutrinos with Eν = 0.1− 15 MeV, while supernova-neutrino
energies extend up to around Eν = 40− 60 MeV, depending on the flavors and the temperatures
in the neutrino spheres. The DBD is associated with virtual ν and ν̄ in the medium-energy region
around 20 − 80 MeV. Accordingly, the neutrino beams used to study the nuclear responses for
these neutrinos are low- and medium-energy ν and ν̄ beams.

The neutrino cross-sections are mainly the CC cross sections. It is given in units of cm2 as

σk(α) = 1.597× 10−44 peEeF (Z,Ee)Bk(α) , (61)

where p, Ee, and F (Z,Ee) are the momentum, the total energy and the Fermi function for the
electron from the CC interaction. The quantity Bk(α) is the α-mode response for the kth state
in units of the weak vector coupling gV. The Fermi and GT responses are given by

Bk(α) = Bk(F) , Bk(α) =

(
gA

gV

)2

Bk(GT) , (62)

where the axial-vector to vector coupling ratio is gA/gV = 1.27. The response Bk(GT) is given
as (2Jk + 1)−1|Mk(GT)|2. Thus the NME Mk(GT), including the effective weak coupling geff

A /gA

(quenching), is derived from the observed cross section. The actual cross section for a typical
GT state with B(GT) ≈ 0.1 is around 10−45 cm2. Then very high-flux neutrino beams around
1014/second and multi-ton-scale target isotopes are necessary for the neutrino-beam experiments.

Intense neutrino beams are obtained from π − µ decays. Here high-flux pions are produced
by using high-intensity GeV-proton accelerators. The nuclear reaction is expressed as p + Hg→
nπ++X. Here several (n) pions are produced in addition to others mesons, nucleons and nuclei.
The positive pions (π+) stop and decay as

π+ → µ+ + νµ , µ+ → e+ + νe + ν̄µ . (63)

Here the π+-decay νµ shows a line spectrum at around 30 MeV, while the µ+-decay νe and ν̄µ
show continuum spectra extending up to around 55 MeV, as shown in Fig. 26. These energy
regions are just the regions of virtual neutrinos associated with the neutrinoless DBDs and astro-
neutrinos. Hence, the νe, νµ and ν̄µ beams are used to study the NC and CC nuclear responses
for them.

The νe and ν̄µ from the µ+ decay are delayed by a couple of 100 nanoseconds and are separated
in time from the fast component of the νµ and other nuclear reaction products by using pulsed
proton beams [170, 171, 173]. A neutrino flux around 0.7×1015/second is expected by using the
SNS 1-GeV proton beam from the 1.6-MW accelerator [173], while neutrino beams of the order
of 0.3 × 1015/second may be obtained by using the 3-GeV proton beam from the 1-MW RCS
J-PARC [171].
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Figure 26: Energy spectra for νµ from stopped π+ decays and for νe and ν̄µ from the µ+ decay [170].

Low-energy antineutrinos from nuclear reactors are used for neutrino-oscillation studies. The
ORNL reactor with 3 GW provides an intense ν̄e beam of around 6×1020/second [173]. Natural
neutrino sources such as the solar neutrinos and atmospheric neutrinos, which are used to study
the neutrino oscillations and the solar nuclear reactions, are of interest for future neutrino-
response studies with kilo-ton-scale detectors.

In fact, theoretical calculations for neutrino-nuclear responses on 12C and on other nuclei of
DBD and astro-physics interest depend much on the nuclear models, the nuclear parameters and
the effective value of the axial-vector coupling gA (see Sec. 4). Then direct experimental mea-
surements of the responses by using neutrino beams are important in providing experimentally
the NMEs including the effective weak coupling [171].

2.7. Nucleon-transfer reactions for nucleon occupation and vacancy probabilities

Nucleon-transfer reactions have been used for studying valence nucleon properties such as
single-QP occupancy and vacancy probabilities of V 2

j and U2
j = 1 − V 2

j in a j-shell orbit with
j being the angular momentum. The V 2

j and U2
j for quasi-neutrons are measured by using

neutron-transfer (p,d) and (d,p) reactions, and those for quasi-protons by using proton-transfer
(3He,α), (3He,d) and (α,t) reactions. They are described in the review paper [174] and references
therein, as also in the recent works [175, 176].

Nucleon-transfer reactions are analyzed by using a DWBA code to extract the orbital angular
momentum l of the transfered nucleon and the spectroscopic factor SF. Then one obtains
U2
j = Σi(SF)add/(2j + 1) and V 2

j = Σi(SF)rem/(2j + 1), where (SF)add and (SF)rem are the
spectroscopic factors for the nucleon-adding and nucleon-removal reactions, respectively.

The V 2
j and U2

j factors for the DBD nucleus 76Ge are shown in Table 2 [177]. Here the V 2
j

and U2
j factors are given, respectively, by the ratios of the particle and hole numbers to the

total number of 2j + 1, and the renormalization (quenching) factors around 0.55 are used to get
V 2
j + U2

j = 1.
The observed numbers for the holes and particles agree well with the numbers of the valence

neutrons of 6 for l = 1 (p1/2, p3/2), 6 for l = 3 (f5/2), and 10 for l = 4 (g9/2). The sum of the
observed occupancies is 16, which is consistent with the number of neutrons above the magic
number 28. Thus the transfer reaction gives reasonable vacancy (hole) and occupancy (particle)
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Table 2: Measured numbers of neutron holes and neutron particles in 76Ge [177]. l is the orbital angular
momentum [177].

l Holes Particles Holes+Particles Occupancy

1 1.12 4.83 5.97 4.87± 0.2
3 1.9 4.38 6.28 4.56± 0.4
4 3.41 6.27 9.68 6.48± 0.3

numbers for the valence nucleons in the shell orbits, and thus are used to verify the pnQRPA
and other nuclear models used for DBD NME calculations [178, 179, 180, 181, 182, 183, 184].
Actually, transfer reactions have been measured for several DBD nuclei as presented in a recent
workshop [185].

Figure 27: Average of the quenching factor for different l transfers. The error bars stand for the rms of the
spread in values. The gray band represents the ±2σ deviation from the mean quenching. [186].

The renormalization (quenching) factor to be used for getting SF is discussed in detail in [186].
The quenching factors observed in various transfer reactions are shown against the transfered
l in Fig. 27. The factors are uniformly distributed around 0.55 for all transfer reactions and
transfered l values. The quenching factor is universal in a wide range A = 16 − 208 of the
nuclear mass number. A similar quenching factor is found also in the EM proton knock-out
reactions of (e,e’p) [187]. The universal renormalization (quenching) of the single quasi-nucleon
at the nuclear surface (one major shell) is considered to be due to nucleonic and non-nucleonic
correlations and nuclear medium effects. It is to be noted that similar renormalization factors
around 0.5−0.6 appear in CERs and weak NMEs, as discussed in the following sections. Accurate
evaluations of the short-range and other nucleonic and non-nucleonic correlations and the nuclear
medium effects are important in order to understand how they affect the transfer reactions and
the neutrino-nuclear responses.

In case of the 0+ → 0+ ground-state-to-ground-state DBD with (neutron pair)↔(proton
pair), pairing correlations and pairing vibrations play a role in DBD NMEs. They are studied
by using pair-transfer (p,t) and (t,p) reactions [188, 189].

46



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3. Neutrino-nuclear responses and single beta decays

The nuclear single beta decays, or simply β decays, are weak-interaction-mediated nuclear-
disintegration processes where the atomic number of the decaying nucleus changes by one unit
in the process. The atomic number either increases (β− decays) or decreases (β+ decays and/or
electron captures (EC)). The processes can be schematically written as

A
ZX→ A

Z+1 Y + e− + ν̄e , (β−decay) (64)

A
ZX→ A

Z−1 Y + e+ + νe , (β+decay) (65)

A
ZX + e− → A

Z−1 Y + νe , ( EC decay) (66)

where X (Y) denotes the decaying mother (resulting daughter) nucleus, e− (e+) is electron
(positron) and νe (ν̄e) is the corresponding neutrino (antineutrino). In the following we discuss
neutrino-nuclear responses which relate to these decays and attract current interest.

3.1. The gA problem for Gamow-Teller type of transitions

The quenching problem of the weak axial-vector coupling strength gA has been known for
several decades (see, e.g. the reviews [1, 4]), mainly from the calculations of the Gamow-
Teller and unique-forbidden β-decay transitions and isovector magnetic γ matrix elements in
the framework of the nuclear shell model, or the interacting shell model, as it will be called in
this review to distinguish it from the extreme simple non-interacting shell-model description of
simple nuclear systems. The quenching factors due to spin isospin correlations were discussed
in terms of the effective weak couplings in [1, 4]. Virtual Gamow-Teller transitions mediate also
the two-neutrino ββ (2νββ) decay, so some degree of quenching is expected there as well. Below
we summarize concisely the status of the quenching problem of gA for the Gamow-Teller type of
transitions in β and 2νββ decays.

3.1.1. Outline of the theory frameworks

In the analyses of the effective value of gA the adopted many-body frameworks include the
interacting shell model (ISM) [190], the quasiparticle random-phase approximation (QRPA) in its
proton-neutron version, pnQRPA [19, 56, 191], and in its proton-proton-plus-neutron-neutron
version (simply QRPA) [56, 191]. To describe the odd-A nuclei a derivative of the QRPA,
the microscopic quasiparticle-phonon model (MQPM) [192, 193] has also been used. Also the
framework of the microscopic interacting boson model (IBM-2) [194] and its odd-A version, the
microscopic interacting boson-fermion model (IBFM-2) [195], have been used in the studies of
the effective value of gA. These theories have the following ingredients:

• Many-body aspects of the ISM : The ISM is a many-body framework that uses a limited set
of single-particle states, typically one harmonic-oscillator major shell or one nuclear major
shell, to describe nuclear wave functions involved in various processes. In the ISM one
forms all the possible many-nucleon configurations in a given single-particle space, each
configuration described by one Slater determinant, and diagonalizes the nuclear (residual)
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Hamiltonian in the basis formed by these Slater determinants. In this way the many-body
features are taken into account exactly but only in a restricted set of single-particle states,
typically leaving out one or two spin-orbit-partner orbitals from the model space. The
pnQRPA calculations [181, 182] and perturbative ISM calculations [196, 197] suggest that
inclusion of all spin-orbit-partner orbitals in the chosen single-particle model space is called
for. This has been verified in the extended ISM calculations where the missing spin-orbit
partners have been included at least in an effective way [198, 199]. A particular problem
with the ISM is to find a suitable (renormalized) nucleon-nucleon interaction to match the
limited single-particle space. Since this space is small, the renormalization effects of the
two-body interaction become substantial.

• Many-body aspects of the pnQRPA: The proton-neutron version of the QRPA (pnQRPA)
uses two-quasiparticle excitations that are built from a proton and a neutron quasiparticle.
The pnQRPA wavefunctions are created on the QRPA vacuum, |QRPA〉, by the phonon
operator

|ωMω〉 = Q†ωMω
|QRPA〉 , (67)

with the phonon structure

Q†ωMω
=
∑

pn

[
Xω
pn[a†pa

†
n]JωMω + Y ω

pn[ãpãn]JωMω

]
, (68)

where a†p (a†n) are the creation operators of quasiparticles in a proton (neutron) orbital
with orbital quantum numbers p = (np, lp, jp) [n = (nn, ln, jn)], (n, l, j) being the triplet of
principal, orbital angular momentum and total angular momentum quantum numbers for
a given orbital. The corresponding annihilation operators for protons are defined as ãπ =
(−1)jp+mπa−π with −π = (p,−mπ), where mπ is the z projection of jp, and correspondingly
for the neutrons. Here Jω is the angular momentum of the pnQRPA state and Mω is its
projection on the laboratory z axis. The sum in equation (68) runs over all possible proton-
neutron configurations in the adopted valence space. The amplitudes Xω and Y ω can be
found by solving the pnQRPA equations presented in [56].

The construction (67) enables description of odd-odd nuclei starting from an even-even
reference nucleus where the quasiparticles are created, e.g., through the BCS procedure
[56]. The advantage of the pnQRPA theory is that it can include large single-particle model
spaces in the calculations: There arise no problems associated with spin-orbit-partner
orbitals since they can easily be accommodated in the model space. On the other hand,
the pnQRPA has a limited configuration space. Deficiencies of the pnQRPA formalism
have been analyzed against the ISM formalism, e.g., in [200] by using a seniority-based
scheme where the pnQRPA was considered to be a low-seniority approximation of the
ISM. On the other hand, the ground-state correlations of the pnQRPA introduce higher-
seniority components to the pnQRPA wave functions and the deficiencies stemming from
the incomplete seniority content of the pnQRPA should not be so severe [201]. Schematic or
G-matrix-based boson-exchange Hamiltonians have widely been used in the calculations.

48



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Extensions of the pnQRPA framework include the renormalized QRPA (RQRPA) [202,
203] and similar “fully” renormalized schemes [204, 205, 206]. One particular problem
with the pnQRPA calculations is the determination of the value of the particle-particle
interaction parameter gpp, used to scale the particle-particle part of the proton-neutron
two-body interaction matrix elements [207, 208]. The particle-hole parameter, gph, of the
proton-neutron two-body interaction is usually determined by adjusting the parameter such
that the phenomenological or experimental energy of the Gamow-Teller giant resonance is
reproduced [209, 210].

It should be noted here that the previous discussion pertains to the spherical form of the
QRPA but most of the remarks are valid also for the deformed QRPA frameworks. Many
of the double-beta-decaying nuclei (e.g., 150Nd) are more or less deformed so that the use
of a deformed QRPA framework would be preferable. The deformation effects, as also the
associated overlap problem are discussed in Sec. 5.3.6.

• Many-body aspects of the MQPM : The microscopic quasiparticle-phonon model (MQPM)
is intended to description of states of odd-A nuclei starting from the adjacent even-even
reference nuclei. The MQPM states are generated by combining proton or neutron one-
quasiparticle excitations of the reference nucleus with three-quasiparticle excitations built
by coupling a proton or neutron quasiparticle to a QRPA phonon. A QRPA phonon is
a proton-proton-plus-neutron-neutron excitation of an even-even reference nucleus in the
form

|ω′Mω′〉 = Q′
†
ω′Mω′

|QRPA〉 , (69)

with the phonon structure

Q′
†
ω′Mω′

=
∑

a≤b

[
Xω′
abNab(Jω′)[a

†
aa
†
b]Jω′Mω′ + Y ω′

ab Nab(Jω′)[ãaãb]Jω′Mω′

]
, (70)

where the indices a, b run over all two-proton and two-neutron configurations within the
chosen valence space, so that none of them is counted twice. Nab is a normalization constant
and the Xω′

ab and Y ω′
ab are amplitudes that can be solved from the QRPA equation of motion

[56].

The MQPM creation operator creates a state |kjm〉 in an odd-A nucleus by the action

|kjm〉 = Γ†k(jm)|QRPA〉 , (71)

with the operator structure

Γ†k(jm) =
∑

n

Xk
na
†
njm +

∑

aω′

Xk
aω′ [a

†
aQ
′†
ω′ ]jm, (72)

where Q′ is the QRPA creation operator (70). Since the MQPM states (72) contain the
three-quasiparticle components special care should be taken when solving the MQPM equa-
tions of motion for the amplitudes Xk

n and Xk
aω′ in order to handle the over-completeness

and non-orthogonality of the quasiparticle-phonon basis. For details see [193].
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Examples of the use of the MQPM are given in Fig. 28 for the solar-neutrino detectors based
on 71Ga [211] (left panel) and 127I [212] (right panel). In the left panel the nucleus 71Zn
decays by β− transitions to the ground state and excited states of 71Ga, and the nucleus
71Ge decays by electron capture to the ground state of 71Ga. In the right panel the nucleus
127Te decays by β− transitions to the ground state and excited states of 127I, and the nucleus
127Xe decays by β+/EC (electron capture) to the ground state and excited states of 127I.
Here the case of 71Ga is particularly interesting due to the so-called “gallium anomaly”
in the solar-neutrino scattering off 71Ga to low-lying states in 71Ge. The discrepancies
associated with the comparison of the calculated and measured neutrino-scattering cross
sections will be discussed in Sec. 4.4.4.
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Figure 28: Application of the MQPM procedure to description of states of odd-A germanium, gallium and iodine
nuclei.

• Many-body aspects of the IBM-2 : The interacting boson model (IBM) is a theory framework
based on s and d bosons which have as their microscopic paradigms the 0+ and 2+ angular-
momentum-coupled collective fermion pairs present in nuclei. An extension of the IBM
is the microscopic IBM (IBM-2) where the proton and neutron degrees of freedom are
explicit. The IBM-2 is a kind of phenomenological version of the ISM, containing the
seniority aspect and the restriction to one magic shell in terms of the single-particle model
space. The Hamiltonian and the transition operators are constructed from the s and d
bosons as lowest-order boson expansions with coupling coefficients to be determined by
fits to experimental data on low-lying energy levels and E2 γ transitions associated with
the s and d bosons, but the fitting does not use the spin or isovector data available from
β decays. One can also relate the bosons to the underlying fermion model space through
a mapping procedure [213, 214].

The microscopic IBM can be extended to include higher-multipole bosons, like g bosons,
as well. Further extension concerns the description of odd-A nuclei by the use of the
microscopic interacting boson-fermion model (IBFM-2) [195]. The IBM concept can also
be used to describe odd-odd nuclei by using the interacting boson-fermion-fermion model
(IBFFM) and its proton-neutron variant, the proton-neutron IBFFM (IBFFM-2) [215].
Here the problems arise from the interactions between the bosons and the one or two
extra fermions in the Hamiltonian, and from the transition operators containing a host of
phenomenological parameters to be determined in some meaningful way.
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Recently a method was developed to calculate the IBM-2 occupancies of single-particle
levels in nuclei [183]. This method was applied to calculate the occupancies in several
nuclei of interest for 0νββ decay. An interesting study in the framework of the interacting
boson model was carried out [216]. In this work it was examined whether neutron-proton
pairing should be explicitly included as neutron-proton bosons in the IBM calculations of
0νββ-decay NMEs.

The impact of the quenching of gA on the half-lives of neutrinoless double beta (0νββ) decay
has recently been discussed in the pnQRPA theory framework in Ref. [217]. The related decay
rates are affected by the available phase space (Q values), the nuclear matrix elements (NMEs)
and the value of gA in its fourth power 2 [2, 21, 23, 24]. In its simplest, in the light-neutrino mass
mode (see Sec. 5), the 0νββ decay is mediated by light Majorana neutrinos and the measurements
of the related half-lives offer access to the absolute mass scale of the neutrinos [2, 23]. Quite a
large number of nuclear models, including configuration-interaction based models like the ISM,
pnQRPA and IBM-2 (Sec. 3.1.1), and various mean field models, have been adopted for the
calculations [19, 20, 24] of 0νββ observables.

Lately some attention has been paid to the possible (large) quenching of gA and its possibly
strong impact on the sensitivities of the present and planned 0νββ-decay experiments [16, 18,
30, 217]. This deviation (quenching or sometimes enhancement) from the free-nucleon value
gA = 1.27 can arise from the nuclear medium effects and/or the nuclear many-body effects.
The former contain quenching related to the presence of spin-multipole giant resonances [218],
non-nucleonic degrees of freedom (like the ∆ isobar [219, 220]) and meson-exchange-related two-
body weak currents [221, 222, 223]. The latter relates to deficiencies of the nuclear many-body
approaches used to compute the wave functions involved in the decay transitions. The effective
value of gA can also depend on the energy scale of the process in question: the effective value can
be different for β decays (zero-momentum-exchange limit) and 0νββ decays (high momentum
exchanges, ∼ 100 MeV/c).

The effective value of gA can be related to the renormalization factor q. In the case of
quenching it is called quenching factor, see Sec. 3.1.2, and in the case of enhancement it is called
enhancement factor, see Sec. 3.6.4. It is defined as the ratio

q =
gA

gfree
A

, (73)

where gfree
A = 1.2723(23) [224] is the free-nucleon value of the axial-vector coupling as measured

in neutron beta decay. Here gA is the value of the axial-vector coupling derived from a given
theoretical or experimental analysis. From (73) one can derive the effective value of gA as

geff
A = qgfree

A . (74)

2Actually, the dependence is exactly fourth power only if the Fermi NME is neglected. In practice, the Fermi
NME is roughly one third of the Gamow-Teller one so that the dependence is not exactly fourth power.
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3.1.2. Quenching of gA in Gamow-Teller beta decays

Gamow-Teller β decays are mediated by the Pauli spin operator σ [56] and they change the
initial nuclear spin Ji by at most one unit in a given nuclear transition. The renormalization
of gA has long been studied for the Gamow-Teller β decays in the framework of the interacting
shell model (ISM). In these calculations, reviewed in Table 3, it appears that the value of gA

is quenched, and the stronger the heavier the nucleus. The renormalization of gA in the ISM
includes all the possible sources of deficiency listed at the end of the previous section.

Table 3: Mass ranges and effective values of gA extracted from the works of the last column. For more information
on the error bars etc., see the review [30].

Mass range geff
A Reference

Full 0p shell 1.03+0.03
−0.02 [225]

0p− low 1s0d shell 1.18± 0.05 [226]
Full 1s0d shell 0.96+0.03

−0.02 [227] (see also [228])
1.0 [229]

A = 41− 50 (1p0f shell) 0.937+0.019
−0.018 [230] (see also [228])

48Ca (1s0d1p0f shells) 0.90 [231]
1p0f shell 0.98 [229]
56Ni 0.71 [229]
A = 52− 67 (1p0f shell) 0.838+0.021

−0.020 [232]
A = 67− 80 (0f5/21p0g9/2 shell) 0.869± 0.019 [232]
A = 63− 96 (1p0f0g1d2s shell) 0.8 [233]
A = 76− 82 (1p0f0g9/2 shell) 0.76 [234]
A = 90− 97 (1p0f0g1d2s shell) 0.60 [235]
100Sn 0.52 [229]
A = 128− 130 (0g7/21d2s0h11/2 shell) 0.72 [234]
A = 130− 136 (0g7/21d2s0h11/2 shell) 0.94 [236]
A = 136 (0g7/21d2s0h11/2 shell) 0.57 [234]
A = 136 (0g1d2s0h shell) 0.94 [199]

In Fig. 29 the ISM results of Caurier et al. [234] (red horizontal bars indicating the mass
range) are contrasted against those obtained by the use of the proton-neutron quasiparticle
random-phase approximation (pnQRPA) in the works [105, 237, 238] (see also [239] and the
review [30]). The pnQRPA results constitute the light-hatched regions in the background of
the ISM results. The width of the regions reflects the rather large variation of the determined
geff

A for β-decay transitions in different isobaric chains. Geometric mean of the β− and β+/EC
transitions has been used. For more information on the analyses see the review [30]. As can be
seen in the figure, the ISM results and the pnQRPA results are commensurate with each other,
which is non-trivial considering the large differences in their many-body philosophy.

At this point is should be pointed out that there have been recent global studies of the
allowed and first-forbidden β decays, in particular on the neutron-rich side, relevant for the
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description of the r-process and the associated matter flow. In [240] half-lives of allowed β
decays of neutron-rich nuclei with charge-numers 20 ≤ Z ≤ 50 were studied using fully self-
consistent proton-neutron QRPA based on the spherical relativistic Hartree-Fock-Bogoliubov
framework. By introducing an isospin-dependent proton-neutron pairing in the isoscalar channel
the experimental half-lives were reproduced by the choice geff

A = 1.0. In [241] 5409 β decays were
analyzed within the framework of a fully self-consistent covariant density functional theory. The
effective value geff

A = 1.0 was adopted for both the Gamow-Teller and first-forbidden decays and
the gross features of the decay rates across the nuclear chart were reproduced. A similar level of
global agreement with data was obtained in the global survey [242] where the charge-changing
Skyrme-QRPA was utilized to compute allowed and first-forbidden β decays for axially-deformed
nuclei. In this study the quenched value geff

A = 1.0 was used for the Gamow-Teller transitions
and no quenching (bare gA) was used for the first-forbidden transitions.

g
eff A

A

40 50 60 70 80 90 100 110 120 130 140
0.0

0.5

1.0

gfreeA

M-P1996

Siiskonen2001

Siiskonen2001

Iwata2016
Kumar2016 Horoi2016

Faessler2007 Suhonen2014

Caurier2012

lower limit (Suhonen2017)

ββ IBM-2

ββ ISM

Figure 29: Effective values of gA in different theoretical β and 2νββ analyses for the nuclear mass range A =
41−136. The quoted references are Suhonen2017 [217], Caurier2012 [234], Faessler2007 [244], Suhonen2014 [246]
and Horoi2016 [236]. These studies are contrasted with the ISM β-decay studies of M-P1996 [230], Iwata2016
[231], Kumar2016 [232] and Siiskonen2001 [229]. For more information see the text and Table 3 in Sec. 3.1.2 and
the text in Sec. 3.1.3.

3.1.3. Quenching of gA in two-neutrino ββ decays

Recently the possibly decisive role of gA in the half-life and discovery potential of the 0νββ
experiments has surfaced [217, 243]. In Barea et al. [243] a comparison of the experimental and
computed 2νββ half-lives of a number of nuclei yielded the rather striking result

geff
A (IBM-2) = 1.269A−0.18 ; geff

A (ISM) = 1.269A−0.12 , (75)
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where A is the mass number and IBM-2 stands for the microscopic interacting boson model
(see Sec. 3.1.1). The IBM-2 results have been obtained by using the closure approximation for
the analyzed 2νββ transitions since there are no spin-isospin degrees of freedom in the theory
framework. Here one has to point out that the use of closure approximation for calculation of the
2νββ NMEs is not accurate and can be liable to large errors. The results (75), depicted in Fig. 29
as red (ISM) and blue (IBM-2) dotted curves, imply that strongly quenched effective values of gA

are possible, thus decreasing drastically the discovery potential of the 0νββ experiments based
on the large NMEs with the non-quenched gA.

Although the study [243] was the first to draw considerable attention in the experimental
0νββ community, it was not the first one to point to a possible strongly quenched value of gA.
Already the pnQRPA study of Faessler et al. [244] gave indications of a strongly quenched
effective gA, in the range geff

A = 0.39 − 0.84. These results, along with their 1σ errors, are
shown in Fig. 29 as black vertical bars. Later a similar study was carried out in [245, 246], with
results comparable with those of [244] and depicted in Fig. 29 as green vertical bars. For more
information see the review [30].

In Suhonen [217] a two-stage fit of the particle-particle parameter gpp of the pnQRPA to
the data on two-neutrino ββ decays was performed along the lines first introduced in Šimkovic
et al. [247] and later used in Hyvärinen et al. [248]. The works [247, 248] were extended in
[217] to include also strongly quenched values of gA. In this analysis it turned out that there
is a minimum value of gA for which the maximum NME can fit the 2νββ-decay half-life. This
lower limit of the possible gA values is presented in Fig. 29 as a solid black line. It is seen that
it is consistent with the thick green vertical bars of gA ranges obtained in [245, 246] and also
commensurate with the thin black vertical bars obtained in [244]. However, the main message
of Suhonen [217] is that no matter how quenched the value of gA is, the half-lives of the present
and future neutrinoless ββ-decay measurements would only be affected by factors of 6 or less.
This result is left for other theoretical approaches to be verified in the future.

In Sec. 3.6.4 an enhancement phenomenon of the gA values in the context of the weak axial
charge is discussed. For more information on the quenching of gA in Gamow-Teller type of decays
see the recent review [30]. See Sec. 6.4 for the experimental 0νββ sensitivity and the NME with
effective gA.

3.2. Forbidden beta decays

Forbidden β decays cover all β decays beyond the allowed Gamow-Teller (mediated by the σ
operator) and Fermi (mediated by the unit operator) decays. In the allowed decays the maximum
allowed change in angular momentum is ∆J = 1 and the decay operator does not induce parity
change, i.e. ∆π = πiπf = 1, where πi (πf ) is the parity of the initial (final) nuclear state. The
forbidden decays can be divided into unique and non-unique decays. The unique decays have
(essentially) universal β spectrum shapes (energy distribution of the emitted electrons in β−

decays or positrons in β+ decays) with a weak nuclear-structure dependence. The non-unique
decays can show strong dependence on the details of nuclear structure and hence the associated
β spectra are not universal.
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3.2.1. Forbidden unique beta decays

The forbidden unique β transitions are the simplest ones that mediate β decays of angular-
momentum differences ∆J = |Ji − Jf | ≥ 2, where Ji (Jf ) is the angular momentum of the
initial (final) nuclear state. For a Kth forbidden (K = 1, 2, 3, . . .) unique β decay the angular-
momentum change is ∆J = K + 1. At the same time the parity of the involved nuclear states
changes in the odd-forbidden and remains the same in the even-forbidden decays [56]. The
change in angular momentum and parity for different degrees of forbiddenness is presented in
Table 4, and they obey the simple rule

(−1)∆J∆π = −1 . (Forbidden unique decays) (76)

Table 4: Change in angular momentum and parity for Kth forbidden unique β decays.

K 1 2 3 4 5 6 7

∆J 2 3 4 5 6 7 8
∆π = πiπf −1 +1 −1 +1 −1 +1 −1

The half-lives t1/2 of Kth forbidden unique β decays can be expressed in terms of reduced
transition probabilities BKu and phase-space factors fKu. The BKu is given by the NME, which
in turn is given by the single-particle NMEs and one-body transition densities. Then (for further
details see [56])

t1/2 =
κ

fKuBKu

; BKu =
g2

A

2Ji + 1
|MKu|2 , (77)

where κ is a constant with value [249]

κ =
2π3~7ln 2

m5
ec

4(GF cos θC)2
= 6147 s , (78)

with GF being the Fermi constant and θC being the Cabibbo angle. The phase-space factor fKu

for the Kth forbidden unique β± decay can be written as

f
(±)
Ku =

(
3

4

)K
(2K)!!

(2K + 1)!!

∫ w0

1

CKu(we)pewe(w0 − we)2F0(±Zf , we)dwe , (79)

where CKu is the shape factor for Kth forbidden unique β decays which can be written as (see,
e.g., [56, 250])

CKu(we) =
∑

ke+kν=K+2

λkep
2(ke−1)
e (w0 − we)2(kν−1)

(2ke − 1)!(2kν − 1)!
, (80)

where the indices ke and kν (both k = 1, 2, 3...) come from the partial-wave expansion of
the electron (e) and neutrino (ν) wave functions. Here we is the total energy of the emit-
ted electron/positron, pe is the electron/positron momentum, Zf is the atomic number of the
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daughter nucleus and F0(Zf , we) is the Fermi function taking into account the coulombic at-
traction/repulsion of the electron/positron and the daughter nucleus. It is to be noted that for
positron emission the change Zf → −Zf has to be performed in F0(Zf , we) and in Fke−1(Zf , we)
in Eq. (81) below. The factor λke contains the generalized Fermi function Fke−1 [251] as the ratio

λke =
Fke−1(Zf , we)

F0(Zf , we)
. (81)

The integration is performed over the total (by electron rest-mass) scaled energy of the emit-
ted electron/positron, w0 being the endpoint energy, corresponding to the maximum elec-
tron/positron energy in a given transition.

The NME in (77) can be expressed as

MKu =
∑

ab

M (Ku)(ab)(ψf ||[c†ac̃b]K+1||ψi) , (82)

where the factors M (Ku)(ab) are the single-particle matrix elements and the one-body transition
densities are (ψf ||[c†ac̃b]K+1||ψi) with ψi being the initial-state wave function and ψf the final-
state wave function. The operator c†a is a creation operator for a nucleon in an orbital a and the
operator c̃a is the corresponding annihilation operator. The single-particle matrix elements are
given (in the Biedenharn-Rose phase convention) by

MKu(ab) =
√

4π
(
a||rK [YKσ]K+1i

K ||b
)
, (83)

where YK is a spherical harmonic of rank K, σ a vector containing the Pauli matrices as its
components, r the radial coordinate, and a and b stand for the single-particle orbital quantum
numbers. The NME (83) is given explicitly in [56].

3.2.2. Forbidden non-unique β decays

For the Kth forbidden (K = 1, 2, 3, . . .) non-unique β decay the angular-momentum change
is ∆J = K and the parity of the involved nuclear states changes in the same way as for the
forbidden unique β decay (see Sec. 3.2.1). The rules for the change in angular momentum and
parity for different degrees of forbiddenness are summarized in Table 53, and they obey the rule

(−1)∆J∆π = +1 . (Forbidden non-unique decays) (84)

As seen in the table the first-forbidden non-unique decays are an exception, since there also the
angular-momentum change ∆J = 0 is possible owing to appearance of two additional NMEs, as
discussed in Sec. 3.6.4.

The half-life of the forbidden non-unique β decays can be written in the form

t1/2 = κ/C̃ , (85)

3It is worth pointing out that for a given degree K of forbiddenness also lower ∆J values participate but they
are sub-dominant to forbiddenness K − 2 and thus unobservable.
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Table 5: Change in angular momentum and parity for Kth forbidden non-unique β decays.

K 1 2 3 4 5 6 7

∆J 0,1 2 3 4 5 6 7
∆π = πiπf −1 +1 −1 +1 −1 +1 −1

where C̃ is the dimensionless integrated shape function, given by

C̃ =

∫ w0

1

C(we)pewe(w0 − we)2F0(Zf , we)dwe , (86)

with the notation explained in Sec. 3.2.1. The general form of the shape factor of Eq. (86) is a
sum

C(we) =
∑

ke,kν ,K

λke

[
MK(ke, kν)

2 +mK(ke, kν)
2 − 2γke

kewe
MK(ke, kν)mK(ke, kν)

]
, (87)

where the factor λke has been given in (81) and Zf is the charge number of the final nucleus.
The indices ke and kν (k = 1, 2, 3...) are related to the partial-wave expansion of the electron (e)
and neutrino (ν) wave functions, K is the order of forbiddenness of the transition, and γke =√
k2
e − (αZf )2, α ≈ 1/137 being the fine-structure constant. The nuclear-physics information is

hidden in the factors MK(ke, kν) and mK(ke, kν), which are complicated combinations of different
NMEs and leptonic phase-space factors. For more information on the integrated shape function,
see [67, 251].

The shape factor C(we) (87) can be decomposed into vector, axial-vector and mixed vector-
axial-vector parts in the form [252]

C(we) = g2
VCV(we) + g2

ACA(we) + gVgACVA(we) . (88)

The same is true for the shape function of the forbidden unique decays (80) when the so-called
next-to-leading-order terms are added to the leading ones [252, 253]. Integrating equation (88)
over the electron kinetic energy, one obtains an analogous expression for the integrated shape
function (86)

C̃ = g2
VC̃V + g2

AC̃A + gVgAC̃VA, (89)

where the factors C̃i in Eq. (89) are just constants, independent of the electron energy.

3.3. Studies of forbidden unique beta transitions

The first-forbidden unique β transitions are mediated by a rank-2 (i.e. having angular-
momentum content 2) parity-changing spherical tensor operator [a special case of the operator
(83)], schematically written as O(2−). For these decays it is customary to modify the general
structure of Eqs. (77)–(79) by replacing the phase-space factor fK=1,u of (79) by a 12 times larger
phase-space factor f1u, i.e.

f1u = 12fK=1,u , (90)
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yielding a factor log 12 = 1.079 times larger comparative half-lives than in the standard definition
(77).

In the quenching studies it is simplest to study first-forbidden ground-state-to-ground-state
β transitions, see the review [4]. In an early work [55] a systematic schematic analysis of the
first-forbidden unique β decays was performed from the point of view of suppression factors
stemming from the effect of E1 (electric dipole) giant resonance in the final odd-odd nucleus. In
[254] the suppression mechanism of the first-forbidden and third-forbidden β decays of light nuclei
(A ≤ 50) was studied by using simple shell-model estimates and first-order perturbation theory.
The hindrance of the decay transitions was traced to the repulsive T = 1 (isospin 1) particle-
hole force. In the work [106] 19 first-forbidden unique ground-state-to-ground-state β-decay
transitions were studied in the framework of the pnQRPA. In this study a central nucleus was
defined and the computed β−/EC (EC=electron capture) transitions to the left (corresponding
to the left-side NME) and right (corresponding to the right-side NME) were compared with
the available data. The geometric mean of the left-side and right-side NMEs was used in the
analyses, making the analyses more stable. It was found that there is a strong quenching effect
when going from the simple two-quasiparticle NME to the pnQRPA NME (a quenching factor
q ≈ 0.4), and finally from the pnQRPA NME to the experimental NME (a quenching factor
q ≈ 0.45). There the experimental NME was extracted from the data by using the free value
gfree

A = 1.27 of the axial-vector coupling strength.
Early studies of the quenching in the second- and third-forbidden unique β decays were

performed in [254, 255]. The work of [254] was mentioned above, and in [255] these β decays
were studied using a simple interacting shell model and the unified model (deformed shell model)
for six β transitions in the A = 10, 22, 26, 40 nuclei. The interest in these studies derived from
nuclear-structure considerations: how to explain in a nuclear model the hindrance phenomena
occurring in certain measured β transitions. A later study of second-forbidden unique β decays
in the mass range A = 10− 54 was performed in [256] by using the ISM with newer shell-model
interactions. A reasonable description of the experimental half-lives was achieved by using the
bare value of the axial coupling gA (but a quenched value would have improved the comparison).
An interest beyond the single β decays are the double-beta decays: The 0νββ decays proceed
via virtual intermediate states of all multipolarities Jπ due to the multipole expansion of the
Majorana-neutrino propagator (see, e.g., [2, 23] and Sec. 5 for further information). A good part
of these virtual transitions are forbidden unique transitions satisfying the selection rules given in
Eq. (76) and Table 4. It is therefore of paramount importance to study the possible quenching
effects associated with these β transitions.

The quenching related to the virtual β transitions of the 0νββ decay can be studied by using
the theoretical machinery of Sec. 3.2.1. In [257] this machinery was applied to 148 potentially
measurable second-, third-, fourth-, fifth-, sixth- and seventh-forbidden unique beta transitions.
The calculations were done using realistic single-particle model spaces and G-matrix-based mi-
croscopic two-body interactions. The results of [257] could shed light on the magnitudes of
the NMEs corresponding to the high-forbidden unique 0+ ↔ Jπ = 3+, 4−, 5+, 6−, 7+, 8− virtual
transitions taking part in the 0νββ decays. In the work of [257] the expected half-lives of the
studied β-decay transitions were derived by comparison with the analyses performed for the
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Gamow-Teller and first-forbidden unique β transitions in the works [105, 106]. An example of
such predictions is given in Fig. 30. In the figure one sees that the expected half-lives are long
and hard to measure, even though the EC transition of interest exhausts 100% of the total
electron-capture rate. This transition is, however, masked by the strong β− branches to the
excited states of 130Xe. The implications of the studies of [257] for the observability of 0νββ
decays is discussed in Sec. 5.

130
52Te78

0+gs
(6.9± 1.3) × 1020 a

t1/2(β
−β−) =

2.5(6)× 1020 a

t1/2(EC) =

4th forb.

100%
π1d5/2 − ν1d5/2

QEC = 0.451MeV

Qβ− = 2.984MeV

5+gs130
53I77

12.36 h

0+gs130
54Xe76

stable5(1)× 1011 a

t1/2(β
−) =

4th forb.

π1p3/2 − ν1f7/2

Figure 30: Predicted half-lives and their error estimates (in parenthesis) for β− and EC (electron-capture)
transitions in the isobaric chain A = 130. The spin-parity assignment, life-time and decay energies (Q values) of
the ground (gs) state of 130I are experimental data and taken from [258]. The 2νββ half-life is taken from [259].
In addition to the half-lives the degree of forbiddenness and the leading single-particle transition are shown.

3.4. Low-Q-value beta decays for neutrino-mass studies

3.4.1. Low-Q-value beta decays for neutrino mass measurements

The neutrino mass is measured by β-decay experiments, like in the case of the KATRIN
experiment [71] (tritium decay) and the MARE experiment [260] (decay of 187Re). The electron-
neutrino mass is measured via the slight distortion of the electron end-point spectrum. To
detect this distortion, β decays with small Q value are used. The tritium experiment measures
an allowed decay with the Q value of 18.59 keV, while the rhenium experiment measures a first-
forbidden unique transition with the Q value of 2.47 keV. The non-zero mass effect shows up as
small deviation at the end point from the universal β-spectrum shape. (see Sec. 3.2.1).

One potentially interesting case is the β− decay of the 9/2+ ground state of 115In to the
first excited state of 115Sn with spin-parity 3/2+ (see Fig. 31). This decay transition is second-
forbidden unique so that the β-spectrum shape of the decay is universal. What is interesting
about this decay transition is that it has a world-record small Q value of 0.155(24) keV [261]
so that it can be called “ultra-low” (i.e. below 1 keV). Measurement of such a small Q value is
based on the Penning trap techniques [261, 262]. The corresponding decay branch was measured
first at LNGS in Italy to have a partial half-life of (3.73 ±0.98)×1020 years [263] and at the
HADES in Belgium to have a partial half-life of 4.3(5) × 1020 yr [264]. It has been speculated

59



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

115
49In66

9/2+gs 0.000

T1/2(gs) = 4.4× 1014 y

1/2− 0.336
4.5 h

115
50Sn65

1/2+gs 0.000

3/2+ 0.497
11 ps

Q = 0.155(24) keV
T1/2 = 4.1(6)× 1020 y

Figure 31: β− decay of the ground state of 115In to the ground state and first excited state in 115Sn. The numbers
to the right of the energy levels are excitation energies in MeV.

that the decay branch could be used as a neutrino-mass detector [263]. Even more intriguing is
that such an ultra-low Q value seems to enhance the interference of atomic effects in the nuclear
decay, as discussed in [265, 266] and further dwelled on in Sec. 3.4.2.

An other possibility is the β− decay of the 7/2+ ground state of 135Cs to the first (and)
second excited states of 135Ba with spin-parities 1/2+ and 11/2− which are second-forbidden
and first-forbidden unique decays, respectively [267]. There are two half-life and Q-value mea-
surements [268, 269] that are in strong tension with each other. Depending on which one of
the measurements is correct, either the decay to the first or to the second excited state can
produce a transition with an ultra-low Q value [267]. So, accurate Penning trap measurement
of the difference in masses between 135Cs and 135Ba is called for. Another potential low-Q-value
candidate is the decay of 115Cd discussed extensively in Ref. [270]. A list of other potential
low-Q-value candidates is presented in table 6. All the initial states of the first column of the
table are ground states of the respective nuclei. In the table the decay type is either β− or
electron capture (EC).

A particularly interesting case is the allowed Gamow-Teller β− decay of 131I although the half-
life of this candidate is rather short and thus experimentally challenging. There are also allowed
Gamow-Teller (159Dy) and Gamow-Teller/Fermi (161Ho) electron-capture decays but especially
161Ho is too short-lived. The first-forbidden unique β− decay of 155Eu is of high interest because
of the rather long half-life of 155Eu. The rest are short-lived and/or non-unique decays and
depend on several nuclear matrix elements without a universal β-spectrum shape. All in all, it
is desirable to perform high-precision Penning-trap mass measurements to improve the accuracy
of the mass differences of the nuclei listed in Table 6.

3.4.2. Atomic effects in the low-Q-value beta decays

As mentioned in the previous section the low-Q-value β decays enhance the interference of
atomic effects in nuclear decay processes. Evidence of such an interference was first pointed
out in the context of the β−-decay transition 115In(9/2+) → 115Sn(3/2+) with a world-record
small Q value [262] (see Sec. 3.4.1). There are at least four different effects of atomic origin that
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Table 6: Potential candidate transitions with ultra-low Q values. The first column gives the initial ground state
of the listed nucleus and the second column gives the half-life of the nucleus. The third column gives the excited
final state (f.s.) of interest for the low Q-value transition. The fourth column gives the experimental excitation
energy with the experimental error. The fifth column gives the decay type and the last column the derived
experimental decay Q value [258] in units of keV.

initial state T1/2 low-Q f.s. E∗ (keV) decay type Q (keV)

77As(3/2−) 38.8 h 77Se(5/2+) 680.1046(16) 1st non-unique β− 2.8± 1.8
111In(9/2+) 2.805 d 111Cd(3/2+) 864.8(3) 2nd unique EC −2.8± 5.0

111Cd(3/2+) 866.60(6) 2nd unique EC −4.6± 5.0
131I(7/2+) 8.025 d 131Xe(9/2+) 971.22(13) allowed β− −0.4± 0.7
146Pm(3−) 5.53 yr 146Nd(2+) 1470.59(6) 1st non-unique EC 1.4± 4.0

149Gd(7/2−) 9.28 d 149Eu(5/2+) 1312(4) 1st non-unique EC 1± 6
155Eu(5/2+) 4.75 yr 155Gd(9/2−) 251.7056(10) 1st unique β− 1.0± 1.2
159Dy(3/2−) 144 d 159Tb(5/2−) 363.5449(14) allowed EC 2.1± 1.2
161Ho(7/2−) 2.28 h 161Dy(7/2−) 857.502(7) allowed EC 1.4± 2.7

161Dy(3/2−) 858.7919(18) 2nd non-unique EC 0.1± 2.7
188W(0+) 69.78 d 188Re((0, 1, 2)+) 346.580(7) allowed β− (?) 2.4± 3.0

189Ir(3/2−) 13.2 d 189Os(5/2−) 531.54(3) 1st non-unique EC 0.46± 13.00

remain unknown for the decays with Q values this low [265]: the electron screening effect, the
atomic overlap effect, the exchange effect and the effect of final-state interactions. According to
the existing literature they are all known to become significant as the Q value decreases. While
they are completely negligible for typical beta-decay Q values, they can contribute by several per
cent to low-Q-value decays according to the existing theoretical estimates. The present status
of these atomic corrections is as follows:

• Electron screening : Traditionally the Rose prescription [271] has been accurate enough to
estimate the electron screening correction to the beta-decay half-life. For the ultra-low Q
values it breaks down completely. The same holds true for the more accurate, completely
relativistic expression derived by Lopez and Durand [272].

• Atomic overlap: The atomic overlap effect, caused by the fact that the bound electron
states of the initial and final atom are slightly different, is another possible source of
corrections. This effect has been theoretically studied for the allowed decays by Bahcall
[273]. His estimates show that there is a trend of this effect to grow stronger as the Q
value decreases. For the 241Pu decay with a Q value of 21 keV, the estimated hindrance
in the decay is 2%. However, those estimates break down for the Q values as low as a few
hundred keV, and cannot be applied to the case of ultra-low Q values.

• Atomic exchange: The first approximation for the exchange effects was published by Bah-
call in the same study as the atomic overlap effect [273]. That approximation suggests an
additional reduction in the decay rate, 2% in the case of 241Pu. Later theoretical work by
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Harston and Pyper [274] contradicts this result concluding that the exchange effect should
actually enhance the decay rate. In the case of 241Pu their calculation yielded a 7.5%
enhancement of the decay rate. However, estimates derived in both works are inapplicable
in the ultra-low-Q-value regime.

• Final-state interactions : The final-state interactions pose yet another theoretical challenge.
The molecular final-state interactions have only been studied for the beta decay of tritium
[275], where the atomic structure is simple compared to the heavier elements. The role
of final-state interactions for heavier nuclei in a lattice is still deep in the terra incognita:
Whether the chemical bonds of the atoms of a sample introduce a non-negligible correction
to the decay channel with an ultra-low Q value or not remains yet another open question.

The developments of experimental techniques have now reached β decays with Q values
so low that theoretical works on the atomic effects have become outdated. To improve the
situation more studies, both theoretical and experimental, are necessary. Another challenge
in the theoretical search for the true significance of the atomic contributions is the difficulty
of experimental verification: The small corrections they induce to the usual low-Q-value beta
decays are dwarfed by the uncertainties in the nuclear wave functions. Therefore a proper attack
on the open questions may have to wait for the time when proper ab-initio nuclear-structure
theory is available for the low-Q β transitions of interest. Still, this does not prevent from
making theoretical estimates of the atomic effects for ultra-low-Q-value decays. If they proved
to be as dramatic as the case of 115In decay suggests there would be a realistic possibility to
actually verify the existence of these atomic effects experimentally.

3.5. Competition of beta and double beta decays

Let us now discuss two interesting examples where extremely slow first-order weak processes
(β decays) compete with second-order weak processes (double β decays). In Fig. 32 the mother
nucleus 48Ca decays to states in 48Sc via extremely slow β-decay transitions, retarded by the
large differences in angular momentum between the initial state (spin 0) and the final states
(spins 4− 6). This case thus belongs to the category (b) of the classification of ultra-slow decay
transitions introduced at the beginning of Sec. 3.4. In addition to the ultra-slow β transitions
there is an interesting ultra-slow second-order transition, the two-neutrino ββ (2νββ) decay, from
48Ca directly to the ground state of 48Ti. In this case the decay jumps past the nucleus 48Sc and
goes directly to the ground state of 48Ti and thus it falls into the category (c) in the classification
of ultra-slow processes (see beginning of Sec. 3.4). These higher-order transitions form a class of
transitions called generically the nuclear double beta decay, discussed more extensively in Sec. 5.

The half-lives of Fig. 32 have been calculated [276] by using the experimental Q values listed
in the figure by the use of the ISM in a model space consisting of the pf shell. The interaction
GXPF1A [277] was adopted as the two-body interaction. These β decays have previously been
discussed in [278] by the use of older two-body interactions. In the present case the total beta-
decay half-life, T1/2(β−) = 4.2×1020 y, is determined by the fourth-forbidden unique β− transition
to the 5+ state in 48Sc. The other transitions, the fourth-forbidden non-unique transition to the
4+ state and the sixth-forbidden non-unique transition to the 6+ state, do not play a role in the
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Figure 32: Ultra-slow β-decay transitions from the ground state of 48Ca to the lowest three states in 48Sc, and
the subsequent β decays to states in 48Ti. The experimental Q values [258] and computed half-lives for gA = 1.0
[276] are given to the right of the energy levels. Shown are also the experimental β-decay half-life of 48Sc [258]
and the measured half-life [259] of the direct 2νββ-decay transition to the ground state of 48Ti. The numbers to
the right of the 48Ti energy levels are excitation energies in MeV.

total β-decay half-life due to their long partial half-lives. The resulting total half-life depends
now, in the leading order, on only one NME so that it can be written as

tβ1/2 = (4.2g−2
A )× 1020 yr , (91)

It is interesting to note that the computed β−-decay half-life is roughly an order of magnitude
longer than the experimental ββ-decay half-lives ( see refs [62, 259]).

An exactly similar situation as for the 48Ca decay occurs for the β and 2νββ decays of 96Zr
[279] in the decay chain 96Zr→ 96Nb→ 96Mo (see Fig. 5 in Sec. 2.2.1). In a recent paper [60] the
measured Q values were used to compute the following partial half-lives by adopting gA = 1.0:
tβ1/2(0+ → 6+) = 1.6× 1029 yr, tβ1/2(0+ → 5+) = 1.1× 1020 yr and tβ1/2(0+ → 4+) = 7.5× 1022 yr.

As can be seen, the total half-life is dictated by the fourth-forbidden unique β− transition to
the 5+ final state. Again the resulting half-life depends in the leading order on only one NME
so that it can be written as

tβ1/2 = (1.1g−2
A )× 1020 yr , (92)

which is to be compared with the experimental [259] 2νββ-decay half-life

tββ1/2(exp.) = (2.3± 0.2)× 1019 yr . (93)

Again we see that the β-decay half-life is clearly longer than the 2νββ-decay half-life as mentioned
in Sec. 2.2.1.

3.6. Shapes of beta spectra

Beyond the half-life analyses (see Sec. 3.1.2 for the Gamow-Teller transitions and Secs. 3.3
and 3.5 for examples of forbidden transitions) also the β-spectrum shapes can be used to pin
down the effective value of the weak axial-vector coupling strength gA in forbidden non-unique
β decays. In some forbidden non-unique β-decay transitions the shape of the β spectrum is
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sensitive to the variations in the value of gA. This feature can be utilized in determining the
value of gA for forbidden β transitions. This method is coined the spectrum-shape method
(SSM) and was introduced in [252]. Further systematic studies using the SSM were performed
in [253, 280, 281]. The status of the effective values of gA in β and ββ decays is summarized in
[30] and the impact of the effective values of gA on the sensitivities of the presently running and
future ββ-decay experiments has been discussed in [217] (see Sec. 3.1.3). Various applications
of the SSM are discussed below in this section.

3.6.1. Backgrounds in rare-events searches

There is a long list of common background contaminants in dark-matter and rare-events
experiments [282]. Usually the β-spectrum shapes of the corresponding β decays have not
been measured or computed. Many of the ββ and dark-matter direct experiments may have
cosmogenic backgrounds as discussed for Ge-based experiments [283]. Experimental ways to
reduce such backgrounds are discussed in [16]. Also heavy nuclei like 214Bi can be a dangerous
background in 0νββ experiments. Below we give a few examples of the β spectra relevant for
pinning down background contaminations in rare-event experiments.

The nuclei 39Ar and 42Ar are contaminants in experiments based on liqiud argon (LAr). The
applications of LAr-based detectors range from calorimetry in high-energy-physics experiments
at the LHC (Large Hadron Collider at CERN) down to large-scale low-background experiments
for rare-events searches, in particular in quests for dark matter of the Universe (two particular
examples are the running DEAP-3600 [284] and DarkSide-50 [285]). The related experimental
problems and the β-spectrum shapes of 39Ar and 42Ar have been discussed in Ref. [74].

The long-lived potassium isotope 40K is a common pollutant in the environment and in
many materials. In Fig. 33 the normalized electron spectrum (the superficial area is normalized
to unity) for the β− decay of 40K is presented. The dominant decay channel (89.28%) is the third-
forbidden unique β− decay to the ground state of 40Ca [286]. The electron spectra have been
computed by using the interacting shell model (ISM) with the effective interactions sdpfu [287]
and sdpfk [288] in the proton sd model space and neutron sdf7/2 model space, thus permitting
configuration mixing for the doubly magic nucleus 40Ca. The next-to-leading-order corrections
[252] have been included in the calculation. An old measurement of the β-spectrum shape has
been reported in [289]. At this point it should be noted that the β spectrum does not go to
zero at electron kinetic energy zero due to the Coulomb effects affecting the shape factor (87)
through the Fermi function Fke−1(Zf , we) of Eq. (81). This effect can be coined Coulomb shift.

The β− decay of 60Co is a common pollutant in the environment and in Ge-based experiments
[283]. In Fig. 34 the normalized electron spectra for the second-forbidden unique β− decay of
60Co to the first 2+ state in 60Ni is shown for five different values for gA. The β spectra have
been calculated by using the ISM with the Horie-Ogawa interaction [290, 291]. Due to the large
number of valence nucleons in the pf shell the calculations were truncated to the proton-0f7/2-
neutron-1p0f5/2 subspace. Though the dominant decay channel is the allowed decay to the first
4+ state in 60Ni there is a small branching (0.12%) to the first 2+ state in 60Ni [292]. The
decomposition (88) suggests that the spectrum shape could be gA dependent. It can be seen in
the figure, however, that the next-to-leading-order corrections to the β-decay shape factor are
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Macro 8

Figure 33: Normalized β spectrum for the third-forbidden unique ground-state-to-ground-state β− decay of 40K
calculated by using two different shell-model interactions. The value gV = 1.00 was used in the calculations.
Note the Coulomb shift of the β spectrum, see the text.

not strong enough to make the spectrum shape appreciably gA dependent. An old measurement
of the β-spectrum shape has been reported in [293].

The ground state EC of 40 K, which is not known experimentally, might be used as an
explanation for the claimed dark matter [294].

Figure 34: Normalized β spectra for the second-forbidden unique β− decay of 60Co to the first 2+ state in 60Ni.
The value gV = 1.00 was used in the calculations and the color coding represents the different adopted values for
gA. Note the Coulomb shift.

3.6.2. The reactor-antineutrino anomaly

An interesting application of the β-spectrum studies is the reactor antineutrino anomaly
(RAA) [295]. The antineutrino spectra in nuclear reactors result from the long uranium and
plutonium α and β− decay chains and the subsequent fission used as fuel to drive the energy
production in the nuclear power plants. In the RAA the experimentally measured antineutrino
flux is lower than what is expected from the β decays of the nuclear fission fragments deduced
from nuclear data with some approximations [296]. In addition, there is a strange “bump”
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between 4 and 6 MeV in the antineutrino spectrum. The RAA and the spectral bump have
been measured in the experiments Daya Bay [297], RENO [298] and Double Chooz [299]. The
measured flux is some 6(2)% lower making this a rough 3σ deviation [300]. The method of vir-
tual β branches [301, 302, 303] has been used to estimate the cumulative β spectra responsible
for the theoretical antineutrino flux. The involved β decays go partly by forbidden transitions
that cannot be assessed by the present nuclear data, but instead, could be calculated. Elec-
tron spectrum-shape calculations were done for first-forbidden β− decays of 136Te and 140Xe
in Ref. [304], and in general using the formalism introduced in [253, 305]. Corrections to the
leading contributions, like the finite-size, radiative and weak-magnetism corrections have been
introduced [253, 301, 302, 306]. Possible shortcomings of the previously used analysis methods
have been pointed out in [307].

While the actual cumulative β spectra, leading to the RAA and emerging from the decays
of the fission fragments, are numerous, not all of them contribute in equal amounts. Then the
cumulative β spectra can be nicely fit by just a limited number of virtual β spectra emerging
from non-existent fictional β branches [301, 302, 303, 308]. A shortcoming of this procedure is
that all the virtual branches are assumed to be described by allowed β-spectrum shapes. Also
adding information from the nuclear databases is not accurate enough due to deficiencies in this
information. Out of the several thousand β branches taking part in the cumulative β spectra
the majority are allowed decays but the contribution from the first-forbidden decay transitions
is also considerable, in particular in the interesting region of the antineutrino spectrum, between
4 and 6 MeV [309]. On the other hand, forbidden decays become increasingly unlikely with
increasing degree of forbiddenness.

Table 7: Summary of the most important (ground-state-to-ground-state) transitions of the 235U cumulative β
spectrum in the energy range around 4.0 MeV. Indicated are the β-decay Q value, the β-feeding branching ratio
(BR), the multipolarities of the initial and final states and the contribution to the cumulative β spectrum (last
column). The information of the table is taken from [310].

Nucleus Q (MeV) BR(%) Jπgs → Jπgs Contr. (%)

88Rb 5.3 77(1) 2− → 0+ 2.9
90Rb 6.6 33(4) 0− → 0+ 3.4
92Rb 8.1 95.2(7) 0− → 0+ 6.1
95Sr 6.1 56(3) 1/2+ → 1/2− 3.0
96Y 7.1 95.5(5) 0− → 0+ 6.3
100Nb 6.4 50(7) 1+ → 0+ 5.5
135Te 5.9 62(3) (7/2−)→ 7/2+ 3.7
140Cs 6.2 36(2) 1− → 0+ 3.4
142Cs 7.3 56(5) 0− → 0+ 3.5

The most important β branches taking part in the cumulative β spectra of the RAA were
identified in [310] and they are given in Table 7. They also contribute to the observed spectral
bump. The branchings of these decay transitions are between 33% and 96%. Here, as also in the
analysis of [307], allowed β spectrum shapes were assumed also for the forbidden transitions, like
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Figure 35: Normalized β spectrum for the first-forbidden non-unique ground-state-to-ground-state β− decay of
140Cs. The value gV = 1.00 was adopted in the calculations and the color coding represents the different adopted
values for gA. The allowed spectrum shape is plotted for comparison. Note the Coulomb shift.

the first-forbidden decays of Table 7. Thus, it is of paramount importance to compute the shapes
of the β spectra associated with the above-listed key transitions and compare these spectra with
the allowed shape to see the error made in the allowed approximation. The computation of the
proper spectral shapes can be done by using the formalism of sections 3.2.1 and 3.2.2. An example
of the application of the formalism is presented in Fig. 35 where the ISM-computed first-forbidden
non-unique ground-state-to-ground-state β− decay of 140Cs is depicted and compared with the
allowed spectrum shape. The used interaction is jj56pnb [311] in the proton 3s− 2d− 1g7/2 and
neutron 3p− 2f − 1h9/2 single-particle model space. As can be seen there is a notable deviation
from the spectrum shape of an allowed transition with the same Q value. In this case there is
also some dependence of the β spectrum shape on the value of gA, and in other key transitions
this could be the case as well, as suggested by the decomposition (88). The effects stemming
from the uncertainty in the values of gA and the axial charge (see Sec. 3.6.4) have also been
neglected in the analyses of the RAA thus far.

In Fig. 36 two cumulative sum spectra are presented. To obtain these spectra all the β
spectra of the individual transitions of Table 7 have been summed by taking into account their
branchings and their relative contributions (third and last columns of Table 7) to the total
cumulative spectrum. For the “allowed shape” all the individual β spectra were assumed to
be of the (unphysical) allowed shape and for the “forbidden shape” they were taken to be the
ISM-computed shapes corresponding to the true first-forbidden β transitions. For the computed
forbidden shapes the canonical value gV = 1.00 was assumed, and for the axial-vector and axial-
charge strengths the values gA = 0.70 and εMEC = 1.7 (see Sec. 3.6.4) were adopted. The
latter two values are rather realistic average values for nuclei in the mass range A = 88 − 142.
The difference between the two spectra gives an idea about the importance of using the correct
computed spectrum shapes, instead of the usually assumed allowed shapes, in the assessment
of the confidence level of the RAA. From Fig. 36 it is seen that by assuming allowed shapes of
the individual β spectra the average kinetic energy of the emitted electrons is slightly too high
meaning that in the cumulative antineutrino spectrum the average antineutrino energy is a bit
too low. This could have consequences for the confidence level of the RAA.

The RAA has been associated to diappearance of electron antineutrinos in short-baseline
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Figure 36: Normalized cumulative β spectra obtained by summing the individual β spectra associated to all the
first-forbidden transitions of Table 7 by taking into account their branchings and relative contributions listed in
the third and last columns of Table 7. The sum spectrum “allowed shape” corresponds to the assumed allowed
shapes for all the individual β transitions, instead of the correct first-forbidden shapes, as computed by the use of
the ISM and adopted for the sum spectrum “forbidden shape”. The values gV = 1.00, gA = 0.70 and εMEC = 1.7
(see Sec. 3.6.4) were adopted in the calculations. Note the Coulomb shift.

(10−100 m) reactor oscillation experiments. The disappearance can be explained quantitatively,
e.g., by existence of sterile neutrinos. A 3+1 scheme, with one sterile neutrino in eV mass scale,
could explain the anomaly [312]. The same scheme could explain also the gallium anomaly [312],
discussed in Sec. 4.4.4. An alternative explanation has been proposed recently [313, 314]: the
variations in the antineutrino fluxes stemming from the fissions of the nuclides 235U and 239Pu.
The revaluation of these fluxes is proposed. In [309] it was found that both the effect of the RAA
and the spectral “bump” is drastically mitigated by the ISM-calculated spectrum shapes for 29
key first-forbidden transitions and a subsequent Monte Carlo analysis for the rest of the first-
forbidden transitions taking place in the fission products. This offers a possible nuclear-physics
explanation of the RAA and the “bump”.

3.6.3. Beta-spectrum shapes and the value of gA

In [252] it was found that the shapes of β spectra could be used to determine the effective
values of the weak coupling strengths gV and gA by comparing the computed spectrum with
the measured one for forbidden non-unique β decays. This method was coined the spectrum-
shape method (SSM). In this study also the next-to-leading-order corrections to the β-decay
shape factor were included. In [252] the β-electron spectra were studied for the 4th-forbidden
non-unique ground-state-to-ground-state β− decay branches 113Cd(1/2+) → 113In(9/2+) and
115In(9/2+) → 115Sn(1/2+) using the microscopic quasiparticle-phonon model (MQPM, see
Sec. 3.1.1) and the ISM. It was verified by both nuclear models that the β-spectrum shapes
of both transitions are highly sensitive to the values of gV and gA and hence comparison of the
calculated spectrum shape with the measured one opens a way to determine the values of these
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Figure 37: Normalized β spectra for the first-forbidden non-unique ground-state-to-ground-state β− decays of
207Tl [panel (a)], 210Bi [panel (b)] and 214Bi [panel (c)]. The value gV = 1.00 was adopted in the calculations and
the color coding represents the different adopted values for gA (for the cases of panels (a) and (c) all the colored
lines overlap in the adopted scales of the figures). Note also the Coulomb shift.
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coupling strengths 4. In fact, this effect was overlooked in the earlier studies in Refs. [67, 315].
In the study [252] it was furthermore noticed that the β-decay half-lives of the 113Cd and 115In
nuclei could be reproduced with either relatively low or high values of gA, the gA values deduced
from the spectrum shape being somewhere in the middle. This discrepancy may point to defi-
ciencies in the nuclear models in this particular (A,Z) region of nuclei since in other regions, in
particular in the region 60 ≤ A ≤ 140, relevant for the RAA problem of the previous section,
the half-lives of the nuclei could be reproduced by using gA values that span the reasonable
range of 0.6 ≤ gA ≤ 0.9. This was also noticed in the calculations referring to the axial-charge
enhancement in Sec. 3.6.4. Future data on spectrum shapes will help analyze how consistently
the SSM can reproduce the data of both spectrum shapes and the decay half-lives.

As a result of the studues in [252] it was found that for all values of gA the best fits to
spectrum-shape and half-life data were obtained by using the canonical CVC value gV = 1.0
for the vector coupling strength. This finding contradicts to a certain extent the findings [304,
316, 317, 318] for first-forbidden non-unique β decays, where strongly quenched values of gV

can be obtained in the fits to half-life data5. The work of [252] was extended to other nuclei
and nuclear models in [253, 280, 281]. In particular, in [253] the microscopic interacting boson-
fermion model (IBFM-2) (see Sec. 3.1.1) was used to analyze the β-spectrum shapes of the
transitions 113Cd(1/2+) → 113In(9/2+) and 115In(9/2+) → 115Sn(1/2+). In all these studies it
was found that the SSM is robust, not sensitive to the adopted mean field and nuclear model
and its model Hamiltonian used to produce the wave functions of the participant initial and final
nuclear states.

Examples of possible gA dependencies are given in the previously discussed Fig. 35 and in
the three-panel Fig. 37, where the ISM-computed first-forbidden non-unique ground-state-to-
ground-state β− decays of 207Tl [panel (a)], 210Bi [panel (b)] and 214Bi [panel (c)] are depicted.
The wave functions related to the decay of 207Tl were calculated using the interaction khhe [319]
in a valence space spanned by the proton orbitals 0g7/2, 1d, 2s and 0h11/2, and the neutron
orbitals 0h9/2, 1f , 2p and 0i13/2. For the heavier nuclei, 210Bi and 214Bi, the interaction khpe
[319] was adopted. For 210Bi the valence space was spanned by the proton orbitals 0h9/2, 1f , 2p
and 0i15/2, and neutron orbitals 0i11/2, 1g and 2d5/2.

The β-spectrum shapes of 207Tl and 214Bi are only slightly gA dependent, but for 210Bi the
dependence is extremely strong. This makes 210Bi an excellent candidate for the application
of the SSM once new measurement(s), updating the old one [320], of the spectrum shape are
performed. This is so far the only known first-forbidden β transition with a strong gA dependence.
Other thus far known strongly gA-dependent decay transitions are listed in Table 8. Table 8
summarizes the exploratory works of [252, 253, 280, 281] in terms of listing the studied β-decay
transitions which are potentially measurable in rare-events experiments. An extended version

4In fact, the spectrum shape depends on the ratio gV/gA but the decay rate, and thus the half-life, depends
on the absolute values of these weak couplings.

5It is, though, not excluded that different one-body operators in the complex expression (87) are renormalized
with different values of gV and gA. This is a matter of future work and could also solve the problems in
simultaneous matching of the half-life and spectrun-shape data in the case of the β decays of 113Cd and 115In.
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Table 8: Selected forbidden non-unique β−-decay transitions and their sensitivity to the value of gA. Here Ji
(Jf ) is the angular momentum of the initial (final) state, πi (πf ) the parity of the initial (final) state, and K the
degree of forbiddenness. The initial state is always the ground state (gs, column 2) and the final state is either the
ground state (gs) or the nf : th, nf = 1, 2, 3, excited state (column 3) of the daughter nucleus. The branchings to
the indicated final states are practically 100% in all cases. Column 4 indicates the sensitivity to the value of gA,
and the last column lists the nuclear models which have been used (thus far) to compute the β-spectrum shape.
Here also references to the original works are given. The sensitivity “strong” refers to a similar gA sensitivity as
shown in Fig. 37, panel (b).

Transition Jπii (gs) J
πf
f (nf ) K Sensitivity Nucl. model

87Rb→ 87Sr 3/2− 9/2+ (gs) 3 Moderate MQPM [280], ISM [281]
94Nb→ 94Mo 6+ 4+ (2) 2 Strong ISM [281]
98Tc→ 98Ru 6+ 4+ (3) 2 Strong ISM [281]
99Tc→ 99Ru 9/2+ 5/2+ (gs) 2 Strong MQPM [280], ISM [281]

113Cd→ 113In 1/2+ 9/2+ (gs) 4 Strong MQPM [252, 280], ISM [252], IBFM-2 [253]
115In→ 115Sn 9/2+ 1/2+ (gs) 4 Strong MQPM [252, 280], ISM [253], IBFM-2 [253]
138Cs→ 138Ba 3− 3+ (1) 1 Strong ISM [321]
210Bi→ 210Po 1− 0+ (gs) 1 Strong ISM (this work)

of the table, including cases with strong gA dependence but small branchings and vice versa,
is given in [30]. A particularly interesting case is the decay of 138Cs which will be elaborated
further in Sec. 3.6.4. Usually only the non-unique forbidden β-decay transitions can be sensitive
enough to gA to be measured even when the next-to-leading-order terms are included in the
β-decay shape factor [252].

In Table 9 the dimensionless integrated shape functions C̃ (89) have been decomposed into
their vector C̃V, axial-vector C̃A and mixed vector-axial-vector components C̃VA for the β decays
of Table 8. A characteristic of the numbers of Table 9 is that the magnitudes of the vector,
axial-vector, and mixed components are of the same order of magnitude, and the vector and
axial-vector components have the same sign whereas the mixed component has the opposite
sign. This makes the three components largely cancel each other and the resulting magnitude
of the total dimensionless integrated shape function is usually a couple of orders of magnitude
smaller than its components. Thus the integrated shape function becomes sensitive to the value
of gA, as seen in Fig. 37, panel (b), for the decay of 210Bi.

For the β spectrum of the decays of 113Cd and 115In there are calculations available in three
different nuclear-theory frameworks as shown in Tables 8 and 9. As visible in Table 9, an
interesting feature of the components of the integrated shape functions C̃ is that the MQPM
and ISM results are close to each other whereas the numbers produced by IBM-2 are clearly
smaller. In spite of this, the total value of C̃ is roughly the same in all three theory frameworks
leading to similar half-life predictions of the three nuclear models for gV = gA = 1.0.

3.6.4. Axial-charge enhancement

Here we discuss first-forbidden non-unique ∆J = |Ji − Jf | = 0 type of transitions, where
Ji (Jf ) is the initial-state (final-state) spin of the mother (daughter) nucleus. In this particular
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Table 9: Dimensionless integrated shape functions C̃ (89) and their vector C̃V, axial-vector C̃A and mixed
components C̃VA for the β decays of Table 8. Also the nuclear model used to calculate C̃ is given. For the total
integrated shape function C̃ the values of the coupling strengths were set to gV = gA = 1.0. The differences in
the magnitudes of the components for different decay transitions reflect the differences in the (partial) half-lives
associated to the transitions, and in particular the Bi→Po transition is fast.

Transition (Nucl. model) C̃V C̃A C̃VA C̃

87Rb(3/2−)→ 87Sr(9/2+) (MQPM) 1.531× 10−13 2.718× 10−14 −1.264× 10−13 5.39× 10−14

87Rb(3/2−)→ 87Sr(9/2+) (ISM) 1.185× 10−13 2.082× 10−14 −9.734× 10−14 4.20× 10−14

94Nb(6+)→ 94Mo(4+) (ISM) 1.598× 10−8 1.469× 10−8 −3.058× 10−8 1.03× 10−10

98Tc(6+)→ 98Ru(4+) (ISM) 2.723× 10−8 2.544× 10−8 −5.254× 10−8 1.21× 10−10

99Tc(9/2+)→ 99Ru(5/2+) (ISM) 2.240× 10−9 2.130× 10−9 −4.361× 10−9 8.78× 10−12

113Cd(1/2+)→ 113In(9/2+) (MQPM) 1.925× 10−19 2.094× 10−19 −4.002× 10−19 1.38× 10−21

113Cd(1/2+)→ 113In(9/2+) (ISM) 1.678× 10−19 1.825× 10−19 −3.494× 10−19 9.90× 10−22

113Cd(1/2+)→ 113In(9/2+) (IBM-2) 3.228× 10−20 3.007× 10−20 −6.106× 10−20 1.28× 10−21

115In(9/2+)→ 115Sn(1/2+) (MQPM) 6.503× 10−18 6.126× 10−18 −1.256× 10−17 6.49× 10−20

115In(9/2+)→ 115Sn(1/2+) (ISM) 3.146× 10−18 3.851× 10−18 −6.939× 10−18 5.74× 10−20

115In(9/2+)→ 115Sn(1/2+) (IBM-2) 5.531× 10−19 5.444× 10−19 −1.065× 10−18 3.25× 10−20

210Bi(1−)→ 210Po(0+) (ISM) 0.9450 0.6368 −1.549 0.0332

case the shape factor (87) has to be supplemented with a term C(1)(we) [251, 305, 322, 323].
Then the shape factor can be cast in the simple form [251, 316, 322]

C(we) = K0 +K1we +K−1/we +K2w
2
e , (94)

where the factors Kn contain the NMEs (6 different, altogether) of transition operators O of
angular-momentum content (rank of a spherical tensor) O(0−), O(1−), and O(2−), where the
parity indicates that the initial and final nuclear states should have opposite parities according
to Table 5. In the leading order these operators contain the pieces [27]

O(0−) : gA(γ5)
σ · pe
MN

; igA
αZf
2R

(σ · r) , (95)

O(1−) : gV
pe
MN

; gA
αZf
2R

(σ × r) ; igV
αZf
2R

r , (96)

O(2−) :
i√
3
gA [σr]2

√
p2
e + q2

ν , (97)

where pe (qν) is the electron (neutrino) momentum, r the radial coordinate, and the square
brackets in (97) denote angular-momentum coupling. The matrix elements of the operators (95)
and (96) are suppressed relative to the Gamow-Teller matrix elements by the small momentum
pe of the electron and the large nucleon mass MN or the small value of the fine-structure constant
α. The matrix element of (97) is suppressed by the small electron and neutrino momenta. The
axial operator σ ·pe and vector operator r trace back to the time component of the axial current
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Figure 38: Obtained enhancements εMEC of the previous studies and the present study as functions of the mass
number A. The red squares represent the previous systematic studies done in the A ≈ 16 and A ≈ 208 regions
and the separate studies done for 50K and 96Y. The other points represent the results of this study for different
effective values of gA. The linear fit is an error-weighted fit, where the results of the previous studies and the
present study with gA = 0.70 are used.

Aµ in (9) and vector current V µ in (8), and the rest of the operators stem from the space
components of V µ and Aµ.

In the case of the axial-charge NME we are interested in the O(0−) operator σ · pe of (95),
i.e. the operator

gA(γ5)σ · pe , (98)

where gA(γ5) is the corresponding coupling strength which can be written in the form

gA(γ5) = (1 + εMEC)gA , (99)

where the enhancement εMEC stems from the meson-exchange currents (MEC). Here the next-
to-leading-order terms in the Behrens-Bühring expansion [251] are included, and the atomic
screening effects and radiative corrections [253] are taken into account.

The enhancement of the axial-charge NME γ5 due to nuclear medium effects in the form of
meson-exchange currents was first suggested in Refs. [324, 325, 326]. An enhancement of 40–70
% over the impulse-approximation value was predicted based on chiral-symmetry arguments and
soft-pion theorems. This enhancement seems fundamental in nature and insensitive to nuclear-
structure aspects [327, 328]. Systematic shell-model studies of the γ5 matrix elements in the
A ≈ 16, A ≈ 40, and A ≈ 208 regions indicated enhancements of 60–100% [329, 330, 331].
In [332] the exceptionally large enhancement of the γ5 NME in heavy nuclei, witnessed in the
shell-model studies of Warburton [331], was reproduced by introducing an effective Lagrangian
incorporating approximate chiral and scale invariance of the QCD. The γ5 NME is one of the
two rank-zero matrix elements contributing to first-forbidden ∆J = 0, J+ ↔ J−, transitions,
highly relevant, e.g., for the RAA as shown in Table 7 of Sec. 3.6.2. It plays an important role
in the decay rates of many of these transitions and therefore a significant enhancement of this
matrix element can also affect the shapes of the corresponding beta spectra.

The previous systematic studies in the A ≈ 16 [329] and A ≈ 208 [331] regions have yielded
enhancement factors 1.61 ± 0.03 and 2.01 ± 0.05, respectively. In addition, separate studies
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for 50K [329] and 96Y [333] yielded the enhancement factors 1.52 and 1.75 ± 0.30. Calculating
εMEC for different values of gA in the A ≈ 95 and A ≈ 135 regions [321], and comparing with
the previous results allows to access the mesonic enhancement as a function of mass number in
different scenarios. The results are presented in Fig. 38. For 50K the error is assumed to be
0.30 as it is for 96Y. It is interesting that when the free-nucleon value gA = 1.27 is adopted, no
mesonic enhancement is obtained for A ≈ 95 and for A ≈ 135, and no renormalization of the
axial-charge matrix element is needed to reproduce the experimental half-lives. For gA = 0.70
one obtains a clear linear trend for the mass dependence of the mesonic enhancement factor:

εMEC = 1.576 + 2.08× 10−3A (100)

This finding suggests that the effective value gA ≈ 0.7 would be appropriate for the medium-mass
nuclei, at least for the J+ ↔ J− β-decay transitions.

An interesting by-product of the study of [321] is that the β spectrum of the decay of 138Cs
is rather strongly dependent on the value of gA (see Table 8) but not at all on the mesonic
enhancement εMEC. Thus the SSM can be used to determine the effective value of gA in the A ≈
135 region. The study [321] shows that this value of gA is in almost one-to-one correspondence
with a value of εMEC, implying that the measurement of the β spectrum of the decay of 138Cs
not only gives the value of gA but also the value of εMEC for the medium-heavy nuclei. This
could have far-reaching consequences for, e.g., the analyses of the reactor-antineutrino anomaly
discussed in Sec. 3.6.2.

Figure 39: Normalized β spectra for the first-forbidden non-unique ground-state-to-ground-state β− decay of
95Sr. The value gV = 1.00 was adopted in the calculations and the color coding represents the different adopted
values for gA and the enhancement (εMEC) of the axial charge.

Examples of possible gA and gA(γ5) dependencies of β spectra are given in Figs. 39 and 40
where the ISM-computed first-forbidden non-unique ground-state-to-ground-state β− decays of
95Sr and 135Te are depicted. The related ISM calculations were performed in the following valence
spaces: For the decay of 95Sr a model space including the proton orbitals 0f5/2, 1p3/2, 1p1/2 and
0g9/2, and the neutron orbitals 1d5/2, 1d3/2 and 0s1/2 was used together with the interaction
glbepn [333]. The interaction glbepn is a bare G-matrix interaction which also has an adjusted
version glepn, where two-body matrix elements from Gloeckner [334] and Ji and Wildenthal
[335] have been adopted. The decay of 135Te was calculated using a model space spanned by the
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Figure 40: Normalized β spectra for the first-forbidden non-unique ground-state-to-ground-state β− decay of
135Te. The value gV = 1.00 was adopted in the calculations and the color coding represents the different adopted
values for gA and the enhancement (εMEC) of the axial charge.

proton orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0h11/2, and the neutron orbitals 0h9/2, 1f7/2, 1f5/2,
2p3/2, 2p1/2 and 0i13/2 with the effective interactions jj56pnb [336].

It is seen that neither the effective value of gA nor the enhancement (99) of gA(γ5) affect
the spectrum shape in an easily measurable way. Hence, in these cases the comparison with the
experimental half-lives is the only way to pin down the amount of enhancement (99), and its
possible mass dependence. Only a further exploratory work could tell if there are nuclear tran-
sitions where the β spectra are sensitive to the value of gA(γ5). It should also be borne in mind
that the spectrum shapes of J+ ↔ J− transitions play an important role in the investigations
of the validity of the RAA (see Table 7 in Sec. 3.6.2).

3.7. Axial-vector weak responses in low- and high-excitation regions

Neutrino-nuclear τ− responses in a wide excitation region have been extensively studied by
using high energy-resolution CERs at RCNP (Research Center for Nuclear Physics at Osaka
University, Japan [57]), as discussed in Sec. 2.3. The (3He,t) CERs at 0.42 GeV preferentially
excite the axial-vector isospin-spin (τ−σ) states as studied in DBD nuclei [96, 97, 98, 99, 100, 101].
In this section, we briefly discuss general features of axial-vector GT (0+) and IVSD (isovector
spin-dipole 2−) strengths (responses) in low- and high-excitation regions on the basis of the
observed CER data.

The energy spectra of the 100Mo(3He,t)100Tc reactions at the angles from θi = 0 degrees to
θi = 3 degrees are shown in Fig. 41. The spectra clearly show that (i): the Fermi (τ−) strength
is concentrated in the sharp IAS (the Fermi GR) at the high excitation region, leaving no Fermi
strength in other regions, (ii): the GT (τσ) and IVSD (τσrY1) strengths are mostly concentrated,
respectively, in the broad GTR and IVSDR at the higher-excitation region and (iii): the small
GT and SD strengths are located at the low-excitation region, as discussed in subsections 1.4
and 2.3.

The Fermi GR (IAS), GTR and IVSDR are expressed as coherent (in-phase) τ−, τ−σ and
τ−σf(r)Y1 excitations of all relevant neutron-hole–proton-particle states. The excitation energies
are pushed up to the high excitation region due to the repulsive τ and τσ interactions. The
GR energies are derived from the observed peak energies of the resonances, being corrected for
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Figure 41: Top: Energy spectrum of the (3He,t) reaction on 100Mo [98]. The spectra at the angle bins of θi with
i=1,2,3,4,5,6 are overlaid to illustrate the angular distributions. Bottom left: Fermi (IAS), GTR and IVSDR
energies in units of MeV for DBD nuclei as functions of 2Tz = N −Z. To avoid the overlap, the 100Mo and 96Zr
data at N − Z = 16 are plotted at N − Z = 15.8 and 16.2, respectively. Bottom right: Ratios of the summed
GT strengths BL(GT) and BA(GT) to the sum-rule limit of BS(GT) = 3(N −Z) as functions of 2Tz = N −Z.
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the contributions from the quasi-free (QF) charge-exchange scatterings in the higher-excitation
region. They are shown as functions of 2Tz = N −Z, with Tz being the isospin z-component, in
Fig. 41. The IAS, GTR and IVSDR energies for DBD nuclei of current interest are expressed
approximately as

E(IAS) ≈ 5 + 0.6Tz , E(GT) ≈ 9 + 0.4Tz , E(SD) ≈ 16.5 + 0.4Tz , (101)

where the energies are all in units of MeV.
The simple expressions of Eq. (101) reproduce the observed energies obtained in the recent

CERs at RCNP and in other experiments [337, 338, 339] within 1 MeV, and are consistent
with other empirical expressions [56, 340] within around 1 MeV. Note that the IVSDR energy
increases with the same slope as the GTR energy with increasing Tz, and the IVSDR is higher
in energy than the GTR by ~ω ≈ 7.5 MeV, reflecting the effect caused by the radial operator r
involved in the IVSD excitation. The energies of the IAS increase faster with increasing Tz than
those of the GTR and IVSDR. The measured GTR and IVSDR energies are used to lend help
to pnQRPA calculations for 0νββ NMEs, as recently discussed in [341].

Next we discuss the summed GT strengths, BL(GT) for the low-lying GT states, and
BA(GT) for all GT states including the GTR. Here the GTR strength is obtained by assum-
ing a Lorentzian shape of the GR and a quasi-free-scattering shape at the higher excitation
region beyond E ≈ 20 MeV. The GTR tail at E = 3 − 4 MeV in 76Ge is corrected for. Fig. 41
shows the ratios of the summed strengths of BL(GT) and BA(GT) to the sum-rule limit of
BS(GT) = 3(N − Z) as functions of 2Tz = N − Z. Here the limit is practically exhausted by
the τ− strengths since in the presently discussed medium-hevy and heavy nuclei the τ+ p→n
contributions are blocked by the (large) excess of neutrons.

The summed strength BL(GT) for the low-lying states is only 3− 10% of the sum-rule limit
since the strength is mostly pushed up into the GTR. The reduction is partly due to the repulsive
στ correlations [4, 105, 106]. The summed strength BA(GT) for all GT states, including the
GTR strength, is around 50 − 55% of the sum-rule limit, indicating a reduction of the GT
strengths, as seen in other CERs [337, 338, 342].

Actually, the large CER cross section at forward angles in the higher excitation region of
E = 20− 50 MeV is a kind of quasi-free charge-exchange scattering to the unbound continuum
region. The quasi-free contribution includes several (∆n) ~ω excitations associated with angular-
momentum transfers of ∆l = 0− 6~ and radial-node changes of ∆n = 2− 6, which are not GT
strengths with ∆n = ∆l = 0. On the other hand, the pn CER experiments claim that the
large ∆l = 0 cross sections at the 30 − 50 MeV region are assigned mainly to the GT strength
(∆n = 0) to be consistent with the sum-rule limit [343, 344]. The GT strength in the continuum
region above GTR is discussed in [345]. In fact, extraction of the absolute GT strength in the
high-excitation region, if it exists, is a challenge. Theoretically, the interfering contributions
from the isovector spin-monopole excitations to the GTR have been discussed in [346, 347]. The
isovector spin-multipole GRs have been discused in [218] for several nuclei involved in ββ decays.

We note that the experimental single β GT and SD NMEs in the medium-mass and heavy-
mass region are shown to be reduced with respect to the quasiparticle and pnQRPA NMEs by
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Figure 42: Geometrical-mean NMEs Mm for GT and SD β± transitions. Panel A: Single β± decay schemes for
even-even and odd-odd nuclei. Panel B: Average coefficients k̄ = M̄m

exp/Mqp for the five discussed mass regions.

M̄m
exp is the average experimental GT NME, and Mqp is the quasiparticle GT NME. Panel C: Geometrical-mean

SD NMEs for 0 ↔ 2− decays. M(SD2), Mm
qp(SD2), and Mm

QR are the experimental, quasiparticle and pnORPA
NMEs, respectively. Panel D: The ratio km of the observed to quasiparticle SD NMEs and the ratio km

NM of the
observed to pnQRPA SD NMEs [105, 106].

the reduction coefficients of k ≈ 0.4 and kNM ≈ 0.5 (nuclear-medium effect), as shown in Fig. 42
[105, 106].

The reduction of the GT strengths suggests some nuclear-medium and non-nucleonic (meson,
isobar) effects [28, 220]. The isobar effect is discussed for the first forbidden β transitions in
[348]. The reduction (quenching) of the summed GT strength is intriguing in view of the reduced
effective gA suggested for low-lying GT states, as discussed in Sec. 3.1.2, and low-lying SD states
as discussed in Sec. 3.3. Also the two-neutrino and neutrinoless DBD NMEs can be affected by
this quenching, as discussed in Secs. 1.4 and 3.1.3, and recently in [217].

4. (Anti)neutrino-nuclear responses for astro-neutrino physics

The (anti)neutrino is a neutral particle introduced by Pauli in 1930 to restore the energy
conservation in beta decay and given the name ”neutrino” by Fermi in 1932. Since that time,
the (anti)neutrino and its properties have attracted a great interest in theoretical and experi-
mental studies of particle, nuclear and astro-neutrino physics. Neutrino-oscillation experiments
have provided evidence on the non-zero neutrino mass in the form of neutrino-mass differences.
However, the absolute value of the neutrino mass is still an open question [21, 23]. Further
questions, such as the nature of neutrino, i.e. it being either a Dirac or a Majorana particle, and
the mass hierarchy still remain to be studied in future.
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4.1. (Anti)neutrino-nucleus scattering cross sections

In this section a brief summary of the main points of the formalism of the neutral-current (NC)
and charged-current (CC) (anti)neutrino-nucleus scattering is given. Measured cross sections of
neutrino-nucleus scattering at energies relevant for supernova neutrinos (. 80 MeV) are available
only for the deuteron [349], 12C [350, 351] and 56Fe [351]. Theoretical predictions of astrophysical
neutrino-nuclear responses for relevant nuclear targets are therefore indispensable [352, 353].
The general framework for the treatment of semileptonic processes in nuclei, first introduced
in Ref. [354, 355, 356, 357] and summarized in [358], is followed. Further closed analytical
expressions in the harmonic-oscillator basis was derived in [359]. Computations performed with
this formalism (see e.g. [360]) show satisfying agreement between theory and experiment both
for charged-current neutrino-nucleus scattering and for electron scattering for energies of the
incoming particle of E . 80 MeV, appropriate for the majority of astro-neutrinos. However, it
should be noted that for the treatment of neutrinos with energies of the order of several hundreds
of MeV or larger, which are of interest e.g. for neutrino-oscillation experiments [361], extensions
of the theory are required. Such extensions are the inclusion of competing mechanisms (e.g. pion
production) and many-body correlations beyond the impulse approximation [361]. We refer to
[362, 363] for a more comprehensive treatment of the scattering problem.

4.1.1. General features of the NC and CC neutrino-nucleus scattering

lepton current jleptµ

ν ′

k′
µ

ν
kµ (A,Z)

pµ

(A,Z)∗
p′µ

qµ

Z0

hadron current Jµ

Figure 43: Schematic presentation of a neutral-current neutrino-nucleus scattering off a nucleus (A,Z) mediated
by the neutral weak boson Z0. The transferred four-momentum is qµ = k′µ − kµ = pµ − p′µ.

In a NC reaction an (anti)neutrino is scattered from a nucleus (A,Z) leading to the ground
state (elastic scattering) or an excited state of the same nucleus (A,Z) and the scattered
(anti)neutrino:

νl + (A,Z)→ (A,Z)∗ + ν ′l , (102)

ν̄l + (A,Z)→ (A,Z)∗ + ν̄ ′l , (103)

where l stands for either an electron (e), muon (µ) or tau (τ) flavour, A is the nuclear mass
number and Z the atomic number. Here the asterisk (∗) stands for either the ground or excited
state of the final nucleus. These reactions proceed via the exchange of a neutral Z0 boson as
depicted in the schematic diagram of Fig. 43. For an extensive discussion of the NC-current
formalism see [358, 364]. In the case of, e.g., lead isotopes we then have the reactions

νl + APb→ APb∗ + ν ′l , (104)

ν̄l + APb→ APb∗ + ν̄ ′l . (105)
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qµ
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hadron current Jµ

Figure 44: Schematic presentation of a charged-current neutrino-nucleus scattering off a nucleus (A,Z) mediated
by the positively-charged weak boson W+. The transferred four-momentum is qµ = k′µ − kµ = pµ − p′µ.
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Figure 45: Schematic presentation of the neutral-current and charged-current neutrino and antineutrino scatter-
ings off lead targets.
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In a CC reaction a neutrino [antineutrino] is scattered from a nucleus (A,Z) leading to a
final nucleus (A,Z + 1) [(A,Z − 1)] and an emitted lepton [antilepton]:

νl + (A,Z)→ (A,Z + 1) + l− , (106)

ν̄l + (A,Z)→ (A,Z − 1) + l+ . (107)

These reactions proceed via the exchange of a charged W+ or W− boson as depicted in the
schematic diagram of Fig. 44. In the case of the supernova neutrinos only the creation of an
electron or a positron in the final state is possible due to the moderate energy (Eν . 70 MeV)
of the incoming (anti)neutrino. A more complete treatice on the CC neutrino-nucleus scattering
is given, e.g., in [362]. In the case of lead isotopes we then have the transitions

νe + APb→ ABi + e− , (108)

ν̄e + APb→ ATl + e+ . (109)

Both the NC and CC reactions for the lead targets are depicted in Fig. 45. If the residual nucleus
in (106)–(109) is excited, it decays by emitting γ rays or particles, depending on whether the
excitation energy is below or above the particle binding energy. Then the neutrino energy
is obtained by measuring the CC electron energy and/or the emitted γ rays and the emitted
particles.

4.1.2. NC and CC scattering cross sections

Here the energy of the impinging neutrino is assumed to be low, Eν . 100 MeV, and thus
the transferred four-momentum is small compared to the mass of the exchanged weak boson,
i.e. Q2 = −qµqµ � M2

Z0,W±
. In this case the corresponding matrix element of the effective

Hamiltonian can be written in the form [362, 364]

〈f |Heff |i〉 =
G√

2

∫
d3rlµe−iq·r〈f |JµH(r)|i〉 , (110)

where JµH(r) denotes the hadronic current in Eq. (7) of Sec. 1.2 and lµ is the leptonic matrix
element

lµ = eiq·r〈`|jL,µ(r)|ν〉 . (111)

Here jL,µ is the leptonic current (3) for NC scattering and (4) for CC scattering, defined in
Sec. 1.2. For the NC and CC processes the coupling constant G is given in Eq. (5).

The final (f) and initial (i) states are assumed to have a well-defined angular momentum J
and parity π. Then, the double differential cross section for (anti)neutrino scattering from an
initial state Jπii to a final state J

πf
f is given by

[ d2σi→f

dΩdEexc

]
ν/ν̄

=
G2|k′|Ek′

π(2Ji + 1)
Fν/ν̄

(∑

J>0

σJCL +
∑

J>1

σJT

)
, (112)

where Eexc = Ek − Ek′ is the excitation energy with respect to the ground state of the target
nucleus, k (k′) is the three-momentum of the incoming neutrino (outgoing neutrino (NC)/lepton
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(CC)) and Ek (Ek′) is the corresponding energy. For the NC and CC scatterings we have the
definitions

Fν/ν̄ = 1 (NC scattering) ; Fν/ν̄ = F (±Zf , Ek′) (CC scattering) , (113)

where F (±Zf , Ek′) is the Fermi function, which accounts for the distortion of the final-state
electron (+Zf ) or positron (−Zf ) wave function by the Coulomb field of the final nucleus of
atomic number Zf . Here σJCL is the Coulomb-longitudinal component and σJT is the transverse
component defined as

σJCL =(1 + a cos θ)|(Jf‖MJ(q)‖Ji)|2
+ (1 + a cos θ − 2b sin2 θ)|(Jf‖LJ(q)‖Ji)|2

+
Ek − Ek′

q
(1 + a cos θ + c)

× 2Re[(Jf‖LJ(q)‖Ji)(Jf‖MJ(q)‖Ji)∗], (114)

and

σJT =(1− a cos θ + b sin2 θ)

×
[
|(Jf‖T mag

J (q)‖Ji)|2 + |(Jf‖T el
J (q)‖Ji)|2

]

∓ (Ek + Ek′)

q

(
1− a cos θ − c)

× 2Re[(Jf‖T mag
J (q)‖Ji)(Jf‖T el

J (q)‖Ji)∗
]
.

(115)

In the above expressions the minus sign refer to neutrino and the plus sign to antineutrino.
In addition, we have introduced the notation

a =

√
1−

m2
f

E2
k′
, (116)

b =
a2EkEk′

q2
, (117)

c =
m2
f

qEk′
, (118)

where the magnitude of the three-momentum transfer q is given by

q = |q| =
√

(Ek − aEk′)2 + 2aEkEk′(1− cos θ). (119)

The definition of the operators TJM = MJM ,LJM , T el
JM , T mag

JM is given in [363]. In general,
these operators contain both vector and axial-vector pieces, i.e. TJM = TV

JM−TA
JM . They depend

on the nuclear form factors FV
1,2(Q2) (Vector), FA(Q2) (axial-vector), and FP(Q2) (pseudo-

scalar), which depend on the four-momentum transfer Q2 = −qµqµ [362]. These form factors
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have been given for the NC processes in [364] and for the CC processes in [362]. For small
momentum transfers the cross sections are typically dominated by Gamow-Teller-like transitions
mediated by the operator FA(q)j0(qr)σ and Fermi-like ones which proceed via the operator
FV(q)j0(qr)1. Additionally, for supernova neutrinos, the spin-dipole-like transitions of the form
FA(q)j1(qr)[Y 1σ]0−,1−,2− have turned out to be important.

The special case of coherent elastic neutrino-nucleus scattering is discussed later, in Sec. 4.5.1.

4.2. Solar-neutrino-nuclear responses

4.2.1. Solar-neutrino nuclear matrix elements and detection

Solar neutrinos provide unique opportunities to study physics of the sun and the neutrino
oscillations, as discussed in detail in recent review articles [6, 7] and references therein. The
solar neutrinos are composed of the low-energy high-intensity pp neutrinos with E ≤ 0.42 MeV,
the medium-energy 7Be, CNO and pep neutrinos with E ≈ 1 MeV, and the higher-energy 8B
neutrinos with E ≈ 3 − 13 MeV, see Fig. 46 for the energy-differential flux of solar neutrinos.
The standard solar model (SSM) fluxes are given in [9] and measured fluxes are summarized in
the reviews [6, 7, 10].
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Figure 46: Energy-differential flux for each different type of solar neutrino, as labeled in the figure. Also shown
are the fluxes of the monoenergetic 7Be neutrinos at 384.3 keV and 861.3 keV, and pep neutrinos at 1.4 MeV.
The fluxes are based on the solar model BS05(OP) [365] and the energy spectra are taken from [366].

The solar neutrinos have been studied by measuring NC and CC weak interactions with
atomic electrons and atomic nuclei. Here the NC and CC responses for atomic electrons and the
deuteron are well known, and thus are used to study medium- and high-energy solar neutrinos.
Studies of the solar neutrinos by measuring the NC and CC weak interactions with the atomic
nuclei require accurate values for the neutrino-nuclear responses [4]. We discuss in this section
the CC nuclear-responses for the solar neutrinos.

The CC interaction is expressed in this case as the inverse β decay

νe + A
ZX = e− + A

Z+1X , (120)

where A and Z are the mass and atomic numbers of the initial nucleus. The weak interactions
excite mainly the Fermi (F) 0+ and GT 1+ states, depending on the neutrino energy. The energy
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of the 8B neutrinos extends to around Eν ≈ 13 MeV, and thus can excite the isobaric analog
state (IAS) [i.e. the Fermi giant resonance] and the Gamow-Teller giant resonance (GTR). They
are mostly particle-unbound and thus decay by emitting protons and neutrons. The low- and
medium-energy solar neutrinos excite mostly bound GT states in the low excitation region.

The CC cross section σk(Eν) for the kth excited state is expressed by using the Fermi and
GT responses Bk(F) and Bk(GT) as

σk(Eν) =
G

π
peEeF (Zf , Ee)

[
B(F)k +

(
gA

gV

)2

B(GT)k
]
, (121)

where Ee and pe are the total energy and the momentum of the emitted electron, Zf is the
atomic number of the final nucleus, G is the effective coupling strength (5) for the CC processes,
gA/gV = 1.27 is the axial-vector to the vector coupling ratio for a free neutron and F (Zf , Ee) is
the Fermi function [see Eq. (113)]. The interaction rate is given by a sum over the rates of the
accessible Gamow-Teller and Fermi states in the final nucleus as

R(ν) =
∑

k

∫
σk(Eν)φν(Eν)dEν , (122)

where φν(Eν) is the neutrino flux as a function of the neutrino energy Eν .
The Fermi responses are concentrated mostly in the IAS, and the strength is given by

B(F) =
∑

k

B(F)k = N − Z . (123)

The low- and medium-energy solar neutrinos are mostly captured into the low-lying GT states.
The GT strength for the ground state is obtained from the ft value for the β+/EC decay of
A

Z+1X→A
ZX, if available experimentally. Actually, GT states with known ft values are limited to

the ground and isomeric states. Then charge-exchange reaction (CER) rates are used to evaluate
the GT responses for excited states. The solar-neutrino responses have been studied by using
β+/EC decay rates and CER rates for various medium-heavy and heavy nuclei as described in
the review [4] and references therein.

The CC interactions on 37Cl and 71Ga nuclei have been used for off-line measurements of
the low- and medium-energy solar neutrinos [4, 6]. The first observation of the solar neutrinos
is the Homestake experiment with 37Cl [49]. The 37Cl isotope with the threshold energy of
Ethr = 0.814 MeV is sensitive mainly to the 8B and 7Be neutrinos and partly to pep and CNO
neutrinos. There are many GT states below the neutron threshold energy. The response for
the ground state is known from the β-decay ft value, while those for the excited GT states are
measured by the (p,n) CERs with a modest energy resolution [367]. The high energy-resolution
measurements at RCNP are perfect to study the responses for the individual states in 37Ar.

The CC interaction on 71Ga with Ethr = 0.236 MeV has been used to study the pp neutrinos
and others because of the low threshold energy. A ground-state response of B(GT) = 0.085 has
been evaluated from the β-decay rate. The GT responses for the excited states were studied
by CERs on 71Ga [94, 368, 369]. The energy spectrum and the angular distributions for the
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Figure 47: Top: Energy spectrum of the (3He,t) CER on 71Ga. Bottom: Angular distributions of the (3He,t)
CERs populating the ground (Jπ = 1/2− ), the 175 keV (Jπ = 5/2− ) and the 500 keV (Jπ = 3/2− ) states.
Solid lines show the distributions for the GT (red line) and others with the projectile, target and relative angular
momentum transfers of [Jpro, Jtar, Jrel] [369].
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lowest-lying 3 states are shown in Fig. 47. The neutrino GT responses, B(GT), with orbital
angular momentum L = 0, for the excited states were derived from the DWBA analyses of the
CER angular distributions. Here the non-GT L = 2 components were corrected for [369]. The
CERs for the ground (1/2−) and 500 keV (3/2−) states are mainly GT excitations with L = 0,
but the CER for the 175 keV 5/2− state includes a large fraction of non-GT excitation due to the
tensor and L = 2 excitations. The solar-neutrino flux is estimated by measuring the EC rate of
the product nuclei of 71Ge. The neutron-unbound states near the binding energy contribute to
the ν capture rate via γ rays to the ground state. The unbound state contribution is obtained to
be around 0.34 SNU by measuring the (3He,t) CER in coincidence with the decaying γ rays [94].
Recently, the 71Ga responses for the low-lying states in 71Ge have been under vivid discussion
due to the possible support of the existence of sterile neutrino(s). This matter will be elaborated
further in Sec. 4.4.4. The experimental set-up is shown in Fig. 48. This CER γ-coincidence
system is used to study the spin and parity of states associated with CERs.

Figure 48: RCNP spectrometer Grand Raiden and the γ-detector array. D1 and D2: dipole magnets. Q1 and
Q2: quadrupole magnets. SX: sextupole magnet. SDR: dipole magnet for spin rotation. MP: multipole field
magnet. NaI detector array is for γ detection in coincidence with CER particles [94].

Real-time (on-line) measurements of the solar neutrinos are of great interest for studying
the nuclear reactions in the sun. In particular, high-precision measurements of the real-time
pp neutrinos, the main component of the solar neutrinos, are of interest in the studies of solar
activities (see ref. [370]). The real-time measurements of the CC nuclear interactions require
coincidence measurement of the (νe, e) signal with β−γ rays associated with the solar ν capture
to reduce various kinds of backgrounds. The 115In(νe, e)

115Sn reaction to the 612.8 keV 7/2+ state
in delayed coincidence with the successive γ rays is one possible way [371]. The 176Yb(νe, e)

176Lu
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reactions to the 338 keV 1+ and 195 keV 1+ states are also of potential interest for studying the
7Be and pp neutrinos in coincidence with the 144.4 keV γ ray and in delayed coincidence with
the 50 ns 72 keV γ ray [372]. The neutrino responses of B(GT) = 0.11 and 0.20 for the upper
and lower GT states are measured by the CER (3He,t) experiment [373].

The CNO neutrinos, which are interesting for studies of the composition of the sun, have
not yet been identified experimentally. The current limit by the Borexino experiment is around
7.9 108/cm2/s, while the low- and high-metallicity models predict 3.8 × 108/cm2/s and 5.3 ×
108/cm2/s [6, 7, 10, 374]. The standard solar model (SSM) predicts around 10 SNUs (solar
neutrino unit) for the CNO-neutrino capture rate in 71Ga. The solar-neutrino capture rate
derived from the CER and the SSM neutrino fluxes [9] is 132 SNU, including around 11 SNU
CNO flux [9], while recent RCNP CER data, with the improved energy resolution, reports 122
SNU without the CNO flux [375]. The CNO-flux study requires accurate measurements of the
solar neutrinos. A 100-ton-scale Te detector with 32% abundance of the 128Te isotope may be
one option of the real-time CNO-flux experiments in coincidence with the decaying γ rays.

4.2.2. Solar-neutrino responses for DBD nuclei

Double beta decay (DBD) nuclei with low threshold energy for CC interactions are of poten-
tial interest for the low- and medium-energy solar-neutrino experiments [16]. The solar-neutrino
signal rate is of the same order of magnitude as the neutrinoless DBD rate in case of the inverted-
hierarchy (IH) ν-mass spectrum and the solar-signal energy is in a similar MeV energy region as
the DBD one. Thus, low-threshold DBD detectors may be used for solar-neutrino experiments if
the solar-neutrino responses for the DBD nuclei are large, as discussed in [4, 159, 376, 377]. Then,
one may need to take into account the possible contributions of the solar-neutrino interactions
to backgrounds in DBD experiments [378, 379].

The weak transitions to be considered in the case of 100Mo are the neutrinoless (0νβ−β−)
and two-neutrino (2νβ−β−) DBDs with 2 electrons and γ(s), the single β decay (SBD) with an
electron and γ(s), and the νe-CC interaction with an electron and γ(s). Here the γ(s) appear in
the case of transitions to excited states. The Q values are given by Qββ, Qβ, and Qν , for DBD,
SBD and the CC reaction, respectively. The threshold energy for the solar-ν CC interaction is
Ethr = −Qν . The decay and interaction scheme is shown in Fig. 49.

One crucial point for the solar-neutrino study with DBD nuclei is to eliminate the 2νβ−β−

backgrounds by means of the SSTC (signal selection by time correlation) and SSSC (signal
selection by spacial correlation) [16]. The 2νββ rate is 6−8 orders of magnitude larger than the
solar-neutrino CC rate.

The CC reaction 100Mo(νe, e)
100Tc with Qν = −168 keV is for the first time shown to be

usable for real-time pp and 7Be neutrino experiments [4], as shown in Fig. 49. The neutrino
response for the ground state is as large as B(GT) = 0.36, and the pp, 7Be and total solar-ν
capture rates are 639 SNU, 206 SNU and 965 SNU, respectively, without taking into account
the neutrino oscillations. The SSTC measurement of the CC electron in delayed coincidence
with the β rays from the short-lived 100Tc with the half-life of 16 seconds reduces the 2νββ and
other background signals. An SSSC vertex resolution of the order of mm reduces the accidental
coincidence of the 2 β rays. The nucleus 116Cd has similar DBD, SB and solar-neutrino level
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Table 10: Solar-ν CC, SB and DBD rates. Q: Q values in units of MeV. Spp and Stot: pp and total solar-ν rates
in units of SNU. BSB: Background rate per ton-year for the single β decays. B2ν : Background rate per ton-year
for 2νββ decay. An energy resolution of δ = 0.02 is assumed. The solar-ν background rate BSB is proportional
to δ. [379]

Isotope Qββ (MeV) Qν (MeV) Qβ (MeV) Spp Stot BSB B2ν

76Ge 2.039 -1.010 2.926 0 6.3 0.03 0.005
82Se 2.992 -0.172 3.093 257 368 4.42 0.15
100Mo 3.034 -0.168 3.202 391 539 0.11 1.56
130Te 2.528 -0.463 2.949 0 33.7 0.48 0.01
136Xe 2.468 -0.671 2.548 0 68.8 0.55 0.003
150Nd 3.368 -0.197 3.454 352 524 0.12 1.00

schemes as 100Mo, and thus it can also be used for solar-neutrino experiments [376].

Bi(GT) 
E

100Tc

100Ru

100Mo





e-

e

Solar 

100Mo+e→100Tc+ e

100Tc→100Ru+ e-

pp 
7Be

CNO 

8B

e-





1+ sec 0+

0+100Mo→100Ru+ e-+e-

Figure 49: Energy and transition scheme for the solar-neutrino CC reaction and the DBD of 100Mo with Ethr =
0.168 MeV. Also the single β decay from the ground state of the intermediate nucleus 100Tc is shown. See text
[159].

Let us discuss contributions of the solar neutrinos to the background in the region of interest
(ROI) for the 0νββ decay. The background was estimated for all DBD isotopes [380]. The CC
interactions were studied by using the CER data on 76Ge, 82Se, 100Mo, 130Te, 136Xe and 150Nd
[378, 379]. These isotopes are of current interest for high-sensitivity DBD experiments. The
actual solar-ν CC rates are evaluated by using the neutrino GT responses B(GT) measured in
recent RCNP CERs as shown in Table 10 [378, 379].

The DBD nuclei can be classified into two groups: Group A: 82Se, 100Mo and 150Nd, and group
B: 76Ge, 130Te and 136Xe. The group-A nuclei have low-lying GT states with a low threshold
energy of −Qν . They are strongly excited by the pp neutrinos and their capture rates are as
large as 300− 500 SNU. The group-B nuclei have a large negative Qν value. Then the pp-νs are
not captured and the total solar-ν capture rates are around 10 − 70 SNU. The solar-neutrino
CC interaction with a DBD nucleus is followed by electron emission (e) and γ/β decays if the
residual state is a bound excited state, and particle (p,n) decays if it is unbound [378].
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We first consider DBD detectors where the sum energy for the e β/γ rays is measured. The
SB events in the ROI are the major backgrounds. The SB background rates (counts per ton-
year) in case of the energy resolution of ∆E/E = δ = 0.02 are shown in the 7th column of
Table 10. The rates for 100Mo and 150Nd are as small as 0.01/ton-year even though the solar-ν
capture rates are high. This is because the DBD ROI is very close to the end-point energy of
Qβ. The 2νββ tail (counts per ton-year) also contributes to background in the ROI, as shown
in the 8th column of Table 10.

The DBD signal rate in a typical case of the IH neutrino mass of mν ≈ 20 meV and of the
nuclear matrix element (NME) M0ν = 2 is around 0.1/ton-year for 76Ge and 1/ton-year for
others. Then good-energy-resolution detectors with δ ≈ 0.01 − 0.02 are required to avoid the
solar-ν and/or 2νββ backgrounds. There are various ways to reduce the solar-ν backgrounds.
In case of the nucleus 82Se, the SB decays to the excited states are followed by γ rays. Thus
they are reduced by the SSSC [16]. In case of the nucleus 100Mo, the half-life of the intermediate
nucleus 100Tc is 16 seconds. Thus, the SSTC [16] is used to reduce the SB background from
100Tc by anti-coincidence with the preceding CC electron.

The solar-neutrino CC and NC interactions with atomic electrons of DBD-detector compo-
nents were studied in case of liquid scintillators in [380, 381]. The interaction of the 8B neutrinos
with atomic electrons was evaluated for a liquid-scintillation detector with N tons of the scin-
tillator and N ′ tons of the DBD isotopes dissolved into the scintillator. The neutrino-electron
interaction rate per ton-year in the ROI is given by

Be(E) ≈ 0.15× Ef , f = δ/R , (124)

where E is the ROI energy in units of MeV, R = N ′/N is the DBD-isotope concentration and
f = δ/R is a kind of background efficiency. The background rate is around Be(E) ≈ 0.3 in high
resolution and/or high concentration of f ≈ 0.5 with δ ≈ 1% and R ≈ 2%. Noting that the
DBD signal rate of around 1/ton-year for a typical case of mass mν = 20 meV, NME M0ν = 2
and phase space G = 5× 10−14/y, the required efficiency for the IH-mass studies is of the order
of f ≤ 0.5.

4.3. Supernova-neutrino-nuclear responses

Supernova neutrinos are electron (e), µ and τ neutrinos (νe, νµ, ντ ) and their antineutrinos
(ν̄e, ν̄µ, ν̄τ ) in the medium-energy region of 5 − 70 MeV. They are experimentally studied by
measuring the NC and CC interactions with atomic electrons and nuclei. The first observations
of the supernova 1987A were made by measuring the CC interaction of ν̄e with protons [382,
383, 384]. The CC cross section of

ν̄e + p→ e+ + n (125)

is large, but is limited to ν̄e. In this Section, we discuss supernova-neutrino NC and CC inter-
actions with medium-heavy and heavy nuclei.

The (anti)neutrino-nuclear responses in the form of (anti)neutrino-nucleus cross sections are
welcome information for any neutrino experiment. The knowledge of these cross sections of-
fers a probe to investigate various questions in particle physics, astrophysics and astroparticle
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physics. Neutrinos and antineutrinos are produced in large quantities e.g. in supernova explo-
sions initiated by the collapse of their iron cores (core-collapse type II supernovae) [385]. Nuclear
responses to supernova neutrinos [386, 387, 388] are probes of the physics beyond the Standard
Model [389, 390], and important in investigations of the supernova mechanisms [391, 392] and
the nucleosynthesis of heavy elements [393, 394, 395]. Recent reviews on the core-collapse su-
pernovae are, e.g. [396, 397]. The estimations of (anti)neutrino-nucleus cross sections constitute
a tool for detection of different (anti)neutrino flavours and exploring the structure of the weak
interactions [4, 395]. Also, the estimation of the charged-current (anti)neutrino-nucleus cross
sections is important for the probing of the nuclear matrix elements for the neutrinoless double
beta decay be exploiting the so-called neutrino beams [398].

(Anti)neutrinos interact only weakly with matter and (anti)neutrinos from astrophysical
sources, such as supernovae, can therefore be detected by Earth-bound detectors via charged-
current (CC) and/or neutral-current (NC) (anti)neutrino-nucleus interactions [4]. The final fate
of massive type II stars at the end of their life cycle, when they have used up all their nuclear
fuel, is their collapse to form a compact object such as a neutron star or a black hole. These
stars radiate almost all of their binding energy in the form of (anti)neutrinos of all flavors and
with energies of a few tens of MeV [399]. The emerging (anti)neutrino signal provides a great
deal of information on the final stages of the supernova collapse for both particle and nuclear
physics. Furthermore, the cross sections of the (anti)neutrino-nucleus scattering are sensitive to
the details of nuclear structure, e.g. single-particle energies, locations of giant resonances etc.

In the NC experiments all the (anti)neutrino flavours, electron, muon and tau, can be detected
whereas the CC experiments detect only electron neutrinos (νe) and antineutrinos (ν̄e) since the
heavier flavours cannot be created in the final states of the scattering process due to the limited
energy range (Eν . 70 MeV) of the supernova (anti)neutrinos. Several neutrino detectors around
the world are being established and planned for such purpose, see e.g. [392] for an overview on
supernova-neutrino detectors. One example of such a detector is the HALO (Helium and Lead
Observatory) experiment [400] running at SNOLAB, Canada, and designed for observation of
galactic core-collapse supernovae by a lead-based neutrino detector. The HALO experiment is
complementary to other neutrino-detection experiments in that it is dominated by νe events
over the ν̄e events since νe events are enhanced by the large neutron excess of the Pb nuclei and
ν̄e events are suppressed by the Pauli blocking [401]. Hence, theoretical estimates of neutrino-
nucleus responses for the stable lead targets are essential for the interpretation of the results from
HALO and similar detection experiments. Other examples are the MOON experiment [402] using
molybdenum isotopes and nEXO experiment [403] using 136Xe as target material. In fact, the
only observations of neutrinos from a supernova so far were the neutrinos from the extra galactic
supernova SN1987a, observed by the Kamiokande II [382], IMB (Irvine-Michigan-Brookhaven)
[383] and Baksan[384] detectors. In spite of the small number of the detected neutrinos (about
20 in total) these observations verified that neutrinos from supernovae are highly important
probes of both supernova mechanisms and neutrino properties in general (see the review [404]).
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4.3.1. Final-state Coulomb effects in CC reactions for supernova neutrinos

At this point it is appropriate to note on the treatment of the final-state Coulomb effects in
case of the CC scattering [362]. These effects are represented by the Fermi function F (±Zf , Ek′)
in (112) and (113) given in, e.g., Ref. [251]. The distortion is to be treated differently in the
regions of small and large values of the so-called effective momentum

keff =
√
E2

eff −m2
e± , (126)

where me+(me−) is the positron (electron) mass and the effective energy is given by

Eeff = Ek′ − VC(0) . (127)

Here VC(0) is the Coulomb potential at the center of the final nucleus. For small values of keff we
use the Fermi function but for large values of keff one can adopt the so-called modified effective
momentum approximation (MEMA), introduced in [405]. Consequently, for large keff one drops
the Fermi function from (112) and, instead, replaces the absolute value of the three-momentum
and the energy of the outgoing electron/positron by their effective values (126) and (127). More
details are given in [362].

4.3.2. Flux-averaged cross sections

The Earth-bound neutrino detectors are not measuring directly the neutrino-nucleus cross
sections but, instead, the (anti)neutrino-flux-averaged cross sections, 〈σ〉, which are obtained by
folding the neutrino-nucleus cross sections with an appropriate energy profile for the incoming
neutrinos (e.g. the solar and supernova neutrinos). In theoretical calculations the energies
of the supernova neutrinos can reasonably well be described by a two-parameter Fermi-Dirac
distribution [406]

FFD(Ek) =
1

F2(αν)Tν

(Ek/Tν)
2

1 + exp(Ek/Tν − αν)
, (128)

where Tν represents the effective neutrino temperature of the neutrino sphere and αν is the
so-called degeneracy or pinching parameter. In (128) the constant F2(αν) normalizes the total
flux to unity. For a given value of αν the temperature Tν can be computed from the average
neutrino energy 〈Eν〉 by using the relation

〈Eν〉/Tν =
F3(αν)

F2(αν)
, (129)

where the integrals are given as

Fk(αν) =

∫
xkdx

1 + exp(x− αν)
. (130)

The folded cross section depends now on the parameters α and T . The values of these param-
eters and the corresponding average neutrino energies 〈Eν〉 depend on the adopted supernova
model. Representative sets of these parameters can be found. e.g. in [399].
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The supernova-neutrino energies reflect the neutrino-sphere temperatures Tν . The average
energies are E(νe) ≈ 10 MeV, E(ν̄e) ≈ 15 MeV and E(νx) ≈ E(ν̄x) ≈ 25 MeV with x = µ, τ . The
νe and ν̄e energies are distributed in a wide energy region of 5−40 MeV. Their energies in case of
neutrino oscillations from νx and ν̄x spread in an even wider region of 5− 70 MeV. Accordingly,
one needs to know the neutrino-nuclear responses in a wide energy region of 5−70 MeV. They are
studied experimentally by measuring CERs and the µ capture reactions, as discussed in Sec. 2.
The low-energy neutrinos are captured into the low-lying GT states, while the medium-energy
ones beyond 15 MeV are preferentially captured into giant resonances. The giant resonances
involved are the Gamow-Teller resonance (GTR), the Fermi giant resonance (IAS) and isovector
spin-dipole resonance (IVSDR).

The CER energy spectrum for 208Pb shows the IAS, GTR and IVSDR responses. The
one-neutron and two-neutron threshold energies are 6.9 and 15.0 MeV. Thus, medium-energy
supernova neutrinos populating excited states above 7 MeV are studied by measuring neutrons
from the neutron unbound states [407]. The number of neutrons reflects the excitation energy
and thus the neutrino energy. The ratio of the two-neutron to one-neutron emissions is used to get
the neutrino energy and the temperature of the neutrino sphere. Here the ratio is sensitive to the
neutron energy, which depends on the neutron emission processes, the equilibrium evaporation
or the pre-equilibrium emission [29]. Actually, an appreciably fast proton component from the
IVSDR region suggests a fast neutron emission from the pre-equilibrium stage [408].

4.3.3. Flavour-conversion effects in supernova CC scattering

Because of the large muon and tau rest masses only electron neutrinos and electron antineutri-
nos from supernovae can be detected by CC neutrino-nucleus scattering. Neutrinos can undergo
flavor conversions due to interactions with the dense matter of the collapsing star. According
to recent studies (see e.g. [409]) collective neutrino oscillations caused by neutrino-neutrino in-
teractions could also have effects on the energy profiles of supernova neutrinos. Assuming that
the neutrino-energy spectra of muon and tau neutrinos are the same it can be shown [410, 411]
that the three-neutrino mixing problem can be reduced to a two-neutrino problem of the form
νy ↔ νe, where νy is a linear combination of νµ and ντ . Consequently, the energy profile for
electron neutrinos which reach an Earth-bound detector can then by written in the form

Fνe(Ek) = p(Ek)F 0
νe(Ek) + (1− p(Ek))F 0

νy(Ek) =

p(Ek)F 0
νe(Ek) + (1− p(Ek))F 0

νx(Ek) , (131)

where p(Ek) represents the survival probability of electron neutrinos and F 0
νe(Ek) (F 0

νx(Ek)) is
the initial energy profile (128) of electron neutrinos (non-electron neutrinos). In Eq. (131) the
last line follows from the assumption of equal initial energy profiles of muon and tau neutrinos.
Similarly, for the electron antineutrinos one has

Fν̄e(Ek) = p̄(Ek)F 0
ν̄e(Ek) + (1− p̄(Ek))F 0

ν̄x(Ek) . (132)

One can use for the survival probability p(Ek) (p̄(Ek)) of electron neutrinos (electron an-
tineutrinos) in the case of normal mass hierarchy (NH) the prescriptions [390, 412]

p(Ek) = 0 , (133)
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and

p̄(Ek) =

{
1 ;Ek < Ēs ,
0 ;Ek > Ēs ,

(134)

where Ēs = 18.0 MeV [412]. Similarly, for the inverted mass hierarchy (IH) one can use the
survival probabilities

p(Ek) =

{
sin2 θ12 ;Ek < Es ,
0 ;Ek > Es ,

(135)

and
p̄(Ek) = cos2 θ12 , (136)

for electron neutrinos and electron antineutrinos, respectively. For the parameter values one can
use Es = 7 MeV [410] and sin2 θ12 ≈ 0.306(0.312) [413], for the normal (inverted) hierarchy.

4.4. Neutrino-nucleus scattering calculations

Along the years a lot of different calculations of both NC and CC (anti)neutrino-nucleus
scattering calculations for supernova (and solar) neutrinos have been performed. Also a host
of different target nuclei have been addressed, in most calculations the light nuclei below the
iron region A = 56 have been considered. A collection of these calculations, grouped by the
target nuclei, are presented in Table 11. Here a division between the NC (column four) and CC
(column five) calculations has been given for the convenience of the Reader.

The neutrino-nucleus scattering cross sections have been calculated in a number of different
theory frameworks. These theories include

ISM type of models :

• The ISM, used in [132, 134, 415, 425, 426, 429, 434, 448]

(Q)RPA type of models :

• The Tamm-Dancoff approximation (TDA), used in [354].

• An RPA approach built up from single-particle states of an uncorrelated local Fermi sea,
as applied in [420].

• Continuum random-phase approximation (CRPA), applied in [416, 417, 421, 422].

• Hybrid model: The pn(Q)RPA plus the 1+ channel treated by the ISM, as applied in
[431, 433].

• pnQRPA with a schematic δ force [160]

• RPA and pnRPA with Skyrme type of interactions, as used in [425, 427, 433, 450]

• QRPA and pnQRPA (see Sec. 3.1.1 for more information) with Skyrme type of interactions
[425, 427, 444, 452, 453]

93



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 11: References for available neutrino-nucleus cross-section calculations performed for different nuclear
targets.

Nucl. Z A NC references CC references

He 2 4 [414],[415] [415]
C 6 12 [415],[416],[417],[418], [419] [132],[134],[415], [417],[418],

[420],[421],[422],[423],[424]
C 13 [420],[425]
O 8 16 [416],[417],[419] [417],[422],[423],[426],[427]
Al 13 27 [420]
Ar 18 40 [428] [428],[429],[430],[431], [432]
Fe 26 56 [418],[419],[433],[434], [435] [418],[423],[427],[433]
Ni 28 56 [418],[419] [418],[434]
Zn 30 64,66 [436]
Ge 32 82 [435]
Zr 40 92 [437]
Nb 41 93 [437]
Mo 42 98 [437]

100 [160],[427]
92,94,96,98,100 [419],[438] [362]

95,97 [439] [440]
92,94,95,96,97,98,100 [364],[441],[442] [442]

Ru 44 99 [437]
Cd 48 116 [443] [443],[444]

106,108,110,111,112,113,114,116 [445] [446]
Te 52 128,130 [352]
Xe 54 136 [447] [447]

128,129,130,131,132,134,136 [448] [449]
La 57 138 [79] [79]
Ta 73 180 [79] [79]
Pb 82 208 [433],[450],[451] [423],[427],[433],[450]

204,206,208 [452] [453]
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• The QRPA and pnQRPA (see Sec. 3.1.1 for more information) with realistic Bonn one-
boson-exchange based effective G-matrix interactions, as used in [352, 362, 364, 436, 438,
441, 442, 443, 445, 446, 447, 448, 449, 451].

• The pnQRPA + QRPA with neutron-proton pairing and effective G-matrix interactions,
as applied in [79, 418, 428, 437].

• Consistent relativistic mean-field approach: relativistic Hartree-Bogoliubov model (RHFB)
plus relativistic QRPA (RQRPA), as applied in [419, 423].

• Projected QRPA (PQRPA) and relativistic QRPA (RQRPA), as applied in [424].

• Thermal QRPA (TQRPA) combined with Skyrme energy density functionals (Skyrme-
TQRPA), as used in [435].

Quasiparticle-phonon coupling :

• The MQPM approach for odd-A nuclei combined with the Bonn one-boson-exchange-
based effective G-matrix interactions (see Sec. 3.1.1 for more information), as used in
[364, 440, 441, 442, 443, 445, 446]

The ISM, pnQRPA, QRPA and MQPM theory frameworks have been briefly discussed in
Sec. 3.1.1. The TDA and RPA, as also pnQRPA and QRPA model frameworks have been
extensively discussed in the monograph [56].

4.4.1. Example: NC scattering off the stable molybdenum isotopes

92 94 95 96 97 98 100
0

10

20
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−
4
2
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2
]

mass number

Figure 50: Variation of the calculated flux-averaged NC electron-neutrino cross section with mass number for
the Mo isotopes. The calculations are done using the QRPA and MQPM nuclear-model frameworks [441]. The
adopted neutrino parameters (T (MeV),α), T being the temperature, are νe: (3.6,2.1) ; ν̄e: (3.8,3.2) ; νµ, ντ :
(4.8,0.8) ; ν̄µ, ν̄τ : (4.8,0.8).

In Fig. 50 the calculated flux-averaged NC electron-neutrino cross sections are displayed for
the stable Mo nuclei. The cross sections of the even-A isotopes are computed [441] by the use
of the QRPA and the odd-A isotopes by the use of the MQPM. There is no drastic dependence
on the mass number although a decreasing trend of the cross sections is detectable for the heavy
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Table 12: Flux-averaged incoherent cross sections for the stable molybdenum isotopes in units of 10−42 cm2.
The calculations are done using the QRPA and MQPM nuclear-model frameworks [441]. The adopted neutrino
parameters (T (MeV),α), T being the temperature, are: νe (3.6,2.1) ; ν̄e (3.8,3.2) ; νµ, ντ (4.8,0.8) ; ν̄µ, ν̄τ
(4.8,0.8).

flavor 〈σ〉92 〈σ〉94 〈σ〉95 〈σ〉96 〈σ〉97 〈σ〉98 〈σ〉100

νe 11.6 11.8 15.9 12.1 16.4 9.94 8.59
ν̄e 17.3 17.6 23.0 17.9 23.7 15.1 13.1

νµ, ντ 25.5 25.3 31.5 25.6 32.3 22.1 19.9
ν̄µ, ν̄τ 22.7 22.7 28.6 23.0 29.4 20.0 17.7

molybdenums. The two odd-mass isotopes stand out with their larger cross sections compared
to the ones of even-even isotopes because of the larger phase space.

In Table 12 are listed the computed [441] flux-averaged (anti-)neutrino cross sections for the
different neutrino flavors. The mass dependence of the cross sections is qualitatively the same
for all flavors. The cross sections for the heavy flavors are larger than for the electron flavor
since the kinetic energy (temperature) of the heavy flavors is larger due to their early decoupling
from the supernova environment. The results of [441] are in agreement with those of [419, 438].

4.4.2. Example: CC scattering off the stable molybdenum isotopes
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Figure 51: Variation of the flux-averaged CC neutrino (left panel) and anti-neutrino (right panel) cross sections
with mass number for the Mo isotopes. The calculations are done using the QRPA and MQPM nuclear-model
frameworks [440, 442]. The adopted neutrino parameters (〈E〉(MeV),α), 〈E〉 being the average neutrino energy,
are νe: (11.5,3.0) ; ν̄e: (13.6,3.0)

Fig. 51 displays the calculated [440, 442] flux-averaged CC scattering cross sections for scat-
terings off the Mo isotopes separately for the electron neutrinos and anti-neutrinos. There is
a clear and opposite trend in the cross sections as functions of the mass number: the neutrino
cross sections increase and anti-neutrino cross sections decrease with increasing mass number.
The reason for this is displayed in Fig. 52. There are two effects conspiring to the same direc-
tion: (a) the energy-threshold effect and (b) the Pauli-blocking effect. With increasing mass
number the energy threshold increases for anti-neutrino scattering and decreases for neutrino
scattering leading to a relative increase (decrease) in the neutrino (anti-neutrino) cross sections
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with increasing mass number. The Pauli blocking shows in the Ikeda 3(N − Z) sum rule for
Gamow-Teller transitions: the larger the mass number, the larger the sum rule and the (p,n)
type of Gamow-Teller transition strength (to the right in Fig. 52) which practically (more than
90%) exhausts the sum rule. The reverse happens to the (n,p) type of Gamow-Teller transition
strength (to the left in Fig. 52).

92
41Nb51

7+gs 0+gs92
42Mo50

92
43Tc49

8+gs

92Mo(ν, e−)92Tc

92Mo(ν̄, e+)92Nb

Qβ− = 0.357MeV QEC = 7.870MeV

3(N − Z) = 24

100
41Nb59

1+gs

0+gs 100
42Mo58

100
43Tc57

1+gs

100Mo(ν̄, e+)100Nb

100Mo(ν, e−)100Tc

Qβ− = 6.384MeV QEC = 0.168MeV

3(N − Z) = 48

Figure 52: Schematic figure of the threshold energies and Pauli blocking in the Mo chain of isotopes as taken
from [442]. The spectroscopic data is from [258].

4.4.3. Examples: Effects of flavour conversions

The supernova-neutrino CC rates and the electron spectra are evaluated for 100Mo in [160]
on the basis of the experimental responses [93]. Table 13 shows evaluated CC cross sections for
electron neutrinos and those converted from νµ and ντ through oscillations in the dense nuclear
medium of the supernova.

It is noted that the electron neutrinos νe are mainly captured into the GT(1+) ground state
and the GTR (1+), and partially into the IAS (0+) and the IVSDR (2−), while the electron
neutrinos νxe from the µ and τ neutrino-flavour conversions are captured into the highly excited
giant resonances with Jπ = 0+, 2± and 3± in addition to the captures into GTR. The energy
spectrum of the νe-CC electrons shows a broad bump in the region of 5 − 20 MeV, while the
spectrum for the νxe-CC electrons shows a broad bump in a higher energy region of 10−50 MeV.
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Table 13: Supernova-neutrino cross sections in units of 10−41 cm2 for scattering off 100Mo. Jπ denotes spin parity,
νe denotes electron neutrino, and νx denotes electron neutrino from µ and τ neutrino oscillations. The adopted
neutrino parameters (T (MeV),α), T being the temperature, are νe: (3.5,0) ; ν̄e: (5.0,0) ; νµ, ντ : (8.0,0) ; ν̄µ, ν̄τ :
(8.0,0) [160].

Jπ 0+ 0− 1+ 1− 2+ 2− 3+ 3− 4+ 4−

νe 0.65 0.02 4.62 0.14 0.04 0.34 0.03 - - -
νxe 8.942 0.59 32.3 11.9 4.62 14.0 3.78 1.00 0.23 0.79

Then experimental studies of electron energy spectra give the temperature of the neutrino sphere
and also information on the possible νe → νx oscillation.

The νe CC event rate for 100Mo is around 3.5 per 100 tons in case of a supernova at a
distance of 10 kpc (kiloparsecs) with 3× 1053 ergs of total released energy, while the νxe CC one
is around 22 per 100 tons [160]. The larger rate for νxe reflects a higher temperature of the µ-
and τ -neutrino spheres than that for the electron-neutrino sphere.

If one assumes that the energy is equally partitioned between the neutrino flavors, then from
(131) one obtains that the number of expected charged-current neutrino events in an Earth-
bound detector per kiloton of target mass is given by

NCC
ν (R) =

nT

4πR2

∫ [
p(Ek)NνeFνe(Ek) + (1− p(Ek))NνxFνx(Ek)

]
σ(Ek)dEk , (137)

where nT is the number of nuclei per kTon and R is the distance to the supernova. In (137) we
have introduced

Nνe =
Etot

6〈Eνe〉
, (138)

and

Nνx =
Etot

6〈Eνx〉
, (139)

where Etot is the total energy which is emitted as neutrinos. The non-electron neutrinos which
contribute to the second term in (137) are the ones which correspond to the linear combination
νy (see discussion in Sec. 4.3.3). Hence, in the case of maximal mixing effectively half of the
muon and tau neutrinos are affected by the νy ↔ νe conversions. The case of antineutrinos is
analogous.

Similarly, the number of neutral-current events in the detector can be written on the form

NNC
ν (R) =

nT

4πR2

(
Nνe〈σ〉νe + 2Nνx〈σ〉νx

)
. (140)

In Fig. 53 the computed [443] number of CC and NC neutrino-nucleus scattering events
per kiloton of 116Cd as functions of the distance to the supernova is displayed. For the CC
case results are shown for the non-oscillating case (νe) and for oscillating neutrinos for both the
normal (NH) and inverted (IH) mass hierarchy cases. The results for the normal and inverted
mass hierarchies are similar and are thus not distinguishable in the figure. In the calculations a
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Figure 53: Number of expected charged-current (CC) and neutral-current (NC) neutrino-nucleus scattering events
per kiloton of 116Cd as function of the distance to the supernova. In the figure is also shown the distance to
the supernova SN1987a by a vertical dotted line. The results have been calculated in the QRPA nuclear-model
framework [443].

Figure 54: Same as Fig. 53 but for the charged-current and neutral-current antineutrino scatterings off 116Cd.
The results have been calculated in the QRPA nuclear-model framework [443].
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total energy of Etot of 3.0 · 1053 ergs has been assumed. The results can be easily re-scaled to
other cases as well by changing the values of nT in Eqs. (137) and (140) and Etot in Eqs. (138)
and (139). One can conclude that for a galactic supernova, i.e. R ≈ 10 kPc, a detector with
about 1 kTon could have several hundreds of events. Similarly, in Fig. 54 the results for the
antineutrino reactions are shown. Most of the predicted events are neutral-current ones because
of the large suppression of the charged-current antineutrino channel. The results in Figs. 53 and
54 depend strongly on the adopted energy profiles of the incoming neutrinos. Consequently, the
computed numbers can vary with at least a factor of 2−3 depending on the employed supernova
model.

4.4.4. Neutrino scattering off 71Ga: the gallium anomaly

In some cases the description of neutrino scatterings involving low-lying states of nuclei
require special attention in terms of accurate nuclear wave functions. One interesting case is
the CC scattering of monoenergetic neutrinos from EC (electron capture) decays of 37Ar and
51Cr on 71Ga leading to the ground and 175 keV and 500 keV excited states in 71Ge. The CC
responses for higher-lying states induced by scattering of solar neutrinos off 71Ga were discussed
earlier in Sec. 4.2.1. The scattering cross sections for the mentioned three low-lying states can
be estimated by using the data from charge-exchange reactions [369] or by using a microscopic
nuclear model, like the ISM (see Sec. 3.1.1). In both cases it has been observed that estimated
cross sections are larger than the ones measured by the Ga experiments [454, 455, 456] and SAGE
experiments [457, 458, 459]. The measured capture rates (cross sections) are 0.87 ± 0.05 of the
rate based on the cross sections calculated by Bahcall [460]. The related model calculations
and analyses based on them have been discussed in [312, 461, 462]. It should be noted that the
response to the ground state is known from the EC ft value.

The discrepancy between the measured and theoretical event rates, the Ga anomaly, is at
the level of about 3σ [312, 461]. The missing neutrinos suggest that (i): the ν responses for
the two excited states in 71Ge are smaller than the values obtained in nuclear-structure studies,
implying possible deficiencies in the nuclear-structure calculations or analyses of the (3He,t) CER
of [369] (see Fig. 47). (ii): the actual detector efficiency is smaller than the efficiency used in
the evaluation or (iii): new physics is involved in the anomaly.

The point (iii) has been associated to the oscillation to a sterile neutrino in eV mass scale
[312, 461]. The same scheme could explain also the reactor-antineutrino anomaly [312], discussed
in Sec. 3.6.2. Searches for the sterile neutrinos are under progresses in several laboratories.
However, it should be remarked here that there is no accepted sterile neutrino model to explain
the experimental anomalies consistently.

4.5. Coherent neutrino-nucleus scattering

Neutrinos can scatter off nuclei coherently [463], which practically means that the neutrino
interacts with the nucleus as a whole instead of only a single nucleon. Coherent elastic neutrino-
nucleus scattering (CEνNS) occurs whenever the inverse of the momentum transfer between the
incoming neutrino and the nucleus (i.e. essentially the neutrino deBroglie wave length) is larger
than or comparable to the size of the nucleus, i.e. Eν . 50 MeV. The process is a NC reaction
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that can be expressed as
ν + (A,Z)→ ν + (A,Z) , (141)

where the initial and final states of the nucleus of mass number A and atomic number Z are the
same. CEνNS will become a nuisance in dark matter detectors (see the next section) in upcoming
years, but it can also prove to be an important probe of beyond-standard-model physics.

4.5.1. Overview

Coherent neutrino nucleus scattering is a special case of the more general neutral current
process discussed in Sec. 4.1.2. The cross-section for coherent scattering is obtained from the
general case by setting the initial and final states to be the same. Under the assumption of
an even-even nucleus with a 0+ ground state, no strange-quark contributions, and a vanishing
neutron electric form factor, the angle-differential cross section for coherent neutrino nucleus
scattering predicted by the standard model is simply [463, 464, 465]

dσ

d cos θ
=
GF

8π
(1 + cos θ)E2

ν

[
Z(4 sin2 θW − 1)Fp(q

2)−NFn(q2)
]2
, (142)

where GF is the Fermi coupling constant (5), Eν the neutrino energy, θW is the Weinberg angle,
and Fp and Fn are the nuclear form factors for protons and neutrons, respectively. As 4 sin2 θW−1
is very small, the proton part is strongly suppressed and the coherent cross section effectively
and characteristically scales as ∝ N2.

Typically, due to the coherent N2 enhancement, the cross section for CEνNS is a few orders
of magnitude larger than for the incoherent interactions [441]. Thus it is a little surprising that
neutrinos scattering coherently and elastically off nuclei had been out of reach of experiments
for decades. This is due to the fact that the measured signal is the recoil energy of the nucleus
in some form, and the maximum recoil energy for CEνNS is

ER,max =
2E2

ν

M + 2Eν
, (143)

where M is the mass of the target nucleus. Therefore detectors will need to have a low threshold
energy: To go over 1 keV of recoil energy in, say, liquid xenon detectors (A ≈ 130) would need
a neutrino energy of at least 5 MeV. Moreover, the nuclear form factor in Eq. (142) vanishes
rapidly with increasing recoil energy (or, equivalently, momentum transfer). This leads to the
detectable recoil energies being of the order of a few keV. Translating a low recoil energy into a
measurable signal is a challenge for experiments striving for a low threshold.

Although techniques to detect CEνNS were proposed decades ago [466], experimental tech-
niques have only recently developed to the point that recoil energies of the order of ∼ keV can
be detected. Indeed, CEνNS was finally detected recently [467] by the COHERENT experiment.
This discovery by the COHERENT experiment seems to be consistent with the signal expected
from the standard model at 1σ level [467]. After the initial discovery has now been made, further
research can be done to investigate whether any evidence for beyond-standard-model physics,
such as sterile neutrinos [468, 469, 470], a neutrino magnetic moment [471], or nonstandard
interactions [472, 473, 474, 475], can be found in this process.
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4.5.2. Neutrinos in dark-matter detectors

Uncovering the nature of dark matter is one of the most pressing topics in modern physics.
It has been convincingly argued, by unexpected galactic rotation curves [476, 477, 478, 479],
structure formation [480, 481], and cosmic microwave background data [482, 483], that large
majority of matter in the Universe consists of nonbaryonic cold dark matter (CDM). The most
compelling candidate for CDM is a Weakly Interacting Massive Particle (WIMP): a species
of stable particles emerging in extensions to the standard model, that have a suitable relic
density and have only weak couplings with ordinary matter. Such WIMPs appear for example
in Kaluza-Klein models with universal extra dimensions [484, 485], technicolor models [486, 487],
little Higgs models with T parity [488, 489], and, perhaps the most famously, supersymmetric
extensions to the standard model [490]. If dark matter indeed consists of WIMPs, it should in
principle be possible to directly detect such a particle interacting with an atomic nucleus in an
earthbound detector.

There has been a huge effort put into direct detection of WIMPs in the past decades, and
there are many experiments currently running or proposed to start gathering data in the near
future, for examples see Refs. [491, 492, 493, 494, 495, 496, 497]. Some of the current leading
experiments use a liquid xenon target [498, 499, 500, 501, 502, 503], which allows for easy
scalability to larger and more sensitive detectors. One unique way to search for WIMPs is
detection of nuclear gamma rays and atomic X rays [504, 505], where the solar-neutrino NC-
background contributions have to be considered.

With increasing detector mass and thus increasing sensitivity, the largest xenon detectors
(and other detectors will follow) will soon face a possibly crippling problem when the detectors
will start seeing coherent neutrino-nucleus scattering as background radiation [506, 507]. This
phenomenon is called the neutrino floor of the direct dark-matter experiments. The energy-
differential flux of solar neutrinos is given in Fig. 46 in Sec. 4.2. It is expected that the first part
of the neutrino floor encountered in direct detection experiments is caused dominantly by 8B
solar neutrinos as they have the largest flux out of neutrinos able to give a detectable recoil to
a nucleus in a detector (ER & 1 keV) [508, 509]. Other types of solar neutrinos also contribute,
but they would require a lower detector threshold than what the next generation detectors will
have. For atmospheric and diffuse-supernova-background neutrinos the spectra extend to higher
energies than for solar neutrinos, but the expected fluxes are much smaller. It will require a
long exposure to detect them with the next-generation detectors. It should be noted, that dark-
matter detectors will also be sensitive to low energy neutrinos, such as the solar pp neutrinos,
via electron recoils [507]. However, most detectors are able to discriminate between electronic
and nuclear recoil events.

Once neutrinos are seen as background in dark-matter detectors, one cannot attribute a
detected nuclear-recoil excess to a dark-matter particle unless the rate of this excess is larger
than the uncertainty of the neutrino event rate. Moreover, neutrinos also effectively mimic
nuclear recoil spectra expected from WIMPs, and at some select WIMP masses, the detection
signal is predicted to be especially similar for WIMPs and neutrinos [507]. This leads to the
neutrino floor in direct detection experiments. After reaching the neutrino floor the detection
efficiency of the detector increases only marginally with increasing exposure.
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Table 14: Valence space truncations made in the ISM calculations of 128−131Xe. The first column gives the
nucleus in question, the following five columns give the minimum/maximum values of neutrons on the single-
particle orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 1h11/2, respectively. The calculations have been performed in the
ISM nuclear-model framework [448].

Nucleus 0g7/2 1d5/2 1d3/2 2s1/2 1h11/2

128Xe 8/8 6/6 0/4 0/2 4/12
129Xe 8/8 6/6 0/4 0/2 4/12
130Xe 8/8 4/6 0/4 0/2 0/12
131Xe 8/8 6/6 0/4 0/2 0/12

As the neutrino background looms in the horizon for the next generation of dark matter direct
detection experiments, it is of utmost importance to device a way to circumvent the neutrino
floor to keep probing lower and lower cross sections for dark-matter interactions. One such
possibility is the different-time signature of the neutrino and WIMP signals [510]. Due to the
motion of the Earth around the Sun, the number of WIMP-induced recoils is expected to peak
around June while for solar neutrinos the peak should be in January when the Earth is closest
to the Sun. Using timing information in addition to spectral data can improve the exclusion
limits of an experiment, depending on the WIMP velocity distribution [510].

Another possibility is to exploit the directional information of the nuclear recoil signal [511,
512]. Dark-matter- and neutrino-induced recoils have a distinct favored event angle, which
can be used to discriminate between the different signals. Most current detectors do not have
directional sensitivity, however. Additional nuclear responses in a nonrelativistic effective field
theory (EFT) [513, 514] have also been suggested as a possible way to discriminate between
neutrino and WIMP recoil events. If the WIMP-nucleus interaction does not happen via the
conventional spin-dependent or spin-independent channel, but via some other operator arising in
the EFT framework, the recoil spectrum for WIMPs can be different from the one for neutrinos.

The total cross sections of solar 8B neutrinos scattering coherently off the most abundant
stable xenon isotopes, 128−132,134,136Xe, have been calculated recently [448]. The nuclear-structure
calculations were made in the ISM using the shell-model code NuShellX@MSU [515] in the 50–
82 major shell using the SN100PN interaction [516]. Calculations for 132,134,136Xe were done
in the fully unrestricted valence space, but for 128−131Xe truncations had to be made in the
neutron valence space. The truncations made are shown in Table 14. For the even-A isotopes
the experimental spectra are well reproduced by the ISM calculation. For the odd-A isotopes
one gets the correct ground state and the low-lying positive-parity states are well reproduced,
but the negative-parity states 9/2− and 11/2− are much lower in the computed spectrum than
in the experimental one [448]. This is a feature in the SN100PN interaction, which has also been
noticed elsewhere [517].

The total cross sections for the aforementioned xenon isotopes are given in Fig. 55. One can
immediately see that the cross section becomes larger with increasing neutron number. Indeed,
the cross section divided by the square of the neutron number is nearly a constant, as expected
from (142).
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Figure 55: Total coherent cross sections of 8B solar neutrinos scattering off xenon isotopes. The calculations
have been performed in the ISM nuclear-model framework [448].

4.6. Neutrino-nuclear responses for astro-neutrino nucleosynthesis

Gravitational energy gain in supernova collapse is carried away by the neutrino wind. Thus
the neutrinos play an important role in the nucleosynthesis in the mantle of a core-collapse
supernova. Actually, some nuclei are produced exclusively by the neutrino nucleosynthesis, and
there are many nuclei which are produced partially by the neutrino-nuclear interactions. The
neutrino nucleosynthesis and the neutrino effects on the supernova dynamics are described in
recent review articles [11, 12, 13, 14, 518] and references therein. In this section, we briefly
discuss neutrino-nuclear responses associated with the neutrino nucleosynthesis in a supernova.

Neutrino processes to be considered for the neutrino nucleosynthesis are CC−, CC+ and NC
weak processes defined by

CC− (νe, e
−x), CC+ (ν̄e, e

+x), NC (νx, ν
′
xx) , (144)

where νx stands for a µ or a τ neutrino, and x for γ, β, neutron, proton, etc. following the neutrino
interaction. The supernova neutrinos are mainly in the medium-energy region of Eν = 5−40 MeV
and extend to higher energies around 50− 70 MeV, depending on the temperature. This energy
region is the same as that for 0νββ virtual neutrinos. The nuclear production rate for the
neutrino nucleosynthesis is determined by the neutrino flux, the energy spectrum, the neutrino-
nuclear cross section and the de-excitation process of the emitted particles x.

The neutrino cross section is given by the sum of the cross sections for residual states i with
the excitation energy Ei. It is written as

σ(ν) =
∑

i

σ(Eν , Ei) , (145)

where Eν is the neutrino energy and σ(Eν , Ei) is the cross section for the state i. The cross
section for the scattering to the individual state i is

σ(Eν , Ei) = gWK(Eν , Ei)Bi(J
π
i ), Bi(J

π
i ) = (2J + 1)−1|Mi(J

π
i )|2, (146)

where gW is the weak coupling, K(Eν , Ei) is a kinematic (phase space) factor and Bi(J
π
i ) is the

neutrino response for the state i with Jπ being the spin and parity, and Mi(J
π
i ) is the NME.
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The rate of neutrino nucleosynthesis (nuclear production rate) is sensitive to the neutrino
flux, the neutrino energy spectrum and the nuclear response. The energy spectrum reflects the
temperature of the neutrino sphere. Hence, one may get useful information on the neutrino
flux and the nuclear temperature from the neutrino-synthesis rate. Here one needs the neutrino
responses as functions of the neutrino energy and information on the nuclear decay processes in
a wide excitation region.

The neutrino responses in the medium-energy region are mainly giant resonances with Jπ =
0±, 1±, 2±, 3±. In the high-excitation region above Eν ≥ 30 MeV, quasi-free CC and NC
scatterings get significant. The Fermi giant resonance (IAS 0+), the GTR (1+), the IVSDR
(2−) and the axial-vector CC quasi-free scattering responses have been studied using CERs, as
described in Sec. 2.3.

The neutrino responses for light nuclei are evaluated based on the ISM, while those for the
medium-heavy and heavy nuclei are evaluated by using the RPA [518]. In fact, accurate theoret-
ical calculations of the neutrino CC and NC responses for nuclei in the needed wide excitation re-
gion are hard since they are sensitive to various kinds of nucleonic and non-nucleonic correlations
and the renormalization (quenching) factors for the weak interactions. Some phenomenological
values around geff

A /gA ≈ 0.74 are used for the quenching factor [14]. Experimentally the CC
and NC neutrino responses in the wide excitation region are not well studied. Nuclear CERs,
muon-capture reactions, photo-nuclear reactions, and neutrino-induced reactions in the future
are encouraged to be performed in order to study the neutrino-nuclear responses relevant to the
neutrino nucleosynthesis.

Nuclear de-excitation processes following the neutrino CC and NC interactions are calculated
in order to get the final nuclear productions. Statistical models such as SMOKER [519] and
others are used for particle and γ decays following the neutrino CC and NC interactions. Here
we note that non-statistical particle emissions [29] at the pre-equilibrium stage of the reaction
are necessary to be considered in addition to the statistical evaporation at the equilibrium stage,
in particular for the energetic supernova neutrinos with Eν ≥ 30 MeV. Note that γ and β decays
in deformed nuclei, such as 180Ta and others, are not just statistical decays, but are restricted
by the JK selection rules as discussed in Sec. 2.2.2.

Theoretical calculations of neutrino nucleosynthesis for 11B, 19F, 138La and 180Ta were made
by using the ISM for light nuclei and RPA for heavy nuclei as given in the review [518] and
references therein. The neutrino cross sections for electron neutrinos are shown as functions of
the temperature in [518]. The degeneracy parameter is set as α = 0. The neutrino cross sections
are dominantly CC cross sections, and increase as the temperature increases. The cross sections
for 138Ba show that the 0-neutron emission is dominant at low temperatures but the dominant
process above 4 MeV is the 1-neutron emission and the 2-neutron emission gets appreciable at
higher temperatures beyond 6 MeV. We note here that cross sections and the neutron cascades
are sensitive to the CC strength distributions and the absolute values for the weak couplings
(renormalization factors), which remain to be carefully verified by dedicated theoretical and
experimental studies.

The NC and CC neutrino cross sections have been evaluated theoretically by using different
nuclear models, as given in Table 11 and in the articles [13, 397, 518, 519] and the references
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Figure 56: Neutrino-nucleosynthesis cross sections as functions of the neutrino energy. Upper-left: CC inter-
actions on 138Ba, upper-right: NC interactions on 139La, lower-left: NC interactions on 181Ta, lower-right: CC
interactions on 180Hf [79].
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therein. QSM (quasiparticle shell model) NC cross sections on 139La and 181Ta and QRPA CC
ones on 138Ba and 180Hf are shown in Fig. 56 [79]. The CC cross sections are larger by factors
4 − 5 than the NC ones. They are predominantly the 1+ GT cross sections up to 40 MeV, and
the 1− and 2− contributions get appreciable above 40 MeV.

The neutrino energy spectra are sensitive to the nuclear temperatures of the neutrino spheres.
The average energies are given as ĒSN ≈ 3TSN with TSN being the temperatures of 3.5 MeV,
5 MeV and 8 MeV, for the electron neutrino, the electron antineutrino, and the µ, τ neutrinos,
respectively [160]. The neutrino oscillations from µ and τ neutrinos to the electron neutrino shift
drastically the electron-neutrino spectrum to the higher-energy side, and accordingly increases
the neutrino cross section (phase-space factor) and thus the synthesis rate. In other words, one
may learn about the neutrino-mixing angles and the mass spectrum by investigating the effects of
neutrino oscillations on the synthesis rates as discussed in [396] and references therein. Neutrino
nucleosynthesis associated with two neutron-star mergers is interesting from astrophysics view
points.

5. Neutrino-nuclear responses and double β decays

Neutrino-nuclear responses for double β decays (DBDs) have been a subject of intense study
during the last decades. The subject was introduced in Sec. 1.4 of this review. The DBD has close
connections to the physics beyond the standard model [520] and neutrino physics [521, 522, 523].
A comprehensive review of the nuclear matrix elements (NMEs) of the DBDs was published in
1998 [2]. In the same year an extensive review on the different mechanisms of DBD appeared
[3]. These were complementary to the classical review [524] on the electron-emitting and reviews
[525, 526] on the positron-emitting modes of the DBD. Later reviews include [16, 17, 18, 23, 527].
A review on the Majorana-neutrino mixing was given in [528]. Some recent reviews on DBD
theory, DBD experiments and nuclear responses for DBD are also given in Sec. 1.4.

Very recent reviews, appearing already earlier in this review, are [21, 23, 24]. Recent reviews
about the DBD NMEs, covering part of the calculations, are [19, 20]. A unique review on the
effective value of the weak axial-vector coupling constant, gA, was published recently [30].

5.1. Modes of double beta decays

There are several modes of DBDs and below we present those mediated by a light neutrino
(two-neutrino DBD) or a light Majorana neutrino (neutrinoless DBD). We also briefly address
the issue of the phase-space factors of these decays.

5.1.1. Light-neutrino-mediated DBDs

In Fig. 57 are shown schematic pictures presenting the concept of the two-neutrino DBD
(2νββ decay) with emission of two electrons and two antineutrinos. As mentioned in Sec. 1.4
the decay proceeds through two consecutive β− decays (left figure) through the virtual 1+ states
of the intermediate nucleus, in this case 76As (right figure).

In Fig. 58 is depicted the essential content of the neutrinoless DBD (0νββ decay) with
emission of two electrons. This 0νβ−β− decay is mediated by the exchange of a light Majorana
neutrino (left figure). A massive neutrino is needed in order to overcome the mismatch of the
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Figure 57: Two-neutrino β−β− decay of 76Ge. Left side: Schematic diagram of the two consecutive β− transitions
of the 2νβ−β− decay; Right side: Schematic level scheme and virtual transitions through 1+ states of 76As.

helicities of the emitted antineutrino (ν̄) and absorbed neutrino (ν). Since no antineutrinos
are emitted, contrary to the case of the 2νβ−β− decay, the lepton number is broken by two
units (∆L = 2). In addition, the Majorana nature is needed in order to match the emitted
ν̄ with the absorbed ν. The neutrino propagator between the two decay vertices produces a
Coulomb-like, roughly 1/r (where r is the distance between the two decaying neutrons) type of
potential, which can be decomposed into multipoles like the Coulomb field. These multipoles
lead to virtual transitions through all possible multipole states Jπ of the intermediate nucleus,
in this case 76As (right figure).
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Figure 58: Neutrinoless β−β− decay of 76Ge. Left side: Schematic diagram of the light-Majorana-neutrino-
mediated 0νβ−β− decay; Right side: Schematic level scheme and virtual transitions through Jπ states of 76As.

In Fig. 59 the neutrinoless double positron decay (0νβ+β+ decay, left figure) and the neutri-
noless positron/electron-capture (0νβ+EC decay, right figure) are shown schematically. In the
latter decay only one positron (e+) is emitted and a bound electron from an atomic orbital is
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captured, leaving a hole (H) in the orbital. The corresponding two-neutrino decays can be ob-
tained from the diagrams by cutting the Majorana-neutrino propagator and letting the resulting
two neutrinos fly free. The positron-emitting DBDs have recently been reviewed in [21].
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Figure 59: Neutrinoless positron-emitting DBD. Left side: Schematic diagram of the light-Majorana-neutrino-
mediated 0νβ+β+ decay. Right side: Schematic diagram of the light-Majorana-neutrino-mediated 0νβ+EC decay.
The symbol “H” denotes a hole left in the atomic orbital from which the electron was captured.

In Fig. 60 we depict the two-neutrino double-electron capture (2νECEC, left side) and the
radiative (R0νECEC, middle) and resonant (R-ECEC, right side) neutrinoless double-electron
captures, discussed first in [529] and later in [530]. The resonant neutrinoless double electron
capture (R-ECEC) has been reviewed in [21, 531] and extensively studied in [532]. The R-ECEC
process is characterized by the possibility for a large resonance enhancement effect [530, 533] by
the coincidence of the energies of the initial and final states of the process.
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Figure 60: Double-electron-capture (ECEC) decays. Left side: Schematic diagram of the two-neutrino ECEC
decay (2νECEC). Middle: Schematic diagram of the light-Majorana-neutrino-mediated radiative neutrinoless
ECEC decay (R0νECEC). Right side: Schematic diagram of the light-Majorana-neutrino-mediated resonant
neutrinoless ECEC decay (R-ECEC). The symbols “H” denote holes left in the atomic orbitals from which the
two electrons were captured.

In Fig. 61 we display the possible two-neutrino DBD transitions from the mother nucleus
124Xe to the lowest four final states in the nucleus 124Te. Along with the arrows are shown the
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possible modes of decay (β+β+, β+EC and ECEC) and the corresponding calculated half-lives
[534]. Here it should be noted that the Q value of the ECEC mode (QECEC) is always the largest,
roughly6 the nuclear mass difference between the mother and daughter nuclei plus 2mec

2, where
me is the electron rest mass. The Q value of the process β+EC is smaller roughly by the energy
2mec

2 and the Q value of the process β+β+ is smaller by roughly the energy 4mec
2 than QECEC.

This is why in some cases only the ECEC mode is possible (see the tables of Sec. 5.4).

124
52Te72

0+gs

2+1
602.73 keV

2+2
1325.51 keV

0+1
1657.28 keV

2−gs
124
53I71

0+gs
124
54Xe70

ECEC: (4.0− 88)× 1020, β+EC: (9.4− 97)× 1021

β+β+: (1.7− 38)× 1026

ECEC: (2.3− 11000)× 1028, β+EC: (8.8− 25000)× 1026

β+β+: (1.0− 32)× 1043

ECEC: (1.1− 3700)× 1030, β+EC: (2.0− 13000)× 1031

ECEC: (1.7− 580)× 1025, β+EC: (4.4− 38000)× 1032

Figure 61: Two-neutrino DBD of 124Xe. Shown are the possible modes of positron-emitting decays and their
computed half-lives in units of yr [534].

In Fig. 62 we show the leading neutrinoless DBD transitions between 124Xe and 124Te. The
decays to the final 2+ states are much suppressed [2] and are not included here. The Q values
of the neutrinoless processes obey the same hierarchy as do the two-neutrino processes. Since
in the R-ECEC process no leptons appear in the final state (see the right panel of Fig. 60) to
carry away the decay energy, QECEC = mi − mf , where mi (mf ) is the atomic mass of the
initial (final) atom, the decay can proceed only by a coincidence of the initial and final energies
such that an excited final state with excitation energy E = E∗+electron binding, E∗ being
the nuclear excitation energy, has to be available such that the so-called degeneracy parameter
d = QECEC −E is small enough to match the (nuclear plus atomic) width Γ of the excited final
state. This width is presented in Fig. 62 as a shaded Lorentzian distribution. In the figure it
is also shown that two atomic K-shell X-rays are emitted after the R-ECEC process. For more
details on the R-ECEC mechanism and its relation to the NMEs, see the review [531].

5.1.2. Phase-space factors

Early compilations of the phase-space factors include Refs. [2, 524, 525, 526], both for the
electron- and positron-emitting modes of DBD. A rather comprehensive set of the 2νβ−β− and
0νβ−β− phase-space factors was compiled in [535]. The calculations were done by using exact
Dirac wave functions with finite nuclear size (uniform charge distribution in a sphere), including

6the binding energies of the two captured electrons should be subtracted.
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Figure 62: Neutrinoless DBD of 124Xe to the 0+ finals states in 124Te. Shown are the possible modes of positron-
emitting decays and their computed half-lives in units of yr [534]. The resonant ECEC decay (R-ECEC) to the
2854.87-keV state is followed by two K-shell X-rays.

electron screening in the Thomas-Fermi approximation. Single and summed electron spectra
and their angular correlations were also given. In [536] phase-space factors for the β−β− decays
to the ground state and first 0+ state were computed by solving numerically the Dirac equation
for finite nuclear size and electron screening using a Coulomb potential derived from a realistic
proton density distribution in the daughter nucleus.

In [537] the phase-space factors for positron-emitting modes of the two-neutrino and neu-
trinoless DBDs were computed by using the same calculational procedures which was used in
the previous β−β− paper [535]. In the work [538] the same authors computed the phase-space
factors for the various β−β− Majoron-emitting modes, and in [539] phase-space factors related
to the ground-state and excited-state transitions in a left-right symmetric model were evaluated.
In a recent work [540] the phase-space factors of the electron and positron-emitting modes of
the two-neutrino DBD have been compiled by solving numerically the Dirac equation and in-
cluding finite-nuclear-size and screening effects. In [237] a large number of phase-space factors
for numerous A ≥ 100 nuclei, both for the electron-emitting and positron-emitting 2νββ decays
to the ground state and to many excited 0+ and 2+ final states was presented. In [541] a new
method was introduced to compute the phase-space factors in a accurate way.

Many of the calculated phase-space factors in the above-mentioned works have been compared
with earlier calculations, e.g. [2, 524, 525, 526]. Consistency with these older results has been
achieved and an improved accuracy, as well. Today the phase-space factors are accurately known
due to accurate solvers of the Dirac equation and improved methods in handling the screening
corrections and finite size of the nucleus. In addition, the decay Q values are better-known now
than few decades ago.
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5.2. Basic features of the 2νββ decays

The basic features of the 2νββ decays were briefly introduced in Sec. 1.4. As mentioned
before, the virtual transition proceed through 1+ state of the intermediate nucleus. The corre-
sponding intermediate contributions can be presented, e.g., as running sums, i.e., as functions of
the excitation energy in the intermediate nucleus, as done in Refs. [542, 543]. The 2νββ strength
functions and the associated Gamow-Teller running sums were given also in the ISM framework
[236, 544, 545]. The 2νββ-decay strength functions of A = 128, 130 nuclei were analyzed also
in the framework of the microscopic interacting boson-fermion-fermion model (IBFFM-2) in the
work [546]. Extremely large, two valence-shell ISM analysis of the 2νββ and 0νββ NMEs was
performed in [231]. The pairing-vibrational aspects of the 2νββ decays of 128,130Te were studied
within the framework of a hybrid model in [547]. In [548] an effective theory to describe β
and ββ decays was proposed. In this theory one can estimate the uncertainties based on power
counting of the included degrees of freedom.

The relation of the 2νββ NMEs and 0νββ NMEs has been studied in [549] in the pnQRPA
formalism and in [550] in an energy-density-functional formalism. The latter study was done
in a chain of cadmium isotopes assuming fictitious DBD transitions. In the work [551] the
two-neutrino Gamow-Teller and Fermi transitions were studied in an exactly solvable model,
expressible using generators of the SO(8) group. The dependence of the energy denominator
of the 2νββ NMEs on lepton energies was studied by using a Taylor expansion in [552]. The
expansion possibly allows the determination of the effective value of the weak axial coupling gA

by 2νββ experiments.
A special class of theoretical approaches to the 2νββ decay is formed by the calculations

resorting to the single-state-dominance hypothesis (SSDH) where the 2νββ-decay half-life is
dominated by the virtual transitions going through the lowest 1+ state, in case it is the ground
state of the DBD intermediate nucleus. Early studies of the feasibility of the SSDH were per-
formed in [553, 554, 555], with further studies on the implications to the single-electron energy
distributions and angular correlations of the outgoing electrons in [556]. A more comprehensive
SSDH study was performed in [557]. All these studies were performed in the spherical pnQRPA
framework. A study using pnQRPA based on a deformed Skyrme Hartree-Fock mean field was
accomplished in [558].

The FSQP (Fermi Surface Quasi Particle model) is a semi-empirical model to evaluate the
2νββ NMEs. [559, 560, 561]. Experimental single β±/EC NMEs for Fermi-surface (low-lying)
quasiparticle states in the intermediate nucleus are used. The FSQP NMEs reproduce well
the observed NMEs. Experimental 2νββ NMEs are briefly described in Sec. 5.5.1, where the
semi-empirical FSQP NMEs are also included for comparison.

5.3. Basic features of the 0νββ decays

The basic features of the 0νββ decays were briefly introduced in Sec. 1.4 and they have been
partly discussed in the earlier reviews [2, 18, 21, 23, 24]. Specific attempts to describe the 0νββ
NMEs include the quark-model-based model advocated in [562, 563, 564] and a formulation of the
0νββ problem in terms of nuclear moments, as devised in [565, 566]. An interesting derivation of
a general Lorentz-invariant parametrization for the long-range part of the 0νββ decay was done
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in [567] and for the short-range part in [568]. The 0νββ-decay NMEs have been calculated also by
considering the contributions coming from the right-handed weak currents (for a review of the old
calculations see [2]). Some of the recent works for the decays to the 0+ final ground state include
[569] in the pnQRPA formalism and [570] in the ISM formalism. In the work [571] the feasibly
of 0νββ decays to 2+ excited final states was studied. There the light-Majorana-neutrino-mass
mediated decay was found to be largely suppressed relative to decay to the final ground-state.
In [572] the consequences of the assumption that the Pauli exclusion principle is violated for
neutrinos and they obey, at least partially, the Bose-Einstein statistics was surveyed. In [573]
and interesting new decomposition of the 0νββ NMEs was suggested, implying connection to
the two-nucleon transfer experiments, and in [574] the importance of collective correlations in
0νββ decay were analyzed within a generator-coordinate method (GCM). In [575] the role of
octupole correlations was analyzed for the 0νββ decay of 150Nd using a relativistic energy-density
functional formalism combined with the GCM.

5.3.1. Nucleonic currents and nucleon form factors

The nucleon-current form factors and additional nucleon-current contributions stemming
from the induced currents (weak magnetism and pseudoscalar, see the form of the vector current
(8) and axial-vector current (9) in Sec. 1.2) play a role in the neutrinoless ββ decays [576]. The
nucleon-current form factors were present also in an earlier 0νββ model where they were derived
from a quark model with harmonic confinement [562, 563, 564]. The effects of the higher-order
terms in the nucleonic current and the nucleon-current form factors is shown in Table 15. It
is seen that the higher-order terms (+A) and the form factors (+A+B) successively reduce the
absolute value of the 0νββ NME. In these calculations [577, 578], as also in [576], the dipole
form (10) has been adopted. A further study of these effects was performed recently [579].

Table 15: Effects of successive corrections to the magnitude of the pnQRPA 0νβ−β− NMEs for decays of current
experimental interest. Shown are the mother nucleus (column 1), the adopted value of the particle-particle
strength (column 2) and the absolute value of the bare NME. The symbols denote A: induced currents (higher-
order terms of the nucleonic current); B: effect caused by the form factors; C: Jastrow short-range correlations;
D: UCOM short-range correlations for the Bonn-A nucleon potential [577, 578].

Nucleus gpp Bare value +A +A+B +A+B+C +A+B+D

76Ge 1.00 8.529 7.720 6.356 4.723 6.080
82Se 1.00 5.398 4.826 3.914 2.771 3.722
96Zr 1.085 5.308 4.814 3.736 2.454 3.521

100Mo 1.08 6.126 5.571 4.358 2.914 4.113
116Cd 0.99 5.726 5.172 4.263 3.169 4.076
128Te 0.905 7.349 6.673 5.260 3.563 4.979
130Te 0.87 6.626 6.021 4.777 3.285 4.530
136Xe 0.74 4.715 4.269 3.478 2.537 3.317
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5.3.2. Short-range correlations (SRC)

The traditional way [580] to include short-range correlations in the 0νββ NMEs was to
introduce the Jastrow correlator function fJ(r), where “J=Jastrow”. The Jastrow function
depends on the relative distance r = |r1 − r2| of two nucleons, and in the Jastrow scheme one
replaces the bare 0νββ operator O by a correlated operator OJ by the simple procedure

(0+
f ||O||0+

i )→ (0+
f ||OJ||0+

i ) = (0+
f ||fJOfJ||0+

i ) . (147)

A typical choice for the function fJ is

fJ(r) = 1− e−ar2
(
1− br2

)
, (148)

with a = 1.1 fm−2 and b = 0.68 fm−2. As a result, the Jastrow function effectively cuts out the
small-r part from the relative wave function of the two nucleons. For this reason, the traditionally
adopted Jastrow procedure does not conserve the norm of the relative wave function. In the left
panel of Fig. 63 are depicted two nucleons in a nucleus and their relative distance r = |r1 − r2|.
The right panel presents the functional form (148) of the Jastrow correlator.

0.0 0.5 1.0 1.5 2.0

r12 [fm]

0.0

0.5

1.0

f(
r 1

2)

Figure 63: Two nucleons in a nucleus. Left figure: Shown are their coordinates r1 and r2, and their relative
distance r12 = r1 − r2. Right figure: Jastrow correlator f as a function of the relative distance r12.

To circumvent the difficulties associated with the use of a Jastrow function one can adopt
the more refined unitary correlation operator method (UCOM) [581]. The UCOM was first
elaborated in the context of the DBD, within the pnQRPA framework, in [582] and later, e.g.,
in [577, 578, 583]. The UCOM SRCs were studied in the ISM framework in [200]. The UCOM
creates the correlated many-nucleon state by a unitary correlation operator C:

|Ψ̃〉 = C|Ψ〉 , C = CΩCr , (149)

where CΩ represents tensor correlations and Cr represents central correlations. In this scheme
it is equivalent to use correlated states or correlated operators:

〈Ψ̃|A|Ψ̃′〉 = 〈Ψ|C†AC|Ψ′〉 = 〈Ψ|Ã|Ψ′〉 . (150)

The exact form of the operator C is obtained by finding the minimum of the Hamiltonian matrix
element 〈Ψ|C†HC|Ψ〉. Therefore, the choice of the two-body interaction in H affects also the
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Figure 64: Effects of various short-range correlators on the values of the 0νβ−β− multipole NMEs M0ν(Jπ) of
(42). Left panel: The ISM-computed NMEs for the decay of 48Ca ; Right panel: The pnQRPA-computed NMEs
for the decay of 76Ge [582].

form of C. Explicit expressions for the operators Cr and CΩ can be found in Refs. [581, 584].
The minimization has been done for the Bonn-A and Argonne AV18 potentials in [585] and the
effects of the resulting UCOM SRCs for the Bonn-A potential are shown in Table 15.

The UCOM treats the SRCs smoothly and not as violently as the Jastrow method. This
shows as a less drastic reduction in the values of the computed 0νββ NMEs.This is clearly visible
in the numbers of Table 15 and in Fig. 64 where the multipole decomposition of Eq. (42) has been
presented for the 0νββ decays of 48Ca (left panel) and 76Ge (right panel) for the mentioned two
nuclear potentials. In fact, just adding the form factors (+A+B in Table 15) almost produces
the final magnitude of the 0νββ NME (+A+B+D in Table 15), without taking into account the
SCRs.

In [586] the coupled cluster method (CCM) was used to evaluate the effect of the SRCs on
the 0νββ NMEs since it provides directly the correlated two-body wave functions. To facilitate
numerical calculations with the two adopted nucleon-nucleon (NN) potentials, the CCM SRCs
were converted to a Jastrow-like analytical correlator function of the form

fCCM(r) = 1− ce−ar2
(
1− br2

)
, (151)

where now

a = 1.59 fm−2 ; b = 1.45 fm−2 ; c = 0.92 (for the Argonne NN potential) , (152)

a = 1.52 fm−2 ; b = 1.88 fm−2 ; c = 0.46 (for the CD-Bonn NN potential) . (153)

The effects of these SRCs were studied, e.g., in [587] using the ISM. A different type of study was
performed in [588] where the nucleon-nucleon correlations were studied in both the coordinate
and spin space for the 0νββ decay of 48Ca. A 20% decrease of the associated NME relative to
the ISM NME was recorded.

5.3.3. Decompositions of the 0νββ NMEs

The decomposition (42) for the ground-state-to-ground-state 0νβ−β− decays of 48Ca and
76Ge are shown in Fig. 64. This type of decomposition was also discussed recently in [589]. The
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same decomposition is shown for the GT part of the total NME (this is the dominant NME)
in the case of the ground-state-to-ground-state 0νβ+β+ decay of 124Xe in the upper panel of
Fig. 65. In the lower panel of the figure shown is the complementary decomposition

M0ν =
∑

J ′

M0ν(J ′) , (154)

where J ′ is the angular momentum of the decaying nucleon pair. This decomposition has fre-
quently been studied in the framework of the pnQRPA (see [590] for a review), but also in the
ISM [591] and in the microscopic interacting boson model (IBM-2) [592]. The decomposition
can also be probed by studying the angular momenta and parities of the neutron pairs that are
changed into proton pairs in the 0νβ−β− decay [201]. The usual multipole decomposition (42)
has been studied in the case of the deformed QRPA in [593].
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Figure 65: Decomposition (42) [upper panel] and (154) [lower panel] of the GT NME for the ground-state-to-
ground-state 0νβ+β+ decay of 124Xe (based on calculations in [534]).

In Fig. 64 one may note the rather prominent role of the 1+ and 3+ contributions. The
same can be concluded from the ISM study [589] for 48Ca. In the right panel, for the 0νβ−β−

decay of 76Ge, the 2− contribution is the largest one. A similar trend continues for the 0νβ+β+

decay of 124Xe, as seen in the upper panel of Fig. 65. For many other DBD systems the role of
the mentioned multipoles is important for both the decays to the ground state (see, e.g., [248]
for the pnQRPA and [545] for the ISM) and to the excited 0+ states (see, e.g., [594]). In the
decomposition (154), depicted in the lower panel of Fig. 65, the dominant contribution comes
from a J ′ = 0 paired state and the contributions stemming from the higher J ′ pairs tend to
cancel it in a coherent way. This is a general feature for all calculational frameworks and for
all ground-state-to-ground-state neutrinoless DBD transitions (see, e.g., [583]). For the 0νββ
transitions to excited 0+ states this pattern no longer holds [594]. The decompositions for the
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heavy-Majorana-neutrino exchange have been analyzed in [248] for the pnQRPA and in [545] for
the ISM.

In addition to the above decomposition analyses, the contributions from the intermediate
Jπ states can be presented as running sums, i.e., as functions of the excitation energy in the
intermediate nucleus [595].

5.3.4. Radial dependence of the 0νββ NMEs

The radial dependence for the light-Majorana-neutrino-mediated 0νββ NME is presented in
Fig. 66 [248]. The total NME is obtained by integration:

M0ν =

∫ ∞

0

M0ν(r)dr , (155)

where r is the relative distance between the decaying nucleons. The radial dependencies were
also treated, e.g., in [583, 586, 590] for the pnQRPA-based models and in [200] for the ISM.
In [596] the 0νβ−β− decays and in [597, 598] the positron-emitting decays were studied for the
radial dependence in the projected Hartree-Fock-Bogoliubov (PHFB) model for deformed nuclei.
Different short-range correlations were added to the PHFB framework in [599] for the 0νβ−β−

emitters, and the corresponding radial dependencies were recorded.
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Figure 66: Radial rependence of the Majorana-neutrino-mediated 0νββ NMEs M0ν
K (r), K = F, GT, T, and the

total NME M0ν(r) for the decay of 76Ge [248]. Left panel: for light Majorana neutrino ; Right panel: for heavy
Majorana neutrino.

In all these studies it is clear that the main contribution to the 0νββ NMEs is coming from
short distances, below 2 − 3 fm, and an accurate description of the physics involving distances
r ∼ 1 fm, or equivalently exchanged momenta q ∼ 200 MeV, becomes important. Since such
exchanged momenta occur at the Fermi surface of the many-nucleon system it is natural that
the mentioned distances are the relevant ones, contributing most to the NMEs. In addition, since
on average the distance between the nearest neighbors is7 r ∼ 2 fm it means that the nucleons
participating in the 0νββ decay are mostly nearest neighbors.

7The radius of the nucleus is R = 1.2A1/3 fm.
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5.3.5. Seniority truncation and the 0νββ NMEs

In [600] the effects of the seniority truncation on the value of the 0νββ NMEs were analyzed
within the ISM framework. In this study the QRPA was considered to be a low-seniority ap-
proximation of the ISM, i.e. corresponding to seniorities of at most 4. Since the values of the
0νββ NMEs were found to decrease as functions of the included higher-seniority components
it was concluded that the QRPA could overestimate the values of the 0νββ NMEs by several
tens of percent. Similar results were obtained in the study ISM study of [200] and in the energy
density functional (EDF) method study of [601]. Related to this, also the influence of the nuclear
deformation has been addressed in [601], as also in [591] for the ISM and in [592] for the IBM-2.

5.3.6. Deformation effects

Nuclear deformation has clear effects on the values of the DBD NMEs, ranging from some 10%
to several tens of percent for typical nuclei involved in ββ decays, the effect being strong for the
β−β− decay of 150Nd. Deformation effects have been addressed in the shell-model like theories
(with seniority degrees of freedom) in [591, 544] for the ISM and in [592] for the IBM-2. In the
Hartree-Fock(-Bogoliubov) type of calculations the effects of deformation have been addressed,
e.g., in [558, 597, 602, 603, 604, 605, 606]. Usually the QRPA-type of models use a spherical
formalism with a simple overlap factor with or without taking into account the different BCS
occupation amplitudes of the mother and daughter nuclei. These spherical QRPA models have
been extended to deformed QRPA approaches, e.g. in [593, 607, 608, 609, 610, 611, 612, 613].

It has been found that deformation itself reduces the magnitudes of the DBD NMEs, and
in particular the difference in the deformation of the DBD parent and daughter nuclei. In the
QRPA-type of models the deformation difference is reflected in the overlap factor of the two
sets of intermediate states, generated using separately the DBD initial and final nuclei (see, e.g.,
[607, 611]). The overlap problem has been discussed extensively in [24, 614, 615, 616, 617].

In [618] a calculation of the 0νββ NMEs was performed by using a state-of-the-art Gogny-
type energy density functional. The effects of deformation and difference in deformation were
discussed in a comprehensive way. In a recent publication [184] the effects of axial and triaxial de-
formation were discussed for the 0νβ−β− NMEs of 48Ca, 76Ge and 82Se in a generator-coordinate
framework using realistic shell-model interactions.

5.3.7. Partial restoration of the isospin symmetry

In the pnQRPA calculations of the 0νββ NMEs the gpp parameter is usually adjusted by
fitting the measured 2νββ-decay half-lives, combiled recently in [259]. This procedure was
followed in, e.g. [577, 578, 619, 620]. Recently, an improved method was proposed in [247]
where the NMEs corresponding to the exchange of light Majorana neutrinos were treated for the
conservation of the isospin symmetry. There the particle-particle parts of the pnQRPA matrices
were divided into isoscalar (T = 0) and isovector (T = 1) parts by the decomposition

gpp〈pn; Jπ|V |p′n′; Jπ〉 → gT=1
pp 〈pn; Jπ;T = 1|V |p′n′; Jπ;T = 1〉

+gT=0
pp 〈pn; Jπ;T = 0|V |p′n′; Jπ;T = 0〉 . (156)

One can now adjust the parameters gT=1
pp and gT=0

pp independently in the following way: The
isovector parameter gT=1

pp can be adjusted such that the Fermi NME, similar to the Gamow-Teller
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NME of (19), but with intermediate Fermi transitions instead of Gamow-Teller ones, vanishes
and thus the isospin symmetry is restored for the 2νββ decay. In this way practically all the
Fermi strength goes to the double IAS (isobaric analog state), as it should. This procedure also
leads [247] to the approximate isospin symmetry gT=1

pp ≈ gpair
p ≈ gpair

n , where gpair
p,n are the pairing

strengths adopted for protons and neutrons in the practical calculations. One can then keep this
adjusted value of gT=1

pp in the further calculations for the 0νββ decay. One can independently vary
gT=0

pp to reproduce the measured 2νββ-decay half-life and again use this value in the calculation
of the 0νββ NMEs.

In the ISM the isospin symmetry is automatically included in the formalism. As we saw
above, this is not the case with the pnQRPA formalism. Also the IBM-2 formalism lacks isospin
symmetry and it has to be restored explicitly, as done in the recent work [621]. In [601] the
effects of the isospin symmetry were studied in the framework of the ISM and it was found
that imposing isospin symmetry reduces drastically the magnitude of the Fermi NME but not
the Gamow-Teller NME of the 0νββ decay, as was also found in the pnQRPA calculations in
[247], and later in similar calculations by [248]. In [601] also an advanced, beyond-mean-field
Gogny-based energy-density-functional (EDF) approach was used and its results were compared
with the results of the ISM. It was found that due to the lack of isospin restoration in the EDF
aproach its 0νββ Fermi NME was large as compared with the Gamow-Teller NME. Lately a lot
of effort has been put in developing isospin-invariant density-functional methods. In [622] an
isospin invariant Skyrme EDF approach was developed and in [623] good isospin was achieved
within a no-core configuration-interaction approach rooted in a multireference EDF theory.

5.3.8. Closure approximation

All theory frameworks, except the pnQRPA and some ISM calculations mentioned below,
have to use the closure approximation when evaluating the 0νββ NMEs. In the closure approx-
imation the sum over the intermediate Jπ multipole states is removed by assuming an average
excitation energy of these states so that the summation can be replaced by a unit operator. This
was deduced to be a rather good approximation [624]. This approximation has recently been
studied quantitatively both in the pnQRPA [549] and in the ISM [589] formalisms. In both stud-
ies it was found that the nonclosure 0νββ NMEs are about 10% larger than the closure ones.
It was also found that the contribution from the 1+ intermediate states mostly explains this
difference. In [625] a method was suggested, based on the analysis of the 0νββ NMEs of 48Ca,
76Ge and 82Se, to estimate the optimal value of the average closure energies at which the closure
approximation gives the most accurate 0νββ NME. This work was extended to description of
the 82Se decay in [626] and further to the decay of 76Ge in [627].

5.3.9. Chiral two-body currents

In [222] it was shown that the chiral two-body currents, built in the chiral effective field
theory (χEFT), introduce a renormalization, geff

A (q2), that deviates from the one-body dipole
gA(q2) of (10) the less the higher the momentum exchange q is. The involved meson-exchange
currents were consistently predicted by [45] and later extended and derived in [46, 47, 48]. In
[222] it was estimated, by using the ISM many-body framework in the mass range A = 48−136,
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that the effect of the two-body currents on the value of the 0νββ NME is between -35% and 10%
depending on the (uncertain) values of the χEFT parameters, the smallest corrections occurring
for A = 48. In [628] the effect of the two-body currents was studied in the framework of the
pnQRPA in the mass range A = 48 − 136, and a quenching effect of 10 − 22% was obtained
for the 0νββ NMEs, the 10% effect pertaining to the case of 48Ca. In a recent work [629] the
quenching of the 0νββ NMEs was estimated by studying the contributions stemming from chiral
two-body currents. The exact amount of quenching is, however, yet to be determined due to
technical difficulties in the calculations.

5.3.10. Disentangling the decay mechanism

If the 0νββ decay will be detected then the question “What are the underlying mecha-
nisms of 0νββ decay and how to identify them?” rises immediately. There are several possible
mechanisms possibly contributing to the 0νββ-decay amplitude in the general case of CP non-
conservation: light Majorana-neutrino exchange, heavy left-handed and right-handed Majorana-
neutrino exchanges, lepton-charge nonconserving couplings in supersymmetric theories with R-
parity breaking, squark-neutrino mechanisms, leptoquark exchange, etc. [630, 631, 632, 633].
In these cases measurements of two or more 0νββ-decaying nuclei is necessary to (possibly)
disentangle the different noninterfering or interfering mechanisms, the noninterfering case being
simpler (e.g. light Majorana neutrino and heavy right-handed neutrino). It turns out that the
measurements of the half-lives with rather high precision and the knowledge of the relevant
NMEs with relatively small uncertainties is needed to enable determination of the mechanism(s)
of the 0νββ decay. In a later study [634] it was found that even to distinguish between the light
and heavy Majorana-neutrino exchange is difficult due to the uncertainties in nuclear-structure
calculations concerning the two-nucleon interaction, the mean field approximation and the poorly
known effective value geff

A of the axial-vector coupling. In [539] the phase-space factors for the
corresponding interference terms were derived for further analysis.

A more traditional way to try to distinguish between different 0νββ-decay mechanisms is the
observation and calculation of the single-electron/positron spectra and the angular correlations
between the outgoing electrons/positrons. These spectra and correlations have been presented,
e.g., in [524, 535, 569] for the 0νβ−β− light Majorana-mass mode and in [524, 569] also for
the right-handed-currents modes. For the right-handed-currents modes the single-electron and
correlation spectra depend on the NMEs and in [524] simple shell-model NMEs and in [569]
QRPA-based NMEs were used. In [524, 535] the spectra and correlations have been presented
also for the 2νβ−β− mode. In [538] the spectra and correlations have been presented for the
Majoron-emitting 0νβ−β− decay. The single-positron spectra and angular correlations between
the outgoing positrons have been presented in [537] for both the 2νβ+β+ and 0νβ+β+ modes.

A thorough analysis of the angular correlations in the case of interference of the light
Majorana-neutrino mass mode and the right-handed-currents mode was performed in [635] us-
ing NMEs based on the QRPA and ISM model frameworks, as also on the VAMPIR approach
(see [624]). It was concluded that the only realistic way to obtain information on the interfer-
ence of the mass mode and the right-handed modes is to perform a simultaneous analysis of a
high-sensitive 0νβ−β− experiment and a high-sensitive 0νβ+/EC experiment. In [630] a formu-
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lation of the angular correlation of electrons emitted in 0νββ decay was presented for a general
Lorentz-invariant effective Lagrangian containing leptonic and hadronic charged weak currents.
As an example an analysis of the left-right symmetric models was performed and it was con-
cluded that the sensitivity of the angular correlation to the mass of the right-handed W boson
increases with decreasing value of the effective Majorana-neutrino mass meff . In [570] a survey of
the interference effects of the light Majorana-neutrino mass mode and the right-handed-currents
mode was performed for 82Se decay by using NMEs calculated in the ISM framework. Conclu-
sions in line with [524] were reached concerning the distinguishability between the mass mode
and the right-handed λ and η modes: the single-electron spectrum is likely to be enough to
distinguish between the mass mode and the λ mode, whereas one needs the angular correlations
to distinguish between the mass mode and the η mode.

A clear conclusion of the above considerations is that much more theoretical and experimental
work is needed in order to achieve the goal of disentangling the possible different mediating modes
of the 0νββ decay. The 0νββ decay has not even been detected yet and the NMEs necessarily
involved in the analyses are still too inaccurate to serve the purpose.

5.4. Survey of the calculations of two-neutrino and neutrinoless ββ decays

A lot of calculations have been performed for different nuclear isobaric systems, for both
the 2νββ and 0νββ decays. Below we compile the available calculations for each DBD decay
separately. We also give a brief description of the theory formalism behind the calculations
(Sec. 5.3). It may be mentioned here that the 0νββ calculations can be greatly accelerated by
the use of the Horie-Sasaki method [636], as done in, e.g., [562, 563, 564, 637, 638]. A further
acceleration of the calculations can be achieved via recursive methods [638]. In [639] the proton-
neutron pairing amplitudes and nuclear deformation were treated as generator coordinates to
allow larger single-particle spaces than the ISM.

In Tables 16–18 we quote the available calculations of the NMEs for ground-state-to-ground-
state DBD transitions in a comprehensive set of isobaric systems. In these calculations the
light-Majorana-neutrino exchange was considered for the 0νββ mode of decay. The articles
considering also the heavy-Majorana-neutrino exchange in the 0νββ decay are marked with
an asterisk (∗). In addition to the two 0νββ-decay modes considered in Tables 16–18, also
the NMEs for R-parity violating SUSY (supersymmetric) modes in the 0νββ decay have been
calculated, e.g., in [640, 641]. Furthermore, Majoron emission [596, 642] and contributions of
sterile neutrinos have been discussed as well [596, 643].

In Tables 19–21 we compile the available calculations of the NMEs for ground-state-to-
excited-state DBD transitions in a comprehensive set of isobaric systems and nuclear final states
Jπk , where π denotes the parity and k denotes the kth excited state of this particular multipolarity.
The (nuclear) excitation energy of this state is denoted by Eexc. In these calculations the light-
Majorana-neutrino exchange was considered for the 0νββ decay mode. Hereafter references cited
in the tables are in chronological order.

The DBD NMEs of Tables 16–20 have been calculated in a number of different theory frame-
works. These theories include the following:

Shell-model-like theories :
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• The ISM, used in [180, 199, 200, 236, 570, 544, 545, 579, 591, 625, 626, 627, 671].

• Deformed shell model (DSM) based on Hartree-Fock states [691].

• Deformed pseudo-SU(3) model, advocated in [660, 661].

Mean-field models :

• PHFB (projected Hartree-Fock-Bogoliubov) model for deformed nuclei [596, 597, 598, 599,
603, 604, 606, 642, 670, 677].

Models based on fermios-to-bosons mapping :

• The microscopic interacting boson model (IBM-2) [243, 592, 621, 683, 689] and the micro-
scopic interacting boson-fermion-fermion model (IBFFM-2) [546].

Models based on energy-density functionals :

• A state-of-the-art Gogny-type energy density functional [550, 618, 685, 687] with beyond-
mean-field effects incorporated using the generating coordinate method (GCM) with particle-
number and angular-momentum projection. Also shape mixing is included.

• Beyond-mean-field covariant density functional theory (BMF-CDFT), where correlations
beyond the mean field are introduced by configuration mixing of both angular-momentum
and particle-number projected quadrupole deformed mean-field wave functions [693]. Also
shape fluctuations are taken into account [694].

• A relativistic energy-density functional with generator coordinates [575].

(Q)RPA type of models :

• Spherical QRPA and pnQRPA (see Sec. 3.1.1 for more information) with realistic Bonn
one-boson-exchange-based effective G-matrix interactions, as used in [178, 181, 237, 238,
247, 248, 534, 577, 578, 582, 620, 645, 646, 654, 659, 662, 663, 668, 669, 681, 684, 690].

• Spherical pnQRPA with effective G-matrix interactions and with particle-number projec-
tion [644, 645].

• Spherical renormalized pnQRPA (pn-RQRPA) with effective G-matrix interactions [649].
This extension of the pnQRPA was developed in [202, 203] and further discussed, e.g., in
[650, 653, 665, 666]. A similar method, the self-consistent QRPA (SCQRPA or SRQRPA),
was discussed, e.g., in [648, 656, 666], and a second quasirandom phase approximation in
[657, 658, 664]. A fully renormalized QRPA approach was advocated in [204, 205, 206].
Schematic bosonic models to be tested in the context of Fermi-type of schematic DBDs
were also considered [651, 652].

• A higher QRPA scheme in the proton-neutron channel, pnMAVA (proton-neutron micro-
scopic anharmonic vibrator approach) [674, 676].
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• Deformed QRPA based on deformed Wood-Saxon or deformed Skyrme Hartree-Fock mean
fields [558, 602, 695]. Deformed QRPA with a realistic Bonn-CD force [542, 611, 686].

• Proton-neutron QRPA in angular-momentum-projected basis for deformed nuclei (de-
formed pnQRPA, pn-dQRPA) with schematic particle-hole and particle-particle forces
[608, 609, 610, 612, 613, 672].

• Continuum QRPA as discussed in [673].

• Axially deformed Skyrme QRPA with the SkM∗ energy-density functional [688]

• An RPA-based hybrid model able to describe the interaction between neutrons in a super-
fluid phase and protons in a normal phase, with special application to the 128,130Te isotopes
[547].

The ISM, pnQRPA, QRPA, IBM-2 theory frameworks have been briefly discussed in Sec. 3.1.1.
The pnQRPA and QRPA model frameworks have been extensively discussed in the monograph
[56].

5.5. Overview of the DBD experiments

Neutrinoless DBD NMEs M0ν are not known experimentally since the neutrinoless DBD
rates and the neutrino mass are not yet measured. On the other hand, the two-neutrino DBD
rates are measured experimentally for DBD nuclei of current interest, and thus their NMEs, M2ν ,
are known experimentally, as given in the review articles [4, 16, 17, 18, 23], and are summarized
in [259]. Actually, the two-neutrino DBD and the neutrinoless DBD do not have the same
transition operators and mechanisms, but their NMEs reflect some common nuclear features.
Thus the observed two-neutrino NMEs are used to help evaluate the neutrinoless DBD NMEs.

5.5.1. Experimental NMEs for two-neutrino DBDs and FSQP

In this section, we discuss briefly experimental two-neutrino DBD NMEs and the FSQP
(Fermi Surface Quasi Particle) NMEs based on experimental single-β NMEs [16, 559, 560, 561].
Here the experimental and FSQP NMEs include the renormalization coefficient (geff

A /gA) and all
other nuclear effects. Features of theoretical two-neutrino NMEs are discussed in Sec. 5.2 and
the calculated values are surveyed in Sec. 5.4.

The two-neutrino DBD NMEs are shown in Table 22. The 2νβ−β− half-lives of nuclides
with a Q value of at least 2 MeV, except for 110Pd and 124Sn , are known experimentally. The
2νECEC, 2νβ+EC and 2νβ+β+ DBDs are not well studied because of the small involved phase
space. Here we discuss the DBDs of 78Kr, 106Cd and 130Ba, as shown in Table 22. The NME for
A(Z,N)↔ C(Z + 2, N − 2) is expressed as

M2ν =
∑

i

M−
i M

+
i

∆i

, (157)
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Table 16: References for available DBD calculations, performed since the previous comprehensive review [2], for
different ground-state-to-ground-state DBD transitions. The 0ν-DBD results refer to the light- and/or heavy-
Majorana-neutrino-mediated 0νββ decays. The references which consider also the heavy-Majorana-neutrino
exchange are marked with an asterisk (∗).

Transition Decay mode 2ν-DBD references 0ν-DBD references

48
20Ca28 → 48

22Ti26 β−β− [206],[231],[544],[602], [609], [200],[231],[247],[566], [582],[591],
[616],[671] [616],[618], [621]∗,[628],[683]∗,

[687],[694]
58
28Ni30 → 58

26Fe32 β+EC, ECEC [621] [621]∗,[689]
64
30Zn34 → 64

28Ni36 β+EC, ECEC [621] [621]∗,[689],[691]
70
30Zn40 → 70

32Ge38 β−β− [238],[613],[653],[681] [681]
74
34Se40 → 74

32Ge42 β+EC, ECEC [691]
76
32Ge44 → 76

34Se42 β−β− [206],[602],[608], [613],[653], [178],[181],[200],[247], [248]∗,[544],
[667],[674] [566],[576]∗,[577],[582], [591],[592],

[593],[595],[617]∗, [618],[620],[621]∗,
[625],[627]∗,[628],[647], [655],[657],
[668],[669],[679], [683]∗,[687],[688],

[694]
78
36Kr42 → 78

34Se44 β+β+, β+EC, ECEC [621],[690] [621]∗,[689],[690],[691]
80
34Se46 → 80

36Kr44 β−β− [238],[613],[653]
82
34Se48 → 82

36Kr46 β−β− [206],[602], [608],[613],[653], [181],[200],[247], [248]∗,[544],[566],
[667] [576]∗,[577],[591], [592],[595],[617]∗,

[618],[620],[621]∗, [626]∗,[628],[647],
[655],[657],[668], [669],[683]∗,[687],

[694]
84
38Sr46 → 84

36Kr48 β+EC, ECEC [691]
86
36Kr50 → 86

38Sr48 β−β− [613],[653],[681] [681]
92
42Mo50 → 92

40Zr52 β+EC, ECEC [663]
94
40Zr54 → 94

42Mo52 β−β− [603],[613],[653],[681] [596],[599],[681]
96
40Zr56 → 96

42Mo54 β−β− [206],[602],[603], [609],[613], [247],[248]∗,[576]∗, [578],[595],[596],
[653] [599],[618],[620], [621]∗,[628],[647],

[654],[657],[683]∗,[687], [694]
96
44Ru52 → 96

42Mo54 β+β+, β+EC, ECEC [621],[684] [597],[598],[621]∗,[663], [684],[689]
98
42Mo56 → 98

44Ru54 β−β− [603],[653] [596],[599]
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Table 17: Continuation of Table 16: References for available DBD calculations, performed since the previous
comprehensive review [2], for different ground-state-to-ground-state DBD transitions. The 0ν-DBD results refer
to the light- and/or heavy-Majorana-neutrino-mediated 0νββ decays. The references which consider also the
heavy-Majorana-neutrino exchange are marked with an asterisk (∗).

Transition Decay mode 2ν-DBD references 0ν-DBD references

100
42Mo58 → 100

44Ru56 β−β− [237],[238],[602], [603],[609], [247],[248]∗,[566], [576]∗,[578],[592],
[613],[653],[662], [676] [595],[596],[599],[618], [620],[621]∗,

[628],[657],[662],[668], [669],[683]∗,
[687],[694]

102
46Pd56 → 102

44Ru58 β+EC, ECEC [237] [597],[598]
104
44Ru60 → 104

46Pd58 β−β− [206],[237],[238], [603],[609], [596],[599],[681]
[613],[666],[681]

106
48Cd58 → 106

46Pd60 β+β+, β+EC, ECEC [237],[621],[659],[664], [670] [597],[598],[621]∗,[663], [664],[680],
[689]

108
48Cd60 → 108

46Pd62 ECEC [237]
110
46Pd64 → 110

48Cd62 β−β− [206],[237],[238], [603],[609], [247],[248]∗,[544], [595],[596],[599],
[613],[666],[681] [621]∗,[628],[681]

112
50Sn62 → 112

48Cd64 β+EC, ECEC [237]
114
48Cd66 → 114

50Sn64 β−β− [237],[238]
116
48Cd68 → 116

50Sn66 β−β− [237],[238],[602], [609],[667], [247],[248]∗,[544], [576]∗,[578],[595],
[695] [618],[620],[621]∗, [628],[647],[654],

[657],[668],[669], [683]∗,[687],[694]
120
52Te68 → 120

50Sn70 β+EC, ECEC [237]
122
50Sn72 → 122

52Te70 β−β− [237],[238]
124
50Sn74 → 124

52Te72 β−β− [236],[237],[681] [200],[236]∗,[247], [248]∗,[544],[591],
[595],[618],[621]∗, [628],[647],[681],

[683]∗,[687],[694]
124
54Xe70 → 124

52Te72 β+β+, β+EC, ECEC [237],[534],[604],[621] [534],[597], [598],[621]∗[647],[663],
[689]

126
54Xe72 → 126

52Te74 ECEC [237],[604]
128
52Te76 → 128

54Xe74 β−β− [206],[237],[238], [546],[602], [181],[200],[247], [248]∗,[544],[566],
[604],[609],[613],[666], [667] [576]∗,[578],[591], [592],[595],[596],

[599],[618],[620], [621]∗,[657],[683]∗,
[687]
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Table 18: Continuation of Table 17: References for available DBD calculations, performed since the previous
comprehensive review [2], for different ground-state-to-ground-state DBD transitions. The 0ν-DBD results refer
to the light- and/or heavy-Majorana-neutrino-mediated 0νββ decays. The references which consider also the
heavy-Majorana-neutrino exchange are marked with an asterisk (∗).

Transition Decay mode 2ν-DBD references 0ν-DBD references

130
52Te78 → 130

54Xe76 β−β− [206],[237],[546], [602],[604], [181],[200],[247], [248]∗,[544],[545],
[609],[613],[666] [566],[576]∗,[578], [591],[592],[595],

[596],[599],[617]∗, [618],[620],[621]∗,
[628],[647],[657], [683]∗,[687],[688],

[694]
130
56Ba74 → 130

54Xe76 β+β+, β+EC, ECEC [237],[604],[621] [597],[598],[621]∗,[663], [689],
132
56Ba76 → 132

54Xe78 ECEC [237],[604]
134
54Xe80 → 134

56Ba78 β−β− [237],[609],[613],[666] [247],[621]∗
136
54Xe82 → 136

56Ba80 β−β− [199],[237],[602], [609],[613], [181],[200],[247], [248]∗,[544],[545],
[666] [576]∗,[578],[591], [595],[617]∗,[618],

[620],[621]∗,[628], [647],[657],[683]∗,
[687],[688],[694]

136
58Ce78 → 136

56Ba80 β+β+, β+EC, ECEC [237],[621] [621]∗,[647],[663],[689]
142
58Ce84 → 142

60Nd82 β−β− [613],[666]
146
60Nd86 → 146

62Sm84 β−β− [666]
148
60Nd88 → 148

62Sm86 β−β− [206],[608],[613],[666] [621]∗,[683]∗
150
60Nd90 → 150

62Sm88 β−β− [206],[602],[604], [608],[612], [575],[576]∗,[592],[593], [596],[599],
[666],[695] [615],[617]∗,[618], [621]∗,[683]∗,[687],

[688],[693],[694]
152
64Gd88 → 152

62Sm90 R-ECEC [685],[686],[692]∗
154
62Sm92 → 154

64Gd90 β−β− [206],[608],[613],[660] [592],[621]∗,[660],[683]∗
156
66Dy90 → 156

64Gd92 β+EC, ECEC [621],[677] [597],[598],[621]∗,[692]∗
160
64Gd96 → 160

66Dy94 β−β− [206],[608],[613],[660],[661] [593],[621]∗,[660],[661], [683]∗
164
68Er96 → 164

66Dy98 R-ECEC [685],[686],[692]∗
170
68Er102 → 170

70Yb100 β−β− [660] [660]
176
70Yb106 → 176

72Hf104 β−β− [613],[660] [660]
180
74W106 → 180

72Hf108 R-ECEC [685],[686],[692]∗
198
78Pt120 → 198

80Hg118 β−β− [621]∗,[683]∗
232
90Th142 → 232

92U140 β−β− [608],[660] [621]∗,[660]
238
92U146 → 238

94Pu144 β−β− [608] [621]∗
244
94Pu150 → 244

96Cm148 β−β− [660] [660]
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Table 19: References for available DBD calculations, performed since the previous comprehensive review [2], for
different ground-state-to-excited-state DBD transitions. Jπk denotes the kth excited state of multipolarity Jπ

and Eexc is the excitation energy (in MeV) of the Jπk state in the daughter nucleus.

Transition Jπk Eexc Decay mode 2ν-DBD references 0ν-DBD references

48
20Ca28 → 48

22Ti26 2+
1 0.9835 β−β− [610],[672]

0+
1 2.997 β−β− [200],[621]∗

74
34Se40 → 74

32Ge42 2+
2 1.204 R-ECEC [678]

76
32Ge44 → 76

34Se42 2+
1 0.5591 β−β− [610],[649],[672] [571]

0+
1 1.122 β−β− [182],[200], [594]∗,[595],

[621]∗,[641]∗,[655], [679]
78
36Kr42 → 78

34Se44 2+
1 0.614 β+β+, β−EC, ECEC [690]

2+
2 1.309 β+EC, ECEC [690]

0+
1 1.499 β+EC, ECEC [621],[690] [621]∗,[689],[690]

82
34Se48 → 82

36Kr46 2+
1 0.7765 β−β− [610],[649]

0+
1 1.488 β−β− [182],[200], [594]∗,[595],

[621]∗,[641]∗,[655]
86
36Kr50 → 86

38Sr48 2+
1 1.077 β−β− [681]

94
40Zr54 → 94

42Mo52 2+
1 0.8711 β−β− [606],[681]

96
40Zr56 → 96

42Mo54 2+
1 0.7782 β−β− [606],[610],[649],[672]

0+
1 1.148 β−β− [594]∗, [595],[621]∗,[654]

0+
2 1.330 β−β− [594]∗,[654]

96
44Ru52 → 96

42Mo54 2+
1 0.778 β+EC, ECEC [684]

0+
1 1.148 β+EC, ECEC [621],[684] [621]∗,[663],[684],[689]

0+
2 1.330 β+EC, ECEC [684] [663],[684]

2+
2 1.498 β+EC, ECEC [684]

2+
3 1.626 β+EC, ECEC [684]

(0+) 2.718 R-ECEC [684]
100
42Mo58 → 100

44Ru56 2+
1 0.5396 β−β− [237],[606],[610],[649], [571]

[662],[672]
0+

1 1.130 β−β− [237],[662],[676] [594]∗,[595],[621]∗, [641]∗,
[662]

2+
2 1.362 β−β− [237],[662]

0+
2 1.741 β−β− [662] [594]∗,[662]

127



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 20: Continuation of Table 20: References for available DBD calculations, performed since the previous
comprehensive review [2], for different ground-state-to-excited-state DBD transitions. Jπk denotes the kth excited
state of multipolarity Jπ and Eexc is the excitation energy (in MeV) of the Jπk state in the daughter nucleus.

Transition Jπk Eexc Decay mode 2ν-DBD references 0ν-DBD references

102
46Pd56 → 102

44Ru58 2+
1 0.4751 ECEC [237]

0+
1 0.9436 ECEC [237]

104
44Ru60 → 104

46Pd58 2+
1 0.5558 β−β− [237],[606],[610],[672],

[681]
106
48Cd58 → 106

46Pd60 2+
1 0.5119 β+β+, β+EC, ECEC [237]

2+
2 1.128 β+EC, ECEC [237]

0+
1 1.134 β+EC, ECEC [237],[621],[659] [621]∗,[663],[680],[689]

0+ 2.766 R-ECEC [680]
110
46Pd64 → 110

48Cd62 2+
1 0.6577 β−β− [237],[606],[610],[672],

[681]
0+

1 1.473 β−β− [237],[681] [594]∗,[595],[681]
2+

2 1.476 β−β− [237],[681]
112
50Sn62 → 112

48Cd64 2+
1 0.6174 β+EC, ECEC [237]

0+
1 1.224 ECEC [237]

2+
2 1.312 ECEC [237]

0+ 1.871 R-ECEC [675]
116
48Cd68 → 116

50Sn66 2+
1 1.294 β−β− [237],[610],[649],[672]

0+
1 1.757 β−β− [237] [594]∗,[595], [621]∗,[654]

0+
2 2.027 β−β− [594]∗,[654]

2+
2 2.112 β−β− [237]

120
52Te68 → 120

50Sn70 2+
1 1.172 ECEC [237]

124
50Sn74 → 124

52Te72 2+
1 0.6027 β−β− [236],[237],[681]

2+
2 1.326 β−β− [237],[681]

0+
1 1.657 β−β− [236],[237],[681] [200],[236]∗, [594]∗,[595],

[621]∗,[663],[681]
124
54Xe70 → 124

52Te72 2+
1 0.6027 β+β+, β+EC, ECEC [237],[534]

0+
1 1.156 β+EC, ECEC [237],[621] [621]∗,[663],[689]

2+
2 1.325 β+EC, ECEC [237],[534]

0+
2 1.657 β+EC, ECEC [534] [534]

0+
5 2.855 R-ECEC [534],[692]∗
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Table 21: Continuation of Table 21: References for available DBD calculations, performed since the previous
comprehensive review [2], for different ground-state-to-excited-state DBD transitions. Jπk denotes the kth excited
state of multipolarity Jπ and Eexc is the excitation energy (in MeV) of the Jπk state in the daughter nucleus.

Transition Jπk Eexc Decay mode 2ν-DBD references 0ν-DBD references

126
54Xe72 → 126

52Te74 2+
1 0.6663 ECEC [237]

128
52Te76 → 128

54Xe74 2+
1 0.4429 β−β− [237],[606],[610],[672]

130
52Te78 → 130

54Xe76 2+
1 0.5361 β−β− [237],[606],[672]

2+
2 1.122 β−β− [237]

0+
1 1.794 β−β− [237] [200],[594]∗,[595], [621]∗,

[663]
130
56Ba74 → 130

54Xe76 2+
1 0.5361 β+EC, ECEC [237],[610]

2+
2 1.122 β+EC, ECEC [237]

0+
1 1.794 ECEC [237],[621] [621]∗,[689]

132
56Ba76 → 132

54Xe78 2+
1 0.6677 ECEC [237]

134
54Xe80 → 134

56Ba78 2+
1 0.6047 β−β− [237],[610],[672]

136
54 Xe82 → 136

56 Ba80 2+
1 0.8185 β−β− [237],[610],[672]

2+
2 1.551 β−β− [237]

0+
1 1.579 β−β− [237] [182],[200], [594]∗,[595],

[621]∗,[641]∗,[663]
136
58Ce78 → 136

56Ba80 2+
1 0.8185 β+EC, ECEC [237]

2+
2 1.551 ECEC [237]

0+
1 1.179 ECEC [237],[621] [621]∗,[689]

0+ 2.315 R-ECEC [682]
148
60Nd88 → 148

62Sm86 2+
1 0.5502 β−β− [610]

0+
1 1.427 β−β− [621]∗

150
60Nd90 → 150

62Sm88 2+
1 0.3309 β−β− [606],[610]

0+
1 0.7404 β+EC, ECEC [575],[621]∗,[693]

154
62Sm92 → 154

64Gd90 2+
1 0.1231 β−β− [610]

0+
1 0.6807 β−β− [621]∗

156
66Dy90 → 156

64Gd92 0+
1 1.049 ECEC [621] [621]∗,[692]∗

160
64Gd96 → 160

66Dy94 2+
1 0.0868 β−β− [610]

0+
1 1.275 β−β− [621]∗

232
90Th142 → 232

92U140 2+
1 0.0476 β−β− [610]

0+
1 0.6913 β−β− [621]∗

238
92U146 → 238

94Pu144 2+
1 0.0441 β−β− [610]

0+
1 0.9415 β−β− [621]∗
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whereM−
i andM+

i are GT NMEs for the β− A(Z,N)↔ B(Z+1, N−1) and β+ C(Z+2, N−2)↔
B(Z + 1, N − 1) transitions via the ith 1+ state in the intermediate nucleus B(Z + 1, N − 1),
and ∆i is the associated energy denominator [16, 18].

The M2ν reflects directly the single-β NMEs M−
i and M+

i . As is well known [1, 4], the
single-β NME is much smaller than the simple quasiparticle (QP) NME due to nucleonic and non-
nucleonic correlations and nuclear-medium effects. Accordingly, the two-neutrino DBD NMEs
are also much smaller than the QP NMEs. The FSQP model is based on the experimental
single-β NMEs [16, 18, 559, 560]. In the model the 2νββ NME is expressed as a sum of the
NMEs via the intermediate FSQP states. The QP configurations involved in the transition of
A(0+) ↔ B(1+) ↔ C(0+) are (JiJi)0 ↔ (Jijk)1 ↔ (jkjk)0, where Ji and jk are the spins of the
ith neutron and kth proton.

The FSQP GT NMEs M±
i are simply expressed as [16, 559, 560],

M±
i = k±M±

i (QP) , M±
i (QP) = P±i M(Jiji) , (158)

where M±
i (QP) is the quasiparticle (QP) NME, k± is the effective axial coupling constant in

units of the unquenched axial coupling gA = 1.27gV for the free nucleon [1, 4] and P±i is the
pairing correlation coefficient for the β± transition, and M(Jiji) is the single particle (SP) Ji ↔ ji
GT NME. Since the same SP NME of M(Jiji) is involved in both the M−

i and M+
i NME, the

product is positive and the sum in Eq. (157) is constructive. Here the k± coefficient takes into
account the spin-isospin correlations and nuclear-medium effects as discussed in [1, 4, 18], and
also recently on the context of the single β GT and SD NMEs in [105, 106].

The GT NMEs for the FSQP states in the low-excitation region are based on the experimental
GT responses (B(GT)) from CERs and/or the single β± decays. The FSQP NMEs are given
in the 4th column of Table 22. The theoretical NMEs are discussed in Sec. . The experimental
and FSQP NMEs for two-neutrino DBDs are discussed in the recent work [561].

The FSQP M2ν NMEs have the following features:

(i) The single β± NMEs, including the effective weak coupling k± for the low-lying FSQP
states, are given experimentally by CERs and β/EC rates. Contributions to the M2ν from
the GTR are evaluated to be much smaller than those from the low-lying QP states [107].

(ii) The FSQP NME M±
i is smaller than the SP NME by the pairing coefficient P± = 0.45−

0.25 and the effective coupling coefficient acquires values in the range k± = 0.3 − 0.2
[4, 16, 18]. Thus NME M2ν becomes smaller by the coefficient k−P−k+P+ = 0.005− 0.01
with respect to the single-particle (SP) value.

(iii) The NME M2ν depends on the shell structure as the pairing coefficient P±i does [561]. The
product P−i P

+
i of the pairing factors is stable in the middle of the shell, but gets small

near the shell closure because the vacancy amplitude U and the occupation amplitude V
get small just before and after the shell closure, respectively.

In fact, it has long been believed that the actual M2ν is much smaller than the QP M2ν

because the amplitudes involved in M2ν cancel at the appropriate value of the particle-particle
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Table 22: Two-neutrino NMEs for the 0+ → 0+ transitions to the 0+ ground state and the first excited 0+ state
(*) [561]. M2ν(exp) denotes the experimental NME taken from a: Ref. [696], b: Ref. [697] and others: [259].
Furthermore, a′: Ref. [698], b′: Ref. [699], c′: Ref. [700]. M2ν(FSQP) denotes the FSQP NME with c: Ref. [560],
d: the present value in Ref. [561], and others in Ref. [559]. All NMEs are in units of 1/me.

Transition M2ν(exp) M2ν(FSQP)

76Ge→ 76Se 0.063a 0.052d
82Se→ 82Kr 0.050 0.064d
96Zr→ 96Mo 0.049 0.045
100Mo→ 100Ru 0.126 0.096
100Mo→ 100Ru∗ 0.102 0.090
110Pd→ 110Cd - 0.145d
116Cd→ 116Sn 0.070 0.055
128Te→ 128Xe 0.025 0.019
130Te→ 130Xe 0.018 0.017
136Xe→ 136Ba 0.010b 0.012c

78Kr→ 78Se ≤ 0.34a
′

0.065d
106Cd→ 106Pd ≤ 0.45b

′
0.11d

130Ba→ 130Xe 0.105 c′ 0.067d

strength gpp of the pnQRPA (see Sec. 3.1.1), while the NME M0ν is not small because it is not
sensitive to gpp, and because it includes several multipole NMEs and thus is nearly the same for
all nuclei.

The FSQP NMEs show that the NME M2ν is much smaller than the QP NME M2ν
QP by

the reduction coefficient (k±)2 = 0.05 − 0.1 because the observed single-β± GT(1+) NME M±

is smaller than the single-QP NME M±
QP(GT) by the coefficient k± = keff = 0.2 − 0.3. The

single-β± SD(2−) NME M±, which is one of the major components of M0ν , is smaller than the
single-quasiparticle NME M±

QP(SD) by a coefficient k± = 0.2 − 0.3 [106], as in the case of the
GT NME [105]. Accordingly, the axial-vector component of M0ν may be much smaller than the
QP NME M0ν

QP by the coefficient (keff)2 = 0.05−0.1. Actually, the values of geff
A /gfree

A = 0.5−0.7
are used in recent theoretical calculations such as in the ISM [230, 234], pnQRPA [245, 246] and
IBM2 [243]. The theoretical NMEs are discussed in the previous subsections.

The 0νβ−β− NMEs for the ground-state transitions have been calculated on various nuclei.
The averaged value of the QRPA NMEs [23, 628] for each DBD isotope of current interest is
plotted against the mass number A in the top of Fig. 67. The experimental and FSQP values
of M2ν for the ground-state transitions are shown also for comparison in Fig. 67. Both the
M0ν and M2ν values show similar dependence on the mass number, and are small at the shell
closure of A = 136 (N=82). The shell closure at N = 82 blocks the p → n transition in
both the 0νββ and 2νββ NMEs, resulting in a similar shell dependence for both the M0ν and
M2ν NMEs. Interesting is to extend the M2ν FSQP to the 0νββ NME M0ν . Higher-multipole
single-β NMEs M±

i corresponding to transitions between low- and medium-energy QP states
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Figure 67: Top: Average values (diamonds) for the QRPA NMEs M0ν [23, 628]. Bottom: The FSQP NMEs
M2ν(FSQP) (squares) and the experimental NMEs M2ν(EXP) (triangles) in units of 1/me [561].

are involved in M0ν . Thus, experimental NMEs for them are useful for evaluation of the M0ν

NMEs.

5.5.2. Neutrinoless double-beta-decay experiments

In this section we briefly present the current status of the neutrinoless double-beta-decay
experiments. The measured quantity is the half-life (or a limit on it) which can be linked with
the effective Majorana-neutrino mass, meff , in case of the light ν-mass process, as discussed in
Sec. 1.4 and Sec. 5.1, and also in Refs. [4, 16, 23, 521, 522].

To observe this process, single β decay has to be forbidden by energy conservation or at least
strongly suppressed due to a large change of the involved nuclear spins. For this reason only 35
potential double β− emitters exist. The same number of source nuclides exists for the analogue
process on the right side of the isobaric parabola in the form of double electron capture (ECEC)
or decay modes with positron emission (see Sec. 5.1). Below a Q value of 2mec

2 only the ECEC
process is possible, between 2mec

2 − 4mec
2 the ECEC and β+/EC can occur and above 4mec

2

the β+β+ decay channel opens (see an example in Fig. 62).
The phase space for 0νββ decay scales strongly with the Q value (in case of 0νββ with Q5

and in case of 2νββ with Q11). Thus experimental searches are typically using only nuclides
with a Q value above 2 MeV, which reduces the list of suitable candidates to 11. They are listed
in Table 23. From the experimental point of view an estimate of the half-life sensitivity depends
on the fact whether the experiment is background-free or background-limited. In both cases
the isotopic abundance and detection efficiency enter linearly. In the background-free case also
the measurement time shows this linear behavior, while in a background-limited experiment it
enters as a square root. The square root dependence is also valid for background level and energy
resolution. The neutrinoless decay signal is the emission of two electrons with a total energy
being identical to the decay Q value.

Various technologies are used and explored, the most common one is the “source = detector”
approach. Given the fact that it is known by now that a potential half-life is beyond about 1026

years, this implies that a large amount of material, ideally isotopically enriched in the nuclide
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of interest, is needed and the disturbing background has to be reduced to lowest possible levels.
One experimental approach for the search is using semiconductors. This is realized for 76Ge

in germanium diodes produced with isotopically enriched material (GERDA [701], MAJORANA
Demonstrator [702] and in the future LEGEND [703]) and CdZnTe for 116Cd as used in COBRA
[704].

Another detector technique is the usage of cryobolometers. The largest experiment of this
type is CUORE [705], focusing on 130Te using TeO2 crystals. Several other cryobolometer ap-
proaches are studied worldwide, for example there is LUCIFER/ CUPID-0 using ZnSe (82Se)
[706], and AMoRE with CaMoO4 (100Mo) [707], where still a lot of additional R&D is done. For
recent reviews on this topic see [18, 23, 708].

A further technology is based on scintillators, liquid and solid ones. KamLAND-Zen is
loading a balloon filled with enriched xenon (136Xe) [709]. The decay of 136Xe is investigated in
further experimental approaches: EXO-200 [710] and nEXO (Xenon-TPC with potential barium
tagging [711]), general liquid Xenon detectors. The SNO+ experiment is using Te-loaded liquid
scintillators for the search (130Te) [712] and solid scintillators are used in CANDLES with CaF2

(48Ca) [713] and by AURORA using CdWO4 (116Cd) [714].
Tracking devices have also been used in the various stages of the NEMO experiment (up to

NEMO-3) and is planed for an upgrade to SUPERNEMO [715]. MOON, which is an extension
of ELEGANT V, aims at a ton-scale DBD experiment with 100Mo by using super-modules of
multi-layer scintillators and tracking chambers [159, 716]. NEXT plans to use a high pressure
Xe-gas TPC to study 136Xe [717] and PandaX-III also for 136Xe DBD [718].

A compilation of current half-life limits for the ground state and the 2+
1 transition is given in

Table 23. The Q values are 48Ca [719], 76Ge [720], 82Se [721], 96Zr [60], 100Mo [722], 110Pd [723],
116Cd [724], 124Sn [725], 130Te [724, 725, 726], 136Xe [727], 150Nd [728]. All relevant isotopes have
a Q-value uncertainty of less than 1 keV. The half-life limits are taken from [701] for 76Ge, from
[729] for 82Se, from [715] for 100Mo,150Nd, from [714] for 116Cd, from [705] for 130Te, from [709]
for 136Xe, and for others from reviews [18, 23, 730, 731] and those in Sec. 1 and Sec. 5 and
references therein.

Things look different on the proton-rich side of the mass parabola. Here 35 potential ECEC
candidates exist as well. However, abundances are in general lower and thus half-life limits
obtained are lower as well. There are 6 candidates for double positron emission, but these
decays suffer from phase-space reduction. None of these decays have been measured in the
laboratory.

The signal for ground-state transitions in 2νECEC result in the corresponding de-excitation
X-rays to fill the K-shell or the emission of conversion electrons. This requires measurements
below 100 keV unless heavier elements are involved. The corresponding 0νECEC would violate
momentum conservation. Hence typically an L-shell capture is required to guarantee angular-
momentum conservation. As signal, three processes have been considered [526]: pair production
or internal bremsstrahlung in the nuclear field, the latter leading to a mono-energetic gamma
ray, and internal conversion. This has been mentioned in [526] but is not worked out in detail.
Potential detection signatures might improve for the modes containing one or two positrons but
the associated phase spaces are reduced. Phase spaces for the individual processes are ∝ Q5 for
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Table 23: Table of double β emitters with a Q value of at least 2 MeV, and the current lower limits on the
half-life T 0ν

1/2 for the transitions to the ground state and first excited 2+ state. If more than one measurement is

published, the best limit has been chosen. Shown are the isotope, its natural abundance (N.a.), the Q value, and
the half-life limits.

.

Nuclide N.a. (%) Q value (keV) T1/2(0+
gs) (yrs) T1/2(2+

1 ) (yrs)

48Ca 0.187 4262.96 ± 0.84 5.8× 1022 1.0× 1021

76Ge 7.44 2039 ± 0.050 8.0× 1025 8.2× 1023

82Se 8.73 2997 ± 0.3 2.4× 1024 1.0× 1022

96Zr 2.80 3356 ± 0.086 1.9× 1021 9.1× 1020

100Mo 9.63 3034.40 ± 0.17 1.1× 1024 1.6× 1023

110Pd 11.72 2017.85 ± 0.64 6.0× 1017 2.9× 1020

116Cd 7.49 2813.50 ± 0.13 1.9× 1023 6.2× 1022

124Sn 5.79 2292.64 ± 0.39 2.4× 1017 9.1× 1020

130Te 33.8 2527.518 ± 0.013 1.5× 1025 1.4× 1023

136Xe 8.9 2457.83 ± 0.37 1.07× 1026 2.6× 1025

150Nd 5.64 3371.38 ± 0.20 2.0× 1022 2.4× 1021

2νECEC, ∝ Q8 for 2νβ+/EC and ∝ Q11 for 2νβ+β+. For 0νβ+β+ the phase space scales with
Q5 and Q2 for the mixed mode, while for 0νECEC this question has not been worked out.

It has been suggested, e.g., in [530] that a transition from the ground state to an excited state
of the daughter, which is degenerate with the initial state, could lead to a resonant enhancement,
but the resonance should be narrow, about 100 − 200 eV. This is the resonant neutrinoless
ECEC decay, R-ECEC, discussed in Sec. 5.1.1. Penning-trap measurements on all potential
candidates have found a decay, namely the decay of 152Gd which shows a large enhancement
[732]. However, this nuclide decays by α-emission with a half-life of 1014 years, which is about
13 orders of magnitude shorter than the R-ECEC half-life of 152Gd for a mass 1 eV neutrino.

Double positron decay is only possible for 6 isotopes. From those two isotopes 106Cd can
be studied by AURORA and COBRA and 124Xe, as was suggested in [733], using large-scale
low-background Xe detectors aiming to search for dark matter. This approach has a good chance
for the first detection of the 2νECEC decay. Selected half-life limits on some radiative 0νECEC
decays (R0νECEC in Sec. 5.1.1) are 36Ar: 3.6× 1021 yrs [734], 58Ni: 2.1× 1021 yrs [735], 106Cd:
4.2 × 1020 yrs [736]. Those on some 2νECEC decays are 124Xe: 2.1 × 1022 yrs [737], 124Xe:
6.5× 1020 yrs [738].

The current limits on the 0νββ half-lives for 76Ge [701, 702], 130Te [705] and 136Xe [709, 710]
give effective ν-mass limits of an order of 100 meV, depending largely on the NMEs including
the effective gA. The effective ν masses are around 15 − 45 meV and 2 − 5 meV in cases of the
inverted-hierarchy and normal-hierarchy mass spectra. Future high-sensitivity experiments to
search for the effective ν masses are discussed in Sec. 6.4.
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6. Concluding remarks and discussions

6.1. Summary of neutrino-nuclear responses

The width of the topic of this review article is quite exceptional, as testified by the number
of pages and references collected under the umbrella of the topic of neutrino-nuclear responses.
Neutrino-nuclear responses, which are crucial for neutrino and weak-interaction studies in nuclei,
as described in Sec. 1, touch many areas of particle astro and nuclear physics. In this review we
scan through the latest results in the fields from the experimental and theoretical points of view.
Experimental approaches such as single β decays and electron captures, charge-exchange nuclear
reactions (CER), muon photon and neutrino reactions, and others are briefly discussed in Sec.
2. High energy-resolution CERs provide axial-vector multipole responses in wide energy and
momentum regions. Then we review single β decays (the quenching problem of the axial-vector
coupling constant gA and its relation with the β spectrum shapes, etc. in Sec. 3), (anti)neutrino
scattering on nuclei at low energies E ≤ 70− 80 MeV (solar and supernova neutrinos in Sec. 4)
and the nuclear ββ decays (electron and positron emitting modes in Sec. 5). We also highlight
the elastic coherent neutrino scattering in the context of the xenon-based dark-matter detectors
(the neutrino-floor problem, Sec. 4.6).

The quenching of gA has attracted attention lately due to its strong influence on the rates
of the ββ decays. In particular, this strong sensitivity of the half-life of the neutrinoless ββ
decay to the value of gA deserves keen attention. The effective value of gA, geff

A , has been studied
much for low-momentum-exchange processes like β decays and two-neutrino ββ decays. In the
context of β decays the value of geff

A has been studied in two major ways: (i) by comparing the
computed β-decay half-lives with the experimental ones or lately (ii) by comparing the computed
β spectrum shapes with the measured ones. In β decays the value of gA seems to be quenched,
i.e. geff

A < 1.27, where gA = 1.27 corresponds to the unquenched value obtained from the neutron
β decay. An exception is the case of first-forbidden J+ ↔ J− transitions where gA seems to be
enhanced (see Sec. 3.6.4). The low-energy quenching phenomenon can be associated with several
sources: (i) non-nucleonic degrees of freedom (like ∆ resonances), (ii) nuclear-medium effects
(like meson-exchange/two-body currents), (iii) giant resonances that gather strength from the
low-energy region and (iv) deficiencies in the many-body quantum mechanics used to describe
atomic nuclei. These aspects of the effective value of gA have been addressed in Sec. 3, and
experimental reductions (quenchings) in the medium momentum and energy regions are studied
in Sec. 2.3.

In addition to the gA problem, there are interesting new phenomena associated to the β
decays. One of them is the reactor antineutrino anomaly which has been discussed in Sec. 3.6.2.
In this anomaly the antineutrino flux from nuclear reactor, measured by large-scale neutrino-
oscillation experiments, is lower at short flight-length than what one expects by considering
three-neutrino oscillations for the β decays of the fission fragments produced in the reactor. This
deficit has been associated with oscillations into sterile neutrinos although the determination of
the actual antineutrino flux based on the fission yields is not on a solid ground. Inspection of the
β spectrum shapes of a handful of key nuclei in the process could help in checking the possible
errors in the flux estimates. Another interesting subject are the ultra-low-Q-value β decays
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discussed in Sec. 3.4.1. Such tiny-Q-value decays could be used for direct determination of the
neutrino mass since the β endpoint is not so overwhelmed by the tail of the electron spectrum,
although the signal rate in coincidence with the emitted γ rays would be much smaller than
the huge background of β and brems-γ rays to the ground state. On the other hand, such tiny
Q-value β decay can also give information of the atomic effects interfering the nuclear decays
in the form of electron screening, overlap of atomic clouds, exchange-interaction contributions
and final-state interactions. These contributions have been discussed in Sec. 3.4.2. Also the
influence of the isovector spin-multipole giant resonances on the low-energy decays of nuclei and
on 0νββ decay is of great interest to study the reduction of the axial-vector strengths (see Sec.
3.7).

(Anti)neutrino-nucleus neutral- and charged-current scattering plays a key role in detection of
solar, supernova and other neutrinos from astrophysical and cosmological sources. In particular,
the flavor conversion effects in the dense nuclear medium of an exploding supernova are highly
interesting, as discussed in Sec. 4.4.3. The future huge Earth-bound neutrino telescopes could
say something about the neutrino mass hierarchy based on the conversion effects8. Neutrinos
also contribute to the background of future DBD experiments. Of present interest is also the
so-called gallium anomaly where the response of 71Ga to the 37Ar and 51Cr electron-capture
neutrinos has caused some confusion since the measured neutrino-scattering cross sections are
smaller than the calculated ones, calling for the oscillations to sterile neutrino(s) as explanation
of the difference (see Sec. 4.4.4 for the anomaly and Sec. 2.3.2 for the CER result on the neutrino
responses for 71Ga). Of recent interest is also the astro-neutrino nucleosynthesis discussed in
Sec. 4.7.

The various modes of double β decays have been discussed in Sec. 5.1. Of particular inter-
est has been the neutrinoless double electron capture with is possible resonance enhancement.
However, the mass measurements indicate that the resonance condition is hard to meet and not
good candidates have been found thus far. The basic features of the double β decays have been
discussed in sections 5.2 and 5.3. These features include, e.g., induced-current contributions,
nucleon form factors, short-range correlations, deformation effects, restoration of the isospin
symmetry, validity of the closure approximation and chiral two-body currents.

A specific feature of the present review are the surveys of calculations for the nuclear muon-
capture rates (Sec. 2.4.2, Table 1), neutrino-nucleus cross sections (Sec. 4.4., Table 11) and
nuclear matrix elements for the neutrinoless double β decay (Sec. 5.4, Tables 16-21). Brief
overwiews are given on the present status of DBD experiments (see Sec. 5.5).

6.2. Perspectives on experimental studies of neutrino-nuclear responses

Experimental studies of neutrino-nuclear responses shed light on weak-interaction aspects of
nuclear structure and provide useful information on weak NMEs associated with astro-neutrinos
and DBDs, as discussed in previous sections. In this section, we briefly discuss perspectives on
experimental studies on the nuclear responses for astro-neutrinos and DBD virtual neutrinos.

8The mass hierarcy, as also the CP-violating phases, can also be accessed by the future large neutrino-
oscillation experiments, like NOνA, T2K, DUNE and HyperK, see the recent conference article [739]

136



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The neutrino-nuclear responses to be studied are those in wide energy and momentum regions
of E ≤ 70 MeV and p ≤ 150 MeV/c. Actually, the astro-neutrinos are in the low- and medium-
energy region of E = 0 − 70 MeV, and the momentum associated with the neutrinoless DBD
virtual neutrino is of the order of p = 20 − 150 MeV/c. Accordingly, various kinds of nuclear,
photon and lepton probes are used to study the neutrino-nuclear responses. Here the nuclear
responses extracted from the experimental transition rates and cross sections are |M(α)|2/(2Ji+
1), where Ji is the initial-state spin and M(α) is the α-mode NME, including the effective
(renormalized/quenched) weak coupling.

Single β/EC rates give directly the neutrino responses for the ground and isomeric states.
So far, allowed and unique first-forbidden transitions are mainly investigated to study the GT
(Gamow-Teller) and IVSD (isovector spin-dipole) responses. Further studies for β-ray spec-
trum shapes of non-unique transitions and transition rates of higher-forbidden β decays give
information on high-multipole neutrino-nuclear responses, as discussed in sections 2 and 3.

Nuclear CERs with medium-energy light ions have extensively been used to study neutrino-
nuclear responses in wide energy and momentum regions. Among them, the high energy-
resolution (3He,t) CERs at RCNP are used to study the τ− (n → p) Fermi (0+), GT (1+) and
IVSD (2−) responses in nuclei of astro-neutrino and DBD interests, as discussed in subsection
2.3. The CER experiments provide the GT and IVSD strength distributions, the strengths being
pushed up and concentrated in the highly excited giant resonances and leaving little strength
at the low-lying states. It is worthwhile to extend the nuclear CERs to other multipole exci-
tations with Jπ = 1−, 2+, 3±, 4±, which are relevant to medium-energy supernova neutrinos
and neutrinoless DBDs. High energy-resolution (d,2He) and other τ+ (p → n) reactions are
effective to study the β+ NMEs. The (7Li,7Be) and other CERs to excited states, in coincidence
with decaying γ-rays, are used to separate individual excited states and to identify the spin and
parity for them. The high energy-resolution spectrometer combined with a Ge-detector array
are promising for detailed studies of the neutrino-nuclear responses.

Muons are unique massive leptons used to study weak responses in wide energy and momen-
tum regions, as discussed in Sec. 2.4. Ordinary muon-capture prompt-γ spectroscopy provides τ+

(p → n) responses for low-lying bound states. On the other hand, the delayed-γ spectroscopy
for γ rays from radioactive isotopes produced by the (µ,xn) reaction gives the muon-capture
strength distribution and the muon-capture giant resonances in the wide excitation region of
E = 5− 70 MeV. The obtained relative strength, together with the absolute strength from the
muon-capture lifetime, is useful in the studies of τ+ (p→ n) neutrino-nuclear responses.

Photo-nuclear reaction through IAS (isobaric analog state) provides τ− (n→p) vector (1−)
and axial-vector (1+) responses, as discussed in subsection 2.5. The spin and parity are derived
by measuring 1 neutron emission from photo-nuclear reactions with polarized photons. It is of
great interest to study the vector (r) and axial-vector (σ × r) NMEs by combining the E1-γ
NMEs from the IAS-γ NME and the corresponding first-forbidden β NME.

Nuclear-response studies by using ν projectiles are interesting even though they require high-
flux ν beams and large-volume detectors, as discussed in Sec. 2.6. The ν-beam experiments may
provide directly the neutrino responses, including the renormalization of the weak coupling,
being free from complex nuclear interactions, and thus may elucidate the renormalization of the
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axial-vector weak coupling.
DCER (double charge-exchange reaction) is a new way to explore DBD responses as discussed

in subsection 2.3. The DCER (11B,11Li) with the medium-energy (E/A ≈ 0.1 GeV) light ions
from the RCNP cyclotron studies axial-vector DBD responses. The cross sections for low-lying
states, however, are extremely small. The observed spectrum suggests that DCER strengths
are mainly in the double giant-resonance regions. Heavy-ion DCERs at RIKEN and RCNP aim
to explore DGT strengths to provide experimental input on nuclear structure relevant to DBD
NMEs. The NUMEN project at LNS Catania studies neutrinoless DBD NMEs by using heavy-
ion DCERs. In fact, the DCER transition operators depend on the energy of the heavy-ion
projectile and the momentum transfer, and are different from the DBD ones. So, important is to
study the energy and the momentum-transfer dependencies of the DCERs to extract NMEs rel-
evant to neutrinoless DBDs. It is, however, a challenge to win useful information on neutrinoless
DBD NMEs from DCER experiments.

Experimental axial-vector NMEs for the GT and IVSD transitions, and those for two-neutrino
DBDs are reduced with respect to the simple quasi-particle NMEs due to (i) nucleonic spin-
isospin correlations and other nuclear effects and (ii) non-nucleonic (isobar, meson) correlations
and nuclear-medium effects, as discussed in Sec. 3. The former effects are included in nuclear
models with the adequate model space and the nucleonic correlations/interactions. On the
other hand the latter ones are not explicitly included in the earlier nucleon-based nuclear models
and thus are incorporated by using an effective axial-vector coupling geff

A . However, modern
many-body calculations, like the quantum Monte Carlo approach of [740], are able to include
the meson-exchange and delta-resonance effects at least effectively. The results for light nuclei
suggest that maybe no quenching of gA is necessary. For heavier nuclei these “ab initio” methods
are not yet available and for the presently available nuclear many-body approaches the observed
GT and SD NMEs suggest an appreciable reduction of geff

A /gA ≈ 0.6− 0.7 with gA = 1.27gV for
the free nucleon. Here important is to define explicitly the effective coupling geff

A in the nucleus
and then to discuss the value experimentally and theoretically on a common physics basis.

The ∆ isobar is strongly excited by the spin-isospin interaction on nucleons (N) in a nucleus
to form the axial vector GR (giant resonance), as discussed in subsection 3.5. This is the GR
associated with the quark spin-isospin flip, while the GTR and IVSDR are the GRs associated
with the nucleon spin-isospin flip. The ∆ isobar GR interferes destructively with the low-lying
state to reduce the axial vector NMEs with respect to the nucleon-based nuclear-model evalu-
ations. The renormalization (quenching of gA) effects are studied experimentally by measuring
CER strengths for unnatural-parity excitations in the wide excitation region of E = 0−100 MeV.

Nucleons are modified in the nuclear medium due to various kinds of nucleonic and non-
nucleonic correlations and nuclear-medium effects. The meson cloud (dress) around a free nu-
cleon is different from that around a bound valence-nucleon in the nuclear medium. The valence
nucleon and the nuclear core change more or less before and after the CC and NC interactions.
These many-body and nuclear-medium effects and non-nucleonic (mesons, isobars) contributions
manifest as deviations of the calculated values from the experimental ones for CC responses and
nucleon-transfer cross sections. The deviations depend on how accurately these effects are in-
corporated in the calculational frameworks, as discussed in Sec. 2.3, 2.7 and 3.5, and they are
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usually accounted for by the use of renormalization (quenching) factors in the computations.
It is remarked that accurate experimental studies of the detector efficiencies for low energy ν

and ν̄ are indispensable to understand the 71Ga-ν and the reactor-ν̄ anomalies, which otherwise
might suggest possible oscillations into sterile neutrinos.

6.3. Perspectives of theoretical studies of neutrino-nuclear responses

The neutrino-nuclear responses have thus far been calculated by using a host of different
theoretical frameworks and formalisms (see sections 4.4 and 5.4). These are usually formalisms
where a restricted single-particle space or configuration space has been used. This produces
imperfections in the calculations which has to be compensated, e.g., by an effective value of gA.

The recent trend is that the “ab initio” calculations of nuclear structure will be available for
heavier and heavier nuclear systems sometime in the future. Such calculations can be based,
e.g., on lattice quantum chromodynamics [741, 742, 743, 744] or advanced Monte Carlo shell
model frameworks [740, 745, 746, 747, 748], or the coupled-cluster theory derived from the chiral
effective field theory [749, 750]. Other possibilities are the in-medium similarity renormalization
group method [751, 752] and density matrix renormalization group algorithm [753]. These
theoretical approaches allow a systematic calculation of nuclear wave functions taking part in
the weak-interaction processes in nuclei. In addition, a systematic estimation of the calculational
errors becomes possible. It is anticipated that these advanced nuclear many-body frameworks
reduce the amount of the needed renormalization of gA in the calculations of neutrino-nuclear
and other weak responses in the processes of interest to neutrino physics, astroparticle physics,
nuclear astrophysics, etc.

In addition to the improved nuclear many-body frameworks, the contributions coming from
the meson-exchange currents (two-body currents) can be taken into account in the calculations.
These currents can be derived from the chiral effective field theory (χEFT) on the same footing as
the many-body forces used in the nuclear Hamiltonians [45, 46, 47, 48, 222]. These calculations
are able to account for the nuclear-medium effects and, in principle, compute the amount of in-
medium renormalization of gA, thus reducing the uncertainty associated with the value of gA in
various nuclear processes triggered by weak interactions. Weak processes, like the neutrinoless ββ
decay, can also be approached from the point of view of the χEFT and new possible mechanisms
of the decay can be devised [51, 52], as also a new leading contribution which was not considered
in previous 0νββ calculations [53]. The low-energy constants related to the nucleon-pion short-
range operators were computed from the lattice QCD in [54] in order to aid, e.g., the χEFT
calculations towards the NMEs of 0νββ decays.

The advanced nuclear-structure calculations are in a position to probe accurately enough the
weak-interaction processes from the nuclear side. For example, the computed neutrino-nucleus
scattering cross sections can help pin down, e.g., supernova mechanisms once a supernova will be
observed at a suitably close distance from the Earth. Accurate nuclear-structure calculations,
combined with more and more advanced experiments, can also help learn about the astro-
neutrino nucleosynthesis, neutrino mass and its hierarchy, astrophysical processes and origins of
elemental and isotopic abundances.
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6.4. Remarks on neutrinoless DBD experiments and neutrino-nuclear response

Neutrino-nuclear responses are crucial for DBD neutrino studies to design high-sensitivity
DBD detectors and to extract the Majorana neutrino mass and other neutrino properties from
the DBD experiments. In this section, we briefly discuss the neutrino-mass sensitivity for neutri-
noless DBD experiments and perspectives for future DBD experiments from the neutrino-nuclear
response point of view.

The neutrinoless DBD rate per ton-year (t-y) for the light Majorana-mass mechanism with
the effective mass of meff is expressed as [16, 18, 23]

(T 0ν)−1 =

(
meff

m0

)2

; m0 =
7.8A1/2

M0νg2
A(G0ν)1/2

, (159)

where m0 is the nuclear sensitivity in units of meV, gA = 1.27 is the axial-vector coupling in units
of the vector coupling gV for a free nucleon, G0ν is the phase space in units of 10−14 y−1, A is the
mass number, and M0ν is the neutrinoless DBD NME. It is expressed as M0ν = (geff

A /gA)2M0ν
M ,

with geff
A being the effective coupling to incorporate the renormalization (quenching) effect and

M0ν
M is the nuclear-model NME. Actually, M0ν is sensitive to all kinds of nuclear and non-nuclear

correalations, nuclear models and renormalization (quenching) coefficients of the weak couplings.
Here the nuclear sensitivity m0 is a characteristic of a given DBD nucleus. It corresponds to the
ν mass required for the DBD rate of T 0ν = 1/t-y.

The neutrino-mass sensitivity of a DBD experiment is defined as the minimum neutrino mass
to be measured by using a DBD detector. It is written as

mm = m0 d , d = 1.3 ε−1/2B1/4(NT )−1/4 , (160)

where d is the detector sensitivity, ε is the 0νββ peak efficiency, N is the total DBD-isotope mass
in units of ton, T is the measurement time in units of y and B is the ROI (region of interest)
background rate per t-y of NT . One gets the mass sensitivity of mm = m0 by using a detector
with d=1 (for example, a detector with ε = 1, NT = 3 t-y and background rate of B = 1/t-y).
The mass sensitivity depends on (M0ν)−1, (NT )−1/4 and B1/4. So it is sensitive to M0ν , but
relatively less to the total isotope mass N and the background rate B.

Now we discuss DBD experiments to search for the IH (inverted hierarchy) mass of 20 meV
and the NH (normal hierarchy) mass of 2 meV. DBD isotopes of 82Se, 100Mo, 116Cd, 130Te
and 136Xe, which are of current interest for high-sensitivity experiments, have large phase-space
factors around G0ν ≈ 1.5 in units of 10−14 y−1. The nuclear sensitivities m0 are all around the
IH ν-mass of 20 meV in case of a typical NME of M0ν = 2, as shown in Fig. 68. In other words,
the kinematic factor [A/G0ν ]1/2 is more or less the same for all DBD nuclei. The mass sensitivity
is inversely proportional to the NME M0ν , i.e. m0 is around 30 meV in case of M0ν = 1.5.

The ν-mass sensitivities for 130Te with ε = 0.5, as a typical example, are shown as a function
of the exposure NT in cases of B = 1/t-y and M0ν = 1, 2, 3, and B = 0.01/t-y and M0ν = 2 in
Fig. 68. Exposures required for studies of the IH and NH ν-mass regions are NT = 1−10 t-y and
NT = 100− 1000 t-y in cases of B = 1/t-y, M0ν = 2 and B = 0.01/t-y, M0ν = 2, respectively.

The 76Ge isotope has the larger nuclear sensitivity around m0 = 40 meV because of the
smaller phase space of G0ν ≈ 0.2 than the others, while the 76Ge detector with excellent energy
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Figure 68: Left side: Unit mass sensitivities m0 (squares) in case of M0ν = 2 for 76Ge, 82Se, 100Mo, 116Cd, 130Te,
136Xe and 150Nd, all with the enrichment of r = 1. Right side: Neutrino-mass sensitivities mm for 130Te with
ε = 0.5 as functions of the exposure NT in cases of the background rates of B = 1/t-y (thin lines) and 0.01/(t-y)
(thick line), respectively. The attached numbers 1, 2 and 3 stand for M0ν .

resolution has the small detector sensitivity d because of the small background rate in the region
of interest.

The DBD mass sensitivity mm is given by the product of the nuclear sensitivity m0, propor-
tional to (M0ν)−1, and the detector sensitivity d proportional to N−1/4 and B1/4. Using DBD
nuclei with M0ν smaller by 40% requires an order of magnitude more DBD isotope mass N or
less background rate B in order to get the same mass sensitivity. It is crucial to know M0ν in
order to select the DBD isotopes with a high nuclear sensitivity (small m0) in order to design
high-sensitivity (small mm) DBD detectors. The absolute and relative values of the NMEs,
including the effective weak coupling (renormalization/quenching factor), have to be carefully
considered in selecting the DBD isotopes to be used for future experiments.

Actually, several mechanisms such as the light ν-mass, the heavy ν-mass, the SUSY-mass,
and others beyond the SM are possibly involved in the neutrinoless DBD, and the M0νs depend
on the neutrinoless DBD mechanisms and nuclear structure. Accordingly, accurate M0ν values
are necessary to extract the effective ν mass in case of the light ν-mass mechanism and to identify
the DBD mechanism once the rates are observed.

The DBD detector sensitivity required for the DBD experiment with the IH and NH ν-mass
sensitivity is around d = 1 in a typical case of the NME of M0ν = 2 and the nuclear sensitivity
of m0 = 20 meV, assuming the realistic measurement (exposure) time of T ≈ 4 y, multi-ton scale
(N ≈ 1 − 5 t) detectors with ε ≈ 0.5 and B ≈ 1/t-y. Actually, the mass sensitivity depends
on the enrichment r as mm ∝ r−1/2. Multi-ton scale large-abundance and/or enriched-isotopes
are needed even for the IH mass experiments, and such 76Ge, 82Se, 100Mo, 116Cd and 136Xe are
obtained by means of centrifugal isotope-separation plants.

The required background rates are of the orders of B = 1/t-y and B = 0.01/t-y for the IH
and NH ν-mass studies. Background sources to be considered are the natural and cosmogenic RI
impurities, cosmogenic muon and neutron interactions, solar-ν CC and NC interactions, high-
energy 2νββ contributions, and others. Then DBD experiments are made by using high-purity
(RI-free) DBD detectors at deep underground laboratories. Good energy resolution, combined
with SSSC (single-site spacial correlation) and SSTC(single-site time correlation) analyses are
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used to reduce background rates as discussed in [16, 18].
It is of vital importance to optimize the 3 key parameters for high-sensitivity DBD experi-

ments: the NME M0ν , the total DBD-isotope mass N and the background rate B at the region
of interest for high-sensitivity experiments through scientific and realistic discussions and to
promote coordinated experimental and theoretical efforts for high-sensitivity DBD studies.
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[201] A. Escuderos, A. Faessler, V. Rodin, F. Šimkovic, Contributions of different neutron pairs
in different approaches for neutrinoless double-beta decay, J. Phys. G: Nucl. Part. Phys. 37
(2010) 125108.

[202] J. Toivanen, J. Suhonen, Renormalized proton-neutron QRPA and its application to double
beta decay, Phys. Rev. Lett. 75 (1995) 410–413.

154



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[203] J. Toivanen, J. Suhonen, Study of several double-beta-decaying nuclei using the renor-
malized proton-neutron quasiparticle random-phase approximation, Phys. Rev. C 55 (1997)
2314–2323.

[204] A. A. Raduta, C. M. Raduta, A. Faessler, W. A. Kaminski, Description of the 2νββ decay
within a fully renormalized RPA approach, Nucl. Phys. A 634 (1998) 497–524.

[205] C. M. Raduta, A. A. Raduta, Description of the 2νββ decay within a fully renormalized
proton-neutron quasiparticle random-phase approximation approach with a restored gauge
symmetry, Phys. Rev. C 82 (2010) 068501.

[206] C. M. Raduta, A. A. Raduta, I. I. Ursu, New theoretical results for 2νββ decay within a
fully renormalized proton-neutron random-phase approximation approach with the gauge
symmetry restored, Phys. Rev. C 84 (2011) 064322.

[207] P. Vogel, M. R. Zirnbauer, Suppression of the two-neutrino double-beta decay by nuclear-
structure effects, Phys. Rev. Lett. 57 (1986) 3148-3151.

[208] O. Civitarese, A. Faessler, T. Tomoda, Suppression of the two-neutrino double β decay,
Phys. Lett. B 194 (1987) 11-14.

[209] J. Suhonen, A. Faessler, T. Taigel, T. Tomoda, Suppression of the β+ decays of 148Dy,
150Er and 152Yb, Phys. Lett. B 202 (1988) 174-178.

[210] J. Suhonen, T. Taigel, A. Faessler, pnQRPA calculation of the β+/EC quenching for several
neutron-deficient nuclei in mass regions A = 94 − 110 and A = 146 − 156, Nucl. Phys. A
486 (1988) 91-117.

[211] E. Holmlund, J. Suhonen, Microscopic nuclear-structure calculations for the solar-neutrino
detector 71Ga and close-lying isobars, Nucl. Phys. A 714 (2003) 673–695.

[212] E. Holmlund, J. Suhonen, Gamow-Teller beta decays of the odd-mass neighbors of the
solar-neutrino detector 127I, Nucl. Phys. A 706 (2002) 335–350.

[213] T. Otsuka, A. Arima, F. Iachello, Nuclear shell model and interacting bosons, Nucl. Phys.
A 309 (1978) 1–33.

[214] T. Otsuka, Microscopic basis of the interacting boson model, Prog. Theor. Phys. Suppl.
125 (1996) 5–48.

[215] S. Brant, V. Paar, IBFFM yrast states in odd-odd nuclei associated with O(6) and SU(3)
limits, Z. Phys. 329 (1988) 151–159.

[216] P. Van Isacker, J. Engel, K. Nomura, Neutron-proton pairing and double-β decay in the
interacting boson model, Phys. Rev. C 96 (2017) 064305.

155



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[217] J. Suhonen, Impact of the quenching of gA on the sensitivity of 0νββ experiments, Phys.
Rev. C 96 (2017) 055501.

[218] L. Jokiniemi, J. Suhonen, Isovector spin-multipole strength distributions in double-β-decay
triplets, Phys. Rev. C 96 (2017) 034308.

[219] E. Oset, M. Rho, Axial currents in nuclei: The Gamow-Teller matrix element, Phys. Rev.
Lett. 42 (1979) 47–50.

[220] A. Bohr, B. R. Mottelson, On the role of the δ resonance in the effective spin-dependent
moments of nuclei, Phys. Lett. 100B (1981) 10–12.

[221] L. S. Towner, Quenching of spin matrix elements in nuclei, Phys. Rep. 155 (1997) 263–377.

[222] J. Menéndez, D. Gazit, A. Schwenk, Chiral two-body currents in nuclei: Gamow-Teller
transitions and neutrinoless double-beta decay, Phys. Rev. Lett. 107 (2011) 062501.

[223] A. Ekström et al., Effects of three-nucleon forces and two-body currents on Gamow-Teller
strengths, Phys. Rev. Lett. 113 (2014) 262504.

[224] C. Patrignani et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 40
(2016) 100001.

[225] W. T. Chou, E. K. Warburton, B. A. Brown, Gamow-Teller beta-decay rates for A ≤ 18
nuclei, Phys. Rev. C 47 (1993) 163–177.

[226] D. H. Wilkinson, Renormalization of the axial-vector coupling constant in nuclear β-decay
(III), Nucl. Phys. A 225 (1974) 365–381.

[227] B. H. Wildenthal, M. S. Curtin, B. A. Brown, Predicted features of the beta decay of
neutron-rich sd-shell nuclei, Phys. Rev. C 28 (1983) 1343–1366.

[228] M. Konieczka, P. Baczyk, W. Satula, β-decay study within multireference density func-
tional theory and beyond, Phys. Rev. C 93 (2016) 042501(R).

[229] T. Siiskonen, M. Hjorth-Jensen, J. Suhonen, Renormalization of the weak hadronic current
in the nuclear medium, Phys. Rev. C 63 (2001) 055501.

[230] G. Mart́ınez-Pinedo, A. Poves, E. Caurier, A. P. Zuker, Effective gA in the pf shell, Phys.
Rev. C 53 (1996) R2602–R2605.

[231] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, T. Abe, Large-
scale shell-model analysis of the neutrinoless ββ decay of 48Ca, Phys. Rev. lett. 116 (2016)
112502.

[232] V. Kumar, P. C. Srivastava, H. Li, Nuclear β−-decay half-lives for fp and fpg shell nuclei,
J. Phys. G: Nucl. Part. Phys. 43 (2016) 105104.

156



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[233] M. Honma, T. Otsuka, T. Misuzaki, M. Hjorth-Jensen, Effective interaction for f5pg9-shell
nuclei and two-neutrino double beta-decay matrix elements, J. Phys.: Conf. Series 49 (2006)
45–50.

[234] E. Caurier, F. Nowacki, A. Poves, Shell model description of the ββ decay of 136Xe, Phys.
Lett. B 711 (2012) 62–64

[235] A. Juodagalvis, D. J. Dean, Gamow-Teller GT+ distributions in nuclei with mass A =
90− 97, Phys. Rev. C 72 (2005) 024306.

[236] M. Horoi, A. Neacsu, Shell model predictions for 124Sn double-β decay, Phys. Rev. C 93
(2016) 024308.

[237] P. Pirinen, J. Suhonen, Systematic approach to β and 2νββ decays of mass A = 100− 136
nuclei, Phys. Rev. C 91 (2015) 054309.

[238] F. F. Deppisch, J. Suhonen, Statistical analysis of β decays and the effective value of gA

in the proton-neutron random-phase approximation framework, Phys. Rev. C 94 (2016)
055501.

[239] D. S. Delion, J. Suhonen, Effective axial-vector strength and β-decay systematics, Euro-
phys. Lett. 107 (2014) 52001.

[240] Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Nikšić, D. Vretenar, J. Meng, β-decay
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[317] Q. Zhi, E. Caurier, J. J. Cuenca-Garćıa, K. Langanke, G. Mart́ınez-Pinedo, K. Sieja, Shell-
model half-lives including first-forbidden contributions for r-process waiting-point nuclei,
Phys. Rev. C 87 (2013) 025803.

[318] D.-L. Fang, B. A. Brown, T. Suzuki, Investigating β-decay properties of spherical nuclei
along the possible r-process path, Phys. Rev. C 88 (2013) 034304.

[319] E. K. Warburton, B. A. Brown, Appraisal of the Kuo-Herling shell-model interaction and
application to A = 210− 212 nuclei, Phys. Rev. C 43 (1991) 602–617.

[320] H. Daniel, Das β-spektrum des RaE, Nucl. Phys. 31 (1962) 293.

[321] J. Kostensalo, J. Suhonen, Mesonic enhancement of the weak axial charge and its effect on
the half-lives and spectral shapes of first-forbidden J+ ↔ J− decays, Phys. Lett. B (2018),
in press.

[322] H. F. Schopper, Weak Interactions and Nuclear Beta Decay, North-Holland, Amsterdam,
1966.

[323] J. Suhonen, Calculation of allowed and first-forbidden beta-decay transitions of odd-odd
nuclei, Nucl. Phys. A 563 (1993) 205–224.

162



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[324] K. Kubodera, J. Delorme, M. Rho, Axial currents in nuclei, Phys. Rev. Lett. 40 (1978)
755–758.

[325] P. Guichon, M. Giffon, J. Joseph, R. Laverriere, C. Samour, Exchange current corrections
for partial capture rates of muons in nuclei, Z. Phys. A 285 (1978) 183–189.

[326] P. Guichon, M. Giffon, C. Samour, Possible evidence for mesonic exchange correction in
16N(0−)↔ 16O(0+) β-decay and µ-capture reactions, Phys. Lett. 74B (1978) 15–17.

[327] I. S. Towner, F. C. Khanna, Role of 2p-2h states in weak 0+ − 0− transitions in A = 16
nuclei, Nucl. Phys. A 372 (1981) 331–348.

[328] J. Delorme, Meson degrees of freedom in nuclei, Nucl. Phys. A 374 (1982) 541c–555c.

[329] E. K. Warburton, I. S. Towner, B. A. Brown, First-forbidden β decay: Meson-exchange
enhancement of the axial charge at A ∼ 16, Phys. Rev. C 49 (1994) 824–839.

[330] E. K. Warburton, J. A. Becker, B. A. Brown, D. J. Millener, First-forbidden beta decay
near A = 40, Ann. Phys. 187 (1988) 471–501.

[331] E. K. Warburton, First-forbidden β decay in the lead region and mesonic enhancement of
the weak axial current, Phys. Rev. C 44 (1991) 233–260.

[332] K. Kubodera, M. Rho, Axial-charge transitions in heavy nuclei and in-medium effective
chiral Lagrangians, Phys. Rev. Lett. 67 (1991) 3479–3482.

[333] H. Mach, E. K. Warburton, R. L. Gill, R. F. Casten, J. A. Becker, B. A. Brown, J.
A. Wigner, Meson-exchange enhancement of the first-forbidden 96Yg(0−) → 96Zrg(0+) β
transition: β decay of the low-spin isomer of 96Y, Phys. Rev. C 41 (1991) 226–242.

[334] D. H. Gloeckner, Shell-model systematics of the zirconium and niobium isotopes, Nucl.
Phys. A 253 (1975) 301–323.

[335] X. Ji, B. H. Wildenthal, Effective interaction for N = 50 isotones, Phys. Rev. C 37 (1988)
1256–1266.

[336] B. A. Brown, unpublished.

[337] C. Gaarde et al., The 48Ca(3He,t)48Sc reaction at 66 and 70 MeV: Reaction mechanism
and Gamow-Teller strength, Nucl. Phys. A 334 (1980) 248–268.

[338] C. D. Goodman, Gamow-teller resonances, Nucl. Phys. A 374 (1982) 241c–251c.

[339] H. Akimune, et al., Direct proton decay from the Gamow-Teller resonances in 208Bi, Phys.
Rev. C. 52 (1995) 604–615.

[340] D. J. Horen et al., Energy systematics of the giant gamow-teller resonance and a charge-
exchange dipole spin-flip resonance, Phys. Lett. B 99 (1981) 383–386.

163



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[341] L. Jokiniemi, H. Ejiri, D. Frekers, J. Suhonen, Neutrinoless ββ nuclear matrix elements
using IVSD Jπ = 2− data, Phys. Rev. C. (2018), to be submitted.

[342] B. D. Anderson et al., Particle-hole strength excited in the 48Ca(p,n)48Sc reaction at 134
and 160 MeV: Gamow-Teller strength, Phys. Rev. C 31 (1985) 1161–1172.

[343] T. Wakasa et al., Gamow-Teller strength of 90Nb in the continuum studied via multipole
decomposition analysis of the 90Zr(p,n) reaction at 295 MeV, Phys. Rev. C 55 (1997) 2909–
2922.

[344] K. Yako et al., Determination of the Gamow-Teller quenching factor from charge exchange
reactions on 90Zr, Phys. Lett. B 615 (2003) 193–199.

[345] E. Caurier, A. Poves, A. P. Zuker, Missing and quenching of Gamow-Teller strength, Phys.
Rev. Lett. 74 (1995) 1517–1520.

[346] D. R. Bes, O. Civitarese, J. Suhonen, Sechematic and realistic model calculation of the
isovector spin monopole excitations in 116In, Phys. Rev. C 86 (2012) 024314.

[347] O. Civitarese, J. Suhonen, Strength of Jπ = 1+ Gamow-Teller and isovector spin monopole
transitions in double-β-decay triplets, Phys. Rev. C 89 (2014) 044319.

[348] H. Ejiri, Renormalization of the first forbidden beta transitions and giant forbidden beta
resonances, Phys. Rev. C. 26 (1982) 2628–2635.

[349] S. P. Riley et al., Neutrino-induced deuteron disintegration experiment, Phys. Rev. C 59
(1999) 1780–1789.

[350] M. Albert et al., Measurement of the reaction 12C(νµ, µ
−)X near threshold, Phys. Rev. C

51 (1995) R1065-R1069.

[351] R. Maschuw et al. (KARMEN Collaboration), Neutrino spectroscopy with KARMEN,
Prog. Part. Nucl. Phys. 40 (1998) 183–192.

[352] V. Tsakstara, T. Kosmas, Low-energy neutral-current neutrino scattering on 128,130Te,
Phys. Rev. C 83 (2011) 054612.

[353] V. Tsakstara, T. Kosmas, Analyzing astrophysical neutrino signals using realistic nuclear
structure calculations and the convolution procedure, Phys. Rev. C 84 (2011) 064620.

[354] J. S. O’Connell, T. W. Donnelly, J. D. Valecka, Semileptonic weak interactions with C12,
Phys. Rev. C 6 (1972) 719–733.

[355] T. W. Donnelly, J. D. Walecka, Semi-leptonic weak and electromagnetic interactions in
nuclei with application to 16O, Phys. Lett. B 41 (1972) 275–280.

[356] T. W. Donnelly, J. D. Walecka, Elastic magnetic electron scattering and nuclear moments,
Nucl. Phys. A 201 (1973) 81–106.

164



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[357] T. W. Donnelly, J. D. Walecka, Semi-leptonic weak and electromagnetic interactions with
nuclei: Isoelastic processes, Nucl. Phys. A 274 (1976) 368–412.

[358] T. W. Donnelly, R. D. Peccei, Neutral current effects in nuclei, Phys. Rep. 50 (1979) 1–85.

[359] V. C. Chasioti, T. S. Kosmas, A unified formalism for the basic nuclear matrix elements
in semi-leptonic processes, Nucl. Phys. A 829 (2009) 234–252.

[360] E. Kolbe, K. Langanke, G. Mart́ınez-Pinedo, P. Vogel, Neutrino-nucleus reactions and
nuclear structure, J. Phys. G: Nucl. Part. Phys. 29 (2003) 2569–2596.

[361] T. Katori, M. Martini, Neutrino-nucleus cross sections for oscillation experiments, J. Phys.
G: Nucl. Part. Phys. 45 (2018) 013001.

[362] E. Ydrefors, J. Suhonen, Charged-current neutrino-nucleus scattering off the even molyb-
denum isotopes, Adv. High Energy Phys. 2012 (2012) 373946.

[363] J. D. Walecka, Theoretical Nuclear and Subnuclear Physics, Imperial College Press, Lon-
don, 2004.

[364] E. Ydrefors, K. G. Balasi, J. Suhonen, T. S. Kosmas, Nuclear responses to supernova
neutrinos for stable molybdenum isotopes, in Neutrinos: Properties, Sources and Detection
(Ed. J. P. Greene), Nova Science Publishers (2011) 151-175.

[365] J. N. Bahcall, A. M. Serenelli, S. Basu, New solar opacities, abundances, helioseismology,
and neutrino fluxes, Astrophys. J. 621 (2005) L85–L88.

[366] Solar neutrino data http://www.sns.ias.edu/∼jnb/SNdat a/sndata.html.

[367] M. B. Aufderheide, S. D. Bloom, D. A. Resler, C. D. Goodman, Comparison of Gamow-
Teller strength in 37Ar and 39K and 37Cl neutrino cross sections, Phys. Rev. C 49 (1994)
678–685.

[368] D. Krofcheck et al., Gamow-Teller strength function in 71Ga via (p,n) reaction at medium
energies, Phys. Rev. Lett. 55 (1985) 1051–1054.

[369] D. Frekers et al., The 71Ga(3He,t) reaction and the low-energy neutrino response, Phys.
Lett. B 706 (2011) 134–138.

[370] G. Bellini et al. (Borexino collaboration), Neutrinos from the primary proton proton fusion
process in the Sun, Nature 512 (2014) 383-386.

[371] R. S. Raghavan, Inverse β decay of 115In→115Sn∗: a new possibility for detecting solar
neutrinos from the proton proton reaction, Phys. Rev. Lett. 37 (1976) 259–262.

[372] R. S. Raghavan, New Prospects for real-time spectroscopy of low energy electron neutrino
from the sun, Phys. Rev. Lett. 78 (1997) 3618–3621.

165



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[373] M. Fujiwara et al., Gamow-Teller strengths of the inverse beta decay transition
176Yb→176Lu for spectroscopy of proton-proton and other sub-MeV solar neutrinos, Phys.
Rev. Lett. 85 (2000) 4442–4445.

[374] M. Agostini et al., First simultaneous precision spectroscopy of pp, 7Be and pep solar
neutrino with Borexino phase-II, arXiv: 1707.09279.

[375] D. Frekers et al., Precision evaluation of the 71Ga(νe, e
−) solar neutrino capture rate from

(3He,t) charge exchange reaction, Phys. Rev. C 91 (2015) 034608.

[376] K. Zuber, Spectroscopy of low-energy solar neutrinos using CdTe detectors, Phys. Lett. B
571 (2003) 148–154.

[377] K. Zuber, Real time spectroscopy of solar pp-neutrino using 150Nd, Phys. Lett. B 709
(2012) 6–8.

[378] H. Ejiri, S. R. Elliott, Charged current neutrino cross section for solar neutrinos, and
background to the ββ(0ν) experiments, Phys. Rev. C 89 (2014) 055501.

[379] H. Ejiri, S. R. Elliott, Solar neutrino interactions with double-β decay nuclei 82Se, 100Mo,
and 150Nd, Phys. Rev. C 95 (2017) 055501.

[380] N. F. de Barros, K. Zuber, Solar neutrino-electron scatterings as background limitation
for double-beta decay, J. Phys. G: Nucl. Part. Phys. 38 (2011) 105201.

[381] H. Ejiri, K. Zuber, Solar neutrino interactions with liquid scintillators used for double
beta-decay experiments, J. Phys. G: Nucl. Part. Phys. 43 (2016) 045201.

[382] K. Hirata et al. (Kamiokande Collaboration), Observation of a neutrino burst from the
supernova SN1987A, Phys. Rev. Lett. 58 (1987) 1490–1493.

[383] R. M. Bionta et al. (IMB Collaboration), Observation of a neutrino burst in coincidence
with supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494–1496.

[384] E.N. Alekseev, et al., Possible detection of a neutrino signal on 23 February 1987 at the
Baksan underground, Scintillation Telescope of INR JETP Lett. 45 (1987) 589.

[385] H. A. Bethe, Supernova mechanisms, Rev. Mod. Phys. 62 (1990) 801–866.

[386] H. T. Janka, K. Langanke, A. Marek, G. Mart́ınez-Pinedo, B. Müller, Theory of core-
collapse supernovae, Phys. Rep. 442 (2007) 1–6.

[387] H. T. Janka, Explosion mechanisms of core-collapse supernovae, Ann. Rev. Nucl. Part. Sci
62 (2012) 407–151.

[388] C. Giunti, C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford Uni-
versity Press, New York, NY, USA, 2007.

166



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[389] G. G. Raffelt, Particle physics from stars, Ann. Rev. Nucl. Part. Sci 49 (1999) 163–216.

[390] G. G. Raffelt, Physics opportunities with supernova neutrinos, Prog. Part. Nucl. Phys. 64
(2010) 393–399.

[391] A. B. Balantekin, G. M. Fuller, Supernova neutrino-nucleus astrophysics, J. Phys. G: Nucl.
Part. Phys. 29 (2003) 2513–2522.

[392] K. Scholberg, Supernova neutrino detection, Ann. Rev. Nucl. Part. Sci 62 (2012) 81–103.

[393] K. Langanke, E. Kolbe, Neutrino-induced charged-current reaction rates for r-process nu-
clei, At. Data Nucl. Data Tables 79 (2001) 293–315.

[394] K. Langanke, G. Mart́ınez-Pinedo, Nuclear weak-interaction processes in stars, Rev. Mod.
Phys. 75 (2003) 819–862.

[395] K. Langanke, Weak interaction, nuclear physics and supernovae, Acta Phys. Pol. B 39
(2008) 265–282.

[396] T. Suzuki, T. Kajino, Element synthesis in the supernova environment and neutrino oscil-
lations, J. Phys. G: Nucl. Part. Phys. 40 (2013) 083101.

[397] T. Kajino, G. J. Methews, T. Hayakawa, Neutrinos in core-collapse supernovae and nucle-
osynthesis, J. Phys. G: Nucl. Part. Phys. 41 (2014) 044007.

[398] C. Volpe, Neutrino-nucleus interactions as a probe to constrain double-beta decay predic-
tions, J. Phys. G: Nucl. Part. Phys. 31 (2005) 903–908.

[399] M. T. Keil, G. G. Raffelt, Monte Carlo study of supernova neutrino spectra formation,
Astrophys. J. 590 (2003) 971–991.

[400] HALO-Helium and Lead Observatory (http://www.snolab.ca/halo/).

[401] K. Zuber, HALO, a supernova neutrino observatory, Nucl. Part. Phys. Proc. 265-266 (2015)
233–235.

[402] H. Ejiri et al., MOON for neutrino-less double beta decays, Eur. Phys. J. Special Topics
162 (2008) 239–250.

[403] EXO-Enriched Xenon Observatory (https://www-project.slac.stanford.edu/exo/).

[404] M. Koshiba, Observational neutrino astrophysics, Phys. Rep. 220 (1992) 229–381.

[405] J. Engel, Approximate treatment of lepton distortion in charged-current neutrino scatter-
ing from nuclei, Phys. Rev. C 57 (1998) 2004–2009.

[406] S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman, D. S. Meyer, The r-process
and neutrino-heated supernova ejecta, Astrophys. J. 433 (1994) 229–246.

167



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[407] G. M. Fuller, W. C. Haxton, G. McLaughlin, Prospects for detecting supernova neutrino
flavor oscillations, Phys. Rev. D 59 (1999) 085005.

[408] H. Akimune, et al., Direct proton decay from the Gamow-Teller resonances in 208Bi, Phys.
Rev. C. 52 (1995) 604–615.

[409] B. Dasgupta, A. Dighe, G. G. Raffelt, A. Tu. Smirnov, Multiple spectral splits of supernova
neutrinos, Phys. Rev. Lett. 103 (2009) 051105.

[410] J. Gava, C. Volpe, Collective neutrino oscillations in matter and CP violation, Phys. Rev.
D 78 (2008) 083007.

[411] A. B. Balantekin, G. M. Fuller, Constraints on neutrino mixing, Phys. Lett. B 471 (1999)
195–201.

[412] G. Mart́ınez-Pinedo, B. Ziebarth, T. Fischer, K. Langanke, Effect of collective neutrino
flavor oscillations on νp-process nucleosynthesis, Eur. Phys. J. A 47 (2011) 98.

[413] K. Nakamura et. al (Particle Data Group), Review of particle physics, J. Phys. G: Nucl.
Part. Phys. 37 (2010) 075021.

[414] D. Gazit, N. Barnea, Neutrino neutral reaction on 4He: Effects of final interaction and
realistic NN force, Phys. Rev. C 70 (2004) 048801.

[415] T. Suzuki, S. Chiba, T. Yoshida, T. Kajino, T. Otsuka, Neutrino-nucleus reactions based
on new shell model Hamiltonians, Phys. Rev. C 74 (2006) 034307

[416] N. Jachowicz, S. Rombouts, K. Heyde, J. Ryckebush, Cross sections for neutral-current
neutrino-nucleus interactions: Applications for 12C and 16O, Phys. Rev. C 59 (1999) 3246–
3255.

[417] A. Botrugno, G. Co’, Excitation of nuclear giant resonances in neutrino scattering off
nuclei, Nucl. Phys. A 761 (2005) 200–231.

[418] M.-K. Cheoun, E. Ha, K. S. Kim, T. Kajino, Neutrino-nucleus reactions via neutral and
charged currents by the quasi-particle random phase approximation (QRPA), J. Phys. G:
Nucl. Part. Phys. 37 (2010) 055101.

[419] H. Dapo, N. Paar, Neutral-current neutrino-nucleus cross sections based on relativistic
nuclear energy density functional, Phys. Rev. C 86 (2012) 035804.

[420] S. K. Singh, N. C. Mukhopadhyay, E. Oset, Inclusive neutrino scattering in 12C: Implica-
tions for νµ to νe oscillations, Phys. Rev. C 57 (1998) 2687–2692.

[421] E. Kolbe, K. Langanke, P. Vogel, Weak reactions on 12C within the continuum random
phase approximation with partial occupancies, Nucl. Phys. A 652 (1999) 91–100.

168



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[422] N. Jachowicz, K. Heyde, J. Ryckebush, S. Rombouts, Continuum random phase approx-
imation approach to charged-current neutrino-nucleus scattering, Phys. Rev. C 65 (2002)
025501.

[423] N. Paar, D. Vretenar, T. Marketin, P. Ring, Inclusive charged-current neutrino-nucleus
reactions calculated with the relativistic quasiparticle random-phase approximation, Phys.
Rev. C 77 (2008) 024608.
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[593] D.-L. Fang, A. Faessler, V. Rodin, F. Šimkovic, Neutrinoless doube-β decay of deformed
nuclei within quasiparticle random-phase approximation with a realistic interaction, Phys.
Rev. C 83 (2011) 034320.

[594] J. Hyvärinen, J. Suhonen, Neutrinoless ββ decays to excited 0+ states and the Majorana-
neutrino mass, Phys. Rev. C 93 (2016) 064306.

[595] J. Hyvärinen, J. Suhonen, Analysis of the intermediate-state contributions to neutrinoless
double β− decays, Adv. in High Energy Phys. 2016 (2016) 4714829.

[596] P. K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P. K. Raina, J. G. Hirsch, Neutrinoless
ββ decay transition matrix elements within mechanisms involving light Majorana neutrinos,
classical Majorons, and sterile neutrinos, Phys. Rev. C 88 (2013) 064322.

[597] P. K. Rath, R. Chandra, K. Chaturvedi, P. K. Raina, J. G. Hirsch, Deformation effects
and neutrinoless positron ββ decay of 96Ru, 102Pd, 106Cd, 124Xe, 130Ba, and 156Dy, Phys.
Rev. C 80 (2009) 044303.

[598] P. K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P. K. Raina, J. G. Hirsch, Uncer-
tainties in nuclear transition matrix elements for β+β+ and εβ+ modes of neutrinoless
positron double-β decay within the projected Hartree-Fock-Bogoliubov model, Phys. Rev.
C 87 (2013) 014301.

180



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[599] P. K. Rath, R. Chandra, K. Chaturvedi, P. K. Raina, J. G. Hirsch, Uncertainties in
nuclear transition matrix elements for neutrinoless ββ decay within the projected-Hartree-
Fock-Bogoliubov model, Phys. Rev. C 82 (2010) 064310.

[600] E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Influence of pairing on the nuclear matrix
elements of the neutrinoless ββ decays, Phys. Rev. Lett. 100 (2008) 052503.
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[611] M. S. Yousef, V. Rodin, A. Faessler, F. Šimkovic, Two-neutrino double β decay of deformed
nuclei within the quasiparticle random-phase approximation with a realistic interaction,
Phys. Rev. C 79 (2009) 014314.

[612] D. S. Delion, J. Suhonen, Double-β decay within a consistent deformed approach, Phys.
Rev. C 91 (2015) 054329.

181



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[613] D. S. Delion, J. Suhonen, Two-neutrino ββ decays and low-lying Gamow-Teller β− strength
functions in the mass range A = 70− 176, Phys. Rev. C 95 (2017) 034330.

[614] J. Terasaki, Overlap of quasiparticle random-phase approximation states for nuclear matrix
elements of the neutrino-less double-β decay, Phys. Rev. C 86 (2012) 021301(R).

[615] J. Terasaki, Many-body correlations of quasiparticle random-phase approximation in nu-
clear matrix elements of neutrinoless double-β decay, Phys. Rev. C 91 (2015) 034318.

[616] J. Terasaki, Examination of the consistency of the quasiparticle random-phase approxima-
tion approach to double-β decay of 48Ca, Phys. Rev. C 97 (2018) 034304.
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[634] E. Lisi, A. M. Rotunno, F. Šimkovic, Degeneracies of particle and nuclear physics uncer-
tainties in neutrinoless ββ decay, Phys. Rev. D 92 (2015) 093004.

[635] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, I. V. Titkova, Theoretical investigation of
the dependence of double beta decay tracks in a Ge detector on particle and nuclear physics
parameters and separation from gamma ray events, Phys. Rev. D 73 (2006) 013010.

[636] H. Horie, K. Sasaki, On energy matrices for the independent particle model, Prog. Theor.
Phys. 25 (1961) 475–492.

[637] A. Neacsu, S. Stoica, M. Horoi, Fast, efficient calculations of the two-body matrix elements
of the transition operators for neutrinoless double-β decay, Phys. Rev. C 86 (2012) 067304.

[638] J. Hyvärinen, J. Suhonen, Recursive method for computing matrix elements for two-body
interactions, Phys. Rev. C 91 (2015) 054308.

[639] N. Ninohara, J. Engel, Proton-neutron pairing amplitude as a generator coordinate for
double-β decay, Phys. Rev. C 90 (2014) 031301(R).
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