Jet fragmentation transverse momentum measurements from di-hadron correlations in $s\sqrt{s}=7$ TeV pp and $s_{NN}=5.02$ TeV p–Pb collisions

ALICE Collaboration; Chang, BeomSu; Kim, Dong Jo; Parkkila, Jasper; Rak, Jan; Räätänen, Sami; Slupecki, Maciej; Snellman, Tomas; Trzaska, Władysław; Vargyas, Márton; Viinikainen, Jussi

© The Author(s) 2019

Published version

© The Author(s) 2019

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

2019

Year: 2019

Version: Published version

Copyright: © The Author(s) 2019

Rights: CC BY 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Jet fragmentation transverse momentum measurements from di-hadron correlations in $\sqrt{s} = 7$ TeV pp and $\sqrt{s_{\text{NN}}} = 5.02$ TeV p–Pb collisions

The ALICE collaboration

E-mail: ALICE-publications@cern.ch

ABSTRACT: The transverse structure of jets was studied via jet fragmentation transverse momentum (p_T) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region $3 < p_{Tt} < 15 \text{GeV}/c$ is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the trigger particle, in agreement with the expectation of universality of the hadronization process. On the other hand, the width of the wide component shows a rising trend suggesting increased branching for higher transverse momentum. The results obtained in pp collisions at $\sqrt{s} = 7$ TeV and in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV are compatible within uncertainties and hence no significant cold nuclear matter effects are observed. The results are compared to previous measurements from CCOR and PHENIX as well as to Pythia 8 and Herwig 7 simulations.

KEYWORDS: Hadron-Hadron scattering (experiments)

ArXiv ePrint: 1811.09742
1 Introduction

Jets are collimated sprays of hadrons originating from the fragmentation of hard partons produced in high-energy particle collisions. Studying the jet fragmentation can provide information about QCD color coherence phenomena, such as angular ordering [1], and constrain hadronization models [2-4]. The transverse fragmentation of partons is often studied using the jet fragmentation transverse momentum, j_T, that describes the momentum component of particles produced in the fragmentation perpendicular to the momentum vector of the hard parton initiating the fragmentation. Previously, j_T has been studied using two-particle correlations by the CCOR collaboration at ISR with pp collisions at center-of-mass energy $\sqrt{s} = 31, 45$ and 63 GeV [5] and the PHENIX collaboration at RHIC with pp collisions at $\sqrt{s} = 200$ GeV [6] and d–Au collisions at center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 200$ GeV [7]. Jet measurements to study j_T have been done by the CDF collaboration at the Tevatron with pp collisions at $\sqrt{s} = 1.96$ TeV [8] and the ATLAS collaboration at the LHC with Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [9].

Jet fragmentation in QCD consists of two different steps [10]. After the hard scattering, partons go through a QCD induced showering step, where gluons are emitted and the high virtuality of the parton is reduced. Since the transverse momentum scale (Q^2) is large during the showering, perturbative QCD calculations can be applied. When Q^2 becomes of the order of Λ_{QCD}, partons hadronize into final-state particles through a non-perturbative process. Two distinct components, related to the showering and hadronization phases, can be identified from the measured j_T distributions.

The presence of a heavy nucleus as in p–A collisions might alter the fragmentation process. One possible mechanism for this is initial or final-state scattering of partons inside the nucleus. This is expected to lead to a broadening of jets, since the scattered partons
are likely to deviate from their original direction \cite{11}. Also the nuclear parton distribution functions can change the relative contributions of quarks and gluons compared to free nucleons, for example via gluon saturation and shadowing effects \cite{12, 13}. Understanding the implications of these cold nuclear matter effects will provide an important baseline for similar measurements in heavy-ion collisions.

In this paper, the j_T distributions are studied using two-particle correlations, measured by the ALICE detector in $\sqrt{s} = 7$ TeV pp and $\sqrt{s_{NN}} = 5.02$ TeV p–Pb collisions. The correlation approach is chosen as opposed to full jet reconstruction based on the discussion in refs. \cite{14, 15}, where it is argued that two-particle correlations are more sensitive to the soft and non-perturbative parts of the jet fragmentation. This is important for the separation of the two j_T components and in searching for cold nuclear matter effects that are expected to play a larger role at lower momenta.

This paper is structured as follows. The event and track selection together with the used data samples are described in section 2. The analysis details are discussed in section 3, followed by the systematic uncertainty analysis in section 4. The obtained results are shown in section 5 and the observations are summarized in section 6.

2 Experimental setup and data samples

This analysis uses two different datasets. The $\sqrt{s} = 7$ TeV pp ($3.0 \cdot 10^8$ events, integrated luminosity $L_{\text{int}} = 4.8 \text{nb}^{-1}$) collisions were recorded in 2010 and the $\sqrt{s_{NN}} = 5.02$ TeV p–Pb ($1.3 \cdot 10^8$ events, $L_{\text{int}} = 62 \mu\text{b}^{-1}$) collisions were recorded in 2013 by the ALICE detector \cite{16}. The details of the performance of the ALICE detector during LHC Run 1 (2009–2013) are presented in ref. \cite{17}.

The charged particle tracks used in this analysis are reconstructed using the Inner Tracking System (ITS) \cite{18} and the Time Projection Chamber (TPC) \cite{19}. The tracking detectors are located inside a large solenoidal magnet which provides a homogeneous magnetic field of 0.5 T. They are used to reconstruct the tracks within a pseudorapidity range of $|\eta| < 0.9$ over the full azimuth. The ITS consists of six layers of silicon detectors: the two innermost layers are the Silicon Pixel Detector (SPD), the two middle layers are the Silicon Drift Detector (SDD) and the two outermost layers are the Silicon Strip Detector (SSD). The TPC is a gas-filled detector capable of providing three-dimensional tracking information over a large volume. Combining information from the ITS and the TPC, the momenta of charged particles from 0.15 to 100 GeV/c can be determined with a resolution ranging from 1 to 10%. For tracks without the ITS information, the momentum resolution is comparable to that of ITS+TPC tracks below transverse momentum $p_T = 10$ GeV/c, but for higher momenta the resolution reaches 20% at $p_T = 50$ GeV/c \cite{17, 20}. Charged particle tracks with $p_T > 0.3$ GeV/c in the region $|\eta| < 0.8$ are selected for the analysis. Events are triggered based on the information of the V0 detector \cite{21} together with the SPD. The V0 detector consists of two scintillator stations, one on each side of the interaction point, covering $-3.7 < \eta < -1.7$ (V0C) and $2.8 < \eta < 5.1$ (V0A). For the 2010 pp collisions, the minimum bias (MB) triggered events are required to have at least one hit from a charged particle traversing the SPD or either side of the V0. The pseudorapidity coverage of the
SPD is $|\eta| < 2$ in the first layer and $|\eta| < 1.5$ in the second layer. Combining this with the acceptance of the V0, the particles are detected in the range $-3.7 < \eta < 5.1$. The minimum bias trigger definition for the 2013 p–Pb collisions is slightly different. Events are required to have signals in both V0A and V0C. This condition is also used later offline to reduce the contamination of the data sample from beam-gas events by using the timing difference of the signal between the two stations [17].

For the pp collisions, similar track cuts as in ref. [22] are used: at least two hits in the ITS are required, one of which needs to be in the three innermost layers, and 70 hits out of 159 are required in the TPC. In addition, the distance of the closest approach (DCA) of the track to the primary vertex is required to be smaller than 2 cm in the beam direction. In the transverse direction, a p_T dependent cut $\text{DCA} < 0.0105 \text{cm} + 0.035 \text{cm} \cdot p_T^{-1.1}$ is used, where p_T is measured in units of GeV/c. These track cuts are tuned to minimize the contamination from secondary particles.

For the p–Pb collisions the tracks are selected following the so called hybrid approach, which is described in detail in ref. [23]. This approach differs from the one presented above in the selection of ITS tracks. The tracks with at least one hit in the SPD and at least two hits in the whole ITS are always accepted. In addition, tracks with fewer than two hits in the ITS or no hits in the SPD are accepted, but only if an additional vertex constraint is fulfilled. The DCA cuts are also looser: smaller than 3.2 cm in the beam direction and smaller than 2.4 cm in the transverse direction. With this track selection, the azimuthal angle (φ) distribution is as uniform as possible, because it is not affected by dead regions in SPD. This is important for a two-particle correlation analysis. The momentum resolutions of the two classes of particles are comparable up to $p_T \approx 10 \text{GeV/c}$, but after that, tracks without ITS requirements have a worse resolution [17, 20].

3 Analysis method

The analysis is performed by measuring two-particle correlation functions. In each event, the trigger particle is chosen to be the charged particle with the highest reconstructed p_T inside the acceptance region, called the leading particle. For the momentum range studied in the analysis, simulation studies show that the direction of the leading particle can be assumed in good approximation that one of the jet axis, which is the axis defined by the momentum vector of the hard parton initiating the jet fragmentation. The associated particles close in the phase-space to the leading one are then interpreted as jet fragments.

The jet fragmentation transverse momentum, \vec{J}_T, is defined as the component of the associated particle momentum, \vec{p}_a, transverse to the trigger particle momentum, \vec{p}_t. The resulting \vec{J}_T is illustrated in figure 1. The length of the \vec{J}_T vector is

$$\vec{J}_T = \frac{|\vec{p}_t \times \vec{p}_a|}{|\vec{p}_t|}.$$ \hspace{1cm} (3.1)

It is commonly interpreted as a transverse kick with respect to the initial hard parton momentum that is given to a fragmenting particle during the fragmentation process. In other words, \vec{J}_T measures the momentum spread of the jet fragments around the jet axis.
Figure 1. Illustration of \vec{p}_T and x_k. The jet fragmentation transverse momentum, \vec{p}_T, is defined as the transverse momentum component of the associated particle momentum, \vec{p}_a, with respect to the trigger particle momentum, \vec{p}_t. The fragmentation variable x_k is the projection of \vec{p}_a to \vec{p}_t divided by p_t.

In the analysis, results are presented in bins of the fragmentation variable x_k which is defined as the projection of the momentum of the associated to the trigger particle one, divided by the momentum of the trigger particle:

$$x_k = \frac{\vec{p}_a \cdot \vec{p}_t}{p_t^2}.$$

(3.2)

This is also illustrated in figure 1. Because x_k is defined as a fraction of the trigger particle momentum, it is intuitive to define a three-dimensional near side with respect to the axis defined by the trigger momentum. The associated particle is defined to be in the near side if it is in the same hemisphere as the trigger particle:

$$\vec{p}_t \cdot \vec{p}_a > 0.$$

(3.3)

The results have been binned in x_k rather than associated particle transverse momentum (p_{Ta}) because the definition of j_T (eq. (3.1)) has an explicit p_{Ta} dependence. Bins in p_{Ta} would bias the results since pairs with larger j_T are more likely to be in bins of larger p_{Ta}. In the case of x_k this bias is not present, since x_k and j_T measure momentum components along perpendicular axes. Another advantage for using x_k is that the relative p_T of the associate particles with respect to trigger p_T (p_{Ta}) stays the same in different p_{Ta} bins.

It was verified with a PYTHIA 8 [2, 24] Monash tune simulation that the average fraction of the leading parton momentum taken by the leading particle ($\langle z_t \rangle$) varies less than 0.05 units inside the used x_k bins 0.2 < x_k < 0.4, 0.4 < x_k < 0.6, and 0.6 < x_k < 1.0, with lower p_{Ta} bins having slightly larger $\langle z_t \rangle$ than higher bins.

The extracted j_T distribution is of the form

$$\frac{1}{N_{\text{trigg}}} \frac{1}{j_T} \frac{dN}{dj_T} (p_{Tt}, x_k, j_T) = C_{\text{associated}}(p_{Ta}) C_{\text{Acc}}(\Delta \eta, \Delta \phi) \frac{N_{\text{pairs}}(p_{Tt}, x_k, j_T)}{j_T N_{\text{trigg}} \Delta j_T},$$

(3.4)

where N_{trigg} is the number of triggers, $N_{\text{pairs}}(p_{Tt}, x_k, j_T)$ is the number of trigger-associated pairs, Δj_T is the bin width of the used j_T bin, $C_{\text{associated}}(p_{Ta})$ is the single track efficiency.
correction for the associated particle and $C_{\text{Acc}}(\Delta \eta, \Delta \varphi)$ is the pair acceptance correction. The single track efficiency correction is estimated by Monte Carlo simulations of Pythia 6 [25], Pythia 8 or DPMJET [26] events, using GEANT3 [27] detector simulation and event reconstruction. The pair acceptance correction is the inverse of the normalized mixed event distribution sampled at the corresponding $(\Delta \eta, \Delta \varphi)$ value. The mixed event distribution is constructed by correlating trigger and associated particles from different events in the data sample. In the mixed event distribution, away-side particles must be included to properly correct for detector and acceptance effects.

In this study, the j_T distribution is determined by pairing all charged particles inside each x_\parallel bin with the leading particle and calculating j_T for each of these pairs in an event. After that, two distinct components are extracted from the j_T distribution. A generator level Pythia 8 simulation was performed to gain support for the separation of these components. To create a clean di-jet event sample, Pythia 8 was initialized to produce two hard gluons with a constant invariant mass for each event. The final-state QCD shower in Pythia 8 is modeled as a timelike shower, as explained in ref. [28]. Two simulations were studied, one where the final-state shower was present and one where it was disabled. Without the final-state shower, the hadronization of the leading parton via Lund string fragmentation [29] develops without a QCD showering phase preceding it. When the final-state shower is allowed, the partons go through both showering and hadronization. The results of this study are presented in figure 2. The squares show a nearly Gaussian distribution resulting from the case when the final-state shower is disabled. The circles are obtained when the final-state shower is enabled. A long tail is observed which was not seen in the case with final-state shower off. To estimate the QCD showering component, it is assumed that hadronization dominates at low j_T, and the distributions from the two simulations coincide at $j_T = 0$. The “hadronization only”-distribution in figure 2 needs to be scaled with a factor of 0.63 for this, since without QCD splittings the partons hadronize at higher scale, producing more particles. With the subtraction of the “hadronization only”-distribution from the total one, the QCD showering part can be separated. This is represented by the diamond symbols in figure 2.

This study shows a possible factorization of the showering and hadronization parts of the jet fragmentation in Pythia 8. Based on simulations, template fit functions for hadronization and showering components have been estimated and used to extract the corresponding terms from the data. Since \vec{j}_T is a two-dimensional vector, using two-dimensional forms for the fit functions allows to extract the final results from the functions more easily. Assuming that there is no dependence on the polar angle of the vector, the angle can be integrated out and the distributions written as a function of the length of the vector. The hadronization part can be described by a Gaussian:

$$f_G(j_T) = \frac{A_2}{A_1^2} e^{-\frac{j_T^2}{2A_1^2}},$$

and the showering part by an inverse gamma function of the form:

$$f_{IG}(j_T) = \frac{A_3 A_4^{A_4-1}}{\Gamma(A_4-1)} \frac{A_5}{j_T^{A_4+1}},$$
where $A_{1...5}$ are the free fit parameters and Γ is the gamma function. In this paper, the hadronization part will be called the narrow component and the showering part the wide component.

In the data, in addition to the signal, a background component mostly due to the underlying event is observed. Examples of measured j_T distributions with background included and subtracted are presented in figure 3. An η-gap method is used to estimate the background contribution. Pairs with $|\Delta \eta| > 1.0$ are considered as background from the underlying event. The background templates for the analysis are built by randomizing the pseudorapidities for the trigger and the associated particles, following the inclusive charged particle pseudorapidity distributions. Twenty randomized pairs are generated from each background pair to improve the statistics for the background. The template histograms, generated in bins of p_T and x, are then fitted to the j_T distribution together with a sum of a Gaussian function and an inverse gamma function. It can be seen from figure 3 that the fit is in good agreement with the data, except in the region around $j_T \sim 0.4 \text{ GeV}/c$, where the data shows an increase with respect to the fit function.

Figure 2. Results from a PYTHIA 8 study with a di-gluon initial state. The circular symbols are obtained when the final-state shower is enabled. The square symbols show the distribution without final-state showering. The diamond symbols representing soft radiation are obtained as a difference between the other two distributions. The distribution without final-state showering is fitted with a Gaussian and the soft radiation part with an inverse gamma function.

Figure 3. Examples of measured j_T distributions with and without background subtraction. The influence of various background components is shown, including contributions from neutral meson decays. The η-gap method is used to estimate the background contribution.

The goal of the analysis is to determine the root-mean-square $\left(\text{RMS} = \sqrt{\langle j_T^2 \rangle} \right)$ values and yields of the narrow and wide j_T components. These are calculated from the parameters of the fit functions in equations (3.5) and (3.6).
Figure 3. Left: measured j_T distribution including a three-component fit. The three components describe the background (circular symbols), hadronization (long dashed line), and showering (short dashed line). Right: the same j_T distribution but with background subtracted.

4 Systematic uncertainties

The systematic uncertainties considered for this analysis arise from the background determination, the signal fitting procedure and the cuts used to select the tracks. The uncertainties related to the tracking are estimated from variations of the track selection cuts defined in section 2. The resulting variations of the RMS and yield are below 3% in most cases, but effects up to 17% are observed for the yield of the wide component. The tracking efficiency contributes to the uncertainty of the yields only. This uncertainty is estimated from the difference between data and simulation in the TPC-ITS track matching efficiency as is previously done in refs. [30] and [31]. For pp collisions this uncertainty is 5% and for p–Pb ones 4%. The effect due to the subleading track being reconstructed as a leading track was studied using simulations and found to be negligible due to steep slope of the trigger spectrum.

The main source of uncertainty from the background evaluation comes from the background region definition. As an alternative method to the default procedure, uncorrelated background templates are generated from particles with $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2} > 1$ instead of those at large $\Delta \eta$, and pseudorapidities for the particle pairs are randomized together with azimuthal angles. The associated uncertainty is typically below 5%, but for the yield of the wide component the uncertainty can grow up to 46% in the lowest p_T and x_k bins where the signal to background ratio is the worst (0.84 for pp and 0.33 for p–Pb). Changing the size of the η-gap produces small uncertainties compared to other sources, usually below
Table 1. Total systematic uncertainties for RMS and yield of the narrow and wide components in pp and p-Pb collisions. The ranges reflect p_T and x_k dependence of the studied observables for data.

<table>
<thead>
<tr>
<th>Component</th>
<th>Total relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pp</td>
</tr>
<tr>
<td>Narrow</td>
<td>RMS</td>
</tr>
<tr>
<td></td>
<td>yield</td>
</tr>
<tr>
<td>Wide</td>
<td>RMS</td>
</tr>
<tr>
<td></td>
<td>yield</td>
</tr>
</tbody>
</table>

The dominant source of uncertainty results from decaying neutral mesons. Even though this is a physical correlation in the j_T distribution, it cannot be attributed to QCD showering or hadronization. The effect of the decay mesons is estimated from a variation of the fit range, excluding the region where the data shows an increase with respect to the fit function. The excluded regions are $0.25 < j_T < 0.45 \text{GeV}/c$, $0.2 < j_T < 0.6 \text{GeV}/c$ or $0.2 < j_T < 0.65 \text{GeV}/c$ for the $x ||$ bins $0.2 < x || < 0.4$, $0.4 < x || < 0.6$ and $0.6 < x || < 1.0$, respectively. For the yield of the wide component the uncertainty can go up to 60% in the $0.4 < x || < 0.6$ bin at low p_{T1}. In most cases, this uncertainty is well below 10%. For the signal fit, the difference between fitting the background and the signal simultaneously and only the signal, after background subtraction, was evaluated. The uncertainty from this source was found to be typically smaller than 3%, which is small compared to other sources.

The different sources of systematic uncertainties were considered as uncorrelated and added in quadrature accordingly. In general, the systematic uncertainties for the wide component are larger than for the narrow component, since the signal to background ratio is significantly smaller for the wide component. Also the uncertainties for the yield are larger than for the RMS. The uncertainties are also p_{T1} and x_k dependent. For different results and datasets, the total systematic uncertainties vary within the ranges summarized in table 1. The smallest uncertainty of 1.6% for the narrow component RMS is found for the $0.2 < x || < 0.4$ and highest p_{T1} bins while the largest uncertainty of 73% for the yield of the wide component is found from the $0.4 < x || < 0.6$ and lowest p_{T1} bins.

The systematic uncertainty estimation is done also for the Pythia and Herwig simulations, which are compared to the data. As the same analysis method is used for simulations and data, also the same methods to estimate the systematic uncertainty can be applied. For the simulations, the uncertainty is estimated from the background determination and signal fitting.

5 Results and discussions

The per trigger yields and widths of the j_T distributions are determined as a function of the transverse momentum of trigger particle in the range $3 < p_{T1} < 15 \text{GeV}/c$ for three $x ||$ bins
0.2 < x_{||} < 0.4, 0.4 < x_{||} < 0.6 and 0.6 < x_{||} < 1.0. The results are obtained from the area and RMS of the fits to the narrow and wide components of the \(j_T \) distribution. The RMS values for both components in different \(x_{||} \) bins from \(\sqrt{s} = 7 \) TeV pp and \(\sqrt{s_{NN}} = 5.02 \) TeV p–Pb collisions are compared with PYTHIA 8 tune 4C \cite{32} simulations with the same energies in figure 4. The narrow component results show only weak dependence on \(p_{T_1} \) in the lowest \(x_{||} \) bin and no dependence on \(p_{T_1} \) in the higher \(x_{||} \) bins. These behaviours is sometimes referred to as universal hadronization. There is also no difference between pp and p–Pb collisions. PYTHIA 8 simulations for the two energies give consistent results that are in agreement with data, within uncertainties.

Comparing the three panels in figure 4, it can be seen that \(\sqrt{\langle j_T^2 \rangle} \) is larger in higher \(x_{||} \) bins for both components. Kinematically, if the opening angle is the same, larger associated momentum translates into larger \(j_T \). Jets with larger momenta are known to be more collimated, but the net effect of these two might still increase \(\langle j_T \rangle \). Also if the trigger particle is not perfectly aligned with the jet axis but there is non-negligible \(j_T \) between these two axes, \(\langle j_T \rangle \) will be widened more in the higher \(x_{||} \) bins.

For the wide component, it can be seen that there is a rising trend in \(p_{T_1} \) in both pp and p–Pb collisions as well as in PYTHIA 8 simulations. This can be explained by the fact that higher \(p_T \) partons are likely to have higher virtuality, which allows for more phase space for branching thereby increasing the width of the distribution. Seeing that PYTHIA 8 simulations at \(\sqrt{s} = 7 \) TeV and \(\sqrt{s} = 5.02 \) TeV are in agreement, no difference related to the collision energy is expected in the real data either. Taking this into account, the fact that the pp and p–Pb agree within the uncertainties suggests that no significant cold nuclear matter effects can be observed in the kinematic range where this measurement is performed.

The results for the per trigger \(j_T \) yield are presented in figure 5. The yield of the narrow component in data shows mostly no dependence on \(p_{T_1} \), with the exception of the lowest \(x_{||} \) bin where the yield rises with \(p_{T_1} \) for \(p_{T_1} < 8 \) GeV/c. The trend in the PYTHIA 8
simulation is different though, the yield is decreasing as $p_{T\text{t}}$ grows. The simulation also overestimates the data for the yield of the narrow component. The discrepancy between the simulation and the data is around 50% in the lowest $p_{T\text{t}}$ and x_k bins. The overestimation of the yield was observed earlier in an underlying event analysis in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV [22].

The yield of the wide component shows a rising trend as a function of $p_{T\text{t}}$. This is expected if more splittings happen at higher $p_{T\text{t}}$, which would also explain the trend for the width. PYTHIA 8 simulations are in good agreement with the data for the yield of the wide component.

A comparison of the $\sqrt{\langle j_T^2 \rangle}$ results with different event generators and tunes is presented in figure 6. In this figure, the narrow and wide component $\sqrt{\langle j_T^2 \rangle}$ for $\sqrt{s} = 7$ TeV pp collisions are compared to PYTHIA 8 tunes 4C and Monash [33], and to Herwig 7 [3, 4] tune LHC-MB. Notice that the pp data points and PYTHIA 8 tune 4C curves are the same as in figure 4. The narrow component is best described by PYTHIA 8 tune 4C. The Monash tune is approximately 10% above the data and Herwig 7 has a stronger x_k dependence than PYTHIA 8 or data. For the wide component, both PYTHIA 8 tunes are compatible with the data for most of the considered intervals. Herwig 7 agrees well with the data in the lowest x_k bins. All three simulation curves overestimate the RMS at low $p_{T\text{t}}$ in the $0.6 < x_k < 1.0$ bin. At high $p_{T\text{t}}$, the central values of Herwig are larger than the data for $x_k > 0.4$, but the results are still consistent within the uncertainties.

The same PYTHIA 8 and Herwig 7 tunes are compared to the $\sqrt{s} = 7$ TeV pp yield in figure 7. Again, in this figure the pp and PYTHIA 8 tune 4C results are the same as in figure 5. For the narrow component, all the tunes overestimate the yield in most of the explored kinematic region. Herwig 7 shows a slightly better agreement with the data than PYTHIA 8. The relative uncertainties are quite large for the wide component and all the simulations are compatible with the data within the uncertainties in the lowest x_k bins. In the highest x_k bin, a small underestimation of the data is visible for all the simulations at mid-$p_{T\text{t}}$ and for Herwig also in the lowest $p_{T\text{t}}$ bins.
The narrow component $\sqrt{\langle j_T^2 \rangle}$ results from three x_\parallel bins are compared to the earlier results from CCOR [5] and PHENIX [6] in figure 8. These experiments use different methods to extract j_T from the data. In CCOR, j_T is obtained from a fit to an away side p_{out} distribution, where p_{out} is the momentum component of a charged track going outside of the plane defined by the trigger particle and the beam axis. They use the fit function

$$\langle |p_{out}| \rangle^2 = 2 \langle |k_{Ty}| \rangle^2 x_E^2 + \langle |j_{Ty}| \rangle^2 (1 + x_E^2),$$

(5.1)

where $x_E = -\vec{p}_{Ta} \cdot \vec{p}_{T}\, / |p_T|$ and the fit parameter k_{Ty} is the y-component of the transverse momentum of the partons entering the hard scattering. The k_{Ty} parameter needs to be included in the formula, since CCOR only studies distributions on the away side. PHENIX calculates $\sqrt{\langle j_T^2 \rangle}$ from a Gaussian fit to the azimuthal angle distribution using the relation

$$\sqrt{\langle j_T^2 \rangle} \approx \sqrt{2} \frac{P_{Ty}P_{Ta}}{\sqrt{P_{Ty}^2 + P_{Ta}^2}} \sigma_N,$$

(5.2)
where σ_N is the width of the fitted Gaussian. At the lower collision energies of ISR and RHIC, no evident wide component was observed in the data and thus only one component for j_T was extracted by CCOR and PHENIX. This is connected to the current analysis given that especially at the lower energies the high-p_T trigger particles are likely to have a high $\langle z_t \rangle$. PHENIX reported in [6] that this value is $\langle z_t \rangle \sim 0.6$. Since ISR had lower collision energy than RHIC, $\langle z_t \rangle$ can not be lower in the CCOR experiment. In case the trigger particle takes most of the momentum of the leading parton, there is less phase space available for soft gluon radiation during the QCD showering phase. Thus, it appears that the dominant contribution to the particle yield comes from the hadronization part of the fragmentation, and the single component results may be compared to the narrow component results in this analysis.

The PHENIX results are compatible with the ALICE results for bin $0.4 < x_\parallel < 0.6$ and the CCOR results are close to the ALICE results for bin $0.6 < x_\parallel < 1.0$. However, a comparison in the same bins is not possible because of the bias p_{Tt} selections induce for this analysis.

6 Conclusions

A new method to extract two distinct j_T components for a narrow (hadronization) and wide (QCD branching) contribution using two-particle correlations was presented in this work. The RMS and per trigger yield were obtained for both components. The width of the narrow component shows only a weak dependence on the trigger particle transverse momentum and no difference between pp and p–Pb collisions. The results from this analysis are also qualitatively compatible with the previous ones at lower \sqrt{s}, measured by the PHENIX and the CCOR experiments. All of these observations support the universal hadronization expectation. The width of the wide component is found to increase for
increasing p_{Tt} in all $x_{||}$ bins. This can be explained by stronger parton splitting, which is allowed by a larger phase space. A similar argument can be used to explain why the wide component has not been previously observed at the ISR or at RHIC since the larger collision energy at the LHC increases phase space for QCD splittings. As there is no difference in the wide component RMS between pp and p–Pb, cold nuclear matter effects do not play a large role in this kinematic regime. PYTHIA 8 and Herwig 7 simulations describe the widths for both components well, but both simulations overestimate the yield of the narrow component. These measurements could be used to further constrain the parameters in the models to better reproduce the data.

An interesting follow-up study would be to look at the same measurement in heavy-ion collisions. As it is shown that there are no cold nuclear matter effects in p–Pb j_T distributions, any modifications in the distributions could be attributed to final-state effects, such as partonic energy loss in the quark-gluon plasma. The wide component might be able to discriminate between different jet shape modification mechanisms in Pb–Pb collisions, like interactions with the plasma [34], color decoherence effects [35], and changes in relative quark and gluon jet fractions [36].

Acknowledgments

We wish to thank Torbjörn Sjöstrand for his help in defining a di-gluon initial state in PYTHIA 8.

The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France;
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

The ALICE collaboration

INFN, Sezione di Cagliari, Cagliari, Italy
INFN, Sezione di Catania, Catania, Italy
INFN, Sezione di Padova, Padova, Italy
INFN, Sezione di Roma, Rome, Italy
INFN, Sezione di Trieste, Trieste, Italy
Inha University, Incheon, Republic of Korea
Institut de Physique Nucléaire d'Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
Institute for Theoretical and Experimental Physics, Moscow, Russia
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Institute of Space Science (ISS), Bucharest, Romania
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
iThemba LABS, National Research Foundation, Somerset West, South Africa
Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
Nagasaki Institute of Applied Science, Nagasaki, Japan
Nara Women’s University (NWU), Nara, Japan
National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
National Centre for Nuclear Research, Warsaw, Poland
National Institute of Science and Education and Research, Homi Bhabha National Institute, Jatni, India
National Nuclear Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
NRNU Moscow Engineering Physics Institute, Moscow, Russia
Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Ohio State University, Columbus, Ohio, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
Physics Department, Punjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India