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Abstract—Mobile Edge Computing (MEC) is emerging as
one of the effective platforms for offloading the resource- and
latency-constrained computational services of modern mobile
applications. For latency- and resource-constrained mobile de-
vices, the important issues include: 1) minimize end-to-end
service latency; 2) minimize service completion time; 3) high
quality-of-service (QoS) requirement to offload the complex
computational services. To address the above issues, a latency-
oblivious distributed task scheduling scheme is designed in this
work to maximize the QoS performance and goodput for the
MEC services. Unlike most of the existing works, we consider
the latency-oblivious property of different services in order to
achieve the optimized goodput and service latency. Furthermore,
we design an optimal decision engine for efficiently offloading
the computational services. Simulation results are presented to
demonstrate the effectiveness of the proposed offloading scheme
over other existing state-of-the-art solutions, in terms of service
latency, goodput, service completion time and fairness.

I. INTRODUCTION

Due to advances in new technologies, extensive mobile
applications is expending beyond our daily life enormously in
the era of Internet-of-Things (IoT) [1]. Hence, the computation
of mobile applications has become more intense and compli-
cated. The recent report from Chaffey’s suggest that the users
spend at least 15 % of their time on playing mobile games
and another 20 % for refreshment, which demands extreme
computational power and storage [2], [3]. However, the mobile
devices have very limited capacity in terms of processing
power, storage and battery life. To provide solutions to these
shortcomings, mobile computational offloading techniques
have been proposed to execute intensive computational tasks
to more effective and qualified computing devices.

In recent years, Mobile Edge Computing (MEC) [4]–[7]
have gained a lot of popularity among researchers, due to it’s
efficient computational offloading capability at the network
edge. More importantly, it supports a productive and incentive
computation offloading mechanism, while adjusting different
network- and user-level optimization. Primarily, MEC plat-
forms are deployed at the network edge in order to optimize
the execution requirements of computational service offload-
ing. They are expected to favour the offloading mechanism,
while strongly decreasing the network latency between the
edge users and servers. The core element of any mobile
computation offloading framework is the optimal decision
engine, since it determines when a task needs to be offloaded

to an external (MEC) server. Offloading a task to an external
server may incur expensive overhead, hence the offloading
decision shall be based on predictions of the latency and
total time required to offload their services, as well as the
computation time among other possible metrics. It is not
easy to predict the service latency of an application method
ahead of its execution. An offloading framework addresses
these challenges to make efficient offloading decisions and
also to provide application developers and/or users a way to
integrate their application into the offloading framework. Most
offloading frameworks proposed so far predict the available
bandwidth or execution time [8]. They have completely ig-
nored the variation in latency requirements of mobile edge ser-
vices, which is termed as latency-oblivious. Another common
assumption is that the inputs of the computational services
do not vary much, which can lead to imprecise estimation
of latency requirements. However, modern mobile application
requires different processing powers and latency capabilities
to process their tasks at local operator clouds, private edge
clouds (also called MEC hosts) and remote clouds. Therefore,
it is necessary to accurately estimate the latency-requirement
of mobile services. Hence, it is important to propose a latency-
oblivious distributed task scheduling scheme for MEC.

This paper presents a distributed task scheduling frame-
work, while taking into consideration of optimal latency
requirements of edge services. It is equipped with the novel
algorithms aimed to estimate the optimal latency-requirements
of edge applications, as well as we aim to minimize the service
completion time. Our main contributions are summarized as:

1. We propose a latency-oblivious distributed task schedul-
ing scheme for mobile edge devices to minimize the
service latency, while maintaining high throughput of
the network. We also present a cost-effective service
offloading framework for MEC architecture to provide
optimal resources and profit to edge devices for efficient
computational offloading.

2. We propose an optimal latency estimation engine, which
accurately estimates the service latency of different mo-
bile applications to support effective offloading decision
for the MEC platform. We also consider the optimal
latency-constraint for efficient task scheduling.

3. Simulation results demonstrate that our algorithm can

978-1-5386-4727-1/18/$31.00 ©2018 IEEE



effectively schedule the available tasks from edge devices
to servers. The results also show that the proposed
scheme provides higher throughput while minimizing
service latency. It also yields the best performance, in
terms of service utility and service completion time,
under different traffic rate, compared with other solutions.

The rest of the paper is organized as follows. Section II
describes the related work. In Section III, we present the sys-
tem model for MEC. Section V describes a latency-oblivious
adaptive task scheduling scheme for MEC, in particular, our
service offloading framework is designed to provide maximum
revenue. Section VI conducts extensive simulations to validate
our proposed scheme, and Section VII concludes the paper.

II. RELATED WORK

The problem of task scheduling for MEC platform in the
presence of different network dynamics is a challenging job.
Over the years, only a few researchers have addressed some
of the important issues related to this problem. Liu et al.
proposed latency and reliability-aware task scheduling scheme
for MEC [9]. They did not consider the latency-oblivious
property for different tasks. Chang et al. proposed energy-
efficient optimization framework for fog computing system
[10]. Ren et al. proposed a partical offloading mechanism
to minimize the delay for MEC platform [11]. Chen et al.
proposed a multi-task offloading scheme for multi-user in
MEC [12]. Fan et al. proposed application-aware workload
allocation for IoT-enabled edge platform [13]. Genez et al.
proposed latency-aware policy consolidation scheme for edge
computing systems [14]. Neto et al. proposed user-level online
offloading framework for MEC systems [1]. Ranadheera et al.
proposed an optimal framework for computation offloading
and activation of edge servers using minority game [15]. Lyu
et al. proposed energy-efficient admission algorithm for delay-
sensitive tasks in MEC [16]. Yang et al. proposed MEC-
empowered Energy efficient task offloading scheme in 5G
[17]. Liu et al. proposed multiobjective optimization frame-
work for computation offloading in fog computing [18].

In summary, most for the existing studies [1], [9]–[19]
mainly focus on the energy-efficient offloading and resource
allocation in MEC platform. They did not consider any
network dynamic in terms of service latency and data traffic.
They assumed that the latency requirement of different tasks
are available to them a prior, but in real life, it is very tough to
get to know the actual and practical latency requirements of
them. As discussed previously, network dynamics inherently
changes the latency requirements of edge devices inherently,
which reduces the network throughput and also increases the
service completion time. This motivates us to study latency-
oblivious distributed task scheduling scheme to minimize the
total end-to-end delay, while maintaining high throughput,
under different network dynamics.

III. SYSTEM MODEL

Without loss of generality, we assume there are n mobile
devices denoted by, H = {H1,H2, · · · ,Hn}, coexisting in an

Figure 1: Latency-Oblivious Task Scheduling in MEC

area offload the computational services, as shown in Fig. 1.
Each of the edge devices is comprised of different kind of
services denoted by S = {S1, S2, · · · , SK} and they belong
to different real-time mobile applications (i.e., self-driving
car, video analytic, augmented-reality, object detection system
etc.). The mobile devices offload their computational services
to edge servers denoted by, Y = {Y1, Y2, · · · , Ym}. The
owners of the edge servers is considered to be associated
with different edge computing platforms severed by edge
service providers denoted by X = {X1, X2, · · · , Xo}. The
traffic flow Tflow of computational services arrives at the edge
servers by following Poisson distribution [20]–[23]. Further,
the offloading process of computational services is scheduled
according to their priorities, which is determined by service
competition time and QoS. The edge devices require fair
amount of resources in order to offload the services optimally.
We assume that the mobile device Hi has maximum Rmax

i

and minimum Rmin
i resource requirements, which is known

to the edge platform.
Fundamentally, the edge devices have very limited energy

to offload their computational services, therefore the service
offloading mechanism is very important to minimize the
energy-consumption rate of mobile devices. Also, they have
a very stringent latency-requirements, hence it is necessary to
estimate it correctly. Here, we consider the initial energy of
an edge device Hi is E i

ini. Along with energy consumption,
it is necessary to minimize the service offloading cost in
order to maximize the fairness of mobile devices. Here,
the total service offloading price for an edge device Hi is
denoted by Ct

off . Therefore, we propose a latency-oblivious
distributed task scheduling scheme to minimize the service
latency and completion time. Further, we propose latency-
oblivious distributed task scheduling algorithm for MEC.

IV. OPTIMAL LATENCY APPROXIMATION

As previously discussed that the mobile devices have a very
stringent latency requirement to offload the computational
services. However, it is very tough to know the actual latency



requirements of mobile devices practically. Also, the latency
requirements of mobile devices change dynamically, as it is
oblivious to the edge platform. Further, due to heavy network
load and congestion, the service offloading latency increases
abruptly in the network, which inherently increases the service
completion time of tasks. First, we need to estimate the total
service latency encountered by mobile devices, while offload-
ing the computational services. Later, we propose a distributed
task scheduling scheme, while taking into consideration of
unique priorities of different tasks.

• Execution Latency: The execution latency is deepened on
the average waiting time and total network delay of incoming
and outgoing flows. Mathematically,

Dexe
i (t) = Ti(Fi) + Tnet(i) (1)

where Ti(Fi) and Tnet(i) denote the average waiting time
and total network delay of incoming and outgoing flows Fi.
• Queuing Latency: The service queuing delay in the

network for available tasks is denoted as:

Dque
i (t) = GQi(t) (2)

where Qi(t) denotes the average queuing latency and G
denotes the number of existing tasks in the queue.

• Offloading Latency: The offloading latency Doff
i (t) is

directly proportional to the total waiting time to offload the
computational services on edge devices, which is:

Doff
i (t) =

Jti
qti

(3)

where Jti and qti denote the total service length and time to
execute the service Sk at time t, respectively.

Hence, the total estimated service latency Dt
to for edge

device EDi is the addition of both service execution latency
Dt

EL and service offloading latency Dt
off , defined as:

Dtot
i (t) = Ti(Fi) + Tnet(i) + GQi(t) +

Jti
qti

(4)

V. DISTRIBUTED TASK SCHEDULING

After estimating the latency requirements of mobile devices,
we now model a distributed task scheduling scheme for edge
devices to maximize the goodput and QoS of the network.
Suppose, we assume that the computational services require
T slots to offload them efficiently to edge servers. Here, we
consider a time frame with different time slots. We describe
the length of time slot and index of time-slot by t and t ∈
T = {1, 2, · · · , }, respectively. In a time-slot, if more than one
edge device chooses a particular channel for offloading their
services, then we have used the carrier sense multiple access
mechanism to overcome the possible collisions in the network.
To minimize the service completion time, it is necessary to
estimate the total cost for computational service offloading,
which is discussed below:

Estimation of Cost Factors: The edge computing plat-
form estimates different cost factors in order to offload the
services efficiently. The cost factors are discussed as follows:

• Edge Storage Cost: The storage cost of an edge service
in time slot t is equal to the storage cost of all its replicas
in edge servers Y in time slot t [24]. Thus, we have

Csto
i = cstoi (t)V (t) (5)

where cstoi (t) denotes the storage cost of edge servers Y
per unit size per unit time and V (t) denotes the size of
the edge service in time slot t.

• Replication Cost: The propagation cost for updating
replicas of the edge services, which is defined as:

Crep
i = c(Y, Yp) =

∑
i∈n

(
[ws(t)× zl(Y )]

+ ws(t)[zl(Y
′) + V (t)× L(Yp)]

)
(6)

where c(Y, Yp) denotes the transfer cost between Y and
Yp, Y ′ denotes the edge server excluding Y and Yp

that hosts a replica, ws(t) × zl(Y ) denotes the initial
replication cost, ws(t)[zl(Y

′) + V (t) × L(Yp)] denotes
the replication cost after transferring to another server,
ws(t) denotes the total number of service replications,
L(Yp) out-network price of edge server Yp per unit size.

• Management Cost: The server management cost, Cman
i ,

is dependent on the mapping price Cmap
i and initial sever

development price Csd
i [25]. It is defined as:

Cman
i = ws(t)[Cmap

i + Csd
i ] (7)

• Migration Cost: The total cost for virtual machine (VM)
creation, management and migration is defined as:

Cvm
i = Cvmcre

i + Cvmmang
i (8)

where Cvmcre
i and Cvmmang

i denote the unit VM creation
price and management price, respectively.

The total cost Ctot
i charge by edge platform is defined as,

Ctot
i = Csto

i + Crep
i + Cman

i + Cvm
i .

A. Offloading Decision Engine

In order to schedule the tasks, we need to design an optimal
offloading decision engine. First, we design the net utility
function for each mobile devices based on the estimated cost
factors and other decision metrics (i.e., energy consumption
rate, QoS, service completion time etc.). Further, we design
a latency-oblivious distributed task scheduling algorithm to
minimize the total latency.

Definition 1. The traffic flow of available task is depended
on the size of the task and total time required to complete it.
Mathematically,

F in
i (t) = SsizTS

∑
i∈n

FS
i (t) (9)

where
∑

i∈n F
S
i (t) denote the total number of aggregated

tasks coming from mobile devices, Ssiz and ti denote the size
of the task and total time required to complete it, respectively.

Definition 2. The service capacity is depended on the base
computing capacity and total resources allocated to available



tasks [26]. It is mathematically defined as:

Ci = Cba
i + λ

∑
i∈n

ηi,re (10)

where Cba
i denotes the base computing capacity, λ denote

the total number resource blocks and ηi,re denotes the total
resources allocated to tasks. Mathematically, we have, ηi,re =
ζi
Ri

. Here, ζi and Ri denote the data rate and received data
rate per resource blocks, respectively.

Definition 3. The energy consumption rate of mobile device
is deepened on the energy of device Hi when it is idle and
energy of device Hi when it is full loaded. Mathematically,

Ei = E i
ini + E i

load

Cba
i

Cmax
i

where E i
ini denotes the energy of device Hi when it is idle,

E i
load denote the energy of device Hi when it is full loaded

and Cmax
i denote the maximum base computing capacity.

Definition 4. The average number of requests Nreq is de-
pended on the total number of aggregated requests and
probability of coming B service requests. Mathematically,

Nreq = πS
B,i

∑K
i=0 γ

S
i

B
(11)

where
∑K

i=0 γ
S
i denotes the aggregated service requests and

πS
B,i denotes the probability of coming B service requests.

Definition 5. The service completion time is directly pro-
portional to the mean service rate per server and number
of servers allocated to serve the delay-sensitive workload.
Mathematically,

SCTi =
1

WiΘi(t)/bi(t)
(12)

where bi(t) denotes the number of servers allocated to serve
the delay-sensitive workload, Θi(t) denotes the mean service
rate per server and Wi denotes the arrival rate at time t.

Definition 6. The QoS-level is defined as the ratio of total
number of computational services offloaded successfully to
edge servers and the total service latency of edge devices. It
is defined as:

Qi =
Xi∑

i∈n

∑
t∈T

Dt
tot

, (13)

where Xi denotes data size of a computational service for
mobile device Hi, and Dt

tot denotes the total estimated service
latency for mobile device Hi.

Definition 7. The service queue is developed to store the
different task request from mobile devices. Hence, we model
a service quque [27], which is defined as:

Qi(t+ 1) = [Qi(t)− ai(t)fi +Hi(t)]
+ (14)

where fi denotes the total resource provided by a single server
during one time slot, Hi(t) denotes the resource demand of a

task at time t, ai(t) denotes the number of servers allocated
to serve the delay-tolerant task workload at time t and Qi(t)
denotes the amount of the unfinished task workload at the
beginning of time slot t.

B. Utility Maximization Framework

Using the Definitions 1 – 7, we formulate net utility Ui for
computational service offloading from edge devices to servers,
which is expressed as:

Ui = Υ1
CiQiF

in
i (t)

Nreq
−Υ2

[
Ei

Emax
+

Ctot
i

Cmax
i

+
1

WiΘi(t)/bi(t)

]
,

(15)
where Υ1 and Υ2 denotes the scaling factors for distributed
task scheduling. Cmax is the maximum cost set by the edge
platform. Having computed the net utility for each mobile
device, the mobile device with the maximum net utility value
emerges as the winner and get to schedule its services first than
the others. Thus, without the loss of generality, we formulate
the optimization problem as:

(P1) : maximize
t>0

∑
i∈n

Ui, (16)

Ei ≥ Emax, i ∈ n, (17)
Ci ≥ Cth, i ∈ n, (18)

Subject to SCTi ≥ SCTth, i ∈ n, (19)
Qi ≥ Qth, i ∈ n, (20)
Ctot
i ≥ Cmax, i ∈ n. (21)

(16) presents the primary optimization function for distributed
task scheduling. (17) describes that the energy consumption
rate, Ei, is to be greater than the threshold energy consumption
rate, Emax. The service capacity of a task, Ci, is to be greater
than the threshold service capacity, Cth, as shown in (18).
(19) represents that the service completion time of a task,
SCTi, is to be grater than the threshold service completion
time, SCTth. The QoS-level, Qi, is to be greater than the
threshold QoS-level, Qth, as shown in (20). (21) denotes that
the total estimated cost for mobile device Ctot

i , is greater than
the threshold cost, Cmax. Solving the optimization problem
using the Lagrangian multiplier, we get,

∆U =

n∑
i=1

ωi

Uth
Γi

(
Ei,Ci, SCTi,Qi, Ctot

i

)
−Ξ1

( n∑
i=1

Ei − Emax

)
− Ξ2

( n∑
i=1

Ci − Cth

)
−Ξ3

( n∑
i=1

SCTi − SCTth

)
− Ξ4

( n∑
i=1

Ctot
i − Cmax

)
.

where Ξ1, Ξ2, Ξ3 and Ξ4 denote the different constraints
for Lagrangian Multipliers and ωi denotes priority levels of
different services in edge devices.

Theorem 1. The considered Latency-Oblivious Distributed
Task Scheduling scheme for MEC (LOTuS) is NP-hard.



Proof. We prove the NP-hardness of this problem via a
polynomial-time reduction from an uncapacitated facility lo-
cation (UFL) problem [28], which is designed to be NP-
hard problem. The relaxation can be done by considering the
distance and cost functions in a UFL instance as the latency
estimation and task scheduling functions in our problem –
LOTuS, respectively, and setting the other things in LOTuS to
zero. This concludes our proof.

Here, (16) can be represented as a convex optimization
problem which can be solved using interior point algorithm.
Hence, our main objective is to maximize the value of Ui

using the Lagrange multiplier. We have used gradient descent
method to solve the problem. We also design a heuristic
algorithm to find a local optima at each stage with the aim of
finding a global optima.

Algorithm 1 Algorithm for Heuristic Task Scheduling
Inputs:

• Set of mobile devices (H), set of services S and total time T .
Output: Optimized service completion time ¯SCT i and waiting time Twa.
1: Set Twa = 0.
2: Set Z = n and A = m.
3: for each mobile device Hi do
4: if T < Twa then
5: First, calculate the traffic flow of available task F in

i (t).
6: Estimate service capacity Ci.
7: Calculate QoS level Qcon

i (t).
8: Estimate energy consumption rate Ei.
9: Calculate average number of requests Nreq .

10: Design utility function Ui.
11: if Ui ≥ Uth then
12: Updated set of mobile devices Z̄ = Z ∩ Hi.
13: Optimized service completion time ¯SCT i.
14: Update waiting time Twa = Twa.
15: else
16: Updated set of mobile devices Z = Z .
17: Non-optimal service completion time (ŜCT i).
18: Update waiting time Twa = Twa + 1.
19: end if
20: end if
21: end for
22: Return ¯SCT i and Twa.

We discuss the algorithm for the heuristic task scheduling
scheme. As shown in Algorithm 1, first, we need to provide
three inputs – set of mobile devices (H), set of services S
and total time T . As the designed problem is NP-hard, hence
we design this heuristic packet scheduling scheme to optimize
the service completion time and QoS in the network. Initially,
we set the waiting time Twa to 0. Thereafter, for each mobile
device Hi, we conduct the scheduling algorithm. When the
total time less than the waiting time, i.e., T < Twa, then
we calculate the traffic flow F in

i (t). Afterward, we estimate
packet transmission rate Fi(Z, t) and calculate the QoS level
Qcon

i (t). Also, we estimate the total service capacity Ci and
calculate the energy consumption rate Ei. Using the estimated
and calculated variables, we design a utility function Ui for
heuristic scheduling. If the utility function Ui greater than
the threshold utility function Uth, then we update the set of
mobile devices Z̄ = Z ∩ Hi. Also, we update the waiting
time Twa as well. Along with, we also get the optimized
service completion time ¯SCTi using Lagrangian Multiplier.
The process is stopped, when the waiting time crosses a

predefined maximum waiting time Tmax
wa . To optimize the

service completion time for different available tasks using
(16), we use the Lagrangian optimization technique to get
the optimal value.

Theorem 2. The worst-case computational complexity for
heuristic task scheduling algorithm is O(Mn2), where n is
the number of mobile devices.

Proof. At first, each mobile device tries to offload their
computational services to edge servers in order to get the
optimal service completion time. Therefore, to get the optimal
value, the worst case computation complexity of the task
scheduling algorithm is O(Gn2). Before scheduling the tasks,
the mobile devices try to minimize the total network latency
in the absence of multiple mobile devices. To minimize the
total latency, we proposed a latency-oblivious approximation
scheme for each mobile devices. Hence, the worst case com-
plexity of service latency approximation algorithm is O(Jn).
Thus, combining both the algorithms, we have,

T (n) = L1{GT (n2) + JT (n)}+ L2T (1). (22)

By combining the worst-case complexity for both the algo-
rithms, we obtain, O(Mn2), where M = G+ J. Hence, we
observe that the total computational complexity of LOTuS in
the worst case, is O(Mn2) with n as the number of mobile
devices, which completes the proof of Theorem 2.

VI. PERFORMANCE EVALUATION

We present simulation results of the proposed scheme LO-
TuS compared to existing schemes. The simulation parameters
used in the experiments are shown in Table I.

Table I: Experimental Parameters
Parameter Value

Bandwidth 20 MHz
Total number of CPU cycles of computation task 1,000 Megacycles
Service deadline [4000, 6000] ms
Computation resource demand [10, 20] MHz
Transmission power of edge device 100 mWatts
Computation capability of edge device 0.7 GHz
Computation capability of the MEC server 100 GHz
Data traffic arrival modeled as Poisson process [0, 10] unit/sec
Expected size of data traffic 100 Mbits
Computation service arrival (mean size = 1 Mbit) [0, 10],

A. Experimental Setup

Parameter Settings: we have listed the experiential
setup in Table I. We consider 200 edge devices which are
distributed over an area of 1000m x 1000m and one MEC
server located to one base station. The MEC server located
in the base station, whose computation capability is 100 GHz
and the computation capability of edge device is 0.7 GHz.
Each base station has 50 orthogonal wireless channels for
the computational service offloading from edge devices to
edge servers. Here, the cellular backhaul delay coefficient is
considered to be 0.0001 sec/KB [29], [30]. The total time
duration to offload the computation services of mobile edge
devices are randomly distributed between 5 and 10 ms. The
corresponding computation file size of each computational
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Figure 3: Analysis of latency, goodput and QoS

service varies within the range 300 and 800 KB. The delay
requirements of edge devices are considered to be within 0.5-
1 s. We used the D-ITG traffic generator [31] to model IoT
traffic flows from real traces presented in [32].

Workload: We implemented our scheme in 10 servers,
each machine configured with Intel core-i5 processor and 1.7
GHz CPU. For this work, we consider two types of traffic
workloads – latency-sensitive (i.e., edge services) and latency-
tolerant (i.e., cloud services) workloads. Here, the higher
priority is given to delay-sensitive traffic than delay-tolerant
traffic workloads. Thus, we ran edge services at a higher
priority than the normal and background services, respectively.

Benchmarks: To evaluate the performance, we use two
benchmarks - LRaTO [9] and PaOLM [11]. LRaTO [8]
proposed a latency and reality-aware task offloading for MEC.
They also implemented a resource allocation scheme, which
tries to assign the optimal resources to edge devices and
also minimizes the service latency of the network. However,
they do not consider any latency-oblivious property of edge
devices, which is unknown to the edge platform. PaOLM [11]
proposed a partial offloading scheme for MEC in order to
minimize the total latency of the network. This work also
minimizes the energy consumption rate of the edge devices.

B. Results and Discussion
Fig. 2(a) shows the service completion time in the network

for a varying number of tasks requested from different mobile
devices. As the number of tasks increases in the edge platform,

the service completion time also increases. To overcome this
problem, we proposed a latency-oblivious distributed task
scheduling scheme, which efficiently estimates the service
latency requirements of different tasks and accordingly the
tasks are scheduled among edge servers to minimize the
service completion time. From the figure, we observe that the
service completion time using proposed approach – LOTuS
increases with the variation in a number of tasks. However,
it performs better in compared to existing schemes – PaOLM
and LRaTO, where we observe our scheme perform better
in terms of service completion time by 12% and 17%,
respectively. Fig. 2(b) presents the service completion time for
varying number of mobile devices in the network. From the
figure, we observe that the cumulative service completion time
incurs for executing all the tasks available to edge platform. To
optimize the service completion time, we proposed distributed
task scheduling scheme, using that we are able to minimize
the task execution time, which eventually minimizes the
service completion time. It performs better than the existing
approaches – PaOLM and LRaTO. Hence, our proposed
approach – LOTuS outperforms the existing approaches by
8% and 10%, respectively. Fig. 2(c) shows the fairness among
different tasks for varying number of mobile devices. From the
figure, we oversee that the fairness for the proposed scheme
– LOTuS increases with the increase in number of mobile
devices. As the proposed task scheduling scheme provides
fair resources to different tasks using the optimal offloading



engine, therefore the probability of successful service execu-
tion increases in the network. However, we observe that the
proposed approach – LOTuS is able to provide the optimal
fairness to mobile devices. Therefore, the energy consumption
of mobile devices decreases, while the other approaches fail
to provide optimal fairness to mobile devices. The proposed
approach outperforms the existing approaches – PaOLM and
LRaTO by 34% and 47%, respectively. Fig. 3(a) provides the
normalized latency for the varying number of mobile devices.
In the presence of latency-tolerant and latency-sensitive tasks,
it is very tough job to optimally schedule the tasks among
edge servers to minimize the total latency. Our proposed
scheme not only optimally schedules the tasks optimally, but
the offloading engine also executes the tasks efficiently, which
inherently decreases the total latency in the network. However,
the other existing approaches fail to minimize total latency
of mobile devices. But, our proposed scheme – LOTuS pro-
vides latency-oblivious scheduling scheme, which inherently
decreases the latency and maximizes the fairness of mobile
devices. The proposed approach provides better performance
to mobile devices than the other approaches like –PaOLM and
LRaTO by 11% and 17%, respectively.

Fig. 3(b) presents the goodput of the network in the pres-
ence of varying number of mobile devices. From the figure,
we observe that the goodput of the network for mobile devices
using our proposed scheme – LOTuS is higher, therefore the
fairness among mobile devices increases using our scheme.
As the proposed approach provides fair resources to mobile
devices using the distributed task scheduling scheme, therefore
the success probability of executing tasks increases. Hence,
the goodput of the network increases. We also compare our
scheme with the existing approaches, where our approach
outperforms the existing approach by 37 − 52%. Fig. 3(c)
shows the total QoS of the network in the presence of mobile
devices. From the figure, we observe that the QoS increases
for mobile devices using our proposed scheme, as we provide
a latency-obvious task scheduling scheme for mobile devices.
We observe that the QoS using our proposed approach is
higher than the existing approach – PaOLM and LRaTO. The
proposed approach – LOTuS outperforms others in terms of
QoS by 36% and 61%.

VII. CONCLUSION

In this work, we proposed a latency-oblivious distributed
task scheduling scheme for MEC platform in the presence
of multiple mobile devices. First, we proposed a latency
estimation approach to consider the latency-oblivious property
of mobile devices for efficient service offloading. We also
propose a utility maximization scheme to minimize the total
latency and service completion time for efficient service
offloading. The proposed approach shows remarkable devel-
opment in terms of goodput, latency and fairness.
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