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Abstract 
Motivated by the recently grown political and commercial interest in high-growth firms 
(HGF)—in this master’s thesis—I study whether common machine learning (ML) tech-
niques are useful in predicting which privately owned companies become HGFs in the 
near future.1 I employ the Eurostat-OECD definition of HGFs and study this question 
with a high-dimensional 2005–2016 panel data set of 13,602 unique Finnish firms, of 
which roughly 5% are defined as HGFs. I also study, which of the 24 predictors included 
matter the most for prediction. Finally, I examine whether an alternative definition of 
HGFs, predictors of expert information or studying a sample of young firms only will 
make a difference in predictive performance. I tackle the questions by developing a pre-
dictive scheme similar to a real forecasting scenario, where past values are used to train 
a set of classifiers, that can be employed to predict unknown future outcomes. Predictive 
performance is assessed in a separate test sample. My findings indicate that most ML 
methods offer moderate but statistically significant improvements over benchmarks, de-
pending on the measure of interest. With an out-of-sample area under the ROC curve 
(AUC) of 0.6422 (equivalent to a 9.4% improvement over benchmark), the best working 
ML classifier—random forest (RF)—identifies 17.07% of the HGFs with only a 2.19% 
chance of misclassifying a non-HGF as an HGF. My analysis on variable importance and 
partial dependence suggests that the current values and past changes in firm size indica-
tors alongside with firm age, contribute the most to predictive performance. Measuring 
the target variable in turnover rather than in employment improves prediction accuracy, 
where adding indicators of expert investor information as predictors does not yield any 
improvements. Finally, the prediction task seems to be considerably more difficult in a 
sample of young firms. In conclusion, ML methods should be considered for the chal-
lenging task of identifying HGFs, when computational costs and model interpretation 
are of secondary interest to prediction accuracy. 
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Tiivistelmä 
Kiinnostus nopeakasvuisia yrityksiä kohtaan on viime aikoina kasvanut politiikanteki-
jöiden sekä sijoittajien keskuudessa. Tässä maisterin tutkielmassa tutkin, ovatko koneop-
pimismenetelmät hyödyllisiä tulevaisuuden nopeakasvuisten yrityksien ennustami-
sessa.2 Tutkin tätä kysymystä laajalla 13602:n suomalaisen liikeyrityksen paneeliaineis-
tolla vuosilta 2005–2016 hyödyntäen Eurostat-OECD:n nopeakasvuisen yrityksen määri-
telmää. Tällä määritelmällä aineistossa noin 5% yrityksistä sijoittuu nopeakasvuisiksi. 
Tutkin myös, mitkä yhteensä 24:stä ennustavasta muuttujasta myötävaikuttavat ennus-
teisiin eniten. Viimeiseksi tarkastelen, onko vaihtoehtoisella nopean kasvun määritel-
mällä, asiantuntijainformaatiota sisältävillä lisämuuttujilla tai vain nuorten yrityksien 
aineiston käyttämisellä vaikutusta ennustetarkkuuteen. Lähestyn kysymyksiä sovelta-
malla kehikkoa, joka muistuttaa todellista ennustusskenaariota, missä historiatietoihin 
perustuvalla aineistolla pyritään ennustamaan tulevaisuuden lopputulemia. Ennuste-
tarkkuutta arvioidaan erillisessä testiaineistossa. Tuloksieni perusteella useimmat kone-
oppimismenetelmät mahdollistavat lieviä ja tilastollisesti merkitseviä parannuksia en-
nustetarkkuudessa verrattuna tavanomaisiin menetelmiin. Random forest (RF) -algorit-
min opettama luokittelija toimii tässä kontekstissa parhaiten opetusaineiston ulkopuoli-
sella AUC (ROC käyrän rajaaman pinta-alan) -arvolla 0,6422 (mikä vastaa 9,4% paran-
nusta vertailuarvoon) ja tunnistaa 17,07% nopeakasvuisista yrityksistä vain 2,19% ris-
killä luokitella ei-nopeakasvuinen yritys nopeakasvuiseksi. Yrityksen koon nykyisen 
hetken ja menneen muutoksen indikaattorit yrityksen iän kanssa myötävaikuttavat eni-
ten ennusteiden muodostamisessa. Kasvun mittaaminen käyttäen liikevaihdon kasvua 
henkilöstön kasvun sijasta parantaa ennustetarkkuutta. Toisaalta pääomasijoituksien ja 
yritystukien informaatiota sisältävien muuttujien lisääminen malliin ei paranna tuloksia. 
Viimeiseksi ennustusongelma osoittautuu vaikeammaksi nuorten yrityksien aineistossa. 
Yhteenvetona koneoppimismenetelmien soveltamista tulisi harkita nopeakasvuisten yri-
tyksien ennustamisen haastavaan tehtävään, kun ennustetarkkuus on ensisijainen ta-
voite. Mikäli laskennallisilla kustannuksilla ja mallin tulkittavuudella on painoarvoa, ko-
neoppimismenetelmät eivät välttämättä ole ylivertaisia tässä kontekstissa. 
Asiasanat 
Nopeakasvuiset yritykset, ennustaminen, koneoppiminen, Suomi 
Säilytyspaikka 
Jyväskylän yliopiston kirjasto 

                                                
2 Haluan kiittää Ari Hyytistä, Petri Rouvista ja Mika Pajarista mielenkiintoisista ja hyödylli-

sistä keskusteluista tämän maisterin tutkielman aiheeseen liittyen. 
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1 INTRODUCTION 

The interest in high-growth firms (HGF) has increased extensively on behalf of 
policymakers, academics and private investors (Coad, Daunfeldt, Hölzl, 
Johansson, & Nightingale, 2014; Henrekson & Johansson, 2010). Any motion to 
directly target policy measures or investments towards potential HGFs requires 
being able to reliably identify them. 

Policymakers have an interest in societal outcomes (such as employment 
and wages) and social and economic welfare, which are oftentimes originated 
from blooming business activities in the economy. Generally, firm growth is de-
sired. Moreover, a small number of HGFs seem to create the most net jobs in 
economies (Henrekson & Johansson, 2010). Also, HGFs’ have a tendency to lead 
technological innovations (Birch and Medoff, 1994), which are key factors for 
productivity, competitiveness and nationwide economic growth. Policy 
measures towards HGFs are likely to create welfare, which has created an urge 
to support potential future HGFs (European Comission, 2010). Two important 
questions have arisen (OECD, 2010): what policy measures should be used to 
foster HGFs, and which firms should be targeted for these measures?  

The two questions above are both issues of interest and need further re-
search, although, their nature is vitally different. The issue on specific policy 
measures is a question of causality, as in how and which measures will affect 
firm growth. The latter one requires prediction; which firms are the most proba-
ble to experience high growth in the future, and therefore the most potential 
targets for policy? This is what Kleinberg, Ludwig, Mullainathan, and 
Obermeyer (2015) call a ‘prediction policy problem’. However, being able to 
predict HGFs does not mean that the growth of these firms can necessarily be 
affected with some measure of policy. Purely predictive methods provide prob-
abilities of outcomes, but they do not take a stance on the more complex ques-
tion of how to optimally allocate resources, which is central for policy decisions 
(Athey, 2017). 

Identifying potential HGFs is of significant interest from a private inves-
tor’s point of view as well. Private equity investors make investment decisions 
to maximize their expected return on investment, usually based on having a su-
perior view on the firm’s opportunities for growth. Investments in start-ups and 
potential HGFs are mostly evaluated using traditional discounted cash-flow 
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analysis. However, the lack of historical data for individual companies compli-
cates the reliability of this kind of assessment (Gompers, Gornall, Kaplan, & 
Strebulaev, 2016). Therefore, the field of private equity investments lacks robust 
prediction frameworks, for which the growing academic literature on identify-
ing HGFs can perhaps fill a gap. 

The HGF literature—based on regression studies—has not succeeded to 
extract accurate predictions of potential HGFs. Also, there is a considerable lack 
of studies implementing a truly predictive scheme. It has been argued that po-
tential HGFs are impossible to predict due to their heterogeneous characteristics 
and stochastic nature of growth (Coad et al., 2014). Nevertheless, ML methods 
have proven effective in prediction policy problems in various applications and 
therefore provide chances on improving predictions in previously challenging 
tasks (Athey, 2018; Kleinberg et al., 2015; Mullainathan & Spiess, 2017). 

Machine learning (ML) provides multipurpose tools from computer sci-
ence and artificial intelligence. Supervised machine learning, a branch of ML, 
deals mostly with prediction problems, where learning algorithms are trained 
with historical data to identify complex relationships, which can be used to pre-
dict unknown outcomes. ML methods have proven capable of simultaneously 
fitting highly flexible functional forms to data, identifying previously unknown 
but generalizable patterns from it, and perform well in unseen data samples. 
ML has been applied, e.g., in vehicle steering, speech and image recognition, 
text classification and predicting stock exchange indices. Among other fields, 
ML is believed to have a significant impact on the field of economics in the near 
future. (Athey, 2018; Mullainathan & Spiess, 2017.) 

ML methods are quite different from the ones used in econometrics. In 
economics, many applications involve estimating parameters for a set of varia-
bles affecting the outcome of interest. Moreover, the econometric approach is 
usually driven by some theoretical reasoning. While some parametric models 
exist in ML too, the main purpose of ML methods is solely to determine the out-
come by letting data speak for itself. In fact, due to model complexity, parame-
ters in ML models rarely have easily interpretable features such as in economet-
ric models. (Mullainathan & Spiess, 2017.) 

Another major difference lies in applying the methods. Regression mod-
els, for example, require numerous decisions on issues that significantly affect 
the outcome. These include the number and nature of variables to include, their 
transformations and whether to include interactions between some of them. ML 
methods are less sensitive to these issues and provide a rather consistent frame-
work, where these decisions are made in a more transparent and autonomous 
manner. For instance, ML methods are designed in a way that the most signifi-
cant variable interactions are learned independently from the data. Overall, ML 
methods provide potentially quality predictions at the cost of interpretability.3 
(Mullainathan & Spiess, 2017.) 

                                                
3 See, e.g., Varian (2014) for an introduction of applying some ML methods in economics. 
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In this master’s thesis, I study, whether commonly applied ML methods 
can be applied to improve on HGF predictions provided by standard regres-
sions and which predictors contribute the most. Therefore, my main research 
questions are the following: 

1. Are ML algorithms able to improve prediction accuracy of HGFs compared 
to basic econometric models? 

2. Which predictors matter the most and how are they related to the outcome? 

Moreover, in my auxiliary analyses, I examine whether altering the HGF defini-
tion, adding predictors proxying expert information or studying a sample of 
only young firms will affect predictive performance. 

My strategy for an ML analysis is the following. I compile and preprocess 
a large dataset of private Finnish firms filling the criteria for analysis, totaling 
13,602 unique firms for training and 9,975 for testing. Moreover, the training 
sample consists of observations from 2008 to 2012, leaving the year 2013 as a 
single observation point for validation. This firm-level register data consists of 
24 predictors based on the firm growth literature, which are used to predict a 
binary outcome of a firm experiencing high-growth in employment4 or not. Im-
portantly, the outcome is considered three years out of observation based on the 
OECD and Eurostat (2007) definition of HGFs, and some predictors three years 
back as growth rates. Next, I choose a set of well-working decision algorithms, 
which I train and tune the models with. Finally, I assess predictive performance 
in the separate test sample. My hypothesis is that ML methods provide more 
predictive power compared to conventional regressions, given the various ML 
applications where these algorithms have worked well.  

The contributions of this master’s thesis are the following. First, I add on 
to the scarce field of predictive studies identifying HGFs. Moreover—inspired 
by Weinblat (2018) and Sharchilev et al. (2018)—I present and implement an 
ML-based predictive paradigm similar to a real forecasting scenario, which is 
potentially capable of tackling the difficult task of identifying HGFs. As my sec-
ond contribution, I provide reliable and diverse results with discussion to my 
research questions, which are useful for policy. Finally, as my last contribution, 
I propose a guideline for future research. 

The rest of this master’s thesis is organized as follows. In Chapter 2, I 
briefly review the relevant literature concerning firm growth, followed by de-
scribing the data and variables I use for analysis in Chapter 3. I develop and 
discuss the empirical framework in Chapter 4. Next, I report the prediction re-
sults in Chapter 5 and discuss the implications and limitations of the study in 
Chapter 6. Finally, I conclude this master’s thesis in Chapter 7. Additional de-
scriptive statistics, technical summaries and results are provided in Appendices 
A, B and C. 

                                                
4 I use ‘personnel’ as a synonym for employment throughout this thesis. 



 
 

2 LITERATURE REVIEW 

The literature on firm growth is vast and makes the topic undoubtedly one of 
the most researched in economics (for reviews see, e.g., Coad, 2007b; 
Davidsson, Achtenhagen, & Naldi, 2010; Henrekson & Johansson, 2010; Storey, 
1994; Delmar, 2006; Machado, 2016; Wiklund, 1998). In this chapter, I do not in-
tend to review the extensive firm growth literature comprehensively but will fo-
cus on the following relevant topics. First, to identify potential predictors of 
HGFs, I briefly review the empirical literature considering factors hindering 
firm growth. Next, I cover and summarize the recent literature on characteris-
tics of HGFs to understand how my target of interest is expected to be repre-
sented and behave in the data. Third, the scattered literature on conceptual 
frameworks of firm growth is briefly revisited in order to verify what kind of 
predictions the theories provide. Finally, I provide a more detailed overview of 
the few studies that have taken some care to identify potential HGFs. 

2.1 Determinants of Firm Growth 

A wide variety of firm growth determinants have been studied in previous lit-
erature, which can be categorized into internal and external factors (Davidsson et 
al., 2010, p. 97). Popular subcategorization by Storey (1994) divides the internal 
factors to ensembles regarding the firm, the entrepreneur and the firm’s strategy.  

There is empirical support for many variables in the categories of internal 
factors by Storey (1994) to have influence on firm growth. Considering the firm 
category, according to evidence the author compiled from UK studies, firm age, 
size and legal form are related to firm growth. While most subsequent empirical 
studies confirm these findings for firm age and size, highlighting their negative 
relationship (Davidsson et al., 2010, p. 101–102) and overruling the Gibrat’s law 
discussed in Chapter 2.3, a more recent study by Haltiwanger, Jarmin and 
Miranda (2013) finds that there is no clear relationship between size and growth 
when the firm age is controlled. 
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Variables in the entrepreneur category such as motivation, education, management 
experience, number of founders and functional skills have all positive effect on firm 
growth according to evidence compiled by Storey (1994). Many subsequent 
studies have been conducted that support these variables and suggest alterna-
tives closely related to them. Alongside with the owner-manager’s motivation, 
there is evidence of association to firm growth from the entrepreneur’s goals 
and visions (Delmar & Wiklund, 2008), although most entrepreneurs have only 
modest ambitions towards growth (Human & Matthews, 2004). Evidence of 
other variables like the gender of the manager and prior sector experience influ-
encing firm growth is mixed. (Davidsson et al. 2010, p.98-99.) 

The overall evidence is not as robust and consistent in the category of the 
firm’s strategy than in the two other ones of internal factors. Nevertheless, 
Storey's (1994) survey finds variables indicating technological sophistication, mar-
ket positioning and new product introduction having a positive relationship on 
firm growth used more frequently than many other suggested variables. Truly, 
many other variables have been used. A complete listing of generally used in-
ternal factors based on Storey's (1994) survey is provided in TABLE 1 above. 

Studies using models based on external factors of firm growth have empha-
sized, for example, industrial and regional factors as drivers for firm growth 
(Capon, Farley, & Hoenig, 1990; Davidsson, & Delmar, 2006). Moreover, sup-
port policies to firms in the form of innovation grants (Wallsten, 2000), access to 
internal and external finance (Becchetti & Trovato, 2002; Beck & Demirguc-Kunt, 
2006; Carpenter & Petersen, 2002), networking and alliances (Barringer, Jones, & 
Neubaum, 2005) but also factors related to market and demand conditions (Coad & 
Tamvada, 2012; Kangasharju, 2000) have all been considered with supportive 
results. I have provided a listing of most commonly used external factors used 
in previous studies in TABLE 2 below. (Machado, 2016.) 

 

The Strategy of the Firm The Firm  The Entrepreneur 
Workforce training Age  Motivation 
Management training Sector  Unemployment 
External equity Legal form  Education 
Technological sophistication Location Management experience  
Market positioning Size  Number of founders  
Market adjustments Ownership  Prior self-employment  
Planning   Family history  
New products   Social marginality  
Management recruitment   Functional skills  
State support   Training  
Customer concentration   Age  
Competition   Prior business failure 
Information and advice   Prior sector experience  
Exporting   Prior firm size experience  
    Gender 

TABLE 1  Internal Factors of Firm Growth (Storey, 1994). 
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Altogether, the evidence on external factors of firm growth supports growth of 
the industry and increase in the dynamism of its region to have modest positive 
effects on firm growth. However, there are no unambiguous results on the ef-
fects of other environmental variables. While external factors have an evident 
role in firm growth, most of them are contextual and yield different results de-
pending on the setting. (Davidsson et al., 2010, p. 107.) 

Concluding the extent literature on factors hindering firm growth, some 
generalizations can be made. Internal factors seem to explain most of firm 
growth, but external factors have their undeniable role as well. However, Da-
vidsson et al. (2010) argue that including the long list of potential factors of firm 
growth as explanatory variables with their interactions might be “…beyond the 
capacity of any researcher, or even the statistical software used” (p. 111). How-
ever, in the past decade, better machine learning techniques and more readily 
available computational capacity have alleviated the issue. All in all—for my 
predictive study—I have identified a massive list of potential variables for pre-
dictors.  

2.2 Characteristics of High-Growth Firms 

There is a considerable amount of literature studying characteristics of HGFs. 
Most of these studies are reviewed by Henrekson and Johansson (2010). Evi-
dence for several research questions is mixed. However, there is robust evi-
dence for seven distinct HGF characteristics or results (Coad et al., 2014), that 
are reported as stylized facts in TABLE 3 and described below. 

The first characteristic deals with the distribution of HGFs. Several au-
thors, including Bottazzi & Secchi (2006), have considered the heavy-tailed dis-
tribution of firm growth. HGFs have attained much attention at the right tail of 
the distribution, but high-decline firms have not received corresponding inter-
est. The Second characteristic addresses the main motivation of this master’s 
thesis: HGFs create a large share of new jobs. There is loads of evidence for this 
result for various countries (see, e.g., Acs & Mueller, 2008; Birch & Medoff, 
1994; Davidsson & Henrekson, 2002; Delmar, Davidsson, & Gartner, 2003) and 

 

External Factors of Firm Growth 
Market and supply-demand conditions 
Dynamism of the sector and entrance impairments 
Investors and venture capital 
Universities and mechanisms of transference of technology 
Availability and access facility to resources 
Availability of human resources and prime matter 
Importance of stakeholders 
Importance of family ties 
Networks, alliances and firms´ network 
Public policies and national or local support policies to firms 

TABLE 2  External Factors of Firm Growth (Machado, 2016). 
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also for Finland (Littunen & Tohmo, 2003). In numbers, HGFs represent on 3-
6% of the total firm population when growth is measured by employment using 
the OECD definitions for HGFs (Hoffman & Junge 2006).5  

According to the third result, HGFs tend to be young but not necessarily 
small (Acs, Parsons, & Tracy, 2008; Daunfeldt, Elert, & Johansson, 2014), 
whereas the fourth one revokes the previously prevailing idea of HGFs being 
more common in high-tech industries (Henrekson & Johansson, 2010). In fact, 
service industries appear to be more HGF intensive. The fifth characteristic 
states that high growth is not persistent over time (Delmar et al. , 2003; Hölzl, 
2013), however, there is some evidence opposing this finding (see, e.g., Acs et 
al., 2008). Related to the previous characteristic, there is some evidence denying 
the existence of the so-called ‘survivorship bias’ (Weinblat, 2018), where HGFs 
have gained their status by excessive risk-taking and are also likely to fail. The 
sixth result argues that there is a clear trade-off between defined HGFs regard-
ing different growth measures (Daunfeldt et al., 2014). Finally, the seventh char-
acteristic addresses the hard predictability of future HGFs (Coad et al., 2014), 
which is another essential motivator for this master’s thesis. 

 
While it has become a policy goal to directly target HGFs for policy and de-
velop environments to enable firms to reach the transitory phase of high 
growth, not very much is known about the qualities of these firms or the deter-
minants of high growth, not to mention their theoretical features (OECD, 2010). 
It is rather apparent that high growth must depend on multiple factors and 
their interactions. In fact, many of the suggested determinants for high-growth 
are similar to Storey’s (1994) factors of firm growth. After the overview above, I 

                                                
5 The OECD definitions (OECD-Eurostat Manual on Business Demography Statistics 2007) are 

revised in Chapter 1 of this master’s thesis. 

TABLE 3  Characteristics of high-growth firms as stylized facts (Coad et al., 2014). 

Stylized Fact Evidence 

(1) Growth rate distributions are heavy-tailed. Bottazzi and Secchi 
(2006) 

(2) HGFs create a large share of new jobs. Henrekson and Jo-
hansson (2010) 

(3) HGFs tend to be young but not necessarily smaller than average. Acs et al. (2008) 

(4) HGFs are not overrepresented in high-tech industries. Henrekson and Jo-
hansson (2010) 

(5) Persistence of high-growth depends on the measure of growth. Delmar et al. (2003) 
Hölzl (2013) 

(6) Using different growth indicators selects different sets of firms. Daunfeldt et al. 
(2014) 

(7) Future HGFs are difficult to predict. Coad et al. (2014) 
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review a few other studies providing more evidence towards a comprehensive 
view of HGFs and using a particular set of variables when predicting HGFs.  

Barringer et al. (2005) aim to identify features of HGFs using a qualitative 
approach, analyzing narrative descriptions of 50 HGFs compared to descrip-
tions of 50 non-HGFs.6 Examining attributes based on founder characteristics, 
firm attributes, business practices and HRM practices, they find that HGF 
founders have higher education, more experience and compelling story than 
non-HGF counterparts. In firm attributes, HGFs have credibly committed to 
growth compared to non-HGFs and in business practices, they add unique 
value and know their customers better than non-HGFs. Finally, in HRM prac-
tices, HGFs underline continuous learning and financial solutions significantly 
more than their counterparts. 

In OECD's (2010) report, a set of links between high-growth firms and 
suggested high-growth factors are investigated through multiple studies. Moti-
vated by the success stories of high-tech firms, these links include the firm’s 
ability to innovate, manage intellectual assets, its networking activities and 
business practices, and finally its access to finance. The links are studied 
through seventeen ad-hoc studies in various countries, Finland included. Main 
findings indicate that high-growth is a temporary phase in the firm’s life cycle 
that is, quite surprisingly, not dependent on its age, size or sector. Some country 
studies find a correlation between innovative activities and high growth, but re-
sults are neither universal nor in the scope of causal inference. Finally, the fi-
nancing needs of innovative high-growth firms are different from the ones of an 
average firm, but there is not a credit rationing problem among these firms. 
Concisely, from the investigated perspectives it still seems difficult to identify 
high-growth firms based on the listed determinants. 

Considering the study on Finland in the same OECD's (2010) report, espe-
cially the innovation activities and business practices were studied using tele-
phone surveys of 170 firms. No significant relationship between the level of in-
novation and growth rates were found. On managing intellectual assets, Finn-
ish research found that firms have adopted numerous ways to minimize losses 
due to damage on intellectual property. These were categorized as intellectual 
property rights, contracts and informal protection methods. However, the re-
search found that firms are not very experienced in practicing these activities. 
Neither networking nor barriers to finance were examined for Finland in this 
study. 

A subsequent review of high-growth determinants is provided by 
Audretsch (2012). For the most part, the author leans on traditional firm growth 
literature but points out the factors that seem to be associated with higher 
growth rates according to the evidence. The determinants are categorized by 
the author to ones at the firm level and at the locational level. Moreover, in the 
first one, the author considers characteristics of the entrepreneur and the found-
ing team, entrepreneur’s gender, market orientation, access to resources, human 
and social capital, financial capital and finally intellectual property the most 
                                                
6 The authors define an HGF as a firm experiencing at least 80% growth in sales over a 

three-year period. The data of their analysis consisted of winning firms of the Ernst & 
Young LLP Entrepreneur of the Year award competition. 
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meaningful for HGFs. Locational characteristics here include geographical clus-
ters as one big factor of unanswered questions due to the paucity of research in 
the field. Nevertheless, evidence suggests that location has a reasonable role in 
the process of high growth. 

Entrepreneurial quality has also been recognized as an important factor 
for the success of firms. However, defining and measuring entrepreneurship is 
not an easy task. Guzman and Stern (2015a) contribute to this challenge by de-
veloping two indices of entrepreneurial quality: EQI (Entrepreneurial Quality 
Index) and RECPI (Regional Entrepreneurship Cohort Potential Index) and use 
them for placecasting and nowcasting quality and growth events. With 1988–
2014 data from firms of the state of Massachusetts, the authors implement a se-
ries of regressions where the number of growth outcomes per year is consid-
ered as a dependent variable. The results are promising, with both indices being 
statistically significant but also with high elasticities: “Doubling RECPI is asso-
ciated with more than a 50% increase in the number of expected growth events 
in a region-cohort-year.” (p. 37). 

2.3 Conceptual Frameworks 

Theoretical firm growth literature is widely scattered. Moreover, theoretical 
predictions have been of little use in understanding firm growth. Also, theoreti-
cally deductive reasoning is not too relevant for an ML based analysis such as 
the one carried out in this master’s thesis (as discussed in Chapter 1). Neverthe-
less, for a general view and understanding of how different frameworks relate 
to HGFs, I briefly review a few theoretical concepts discussed by Coad (2007b). 

A traditional theoretical discussion on firm growth is about Gibrat’s law 
(Gibrat, 1931), which in its simplest form states that the firm’s expected growth 
rate is independent of its size at the beginning of the period at hand. According 
to empirical evidence discussed previously in this chapter, it turns out however, 
that the evidence for Gibrat’s law is mixed but generally not supported. 

The neoclassical foundations of growth in the context of firm growth 
states a prediction that firms are attracted towards some optimal size through 
profit maximization (Viner, 1952). Therefore, growth is seen as the means to-
wards a goal, not as the goal itself. However, the concept lacks empirical sup-
port and is therefore of little use in understanding firm growth. 

Penrose’s seminal book on the theory of the firm (Penrose, 1959) intro-
duced new concepts called ‘economies of growth’ and the ‘Resource-based 
view’ of the firm. The first one implies that firms have strong incentives to 
grow, which are generated by a process where productivity increases automati-
cally due to managers’ increasing expertise over time. In parallel with a faster 
rate of firm growth, the operating costs evolve. The second concept considers 
that firm’s performance depends on its continuous capabilities of creating and 
managing resources. Therefore, Penrose’s firm grows because of its ability to 
adapt along the dynamic process of growth. While Penrose’s contribution has 
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mostly been confined in the industrial organization literature, its ideas are intui-
tive in economics as well. In the context of HGFs, Penrose’s theory suggests that 
high growth requires lots of resources, but also abilities to manage them. Gener-
ally, growth is generated through incentives through learning-by-doing, which 
implies that faster learners are in a more probable position to grow faster. 

In the managerial approach by Marris (1963, 1964), the manager is seen in 
a fundamentally important part as maximizing the utility function with respect 
to firm growth and profit. Moreover, the manager reaches for the highest possi-
ble growth rate of the firm subject to the constraint of earning a sufficient profit 
appealing enough to shareholders. In this approach, the growth of young small 
firms is in line with profit maximization, whereas in the case of other larger 
firms, the manager has to balance between the two objectives. The managerial 
approach, therefore, suggests that high-growth is more probable in a sample of 
young small firms. 

Evolutionary theory and the principle of ‘growth of the fitter’ is based on 
Schumpeter’s vision of ‘creative destruction’, borrowing the notions of diversity 
creation and selection to explain economic development. Developed by Downie 
(1958), the theory argues that fitter firms survive and grow, whereas weaker 
firms leave the market. However, the theory assumes that firms grow by rein-
vesting their earnings, and therefore growth rates rise alongside profitability. 
This is empirically a problematic assumption since no such relationship be-
tween profits and growth in data is usually found. 

The last framework considered here is the population ecology approach 
based on the work of Hannan and Freeman (1977). In this approach, organiza-
tions require resources that are unique and scarce at each niche market. Each 
niche has a carrying capacity, which was to get full, growth opportunities 
would cease to exist. Finding a new niche with abundant resources would re-
sult in a lot of growth. After initial discovery, new firms will enter the niche and 
through competition, the resources and opportunities for growth will equally 
run out for each firm in that niche. Empirically speaking this theory alone is not 
directly supported. While there is some evidence on different growth rates be-
tween industries, the growth rates differ significantly inside industries as well, 
questioning the direct implications of the theory. Averagely speaking though, 
population ecology gives an intuitive idea for the mechanism of how some 
newly founded small firms become HGFs or how large firms can achieve or 
maintain high growth by searching new sources of niches. 

2.4 Identifying High-Growth Firms 

The literature on identifying HGFs is scarce and struggling with the difficulty of 
the task in mostly regression-based studies. However, some recent applications 
have demonstrated the usefulness of ML in predicting HGFs and therefore pro-
vide meaningful benchmarks for this master’s thesis. The related studies are 
summarized in TABLE 4 below. 
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Starting with a few regression-based studies, Sampagnaro and Lavadera 
(2013) contribute to the literature on predictors of HGFs. Motivated by the in-
verse rationale of the theoretical prediction of the credit scoring model, the au-
thors examine balance sheet ratios as predictor candidates of HGFs in three re-
gression models: quantile regression and Tobit model with random and fixed 
effects. Using Italian AIDA data of 21,182 firms from 2001 to 2008, they find that 
in addition to the apparent firm size and age, internal cash flows is the most rel-
evant predictor across models. These conclusions are based on statistical tests 
on the model coefficients and using a distributional high-growth definition of a 
firm belonging to the top 10% of its industry measured by sales growth. How-
ever, no analysis on prediction performance is reported. 

Megaravalli and Sampagnaro (2018) have a similar goal of identifying the 
most important predictors of HGFs from balance sheet ratios with a probit 
model. They develop Sampagnaro and Lavadera’s (2013) analysis with a more 
recent (2010–2014) data set of Italian firms considering only family businesses 
totaling 45,000 firms in the analysis. Also, their definition of HGF is based on 
20% p.a. sales growth for two consecutive years after a year without such 
growth. Predicting HGFs with the previous year’s observations, results imply 
that the most important financial indicators are liquidity ratio, solvency ratio, 
firm age, cash flows and working capital. The model’s predictive performance 
is also reported with an AUC of the ROC curve of 0.7078. However, the model 
is assessed only in-the-sample, which is typical for a variable importance analy-
sis but not reliable for assessing and comparing model performance. 

A few recent studies have implemented machine learning algorithms to 
predict HGFs alongside other relevant outcomes. One example is provided by 
Miyakawa, Miyauchi and Perez (2017), where the authors predict firm’s exit, 
sales growth and profit growth using a weighted random forest algorithm with 
data of over 1.7 million Japanese firms from 2006–2014. With predictors based 
on firm characteristics, geography and industry, supply-chain network and a 
solvency score, they are able to reach an out-of-sample area under the ROC 
curve (AUC) of 0.68 and identify 25% of high growth firms with a fixed proba-
bility threshold. This approach clearly outperforms a model with just the sol-
vency score as a predictor. Their target variable is based on a high-growth defi-
nition of a firm exceeding the average growth of the forecast period plus one 
standard deviation. However, the authors do not provide any benchmark re-
sults with conventional methodology to mirror these results against. Their pa-
per supports a concept of using an ML method in firm performance prediction, 
but the results provide only little internally comparable value. 

Weinblat (2018) provides a relevant ML-based approach. The author uses 
a random forest algorithm with 15 structural and financial predictors to forecast 
European high-growth firms and determine the most relevant predictors for 
them in nine different countries, including Finland, covering 179,970 firms in to-
tal. With a recent (2004–2014) data set from Amadeus -database, the author re-
ports the best out-of-sample prediction results for Great Britain with an area un-
der the ROC curve (AUC) of 0.8110. The author confirms this result with Ven-
katraman’s statistical test, comparing the ROC curves between the studied 
countries. The results for Finland are not as glamorous but still fair with an out-
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of-sample AUC of 0.6439. Weinblat (2018) uses a distributional high-growth 
definition of a firm belonging to the high-growth class if its Birch-Schreyer 
growth indicator of employment is within the top 10% of the sample. The Birch-
Schrayer indicator considers both the absolute and relative components of em-
ployment growth. 

In a supplementary analysis, Weinblat (2018) doesn’t find clear differences 
in predictability over different size groups of firms. The random forest algo-
rithm also provides a tool to assess variable importance, on which the author’s 
results are in line with the literature. The most important predictors across 
countries are the firm’s size, past growth and age. Concluding, Weinblat (2018) 
notes that out-of-sample predictions of HGFs are not outside of our capabilities 
anymore but the predictability of HGFs varies across countries, and therefore 
results should not be generalized across them. Also, many country-specific 
model improvements can and should be made in terms of included features 
and algorithms. 

Sharchilev et al. (2018) predict startup success during the early stages of 
their life cycles by successfully including web-based information combined 
with a highly sophisticated ensemble ML framework. Moreover, the algorithm 
suggested by the authors, named WBSSP, combines logistic regression, neural 
networks and CatBoost, a high-performance boosting algorithm. The authors 
model the prediction task by classifying whether a company that has already 
received initial funding will obtain another round of investment in a given pe-
riod. They conduct their analysis with international data of 21,947 privately-
owned companies with basic features and combined with web mentions from 
Crunchbase, LinkedIn and open web sources up until 2017. The authors report 
impressive out-of-sample performance results with statistically significant AUC 
of 0.854, precision of 0.626 and F-score of 0.383. These are 6.75%, 131.9% and 
83.3% higher than with the current state-of-the-art ensemble algorithm bench-
mark. In addition to presenting an outperforming ML framework, Sharchilev et 
al. (2018) show clear evidence of a performance boost including web mentions 
compared to models with structured data only.  
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3 DATA AND VARIABLES 

In this chapter, I describe the data and variables used in this master’s thesis 
starting with data sources. I continue with defining HGFs and describing their 
distribution in the data. Finally, I define a set of predictors that will be used in 
the predictive models. Tables listing all the variables and providing descriptive 
statistics are reported at the end of this chapter. 

3.1 Data Sources 

I have compiled a 2005–2016 panel data set of firms in Finland by combining 
four data sources: the official Business Register by Statistics Finland7, the finan-
cial statements database of Suomen Asiakastieto Oy8, Business Finland’s (for-
merly Tekes) on its public R&D grant recipients 9 and the Finnish Venture Capi-
tal Association’s (FVCA) records on companies that have attracted private eq-
uity investments.10 I have limited my full data set to include observations of pri-
vately owned limited liability companies, which (a) employ at least ten persons, 
(b) are in the national Value Added Tax register, and (c) are included in the Tax 
Administration’s Employer Register (at the time of observation). Following 
these definitions, I have longitudinal data of 16,333 firms, totaling almost 60,000 
observations when including the longitudinal dimension. After omitting obser-
vations with missing data and after preprocessing11, I am left with 14,714 
unique firms to work with. 

For my ML analysis, I divided the data into a learning sample (LS) for 
training and a left-out test sample (TS) to assess predictive performance. In my 
approach, the learning sample consists of values of predictive variables from 
2005 to 2012 and observations of high-growth from 2008 to 2015. The test sam-
ple consists of more recent predictor values from 2010 to 2013, which are used 

                                                
7 The Finnish public authority established for statistics https://www.stat.fi/index_en.html.  
8 A Finnish information services company https://www.asiakastieto.fi/web/fi/. 
9 The Finnish public authority financing innovation  

https://www.businessfinland.fi/en/do-business-with-finland/home/.  
10 Association for venture capitalists in Finland http://paaomasijoittajat.fi/. 
11 The preprocessing of data among other methodological considerations are addressed in 

Chapter 4.3. 
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to predict the outcomes between 2013 and 2016. As a result, I have created a 
predictive scheme similar to a real forecasting scenario at the end of the year 
2013. Here, the learning sample contains 81% of the data. For the last auxiliary 
analysis, I compile an additional data set, based on the full data, but including 
only young firms that are ten years old or younger. 

3.2 Variable Definitions 

3.2.1 Defining High-Growth Firms 

Studying high-growth as a binary outcome, the definition of high-growth plays 
a significant role. Delmar et al. (2003) point out how researchers should 
acknowledge the fundamental differences and possibly different results based 
on the definition and measure of growth used. There is not a universal ap-
proach for determining HGFs up to date, but some definitions have gained 
ground in research. Among the most popular ones, OECD and Eurostat (2007, 
p. 61) define HGEs as “All firms with average annualized growth greater than 
20% per annum, over a three-year period”. This trajectory is equal to total 
growth of 72.8% over the three-year period. The growth can be measured in em-
ployment or turnover. In addition, they recommend a size threshold, such as 
firms with at least ten employees at observation, to be set in order to reduce dis-
tortion due to small firm growth. I employ the Eurostat-OECD definition of 
HGFs measured in employment with the ten employees size threshold for my 
baseline model. The turnover measure is applied in the first auxiliary analysis.  

Daunfeldt, Johansson and Halvarsson (2015) note that it would be mean-
ingful to standardize the high-growth measures in the HGF literature and the 
Eurostat-OECD definition is probably the closest to a standard measure due to 
its popularity. However, the authors give a cautionary note on using the defini-
tion. They find that using the definition will exclude approximately 95% of sur-
vived firms and 39% of the created jobs on Swedish data. Therefore, policy 
based on this definition might be misleading or counterproductive if the applier 
is not aware of the details of this definition. The possible pitfall, in their opin-
ion, concerns the threshold of including firms with at least ten employees, 
which seems rather high. Of course, including the smallest firms would create 
bias in growth results and the very smallest firms are less innovative too. Per-
haps the definition recommendation should be reconsidered by the authors, 
nevertheless. 

Similar to Daunfeldt et al.'s (2015) finding, defining HGFs as above yields 
rather imbalanced class distributions for Finnish data, as reported in TABLE 5 
below. The imbalance composes some methodological challenges discussed in 
Chapter 1. In the baseline model, the proportion of HGFs is under 5% in LS and 
TS. The measure in turnover classifies approximately 7.5% of firms as HGFs, 
and finally, the corresponding proportion is about 10% for young firms using 
the growth measure in employment. These distributions are reported alongside 
with numbers of unique firms in LS and TS for different models in TABLE 5. 
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Notes: The personnel model is the baseline model of this thesis. The turnover model is pro-
vided as an auxiliary analysis. Finally, the young model uses the personnel growth 
definition of high growth but for a smaller dataset of only young (≤ 10 years old) en-
terprises. The model for expert information uses the same dataset and has the same 
definition of HGEs as the baseline model.  

3.2.2 Predictors 

I approach model selection by looking at the literature on factors of firm 
growth, mostly relying on Storey's (1994) categorization of internal factors and 
Machado's (2016) listing of external factors hindering growth. In a data-driven 
ML analysis, such as this one, as many relevant predictors should be included 
as possible. For the baseline analysis, I include 24 predictors in total, which are 
defined below. Descriptive statistics and summarizing table of targets and pre-
dictors are provided in TABLE 6 and TABLE 7 below. The statistics for prepro-
cessed data and the sample of young firms are reported in Appendix A. 

The age of a firm (Age) is measured from the founding date of its first es-
tablishment. The size of a firm is measured by the number of its full-time equiv-
alent workers (Personnel), sales in euros (Revenue), and productivity is proxied 
by its sales divided by personnel (Productivity). For Personnel, Revenue and 
Productivity, I also include lagged 3-year growth rates, using the ‘Davis, 
Haltiwanger & Schuh’ definition of centralized growth for Personnel and in log-
arithmic differences for the last two. To control for branch and location, I add 
categories for twenty sectors (Industry) and sixteen regions (Ely). I also include a 
binary indicator for foreign ownership (ForeignOwned). 

Furthermore, I consider a few predictors related to business strategy. 
These include the number of places of business (NumOfPos) and a binary varia-
ble for being part of a group of businesses (PartOfAGroup). To control for the in-
tensity of competition in the industry, I include the top decile (TopDecGrossMar-
gin; a higher value indicates a less competitive industry) and the above-median 
(MedGrossMargin; a higher value indicates a more competitive industry) cumu-
lative gross margins in a firm’s three-digit industry. The role of innovation is 
captured by a firm’s cumulative count of EPO patents (PatCount) in the past 
three years. In addition, I also include indicators for having foreign subsidiaries 
(ForeignSubsidiaries) and being an exporter (Exporting). 

I have a few predictors related to the entrepreneur or the top manager. 
Among the predictors, I include the age of the person listed as the CEO of the 
company (CEOAge) and that person’s gender (CEOGender). 

  Learning sample Test sample 

Model Firms High-growth 
firms 

Firms High-growth 
firms 

Personnel 13,602 4.54 % 9,975 4.93 % 

Turnover 13,602 7.56 % 9,975 7.49 % 

Young 3,792 9.50 % 2,004 10.93 % 
 

TABLE 5  Number of unique firms in learning- and test samples and proportion of HGFs 
across different models. 
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A few common financial indicators are included as predictors: profitabil-
ity, measured by operating result-% (Profit) and its difference in the past three 
years (ProfitGrowth); financial strength, defined as the amount of equity divided 
by assets (Solidity); and capital intensity (tangible assets divided by revenue, 
TangAssetsPerRev). I also include a firm’s credit rating (Rating). 

To study any further information employed in private and public inves-
tors’ decisions, I have two final variables. The first is a binary variable, which 
indicates that a firm received private venture capital finance (Vc) at or prior to 
the year of observation. The second variable indicates that a firm received a 
public R&D grant at or prior to the year of observation (Tekes). 

Therefore, I have a rather extensive set of predictors to consider, although 
some—often survey-based—measures suggested in earlier literature could not 
be included. My list of predictors in the firm category of internal factors is par-
ticularly comprehensive. Disappointingly, I have only two predictors in the en-
trepreneur category, which seems to be one of the most important for HGFs in 
the literature. Fortunately, I have a fair set of predictors in the category of the 
firm’s strategy. The external factors are slightly underweighted, but their role in 
the literature is also more or less in the background. 

Notes: Observations with missing values: 6408. 

 

Variable n mean sd min max 
HighPersonnelGrowth 59,915 0.05 0.21 0.00 1.00 
HighRevenueGrowth 59,915 0.08 0.26 0.00 1.00 
Personnel 59,915 67.08 295.79 10.00 15,976.00 
LagPersonnelGrowth 59,880 0.19 0.56 -5.54 7.94 
Revenue 59,476 21,335,539.70 228,165,626.51 0.00 26,940,000,000 
LagRevenueGrowth 59,117 0.23 0.64 -8.19 10.07 
Productivity 59,476 250,274.60 1,075,062.60 0.00 173,543,824.00 
LagProductivityGrowth 59,082 0.04 0.44 -7.52 7.31 
Profit 59,579 1.95 90.18 -9,033.3 3,666.70 
ProfitGrowth 59,352 -0.05 123.36 -8,083.3 9,536.50 
Age 59,915 21.58 11.26 1.00 113.00 
NumOfPos 59,915 2.72 13.00 1.00 770.00 
PartOfAGroup 59,915 0.36 0.48 0.00 1.00 
ForeignOwned 59,915 0.10 0.30 0.00 1.00 
Exporting 59,915 0.26 0.44 0.00 1.00 
Solidity 59,910 38.64 52.41 -3,700.00 100.00 
Rating 58,191 19.47 18.15 3.00 99.00 
TangAssetsPerRev 59,447 0.33 24.35 -0.01 5,897.37 
TopDecGrossMargin 59,915 23.55 7.96 -43.70 200.00 
MedGrossMargin 59,915 8.08 9.15 -1,996.15 33.40 
PatCount 59,915 0.40 23.10 0.00 2,421.00 
ForeignSubsidiaries 59,915 0.15 0.36 0.00 1.00 
CEOAge 55,811 48.88 9.11 20.00 89.00 
CEOGender 56,506 0.09 0.29 0.00 1.00 
Vc 59,915 0.04 0.20 0.00 1.00 
Tekes 59,915 0.11 0.31 0.00 1.00 

TABLE 6  Descriptive statistics for the full data set before preprocessing. 
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TABLE 7  Listing and descriptions of all variables used in this master’s thesis by category. 

Variables Description Change (Δ) /  
Value (𝑡") /  
Categorical (C) 

Target variables 
  

    

HighPersonnelGrowth Binary: Leaded 20% p.a. growth for 3 years 
(OECD). 

Δ+ 

HighRevenueGrowth Binary: Leaded 20% p.a. growth for 3 years 
(OECD). 

Δ+ 
 

    
Predictors     
 
Internal Factors 

    

 
The Firm 

    

Age Age of the firm from the first location. 𝑡" 
Personnel Number of Personnel. 𝑡", Δ- 
Revenue Turnover in euros. 𝑡", Δ- 
Productivity Revenue/Personnel. 𝑡", Δ- 
Industry Categorical variable for 20 different indus-

tries. 
C 

Ely Categorical variable for 16 Ely regions. C 
ForeignOwned Binary variable for foreign ownership. C 

 
Strategy 

    

NumOfPos Number of places of business. 𝑡" 
PartOfAGroup Binary variable for being part of a group. C 
TopDecGrossMargin Top decile gross margin by tol3 industry. 𝑡" 
MedGrossMargin Median gross margin by tol3 industry. 𝑡" 
PatCount Cumulative number of patents from the past 

three-year period. 
𝑡" 

ForeignSubsidiaries Binary variable for having foreign subsidiar-
ies. 

C 

Exporting Binary variable for any international export-
ing. 

C 

 
The Entrepreneur 

    

CEOAge CEO's age at the time of observation. 𝑡" 
CEOGender Binary variable for the CEO being a woman. C 

 
Financial Key Figures 

    

Profit Business profit in percentages. 𝑡", Δ- 
Solidity Equity/Assets. 𝑡" 
TangAssetsPerRev Tangible Assets/Revenue. 𝑡" 
Rating Rating points (1-100, descending order). 𝑡" 
 
External Factors 
  

    

Vc Binary variable for received venture capital fi-
nance. 

C 

Tekes Binary variable for received innovation grants 
lagged 3 years back. 

C 

Notes: Δ+ (Δ-) stands for leaded (lagged) change three years forward (back). 



 
 

4 EMPIRICAL FRAMEWORK 

In this chapter, I describe the strategy and methodology used to train and tune 
the classifiers, approaches to validate and assess their performance and tools to 
evaluate variable importance. My discussion here is only a very concise sum-
mary of the applied methodology based on Hastie, Tibshirani and Friedman 
(2009), which is adequate for implementation purposes.12 For a technical sum-
mary of the ML algorithms, see Appendix B. 

The predictive paradigm applied here uses a validation set approach, di-
viding the full data set into a learning sample (LS), which will be used for train-
ing and a test sample (TS) for assessing predictive performance. The prediction 
results reported in Chapter 5 are acquired in the TS, which makes them reliable 
estimates of the true out-of-sample performance. I employ five different ma-
chine learning algorithms to train classifiers, which are the following: 

- classification and regression trees (CART),  
- bootstrap aggregation (bagging),  
- boosting,  
- random forests and  
- artificial neural networks (ANN). 
 

Also, I combine the predictions of ML classifiers to create a simple ensemble 
classifier. The linear probability- and logit models are used as benchmarks.13  

4.1 Decision Algorithms 

4.1.1 Classification and Regression Tree (CART) 

Classification and regression tree (CART) is a tree-based algorithm for regres-
sion and classification, however, I describe only the classification version here.14 

                                                
12 For an introductory approach, see, James, Witten, Hastie and Tibshirani (2013).  
13 All the models are trained and evaluated using the caret package by Kuhn (2018) in the 

statistical software R version 3.5.1 by R Core Team (2018). 
14 I implement the CART algorithm by the ‘rpart’ method (Therneau & Atkinson, 2018) in 

the caret package. 
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Breiman (2017) provides a full and modern description of the CART algo-
rithm.15 

CART entails two main steps to make predictions. The first step is to use 
recursive binary splitting to stratify the predictor space into K distinct regions, 
R1, R2, …, RK. Beginning at the top of the tree, the goal is to split the predictor 
space into subsamples by a set of decision rules, which determine how the splits 
are made and when the tree is finished. In classification, the algorithm chooses 
predictor xj and a cut point s for a split to minimize a measure of node purity, 
the gini index, at each node. The splitting continues recursively until a stopping 
rule of minimum node size is reached. The final nodes are referred to as the ter-
minal nodes. A classification tree can be illustrated in the form of a tree chart 
presented FIGURE 1 below. Based on the classification task of this master’s the-
sis, I have presented a chart of a fully-grown decision tree in Appendix C. 

The second step is a simple one. By using the most common class of the re-
sponse values in each of the regions R1, R2, …, RK, one can make predictions of 
the target variable for any test observation. In other words, the same prediction 
is made for each observation in the same region. 

Tree-based methods don’t require any distributional assumptions, which makes 
them rather safe to implement. In addition, simple tree models are easy to inter-
pret with a single chart. On the other hand, simple tree algorithms like CART 
are known to be sensitive to changes in predictor space and hyperparameter 
values. High variance usually leads to unreliability and poor performance in 
the test sample. The CART algorithm works for both regression and classifica-

                                                
15 This subchapter is based on Breiman (2017) and Hastie et al. (2009, p. 305–312). 
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FIGURE 1  An imaginary tree chart example of a simple decision tree. 
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tion problems. However, the same tools cannot be used to assess model perfor-
mance for the two tasks. I will describe the preferred measures to evaluate pre-
dictive classification models later in this chapter. 

4.1.2 Bootstrap Aggregating Predictor (Bagging) 

Bootstrapping, a powerful statistical tool can be used to improve the perfor-
mance of decision trees, such as the CART. This applied method is generally 
called the bootstrap aggregating predictor, or just bagging, as proposed by 
Breiman (1996). Bagging leads to reduced variance and enhanced predictive 
performance compared to single CARTs.16 

The idea of bagging17 is to create several training sets from the initial sam-
ple, train separate CARTs for each set, and finally aggregate the outcomes for 
prediction. Since several training sets are usually not available, the training 
sample is bootstrapped. In other words, repeated, equal-sized resamples are 
taken from the learning sample and are then used separately for model training. 
After training, predictions for classification problems are generated in a voting 
process, where each bootstrapped tree has a single vote. The majority class is 
the final prediction for a test observation. A schematic figure of the bagging al-
gorithm in classification tasks is provided in FIGURE 2 below. 

                                                
16 This subchapter is based on Breiman (1996) and Hastie et al. (2009, p. 282–283). 
17 I implement a bagged CART algorithm by the ‘treebag’ method in the caret package. 

Packages ipred (Peters & Hothorn, 2018), plyr (Wickham, 2011) and e1071 (Meyer, 
Dimitriadou, Hornik, Weingessel, & Leisch, 2018) are employed. 

Training data 
 

Subset 2 
 

Subset 1 
 

Subset N 
 

Tree 1 
 

Tree 2 
 

Tree N 
 

Class X 
 

Class Y 
 

Class X 
 

Majority voting 
 

Final class 
 

Step 1: 
Bootstrap 
sampling 
 

Step 2: 

Training 

- Number of 
predictors: 

Bagging:  
𝑝	= full space 

Random  
Forest: %𝑝	 

 
Step 3: 
Prediction 

- Test data 

 

Notes: The figure design is inspired by He, Chaney, Schleiss and Sheffield (2016, p. 8220). 

FIGURE 2  Schematic of bagging and random forest classifiers. 
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4.1.3 Random Forest 

Random forest (RF) is a modification of a bagged decision tree that further im-
proves the method by decorrelating the bootstrapped trees, as proposed by 
Breiman (2001).18  

RF is implemented by allowing the algorithm to use only a small random 
sample of predictors as candidates for a split at each node of the tree. A new 
sample of 𝑚 predictors is considered at each split, and the sample is usually 
chosen to be equal to square root of the total number of predictors 𝑝. After 
training the trees with this decision rule modification, predictions can be made 
similarly as described for bagging, both for regression and classification prob-
lems.19 The schematic of the random forest predictor is similar to the one of bag-
ging and is therefore combined in FIGURE 2 above. The differing part is 
pointed out in step two, where RF uses a subset of predictors instead of the 
whole predictor space at each split. 

The random forest algorithm provides a significant advantage over bag-
ging regarding reduction in variance, especially if there is a dominating predic-
tor in the model. The bagging predictor is likely to choose the strongest predic-
tor for the top split in all its bootstrapped trees, growing a number of similar 
trees. Aggregating several, almost equal trees does not result in reducing vari-
ance by a lot. The random forest algorithm, however, considers smaller subsam-
ples of predictors at each split, and therefore, it is not as likely for the algorithm 
to choose a dominating predictor for the first split. This modification decorre-
lates the underlying trees, and aggregating those trees reduces variance, im-
proving the overall prediction performance. 

4.1.4 Boosting 

Like bootstrap methods, boosting is a general method that can be applied to 
various statistical learning contexts. It is based on the same fundamental idea of 
aggregating several weak learners into a strong learner. Freund and Schapire 
(1997), Friedman (2001) and  have developed applications of the boosting algo-
rithm compatible with classification and regression trees. Here, I describe boost-
ing as it can be used with decision trees in a classification setting.20 

In boosting, the training sample is modified for each tree to grow on. As in 
bagging and random forests, there is a large set of small decision trees, weak 
learners, which are combined to create a strong learner. However, this time, 
learning is performed in sequences, not independently. Boosting algorithms 
learn slowly, using information gathered on the way.  

There are three steps to train a model with a boosting algorithm, of which 
the last two are repeated for a sequence of decision trees. First, a small classifi-
cation tree, a base learner, is fitted, giving equal attention to each observation. 

                                                
18 This subchapter is based on Breiman (2001) and Hastie et al. (2009, p. 587–602). 
19 I implement a random forest algorithm by method ‘ranger’ in the caret package. Pack-

ages ranger (Wright & Ziegler, 2017), dplyr (Wickham, François, Henry, & Müller, 
2018) and e1071 (Meyer et al., 2018) are employed. 

20 This subchapter is based on Freund and Schapire (1997), Friedman (2001), Chen and 
Guestrin (2016) and Hastie et al. (2009, 337–380). 
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Next, the algorithm assigns more weight to misclassified observations. Finally, 
another tree is grown with the newly assigned weights. This iterative process is 
repeated for the last two steps, slowly improving the model in weakly perform-
ing areas until growing the last decision tree, determined by a stopping rule. In 
my analysis, I use a gradient boosting algorithm by Chen and Guestrin (2016), 
which gradually minimizes a loss function using a gradient descent method.21 
Prediction in the test sample is carried out through an output function. A sim-
plified schematic of a binary gradient boosting classifier is provided in FIGURE 
3 below. 

4.1.5 Artificial Neural Network (ANN) 

A large group of methods fall under neural networks. In general, they are com-
plex nonlinear parametric statistical models motivated by how biological neural 
networks, such as the human brain, work. Here, I briefly describe a single-lay-
ered neural network in a classification setting similar to the one presented by 
Hastie et al. (2009, p. 389–416). A simple schematic figure of a single-layered 
ANN is provided in FIGURE 4 below. 

A neural network22 is implemented in two stages for classification. The 

                                                
21 I implement the extreme gradient boosting algorithm from the package xgboost (Chen et 

al., 2018), which goes by the ‘xgbDART’ method in the caret package. The plyr pack-
age (Wickham, 2011) is also needed. 

22 I implement a neural network by the ‘nnet’ method in the caret package. Package nnet 
(Venables & Ripley, 2002) is required. 
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first stage includes creating derived features, called hidden units, which are lin-
ear combinations of the predictor variables. In the second stage, an output func-
tion is used to link the linear combinations of predictors to the target variable 
with another set of linear combinations. To fit the training data, unknown pa-
rameters are estimated for the first and second stages by minimizing cross-en-
tropy, a popular loss function used with neural networks. Moreover, the fitting 
follows a process called back-propagation to avoid overfitting. After training 
the model, an output function is used to predict outcomes with test data. 

4.2 Assessing Predictive Performance 

The performance of the classification models is assessed in a held-out test sam-
ple with various measures. There is no single gold standard measure for classi-
fication performance, which is why I report and evaluate several. Most numeri-
cal measures of predictive performance for classification problems are calcu-
lated based on the confusion matrix illustrated in TABLE 8 and summarized in 
TABLE 9 below. 

Sensitivity and specificity calculate the probabilities of a predicted positive 
value given that there is an observed positive value and a predicted negative 
value when there is an observed negative value.23 Intuitively, in my case, sensi-
tivity stands for the proportion of HGFs a classifier is able to identify. Symmet-
rically specificity is the proportion of non-HGFs a classifier is able to identify. 

                                                
23 A positive value stands for a binary outcome of 1, and a negative value stands for binary 

outcome of 0. In the context of this master’s thesis, a positive value in the response 
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FIGURE 4  Schematic of a single-layered neural network. 
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Out of these two metrics, only sensitivity is reported because of the inter-
est in the positive outcome. However, specificity is needed to calculate and plot 
the ROC curves. Furthermore, the false positive rate (FPR) is reported, which is 
defined as the probability of assigning a falsely positive prediction to a negative 
outcome. The list of reported measures continues with positive predictive value 
(PPV), which calculates the correct positive predictions over the total positive 
predictions. The F-score, a harmonic mean of sensitivity and PPV, is also re-
ported. Finally, overall accuracy is reported, which is popular in the literature. 
(Fawcett, 2005, p. 862.) 

One crucial instrument for the analysis is the receiver operating characteristics 
curve (ROC), which is essentially a graphical tool. The ROC curve plots the 
false positive rate (1-specificity) against sensitivity over all probability thresh-
olds, drawing an increasing concave graph, ideally hugging the top left corner. 
(Fawcett, 2005, p. 862–866.) 

ROC curves entail various advantages in comparing algorithms. They do not re-
quire fixing a cutoff value for the prediction probability, nor do they depend on 
                                                

stands for the firm experiencing high growth, while a negative value indicates that 
high growth is not achieved.  

 

Name Definition 

Sensitivity True positives/ Condition positive 

Positive Predictive Value (PPV) True positives / Predicted condition positive 

F-score 2 * (Sensitivity * PPV) / (Sensitivity + PPV)  

Specificity True negatives / Condition negative 

False Positive Rate (FPR) False positives / Condition negative 

Accuracy (True positives + True negatives) / (Total obs.) 

TABLE 9  Predictive performance measures for binary classifiers. 

 

  Observed Class  

  Positive Negative Total 

Predicted 
Class 

Positive True Positive False Positive 
Predicted 
condition 
positive 

Negative False Negative True Negative 
Predicted 
condition 
negative 

 Total 
Condition  
positive 

Condition  
negative 

 

TABLE 8  A confusion matrix 
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misleading measures of performance due to class imbalances.24 The ROC curve, 
however, is only illustrative. Acquiring a numerical value for analysis requires 
calculating the area under the curve (AUC), which is commonly used in the lit-
erature. The AUC receives values between 0.5 and 1, where 0.5 indicates a ran-
dom walk classifier and values near 1 suggest good predictive performance 
with high sensitivity and low false positive rate. In the context, the AUC can be 
interpreted as the probability of a model ranking higher propensity to an HGF 
than to a non-HGF. (Fawcett, 2005, p. 868; Weinblat, 2018, p. 265.)  

Another graphical tool, precision-recall curve (PR curve), is used for illus-
tration as well. The PR curve plots sensitivity (recall) against PPV (precision) 
over all probability thresholds. Ideally, the curve should be up high, close to the  
top right corner of the graph. Like ROC curve, PR curve is a useful tool compar-
ing algorithms’ performance in an overall sense. However, where the ROC 
curves capture prediction models’ ability to correctly identify outcomes based 
on both classes, the PR curves focus solely on the positive class, which is of in-
terest. Disappointingly though, PR curves depend on measures dependent on 
class distribution, which will make the results not externally comparable. Both 
of these tools provide unique but non-comprehensive informative value and 
therefore are considered side by side. (Fawcett, 2005, p. 865.) 

It is clear that high values below one are aimed for all performance 
measures described above but FPR, for which as small as possible values near 
zero are desired. It should also be noted that all measures except AUC are de-
pendent on the chosen probability threshold for prediction. In addition, it must 
be underlined that all measures except AUC, sensitivity and FPR are sensitive 
to class imbalances, which makes them unreliable to generalize (Fawcett, 2005, 
p. 864). 

Furthermore, Venkatraman’s statistical test (Venkatraman, 2000) is used in 
a paired setting to formally compare algorithms. Venkatraman’s test is a two-
sided permutation test comparing two ROC curves. The null hypothesis states 
that the two compared curves are equal. For descriptive value and to increase 
interpretability, I use variable importance to identify the most meaningful pre-
dictors. Finally, partial dependence plots (PDP) are presented for bagging, 
boosting, and random forest algorithms to obtain a sense of how the values of 
the most meaningful predictors are associated with the probability of classify-
ing a firm as high-growth, given all other predictors.25 

4.3 Methodological Considerations 

After describing the nature of the prediction methodology and tools to assess 
performance, a few issues still require attention. A crucial phase of ML applica-
tions is the preprocessing of data for training. I implement a typical approach, 

                                                
24 ROC curves use measures from a single column of the confusion matrix, which makes 

the curves independent of class distribution (Fawcett 2006, p.864). 
25 For methodological notes and examples on variable importance and partial dependence 

plots, see Hastie et al. (2009, p. 367–384). 
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centering and scaling all the numerical predictors. In addition, I have omitted 
all the observations with missing values. Since their proportion is relatively 
low—approximately 10%—I do not see a need for imputing missing data. By 
centering, I mean subtracting the mean of the predictor’s data from its actual 
values. Scaling divides the predictor’s value by its standard deviation. It is im-
portant to note that the test data are preprocessed as well, but using distribu-
tional information only from the training sample, avoiding any information 
leakage and therefore unrealistic results. 

The second issue concerns the vast imbalance of classes in the target varia-
ble. Defining high-growth firms as described in Chapter 3.2.1 yields only 4.5% 
of all firms classified as high-growth in the training sample. ML algorithms are 
known to be sensitive to class imbalances, producing undesirable results.26 
However, there are various techniques, such as resampling and threshold opti-
mization, to mitigate this issue (Sun, Wong, & Kamel, 2009, p. 700–710). I exper-
imented with several approaches27 and proceeded with optimizing the proba-
bility threshold for prediction using the F-score, since it returned the most 
promising improvements in performance. The basic idea of threshold optimiza-
tion with the F-score is to choose the probability threshold that maximizes the 
F-score in the training sample and use it for prediction in the test sample.28 The 
procedure is commonly used in ML literature, and its properties have been 
studied, for example, by Lipton, Elkan and Naryanaswamy (2014). 

The third issue concerns the specification of the algorithms. Most of the 
ML algorithms implemented in this thesis have several hyperparameters, which 
require assigned values for training. A typical approach is to cross-validate 
training results to obtain a combination of hyperparameters that yields the best 
in-sample results (Hastie et al., 2009, p. 241–257). I apply 10-fold cross-valida-
tion in the training phase to tune the most important parameters with predeter-
mined grids of parameter values. The final set of hyperparameter values as-
signed for the algorithms are reported in TABLE 10 below. 

The fourth issue concerns the overfitting of data due to the complex learn-
ing patterns of ML algorithms. Overfitting results in a good fit with the training 
data, but poor performance out-of-sample, and is more likely with more predic-
tors and with less data. Again, several approaches exist to address this issue, in-
cluding cross-validating the training sample and several regularization schemes 
(see, e.g., Friedman, Hastie, & Tibshirani, 2010; Hastie et al., 2009, p. 139–181, 
219–257). As described in the previous paragraph, I implement a cross-valida-

                                                
26 In my case, most of the ML algorithms predict all firms belonging to the class of no high 

growth with the original dataset if the imbalance of class distribution is not miti-
gated. 

27 Moreover, I tried the following approaches: downsampling, upsampling, SMOTE (syn-
thetic oversampling) and optimized threshold in prediction using AUC and F1. In 
addition, I tried several mixed strategies using resampling in training and optimized 
thresholds in prediction. However, the other benchmark, Lpm, does not support 
resampling schemes. 

28 Classifying a firm as high-growth requires defining a probability threshold at which an 
observation is assigned to the positive class. 
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tion scheme in the training phase and therefore mitigate the possible overfit-
ting. Combined with a relatively large dataset and few predictors, I am confi-
dent in my approach. 

The fifth issue of the analysis considers the predictors used for analysis. 
Despite the vast literature, there is no consensus on the drivers of firm growth. 
In addition, there are several approaches in the ML literature and no agreement 
on how to choose the most meaningful predictors from the full predictor space 
to reduce noise in prediction (see, e.g., Guyon & Elisseeff, 2003). Furthermore, 
ML approaches to choose a subset of variables entail instability over iterations if 
variables are correlated (Mullainathan & Spiess, 2017, p. 96–98). Nevertheless, 
algorithms such as random forest and boosting are known to perform well with 
large predictor spaces due to their built-in variable selection. Also, the total 
number of predictors is relatively small, making it questionable to shrink the set 
of predictors any further. For the abovementioned reasons, I do not implement 
any feature selection scheme in my approach. 

Finally, it should be mentioned that the applied ML algorithms (mostly 
bagging, boosting and random forest) are computationally very costly to imple-
ment. Depending on the size of the data set and approach in the learning phase, 
without professional hardware, it can take even days to train a single classifier, 
even with parallel computing29. Some of the methodological decisions (such as 
the number of different ML algorithms, resampling schemes, number of itera-
tions in cross-validation or size of the hyperparameter grids for cross-valida-
tion) have to be considered from this point of view as well. Computational costs 
raise another dilemma too. In this master’s thesis, the primary interest is in pre-
dictive performance, but perhaps a computational scientist would be interested 
in questions on computational cost-efficiency relative to predictive performance 
as well. Nevertheless, issues related to computational efficiency are disregarded 
here. 

                                                
29 Parallel computing refers to harnessing multiple computer cores to calculate a single task 

simultaneously, which results in faster execution. I parallelized all computational 
tasks in the training phase with all algorithms. 

 

CART     Boosting   

Complexity parameter 0.00084  Number of iterations 150 

   Maximal tree depth 2 

Random Forest   Shrinkage parameter 0.3 

Number of randomly selected predictors  2  Minimum loss reduction 0.5 

Spliting rule gini  Subsample percentage 0.5 

Minimal node size 5  Subsample ratio 0.8 

   Fraction of trees dropped 0.2 

Artificial Neural Network   Probability of skipping drop-out 0.2 

Number of hidden units 3  Minimum sum of instance weight 0.5 

Weights decay 0.1       

Notes: The bagging algorithm applied does not entail any tuning parame-
ters. 

TABLE 10  Tuned hyperparameter values of the machine learning algorithms. 



 
 

5 RESULTS 

In this chapter, I report and evaluate the results obtained using the empirical 
framework described in Chapter 4. Starting with the baseline model, the results 
are assessed and compared with various performance metrics and mirrored 
against the relevant previous literature. I also provide auxiliary prediction re-
sults for an alternative measure of firm growth, additional predictors of expert 
information and a sample of young firms.  

5.1 The Baseline Model 

5.1.1 Out-of-Sample Predictive Performance 

TABLE 11 provides the baseline results in the test sample. Underlying confu-
sion matrices and prediction results with alternative resampling schemes are 
provided in Appendix C. Compared to the better benchmark (Logit), the best 
machine learning technique, random forest (RF), with an out-of-sample AUC of 
0.6422, provides a 0.055-point AUC improvement (equivalent to a 9.4% im-
provement) over a simple logit classifier, which is a somewhat modest but nev-
ertheless relevant improvement. Considering AUC’s interpretation, the RF algo-
rithm ranks a higher propensity for a random Finnish firm to be an HGF than a 
non-HGF with a probability of 64.22%. 

 Classifier AUC Threshold Sensitivity PPV F-score FPR Accuracy 
Lpm 0.5727 0.1002 0.3272 0.1607 0.2155 0.0887 0.8825 
Logit 0.5872 0.1071 0.3049 0.1868 0.2317 0.0689 0.9003 
CART 0.5221 0.1290 0.2053 0.2028 0.2040 0.0419 0.9210 
Bagging 0.6109 0.3600 0.0528 0.2680 0.0883 0.0075 0.9462 
Boosting 0.6190 0.1125 0.3191 0.2052 0.2498 0.0641 0.9055 
RF 0.6422 0.1415 0.1707 0.2877 0.2143 0.0219 0.9382 
ANN 0.5889 0.1198 0.2703 0.2031 0.2319 0.0550 0.9117 
Ensemble 0.6326 0.1577 0.1728 0.2833 0.2146 0.0227 0.9376 

TABLE 11  Out-of-sample prediction results with F1 optimized thresholds in prediction 
for the baseline model. 
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The RF classifier’s AUC is far below the highest AUCs in the previous litera-
ture; Weinblat (2018) achieved an AUC of 0.8110 for the UK, and Sharchilev et 
al. (2018) achieved an AUC of 0.854 with international data, but close to 
Miyakawa et al.'s (2017) AUC of 0.68 for Japanese firms and almost equal to 
Weinblat's (2018) AUC of 0.6439 for Finland.30 Differences across these values 
can have various explanations since choices in methodology and variables vary 
substantially. However, since the best result in terms of AUC is in line with 
Weinblat's (2018) result for Finland, the country of interest seems to play a role 
in predictive performance. 

Observing the out-of-sample prediction results in TABLE 11, all but the 
CART outperform the baselines and can be ranked in descending order based 
on the value of AUC as follows: RF, Ensemble, Boosting, Bagging, ANN, Logit, 
Lpm, and CART. The absolute differences in AUC are rather small, as one can 
notice in FIGURE 5, left pane, where the overlapping ROC curves are difficult 
to distinguish from each other. However, at least the curves of RF and Ensem-
ble seem to arch somewhat closer to the top left corner compared to the curves 
of other classifiers. Considering performance only in the positive class, the PR 
curves illustrate a similar standing in FIGURE 5, right pane, where the curves of 
RF, Ensemble, and Boosting seem to be slightly closer to the top right corner 
than the rest of the curves. 

Comparing the ROC curves, the ordering is mostly supported by 
Venkatraman's (2000) permutation test. The p-values for the test are reported in 
TABLE 12. For all classifiers except ANN and Bagging, the null hypothesis of 
two ROC curves being equal is rejected at the 95% confidence level compared to 
the baselines, Lpm and Logit. The RF classifier differs significantly from all oth-
ers except the Ensemble classifier. Besides, the null hypothesis is not rejected for 
the following pairs of ROC curves: Bagging and Boosting, Baggingand ANN, 
and Boosting and Ensemble. 

                                                
30 Actually, I was able to achieve the same AUC (0.6439) as Weinblat (2018) when applying 

class weights in the training phase. However, overall performance with the class 
weight approach works poorly across all other algorithms, which is why I report re-
sults without any weights and with threshold optimization as my baseline setting. 
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  39 

Although AUC is the most common and reliable overall measure of predictive 
performance in this context, sensitivity and false positive rate (FPR) are also 
useful measures for interpretation and comparison when a probability thresh-
old for prediction is defined. The RF classifier correctly identifies 17.07% (sensi-
tivity) of the high-growth firms with only a 2.19% (FPR) chance of misclassify-
ing a non-high-growth firm as a high-growth firm. Compared to Weinblat's 
(2018) corresponding values of 26.45% (sensitivity) and 14.42% (FPR) for Fin-
land, the RF classifier is clearly more cautious, identifying HGFs correctly al-
most 10 percentage units less, but doing so with a fraction of the risk of misclas-
sification.31  

Considering the nature of other classifiers, CART and Ensemble are also 
cautious with low sensitivities and FPRs, where the Bagging classifier is the 
most conservative, with a sensitivity of just 0.0528 and FPR of 0.0075. The base-
lines, Boosting and ANN, represent more liberal classifiers with sensitivities 
ranging between 0.27 and 0.33 and FPRs varying from 0.055 to almost 0.09. 

The rest of the reported performance measures in TABLE 11 are not di-
rectly comparable to those of previous studies due to differences in class distri-
butions (as discussed in Chapter 4.2). Additionally, similar to sensitivity and 
FPR, they depend on the probability threshold used in prediction, which in my 
case is determined separately for each classifier using the F-score optimization 
in training. However, these measures entail information on the positive class 
and are internally comparable. In particular, the F-score—the harmonic mean of 
sensitivity and PPV—is of particular interest since the positive class is a more 
interesting one. PPV (precision) and sensitivity (recall) should be considered to-
gether since their variation is usually observed in a trade-off, as shown in FIG-
URE 5. A balance between the two is more meaningful than extreme values in 
one or another. Of course, depending on the purpose and preferences of the en-
tity forecasting HGFs, one could put more weight on precision to have more 
confidence in picking a few most potential HGFs (tight budget) or on sensitivity 
to identify more potential HGFs with decreased certainty (loose budget). 

                                                
31 It is worth noting here that Weinblat's (2018) application for Finland has a class distribu-

tion of about 10% HGFs in the training and test samples using the Birch-Schrayer in-
dicator for the high-growth definition. Furthermore, a resampling scheme called 
SMOTE is used in training and a classical 0.5 probability threshold in prediction. 
These differences influence how a classifier performs. 

 

Classifier  Lpm Logit CART Bagging Boosting RF ANN Ensemble 
Lpm 1 0.0000 0.0000 0.0070 0.0000 0.0000 0.0425 0.0000 
Logit 0.0000 1 0.0000 0.0570 0.0000 0.0000 0.7085 0.0000 
CART 0.0000 0.0000 1 0.0000 0.0000 0.0000 0.0000 0.0000 
Bagging 0.0070 0.0570 0.0000 1 0.0775 0.0035 0.0820 0.0035 
Boosting 0.0000 0.0000 0.0000 0.0775 1 0.0015 0.0020 0.0665 
RF 0.0000 0.0000 0.0000 0.0035 0.0015 1 0.0000 0.1595 
ANN 0.0425 0.7085 0.0000 0.0820 0.0020 0.0000 1 0.0000 
Ensemble 0.0000 0.0000 0.0000 0.0035 0.0665 0.1595 0.0000 1 

TABLE 12  Venkatraman’s test p-values for the baseline model. 
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Using the F-score as the performance measure of interest, the ranking of 
the classifiers (Boosting, ANN, Logit, Lpm, Ensemble, RF, CART, and Bagging) 
is notably different from the AUC ordering. Where RF is the best classifier 
when the probability threshold is not determined, considering performance also 
based on the F-score with the best possible probability thresholds for each clas-
sifier, the Boosting classifier is the only classifier to perform better than the 
baselines. 

The measure of overall accuracy in the last column of TABLE 11 is not a 
very meaningful one in the case of unbalanced class distribution since a classi-
fier could achieve over 95% accuracy just by predicting all observations as non-
HGFs. This result is an undesirable outcome, and I have dealt with the issue (cf. 
Chapter 4.3). As a result, however, the overall accuracy will usually end up (as 
in my case) remaining under the “no-information rate” (as the proportion of the 
major class is called) in the test sample. Nevertheless, the measure is reported 
due to its popularity in the literature. 

It is difficult to explicitly state which method assessed here is the tool of 
choice in forecasting HGFs, since alternative measures of predictive perfor-
mance lead to somewhat different conclusions. Based on my results, it can be 
summarized, that ML techniques provide slight improvements over baselines in 
predictive performance when a specific probability threshold for prediction is 
not predetermined. In this case, the RF or Ensemble classifiers seem to be the 
tools of choice in terms of AUC. With an optimized prediction threshold, how-
ever, it seems possible for a conventional classifier to produce better forecasts 
than an ML classifier, depending on the measure of performance. Using the F-
score as the measure of interest, the Boosting classifier seems to win the race, 
where most of the simple ML techniques cannot beat the baselines. It all comes 
down to the choice of measure, which should arise from the needs of policy-
makers and investors. 

5.1.2 Evidence on the Most Meaningful Predictors 

The results on variable importance for tree-based classifiers (CART, Bagging, 
Boosting, and Random Forest) are presented in FIGURE 6, where relative im-
portance is on the horizontal axis, and the 20 most important predictors in de-
scending order from the top are on the vertical axis. In RF, the two most im-
portant predictors are past personnel and past sales growth; the third and 
fourth most important predictors are past productivity growth and initial 
productivity level, respectively. The three most important predictors after these 
four are firm age, capital intensity, and size (as proxied by sales). The top three 
predictors are the same for RF and Bagging, and the top two for Boosting as 
well (although the ordering of the top two is flipped for Boosting). The CART 
classifier values especially the age of the firm, age of the CEO and the indicator 
of being part of a group.  

It seems that the aggregation of trees in different ways moves the focus to-
wards past growth and current level indicators of the target or predictors 
closely related to it. My findings on the most important predictors are in line 
with Weinblat's (2018) findings for several countries (including Finland) and the 
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previous literature on the matter, summarized as follows. In addition to the im-
portance of firm size and its variation, based on regression studies, size and age 
contribute more than financial or sectoral predictors that do not seem to play a 
significant role (p. 279–280). 

Partial dependence plots (PDP) provide another useful interpretation 
mechanism for some tree-based ML techniques. I present these plots for the ten 
most important predictors (based on the RF ranking in FIGURE 6) using the 
Bagging (blue), Boosting (green), and RF (red) classifiers in FIGURE 7. Here, the 
horizontal axis represents centered and scaled values of the predictors, and the 
vertical axis represents the probability of assigning a firm as an HGF, given all 
other predictors. The plots are scaled to the distribution, illustrated by decile 
tick marks. 

ML techniques’ ability to capture nonlinear relationships truly stands out 
in PDPs. My main finding here is that—in the case of RF—there appears to be a 
slight nonlinear rising in the probability of high growth when considering in-
creasing values in the first four predictors, which are the past growth of person-
nel, revenue and productivity and finally the initial productivity level. The ob-
servation is intuitive and in line with most of the previous literature (see, e.g., 
Coad, 2007a). 
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FIGURE 6  Variable importance in the learning sample for the baseline model. 
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Notes: The 10 most important predictors based on the ordering implied by the RF classifier 
are presented with a probabilistic scale. Red: Random Forest, green: Boosting and 
blue: Bagging. 
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FIGURE 7  Partial dependence plots in the learning sample for the baseline model. 
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Combined with the variable importance analysis, past growth indicators seem 
to contribute the most and exhibit the largest conditional variation in partial de-
pendence. However, this association is not as evident with Bagging and Boost-
ing. Also, there seems to be some evidence on younger firm age being associ-
ated with higher probability of fast growth, which is in line with the literature 
(Acs et al., 2008). 

5.2 Auxiliary Analyses 

5.2.1 Growth in Turnover 

I used growth in turnover as an alternative measure in the definition of HGFs to 
mirror my baseline results against. The out-of-sample prediction results with 
this modification are presented in TABLE 13 and FIGURE 8 below. 

Overall—in terms of AUC—there are major improvements (ranging be-
tween 0.1 and 0.15 points) in predictive performance compared to the baseline 
model. This result is observable in FIGURE 8 (left pane), as the ROC curves lie 
much closer to the top left corner compared to the baseline model in FIGURE 5. 
Nonetheless, the ranking and point differences of AUC values across classifiers 
remain similar to the baseline model. Venkatraman’s test (not reported but 
available upon request) was also carried out, where similarly to the baseline, 
the RF and Boosting stand out from other classifiers. ANN and Bagging remain 
the only classifiers not being able to reject the null hypothesis against the base-
lines. 

Slight improvements in the F-score are also observed; however, the underlying 
class distribution has changed, making the results not directly comparable. Mis-
leadingly, the PR curves in FIGURE 8 (right pane) have been raised up a notch, 
partially because the proportion of HGFs has increased from approximately 5% 
to 7.5% in the sample. 

Based on these results, a considerate interpretation could be made that the 
overall task of identifying future HGFs in Finland is a somewhat easier task 

 Classifier AUC Threshold Sensitivity PPV F-score FPR Accuracy 
Lpm 0.7281 0.1296 0.3829 0.1942 0.2577 0.1286 0.8348 
Logit 0.7260 0.1029 0.5408 0.1761 0.2657 0.2048 0.7761 
CART 0.6192 0.1563 0.0402 0.1364 0.0620 0.0206 0.9091 
Bagging 0.7188 0.3600 0.1111 0.3430 0.1678 0.0172 0.9175 
Boosting 0.7447 0.1421 0.3722 0.2299 0.2843 0.1009 0.8596 
RF 0.7769 0.1511 0.2811 0.2778 0.2794 0.0592 0.8914 
ANN 0.7370 0.1422 0.3788 0.2039 0.2651 0.1197 0.8427 
Ensemble 0.7661 0.1753 0.2718 0.2827 0.2771 0.0558 0.8938 

TABLE 13  Out-of-sample prediction results with the OECD’s high-growth definition by 
turnover and F1 optimized thresholds in prediction. 
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when considering high growth in turnover rather than in employment. This re-
sult is in slight controversy with the findings of Daunfeldt, Elert and Johansson, 
(2014), which do indicate that the set of HGFs is different depending on the 
growth measure, but the measures in sales and employment are not sensitive to 
the same issue. Nevertheless, my observation agrees with the challenge previ-
ously recognized in the literature: comparing predictive results and executing 
policy based on them is difficult and questionable if the results can differ based 
on the HGF definition (Delmar et al., 2003). 

5.2.2 Expert Information 

The out-of-sample prediction results including indicators of private and public 
expert information (venture capital finance and innovation grants) as predictors 
in the model are provided in TABLE 14; illustrative ROC and PR curves are 
provided in FIGURE 9. 

Prima facie evidence suggests that both private and public investors have some 
ability to predict and/or to nurture firm growth: the ex-post shares of high-
growth firms among both Venture- and Tekes-backed companies (6.94% and 
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FIGURE 8  ROC curves (left pane) and PR curves (right pane) in the test sample using 
the OECD turnover definition of high growth as a target. 

 
Classifier AUC Threshold Sensitivity PPV F-score FPR Accuracy 
Lpm 0.5741 0.0916 0.3740 0.1410 0.2048 0.1182 0.8567 
Logit 0.5910 0.0941 0.3455 0.1577 0.2166 0.0958 0.8767 
CART 0.5222 0.1122 0.2012 0.2045 0.2029 0.0406 0.9220 
Bagging 0.6023 0.3600 0.0671 0.3000 0.1096 0.0081 0.9463 
Boosting 0.6122 0.1491 0.2500 0.2500 0.2500 0.0389 0.9260 
RF 0.6420 0.1351 0.1850 0.2716 0.2201 0.0257 0.9353 
ANN 0.6018 0.0866 0.3963 0.1237 0.1885 0.1457 0.8317 
Ensemble 0.6320 0.1563 0.1646 0.2784 0.2069 0.0221 0.9377 

TABLE 14  Out-of-sample prediction results with expert information and F1 optimized 
thresholds in prediction. 
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6.63%, when measured in personnel growth, respectively) are approximately 
two percentage points higher than in the overall sample. However, when con-
sidered in tandem with all the other predictors, including this expert infor-
mation does not yield improvements in predictive performance. The results are 
almost identical to the baseline in terms of AUC and supported by Venkatra-
man’s test (not reported here but available upon request). There are no signifi-
cant improvements in F-scores either. However, this time, the RF classifier is 
able to slightly outperform the baselines together with Boosting. 

In a slight contradiction to my result, investor features play a substantial role in 
the ML application of Sharchilev et al. (2018). However, their set of firms con-
sists of young startup companies with data of various investor features across 
time, whereas I use a set of firms of various sizes and ages. In addition, investor 
features might be more relevant as predictors to identify ventures based on 
Sharchilev et al.'s (2018) choice of target (securing another round of equity 
funding).  

5.2.3 Young Firms 

My final analysis considers a model with the same predictor space and HGF 
definition as in the baseline model but with a dataset with only young (≤ 10 
years old) firms. The out-of-sample prediction results are provided in TABLE 15 
and FIGURE 10.  

As observable in TABLE 5, the share of HGFs is over twice higher (with a 
share of about 10% of total firms) among young firms than in the overall sam-
ple. Despite the more balanced HGF distribution among young firms, the re-
sults reflect major impairment in out-of-sample predictive performance. How-
ever, the ranking and point differences of the algorithms remain roughly the 
same. The weakest AUC values are close to the random walk level of 0.5 (Lpm 
and Logit), and the strongest are slightly under 0.6 (RF). This time, however, all 
algorithms seem to outperform baselines in absolute terms, but according to 
Venkatraman’s test (not reported here but available upon request), the ROC of 
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the Bagging classifier still does not significantly differ from the baselines. The 
ROC curves in FIGURE 10, left pane, illustrate the poor performance by over-
lapping each other near the 45-degree random walk line. 

Quite misleadingly, the overall poor performance does not seem to affect the F-
score compared to the baseline model. Again, this is due to a change in the un-
derlying class distribution in the target variable. In fact, in the sample of young 
firms, it is over twice as probable to pick an HGF from the sample at random. 
This finding is also indirectly visible in FIGURE 10, right pane, where the PR 
curves have remained roughly on the same level of the vertical axis, although at 
first thought, they should shift similar to the ROC curves but in the opposite di-
rection. 

My results with young firms imply that the ML techniques implemented in this 
master’s thesis function similarly relative to the benchmarks (Lpm and Logit) as 
in the baseline model. However, identifying HGFs from a sample of only young 
firms turns out to be a more difficult task than from a representative sample of 
all firms.  

 

Classifier AUC Threshold Sensitivity PPV F-score FPR Accuracy 
Lpm 0.5110 0.1494 0.3653 0.2192 0.2740 0.1597 0.7884 
Logit 0.5118 0.1560 0.3151 0.2396 0.2722 0.1227 0.8159 
CART 0.5617 0.1420 0.2146 0.2474 0.2298 0.0801 0.8428 
Bagging 0.5537 0.3600 0.0868 0.2969 0.1343 0.0252 0.8777 
Boosting 0.5812 0.1537 0.3196 0.2405 0.2745 0.1238 0.8154 
RF 0.5945 0.1714 0.1918 0.3559 0.2493 0.0426 0.8738 
ANN 0.5199 0.1531 0.4155 0.2382 0.3028 0.1630 0.7909 
Ensemble 0.5707 0.2012 0.1689 0.3058 0.2176 0.0471 0.8673 

TABLE 15  Out-of-sample prediction results with a dataset of young (≤ 10 years old) firms 
at the time of observation and F1 optimized thresholds in prediction. 
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FIGURE 10  ROC curves (left) and PR curves (right) in the test sample using a dataset of 
young firms. 



 
 

6 DISCUSSION 

In this chapter, I discuss the implications of my findings and address the limita-
tions of this study. My results evoke several notable topics for discussion and 
relevant implications for policy. The baseline analysis confirms that ML meth-
ods provide improvements in predictive performance in the context of identify-
ing HGFs. The classifiers behave differently, but generally they identify rela-
tively few HGFs but do so with relatively high accuracy. All in all, my results 
are in line with the general finding that ML approaches can be useful for predic-
tion policy problems similar to many previous applications (see, e.g., 
Mullainathan & Spiess, 2017).  

However, the improvements in performance with ML methods are modest 
compared to conventional techniques and not always unambiguous. Therefore, 
it seems, that not even ML methods are able to find superior relationships from 
data for a prediction problem that is genuinely hard, as the task at hand is con-
sidered to be (see, e.g., Coad et al., 2014). Moreover, the evidence on the most 
meaningful predictors is in line with the previous literature (see, e.g., Weinblat, 
2018) and therefore confirms what is already known on the matter. With the 
type of data available, predictors related to firm size, its past change and firm 
age contribute the most. 

The auxiliary analyses provide several interesting findings essential for 
policymakers and investors. First, based on my finding from a simple robust-
ness check, it seems that predictive accuracy is sensitive to the high-growth def-
inition used. More accurately, the prediction problem at hand seems to be an 
easier one, when measuring growth in turnover rather than in employment. 
While not formally tested, this is clearly observable in absolute terms. Agreeing 
with the previous literature (see, e.g., Daunfeldt et al., 2014, 2015; Delmar et al., 
2003), it is essential to acknowledge the differences of growth measures and 
HGF definitions and how they can result in different sets and distributions of 
HGFs. Although the academic literature would favor a standardized HGF defi-
nition for increased comparability—for practical applications—the definition 
should always be chosen based on the purpose of the identification task. 

In the second auxiliary analysis of additional predictors, the initial obser-
vation is that the share of HGFs is higher in venture capital and public innova-
tion grant backed companies than in the overall sample. However, adding these 
proxies of expert information as predictors in the baseline model does not seem 



 48 

to provide improvements in out-of-sample predictive performance. This finding 
is related to literature on forecast encompassing and combination. If the predic-
tors of expert information are thought of as forecasters of HGFs, it is said that 
the baseline forecaster encompasses the additional ones, since predictive perfor-
mance is not improved by a combination of the forecasters (Clements & Har-
vey, 2009). However, this outcome is not formally tested here. My findings im-
ply that while private and public investors might be able to identify HGFs with 
some accuracy, including proxies of their investment decisions is not meaning-
ful in a predictive model since all the useful information is already identifiable 
from the initial data. 

Finally, based on my results, identifying HGFs from a sample of young 
firms seems to be close to an impossible task even with ML classifiers. The re-
sults here are not completely surprising considering the baseline model’s analy-
sis on variable importance. The results reveal that the predictors on firm size 
and its past growth contribute the most in predictions with increasing partial 
dependences to probability of high growth. Although the firm age does play a 
significant role in prediction, its value is not dominant. Moreover, my findings 
here are in line with the literature arguing that young small firms grow unex-
pectedly compared to old large firms with steady growth trajectories and long 
planning horizons (Coad, 2007b).  

However, my findings on the predictability of young HGFs are not obvi-
ous and ignoring them would probably lead to counter-effective outcomes in 
practice. Observational evidence in the literature suggests that HGFs tend to be 
young (see, e.g., Acs et al., 2008). The same finding is visible in this study as 
well, where the mean age of HGFs is close to 10 years (using the baseline HGF 
definition), which is less than half of the overall mean age of approximately 21 
years. Moreover, the share of HGFs in the sample of young firms is over twice 
as large (with a share of approximately 10%) than in the overall sample (with a 
share of approximately 5%). Therefore, the observational conclusion from a pol-
icymaker’s (or a private investor’s) point of view would be that targeting young 
firms will probably lead to the most effective results. Based on my findings, 
however, this is not the most effective approach since HGFs are almost impossi-
ble to predict from a sample of only young firms. The main message to policy-
makers and investors following this auxiliary analysis is therefore the follow-
ing: targeted policy measures should be aimed at potential HGFs that are pre-
dictable, but as of yet, the task is practically close to impossible for young firms, 
at least with the historical data available. 

Should a policymaker or a private investor then employ ML methods for 
only minor expected advantages in predicting HGFs? The answer depends on 
what the applier is aiming for. If the interest is solely in predictive performance, 
ML methods provide slight but relevant improvements and they should be 
used. However, as discussed in Chapter 4.3, ML techniques require a lot of 
computing power, and can therefore be time consuming. Another disadvantage 
lies in interpretation, which is considerably more challenging for ML based 
models than conventional econometric ones. Moreover, the choice of a specific 
classifier depends on the applier’s preferences. As pointed out in Chapter 5.1.1, 



  49 

the trained classifiers behave quite differently out-of-sample, with some identi-
fying a relatively large share of HGFs but with less accuracy, and vice versa. 
Overall, the choice of a classifier, whether an ML based or not, depends on 
many considerations, which should be addressed before applying. 

Following the discussion above, two interesting questions arise: why is 
predicting HGFs so difficult and are there any possibilities whatsoever to allevi-
ate the issue. While the first one is not in the direct scope of this master’s thesis, 
the same problem has been identified in the previous literature (see, e.g., Coad 
et al., 2014). As discussed in Chapter 2, the reasoning for the hardship lies 
mostly in the heterogeneity of firms and how they grow. In addition, there are 
multiple factors known to be associated with firm growth but with no high-di-
mensional data available for.  

For the second question above, the possibilities are three-folded. Follow-
ing the approach of this master’s thesis, additional methodological improve-
ments can be made to potentially enhance predictive accuracy. Most promising 
improvements, however, are expected from increased quantity and quality of 
data. Finally, if neither of these options yield further improvements, policymak-
ers are forced to shift their focus from targeted policy to enabling generally fa-
vorable environmental conditions for firm growth. In the same case, private in-
vestors would need to solely rely on their superior views and other tools of 
analysis of firms’ prospects as a basis for investment decisions. 

I consider the ideas and topics in the previous two paragraphs as part of 
the general guideline for future work related to identifying HGFs. However, the 
analysis carried out in this master’s thesis entails a few limitations, which can 
be turned into specific propositions for future research. From a methodological 
point of view, as discussed in Chapter 4.3, ML approaches require a set of deci-
sions regarding the training phase. If time was not a constraint, one could prob-
ably improve predictive performance by trial and error (e.g., by trying different 
algorithms, resampling schemes and tuning parameter values). Methodological 
tuning usually results in limited improvements only, however. Most promising 
results here might be achieved by implementing some off-the-shelf ML meth-
ods that better utilize panel techniques familiar from econometrics. 

A more effective approach could be to enhance the quantity and quality of 
data and variables. The data sample used in this master’s thesis is relatively 
large with 24 predictors in the baseline model, but small compared to what ML 
algorithms are capable of handling. Four areas of improvement can be identi-
fied here, based on ideas throughout the book of Hastie et al. (2009) and dis-
cussed in ascending order based on the expected yield in predictive perfor-
mance. First, the data sample at hand could be improved by removing outliers 
and trying to reduce noise in other ways. Second, by creating features like addi-
tional lags and interactions of existing variables combined with feature selection 
approaches, might further enhance the complex learning processes of ML. 
Third, more data of the same variables could be gathered to enable the best pos-
sible learning environment for data-hungry ML algorithms. Fourth, including 
additional relevant predictors showing univariate correlation to the outcome 
would most probably improve predictive performance. 
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Out of the propositions above, I consider the last one particularly promis-
ing in the context of identifying HGFs. Given ML methods’ ability to handle un-
conventional data formats such as text, I see solid possibilities in utilizing news 
articles in HGF prediction, for example. As reviewed in Chapter 2.4, a similar 
approach has already been carried out by Sharchilev et al. (2018) with encour-
aging results. Out of conventional variables, my models do not entail predictors 
of the quality of leadership, which is known to have significant influence on the 
firm’s prospects (see, e.g., Guzman & Stern, 2015b). 

In the big picture, more studies enhancing predictive performance of fu-
ture HGFs are needed. However, if a satisfactory level of predictive accuracy is 
reached and any targeted policy measures are wished to be carried out, the 
question on how to optimally allocate resources and with what tools, needs to 
be addressed to the same degree. Moreover, this requires studies on interfer-
ence rather than pure prediction (see, e.g., Athey, 2017).  

  



 
 

7 CONCLUSION 

High-growth firms (HGF) have attracted recent attention as job creators, be-
cause of which policymakers are in need of a robust mechanism identifying fu-
ture HGFs for targeted policy measures. However, the task has proven difficult 
with conventional methodology. 

In this master’s thesis, I have answered the need stated above by conduct-
ing a predictive scheme similar to a real forecasting scenario, where I have ob-
servable past values available to predict unknown future outcomes with. Using 
advanced but commonly used machine learning (ML) algorithms and a broad 
set of predictors, I have trained several classifiers in a 2005–2012 learning sam-
ple of Finnish firms to predict HGFs. Predictive performance of these classifiers 
is then assessed in a truly out-of-sample test window of 2013–2016, putting the 
classifiers to a hard test against benchmarks. 

Overall, the results of this master’s thesis conclude that ML methods pro-
vide modest but statistically significant improvements over simple regressions 
in predicting HGFs, which answers the first research question stated in Chapter 
1. My best performing classifier—random forest (RF)—offers a 0.055-point 
(which corresponds to 9.4%) out-of-sample improvement over the better bench-
mark in terms of AUC (area under the ROC curve), the most common perfor-
mance measure in the context. Depending on the measure of interest, however, 
the classifiers behave differently, and the ML methods applied are not uni-
formly capable of beating the benchmarks. Therefore, some preferential deci-
sions are needed to be made when choosing a classifier for the task. 

Considering variable importance, mostly predictors of firm’s current and 
past growth of size indicators and firm age seem to contribute the most to pre-
dictions. Moreover, larger size and higher growth during the previous period 
seems to be associated with a higher probability of high-growth in the follow-
ing period. In addition, younger firms are more probable HGFs than older ones. 
These findings are in line with the previous literature and answer the second re-
search question stated in Chapter 1. 

I also studied, whether using an alternative high-growth definition, in-
cluding information on private and public investors’ investment decisions or 
studying a subsample of young firms affect predictive performance. My find-
ings imply that identifying HGFs is a considerably easier task when growth is 
measured in turnover rather than in employment. Despite the observation of ex-
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post shares of HGFs being higher in investment backed firms, including predic-
tors of expert information does not yield improvements in predictive perfor-
mance. Finally, predicting HGFs in a sample of young firms is a notably harder 
task than in a sample with no age restrictions. 

The empirical framework of this master’s thesis entails a few limitations 
considering the quantity and quality of data and further improvements in 
methodological choices. Where future research enhancing the predictive 
scheme applied in this thesis is needed, the question of how to optimally allo-
cate resources for potential HGFs and with what tools, needs to be addressed 
through causal studies. 

Nevertheless, in this master’s thesis, I have provided a robust ML-based 
predictive scheme with useful results for policy. Altogether, I find that the best 
ML methods are useful but not overpowering in predicting HGFs, with the data 
available. That is, if the interest is exclusively in prediction accuracy. Therefore, 
ML should be considered in the context, if computational costs or model opac-
ity are not concerned.  
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APPENDIX A – DESCRIPTIVE STATISTICS 
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escriptive statistics for preprocessed learning (left pane) and test (right pane) data sets based on the full data set. 
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escriptive statistics for the full data set of young (≤ 10 years old) firm
s 

before preprocessing. 
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escriptive statistics for preprocessed learning (top pane) and test (bottom
 pane) data sets of young (≤ 10 years) firm

s. 
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APPENDIX B – TECHNICAL SUMMARY OF THE MACHINE 
LEARNING ALGORITHMS 

In this appendix, I provide some mathematical background for the machine 
learning algorithms employed in this master’s thesis. The presentations here are 
abridged versions. Please, see the references for full treatment. 

The CART Algorithm 

The CART algorithm is a tree-based nonparametric method for regression and 
classification. Following Breiman’s (2017, p. 27–36)32 notation, the CART algo-
rithm in a classification setting can be presented as follows. 

In the learning sample ℒ(𝑥*, 𝑥,, … , 𝑥.) with a predictor space of 
𝑥*, 𝑥,, … , 𝑥0,  and for a 𝒥 class problem, let’s denote 𝑁3 as the number of units in 
class 𝑗. The prior probabilities are taken as proportions as follows: 𝜋(𝑗) = 𝑁3/𝑁, 
where 𝑁 represents the total number of units in ℒ. Let 𝑁(𝑡) stand for the num-
ber of units in node 𝑡, for which holds that 𝑥. ∈ 	𝑡. Finally, a few probability es-
timates can be derived. First, 𝑝(𝑗, 𝑡) = 𝜋(𝑗)	𝑁3(𝑡)/𝑁3 stands for the resubstitution 
estimate of the probability of a unit being in class 𝑗 and falling into node 𝑡. Sec-
ond, 𝑝(𝑡) = ∑ 𝑝(𝑗, 𝑡)3  is the definition for the resubstitution estimate of the prob-
ability that any unit falls into node 𝑡. Third, the resubstitution estimate of the 
probability that a unit is in class 𝑗 given its existence in node 𝑡 is given by 
𝑝(𝑗|𝑡) = 𝑝(𝑗, 𝑡)/𝑝(𝑡). 

Growing a classification tree entails four components: 

1. Generating a set 𝑄 of binary questions asking whether 𝑥 ∈ 𝐴,where	𝐴 ⊂ 𝑋, 
2. The goodness of a split criterion 𝜙(𝑠, 𝑡), 
3. A stopping rule, 
4. A rule for assigning a class for each terminal node. 

 
The set 𝑄 of binary questions of the form {𝐼𝑠	𝑥 ∈ 𝐴?} creates a set 𝑆 of 𝑠 splits at 
each node of the tree. If the answer is positive in node 𝑡, the unit is assigned to 
left descendant node 𝑡G. In the case of a negative answer the unit goes to the 
right descendant node 𝑡H. Given an impurity function 𝜙, the measure of impu-
rity is defined as 𝑖(𝑡) = 𝜙(𝑝(1|𝑡), … , 𝑝(𝒥|𝑡)). Therefore, the decrease in impurity 
in a split 𝑠 is given by ∆𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑝H𝑖(𝑡H) − 𝑝G𝑖(𝑡G), which is the criterion 
for the goodness of a split. At each node 𝑡, the split 𝑠 is chosen which maxim-
izes a measure of the goodness of a split. Of a few options for the functional 
form of 𝑖(𝑡), the gini index is chosen to be applied in this master’s thesis.33 The 
gini index is given by: 𝑖(𝑡) = 	1 − ∑ 𝑝,(𝑗|𝑡).	𝒥

3N*  
 

                                                
32 Breiman’s (2017) book on classification and regression trees was originally published in 

1984. 
33 Alternative measures of impurity include simple classification error and cross-entropy. 
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The change in overall impurity is denoted by ∆𝐼(𝑠, 𝑡) = ∆𝑖(𝑠, 𝑡)𝑝(𝑡). Now, 
the simplest stopping rule is the following: set a threshold 𝛽, for which it must 
hold that 𝑚𝑎𝑥Q∈R∆𝐼(𝑠, 𝑡) < 𝛽, for the tree to keep growing. When the condition 
doesn’t hold, a terminal node is assigned. The growing continues until there are 
only terminal nodes left. The final tree is denoted by 𝑇 and the terminal nodes 
by TV. Finally, the class assignment rule 𝑗∗(𝑡) assigns a class to each terminal 
node 𝑡 ∈ TV by minimizing the resubstituition estimate of the probability of mis-
classification given that a unit falls into node 𝑡, which is given by ∑ 𝑝(𝑗|𝑡).3X3(Y)  
Including altered misclassification costs for different classes, the class assign-
ment rule 𝑗∗(𝑡) is modified to assigning classes based on minimizing the ex-
pected misclassification cost, given by ∑ 𝑐(𝑖|𝑗)𝑝(𝑗|𝑡),3  where 𝑐(𝑖|𝑗) is the cost of 
misclassifying class 𝑗 as class 𝑖. With the assigned classes, predictions can be 
made for any new observation by predicting the outcome of the assigned class. 

Bagging and Random Forest 

Bagging and random forest (RF) algorithms are based on the idea of aggregat-
ing several CART trees to reduce variance for improved out-of-sample perfor-
mance. The algorithms are constructed similarly despite one difference in strat-
egy when considering predictors for a split, as noted below, and therefore will 
be considered here in tandem.34 Following Hastie et al.’s (2009, p. 588) notation, 
bagging and RF can be summarized for classification as follows: 

1. For 𝑏 = 1 to 𝐵: 

(a) Pull a bootstrap sample 𝒁∗ of size 𝑁 from the training sample. 

(b) Grow a CART tree 𝑇  to 𝒁∗ until the given minimum node size 𝑛`0. is 
attained with the following modifications: 

i. Bagging: consider all predictors from the 𝑝 variables at each 
split. RF: Select 𝑚 variables at random from the 𝑝 variables at 
each split. (Usually 𝑚 = %𝑝.) 

ii. Pick the best predictor and split point among 𝑝 (bagging) or 𝑚 
(RF) and split the node into two child nodes following the 
CART algorithm. 

iii. Continue growing the tree until the stopping rule by CART is 
reached. 

2. Output the ensemble of CART trees {𝑇 }*c. 

3. Prediction at a new point 𝑥 by a majority vote: 

𝐶efg/^hii0.ic (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦	𝑣𝑜𝑡𝑒	{𝐶e^(𝑥)}*c. 
 

                                                
34 For original sources, see, Breiman (1996) for bagging and Breiman (2001) for random for-

est. 
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Gradient Boosting 

Boosting algorithms grow decision trees in sequences, enhancing the learning 
process in areas where it does not perform well. In this master’s thesis, I employ 
a gradient boosting algorithm by Chen and Guestrin (2016) in a classification 
setting, which can be summarized in a generic manner for a binary classifica-
tion problem following Hastie et al.’s (2009, 359–387) notation below. 

For inputs in gradient boosting machines, a prediction rule 𝑓p(𝑥) =
𝑎𝑟𝑔𝑚𝑖𝑛r ∑ 𝐿(𝑦0, 𝛾).

0N*  is set, where 𝐿(𝑦, 𝑓(𝑥)) = −(𝑦0𝑓(𝑥0) − log	(1 +
exp	(𝑓(𝑥0)))) is a binomial loss function and 𝐼 is the event indicator function. 
Therefore, the algorithm is trained and used through the following process. 

1. Initialize 𝑓"(𝑥). 
2. For 𝑚 = 1 to 𝑀: 

(a) Compute elements of the negative gradient  

𝑟0` = − |
𝜕∑ 𝐿~𝑦0, 𝑓(𝑥0)�.

0N*

𝜕𝑓(𝑥0)
�
gNg���

,				𝑖 = 1, 2, … , 𝑛. 

(b) Fit a regression tree to targets 𝑟0`, 𝑖 = 1, 2, … , 𝑛, resulting in terminal 
regions 𝑅3`,				𝑗 = 1, 2, … , 𝐽 . 

(c) Compute updates  
𝑦3�` = 𝑎𝑟𝑔𝑚𝑖𝑛r ∑ 𝐿(𝑦0, 𝑓 �*(𝑥0) + 𝛾)��∈H�� ,				𝑗 = 1,2, … , 𝐽 . 

(d) Update 𝑓 (𝑥) = 𝑓 �*(𝑥) + ∑ 𝛾3`𝐼(𝑥 ∈ 𝑅3`)
��
3N* . 

3. Output 𝑓e(𝑥) = 𝑓p(𝑥). 
4. Prediction in a new point x using 𝑓e(𝑥). 

Single-layered Artificial Neural Network 

Artificial neural networks estimate parameters for complex linear combinations, 
which can be used for prediction. Following Hastie et al.’s (2009, p. 392–397) no-
tation, a single-layered neural network for K-class classification can be pre-
sented as follows. 

With a set of inputs 𝑋 = (𝑋*, … , 𝑋�), derived hidden units 𝑍 = (𝑍*, … , 𝑍p) 
as linear combinations of the input variables and target 𝑌� are further derived as 
a function of linear combinations of the 𝑍` using an activation function 𝜎. The 
output 𝑓�(𝑋), which is used for prediction in the test sample, is determined by 
the softmax function 𝑔�(𝑇) using the vector of derived features 𝑇 = (𝑇*, … , 𝑇�): 

𝑍` = 𝜎(𝛼"` + 𝛼`� 𝑋),				𝑚 = 1,… ,𝑀,    𝜎 = 1/(1 + 𝑒��), 

𝑇� = 𝛽" + 𝛽��𝑍,				𝑘 = 1,… , 𝐾, 

𝑓�(𝑋) = 𝑔�(𝑇) =
𝑒��

∑ 𝑒���
�N*

,				𝑘 = 1,… , 𝐾. 

Estimating the set of parameters 𝜃 for the linear combinations is carried 
out by minimizing cross-entropy given by 𝑅(𝜃) = −∑ ∑ 𝑦0�𝑙𝑜𝑔𝑓�(𝑥0)�

�N*
�
0N*  and 

applying a process called back-propagation to avoid overfitting.
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APPENDIX C – ADDITIONAL RESULTS 
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