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AHLFORS-REGULAR DISTANCES ON THE HEISENBERG
GROUP WITHOUT BILIPSCHITZ PIECES

ENRICO LE DONNE, SEAN LI, AND TAPIO RAJALA

Abstract. We show that the Heisenberg group is not minimal in looking down.
This answers Problem 11.15 in Fractured fractals and broken dreams by David and
Semmes, or equivalently, Question 22 and hence also Question 24 in Thirty-three yes
or no questions about mappings, measures, and metrics by Heinonen and Semmes.

The non-minimality of the Heisenberg group is shown by giving an example of an
Ahlfors 4-regular metric space X having big pieces of itself such that no Lipschitz
map from a subset of X to the Heisenberg group has image with positive measure,
and by providing a Lipschitz map from the Heisenberg group to the space X having
as image the whole X.

As part of proving the above result we define a new distance on the Heisenberg
group that is bounded by the Carnot-Carathéodory distance, that preserves the
Ahlfors-regularity, and such that the Carnot-Carathéodory distance and the new
distance are biLipschitz equivalent on no set of positive measure. This construc-
tion works more generally in any Ahlfors-regular metric space where one can make
suitable shortcuts. Such spaces include for example all snowflaked Ahlfors-regular
metric spaces. With the same techniques we also provide an example of a left-
invariant distance on the Heisenberg group biLipschitz to the Carnot-Carathéodory
distance for which no blow-up admits nontrivial dilations.
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1. Introduction

In [DS97] David and Semmes proposed a concept of BPI (big pieces of itself) spaces
as a notion of rough self-similarity for metric spaces. The definition of a BPI space
requires any two balls of the space to contain big pieces that are biLipschitz equivalent,
see Definition 2.1 for the precise definition. Self-similar fractals and Carnot groups
are easy examples of BPI spaces. David and Semmes also introduced BPI equivalence
and a partial order for BPI spaces called looking down. Both of them will be defined
in Section 2. Two BPI spaces are BPI equivalent if large parts of the two spaces are
biLipschitz equivalent. A BPI metric space X looks down on another BPI metric
space Y if X and Y have same Hausdorff dimension and there is a closed subset
of X that can be mapped to a set of positive measure in Y via a Lipschitz map.
BPI equivalence of spaces X and Y implies that X and Y are look-down equivalent,
meaning that X looks down on Y and Y looks down on X. However, Laakso has
shown that the converse is not true in general [Laa02].

The partial ordering of BPI spaces raises the interesting question of what are the
possible minimal spaces in this ordering. A space X is mimimal in looking down if
every space Y on which X looks down is look-down equivalent to X. For example,
from the result of Kirchheim [Kir94] we know that Euclidean spaces are minimal
in looking down. A quantitative version of Kirchheim’s theorem was later given in
[Sch09] in which it was shown that if a map f : [0, 1]n → X has positive Hausdorff
n-content, then it has a quantitatively large biLipschitz piece.

David and Semmes asked in Problem 11.15 of [DS97] if the Heisenberg group H is
also minimal in looking down, when equipped with sub-Riemannian distances, also
called Carnot-Carathéodory distances. This was also asked as Question 22 of [HS97].
We show that this is not the case.

Theorem 1.1. The subRiemannian Heisenberg group is not minimal in looking down.

This theorem has important implications in the development of a theory of rectifi-
ability based on the Heisenberg group. Recall that a metric measure space (X, d, µ)
is countably n-rectifiable if there exist a countable set of Borel subsets Ai ⊆ Rn and
Lipschitz maps fi : Ai → X such that µ (X\⋃i fi(Ai)) = 0 and µ� Hn where Hn is
the Hausdorff n-measure (we review the definition of Hausdorff measure in the next
section). It was shown in [Kir94] that, by further countably decomposing each fi(Ai)
if necessary, one may assume that each fi is biLipschitz.

One can easily create a definition of being H-rectifiable by letting each Ai be a
Borel subset of the Heisenberg group H and setting n = 4, the Hausdorff dimension
of H. However, we now see that there exists a metric measure space (X, d, µ) with
positive Hausdorff 4-measure that is the Lipschitz image of a subset of H but is not
the countable union of biLipschitz images of subsets of H. Thus, “Lipschitz rectifia-
bility” is strictly weaker than “biLipschitz rectifiability” when using the Heisenberg
geometry.
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Using the self-similarity of the Carnot-Carathéodory distance dcc it is easy to con-
struct BPI spaces that can be realized as subsets of H with self-similar type modifi-
cations of the distance dcc. A critical part in the proof of Theorem 1.1 is to modify
the distance dcc to get a new distance d in such a way that with the dcc distance the
space looks down on the space equipped with the distance d, but not the other way.
Such distance is constructed using a shortening technique that has been also used in
[LD13, LR16] to give examples of distances not satisfying the Besicovitch Covering
Property. The result obtained here with the shortening technique is the following.

Theorem 1.2. Let (H, dcc) be the subRiemannian Heisenberg group. There exists a
distance d on H such that

(1) d ≤ dcc;
(2) (H, d) is Ahlfors 4-regular;
(3) if A ⊆ H is a subset with H4

cc(A) > 0, then d and dcc are not biLipschitz
equivalent on A.

Recall that a metric measure space (X, d, µ) is Ahlfors Q-regular for some Q > 0 if
there exists some C ≥ 1 so that

1

C
rQ ≤ µ(Bd(x, r)) ≤ CrQ, ∀x ∈ X, ∀ r ∈ (0, diamd(X)).

It is easy to see that if (X, d, µ) is Ahlfors Q-regular, then so is (X, d,HQ
d ) and so we

can just talk about Ahlfors Q-regular metric spaces.

Thus, we construct an Ahlfors 4-regular metric space X onto which (H, dcc) Lip-
schitz surjects, but for which this surjection has no biLipschitz pieces. Theorem 1.2
answers Question 24 of [HS97] negatively (although the same negative answer is pro-
vided by the negative answer to Question 22 given by Theorem 1.1).

It should be noted that this behaviour changes when one requires that the target X
is another Carnot group. Indeed, one can then use a similar argument as in [Kir94],
with inspiration from [Pau04], to show that Lipschitz maps from the Heisenberg group
to another Carnot group with positive 4-measure image have biLipschitz pieces. This
statement can also be made quantitative as was done in [Mey13, Li15].

Another situation where Lipschitz maps have biLipschitz pieces is when the spaces
are Ahlfors regular, linearly locally contractible topological manifolds and the target
has manifold weak tangents, see the work of G.C. David [Dav15] (this David is not
the same David of David-Semmes). We note that in Theorem 1.2 the constructed
space (H, d) neither has manifold tangents nor is linearly locally contractible.

The construction of the distance d in Theorem 1.2 relies on the fact that in the
Heisenberg group we can shorten the distance between two points that differ only in
the vertical component without affecting the distances far away from the two points.
By taking this property as an assumption we obtain a more general result.

Theorem 1.3. Let (X, ρ) be a metric space and Q > 0. Assume
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(1) (X, ρ) is Ahlfors Q-regular;
(2) there exists λ ∈ (0, 1) such that for all p ∈ X and all 0 < r < diamρ(X) there

exist q1, q2 ∈ Bρ(p, r) such that

ρ(q1, q2) ≥ λr

and

ρ(p1, p2) ≤ ρ(p1, q1) + ρ(p2, q2), ∀p1, p2 /∈ Bρ(p, r). (1.1)

Then there exists a distance d on X such that

(1) d ≤ ρ;
(2) (X, d) is Ahlfors Q-regular;
(3) if A ⊆ X is a subset with HQ

ρ (A) > 0, then d and ρ are not biLipschitz
equivalent on A.

We will first prove Theorem 1.3 in Section 3. After having proven Theorem 1.3,
the proof of Theorem 1.2 follows by showing that there is a metric on H, biLipschitz
equivalent to the Carnot-Carathéodory metric, that satisfies (1.1). This will be done
in Section 4. Theorem 1.1 will then be proven in Section 5. Other examples of
spaces satisfying the condition in Theorem 1.3 are snowflakes of Ahlfors-regular metric
spaces, e.g., the real line equipped with the square root of the Euclidean distance, see
Theorem 4.1.

David and Semmes also asked in Problem 11.17 of [DS97] for which s1, . . . , sn ∈
(0, 1] the space (

Rn,
n∑
i=1

|xi − yi|si
)

is minimal in looking down. Based on our results we can deduce that if s1 = · · · =
sn 6= 1, then, since the space is a snowflake of Euclidean space, it is not minimal in
looking down. We would conjecture that such coordinate-wise snowflakes are minimal
in looking down if and only if si = 1 for all i. We shall not further investigate this
problem in this paper.

In the second part of the paper we consider distances on H that have extra homo-
geneity structure. For example, we assume that left translations are biLipschitz. We
show that with the assumptions of Theorem 1.2 such distances are locally biLipschitz
equivalent to the distance dcc.

Theorem 1.4. Let d be a distance on the Heisenberg group H such that d ≤ dcc and
H4
d(Bcc(0, 1)) > 0. Assume that the left translations in H are biLipschitz with respect

to d. Then d and dcc are biLipschitz equivalent on compact sets.

We remark that the assumptions in Theorem 1.4 are necessary. Indeed, if we don’t
assume d ≤ dcc, then as a counterexample one can take two sub-Riemannian distances
on H that have two different horizontal bundles. If we don’t assumeH4

d(Bcc(0, 1)) > 0,
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then a counterexample is given by every Riemannian left-invariant distance. More-
over, the distance min{1, dcc} shows that the conclusion of the theorem may not be
global.

Theorems 1.1, 1.2, and 1.4 are stated for the sub-Riemannian distance dcc. However,
it follows immediately that proving these theorems for a distance that is biLipschitz
equivalent to dcc will also prove the theorems for dcc. Thus, we will actually prove
these statements for a different distance db, which is biLipschitz equivalent to dcc,
that we define at (2.3).

We conclude the paper by showing that for distances that are biLipschitz equivalent
to dcc the metric differentiation does not hold in general. Kirchheim’s result in [Kir94]
can be stated as the fact that every semi-distance d in Rn that is smaller than the
Euclidean distance is metrically differentiable, i.e., at almost every point its blow-
up is a homogeneous semi-distance. Similarly, by [Pau01], we know that on Carnot
groups semi-distances smaller than dcc are metrically differentiable but only in the
horizontal directions. Regarding non-horizontal directions, from [KM03] we know
that there is a distance in the Heisenberg group that is a counterexample to metric
differentiability, although it is not biLipschitz to dcc. As the last result of this paper
we give in Section 6.2 another pair of counterexamples to metric differentiability that
are biLipschitz equivalent to dcc and whose blow-ups even fail self-similarity, which is
a weaker property than homogeneity. If {δλ}λ>0 denotes the standard one-parameter
family of isomorphisms of H, see Section 2.1, a (semi-)distance d is self-similar if
there exists some λ > 1 for which d(δλ(p), δλ(q)) = λd(p, q), for all p, q ∈ H. In the
following result, by a blow-up of a distance d we mean any point-wise limit of the
functions

(p1, p2) 7→
1

λj
d(qjδλj(p1), qjδλj(p2)),

as λj → 0 and qj ∈ H.

Theorem 1.5 (Failure of Kirchheim-metric differentiation for biLipschitz maps).
There exist two distances d1, d2 on H that are biLipschitz equivalent to dcc such that

(1) The distance d1 is left-invariant, but no blow-up of d1 is self-similar.
(2) No blow-up of d2 is left-invariant nor self-similar.

Both Theorem 1.4 and Theorem 1.5 are proved in Section 6.

2. Preliminaries

We begin by recalling the definition of Hausdorff measures on a metric space (X, d).
Let Q > 0. Then for A ⊆ X, one defines

HQ
d (A) := lim

s→0+
inf

{ ∞∑
i=1

(diamdEi)
Q : A ⊆

⋃
i

Ei an open cover, diamd(Ei) < s

}
.
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We say that HQ is the Hausdorff Q-measure of (X, d). It is known that the Hausdorff
Q-measure is Borel regular although it may not be locally finite. We shall denote
the open ball in the metric space (X, d) by Bd(x, r) := {y ∈ X : d(y, x) < r} and
more generally, the open r-neighbourhood of a set A ⊂ X by Bd(A, r) := {y ∈ X :
distd(A, y) < r}.

A biLipschitz map f between metric spaces (X, d) and (X ′, d′) is said to be C-
conformally biLipschitz with scale factor λ > 0 if f is C-biLipschitz between the
metric spaces (X,λd) and (X ′, d′). Another term, coming from Banach space theory,
for the same notion is quasi-similarity.

Definition 2.1 (BPI space). An Ahlfors Q-regular metric space (X, d) is said to be
a BPI (“big pieces of itself”) space if there exist constants C ≥ 1 and θ > 0 such
that for all x1, x2 ∈ X and 0 < r1, r2 < diamd(X) there is a closed set A ⊆ Bd(x1, r1)

with HQ
d (A) ≥ θrQ1 and if there is a C-conformally biLipschitz embedding f : A →

Bd(x2, r2) with scale factor r2/r1.

Definition 2.2 (BPI equivalence). Two BPI spaces (X, d) and (X ′, d′) of the same
dimension Q are called BPI equivalent if there exist constants θ > 0 and C > 0 such
that for each x ∈ X, x′ ∈ X ′ and radii 0 < R < diamd(X), 0 < R′ < diamd′(X

′)

there exist a subset A ⊂ Bd(x,R) ⊂ X with HQ
d (A) ≥ θRQ and a C-conformally

biLipschitz embedding f : A→ Bd′(x
′, R′) with scale factor R′/R.

Definition 2.3 (Looking down). Let (X, d) and (X ′, d′) be BPI metric spaces of
Hausdorff dimension Q. The space (X, d) is said to look down on (X ′, d′) if there
is a closed set A ⊂ X and a Lipschitz map f : A → X ′ such that f(A) has positive
Hausdorff Q-measure. If also X ′ looks down on X, then X and X ′ are called look-down
equivalent.

2.1. The Heisenberg group and its distances. The Heisenberg group H is the
simply connected Lie group whose Lie algebra is generated by three vectors X, Y, Z
with only non-zero relation [X, Y ] = Z. Via exponential coordinates it can be iden-
tified as the manifold R3 equipped with Lie multiplication:

p · q =

Ç
xp + xq, yp + yq, zp + zq +

1

2
(xpyq − ypxq)

å
.

It follows easily from the definition that the origin (0, 0, 0) ∈ H is the identity element
and that the center of the group is

Z(H) = {(0, 0, z) : z ∈ R}.
For each λ > 0, the Heisenberg group has an automorphism defined as

δλ(x, y, z) := (λx, λy, λ2z). (2.1)

A left-invariant (semi-)distance d is homogeneous, with respect to (2.1), if for all λ > 0

d(δλ(p), δλ(q)) = λd(p, q), ∀p, q ∈ H. (2.2)
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Our main example of homogeneous distance is the following. We introduce the box
norm

‖p‖ := max
{
|xp|, |yp|,

»
|zp|

}
.

We define the box distance as

db(p, q) :=
∥∥∥p−1q∥∥∥ .

Clearly, db is left-invariant and it satisfies (2.2). To check that it satisfies the triangle
inequality we need to show that

‖p · q‖ ≤ ‖p‖+ ‖q‖ .
First,

|xp·q| = |xp + xq| ≤ |xp|+ |xq| ≤ ‖p‖+ ‖q‖ ,
and analogously for the y component. Second,»

|zp·q| =

 ∣∣∣∣zp + zq +
1

2
(xpyq − xqyp)

∣∣∣∣
≤
»
|zp|+ |zq|+ |xp||yq|+ |xq||yp|

≤
√
‖p‖2 + ‖q‖2 + 2 ‖p‖ ‖q‖

≤ ‖p‖+ ‖q‖ .
Explicitly, the box distance is

db(p1, p2) = max

{
|x1 − x2|, |y1 − y2|,

 ∣∣∣∣z1 − z2 − 1

2
(x1y2 − x2y1)

∣∣∣∣
}
. (2.3)

One can easily show that db and dcc are biLipschitz equivalent using the fact that
both distances are homogeneous and left-invariant.

Let π : (H, db) → (R2, | · |∞) be the projection onto the xy-plane. One easily sees
that this is a 1-Lipschitz homomorphism.

Given a homomorphism L : H→ H, one can define the Jacobian to be

J(L) =
H4
db

(L(Bdb(0, 1)))

H4
db

(Bdb(0, 1))
.

Let f : (H, db) → (H, db) be a Lipschitz map. Pansu proved in [Pan89] that for
almost every x ∈ H there exists a Lipschitz homomorphism Df(x) : H → H (the
Pansu-derivative of f at x) so that

Df(x)(g) = lim
λ→0

δ1/λ(f(x)−1f(xδλ(g))).

This result was extended to Lipschitz maps whose domains are measurable subsets
A ⊆ H by Magnani in [Mag01]. Magnani also used the Pansu-derivative in conjunc-
tion with the Jacobian to get the following area formula:∫

H
N(f, A, y)dH4

db
(y) =

∫
A
J(Df(x)) dH4

db
(x). (2.4)
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Here, N(f, A, y) is the multiplicity of f with respect to the set A.

2.2. Shortening distances. Given a metric space (X, ρ), a symmetric function c :
X ×X → [0,∞) such that c ≤ ρ will be called a cost function. We denote by S all
those pairs of points (x, y) ∈ X ×X such that c(x, y) < ρ(x, y)

S := {(x, y) ∈ X ×X : c(x, y) < ρ(x, y)}.

An element in S will be called shortcut (or flight or tunnel). If we have N ∈ N and
x0, x1, . . . , xN ∈ X then the N -tuple x = (x0, x1, . . . , xN) will be called an itinerary
from the extreme points x0 to xN and we set Ext(x) := (x0, xN) and `(x) := N . We
will denote by I the collection of all itineraries in X, i.e.,

I := {(x0, x1, . . . , xN) : N ∈ N, xj ∈ X}.

The cost of an itinerary x = (x0, x1, . . . , xN) ∈ I is

c(x) :=
N∑
i=1

c(xi−1, xi).

The distance d associated to the cost function c is defined as

d(x, y) := inf{c(x) : x ∈ I, Ext(x) = (x, y)}. (2.5)

Remark 2.4. It is not too hard to verify symmetry and the triangle inequality for d
and so d is a semi-distance on X. If there is another distance d′ on X such that

d′(x, y) ≤ c(x, y), ∀x, y ∈ X,

then by the triangle inequality for d′, we also have that

d′(x, y) ≤ d(x, y), ∀x, y ∈ X,

and so d is then a distance.

We shall assign to each shortcut a natural number that we call level of the shortcut.
Namely, a function L : S → N will be called a level function. Larger levels will usually
indicate shortcuts over smaller distances.

3. Breaking biLipschitz equivalence using shortcuts

In this section we prove Theorem 1.3. Let (X, ρ) and λ be as in the assumptions
of Theorem 1.3.
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3.1. Constructing the shortcuts. Let (αn)∞n=1 be a non-increasing sequence of real
numbers in [0, 1). The number αn will be the ratio of the cost of the level n shortcut
compared to the original distance of the shortcut.

Let us define the shortcuts one level at a time. We define inductively the level n
shortcuts Sn ⊂ X ×X, for n ∈ N as follows. We set cE ≥ 8 to be a constant that we
now fix. Inductively, let Nn := {xi} to be a set of points in

X \
n−1⋃
j=1

⋃
(x,y)∈Sj

Bρ({x, y}, 4λn) (3.1)

such that ρ(xi, xj) ≥ 4λn and X ⊆ ⋃
iBρ(xi, cEλ

n). For n = 1, the condition (3.1)
becomes vacuous as there is no S0, hence N1 is just a 4λ- separated set that is also a
cEλ-net for X. Necessarily, we shall need that cE ≥ 4 and in general more restrictions
of cE are necessary to ensure existence of such an Nn. We show later in Lemma 3.2
that there is always a choice of the constants λ and cE for which the set Nn exists.

Using assumption (2) of Theorem 1.3 we select for each i points qi,1, qi,2 ∈ Bρ(xi, λ
n)

such that

ρ(qi,1, qi,2) ≥ λn+1

and

ρ(p1, p2) ≤ ρ(p1, qi,1) + ρ(p2, qi,2) for all p1, p2 /∈ Bρ(xi, λ
n). (3.2)

Now define the level n shortcuts as

Sn := {(qi,1, qi,2) : i} ∪ {(qi,2, qi,1) : i},

their corresponding costs as

c(qi,1, qi,2) := c(qi,2, qi,1) := αnρ(qi,1, qi,2)

and their level as

L(qi,1, qi,2) := L(qi,2, qi,1) := n.

Finally, let

S :=
∞⋃
n=1

Sn.

We also set defined c(x, y) = ρ(x, y) for pairs (x, y) /∈ S. Finally, we define d as in
(2.5).

Remark 3.1. The construction gives us uniqueness of shortcuts. That is, if (x, y) ∈ S,
then (x, z) /∈ S for all z 6= y. This follows easily from (3.1).

We now prove the existence of the sets Nn for certain choices of λ and cE.

Lemma 3.2. There exists some λ0 ∈ (0, 1/4) depending only on the Ahlfors regularity
of (X, ρ) such that if we set λ ≤ λ0 and cE = 8 + 1

λ
, then we can always find Nn.
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Proof. Let µ be a measure on (X, ρ) so that (X, ρ, µ) is Ahlfors regular (one could
use µ = HQ

ρ for instance). We may suppose by taking λ small enough (as we are free
to do) and using Ahlfors regularity of (X, ρ, µ) that

µ(Bρ(x, r/4))−µ(Bρ(y, λr))−µ(Bρ(z, λr)) > 0, ∀x, y, z ∈ X, 0 < r < diamρ(X).
(3.3)

Let A =
⋃
j<n

⋃
(x,y)∈Sj{x, y}. By the definition of A, each x ∈ A comes with a pair

x′ ∈ A such that (x, x′) ∈ Sl for some l < n. We claim that

ρ(x, y) ≥ 2λn−1, ∀y ∈ A \ {x, x′}. (3.4)

To see this, taking y ∈ A \ {x, x′}, there exists y′ ∈ A such that (y, y′) ∈ Sk for
some k < n. Let xli ∈ Nl such that x, x′ ∈ Bρ(x

l
i, λ

l) and xkj ∈ Nk such that

y, y′ ∈ Bρ(x
k
j , λ

k). We consider two cases. Suppose first that k = l. By the 4λk

separation of Nk we then have

ρ(x, y) ≥ ρ(xli, x
k
j )− ρ(x, xli)− ρ(y, xkj ) ≥ 4λk − λk − λk = 2λk ≥ 2λn−1.

Suppose now that k 6= l. By symmetry we may assume k < l. Then by construction,
xli /∈ Bρ(y, 4λ

l) and thus

ρ(x, y) ≥ ρ(xli, y)− ρ(x, xli) ≥ 4λl − λl = 3λl ≥ 2λn−1.

Thus (3.4) is proven.

Let {xi} be a maximal 4λn-separated net of X \ Bρ(A, 4λ
n). Let x ∈ X. Suppose

there exists y ∈ A such that ρ(x, y) < 4λn. As λ < 1/4, we get by (3.4) that the
number of balls {Bρ(p, 4λ

n)}p∈A that intersect Bρ(y, λ
n−1) is at most 2. This, together

with (3.3), gives that
Bρ(y, λ

n−1) \Bρ(A, 4λ
n) 6= ∅.

Thus, there exists some z ∈ Bρ(y, λ
n−1)\Bρ(A, 4λ

n). As {xi} is also a 4λn covering of
X \Bρ(A, 4λ

n), we get that there exists some xi such that ρ(z, xi) < 4λn. Altogether,
we get that

ρ(x, xi) ≤ ρ(x, y) + ρ(y, z) + ρ(z, xi) < 4λn + λn−1 + 4λn =

Ç
8 +

1

λ

å
λn.

In the case when x /∈ Bρ(A, 4λ
n), we are also done as the set {xi} is a 4λn-cover of

X \Bρ(A, 4λ
n). �

3.2. Properties of the new semi-distance. In this section we point out some
properties of the semi-distance d, for example, the fact that it is a distance when αn
are positive. We define the subset of alternating itineraries

IA := {(x0, . . . , xN) ∈ I : N odd, (xj−1, xj) ∈ S ⇐⇒ j even}.
Colloquially speaking, for each of these alternating itineraries, one walks at every odd
step and flies at every even step. Note that we allow for the stationary walks, i.e., the
itinerary can have xj−1 = xj, for some j odd. Hence, every itinerary can be modified
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to be an alternating itinerary with no increase in cost by merging consecutive walks
and adding a stationary walk between consecutive shortcuts. Note then that xi lies
in some shortcut if 1 < i < N .

We also define the subset of non-self-intersecting itineraries

I ′A := {(x0, . . . , xN) ∈ IA : xi 6= xj for all i 6= j

except possibly (i, j) ∈ {(0, 1), (N − 1, N)}}.

Thus, elements in I ′A are alternating itineraries that do not revisit a site in X.
However, being alternating they are of the form no shortcut, shortcut, no shortcut,
shortcut, etc etc. Hence, we need to allow the first (and last) jump to be possibly
trivial, if we need to start (or end) with a shortcut.

Our first result is that there is a subitinerary of any alternating itinerary that is
itself alternating and non-self-intersecting.

Lemma 3.3. For all x ∈ IA, there exist x′ ∈ I ′A so that Ext(x) = Ext(x′) and
c(x′) ≤ c(x).

Proof. We will prove that if x ∈ IA is self-intersecting, then there exists a strictly
shorter itinerary y ∈ IA with Ext(y) = Ext(x) and c(y) ≤ c(x). By iterating this
procedure, we get the lemma.

Suppose first that there exist 1 ≤ i < j ≤ N − 1 so that xi = xj. There are a few
cases to check. If i and j are both even, then we can remove (xi, xi+1, ..., xj−1) from
the itinerary to get y. If i and j are both odd, we remove (xi+1, ..., xj).

If i is odd and j is even, then j ≥ i + 3. If (xi−1, xj+1) /∈ S, then we remove
(xi, xi+1, ..., xj) from the itinerary and are done. If (xi−1, xj+1) ∈ S, then we replace
(xi, ..., xj) in the itinerary with (xi−1, xj+1) and are done as j ≥ i + 3. If i is even
and j is odd, both (xi−1, xi) and (xj, xj+1) are shortcuts. Hence, xi = xj implies
that (xi, xi+1) ∈ S, whence xi−1 = xj+1 by uniqueness of shortcuts (see Remark 3.1).
Then, note that i− 1 is odd and j + 1 is even, so we are back in the previous case.

Now suppose there exists 1 < i ≤ N so that x0 = xi. In the case i is odd, then
we can consider the itinerary (x0, xi, xi+1, . . . , xN), which is alternating and has no
greater cost. We then consider the case i even, so that (xi−1, xi) ∈ S. We then we
can consider the itinerary (x0, xi+1, . . . , xN), which is alternating and has no greater
cost.

The case when there exist 1 ≤ i < N so that xi = xN is similar. �

We can define the level function of an alternating itinerary x = (x0, . . . , xN) ∈ IA
as the function

Lx : {1, . . . , bN/2c} → N
k 7→ L(x2k−1, x2k).
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We say that a function f : {1, . . . , n} → R is decreasing-increasing if there is some
k ∈ {1, . . . , n} for which f |[1,k] is decreasing and f |[k+1,n] is increasing (both not
necessarily strictly monotonically). We can then define a further subset of itineraries
with decreasing-increasing level functions:

I∗ := {x ∈ I ′A : Lx is decreasing-increasing}.

We first show that, if the level function on a non-self-intersecting alternating itinerary
is not decreasing-increasing, then there exists a shorter (non-self-intersecting) alter-
nating itinerary with the same endpoints of no greater cost.

Lemma 3.4. Suppose x = (x0, . . . , xN) ∈ I ′A and there exists j ∈ 2N− 1 such that

L(xj+2, xj+3) ≥ max(L(xj, xj+1), L(xj+4, xj+5)).

Then the itinerary x′ = (x′0, . . . , x
′
N−2) ∈ I ′A where

x′k =

xk k ∈ {0, . . . , j + 1},
xk+2 k ∈ {j + 2, . . . , N − 2},

satisfies Ext(x) = Ext(x′) and c(x′) ≤ c(x).

Proof. That Ext(x) = Ext(x′) is obvious from construction. Consider the subitinerary
y = (xj+1, xj+2, xj+3, xj+4). Suppose first that (xj+1, xj+4) ∈ S. Consequently, since
(xj+4, xj+5) ∈ S and since shortcuts are unique (see Remark 3.1), we must have that
xj+5 = xj+1, which contradicts the hypothesis that x is non-self-intersecting.

Thus, we may suppose that (x′j+1, x
′
j+2) = (xj+1, xj+4) /∈ S and so x′ ∈ I ′A. We

claim that c(xj+1, xj+4) ≤ c(y), which proves the lemma. Let x ∈ Nn be the point
for which the shortcut (xj+2, xj+3) was found in Bρ(x, λ

n). Then n = L(xj+2, xj+3).

We claim that xj+1, xj+4 /∈ Bρ(x, λ
n). By symmetry we only need to show that

xj+1, /∈ Bρ(x, λ
n). By assumption, we have L(xj, xj+1) ≤ n. So first suppose

L(xj, xj+1) < n. Then x was found in the complement of

Bρ(xj, 2λ
n) ∪Bρ(xj+1, 2λ

n),

which implies xj+1, /∈ Bρ(x, λ
n). If instead L(xj, xj+1) = n, then let y ∈ Nn be the

point for which the shortcut (xj, xj+1) was found in Bρ(y, λ
n). We may assume that

x 6= y, as otherwise {xj, xj+1} = {xj+2, xj+3}, which contradicts x being non-self-
intersecting. Hence, we have that ρ(x, y) ≥ 4λn and so

Bρ(x, λ
n) ∩Bρ(y, λ

n) = ∅.
As xj+1 ∈ Bρ(y, λ

n), we get that xj+1 /∈ Bρ(x, λ
n).

The conclusion follows from (3.2) if we set xi = x, qi,1 = xj+2, qi,2 = xj+3, p1 = xj+1,
and p2 = xj+4. Indeed, we have

c(xj+1, xj+4) = ρ(xj+1, xj+4)
(3.2)

≤ ρ(xj+1, xj+2) + ρ(xj+3, xj+4) ≤ c(y),
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where we used that (xj+1, xj+4) /∈ S. �

Lemma 3.5. For any x = (x0, . . . , xN) ∈ IA, there exists x′ ∈ I∗ such that Ext(x) =
Ext(x′), c(x′) ≤ c(x), and

#L−1x′ (k) ≤ 2, ∀k ∈ N. (3.5)

Moreover, if x ∈ I ′A, then x and x′ have the same first and last shortcuts.

Proof. Given an initial x ∈ IA, we may suppose it is in I ′A by Lemma 3.3. We then
iterate Lemma 3.4 until we get an itinerary x′ = (x0, . . . , xN) for which there are no
indices that satisfy the hypothesis of Lemma 3.4. As the length of the itinerary shrinks
by 2 with each application of Lemma 3.4, we get that we have to stop after some finite
number of iterations. It is elementary to see that if Lx′ : {1, . . . , bN/2c} → N satisfies

Lx′(i+ 1) < max(Lx′(i), Lx′(i+ 2)), ∀i ∈ {1, . . . , bN/2c − 2},
then Lx′ is decreasing-increasing, which means that x′ ∈ I∗.

Now suppose #L−1x′ (k) ≥ 3 for some k ∈ N. Hence, there are 3 jumps of level k.
Since x′ is decreasing-increasing, two of these jumps are consecutive. By symmetry
we assume that the third jump is later. Namely, we have that there exists some
i, j ∈ 2N so that j + 2 < i and

L(xj, xj+1) = L(xj+2, xj+3) = L(xi, xi+1) = k.

Notice that since x′ is decreasing-increasing, then L(xj+4, xj+5) ≤ k. Therefore, the
index j satisfy the hypothesis of Lemma 3.4. But this contradicts the assumption on
x′.

Finally, if we originally already had x ∈ I ′A, we only repeatedly applied Lemma 3.4.
Then, since each application of Lemma 3.4 keeps the first and last shortcut of x
unchanged the resulting itinerary x′ has the same first and last shortcut as x. �

Proposition 3.6. Suppose αn > 0 for all n ∈ N. Then the function d is a distance
on X.

Proof. The validity of the triangle inequality follows from the definition of the distance
as defined in (2.5). Symmetry is due to the symmetry of the cost function. What
needs to be checked is that x 6= y implies d(x, y) > 0. In order to show this, suppose
that x, y ∈ X with ρ(x, y) > 0. Let n ∈ N be such that

4
λn

1− λ
≤ 1

2
ρ(x, y).

Let (αn) be the sequence of positive numbers used to construct the cost function in
Section 3.1. Consider the positive number

ε := min

Ç
1

2
min

k∈[1,n−1]
αkλ

k+1,
1

4
ρ(x, y)

å
.
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Let x = (x0, . . . , xN) ∈ I∗ with Ext(x) = (x, y), c(x) ≤ d(x, y) + ε, and #L−1x (k) ≤ 2
for all k ∈ N, which exists by Lemma 3.5 (remember that using stationary walks every
itinerary can be modified to be an alternating itinerary of no greater cost, because of
triangle inequality).

On the one hand, if L−1x ([1, n−1]) = ∅, then the alternating itinerary does not have
shortcuts at odd steps and it has them at even steps only of level greater that n and
with multiplicity at most 2. Hence, we get

d(x, y) ≥ c(x)− ε ≥
∑
j odd

ρ(xj−1, xj)− ε ≥ ρ(x, y)−
∑
j even

ρ(xj−1, xj)−
1

4
ρ(x, y)

≥ 3

4
ρ(x, y)− 2

∞∑
k=n

2λk ≥ 3

4
ρ(x, y)− 4

λn

1− λ
≥ 1

4
ρ(x, y) > 0,

where we used that a point in a shortcuts at level k has ρ-distance less than λk

from the center of the ball in which the shortcut was found. On the other hand, if
L−1x ([1, n− 1]) 6= ∅, then, if (x`−1, x`) is a shortcut at level l < n of x, we have

d(x, y) ≥ c(x)− ε ≥ c(x`−1, x`)−
1

2
min

k∈[1,n−1]
αkλ

k+1 ≥ 1

2
min

k∈[1,n−1]
αkλ

k+1 > 0,

where we used that c(x`−1, x`) = αlρ(x`−1, x`) ≥ αlλ
l. In both cases d(x, y) > 0 as

needed. �

Lemma 3.7. Let x ∈ X and 0 < r < λn with n ∈ N. There exists at most one pair
{q1, q2} such that (q1, q2) ∈ S, L(q1, q2) < n and {q1, q2} ∩Bd(x, r) 6= ∅.

Proof. Suppose to the contrary that there exist two disjoint (q1, q2), (q̃1, q̃2) ∈ S with

L(q1, q2), L(q̃1, q̃2) < n (3.6)

and q1, q̃1 ∈ Bd(x, r). Then

d(q1, q̃1) ≤ d(q1, x) + d(x, q̃1) < 2r ≤ 2λn.

Let x = (x0, . . . , xN) ∈ I∗ with x0 = q1, xN = q̃1 and

c(x) < 2λn. (3.7)

We now consider a possibly slightly longer itinerary y by attaching the shortcuts
(q1, q2) and (q̃1, q̃2) to x if they were not used in x. In other words, in two steps

ỹ = (ỹ0, . . . , ỹÑ) =

x, if (x1, x2) = (q1, q2)

(q2, q2, q1, x1, . . . , xN), otherwise

and

y =

ỹ, if (xN−2, xN−1) = (q̃2, q̃1)

(ỹ0, . . . , ỹÑ−1, q̃1, q̃2, q̃2), otherwise.
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By construction y ∈ I ′A. Therefore by applying Lemma 3.5 to y we know that there
exists y′ ∈ I∗ such that c(y′) ≤ c(y), where Ext(y′) = Ext(y) and the first and last
shortcuts of y′ and y are the same. We conclude that the itinerary x may be replaced
with no extra cost by an itinerary x′= (x′0, . . . , x

′
N ′) that is decreasing-increasing,

starts at q1 and ends at q̃1 and that, due to (3.6), we have L−1x′ ([n,∞]) = ∅.
We remark that the itinerary x′ cannot have only stationary walks. Indeed, oth-

erwise the itinerary cannot move away from {q1, q2}, since distinct shortcuts are
separated. Let j ∈ 2Z be the smallest even integer so that x′j 6= x′j+1.

Now there exist points z1, z2 ∈ {q2, q̃2, x′2, x′3, . . . , x′N ′−2} such that (x′j, z1), (x
′
j+1, z2) ∈

S and k1, k2 < n, where k1 := L(x′j, z1) and k2 := L(x′j+1, z2).

Let a, b be the centers of the balls in which the shortcuts (x′j, z1), (x′j+1, z2) were

found with radii λk1 and λk2 , respectively. Let us distinguish two cases. Assume first
that k1 = k2 =: k, so that a and b are 4λk separated. Hence, we have

ρ(x′j, x
′
j+1) ≥ ρ(a, b)− ρ(a, x′j)− ρ(b, x′j+1) ≥ 4λk − λk − λk ≥ 2λk ≥ 2λn.

Suppose now k1 6= k2, say that k1 < k2, the other case is similar. Recall that b was
found outside B(x′j, 4λ

k2) in the construction of the shortcuts. Hence, we have

ρ(x′j, x
′
j+1) ≥ ρ(b, x′j)− ρ(b, x′j+1) ≥ 4λk2 − λk2 ≥ 3λk2 ≥ 3λn.

In either case we have

c(x) ≥ c(x′) ≥ ρ(x′j, x
′
j+1) ≥ 2λn,

which is in contradiction with (3.7). �

The next lemma will be used for the proof of the Ahlfors Q-regularity in the next
section.

Lemma 3.8. For all x ∈ X and r > 0 there exist y1, y2 ∈ X such that

Bρ(x, r) ⊆ Bd(x, r) ⊆ Bρ

Ä
{y1, y2},

Ä
2 + 8/(λ− λ2)

ä
r
ä
. (3.8)

Proof. The first inclusion Bρ(x, r) ⊆ Bd(x, r) follows from the fact that by construc-
tion d ≤ ρ.

Let us show the second inclusion. Suppose first that r ≥ 1. Let z ∈ Bd(x, r). By
Lemma 3.5 there exists x = (x0, . . . , xN) ∈ I∗ with Ext(x) = (x, z), c(x) ≤ r, and
#L−1x (k)≤ 2 for all k ∈ N. Then

ρ(x, z) ≤
N∑
j=1

ρ(xj−1, xj) ≤
∑
j odd

ρ(xj−1, xj) +
∑
j even

ρ(xj−1, xj)

≤ c(x) + 4
∞∑
k=1

λk ≤ r + 4
λ

1− λ
≤
Ç

2 + 4
λ−1

1− λ

å
r,

since λ < 1≤r, and hence (3.8) holds with y1 = y2 = x.
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Now suppose that r < 1 and let n ∈ N ∪ {0} be such that

λn+1 ≤ r < λn.

By Lemma 3.7 there exists at most one pair {y1, y2} such that (y1, y2) ∈ S and

L(y1, y2) < n and Bd(x, r) ∩ {y1, y2} 6= ∅. (3.9)

If such pair {y1, y2} does not exist, we define y1 = y2 = x. Take z ∈ Bd(x, r). By
Lemma 3.5 there exists x = (x0, . . . , xN) ∈ I∗ with Ext(x) = (x, z), c(x) < r, and
#L−1x (k)≤ 2 for all k ∈ N. Note that as c(x) < r, we get that xi ∈ Bd(x, r) for all i.

Suppose first that x does not contain the shortcut (y1, y2). Then as xi ∈ Bd(x, r),
all the levels of x are at least n and so we have

ρ(x, z) ≤
N∑
j=1

ρ(xj−1, xj) ≤
∑
j odd

ρ(xj−1, xj) +
∑
j even

ρ(xj−1, xj)

≤ c(x) + 4
∞∑
k=n

λk < r + 4
λn

1− λ
≤
Ç

1 +
4

λ− λ2

å
r,

since λn+1 ≤ r. Now suppose by symmetry that d(y1, x) ≤ d(y2, x). Then there exists
an itinerary y ∈ I∗ with Ext(y) = (x, y1), c(y) < r, #L−1y (k)≤ 2 for all k ∈ N. By
changing y1 to y2 if necessary, we may assume that y does not contain the shortcut
(y1, y2). Then a similar analysis gives that

ρ(x, y1) <

Ç
1 +

4

λ− λ2

å
r,

and so

ρ(z, y1) < 2

Ç
1 +

4

λ− λ2

å
r.

Thus, (3.8) holds.

Now suppose x contains the shortcut (y1, y2) at xi−1, xi for i even. Then the
itinerary x′ = (xi, xi, xi+1, ..., xN) is in I∗. As xj ∈ Bd(x, r) for all j and x is non-
self-intersecting, we have by (3.9) that the levels of all the shortcuts of x′ are at least
n. Now by a similar analysis as above, we get

distρ({y1, y2}, z) ≤ ρ(xi, z) <

Ç
1 +

4

λ− λ2

å
r. �

3.3. Ahlfors Q-regularity of (X, d). Recall that the function d is a distance if in
the constructions we took αn > 0, see Proposition 3.6. In Theorem 1.3 d is required
to be a genuine distance, and in the proof of the theorem we can choose for example
αn = 1/n. However, in the proof of Theorem 1.1 in order to prove that (X, d) is a BPI
space we need all the αn to be comparable. Combining this with the requirement that
αn → 0 as n→∞, we are forced to define αn = 0. Hence, in general, the function d
is a semi-distance, thus we consider the quotient space, which we denote by (X̄, d̄).
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We now give the proof of the Ahlfors Q-regularity of the space (X, d), assuming
that (X, ρ) is Ahlfors Q-regular.

Notice that the projection map (X, ρ) → (X̄, d̄) is 1-Lipschitz. Thus we can push
forward the measure HQ

ρ , which is then a Borel regular measure on (X̄, d̄). In what

follows, we shall not make distinction between (X, d) and (X̄, d̄), nor between HQ
ρ

and its push forward measure, since all our arguments are set-wise.

Assuming that (X, ρ) is Ahlfors Q-regular, there exists a constant C < ∞ such
that

1

C
rQ ≤ HQ

ρ (Bρ(x, r)) ≤ CrQ,

for all x ∈ X and 0 < r < diamρ(X). Hence by Lemma 3.8 we have

1

C
rQ ≤ HQ

ρ (Bd(x, r)) ≤ C2(2 + 8/(λ− λ2))QrQ,

for all x ∈ X and 0 < r < diamρ(X). Thus (X, d) is also Ahlfors Q-regular.

3.4. No biLipschitz pieces. Let A ⊆ X be such that HQ
ρ (A) > 0. Our aim is

to show that d and ρ are not biLipschitz equivalent on A. For this purpose take a
density-point x of A. Then for any ε > 0 there exists rε > 0 such that

Bρ(x, r) ⊂ Bρ(A, εr), for all r ∈ (0, rε).

Now, for all n ∈ N there exists (qn,1, qn,2) ∈ S with L(qn,1, qn,2) = n such that

{qn,1, qn,2} ⊂ Bρ(x, 2cEλ
n).

If 3cEλ
n < rε, there exist xn,1, xn,2 ∈ A such that

ρ(xn,1, qn,1) ≤ 3cEελ
n and ρ(xn,2, qn,2) ≤ 3cEελ

n.

Then

ρ(xn,1, xn,2) ≥ ρ(qn,1, qn,2)− ρ(xn,1, qn,1)− ρ(xn,2, qn,2) ≥ λn+1 − 6cEελ
n

and

d(xn,1, xn,2) ≤ d(qn,1, qn,2) + d(xn,1, qn,1) + d(xn,2, qn,2)

≤ αnρ(qn,1, qn,2) + ρ(xn,1, qn,1) + ρ(xn,2, qn,2)

≤ 2αnλ
n + 6cEελ

n.

Therefore we have

d(xn,1, xn,2)

ρ(xn,1, xn,2)
≤ 2αnλ

n + 6cEελ
n

λn+1 − 6cEελn
=

2αn + 6cEε

λ− 6cEε
.

As αn → 0, by letting n be sufficiently large and ε be sufficiently small, we get
that αn + 6cEε is sufficiently small and so the distances d and ρ are not biLipschitz
equivalent on A. This concludes the proof of Theorem 1.3.
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4. Existence of shortcuts

We will now verify that the shortcuts necessary to employ Theorem 1.3 can be
made in the subRiemannian Heisenberg group and in any snowflaked Ahlfors regular
metric space.

4.1. Shortcuts in the Heisenberg group.

Proof of Theorem 1.2. We will verify that the assumptions of Theorem 1.3 hold in the
Heisenberg group with λ = 1

2
. Let p ∈ H and r > 0. By left-translation invariance

of the distance db in H we may assume that p = (0, 0, 0). Take q1 = (0, 0, 0) and

q2 = (0, 0, r2/4). Now let p1, p2 /∈ Bdb(0, r). Since db(q1, q2) =
»
r2/4 = r/2, by

the triangle inequality we have that db(p1, q1) ≥ r/2 and db(p2, q2) ≥ r/2. Write
p1 = (x1, y1, z1) and p2 = (x2, y2, z2). Then the equation for the box distance is given
by (2.3). Trivially, we have

|x1 − x2| ≤ |x1|+ |x2| ≤ db(p1, q1) + db(p2, q2)

and

|y2 − y1| ≤ |y1|+ |y2| ≤ db(p1, q1) + db(p2, q2).

By using the triangle inequality and the estimate r2/4 ≤ db(q1, p1)db(q2, p2) we also
get ∣∣∣∣z1 − z2 − 1

2
(x1y2 − x2y1)

∣∣∣∣ ≤ |z1|+ |z2 −
1

4
r2|+ 1

4
r2 +

1

2
|x1||y2|+

1

2
|x2||y1|

≤ db(p1, q1)
2 + db(p2, q2)

2 + db(q1, p1)db(q2, p2)

+
1

2
db(q1, p1)db(q2, p2) +

1

2
db(q1, p1)db(q2, p2)

= db(p1, q1)
2 + 2db(q1, p1)db(q2, p2) + db(p2, q2)

2

= (db(q1, p1) + db(q2, p2))
2 .

Thus we have

db(p1, p2) ≤ db(q1, p1) + db(q2, p2)

as required by the assumptions of Theorem 1.3. �

4.2. Shortcuts in snowflaked Ahlfors regular metric spaces.

Theorem 4.1. Let (X, d) be an Ahlfors Q-regular metric space with Q > 0 and let
δ ∈ (0, 1). Then the snowflaked metric space (X, dδ) satisfies the assumptions of
Theorem 1.3. Consequently, there exists a distance d′ on X such that d′ ≤ dδ, (X, d′)

is Ahlfors Q/δ-regular, and for any A ⊆ X with HQ/δ

dδ (A) > 0, we have that d′ and
dδ are not biLipschitz equivalent on A.
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Proof. First of all, it is trivial that (X, dδ) is Ahlfors Q/δ-regular. Let us then check
the assumption (2) of Theorem 1.3. Since (X, d) is Q-regular, there exists C > 1 such
that

1

C
rQ ≤ HQ

d (Bd(x, r)) ≤ CrQ (4.1)

for all x ∈ X and 0 < r < diamd(X). We shall set λ := (2C)−2δ/Q(1 − δ)δ. Take
p ∈ X and 0 < r < diamd(X). Define q1 = p and take

q2 ∈ Bd(p, (1− δ)r
1
δ ) \Bd(p, (2C)−2/Q(1− δ)r

1
δ ).

Such q2 exists since the annulus from where the point is taken has positive measure
by (4.1) and is hence non-empty. In particular, q1, q2 ∈ Bdδ(p, r) and

d(q1, q2)
δ ≥

Ä
(2C)−2/Q(1− δ)

äδ
r = λr.

Now, take p1, p2 /∈ Bd

(
p, r

1
δ

)
. We get that

d(q1, p1), d(q2, p2) ≥ δr1/δ,

and so

d(q1, q2) ≤ (1− δ) r1/δ ≤
Ç

1

δ
− 1

å
min(d(q1, p1), d(q2, p2)).

First assume that d(p1, q1) ≤ d(p2, q2). Then we get

d(p1, p2)
δ ≤ (d(p1, q1) + d(q1, q2) + d(p2, q2))

δ

≤ ((1 + (
1

δ
− 1))d(p1, q1) + d(p2, q2))

δ

= (
1

δ
d(p1, q1) + d(p2, q2))

δ

≤ d(p2, q2)
δ + δd(p2, q2)

δ−11

δ
d(p1, q1)

≤ d(p1, q1)
δ + d(p2, q2)

δ

verifying (1.1). In the penultimate inequality, we used a Taylor expansion of x 7→ xδ

centered at d(p2, q2) and the fact that x 7→ xδ is concave so that the higher order
terms of the Taylor expansion are always negative. An analogous calculation takes
care of the case d(p2, q2) ≤ d(p1, q1). �

5. A BPI space using self-similar shortcuts in the Heisenberg group

In this section we prove Theorem 1.1. The idea is to consider a regular subset
K ⊂ H, to specify in a self-similar way the shortcuts taken in the construction
of Section 3 and to make all the shortcuts to have zero cost. This will produce a
semi-distance d on K and, after factoring, the desired distance for Theorem 1.1. By
taking the shortcuts to have zero cost we get that the similitude mappings used in
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the selection of shortcuts will almost be similitude mappings also for the new semi-
distance d. This will allow us to show that the quotient metric space (K̄, d̄) (obtained
by identifying points of zero distance in (K, d)) is BPI. Then the facts that (H, db)
looks down on (K̄, d̄) and that (K̄, d̄) does not look down on (H, db) follow, after some
work, via Theorem 1.3.

5.1. Defining a self-similar tiling. In this section we shall construct a self-similar
tiling of the Heisenberg group, in the spirit of Strichartz’s tilings, see [Str92, Str94]
and [BHIT06]. Define the similitude mappings as

Si,j,k(p) =

Ç
i

2
,
j

2
,
k

4

å
· δ 1

2
(p), i, j ∈ {0, 1}, k ∈ {0, 1, 2, 3}.

Relabel the similitudes by {Si : i = 1, . . . , 16} = {Si,j,k} and denote by K the
attractor of {Si,j,k}, i.e., the nonempty compact set (see [Hut81] for details) satisfying

K =
16⋃
i=1

Si(K). (5.1)

Let us show that K has nonempty interior. We will use the map

π : (H, db)→ R2

that is the projection onto the xy-plane and is a 1-Lipschitz homomorphism, when we
endow R2 with the `∞-distance. We split the iterated function system {Si,j,k} to the
horizontal component {Si,j,0 : i, j ∈ {0, 1}} and the vertical component {S0,0,k : k ∈
{0, 1, 2, 3}}. First of all, the π-projection of the horizontal component of the iterated
function system has the unit square as the attractor and the attractor of the vertical
component is {(0, 0)} × [0, 1]. Secondly, since the dilation and the group operation
commute, we may consider separately the horizontal and vertical components of the
iterated function system:

Si,j,k(x, y, z) =

Ç
0, 0,

k

4

å
·
Ç
i

2
,
j

2
, 0

å
· δ 1

2
((0, 0, z) · (x, y, 0))

=

Ç
0, 0,

k

4
+
z

4

å
·
Ç
i

2
,
j

2
, 0

å
· δ 1

2
(x, y, 0)

= S0,0,k(0, 0, z) · Si,j,0(x, y, 0).

(5.2)

In this way we see that

K = {(x, y, z + t) : (x, y, z) ∈ K̃, t ∈ [0, 1]}, (5.3)

where K̃ is the attractor of the horizontal component. The set K̃ has the form

K̃ = {(x, y, ϕ(x, y)) : (x, y) ∈ [0, 1]2} (5.4)

with some Borel function ϕ : [0, 1]2 → R. Observe that ϕ is bounded since K is

compact. Also, since 0 is the fixed point of S0,0,0 and Si,j,0(K̃) do not contain 0 if
i 6= 0 or j 6= 0, the function ϕ is continuous at 0. Therefore by (5.3) the attractor



22 ENRICO LE DONNE, SEAN LI, AND TAPIO RAJALA

K contains a small ball near 0 and thus K has nonempty interior. Because of the
nonempty interior and the self-similar structure (K, db) is Ahlfors 4-regular.

5.2. Constructing the shortcuts. For a multi-index i = (i1, ..., ik) ∈ {1, . . . , 16}k,
we shall use the standard notation Si for the composition

Si := Si1 ◦ Si2 ◦ · · · ◦ Sik .

With k = 0 we interpret {1, . . . , 16}k to consist of only one element, call it ∅, and S∅
is then understood to be the identity map.

As we are working in the Heisenberg group, we may take λ = 1/2 by the proof of
Theorem 1.2. We define xi = Si(

1
2
, 1
2
, 0) for all i and set Nn := {xi}i∈{1,...,16}n−3 . We

define the shortcuts at level n as

Sn := {(xi, Si(
1

2
,
1

2
,

1

256
)) : i ∈ {1, . . . , 16}n−3}.

We also set L(x, y) = n for (x, y) ∈ Sn. Note that levels start from n = 3. Note
that the construction of the shortcuts for the third level requires a separation of at
least λ3+1 = 1/16. The 1/256 = 1/162 then comes from the 1/2-snowflake behavior
in the z-coordinate. Of course we are also free to take anything larger than 1/256,
but it has to be less than 1/64 as it has to lie in a ball of radius λ3 = 1/8 around
(1/2, 1/2, 0).

We then define the total set of shortcuts as

S :=
∞⋃
n=3

Sn.

We define the cost as c(x, y) = 0 for all (x, y) ∈ S. In other words we set αn = 0
for all n. We also set c(x, y) = db(x, y) for all (x, y) /∈ S. Let us check that the
construction of Section 3 works with this choice of shortcuts and costs. This will be
established by the following three lemmas for λ = 1/2 and cE ≥ 8 some sufficiently
large number.

The first lemma shows that the points xi near which we find the level n shortcuts
can be found outside a 4λn-neighborhood of shortcut points of lower levels.

Lemma 5.1. For all n ≥ 3, we have

Nn ∩

Ñ ⋃
m<n

⋃
(x,y)∈Sm

Bdb({x, y}, 2−n+2)

é
= ∅.

Proof. Let Ak ⊂ [0, 1]2 be the centers of the dyadic subcubes of level k. Note that for
each k we have that

π({Si(
1

2
,
1

2
, t) : i ∈ {1, . . . , 16}k, t ∈ R}) = Ak.
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As π is 1-Lipschitz, it suffices to prove that

An ∩BR2
∞

( ⋃
m<n

Am, 2
−n−1

)
= ∅.

But this follows from the geometry of (R2, ‖ · ‖∞). Note that we need the sets BR2
∞

to be open, which is fine. �

The next lemma says that the sets Nn themselves are 4λn-separated.

Lemma 5.2. For all n ≥ 3 the set Nn is 2−n+2-separated (note: 2−n+2 = 4 · 2−n,
which is needed for the construction).

Proof. As shown in the previous lemma, the image of Nn under π is precisely the
centers of the dyadic subcubes of [0, 1] of level n − 3. Let x, y ∈ Nn and suppose
π(x) 6= π(y). Then

db(x, y) ≥ ‖π(x)− π(y)‖ ≥ 2−n+3.

Now suppose π(x) = π(y) but x 6= y. Then using (5.2) we see that the z-coordinate of
x and y are points in the center of the level n−3 4-dic subintervals of [ϕ(π(x)), ϕ(π(x))+
1], where ϕ is the function in (5.4). Thus, they differ by no less than 4−n+3 and so

db(x, y) ≥
√

4−n+3 = 2−n+3 > 2−n+2. �

Finally, we show that the level n shortcut points form a cEλ
n-covering of K for

sufficiently large cE. This finishes all the properties needed to construct the shortcuts.

Lemma 5.3. There exists some absolute constant cE > 0 so that

K ⊆
⋃

i∈{1,...,16}n−3

Bdb(xi, cE2−n), ∀n ≥ 3. (5.5)

Proof. We prove the claim by induction. As K is bounded, we easily get (5.5) for
n = 3 by choosing some cE large enough. Now assume that (5.5) holds for some
n ≥ 3. Then by the self-similarity of K as exhibited in (5.1) we get

K =
16⋃
i=1

Si(K) ⊆
16⋃
i=1

Si(
⋃

i∈{1,...,16}n−3

Bdb(xi, cE2−n))

=
⋃

i∈{1,...,16}n−2

Bdb(xi, cE2−n−1)

Thus (5.5) holds for n+ 1. �

Recall that taking zero costs for shortcuts, i.e. αn = 0 for all n, in the construction
of Section 3 is allowed, but we then obtain only a semi-distance d on K and we need
to consider the quotient space (K̄, d̄). From the proof of Theorem 1.2 we see that
λ = 1

2
works in the Heisenberg group.
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Now the conclusions of Theorem 1.3 hold for the constructed semi-distance d.
That is, the identity map id: (K, db) → (K, d) (and hence the quotient projection
π∼ : (K, db) → (K̄, d̄)) is Lipschitz, but not biLipschitz on any set of positive mea-
sure, and the space (K, d) is Ahlfors regular. In particular, (H, db) looks down on
(K̄, d̄). In order to show that (H, db) is not minimal in looking down, we still need to
prove that (K̄, d̄) is a BPI space and that (K̄, d̄) does not look down on (H, db).

5.3. (K, d) is a BPI space. We begin with the following lemma.

Lemma 5.4. Let x ∈ I∗ with `(x) > 1 and n = min{k ∈ N : L−1x (k) 6= ∅}. There
exists x′ = (x′0, ..., x

′
N) ∈ I∗ such that Ext(x) = Ext(x′), c(x′) ≤ c(x), and for any

j ∈ N such that min(L(x′2j−1, x
′
2j), L(x′2j+1, x

′
2j+2)) = m > n, then

db(x
′
2j, x

′
2j+1) ≤ 2λm.

Proof. As usual, we will show that if x does not already satisfy the conclusion of the
lemma, then we can find a strictly shorter itinerary in I∗ with same endpoints and
no greater cost that x. The lemma then follows by iterating this procedure until one
cannot.

Fix j such that min(L(x′2j−1, x
′
2j), L(x′2j+1, x

′
2j+2)) = m > n. We may suppose

without loss of generality that there exist k ∈ Lx
−1(n) such that k > j + 1, that is,

Lx is still decreasing from j to j + 1. Thus, L(x2j+1, x2j+2) = m.

Let x ∈ Nm be the point for which the shortcut (x2j+1, x2j+2) is found in Bdb(x, λ
m).

First suppose that (x2j, x2j+3) ∈ S. Then by uniqueness of shortcuts, x2j+4 = x2j,
which contradicts the fact that x is non-self-intersecting.

Thus, we may suppose (x2j, x2j+3) /∈ S. Then as L(x2j+3, x2j+4) ≤ m, we get
that x2j+3 /∈ Bbd(x, λ

m) as x is non-self-intersecting. If db(x2j, x2j+1) > 2λm, then
we get that x2j /∈ Bbd(x, λ

m) by the triangle inequality. Thus, applying (1.1) with
q1 = x2j+1, q2 = x2j+2, p1 = x2j, and p2 = x2j+3, we get that we can replace
(x2j, x2j+1, x2j+2, x2j+3) in x with (x2j, x2j+3) to get an itinerary in I∗ with lower cost
and two fewer points with the same extremal points. �

The following lemma says that one can connect x, y ∈ Si(K) by an itinerary that
does not go too far out.

In this section we write |i| = k if i ∈ {1, . . . , 16}k.

Lemma 5.5. There exists some C > 0 so that for all multi-indices i, for all x, y ∈
Si(K) and all ε ∈ (0, 1), there exists an itinerary x = (x0, . . . , xn) ∈ I∗ such that
c(x) ≤ (1 + ε)d(x, y), Ext(x) = (x, y), and x0, . . . , xn ∈ Bdb(Si(K), C2−|i|).

Proof. We claim that there exists some constant M ∈ N depending only on cE > 0
of Lemma 5.3 such that if ε > 0, i ∈ {1, . . . , 16}k for k ≥M , and x, y ∈ Si(K), then
there exists some itinerary x ∈ I∗ such that

(1) c(x) ≤ (1 + ε)d(x, y),
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(2) Ext(x) = (x, y),
(3) #L−1x (k) ≤ 2, ∀k ∈ N,
(4) db(xj−1, xj) ≤ 21−m for all j odd such that

m = min(L(xj−2, xj−1), L(xj, xj+1)) > n,

where n = min{k : L−1x (k) 6= ∅},
(5) db(xj−1, xj) ≤ 2M/2−k for all j odd,
(6) L−1x ([0, k −M ]) = ∅.

Suppose the claim holds and for x, y ∈ Si(K) with i ∈ {1, . . . , 16}k for some k ≥M ,
take such an itinerary x = (x0, . . . , xN) ∈ I∗. We will bound

∑N
i=1 db(xi−1, xi) by C2−k

for some C depending only on M . The lemma then follows for all i ∈ {1, . . . , 16}k
with k ≥ M from the triangle inequality and for all i ∈ {1, . . . , 16}k with k < M by
the fact that there are only finitely many such i.

By the fifth property, db(x0, x1) and db(xN−1, xN) are both less than 2M/22−k so we
only need to care about the values db(xi−1, xi) when 2 ≤ i ≤ N − 1. By the third and
the sixth property, we have∑

i even

db(xi−1, xi) ≤ 2
∞∑

j=k−M+1

2−j ≤ 2M+12−k, (5.6)

and we so only need to care about db(xi−1, xi) when 3 ≤ i ≤ N − 2 is odd.

We split the sum into two∑
3≤i≤N−2 odd

db(xi−1, xi) =
∑
I

db(xi−1, xi) +
∑
II

db(xi−1, xi)

where I represent all the indices i for which min(L(xi−2, xi−1), L(xi, xi+1)) = n and II
are the rest. By the third property and the fact that x ∈ I∗, the number of summands
in the I sum is at most three. Together with the fifth property, we get that∑

I

db(xi−1, xi) ≤ 3 · 2M/2−k ≤ 2M/2+22−k.

Finally, the fourth property says that the distance db(xi−1, xi) for the odd indices
where min(L(xi−2, xi−1), L(xi, xi+1)) > n are controlled by

max(db(xi−2, xi−1), db(xi, xi+1)),

since db(xj−1, xj) ≥ 21−m, if L(xj−1, xj) = m. Thus, we get that∑
II

db(xi−1, xi) ≤ 2 ·
∑
i even

db(xi−1, xi)
(5.6)

≤ 2M+22−k,

which finishes the bound on the summation of
∑N
i=1 db(xi−1, xi).

Let us prove the claim. Let cE > 0 be the constant from Lemma 5.3. Let M ∈ N
be the minimal even number such that

2M/2 > 2cE (5.7)
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and

2M−1 − 2M/2 − 2M/2+6 > cE. (5.8)

As x, y ∈ Si(K), with |i| = k, we get that

d(x, y) ≤ db(x, y) ≤ cE2−k. (5.9)

By an application of Lemma 3.5 on some itinerary with cost no more than (1 +
ε)d(x, y), we get an itinerary x = (x0, . . . , xN) that satisfies the first three properties.
We then apply Lemma 5.4 on x (and still calling the result x) to get that the fourth
property is satisfied.

Suppose db(xj−1, xj) > 2M/2−k for some odd j. Then

c(x) ≥ db(xj−1, xj) ≥ 2M/2−k (5.9)∧(5.7)
> 2d(x, y),

a contradiction. Thus, the fifth condition is satisfied.

Now suppose L−1x ([0, k − M ]) 6= ∅. Suppose first that #L−1x ([0, k − M/2]) ≥ 2.
Then as x ∈ I∗, we then have that there exists some j so that min{L(j), L(j+ 1)} ≥
k −M/2. Thus, (x2j, x2j+1) /∈ S and so

c(x) ≥ c(x2j, x2j+1) ≥ 4 · 2M/2−k (5.9)∧(5.7)
> 2d(x, y),

which is a contradiction.

Now suppose that #L−1x ([0, k −M/2]) = 1. Let L(x2j−1, x2j)≤k −M . Then we
have by the triangle inequality

db(x, y) ≥ db(x2j−1, x2j)−
2j−3∑
`=0

db(x`, x`+1)− db(x2j−2, x2j−1)

− db(x2j, x2j+1)−
N∑

`=2j+1

db(x`, x`+1) = (∗).

We have by the third and fourth property that

2j−3∑
`=0

db(x`, x`+1) ≤ 8
∞∑

s=k−M/2

2−s = 2M/2−k+5

N∑
`=2j+1

db(x`, x`+1) ≤ 8
∞∑

s=k−M/2

2−s = 2M/2−k+5. (5.10)

Similarly as in the case #L−1x ([0, k−M/2]) ≥ 2, since (x2j−2, x2j−1), (x2j, x2j+1) /∈ S,
we have

db(x2j−2, x2j−1) + db(x2j, x2j+1) = c(x2j−2, x2j−1) + c(x2j, x2j+1)

≤ 2d(x, y) < 2M/2−k.
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Altogether, we get that

(∗)
(5.10)

≥ 2M−k−1 − 2M/2−k − 2M/2−k+6
(5.8)
> cE2−k.

But this is a contradiction because x, y ∈ Si(K) and so db(x, y) ≤ cE2−k. �

We can now prove the following lemma that says that there exists large subset of
every Si(K) that can be connected optimally by itineraries only in Si(K).

Lemma 5.6. There exists some multi-index j such that the following property holds.
For any ε > 0, k ∈ N, i ∈ {1, . . . , 16}k, and any two x, y ∈ Si(Sj(K)), there exists
an itinerary x = (x0, . . . , xN) ∈ I∗ with c(x) ≤ (1 + ε)d(x, y), Ext(x) = (x, y), and
x0, . . . , xN ∈ Si(K).

Proof. Let C > 0 be the constant from the previous lemma. As K has nonempty
interior we may choose x ∈ int(K) and h > 0 so that Bdb(x, h) ⊂ K. As K is
compact, there then exists some j so that

Bdb(Sj(K), C2−|j|) ⊆ Bdb(x, h) ⊆ K.

Now let x, y ∈ Si(Sj(K)) for some arbitrary i ∈ {1, . . . , 16}k. Then there exists an
itinerary x = (x0, . . . , xn) ∈ I∗ such that c(x) ≤ (1 + ε)d(x, y), Ext(x) = (x, y), and
each of the points of x is contained

Bdb(Si(Sj(K)), C2−|i|−|j|) = Si(Bdb(Sj(K), C2−|j|)) ⊆ Si(K). �

Lemma 5.7. Let j be from Lemma 5.6. Then for all k ∈ N and i ∈ {1, . . . , 16}k, we
have that

d(Si(x), Si(y)) = 2−|i|d(x, y), ∀x, y ∈ Sj(K). (5.11)

Proof. If x = (x0, . . . , xN) is an itinerary from x to y, then Si(x) is an itinerary
from Si(x) to Si(y) with c(Si(x)) = 2−|i|c(x), since (xi, xi+1) ∈ S if and only if
(Si(xi), Si(xi+1)) ∈ S, αn = 0 for all n, and db(Si(xi), Si(xi+1) = 2−|i|db(xi, xi+1).
Thus, we get that d(Si(x), Si(y)) ≤ 2−|i|d(x, y).

For any ε > 0 and Si(x), Si(y) ∈ Si(Sj(K)), we get from Lemma 5.6 that there
exists an itinerary x = (x0, . . . , xN) from Si(x) to Si(y) such that c(x) ≤ (1 +
ε)d(Si(x), Si(y)) and xj ∈ Si(K). Thus, applying S−1i to x, we get an itinerary x′

from x to y such that x′j ∈ K and c(x′) = 2|i|c(x). Thus,

d(x, y) ≤ c(x′) = 2|i|c(x) ≤ 2|i|(1 + ε)d(Si(x), Si(y)).

Taking ε→ 0 then gives the lemma. �

We can now prove that (K̄, d̄) is BPI. Let j be the multi-index from Lemma 5.6,
p1, p2 ∈ K, and 0 < r1, r2 < diamd(K). Now by self-similarity in the db-distance,
there exist a constant c1 and two multi-indices i1, i2 such that Sij(K) ⊂ Bdb(pj, rj),

rj is comparable to 2−|i1|, and H4
db

(Sij(K)) ≥ c1H4
db

(Bdb(pj, rj)) for j ∈ {1, 2}.
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By Lemma 3.8 we also have Sij(K) ⊂ Bd(pj, rj) and that the ratio of H4
db

and H4
d

is bounded away from 0 and from above by constants depending on λ.

Therefore by definingA = Si1(Sj(K)) ⊂ Bd(p1, r1), we haveH4
d(A) ≥ c2H4

d(Bd(p1, r1))
for some constant c2. Define the map f : A → Bd(p2, r2) as f = Si2 ◦ S−1i1 . Then for
any p, q ∈ A, we have that p′ = S−1i1 (p) and q′ = S−1i1 (q) are both in Sj(K). Thus,

d(f(p), f(q)) = d(Si2(p
′), Si2(q

′))
(5.11)
= 2−|i2|d(p′, q′)

(5.11)
= 2|i1|−|i2|d(Si1(p

′), Si1(q
′))

= 2|i1|−|i2|d(p, q).

Since 2|i1|−|i2| is comparable to r2/r1, we are done with showing that (K̄, d̄) is BPI.

5.4. (K, d) does not look down on (H, db). By contradiction, suppose that (K̄, d̄)
does look down on (H, db). Then there would exist a closed set A ⊂ K̄ and a Lipschitz
map f : (A, d̄)→ (H, db) withH4(f(A)) > 0. Since d ≤ db, also f◦π∼ : (π−1∼ (A), db)→
(H, db) is L-Lipschitz, where π∼ is the quotient projection. In the following we write
f◦π∼ as f when we work in π−1∼ (A). Then f is Pansu-differentiable almost everywhere
in π−1∼ (A), see [Mag01]. Moreover, the Pansu-differential Df(x) is bijective on a set
A′ ⊂ A of positive measure by the area formula:

0 < H4
db

(f(A))
(2.4)

≤
∫
A
J(Df(x)) dH4

db
(x).

Since for all n,m ∈ N the set

Bn,m = K \
∞⋃
k=n

⋃
i∈{1,...,16}k

Si(K ∩Bdb(0,
1

m
))

has H4
db

-measure zero as a porous set, the set

A′′ = A′ \
∞⋃
n=1

∞⋃
m=1

Bn,m =
∞⋂
m=1

∞⋂
n=1

∞⋃
k=n

⋃
i∈{1,...,16}k

A′ ∩ Si(K ∩Bdb(0,
1

m
)) (5.12)

has positive measure. Let x ∈ A′′ be a density point of A′′. Since x ∈ A′′, by
the definition (5.12) there exists a sequence (nm)∞m=1 of integers with nm → ∞ as
m → ∞ and a sequence of multi-indices im with |im| = nm such that x ∈ Sim(K)
for all m ∈ N and

db(x, xm) <
1

m
2−nm ,

for all m ∈ N, where xm = Sim(0).

Let Km = δ2nm (x−1A) ∩K. Then the functions fm : (Km, d)→ (H, db) defined as

fm(p) = δ2nm (f(x)−1f(xδ2−nm (p)))

satisfy
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db(fm(p), fm(q)) = db(δ2nm (f(x)−1f(xδ2−nm (p))), δ2nm (f(x)−1f(xδ2−nm (q))))

= 2nmdb(f(xδ2−nm (p)), f(xδ2−nm (q)))

≤ 2nmLd(xδ2−nm (p), xδ2−nm (q))

≤ Ld(S−1im
(xδ2−nm (p)), S−1im

(xδ2−nm (q)))

= Ld(δ2nm (x−1m x)p, δ2nm (x−1m x)q)

≤ L
Ä
d(δ2nm (x−1m x)p, p) + d(p, q) + d(q, δ2nm (x−1m x)q)

ä
,

(5.13)

where the first inequality follows from the fact that f is L-Lipschitz and the second
inequality from the fact that

Sin(S) ⊂ S.
Notice that

d(δ2nm (x−1m x)p, p) ≤ db(δ2nm (x−1m x)p, p)→ 0 (5.14)

as m→∞ since db(δ2nm (x−1m x), 0)→ 0 as m→∞. The convergence in (5.14) holds
uniformly for p ∈ K by the compactness of K.

Since x is a density point of A′′ and hence of A, we have that for all p ∈ K there
exists a sequence (pm)∞m=1 with pm ∈ Km and db(pm, p) → 0 as m → ∞. Along this
sequence by the fact that Df(x) is homogeneous we get

db(fm(pm), Df(x)(pm)) = db(δ2nm (f(x)−1f(xδ2−nm (pm))), δ2nm (Df(x)(δ2−nm (pm))))

= 2nmdb(f(x)−1f(xδ2−nm (pm)), Df(x)(δ2−nm (pm)))→ 0,

as m→∞. Hence also

db(fm(pm), Df(x)(p)) ≤ db(fm(pm), Df(x)(pm)) + db(Df(x)(pm), Df(x)(p))→ 0,
(5.15)

as m→∞.

Combining the estimates (5.15), (5.13) and (5.14) with the fact that d(pm, p) ≤
db(pm, p)→ 0 we get

db(Df(x)(p), Df(x)(q)) ≤ db(fm(pm), Df(x)(p)) + db(fm(qm), Df(x)(q))

+db(fm(pm), fm(qm))

≤ db(fm(pm), Df(x)(p)) + db(fm(qm), Df(x)(q))

+L
Ä
d(δ2nm (x−1m x)pm, pm) + d(qm, δ2nm (x−1m x)qm)

ä
+L (d(pm, p) + d(p, q) + d(q, qm))

→ Ld(p, q), as m→∞.

Hence Df(x) is also Lipschitz from (K, d) to (H, db). Since Df(x) : (H, db)→ (H, db)
is biLipschitz, also the identity map id: (K, d) → (H, db) is Lipschitz, but we have
shown that this is not the case in Theorem 1.2.
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6. BiLipschitz equivalent distances on the Heisenberg group

In the previous sections we constructed and studied distances that were not biLip-
schitz equivalent on large sets. In this final section we turn to study distances that
are biLipschitz equivalent. First we prove Theorem 1.4 showing that adding to The-
orem 1.2 the assumption that the left-translations are biLipschitz for the distance d
forces the distances dcc and d to be biLipschitz equivalent on compact sets. After this
we prove Theorem 1.5 giving examples of distances on the Heisenberg group that are
biLipschitz equivalent with dcc having no self-similar tangents.

6.1. BiLipschitz left-translations: Proof of Theorem 1.4. Since dcc is biLips-
chitz equivalent to the box distance db, up to multiplying d by a constant we assume
that d ≤ db.

Using the Baire Category Theorem one can show that there exists L > 1 such that,
if we restrict to a compact set K, then the distance d is L-biLipschitz homogeneous:
each left translation by g ∈ K is L-biLipschitz on K (see [LD11, Lemma 6.7] applied
with the Heisenberg group as X and G). Suppose that the claim of the theorem is
not true. Hence, by the left-biLipschitz invariance of the distances, for all N ∈ N
there exists a point p ∈ Bdb(0,

1
2N

) with db(0, p) > LNd(0, p).

Write rN := db(0, p) > 0. We claim that we have that

N⋃
n=0

Bdb(p
n,

1

2
rN) ⊂ Bd(0, 2rN). (6.1)

Indeed, if q ∈ Bdb(p
n, 1

2
rN), for some n ≤ N , then

d(0, q) ≤ d(0, p) + d(p, p2) + . . .+ d(pn−1, pn) + d(pn, q)

≤ LNd(0, p) + db(p
n, q)

≤ db(0, p) + rN/2 < 2rN .

Moreover, for i < j < N , we have that

db(p
i, pj) = db(0, p

j−i) ≥ db(0, p) = rN .

Let {qi}i∈IN be a maximal 4rN -separated net of points with respect to distance d
in Bdb(0, 1). First, by (6.1) for all i ∈ IN we have that {Bdb(qip

n, 1
2
rN)}Nn=0 is a dis-

jointed collection of subsets of Bdb(qi, 2rN). Second, {Bd(qi, 2rN)}i∈IN is a disjointed
collection of subsets of Bdb(0, 2). Hence

#INNH4
db

(Bdb(0,
1

2
rN)) ≤ H4

db
(Bdb(0, 2)).
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Since {Bd(qi, 8rN)}i∈IN covers Bdb(0, 1), by definition of Hausdorff measure we deduce

H4
d(Bdb(0, 1)) ≤ lim inf

N→∞
#IN(16rN)4

≤ lim inf
N→∞

H4
db

(Bdb(0, 2))

NH4
db

(Bdb(0,
1
2
rN))

(16rN)4

= lim inf
N→∞

644

N
= 0.

This contradicts the assumption H4
d(Bdb(0, 1)) > 0. �

6.2. Distances without self-similar tangents. In this final section we prove The-
orem 1.5. Namely, we construct two distances d1, d2 on H that are biLipschitz equiv-
alent to dcc such that

(1) the distance d1 is left-invariant and for all λj → 0 such that the distances

(p, q) 7→ 1

λj
d1(δλj(p), δλj(q))

converge point-wise to some ρ, the distance ρ is not self-similar;
(2) for all λj → 0 and qj ∈ H such that the distances

(p, q) 7→ 1

λj
d2(qjδλj(p), qjδλj(q))

converge point-wise to some ρ, the distance ρ is not self-similar nor left-
invariant.

We will first construct the distance d1 and at the end indicate how the construction
can be modified to obtain the distance d2.

The distance d1 is defined via (2.5). The initial distance is db, which is biLipschitz
to dcc, and the shortcuts are defined by first taking a sequence of shortcuts from the
origin to points in the vertical direction and then left-translating the shortcuts to
start from every point of the space. Since we want none of the tangents to admit
nontrivial dilations, we have to be careful in defining the sequence of shortcuts.

Let us define the set of shortcuts from the origin as

S0 =
¶Ä

0, (0, 0, 4−n)
ä

: n ∈ a−1({1})
©
,

where a : N → {0, 1} is a function determining whether a shortcut is taken on scale
4−n. If we were to take a(n) = 1 for all n, then the tangents would be self-similar.

The full set of shortcuts is then defined as

S = {(pq1, pq2) : p ∈ H, (q1, q2) ∨ (q2, q1) ∈ S0}
and the cost function c : H×H→ [0,∞) for (p, q) ∈ S as

c(p, q) =
1

2
db(p, q).
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The distance d1 is then defined as the d in (2.5).

Since 1
2
db ≤ d1 ≤ db, the function d1 is a distance and it is biLipschitz equivalent

with db, and so with dcc. By the left-invariance of the set of shortcuts S, the distance
d1 is also left-invariant.

Since we want to avoid self-similarity, we define the function a so that every word
written in the alphabet {0, 1} appears consecutively in the sequence (a(n))n∈N only
some limited number of times. This is achieved for example by defining

a(i) :=

1, if there exists k odd and l ∈ N such that i = (k`
∏
h<` ph + 1)p`

0, otherwise,

where p` is the `:th prime number.

Most of the remainder of the section will be devoted to proving that with this
selection of a no blow-up of d1 is self-similar. On the level of a the needed property
is stated in the next lemma.

Lemma 6.1. Let ` ≥ 1. There exists some m ≥ 1 so that for any i ≥ 1, there exists
some j ∈ {i, i+ 1, . . . , i+m`} such that a(j) 6= a(j +m`).

Proof. Let us write

P` =

(k`
∏
h<`

ph + 1)p` : k ∈ N

 .
We claim that {P`}`∈N is a disjointed collection of sets. In order to see this take 0 <
` < `′ <∞ and notice that on one hand for every k ∈ N we have p` | (k`

∏
h<` ph+1)p`.

On the other hand, since p` |
∏
h<`′ ph, we have p` - (k`′

∏
h<`′ ph + 1)p`′ for all k ∈ N.

Now let ` ≥ 1 be given. Define m =
∏
h≤` ph. Then P` = {p` + m`k : k ∈ N}.

Let i ≥ 1 and select j ∈ {i, i + 1, . . . , i + m`} such that j ≡ p` (mod m`). Then by
definition, j ∈ P`. By the fact that the sets P`′ are pairwise disjoint we have from the
definition of a that

a(m`k + p`) =

1, if k is odd,

0, if k is even.

Thus a(j) 6= a(j + `m). �

The next lemmas will be used to connect the blown up distances to the distance
d1, and in particular to a.

Lemma 6.2. Let x = (x0, . . . , xN) be an itinerary such that x0 = 0 and xN ∈ Z(H).
Then there exists another itinerary y = (y0, . . . , yM) such that Ext(y) = Ext(x),
y−1i yi+1 ∈ Z(H) for all i, and c(y) ≤ c(x).

Note that as x0 = y0 = 0, the condition that y−1i yi+1 ∈ Z(H) for all i is equivalent
to yi ∈ Z(H).
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Proof. For the itinerary x = (x0, . . . , xN), we define dk = x−1k−1xk. Then xN =
x0d1 · · · dN . Let

A = {k : dk ∈ Z(H)}.
We can define a bijection σ : {1, . . . , N} → {1, . . . , N} that maps {1, . . . , |A|} to A
and preserves the ordering of Ac (thus, σ−1 shifts A to the beginning in any order).
Note that xN = x0dσ(1) · · · dσ(N) as we are moving only the dk that are central.

We now define the itinerary (y0, . . . , y|A|+1) where y0 = 0, y|A|+1 = xN , and yi =
dσ(1) · · · dσ(i). As we only rearranged elements that are in the center, we get that

y−1|A|y|A|+1 = (x0dσ(1)···σ(|A|))
−1x0dσ(1) · · · dσ(N) = dσ(|A|+1) · · · dσ(N)

is precisely the product (in order) of all the noncentral dk.

It remains to show that c(y) ≤ c(x). We have that

c(xk−1, xk) = c(yσ−1(k)−1, yσ−1(k)), ∀k ∈ A. (6.2)

As dk /∈ Z(H) for k /∈ A, we get that (xk−1, xk) /∈ S for k /∈ A and so∑
k/∈A

c(xk−1, xk) =
∑
k/∈A

db(xk−1, xk) =
N∑

k=|A|+1

‖dσ(k)‖ ≥ db(y|A|, y|A|+1) ≥ c(y|A|, y|A|+1).

(6.3)
Thus, by (6.2) and (6.3) we get that

c(y) =
|A|+1∑
k=1

c(yk−1, yk) ≤
N∑
k=1

c(xk−1, xk) = c(x). �

Lemma 6.3. There exists a continuous function f : [1, 4]→ [1
2
, 1] with the properties

that f(t) > 1
2

for all t ∈ (1, 4) and

d1(0, (0, 0, t4
−n)) ≥ f(t)db(0, (0, 0, t4

−n)) (6.4)

for all n ∈ N and t ∈ (1, 4).

Proof. We claim that

f(t) = min

Ñ
1√
t
,
1

2

√
2t

t+ 1

é
works. It is immediate from definition that f(t) > 1/2 for t ∈ (1, 4).

Let x = (x0, x1, . . . , xN) be an itinerary from 0 to (0, 0, t4−n) where t ∈ (1, 4). By
Lemma 6.2, we may suppose that x−1i+1xi ∈ Z(H). Let `k be the absolute value of the
z-coordinate of x−1k xk−1. Let `M be the maximum of the `k’s. Then we have that∑

`k ≥ t4−n. (6.5)

Suppose first that `M ≥ 4−n+1, then

c(x) ≥ 1

2
`
1/2
M ≥ 2−n =

1√
t

√
t2−n ≥ f(t)db(0, (0, 0, t4

−n)),
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and we are done. Then suppose `M ∈
î
1+t
2

4−n, 4−n+1
ä
. Then as t ∈ (1, 4), we get that

(xM−1, xM) /∈ S. This gives

c(x) ≥ `
1/2
M ≥

 
1 + t

2
2−n =

 
1 + t

2t

√
t2−n ≥ 1√

t

√
t2−n,

and we are done. Finally, suppose that `M < 1+t
2

4−n. By maximality of `M we then

have `k <
1+t
2

4−n for all k. Thus we have that

2c(x) ≥
N∑
k=1

`
1/2
k ≥

√
2

t+ 1
2n

N∑
k=1

`k
(6.5)

≥
√

2t

t+ 1

√
t2−n,

and we are done. �

Lemma 6.4. For all n ∈ a−1({0}) and t ∈ (1
2
, 2), we have that

d1(0, (0, 0, t4
−n)) ≥ 1√

3
db(0, (0, 0, t4

−n)). (6.6)

Proof. The proof is largely analogous to the proof of Lemma 6.3.

Let (x0, x1, . . . , xN) be an itinerary from 0 to (0, 0, t4−n) where t ∈ (1/2, 2) and
assume that a(n) = 0. By Lemma 6.2, we may suppose that x−1i+1xi ∈ Z(H). Let `k
and `M be as in Lemma 6.3, so that we have (6.5).

Suppose first that `M ≥ 4−n+1. Then as t ∈ (1/2, 2), we have

c(x) ≥ 1

2
`
1/2
M ≥ 2−n ≥ 1√

2

√
t2−n ≥ 1√

3
db(0, (0, 0, t4

−n)),

and we are done. Then suppose `M ∈
î
1+4t
8

4−n, 4−n+1
ä
. Then as t ∈ (1/2, 2) and

a(n) = 0, we get that (xM−1, xM) /∈ S. This gives

c(x) ≥ `
1/2
M ≥

 
1 + 4t

8
2−n ≥ 1√

2

√
t2−n,

and we are done. Finally, suppose that `M < 1+4t
8

4−n. Thus, we have that `k <
1+4t
8

4−n for all k. Therefore

2c(x) ≥
N∑
k=1

`
1/2
k ≥

√
8

4t+ 1
2n

N∑
k=1

`k
(6.5)

≥
√

8t2

4t+ 1
2−n ≥ 2√

3

√
t2−n, (6.7)

and we are done. �

Lemma 6.5. For every ε > 0, there exists some η ∈ (0, 1/2) such that if |t| < η and
a(n) = 1, then

d1(0, (0, 0, (1 + t)4−n)) ≤
Ç

1

2
+ ε

å
db(0, (0, 0, (1 + t)4−n)).
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Proof. One has that

db(0, (0, 0, (1 + t)4−n)) =
√

1 + tdb(0, (0, 0, 4
−n)).

Consider the itinerary x = ((0, 0, 0), (0, 0, 4−n), (0, 0, (1 + t)4−n)). Then

c(x) ≤ 1

2
db(0, (0, 0, 4

−n)) + db(0, (0, 0, t4
−n)) =

Ç
1

2
+
»
|t|
å
db(0, (0, 0, t4

−n)).

Thus, we need that
1

2
+
»
|t| ≤

Ç
1

2
+ ε

å√
1 + t.

One sees easily that by taking η small enough, we can satisfy this inequality. �

With the help of the above lemmas we conclude by proving:

Proposition 6.6. No blow-up of d1 is self-similar.

Proof. Assume to the contrary that there exists a sequence (λj)j∈N, with λj → 0 such
that the distances

(p, q) 7→ 1

λj
d1(δλj(p), δλj(q))

converge point-wise to some ρ, and the distance ρ is self-similar with some constant
λ > 1.

Let us now find a contradiction by using the assumed self-similarity. For this
purpose let us first take a point (0, 0, s2) ∈ H appearing as limit of points to which
there is a shortcut from the origin. In other words, take

s ∈ [1, 24] ∩
∞⋂
j=1

⋃
i≥j
{λ−1i 2−4(k+1) : k ∈ N}. (6.8)

We claim limj→∞
1
λj
d1(0, (0, 0, λ

2
js

2)) = 1
2
db(0, (0, 0, s

2)).

First, note that a(4(k + 1)) = 1 for all k ∈ N. Indeed, in the definition of a, if we
take l = 1, then pl = 2. By definition of a, we have that a(2(k + 1)) = 1 for all odd
k, which implies that a(4(k + 1)) = 1 for all k ∈ N.

Let ε > 0. By definition of s, there exist jm, km → ∞ so that λ−1jm2−4(km+1) → s.
Thus, for m sufficiently large, we have

|λjms− 2−4(km+1)| < ε2

100
λjm .

If ε < 1, then as s ∈ [1, 24], we get by the previous inequality and the triangle
inequality that√

|λ2jms2 − 4−4(km+1)| =
»
|λjms− 2−4(km+1)||λjms+ 2−4(km+1)| < ελjm . (6.9)
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As a(4(km + 1)) = 1, one gets that d1(0, (0, 0, 4
−4(km+1))) = 1

2
db(0, (0, 0, 4

−4(km+1))).
As d1 satisfies the triangle inequality and the inequality d1 ≤ db, we get for sufficiently
large m that

λ−1jmd1(0, (0, 0, λ
2
jms

2)) ≤ λ−1jm(d1(0, (0, 0, 4
−4(km+1))) + d1(0, (0, 0, λ

2
jms

2 − 4−4(km+1))))

≤ 1

2λjm
db(0, (0, 0, 4

−4(km+1))) + db(0, (0, 0, s
2 − λ−2jm4−4(km+1)))

(6.9)

≤ 1

2
db(0, (0, 0, λ

−2
jm4−4(km+1))) + ε

≤ 1

2
(db(0, (0, 0, s

2)) + db((0, 0, s
2), (0, 0, λ−2jm4−4(km+1)))) + ε

(6.9)

≤ 1

2
db(0, (0, 0, s

2)) + 2ε.

As this holds for all ε > 0, we get limm→∞ λ
−1
jmd1(0, (0, 0, λ

2
jms

2)) ≤ 1
2
db(0, (0, 0, s

2)).
A similar argument gives the opposite inequality.

Thus, we indeed have

ρ(0, (0, 0, s2)) = lim
j→∞

1

λj
d1(0, (0, 0, λ

2
js

2)) =
1

2
db(0, (0, 0, s

2)).

Let us then use the function f of Lemma 6.3 to show that there exists ` ∈ N such
that λ = 2`. Supposing this is not the case, we have λ = t2` for some t ∈ (1, 2) and
` ∈ N. By (6.8) s is of the form s = limm→∞ λ

−1
im 2−4(km+1), with im, km →∞. Then,

by the continuity of the function f we have

ρ(0, (0, 0, λ2s2)) = lim
j→∞

1

λj
d1(0, (0, 0, λ

2λ2js
2))

= lim
m→∞

1

λim
d1(0, (0, 0, t

2λ2ims
24`))

= lim
m→∞

1

λim
d1(0, (0, 0, t

2

Ç
λims

2−4(km+1)

å2

4`4−4(km+1)))

(6.4)

≥ lim
m→∞

1

λim
f

(
t2
Ç

λims

2−4(km+1)

å2
)
db(0, (0, 0, λ

2λ2ims
2))

= f(t2) lim
j→∞

1

λj
db(0, (0, 0, λ

2λ2js
2))

= f(t2)λdb(0, (0, 0, s
2)) >

1

2
λdb(0, (0, 0, s

2)) = λρ(0, (0, 0, s2)),

contradicting the fact that ρ is self-similar with the dilation λ.

Therefore λ = 2` for some ` ∈ N. Now we employ the properties of the function a.
Let m ∈ N be the constant from Lemma 6.1. Since ρ is self-similar with factor 2`, it
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is self-similar also with factor 2`m. By Lemma 6.5, we have that there exists some η
such that (1 + η)N = 4 for some N ∈ N and if a(n) = 1, then

d1(0, (0, 0, (1 + t)4−n)) ≤ 0.51db(0, (0, 0, (1 + t)4−n)), ∀t ∈ (−η, η). (6.10)

Take j0 ∈ N such that for all j ≥ j0 we have

ρ(0, (0, 0, 4i(1 + η)ks2))

λ−1j d1(0, (0, 0, 4i(1 + η)kλ2js
2))
∈
Ç

1− 1

100
, 1 +

1

100

å
, (6.11)

for all (i, k) ∈ {0, 1, . . . , 2m`} × {0, . . . , N − 1}. Fix some j ≥ j0 large enough so
that for the n ∈ Z such that (λjs)

2 ∈ [4−n−1, 4−n), we get that n ≥ 2m`. Now by
Lemma 6.1, we have that there exists some i ∈ {0, . . . ,m`} such that a(n − i) 6=
a(n − i − m`). We may suppose without loss of generality that a(n − i) = 1 so
a(n− i−m`) = 0. Note that j, n, and i are now fixed.

From the definition of n we have that 4iλ2js
2 ∈ [4−n+i−1, 4−n+i). Also, (1− η)4−n+i

and (1 + η)4−n+i differ by a multiplicative factor larger than 1 + η. As

{(1 + η)k : k ∈ {0, ..., N − 1}}
increases from 1 to 4

1+η
> 4(1 − η) in multiplicative increments of 1 + η, we then

have by the pigeonhole principle that there exists some k ∈ {0, . . . , N − 1} such that
4i(1 + η)kλ2js

2 ∈ ((1 − η)4−n+i, (1 + η)4−n+i). Thus, because a(n − i) = 1, we have
that

ρ(0, (0, 0, 4i(1 + η)ks2))
(6.11)

≤ 1.01λ−1j d1(0, (0, 0, 4
i(1 + η)kλ2js

2))

(6.10)

≤ 0.52λ−1j db(0, (0, 0, 4
i(1 + η)kλ2js

2))

= 0.52 db(0, (0, 0, 4
i(1 + η)ks2)). (6.12)

On the other hand, because a(n− i−m`) = 0 and

4i+m`(1 + η)kλ2js
2 ∈
Ç

1

2
4−n+i+m`, 2 · 4−n+i+m`

å
,

we have that

ρ(0, (0, 0, 4i+m`(1 + η)ks2))
(6.6)∧(6.11)
≥ 99

100

1√
3
db(0, (0, 0, 4

i+m`(1 + η)ks2))

≥ 0.55 db(0, (0, 0, 4
i+m`(1 + η)ks2)),

= 0.55 · 2m` db(0, (0, 0, 4i(1 + η)ks2)).

Then by the self-similarity of ρ with ratio 2m` we have

ρ(0, (0, 0, 4i(1 + η)ks2)) = 2−m`ρ(0, (0, 0, 4i+m`(1 + η)ks2))

≥ 0.55 db(0, (0, 0, 4
i(1 + η)ks2)).

This contradicts (6.12). �
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In order to obtain the distance d2 of Theorem 1.5, we use only a subset of shortcuts
used in the definition of the distance d1. Let Dn denote the centers of the dyadic
cubes in R2 of side length 2−n.

Define the level n shortcuts as the symmetrization of

S̃n = {((x, y, z), (x, y, z)q) : (x, y) ∈ Dn, z ∈ R, q = (0, 0,±4−n)}.
We then construct the set of shortcuts as

S̃ =
⋃

n∈a−1({1})
S̃n.

As in the construction of d1, the cost function c̃ : H×H→ [0,∞) for (p, q) ∈ S̃ is

c̃(p, q) =
1

2
db(p, q).

The distance d2 is then obtained as the distance d in (2.5), but now with using c̃.
Since S̃ ⊂ S and thus c̃ ≥ c, we have

1

2
db ≤ d1 ≤ d2 ≤ db.

We will also need the following lemmas.

Lemma 6.7. There exists some absolute δ > 0 so that if for any n ∈ N, if (x, y) ∈
BR2

∞(Dn + (2−n−1, 2−n−1), δ2−n) and t ∈ (1/2, 2), then

d2((x, y, z), (x, y, z + t4−n)) ≥ 1√
3
db(0, (0, 0, t4

−n)), ∀z ∈ R.

Proof. Let (a, b) ∈ Dn + (2−n−1, 2−n−1) be so that (x, y) ∈ BR2
∞((a, b), δ2−n) (δ to be

chosen later) and let x = (x0, ..., xN) be an itinerary from (x, y, z) to (x, y, z + t4−n).

Suppose first that there is some π(xj) /∈ BR2
∞((a, b), 2−n−1). As any non-vertical

movement is not a shortcut, we have from the fact that π(x0) = π(xN) ∈ BR2
∞((a, b), δ2−n)

that if we choose δ sufficiently small, then

c(x) ≥ (1− 2δ)2−n ≥ 1√
3

√
2 · 2−n ≥ 1√

3

√
t4−n =

1√
3
db(0, (0, 0, t4

−n)).

This would prove the statement of the lemma. Thus, we may suppose that the
projection of x under π does not go outside BR∞2 ((a, b), 2−n−1).

But now the proof is reduced to that of the proof of Lemma 6.4. Indeed, by the
hypothesis of this subcase, the itinerary x cannot contain any level n shortcuts and
so the c(x) bound, which lower bounds c̃(x), is enough. �

Lemma 6.8. For every ε > 0 there exists η ∈ (0, 1/2) so that if |t| < η and a(n) = 1,
then for all (x, y) ∈ BR2

∞(Dn, η2−n) and z ∈ R we have

d2((x, y, z), (x, y, z + (1 + t)4−n)) ≤
Ç

1

2
+ ε

å
db(0, (0, 0, (1 + t)4−n)).
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This follows by essentially the same proof as Lemma 6.5.

Since the shortcuts are horizontally located on the centers of the dyadic cubes, we
have from an easy argument using Lemmas 6.7 and 6.8 that no blow-up of d2 is left-
invariant. Indeed, similarly as in the proof of Proposition 6.6, we can find a shortcut

of distance s ∈ [1, 24] at the limit, that is s ∈ ⋂∞j=1

⋃
i≥j{λ−1i 2−4(k+1) : k ∈ N}. This

time, instead of finding a limit point (0, 0, s2) of shortcuts from the origin, we find by
compactness a pair of points (x, y, z), (x, y, z+s2) in Bdb(0, 2

5) appearing as the limit
of endpoints of a sequence of shortcuts. Then one can get a subsequence λim → ∞
so that s = limm→∞ λ

−1
im 2−4(km+1). Remembering that a(4(km + 1)) = 1, Lemma 6.8

tells us that

ρ((x, y, z), (x, y, z + s2)) ≤
Ç

1

2
+ ε

å
db(0, (0, 0, s

2)).

One then considers the points (s/2, s/2, 0) and (s/2, s/2, s2). Note that s/2 =
limm→∞ λ

−1
im 2−4(km+1)−1. Thus, for m sufficiently large, λim ·(s/2, s/2) ∈ B(D4(km+1)+

(2−4(km+1)−1, 2−4(km+1)−1), δ2−4(km+1)) and so we get that

ρ((x+ s/2, y + s/2, x+ 0), (x+ s/2, y + s/2, z + s2)) ≥ 1√
3
db(0, (0, 0, s

2)).

In order to see that no blow-up of d2 is self-similar we argue similarly as for the
distance d1. First suppose that a blow-up is self-similar with some constant λ > 1. As
noted above, we find by compactness a pair of points (x, y, z), (x, y, z+s2) in Bdb(0, 2

5)
with s ∈ [1, 24] appearing as the limit of endpoints of a sequence of shortcuts. Observe
that Lemma 6.3 holds also for d2 since d2 ≥ d1. As in the case of d1, it then follows
via Lemma 6.3 that λ = 2` for some ` ∈ N. A contradiction with self-similarity
then follows again by the properties of the function a. This concludes the proof of
Theorem 1.5.
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