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Abstract

In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures
is considered. A new modification of the PLL with tangential phase detector characteristic and active proportionally-integrating
(PI) filter is introduced. Hold-in, pull-in and lock-in ranges for given circuit are studied rigorously. It is shown that lock-in range
of the new PLL model is infinite, compared to the finite lock-in range of the classical PLL.
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1. Introduction

Phase-locked loop (PLL) is a non-linear control circuit, which is used in many intelligent systems [1, 2, 3]: wireless
communication, computer architectures, navigation, power systems and others [4, 5, 6, 7, 8, 9]. The circuit allows to
tune frequency (phase) of the controlled oscillator to the frequency (phase) of the reference signal. State of circuit,
when the oscillators are synchronized, is called a locked state. The main characteristics of PLL are hold-in, pull-in
(capture), and lock-in ranges (rigorous definitions are given in e.g. [10]), which are widely used by engineers (see
e.g., [5, 4, 11]). These concepts define frequency ranges in which PLL-based circuits can achieve lock under various
additional conditions ([12, 13, 14, 15, 7]). It is well known that hold-in and pull-in ranges are infinite for the PI loop
filter, but the lock-in range is finite [16]. In this article we propose and study model of PLL with tangential phase
detector, which has infinite lock-in range.
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In section 2 modified PLL model with tangent phase detector characteristic function is considered. In section 3
hold-in, pull-in and lock-in ranges proved to be infinite. In section 4 it is shown that modified PLL model locks
without cycle slipping, unlike classical model.

2. Mathematical model of PLL

Mathematical model of PLL in signal space (circuit level) is not suitable for analytical study of PLLs, because
it consists of non-linear non-autonomous differential equations. In [17, 18, 19] it was rigorously shown, that for
estimation of lock-in and pull-in range it is possible to use averaged model, which is also called signal’s phase space
model. It was originally proposed in pioneering books on PLLs [20, 21, 22] and considers only phases of signals,
discarding waveforms (see Fig. 1)1. This simplification allows to apply control theory methods such as Lyapunov
functions and phase-portrait analysis to study PLL.
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Fig. 1. Model of the classical PLL in signal’s phase space.

Here θref(t) is the phase of input signal with instantaneous frequency θ̇ref(t) = ωref(t). The phase of voltage con-
trolled oscillator (VCO) is θvco(t) with it’s instantaneous frequency θ̇vco(t) = ωvco(t). The phase detector generates a
signal

ve(θe(t)) = ve(θref(t) − θvco(t)), (1)

where ve(·) is periodic function called phase-detector characteristics which depends only on phase difference θe(t) =
θref(t) − θvco(t). For the classical PLL ve(θe) = 1

2 sin(θe), and for proposed model ve(θe) = tan(θe).
The relationship between input ve(θe(t)) and output v f (t) of for the proportionally-integrating Loop filter with

transfer function H(s) = τ2 s+1
τ1 s , τ1 > 0, τ2 > 0 is


ẋ = 1

τ1
ve(θe),

v f = x + τ2
τ1

ve(θ).
(2)

1 Remark that the averaging method has some restrictions, rigorous discussion of which is often omitted, (see, e.g. classical books [20, p.7],[21,
p.12,15-17]), and their violation may lead to unreliable results (see, e.g. [23, 24, 25]).
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Fig. 1. Model of the classical PLL in signal’s phase space.
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The control signal v f (t) adjusts the VCO frequency:

θ̇vco(t) = ωvco(t) = ωfree
vco + Kvcov f (t), (3)

where ωfree
vco is the VCO free-running frequency and Kvco > 0 is the VCO gain. Nonlinear VCO models can be similarly

considered, see, e.g. [26, 27, 28, 29]. The frequency of input signal (reference frequency) is usually assumed to be
constant (see, e.g. [20]):

θ̇ref(t) = ωref(t) ≡ ωref . (4)

The difference between the reference frequency and the VCO free-running frequency is denoted as ωfree
e :

ωfree
e ≡ ωref − ωfree

vco . (5)

By combining equations (2), and (3)–(5) a nonlinear mathematical model in the signal’s phase space is obtained
(i.e. in the state space: the filter’s state x and the difference between signal’s phases θe):


ẋ = 1

τ1
tan(θe),

θ̇e = ω
free
e − Kvco

(
x + τ2

τ1
tan(θe)

)
.

(6)

Initial state of the loop is θvco(0) (initial phase shift of the VCO signal with respect to the reference signal) and x(0)
(initial state of the Loop filter).

Note, that (6) with tan(·) characteristic is not changed under the transformation

(
ωfree

e , x(t), θe(t))→ ( − ωfree
e ,−x(t),−θe(t)), (7)

and it allows to study system (6) for ωfree
e > 0 only, introducing the concept of frequency deviation (or frequency

offset):

|ωfree
e | = |ωref − ωfree

vco |. (8)

Further system (6) is studied and hold-in range, pull-in range, and lock-in range are computed.

4 M.V. Blagov et al. / Procedia Computer Science 00 (2019) 000–000

3. Calculation of hold-in range, pull-in range, and lock-in range

3.1. Hold-in range

Definition 1 (Hold-in range of the signal’s phase space model, see [10]). The largest interval [0, ωh) such that a
certain stable equilibrium varies continuously when ωfree

e is changed within the range2 is called hold-in range. Here
ωh is called a hold-in frequency (see [20, p.38]).

In other words, loop re-acquires lock after small perturbations of signals’ frequencies and phases, and the filter’s
state, if given frequency deviation is in the hold-in set. This effect is also called steady-state stability. To find the ωh

one should find and analyze equilibria of the system


ẋ = 1

τ1
tan(θe),

θ̇e = ω
free
e − Kvco

(
x + τ2

τ1
tan(θe)

)
.

(9)

This system has an infinite sequence of equilibria

(
xeq, θ

eq
e

)
=

πn, ω
f ree
e

Kvco

 , n ∈ Z. (10)

Stability of the equilibria can be studied using characteristic polynomial of the linearized system:

χ(λ) = λ2 + Kvco
τ2

τ1
λ +

Kvco

τ1
. (11)

Since τ1 > 0, τ2 > 0 and Kvco > 0, all equilibria are asymptotically stable for arbitrary ω f ree
e by Routh-Hurwitz

criterion. Thus, ωh is infinite.

3.2. Pull-in range

Another important characteristic of the PLL circuit is the set of |ωfree
e | such that the model acquires locked state for

any initial state.

Definition 2 (Pull-in range of the signal’s phase space model, see [10, 30, 31]). The largest interval of frequency
deviations |ωfree

e | ∈ [0, ωpull-in) such that the signal’s phase space model (6) acquires a locked state for arbitrary initial
state (x(0), θe(0)) is called a pull-in range, ωpull-in is called a pull-in frequency.

Denote y = x − ω
f ree
e

Kvco
. Then system (9) becomes


ẏ = 1

τ1
tan(θe),

θ̇e = −Kvcoy − Kvco
τ2
τ1

tan(θe).
(12)

2 In general (when the stable equilibria coexist and some of them may appear or disappear), the stable equilibria can be considered as a multiple-
valued function of variable ωfree

e , in which case the existence of its continuous singlevalue branch for |ωfree
e | ∈ [0, ωh) is required.
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Another important characteristic of the PLL circuit is the set of |ωfree
e | such that the model acquires locked state for

any initial state.

Definition 2 (Pull-in range of the signal’s phase space model, see [10, 30, 31]). The largest interval of frequency
deviations |ωfree

e | ∈ [0, ωpull-in) such that the signal’s phase space model (6) acquires a locked state for arbitrary initial
state (x(0), θe(0)) is called a pull-in range, ωpull-in is called a pull-in frequency.

Denote y = x − ω
f ree
e

Kvco
. Then system (9) becomes


ẏ = 1

τ1
tan(θe),

θ̇e = −Kvcoy − Kvco
τ2
τ1

tan(θe).
(12)

2 In general (when the stable equilibria coexist and some of them may appear or disappear), the stable equilibria can be considered as a multiple-
valued function of variable ωfree

e , in which case the existence of its continuous singlevalue branch for |ωfree
e | ∈ [0, ωh) is required.



562	 M.V. Blagov  et al. / Procedia Computer Science 150 (2019) 558–566
M.V. Blagov et al. / Procedia Computer Science 00 (2019) 000–000 5

In order to prove that pull-in range is infinite it is possible to use generalization of classic LaSalle’s (also known
as Barbashin–Krasovskii–LaSalle) invariance principle for periodic functions with infinite number of equilibria (see
[32]). Consider Lyapunov function candidate

V(θe, y) = y2 +
2
τ1

∫ θe
0

tan θedθe � 0. (13)

According to the principle, it is required to check the following conditions:

• V is π-periodic in θe;
• lim
|y|→∞

V(θe, y) = ∞;

• V̇(y, θe) = −βKvco
τ2
τ2

1
tan2 θe � 0;

• V(θe, y) = 0 only for y = ω
f ree
e

Kvco
, θe ∈ πn, n ∈ Z.

Indeed, all of these conditions are satisfied, consequently, every trajectory of system (9), except the lines θe = π
2 +

πn, n ∈ Z, tends to one of the asymptotically stable equilibria. Lines θe = π2 +πn, n ∈ Z consist of unstable equilibria,
which are physically unrealizable.

Fig. 2. Phase portrait of PLL model with tangential phase detector characteristic

3.3. Lock-in range

In practice it is important to guarantee that for a certain frequency range pull-in process completes in one cycle of
oscillations. This frequency range is related to lock-in range.

First lets introduce the notion of cycle slipping.

Definition 3 (Cycle slipping [10]). Let PD characteristic ve(θe) be a π-periodic function. If lim sup
t→∞

|θe(0) − θe(t)| ≥ π
then it is said that cycle slipping occurs.

Now we can introduce definition of lock-in range.
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Definition 4 (Lock-in range of the signal’s phase space model, see [30, 10, 31]). The largest interval of frequency
deviations from the pull-in range: |ωfree

e | ∈ [0, ωlock-in) ⊂ [0, ωpull-in), is called a lock-in range if the signal’s phase
space model (6), being in a (stable) locked state, after any abrupt change of ωfree

e within the interval acquires a
(stable) locked state without cycle slipping.

Note, that all trajectories starting from − π2 < θe(0) < π2 , y(0) ∈ R stay within the same domain, i.e. these trajectories
never cross the band borders θe = ± π2 . Then consider behaviour of the system near θe = ± π2 . The one-sided limits
limθ→ π2−ε and limθ→ π2−ε show that the vector field defined by the right-hand side of (12) is directed away from the
equilibria line:

lim
θ→ π2−ε

ẋ = lim
θ→ π2−ε

1
τ1

tan θ = +∞

lim
θ→ π2−ε

θ̇e = lim
θ→ π2−ε

−Kvcoy − Kvco
τ2

τ1
tan θ = −∞

lim
θ→− π2+ε

ẋ = lim
θ→− π2+ε

1
τ1

tan θ = −∞

lim
θ→− π2+ε

θ̇e = lim
θ→− π2+ε

−Kvcoy − Kvco
τ2

τ1
tan θ = +∞

(14)

Fig. 3. Vector field of the PLL with tangential phase detector characteristic in small neighbourhood of the line θe = π2

Therefore cycle slipping is impossible, i.e. lock-in range is infinite.
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4. Comparison of classic PLL and tan(·) PLL in Matlab Simulink

Consider Simulink models for both sinusoidal and tangential characteristics of the phase detector (see Fig. 4).

Fig. 4. Simulink models for PLL with sinusoidal (on the left hand side) and tangential (on the right hand side) phase detector characteristics.
Here ω f ree

vco = 100, τ1 = 0.01, τ2 = 0.05, Kvco = 200. Initial input ωref = 100 and then jumps to ωref = 350.

Here frequency of input is modeled by Step block with initial value 100, final value 350, and switch time 5.
Block 1

s integrates frequency and forms phase of input signal. After subtracting phase of VCO, resulting signal goes
through PD block (sin and tan correspondingly). Loop filter is modeled by Transfer Fcn block. Output of loop filter
is connected to gain KVCO, which controls input gain of VCO. Gain block output is added to output of constant block
defining free-running frequency of VCO and finally got integrated to form phase of VCO.

Results of simulation are shown in Fig. 5.
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Fig. 5. Simulink modelling for PLL with sinusoidal (on the left hand side) and tangential (on the right hand side) phase detector characteristics

Here one can see, that the synchronization achieved for both models, but for model with sinusoidal phase detector
characteristic cycle slipping occurs. Phase difference is shown in Fig. 6.
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Fig. 6. Phase difference between input signal and VCO signal. Left sub-figure — cycle slipping for classic sinusoidal PD, right sub-figure — no
cycle slipping for tangential PD.

This means that considered frequency difference is outside of the classic PLL lock-in range, while tan(·) PLL locks
without cycle slipping. Similar results are observed for higher frequency deviations.

5. Conclusion

It was proven that tan(·) PD PLL the lock-in range is infinite for PI filter, which is significant improvement over
classic PLL. Theoretical results were checked by simulation. To study noise characteristics one can use theory devel-
oped in [22, 33, 34]. Higher order filters can be studied by frequency criterion [35].
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