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Cerebello-hippocampal interactions occur during accurate spatiotemporal prediction of movements. In
the context of music listening, differences in cerebello-hippocampal functional connectivity may result
from differences in predictive listening accuracy. Using functional MRI, we studied differences in this
network between 18 musicians and 18 nonmusicians while they listened to music. Musicians possess a
predictive listening advantage over nonmusicians, facilitated by strengthened coupling between produced
and heard sounds through lifelong musical experience. Thus, we hypothesized that musicians would
exhibit greater functional connectivity than nonmusicians as a marker of accurate online predictions
during music listening. To this end, we estimated the functional connectivity between cerebellum and
hippocampus as modulated by a perceptual measure of the predictability of the music. Results revealed
increased predictability-driven functional connectivity in this network in musicians compared with
nonmusicians, which was positively correlated with the length of musical training. Findings may be
explained by musicians’ improved predictive listening accuracy. Our findings advance the understanding
of cerebellar integrative function.
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Cerebellar function beyond the sensorimotor realm is becoming
more widely accepted (Koziol et al., 2014; O’Reilly, Beckmann,
Tomassini, Ramnani, & Johansen-Berg, 2010; Salmi, Rinne,
Koistinen, Salonen, & Alho, 2009; Salmi et al., 2010; Watson,
Koutsikou, Apps, & Jones, 2015), evidencing an anterior sensori-

motor versus posterior cognitive-emotional dichotomy in the cer-
ebellum (Imamizu, Kuroda, Miyauchi, Yoshioka, & Kawato,
2003; Koziol et al., 2014; Stoodley, 2012). Evidence gathered in
the last 20 years supports cerebellar contributions to learning skills
(Bellebaum & Daum, 2011), working memory and other language
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functions (Bellebaum & Daum, 2011; Leggio, Chiricozzi, Clausi,
Tedesco, & Molinari, 2011; Leiner, 2010; Schmahmann & Sher-
man, 1998; Steinlin, 2008; Tavano & Borgatti, 2010), spatial and
episodic memory (Leggio et al., 2011; Rochefort et al., 2011;
Schmahmann & Sherman, 1998), emotion control (Colibazzi et al.,
2010; Tavano & Borgatti, 2010), event prediction (Forster &
Brown, 2011), empathy and predicting others’ actions (Gazzola &
Keysers, 2009; Ramnani & Miall, 2004; Schulte-Riither, Markow-
itsch, Fink, & Piefke, 2007; Singer et al., 2004), imitation (Jack-
son, Meltzoff, & Decety, 2006), planning and decision-making
(Hogan et al., 2011; Ito, 2008; Tavano & Borgatti, 2010), and
cognitive developmental disorders including autism (Shukla,
Keehn, Lincoln, & Miiller, 2010; Steinlin, 2008). Notably, new
research has reported important functional interactions between
the posterior cerebellum and the hippocampus (Igléi et al., 2014;
Krook-Magnuson, Szabo, Armstrong, Oijala, & Soltesz, 2014;
Onuki, Van Someren, De Zeeuw, & Van der Werf, 2015; Roche-
fort et al., 2011; Wikgren, Nokia, & Penttonen, 2010), for which
several potential structural and functional connectivity pathways
exist, evidenced by both animal and human studies. Animal studies
have demonstrated direct connections between the hippocampus
and the fastigial nucleus (Arrigo et al., 2014; Heath, Dempesy,
Fontana, & Myers, 1978; Heath & Harper, 1974; Liu, Zhang,
Yuan, Wang, & Li, 2012; Oganesian, Melik-Musian, Fanardzhian,
& Grigorian, 1980; Snider & Maiti, 1976; Wikgren et al., 2010;
Yu, Gao, Wang, & Chen, 1989). These findings support the
existence of a direct anatomical substrate through which posterior
cerebellum and hippocampus may influence one another. Thus,
although no known path has been defined between the cerebellum
and hippocampus, there is evidence for a bidirectional communi-
cation between these structures.

Moreover, a recent systematic review by Yu and Krook-
Magnuson (Yu & Krook-Magnuson, 2015) on the novel area of
cerebello-hippocampal (CER-HIPP) interactions emphasized the
crucial role of CER-HIPP functional connectivity for spatial (Bur-
guiere et al., 2005; Igldi et al., 2014; Petrosini, Leggio, & Molinari,
1998; Rochefort et al., 2011; Rochefort, Lefort, & Rondi-Reig,
2013) and temporal processing (Clark, Manns, & Squire, 2002;
Eichenbaum, 2014; Kirsch et al., 2003; Koekkoek et al., 2003;
Logan & Grafton, 1995; Paleja, Girard, Herdman, & Christensen,
2014; Thompson & Steinmetz, 2009; C. Weiss & Disterhoft, 2011;
Wikgren et al., 2010).

Using functional MRI (fMRI), Onuki et al. (2015) observed
coactivation between the left hippocampus and the cerebellum
(bilateral lobule VI, right crus I, left lobule VIIIb) during accurate
spatiotemporal prediction of finger movements. More specifically,
participants were prompted to press with one finger assigned
buttons at a precise moment following visual cues (flashing mov-
ing markers). Thus, both temporal and spatial information were
required for successfully predicting the precise moment and loca-
tion of the finger press. Because CER-HIPP coupling was absent
in conditions lacking the spatiotemporal integration component
required to make accurate predictions (i.e., conditions requiring
reactive instead of predicted finger movements, and an imagery
version thereof), this coupling was thus interpreted to be an indi-
cator of participants’ accurate predictions based on integrating
both spatial and temporal information.

In the present study, we wanted to determine whether coupling
between the cerebellum and left hippocampus could be present

during a perceptual condition that involves a predictive temporal
component. Music listening provides an excellent context that
relies heavily on predictive mechanisms without actual movement
(Gebauer, Kringelbach, & Vuust, 2015; Huron, 2006; Maidhof,
Vavatzanidis, Prinz, Rieger, & Koelsch, 2010; Meyer, 1956; Nar-
mour, 1990; Rohrmeier & Koelsch, 2012; Schenker, 1935; Schoe-
nberg, 1978; Vuust, Ostergaard, Pallesen, Bailey, & Roepstortf,
2009). As experts in the musical domain, musicians possess opti-
mized predictive models of musical structure, allowing them to
more accurately anticipate upcoming musical events (Ericsson &
Towne, 2010; Drake & Palmer, 2000; Hansen, Vuust, & Pearce,
2016; Lehmann & Gruber, 2006). In addition, the superior abilities
in timing and error correction observed in musicians have been
attributed to the cerebellum (Chen, Penhune, & Zatorre, 2008), a
structure that, along with other motor-related areas, undergoes
reorganization ostensibly by the impact of musical motor learning
(Baer et al., 2015; Gaser & Schlaug, 2003; Hutchinson, Lee, Gaab,
& Schlaug, 2003; Koeneke, Lutz, Wiistenberg, & Jincke, 2004;
Ungerleider, Doyon, & Karni, 2002).

Because CER-HIPP coupling is suggested to be a marker of
predictive accuracy (Onuki et al., 2015), differences in predictive
listening accuracy may manifest as differences in CER-HIPP func-
tional connectivity. Thus, a stronger CER-HIPP coupling in mu-
sicians compared with nonmusicians could be an indicator of
improved predictive listening accuracy.

In the present study, we used an fMRI paradigm that enables the
use of naturalistic stimulation (continuous music) to study cogni-
tive functions without the need for controlled tasks. We recorded
fMRI brain responses from 18 musicians and 18 nonmusicians
while they attentively listened to music of different genres. We
were interested in CER-HIPP functional connectivity during mo-
ments of high predictability in the music (i.e., when participants
are purportedly engaged in making accurate predictions). The use
of a perceptual segmentation task to obtain a measure of predict-
ability in the current study was justified and motivated by back-
ground literature on information-theoretic descriptions of musical
events as relating to their perceived predictability (cf. Juhdsz,
2004; Pearce, Miillensiefen, & Wiggins, 2010).

The unpredictability (unexpectedness) of upcoming events is
higher at event boundaries than elsewhere (Egermann, Pearce,
Wiggins, & McAdams, 2013; Hafer & Weiss, 1974; Harris, 1954;
Juhész, 2004; Narmour, 1990; Pearce, Ruiz, Kapasi, Wiggins, &
Bhattacharya, 2010; Pearce & Wiggins, 2012; Shannon, 1951). In
other words, segment boundaries are located at the peaks of
highest information content of a signal (Abdallah & Plumbley,
2009; Pearce & Wiggins, 2006). Maximum-information-based
segmentation methods have been similarly applied in text segmen-
tation (Charniak, 2000; Low, Ng, & Guo, 2005; McCallum, Fre-
itag, & Pereira, 2000; Ratnaparkhi, 1999; Reynar & Ratnaparkhi,
1997), applying the information theory criterion as a marker of
sentence boundaries. These boundaries mark the highest points of
uncertainty in the signal because, after a segment boundary, the
next upcoming events are the hardest to predict (less likely to be
anticipated accurately).

This conforms with event segmentation theory (Zacks, Speer,
Swallow, Braver, & Reynolds, 2007), according to which an event
boundary is distinguished when perceptual or conceptual features
of the activity change, making the anticipation of upcoming infor-
mation more difficult. At such points, a transient increase in
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prediction error occurs, which gives rise to the subjective experi-
ence that a new event has begun (Zacks et al., 2007). Thus,
measures of information content in the music can be obtained
using segmentation tasks.

In the present study, a real-time perceptual segmentation test
was used to obtain segments in the music with high predictability
(low information content). A different participant sample was used
to avoid the effect of becoming familiar with the exposure. Par-
ticipants had to identify segment boundaries defined as instants of
significant change in the music. This allowed us to measure the
CER-HIPP connectivity during the segments of the music in which
prediction is possible because information content is low. Segment
boundaries represent consequently an indirect but robust measure
of predictability in the music based on information theory used
recurrently in the literature.

The test was pooled separately for musicians and nonmusicians.
Thus, the resulting boundaries identified in the music reflect the
within-group consensual points of highest unpredictability in the
music.

Using this segmentation approach, we are able to reliably obtain
segments of the music in which information content is low, and
thus accurate predictive listening is likely to happen. This variable
was used to conduct psychophysiological interaction (PPI; Friston
et al., 1997) analyses to estimate how the CER-HIPP functional
connectivity depended on the predictability of the music. We
hypothesized musicians to show increased predictability-driven
functional connectivity in the CER-HIPP network compared with
nonmusicians, as a marker of musicians’ improved prediction
accuracy during listening.

Materials and Method

We proceeded as follows: First we obtained fMRI responses
from participants during music listening. Following this, a percep-
tual test was conducted in a different participant pool (see Partic-
ipants) to estimate the points of highest predictability in the music.
Next, PPI analyses were performed between two hippocampal
seeds and the cerebellum using the predictability variable. This
was followed by 1 tests between groups to find whether CER-HIPP
coupling was driven by musical predictability differently in musi-
cians and nonmusicians. Lastly, we investigated the relationship
between musical training and predictability-driven functional con-
nectivity in musicians.

Participants

fMRI experiment. A total of 36 healthy participants with no
history of neurological or psychological disorders participated in
the fMRI experiment. The participants were screened for inclusion
criteria before admission to the experiment (no ferromagnetic
material in their body, no tattoo or recent permanent coloring, no
pregnancy or breastfeeding, no chronic pharmacological medica-
tion, and no claustrophobia), and upon admission to the experi-
ment, they signed an informed written consent. The participant
pool was selected to be equally divided between professional
musicians (n = 18; age = 28.2 = 7.8; female = 9) and nonmu-
sicians (n = 18; age = 29.2 = 10.7; female = 10; left-handers =
1). The criteria for musicianship were having more than 5 years of
music training, having finished a music degree in a music acad-

emy, reporting themselves as musicians, and working profession-
ally as a performer. As for the type of musicians, there were
classical (n = 12), jazz (n = 4), and pop (n = 2) musicians. The
instruments played were strings (violin = 4; cello = 2; double
bass = 1), piano (n = 8), winds (trombone = 1; bassoon = 1), and
mixed (n = 1). The musicians’ group was homogeneous in terms
of the duration of their musical training, onset age of instrument
practice, and amount of years of active instrument playing. These
details were obtained and crosschecked via questionnaires and the
Helsinki Inventory for Music and Affect Behavior (Gold, Frank,
Bogert, & Brattico, 2013). There were no significant differences
between the musician and nonmusician groups with respect to
cognitive performance, socioeconomic status, or personality and
mood questionnaire (see Table S1 in the online supplemental
materials for a detailed list of background variables tested).

The experiment was undertaken with the understanding and
written consent of all participants. The study protocol proceeded
upon acceptance by the ethics committee of the Coordinating
Board of the Helsinki and Uusimaa Hospital District. This study
was part of a larger project (“Tunteet”), including several experi-
mental sessions, fMRI paradigms, and questionnaires, whose find-
ings will be reported in separate papers.

Perceptual experiment. A separate participant pool (N = 36)
took part in the perceptual experiment (18 nonmusicians [7 fe-
male] and 18 musicians [10 female]). The rationale for using a
different participant pool allows to minimize familiarity effects
with the music, which could affect the listening task during the
fMRI scanning (or vice versa, the perceptual task), leading to
participants reacting differently to cadential closure, repetition,
and other features that could contribute to expectation violations.
However, to minimize differences, groups were matched in terms
of their demographic variables. The mean age of the participants
was 27.45 years (SD = 4.54). They were all students or graduates
from different faculties of the University of Jyviskyld and of the
JAMK University of Applied Sciences. Participants were rewarded
with a movie ticket as a token for their participation. Musicians
had an average of 14.39 years (SD = 7.49) of musical training. The
musical style played by 12 of the musicians was classical music,
whereas the other six musicians played nonclassical musical styles.
The main instruments played by participants were piano (five),
guitar (four), flute (two), bass guitar (one), clarinet (one), saxo-
phone (one), cello (one), violin (one), viola (one), and voice (one).
All the nonmusicians reported having had no musical training,
whereas all of the selected musicians considered themselves either
as semiprofessional (12) or professional (six participants) musi-
cians at the time of the data collection. None of the participants
reported experience in dance, ballet, or sound engineering. Six
participants were very familiar with at least one stimulus, but
nobody reported having performed any of the examples. As a
general rule, we referred to a participant as musician when he or
she had reported more than 8 years of musical training and had
also self-considered himself or herself as semiprofessional musi-
cian or professional musician. We discarded, for example, partic-
ipants who, in a multiple-choice questionnaire, reported to be
amateur musicians. In contrast, we considered participants to be
nonmusicians if they considered themselves as nonmusicians and
if they did not report any musical training.

AQ: 4

AQ: 5


http://dx.doi.org/10.1037/pmu0000215.supp

AQ:6-7

AQ: 8

APA NLM

|tapraidS/pmu-pmu/pmu-pmu/pmu99918/pmu0284d182 | Xppws | S=1 | 8/18/18 | 450 | Art: 2017-0032 | |

4 BURUNAT ET AL.

Stimuli

Three musical pieces were used in the experiment: (a) Stream of
Consciousness by Dream Theater, (b) Adios Nonino by Astor Piaz-
zolla, and (c) Rite of Spring (comprising the first three episodes from
Part 1: Introduction, Augurs of Spring, and Ritual of Abduction) by
Igor Stravinsky. These are a progressive rock/metal piece, an Argen-
tinian New Tango, and an iconic 20th century classical work, respec-
tively, thus covering distinct musical genres and styles. All three
selected pieces are instrumental and have a duration of about 8 min
(the recording details and Spotify links to the musical stimuli can be
found in the Supplementary Document 1).

fMRI Experimental Procedure

Participants’ brain responses were acquired while they listened
to each of the musical stimuli in a counterbalanced order. For each
participant, the stimuli loudness was adjusted to a comfortable but
audible level inside the scanner room (around 75 dB). In the
scanner, the participants’ only task was to attentively listen to the
music delivered via high-quality magnetic resonance-compatible
insert earphones while keeping their eyes open.

fMRI Scanning and Preprocessing

Scanning was performed using a 3T MAGNETOM Skyra
whole-body scanner (Siemens Health Care, Erlangen, Germany)
and a standard 20-channel head neck coil, at the Advanced Mag-
netic Imaging Centre (Aalto University, Espoo, Finland). Concur-
rent electroencephalogram was also acquired with BrainVision
amplifier (BrainProducts, Germany), and the data will be reported
elsewhere, not being of interest to the current study goal of fMRI
signal reliability. Using a single-shot gradient echo planar imaging
sequence, 33 oblique slices (field of view = 192 X 192 mm; 64 X
64 matrix; slice thickness = 4 mm, interslice skip = 0 mm; echo
time = 32 ms; flip angle = 75°) were acquired every 2 s, providing
whole-brain coverage. T1-weighted structural images (176 slices;
field of view = 256 X 256 mm; matrix = 256 X 256; slice
thickness = 1 mm; interslice skip = 0 mm; pulse sequence =
Magnetization-Prepared Rapid Gradient-Echo [MPRAGE]) were
also collected for individual coregistration. The fMRI scans were
preprocessed on a MATLAB platform using SPM8 (Statistical
Parametric Mapping), VBMS5 for SPM (Voxel Based Morphome-
try; Ashburner and Friston, 2000); Wellcome Department of Im-
aging Neuroscience, London, United Kingdom), and customized
scripts developed by the present authors. For each participant,
low-resolution images were realigned on six dimensions using
rigid body transformations (translation and rotation corrections did
not exceed 2 mm and 2° respectively), segmented into gray
matter, white matter, and cerebrospinal fluid, and registered to the
corresponding segmented high-resolution T1-weighted structural
images. These were in turn normalized to the Montreal Neurolog-
ical Institute (Evans, Kamber, Collins, & MacDonald, 1994) seg-
mented standard a priori tissue templates using a 12-parameter
affine transformation. Functional images were then blurred to best
accommodate anatomical and functional variations across partici-
pants and to enhance the signal-to-noise by means of spatial
smoothing using an 8 mm full-width-at-half-maximum Gaussian
filter. Movement-related variance components in the fMRI time

series resulting from residual motion artifacts, assessed by the six
parameters of the rigid body transformation in the realignment
stage, were regressed out from each voxel time series. Following
this, spline interpolation was used to detrend the fMRI data,
followed by temporal filtering (Gaussian smoothing with kernel
width = 4 s). We tested for differences in the amount of head
movement between the groups by means of an independent sam-
ples ¢ test using participants’ SDs of each of the six movement
components, which resulted for any of the movement components
in no significant differences at a = 0.05.

Brain responses to the three stimuli were concatenated, making
a total of ~24 min worth of data. The rationale behind this was to
combine stimuli representing a wide range of musical genres and
styles, to cancel out effects that the specific kinds of music may
have on the phenomenon under investigation. The final time series
had 702 samples after the first four samples of each of the three
runs were removed to avoid artifacts due to magnetization effects.

Hippocampal Seeds

Guided by Onuki et al. (2015)’s findings, we used the left
hippocampus as the seed for PPI analyses. Furthermore, due to the
functional heterogeneity of the hippocampus, we divided the left
hippocampus into anterior and posterior. The anterior hippocam-
pus has been reported to be implicated in novelty processing and
movement, as well as in stress, and emotion and affect, whereas
the posterior hippocampus seems to relate to familiarity and space-
related processing, and performs primarily cognitive functions
(Colombo, Fernandez, Nakamura, & Gross, 1998; Fanselow &
Dong, 2010; Strange, Fletcher, Henson, Friston, & Dolan, 1999).

We used an anatomical criterion for selecting two hippocampal
seeds corresponding to anterior and posterior aspects of the left
hippocampus. The uncus is a distinctive and recognizable land-
mark for parcellation of the hippocampus, which enables to dis-
tinguish the anterior (uncus) and posterior (body and tail) aspects
of the hippocampus. Thus, the boundary between anterior and
posterior hippocampal aspects was determined by the presence of
the uncus in coronal slices.

Following this, we created seeds by averaging the voxels time
courses that fell into each of the anterior and posterior subareas of
the left hippocampus. Using the automated anatomical labeling
(Tzourio-Mazoyer et al., 2002) mask, this happened at Y = 55.

Perceptual Variable Representing Predictability

We aimed to test whether CER-HIPP functional connectivity
was modulated by the degree of predictability of the music more in
musicians than in nonmusicians. PPI analyses served this purpose
because they answer the question whether the strength of the
functional connectivity depends on a third factor, in this case, a
perceptual variable selected for representing the degree of predict-
ability of the music. This variable was obtained in a real-time
perceptual experiment, which took place with a computer in a
sound-attenuated room. Participants were instructed in written
form to mark instants of significant change as they listened to the
music by pressing the space bar of the computer keyboard (“Your
task is to mark instants of significant musical change by pressing
the space bar of the computer keyboard. Whenever you find an
instant of significant change, please press the spacebar key to
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mark it as you listen to the music. You will not have a chance
to listen to the whole example before you start marking. In-
stead, during your first and only listen of each example, you
will give us your ‘first impression’.”). After completing a trial,
they listened and marked different musical stimuli, which were
presented in a randomized order. Participants were instructed to
give their “first impression” because they would not have a
chance to listen to the whole example before they started
marking. The interface included a play bar that offered basic
visual-spatial cues regarding the beginning, current time posi-
tion, and end of the examples.

Each stimulus was presented to participants as four musical
extracts:

- Piazzolla: 0-02:00, 01:57-03.57, 03:54—-05:54, 05:51-08:
07.968.

- Dream Theater: 0-02:00, 01:57-03.57, 03:54-05:54,

05:51-07:50.979

- Stravinsky: 00:05-02:05,
05:56-07:52.243

02:02-04:02, 03:59-05:59,

We concatenated the segmentation data to obtain a set of indi-
cated boundaries for the complete stimulus. The kernel density
estimation (KDE; Silverman, 1986) of these data was computed
separately for musicians and nonmusicians to estimate its prob-
ability density curve. The chosen Gaussian kernel width was of
1.66 s, which was found to yield the optimal correlation be-
tween the KDE of musicians and nonmusicians. Between-
groups consistency was high, »r = .9, p < .001. However,
nonmusicians seemed to indicate more segments in the music.
The sampling interval used to compute the KDE was 10 Hz. The
KDE time series for each group was convolved with the canon-
ical double-gamma hemodynamic response function to match
the hemodynamic response delay typical of blood-oxygen-level
dependent brain responses, and was downsampled to 0.5 Hz to
match the sampling rate of the fMRI scanner.

The peaks of this curve were located where significant
changes with highest consensus within groups occur. Predict-
ability can be then derived from an information theory point of
view. The degree of entropy or information content in the music
would be maximal at the consensual boundaries, as these per-
ceptual boundaries denote a significant change from preceding
musical events and are thus not predictable from preceding
musical cues. The same criterion has been previously used to
detect segment boundaries in folk song melodies (Juhdsz,
2004), whereby high entropy implies a next interval hard to
predict, at which point this may indicate a segment boundary.
Thus, accurate predictive listening is likely to happen during
segments of music between boundaries.

With the current segmentation approach, our predictability re-
gressor describes the moments of highest unpredictability in the
music (segment boundaries) with consistency across participants.
Furthermore, the segmentation approach renders more reliable
points of unpredictability in the music within the groups of interest
because it only focuses in the highest consensual points of unpre-
dictability.

PPI Analyses

This perceptual variable made it feasible to conduct PPI analy-
ses to evaluate whether CER-HIPP functional connectivity was
mediated by the degree of predictability of the music. PPI analyses
are task-dependent functional connectivity analyses, which allow
the study of how brain regions interact in a task-dependent manner
(Friston et al., 1997). PPI measures how functional connectivity is
affected by an external (psychological) variable, that is, how the
presence or absence of it modulates the functional connectivity.
The statistical model for PPI is the multiple linear regression,

xi:kagp'Bi"' [xkng]'BG+ei’ (1

where x, denotes the physiological responses (the fMRI signal at a
seed region, here the hippocampal seed), g, denotes the psycho-
logical variable (here the predictability of the music) convolved
with a canonical hemodynamic response function, x, X g, repre-
sents the psychophysiological interaction term between the hip-
pocampal seed activity and the predictability of the music, x;
denotes the brain responses at each voxel within the cerebellum, (3,
denotes the beta parameter estimates corresponding to the PPI
term; 3 is a matrix of the beta estimates corresponding to x, and
8,» as confounding variables, and other potential covariates of no
interest (G); and e; is the error term. Thus, the PPI term represents
the explanatory variable in a multiple linear regression, and the
inclusion of x;, and g, as nuisance regressors guarantees any
confounding effect induced by their variability alone to be ruled
out. Cerebellar areas in which activity is best predicted by the PPI
term indicate areas with strongest correlation with the hippocam-
pal seed as a function of the predictability of the music. The
resulting beta parameter estimates were Z-transformed using the
standard deviation of each of the beta distributions, calculated
from the confidence intervals of the respective beta coefficients.

The significance of the z scores had to be estimated due to the
intrinsic serial correlation of the fMRI time series derived from the
smoothness of the hemodynamic response. To this purpose, we
estimated the effective degrees of freedom of the data following a
nonparametric permutation-based approach (Pyper & Peterman,
1998) as shown in Eq. 2:

%: ~ 5+ 22 Mo (e,
where N is the number of observations, p.(j) and p,,(j) are the
autocorrelations of the interaction term and a random cerebellar
voxel time series at lag j, respectively. For each participant and
hippocampal seed, the effective degrees of freedom were com-
puted by randomly selecting 10,000 cerebellar voxels. Next, esti-
mates from all trials across participants and seeds were averaged
(M = 306 = 5) and used to compute the significance of the z
scores by dividing these by the standard error (Equation 3):

Zeorrected — Zf v df -3

(@)

3

t Tests Between Groups

The Z-transformed PPI beta parameter estimates were compared
between groups by means of ¢ tests (¢ = 0.01, one-tailed). The
choice of one-tailed ¢ tests responded to the need to test for
directional differences between the groups. The resulting spatial
maps were further corrected for multiple comparisons using a
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cluster-wise significance procedure based on permutation tests to
derive a null distribution of the cluster sizes (conditional stimulus)
at a given significance level, from which a critical conditional
stimulus threshold can be selected at a particular family-wise error
(FWE) rate. Specifically, group membership was bootstrap resa-
mpled with replacement, and ¢ tests were performed at the alpha
level given earlier. A critical cluster size of 60 voxels was obtained
from a distribution of 10,000 cluster sizes (FWE = 0.05).

Anatomical regions within each cluster were labeled based on
the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al.,
2002) implemented in the MarsBaR toolbox v0.43 (Brett, Anton,
Valabregue, & Poline, 2002), (http://marsbar.sourceforge.net).
Clusters were also visually inspected using the probabilistic atlas
of the human cerebellum implemented in FSL (https:/fsl.fmrib.ox
.ac.uk/fsl/fslwiki/) to ensure that the automatic assignment was
conforming to the neurological knowledge. The x, y, and z coor-
dinates (in Montreal Neurological Institute space) of the maximum
voxel Z-value within each anatomical region were retrieved and
accordingly labeled.

Correlation Analyses With Years of Musical Training

Additional correlation analyses tested a potential relationship
between the duration of the musical training and the predictability-
driven functional connectivity in musicians. Only significant vox-
els resulting from the group comparison were entered in the
correlation analysis, that is, those cerebellar areas with greater
predictability-driven functional connectivity in musicians com-
pared with nonmusicians. This would further support musical
training as a driver for the increased CER-HIPP coupling during
music listening.

Participants’ Z-transformed beta coefficients of the respective
cerebellar areas were correlated against the years of musical train-
ing across musicians. Spearman’s rank correlation coefficient (o =
0.05, one-tailed, uncorrected given the small voxel sets) was used
because (a) the demographic variable was not normally distributed
and (b) its potential relationship with the PPI coefficients may not
necessarily need to be a linear one. This nonparametric measure of
dependence is in addition less sensitive to outliers.

Results

t Tests Between Groups

Results from the ¢ tests (o« = 0.01, one-tailed; cluster-wise
threshold = 60 voxels, FWE = 0.05) comparing the degree of
modulation of the CER-HIPP functional connectivity by musical
predictability (PPI analyses) yielded significantly greater
predictability-driven functional connectivity in musicians for both
hippocampal seeds compared with nonmusicians. Significant areas
comprised the bilateral lobule VI and crus I (anterior seed), the
bilateral crus I and II, and right lobule VI (posterior seed). Effect
sizes were also computed for all significant voxels. Large effect
sizes (Cohen’s d > 0.8) were extensively found (71% and 100% of
significant cerebellar voxels for the left anterior and left posterior
hippocampal seeds, respectively), indicating that the difference
between musicians’ and nonmusicians’ CER-HIPP functional con-
nectivity is not only statistically significant but also substantially
large. In other words, for both seeds musicians exhibited stronger

CER-HIPP coupling than nonmusicians because the degree of
musical predictability increased (Figure 1 and Table 1 for list of
regions).

Correlation Analyses With Years of Musical Training

Correlation tests in musicians (Spearman, o = .05, one-tailed)
revealed significant results in the hypothesized direction of effect.
This means that musicians with a longer musical training also
exhibited stronger predictability-driven functional connectivity in
the CER-HIPP network. Significant areas comprised right lobule
VI and right crus I (anterior seed; see Table 2 for list of regions).

Discussion

We show here that the degree of predictability of the music had
a significantly larger effect on musicians’ CER-HIPP coupling
compared with that of nonmusicians’. In addition, the length of
musical training was positively correlated with the degree of
predictability-driven functional connectivity in musicians. In par-
ticular, our results revealed that musicians exhibited stronger CER-
HIPP coupling than nonmusicians during segments of the music
with low information content, where participants are more likely to
predict upcoming musical events. The stronger CER-HIPP cou-
pling could hence be a marker of more accurate predictive listen-
ing in musicians than in nonmusicians. We speculate action sim-
ulation to be a potential-facilitating mechanism enabling accurate
predictions. In other words, musicians, during listening, may be
mentally simulating sound-producing actions. This simulation aids
in generating predictions about subsequent musical events, a pro-
cess facilitated via strengthened coupling between produced and
heard sounds through lifelong instrument practice.

MUS > NMUS
| Ant HIPP (L) Pos HIPP (L) |
2
2
>
N
: P~ ¢
2
2
s e
5
8
By Bernst lcrus
Figure 1. Posterior and coronal views of the cerebellum showing regions

with increased predictability-driven cerebello-hippocampal functional con-
nectivity in musicians compared with nonmusicians (o« = 0.01, one-tailed;
cluster-wise threshold = 60 voxels). Clusters were obtained via the 18-
connectivity scheme employed in SPM. Regions encroaching less than 5
voxels were discarded. Ant = anterior; Pos = posterior; HIPP = hip-
pocampus; L = left; R = right; MUS = musicians; NMUS = nonmusi-
cians. See the online article for the color version of this figure.
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Table 1

Cerebellar Regions With Increased Predictability-Driven
Cerebello-Hippocampal Functional Connectivity in Musicians
Compared With Nonmusicians (o« = .01, One-Tailed; Cluster-
Wise Threshold = 60 Voxels) and Vice Versa

Musicians > Nonmusicians

k max z p-value X y z

Seed: Ant HIPP (L)
Cluster #1

Lobule VI (L) 83 354 p<.0005 -—-34 -—54 26

Crus I (L) 70 336 p<.0005 -36 -56 —26
Cluster #2

Lobule VI (R) 62 350 p <.0005 38 =72 =20

Crus I (R) 60 344  p <.0005 40 —-74 -20
Cluster #3

Lobule VI (R) 62 329 p = .0005 24 —64 -—16
Seed: Pos HIPP (L)
Cluster #1

Crus I (R) 306 3.60 p < .0005 32 =82 =30

Crus II (R) 297 320 p <.001 14 =76 =36

Lobule VI (R) 16 271 p<.005 24 =74 -22
Cluster #2

Crus I (L) 39 339 p<.0005 -50 -—66 —28

Crus II (L) 21 2.86 p <.005 44 —-66 —36
Note.  Clusters were obtained via the 18-connectivity scheme employed

in SPM. Regions encroaching less than 5 voxels were discarded. k =
number of voxels; Ant = anterior; Pos = posterior; HIPP = hippocampus;
L = left; R = right; max z = maximal z statistic for the region within the
cluster; x, y, and z = respective Montreal Neurological Institute coordi-
nates.

Musical experience is crucially linked to prediction (Gebauer et
al., 2015; Huron, 2006; Maidhof et al., 2010; Meyer, 1956; Nar-
mour, 1990; Rohrmeier & Koelsch, 2012; Schenker, 1935; Schoe-
nberg, 1978; Vuust et al., 2009), and musicians have been shown
to exhibit stronger brain responses to expectation violations in
musical contexts than nonmusicians (James, Britz, Vuilleumier,
Hauert, & Michel, 2008; Koelsch, Jentschke, Sammler, & Mi-
etchen, 2007; Koelsch, Schmidt, & Kansok, 2002; Oechslin, Van
De Ville, Lazeyras, Hauert, & James, 2013; Vuust et al., 2011;
Vuust, Brattico, Seppénen, Néitinen, & Tervaniemi, 2012). Pre-
vious research has determined that statistical learning produces
information-theoretic descriptions of musical notes relative to their
perceived expectedness, which additionally correspond to distinc-
tive neural activity (Pearce et al., 2010). Furthermore, reinforcing
this information-theoretic view, musicians have been shown to
make better use of the predictive cues in low entropy contexts than
controls to generate more accurate expectations, evidencing that
musical training produces optimized predictive models of musical
structure (Hansen & Pearce, 2014; Hansen et al., 2016). In the
same line, musicians outperform nonmusicians in making more
successful online predictions about the forthcoming musical events
given the current musical context (Mackay, 2003).

Our results conform with those by Onuki et al. (2015), who
observed CER-HIPP functional connectivity only for accurate
predictions. Musicians’ stronger functional connectivity between
cerebellum and hippocampus during moments of low information
content in the music may reflect more accurate predictions being
made by musicians compared with those by nonmusicians. This
increased predictability-driven functional connectivity was ob-

served in musicians between the cerebellum and both hippocampal
seeds. Cerebellar areas comprised the bilateral lobule VI and crus
I (anterior seed), the bilateral crus I and, and right lobule VI
(posterior seed). These foci represent cognitive-related cerebellar
regions in the posterior lobe involved in higher level tasks (spatial
processing, executive functions, and emotional processing; Stood-
ley & Schmahmann, 2009). The anterior hippocampi have been
implicated in tasks involving novelty, movement, and emotion, in
contrast with its posterior homologue, implicated in familiarity,
space-related processing, and cognition (Colombo et al., 1998;
Fanselow & Dong, 2010; Strange et al., 1999). Accordingly, in
light of what is known about hippocampal functional anteropos-
terior segregation, the greater implication of the anterior rather
than the posterior hippocampi may highlight the novelty aspects of
predictive processing during music listening.

Furthermore, our present findings overlap with those by Onuki
et al. (2015), who observed prediction-modulated functional con-
nectivity between the left hippocampus and bilateral lobule VI,
right crus I, and left lobule VIII. In our study, the observed
CER-HIPP coactivation extended also to the left crus I and bilat-
eral crus II. Furthermore, all the cerebellar areas found (lobule VI
and crus I-II) are reached by a recently discovered anatomical
pathway connecting the hippocampus and cerebellum through the
superior cerebellar penducle (Arrigo et al., 2014). In addition, the
cerebellar areas recruited are in line with the notion that a cogni-
tive aspect, rather than a motor one, underlies the predictive
component of the CER-HIPP coupling under investigation.

The positive correlation observed between years of musical
training and predictability-driven CER-HIPP functional connectiv-
ity supported the role of musical training in driving the functional
connectivity. Thus, cortico-subcortical reorganization seems to be
influenced by the demands of musical training. Many studies have
supported the assumption that the amount of musical training
drives cortical plasticity (Gaser & Schlaug, 2003; James et al.,
2014; Musacchia, Sams, Skoe, & Kraus, 2007; Wong, Skoe,
Russo, Dees, & Kraus, 2007). For instance, individual variability
in predicting upcoming tempo changes during a finger-tapping
task was positively correlated with the amount of musical training
(Pecenka & Keller, 2009). In our study, the CER-HIPP network
showing the relationship between predictability-driven functional
connectivity and years of musical training in musicians were
lobule VI and crus I for the anterior seed. The involvement of the
anterior hippocampus may emphasize aspects of novelty detection

Table 2

Cerebellar Regions Showing Significant Correlation (o« = .05,
One-Tailed, Uncorrected) Between Increased Predictability-
Driven Connectivity (Musicians > Nonmusicians) and Years of
Musical Training (Musicians)

Seed: Ant HIPP (L) k max z p-value X y z
Lobule VI (R) 12 2.44 p < .01 38 —68 —22
Crus I (R) 6 2.20 p<.02 36 -T2 —22
Lobule VI (R) 6 1.87 p <.05 26 —64 —20

Note. regions encroaching less than 5 voxels were discarded. k = number

of voxels; Ant = anterior; Pos = posterior; HIPP = hippocampus; L =
left; R = right; max z: maximal z statistic for the region within the cluster;
x, v, and z: respective Montreal Neurological Institute coordinates.
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pertaining to the phenomenon of predictive processing of the
musical structure. Moreover, cerebellar lobule VI is part of a
neural mechanism mediating motor resonance (i.e., the activation
of the motor system during action observation; Landmann, Landi,
Grafton, & Della-Maggiore, 2011). In the context of music listen-
ing, this may support the hypothesis of action simulation per-
formed by musicians during listening.

Moreover, prior research evidences the consistent involvement
of the bilateral lobule VI in timing tasks that include a temporal-
spatial perceptual prediction component (Keren-Happuch et al.,
2014), which provides strong evidence supporting its role in mu-
sicians’ predictive listening in the context of music perception. In
sum, correlation analyses could further illuminate on the contri-
bution of musical training to the modulation of the CER-HIPP
network.

The present findings highlight the question of action simulation
as the possible enhancing mechanism supporting the predictive
listening ability in musicians. In musical contexts, action simula-
tion is mediated by internal models that trigger auditory and motor
images of one’s own upcoming actions (Keller, 2008). Such action
simulation would allow anticipating the future course of the per-
ceived sounds (Pezzulo, Candidi, Dindo, & Barca, 2013; Sebanz &
Knoblich, 2009; Wilson & Knoblich, 2005). Because action sim-
ulation depends on the observer’s own action experience (Bangert
et al., 2006; Baumann, Koeneke, Meyer, Lutz, & Jincke, 2005;
Lahav, Saltzman, & Schlaug, 2007), it is thus particularly strong in
professional musicians, given their lifelong experience-based as-
sociations between sensory and motor processes (Zatorre, Chen, &
Penhune, 2007). In addition, action simulation mechanisms are
more readily triggered during music listening in musicians than
nonmusicians due to stronger coupled sensorimotor loops (Bangert
et al., 2006; Gebel et al., 2013; Haslinger et al., 2005; Kajihara,
Verdonschot, Sparks, & Stewart, 2013; Lotze, Scheler, Tan,
Braun, & Birbaumer, 2003; Schulz, Ross, & Pantev, 2003; Stewart
et al., 2003; Zatorre et al., 2007). Consequently, musicians may be
making accurate predictions during music listening to a greater
extent than nonmusicians on the basis of action simulation mech-
anisms.

Action simulation and internal models have been documented to
be encoded in the cerebellum in connection with other brain
regions, by forming and accessing internal models that facilitate
predictions toward the desired goals of cognition in an error-free
manner (Ito, 2008). The CER-HIPP loop may be one of the neural
mechanisms acting as a facilitator for online spatiotemporal pre-
dictions.

There are several limitations to the current methodology that
should be noted. First, the musician samples used in the behavioral
and fMRI experiments differ in the average level of musicianship,
although no amateur musicians were used for either experiment.
Second, although there are advantages to using different types of
musicians to capture the general aspects of musicianship rather
than the specificities of a target profile of musician, we acknowl-
edge the disadvantage that concerns musicians playing mono-
phonic (e.g., trombone) versus polyphonic (e.g., piano) instru-
ments and their varying levels in prediction accuracy for
polyphonic music. Third, participants (both fMRI and perceptual
experiment pools) were asked to rate their familiarity with the
stimuli on a scale from 1 to 5. Musicians were overall more
familiar with two of the three musical pieces used than were

nonmusicians (Adios Nonino and Rite of Spring), whereas there
were no differences for Stream of Consciousness. However, po-
tential musician—nonmusician differences in familiarity to the mu-
sical stimuli would be accordingly reflected in the predictability
measure, which is a group-specific measure (see Perceptual Vari-
able Representing Predictability). This would in turn account for
between-groups differences in familiarity to the stimuli. Further-
more, we argue that it may be challenging to disentangle schematic
from veridical expectations (Justus & Bharucha, 2001) on the
neural level (i.e., automatic, learned-through-exposure expecta-
tions derived from music-syntactic rules [schematic expectations]
vs. expectations in a familiar musical piece [veridical expecta-
tions]). Evidence shows that musical training increases predictive
accuracy during music listening (Hansen & Pearce, 2014; Mackay,
2003). Furthermore, musicians seem to possess schematic knowl-
edge for music styles they are not familiar with for which they
exhibit increased predictive accuracy compared with nonmusicians
(Hansen et al., 2016). In addition, it has been shown that expec-
tations based on listeners’ schematic knowledge of music seem to
resist veridical expectancies, evidencing the contribution of expec-
tations despite listeners’ familiarity about what will come next
(Tillmann & Bigand, 2010). Finally, it should be noted that the
approach used does not provide any information regarding the
directionality of information flow between cerebellum and hip-
pocampus.

Conclusion

Prior research has suggested CER-HIPP functional connectivity
as a marker of accurate spatiotemporal prediction of finger move-
ments. The present study is the first to show CER-HIPP coupling
in the absence of explicit movement, while participants listened
attentively to music. We further established a relationship between
the predictability of the music, participants’ musical expertise, and
CER-HIPP functional connectivity during music listening. Our
findings overlap with those by Onuki et al. (2015) and provide
novel evidence for increased CER-HIPP functional integration in
musicians as a function of musical predictability compared with
nonmusicians, lending further support to the hypothesis of musi-
cians’ functional consolidation (plasticity) as a result of their
long-term musical training. Furthermore, the present study uses a
paradigm that implements a task consisting of only listening at-

tentively to continuous music. This setting provides increased AQ:21

ecological validity compared with previous approaches in the
study of CER-HIPP interaction.

Our current results substantiate and extend previous findings on
CER-HIPP coupling while aiding to elucidate the role of this
functional network in the context of music listening. In addition,
these findings advance the understanding of cerebellar integrative
function by extending prior knowledge on cerebellar contributions
in the context of prediction and emphasizing the cerebellar role in
higher mental functions in healthy physiology. Because the cere-
bellum is compromised in several behavioral and cognitive devel-
opmental and degenerative disorders, as evidenced by neuropsy-
chological, morphological, and functional imaging studies
(Bugalho, Correa, & Viana-Baptista, 2006; Peng et al., 2013;
Phillips, Hewedi, Eissa, & Moustafa, 2015), the present results are
also of clinical significance for disentangling and interpreting the
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different contributions of specific cerebellar areas in an integrative
manner in pathological behavior and cognitive functioning.
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