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WEAKLY CONTROLLED MORAN CONSTRUCTIONS AND
ITERATED FUNCTIONS SYSTEMS IN METRIC SPACES

TAPIO RAJALA AND MARKKU VILPPOLAINEN

Abstract. We study the Hausdorff measures of limit sets of
weakly controlled Moran constructions in metric spaces. The sep-
aration of the construction pieces is closely related to the Haus-
dorff measure of the corresponding limit set. In particular, we

investigate different separation conditions for semiconformal iter-
ated function systems. Our work generalizes well-known results

on self-similar sets in metric spaces as well as results on controlled
Moran constructions in Euclidean spaces.

1. Introduction

A familiar method of producing sets with fractal properties, such as the
Cantor ternary set, is to start with a single compact subset of a metric space
and proceed iteratively from one level of construction to the next by replac-
ing each construction piece by a fixed number of its compact subsets. The
principal object of study, the limit set, is then the set of those points from
the start which do not get deleted in the process. Honoring the seminal con-
tribution of P. A. P. Moran, who in [20] initiated the study of sets which are
nowadays called Moran fractals, cf. [6], we call such a construction scheme a
Moran construction. It is evident that one needs to apply some control over
the shapes and sizes of the construction pieces to get a manageable limit set.
Like Moran, we are primarily interested in determining the Hausdorff dimen-
sion of the limit set and finding out whether or not the set has positive and/or
finite Hausdorff measure in this dimension. We could go further and ask for
the exact Hausdorff measure of the set. However, this question is very hard
even for self-similar sets in Rn. See, for example, [17], [19], [25].
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Fractal sets have traditionally been studied with the help of constructing
functions. In particular, self-similar sets are constructed by iterating simili-
tude mappings (which are shape-preserving by definition), see J. E. Hutchin-
son [10]. Conditions like the open set condition and the strong open set
condition have been invented to guarantee that the dimension of a self-similar
set is fully determined by the contraction ratios of the constructing functions.
Similar conditions are also available for Moran constructions. Two basic ones,
the finite clustering property and the ball condition, were studied in detail in
[14] in a Euclidean setting, see also [11]. These conditions limit the amount
of overlap between construction pieces. Likewise, under the (strong) open set
condition, a self-similar subset of a Euclidean space is made up of its scaled-
down copies with insignificant overlap between the parts. Accordingly, the
aforementioned conditions will be referred to as separation conditions. This
paper in large part studies these conditions in the setting of general metric
spaces.

The separation conditions are sometimes exactly what is needed for a self-
similar set to have positive (and finite) Hausdorff measure at the expected
dimension, see [2], [4], [15], [23], [24]. We will however see that care must
be taken with the choice of the class of functions when working in a general
metric space. Example 4.5 gives a self-similar set in a complete doubling met-
ric space for which the open set condition is satisfied, yet the dimension of
this set cannot be inferred from the contraction ratios of the associated map-
pings. This contrasts the Euclidean case drastically. The set in the example
is constructed with non-bijective similitudes.

To avoid examples like the one mentioned above, we define properly semi-
conformal iterated function systems and prove for them (in the setting of
doubling metric spaces) in Theorem 4.9 the equivalence between different sep-
aration conditions and positivity of the Hausdorff measure of the limit set at
the critical dimension. A self-similar set constructed with bijective similitudes
serves as a basic example for a limit set of a properly semiconformal iterated
function system. Therefore, Theorem 4.9 generalizes [2, Theorem 3.1].

The paper is organized as follows. We begin Section 2 by introducing the
basic notation and recalling some definitions. Among these are the notions
of controlled Moran construction and weakly controlled Moran construction.
The rest of the section deals with basic properties of the topological pressure
and the symbol space.

In Section 3, we study the relationship between the basic separation con-
ditions for Moran constructions and the Hausdorff dimension and measure of
the limit set. We also investigate under what circumstances the finite clus-
tering property and the ball condition are actually equivalent. We mainly
focus on doubling metric spaces and transfer as many of the results obtained
in Euclidean spaces to the doubling metric spaces as possible.
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Section 4 is devoted to semiconformal iterated function systems in met-
ric spaces. The main focus in this section is the role of various separation
conditions for semiconformal and self-similar iterated function systems. We
establish the connection between Hausdorff measure, ball condition, open set
condition and strong open set condition for properly semiconformal iterated
functions systems in doubling metric spaces. The study of this connection
was suggested for example in [2]. We also give some results for semiconformal
iterated functions systems in non-doubling metric spaces.

In the final section, Section 5, we define controlled sub-constructions of
Moran constructions. We give examples of sub-constructions in Carnot groups
which answer a question posed in [3].

2. Notation and preliminaries

Let (M,d) denote a metric space M equipped with a metric d. We define an
open ball to be B(x, r) := {y ∈ M : d(y,x) < r}. The diameter of a set E ⊂ M
is written as diam(E) := sup{d(x, y) : x, y ∈ E}. The distance between two
sets E,F ⊂ M is denoted by dist(E,F ) := inf{d(x, y) : x ∈ E,y ∈ F }. We also
abbreviate dist(x,F ) := dist({x}, F ).

We will focus mainly on the Hausdorff dimension and measures of sets. Let
0 < s < ∞ and E ⊂ M . The s-dimensional Hausdorff measure of E is defined
as

Hs(E) := lim
δ→0

inf

{ ∞∑
i=1

diam(Ai)s :

E ⊂
∞⋃

i=1

Ai and diam(Ai) < δ for every i ∈ N

}
.

The 0-dimensional Hausdorff measure H0 is defined to be the counting mea-
sure: H0(E) = #E. The Hausdorff dimension of a set E ⊂ M is

dimH(E) := inf
{
s : Hs(E) = 0

}
= sup

{
s : Hs(E) = ∞

}
.

Another dimension we consider is the (upper) Minkowski dimension, which is
defined for a compact set E ⊂ M as

dimM(E) := limsup
r↓0

− logN(E,r)
log r

,

where

N(E,r) := min

{
k : A ⊂

k⋃
i=1

B(xi, r)

}
.

In the set constructions of this paper, we will always use an index set I
with 2 ≤ #I < ∞. The set of finite words will be written as I∗ :=

⋃∞
n=1 In.

The set of infinite words is I∞ := IN. For every word i = (i1, . . . , in) ∈ I∗ we
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write the length as |i| = n. With i ∈ I∗ and j ∈ I∗ ∪ I∞ we write ij to mean
the element in I∗ ∪ I∞ obtained by juxtaposing i and j.

For i ∈ I∗ and A ⊂ I∗ ∪ I∞ we write [i;A] := {ij : j ∈ A}. With this,
we define the cylinder set of i ∈ I∗ to be [i] := [i; I∞]. For i ∈ I∗ ∪ I∞ let
i|n ∈ In, with 1 ≤ n < |i|, be so that [i] ⊂ [i|n]. The notation i ⊥ j means
that i,j ∈ I∗ are incomparable, that is, [i] ∩ [j] = ∅. We also use the empty
word ∅ for which we define | ∅ | = 0 and set ∅j = j∅ = j and j|0 = ∅ for each
j ∈ I∗ ∪ I∞. For i ∈ I∗ we denote i− := i| |i|−1.

Recall that I∞ is a compact (ultra)metric space when equipped with the
metric

d2(i,j) =

{
21−min{k:i|k �=j|k } if i 
= j,

0 if i= j.

In the symbol space (I∞, d2) the balls are exactly the cylinder sets. Moreover,
every cylinder has empty boundary.

Definition 2.1. Let M be a metric space. A collection {Xi : i ∈ I∗ } of
compact subsets of M with positive diameter is a weakly controlled Moran
construction (WCMC) provided that there exists a constant D ≥ 1 so that for
every i,j ∈ I∗ the following four conditions hold:
(W1) Xi ⊂ Xi− ,
(W2) there exists n ∈ N such that

max
i∈In

diam(Xi) < D−1,

(W3) diam(Xij) ≤ D diam(Xi)diam(Xj),
(W4) diam(Xi) ≥ D−1 diam(Xi− ).
Here and in the sequel, X∅ =

⋃
i∈I Xi.

WCMC is a generalization of the notion termed controlled Moran construc-
tion (CMC) in [14]. In the definition of a controlled Moran construction, we
likewise use an indexed collection of compact sets and require that (W1) and
(W2) are satisfied. Instead of conditions (W3) and (W4), we assume the
following stronger condition:
(C1) for every i,j ∈ I∗ we have

D−1 ≤ diam(Xij)
diam(Xi)diam(Xj)

≤ D.

The next simple lemma is useful in many computations. For its proof, see
[14, Lemma 3.1].

Lemma 2.2. For a weakly controlled Moran construction there exist con-
stants c > 0 and 0 < � < 1 so that

(2.1) diam(Xi) ≤ c�|i|

for every i ∈ I∗.
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Remark 2.3. Assume that we have a CMC. From (C1), we get

diam(Xi) ≥ D−1 diam(Xi− )min
j∈I

diam(Xj)

and so the condition (W4) is satisfied. Therefore, every CMC is a WCMC.

Next, we look at the basic properties of weakly controlled Moran construc-
tions. Later on, we will assume more structure for the metric space and
different separation conditions for the sets Xi. This section, however, deals
only with results which hold in general.

Define a projection mapping π : I∞ → X by setting

{
π(i)

}
:=

∞⋂
n=1

Xi|n

for every i ∈ I∞. The intersection is non-empty because the sets Xi are
compact. The set π(I∞) is called the limit set of the WCMC and it will be
denoted by E throughout the paper. The usual candidate for the Hausdorff
dimension of the limit set E of a WCMC is the zero of the topological pressure
P given by

P (t) := lim
n→∞

1
n

log
∑
i∈In

diam(Xi)t

for each t ≥ 0. The existence of the defining limit follows by standard argu-
ments from the theory of subadditive sequences.

The topological pressure is a convex function from the interval [0, ∞) to
R and is therefore automatically continuous outside the point 0. To see the
continuity at 0 estimate using (W4)

P (t) = lim
n→∞

1
n

log
∑
i∈In

diam(Xi)t ≥ lim
n→∞

1
n

log
( ∑
i∈In

diam(X∅)tD−nt

)

= lim
n→∞

1
n

(
log#In + log

(
diam(X∅)tD−nt

))
= P (0) − t logD → P (0)

as t → 0.
When using the topological pressure in the proofs, we usually need to move

slightly away from the zero of the topological pressure. For doing this, we need
to observe that the topological pressure is strictly monotone. The following
lemma (together with the continuity of the pressure) also implies the existence
of a unique zero P −1(0).

Lemma 2.4. Assume that we have a WCMC. Then for 0 ≤ s < t we have
P (s) > P (t) t→∞−−−→ −∞.
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Proof. Using (2.1) we get

P (t) = lim
n→∞

1
n

log
∑
i∈In

diam(Xi)t

≤ lim
n→∞

1
n

(
log

∑
i∈In

diam(Xi)s + (t − s) log
(
max
j∈In

diam(Xj)
))

≤ P (s) + (t − s) log�.

Noting that log� < 0, this proves the claim. �

Remark 2.5. The condition (W4) is essential for the existence of the zero of
the topological pressure. Consider an example with I = {1,2} and diam(Xi) =
2−n2

for i ∈ In. Now P (0) = log 2, but for t > 0

P (t) = lim
n→∞

1
n

log 2n−tn2
= lim

n→∞
(1 − tn) log 2 = −∞.

Let us put Lemma 2.4 in use by proving an estimate for the Minkowski
dimension of the limit set of a WCMC from its topological pressure.

Proposition 2.6. If the topological pressure of a WCMC satisfies P (t) ≤ 0
for a given t ≥ 0, then we have dimM(E) ≤ t.

Proof. Take s > t. From Lemma 2.4, we see that P (s) < 0. Therefore there
exist c < 0 and n0 ∈ N so that

1
n

log
∑
i∈In

diam(Xi)s < c

with every n ≥ n0. Thus, ∑
i∈In

diam(Xi)s < ecn.

By the repeated use of condition (W4), we see that for any i ∈ I∗

(2.2) diam(Xi) ≥ D− |i|+1 min
j∈I

diam(Xj).

Now given 0 < r ≤ minj∈I diam(Xj) define

nr := max
{
n ∈ N : diam(Xi) ≥ r for every i ∈ In

}
.

Then by (2.2) we have

N(E,r)rs ≤
∑

i∈Inr

rs ≤
∑

i∈Inr

diam(Xi)s ≤ ecnr → 0

as r ↓ 0 and, consequently dimM(E) ≤ s. �
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A useful tool for studying the dimension of the limit set of WCMC is the
following collection of measures Mψ which we obtain by using the well known
Carathéodory’s construction. Let ψ : I∗ → [0, ∞) be a mapping such that
max{ψ(i) : i ∈ In} → 0 as n → ∞. Define for every A ⊂ I∞

Mψ
n (A) := inf

{∑
i∈C

ψ(i) : C ⊂ I∗,A ⊂
⋃
i∈C

[i], |i| ≥ n

}

and from this
Mψ(A) := lim

n→∞
Mψ

n (A).

In the case ψ(i) = diam(Xi)t we write M t = Mψ . Notice that although the
measures M t look like Hausdorff measures, they live on the symbol space I∞

and, without any separation condition for the sets Xi, they can not necessarily
be pushed to be Hausdorff measures on a subset of the actual metric space M .

On the symbol space we have the following connection between the topo-
logical pressure and the measures M t.

Lemma 2.7. Given a WCMC and any t ≥ 0 satisfying P (t) ≥ 0, we have
M t(I∞) > 0.

Proof. Assume, to the contrary, that M t(I∞) = 0. Because I∞ is compact,
there exists a finite set Q ⊂ I∗ and s < t such that I∞ ⊂

⋃
i∈Q[i] and∑

i∈Q

diam(Xi)s <
(
2Ds

)−1
.

Then from (W3) we get
∑
i∈Q∗

diam(Xi)s =
∞∑

n=1

∑
i∈Qn

diam(Xi)s ≤
∞∑

n=1

(∑
i∈Q

Ds diam(Xi)s

)n

≤
∞∑

n=1

2−n = 1.

Denote q = max{|i| : i ∈ Q}. If now i ∈ I∗, there exist j ∈ Q∗ and k ∈ I∗

with |k| ≤ q so that ik= j. Hence for any n ≥ 1, we get by using (W4)∑
i∈In

diam(Xi)s ≤ Dqs
∑
j∈Q∗

diam(Xj)s ≤ Dqs.

Thus P (s) ≤ 0. Because P (t) < P (s) by Lemma 2.4, we have arrived at a
contradiction. �

The transition from the measure M t to a more suitable Borel measure μ
will be done with the following version of Frostman’s lemma. Regarding the
proof, the idea of using standard techniques from functional analysis is due to
J. D. Howroyd, see [9, Theorem 2]. The main part of the proof presented here
is quite analogous to the proof of Frostman’s lemma for standard Hausdorff
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measures given in [18, Theorem 8.17]. However, we give the details for the
benefit of the reader. Note the convenient fact that C(I∞), the space of
continuous real-valued functions on I∞, contains the characteristic functions
of cylinder sets.

Proposition 2.8. Let ψ : I∗ → [0, ∞) be a mapping such that max{ψ(i) :
i ∈ In} → 0 as n → ∞. Given a compact A ⊂ I∞ with Mψ(A) > 0, there exist
n0 ∈ N and a Borel measure μ on I∞ such that 0 < μ(A) < ∞, μ(I∞ \ A) = 0
and

μ
(
[i]

)
≤ ψ(i)

for every i ∈ I∗ with |i| ≥ n0. If ψ(i) > 0 for every i ∈ I∗, we can choose
n0 = 1.

Proof. Let n0 ∈ N be so large that Mψ
n0

(A) > 0. We define a real-valued
function p on C(I∞) by

p(f) = inf
∑
i

ciψ(i),

where the infimum is taken over all finite or countable families {(i, ci)} such
that 0 < ci < ∞, |i| ≥ n and

f |A ≤
∑
i

ciχ[i].

For f, g ∈ C(I∞) and t ≥ 0, we have p(tf) = tp(f) and p(f + g) ≤ p(f) + p(g).
Let 1 denote the constant function from I∞ to the reals with 1(I∞) = {1}. We
will prove in a separate lemma that p(1) = Mψ

n0
(A). For the moment, simply

assume that this equality holds. By the Hahn–Banach theorem (in the form
presented e.g., in [22, Theorem 3.2]), we can extend the linear functional c1 �→
cp(1), c ∈ R, from the subspace of constant functions to a linear functional
L : C(I∞) → R satisfying L(1) = p(1) = Mψ

n0
(A) and

−p(−f) ≤ L(f) ≤ p(f) for f ∈ C
(
I∞)

.

If f ≥ 0, p(−f) = 0 and so L(f) ≥ 0. Hence by the Riesz representation
theorem, there exists a Borel measure μ on I∞ such that L(f) =

∫
f dμ for

f ∈ C(I∞). Since χ[i] ∈ C(I∞) for each i ∈ I∗, we now have

μ
(
[i]

)
=

∫
χ[i](x)dμ(x) = L(χ[i]) ≤ p(χ[i]) ≤ ψ(i)

when |i| ≥ n0. It is also clear that μ(I∞ \ A) = 0 and hence μ(A) = μ(I∞) =
L(1) = Mψ

n0
(A), which is positive and finite.

To address the remaining claim, we now assume that ψ(i) > 0 for each
i ∈ I∗. It suffices to show that Mψ

1 (A) is positive. Let εn = min|i|≤n ψ(i)
for n ∈ N. Suppose Mψ

1 (A) = 0. Then for each n ∈ N there exists Cn ⊂ I∗
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such that A ⊂
⋃

i∈Cn
[i] and

∑
i∈Cn

ψ(i) < εn. But then ψ(i) < εn for each
i ∈ Cn, so that |i| > n for every i ∈ Cn and we may conclude that

Mψ
n (A) ≤

∑
i∈Cn

ψ(i) < εn
n→∞−−−−→ 0.

This however contradicts the positivity of Mψ(A). Hence, Mψ
1 (A) > 0. �

We have yet to fill the gap left in the proof of Proposition 2.8.

Lemma 2.9. With assumptions and definitions as in the proof of Proposi-
tion 2.8, we have p(1) = Mψ

n0
(A).

Proof. It is clear that p(1) ≤ Mψ
n0

(A), so it remains to show that whenever
we are given positive constants ci, i ∈ D ⊂

⋃
n≥n0

In, such that∑
i∈D

ciχ[i](x) ≥ 1

for every x ∈ A, then
Mψ

n0
(A) ≤

∑
i∈D

ciψ(i).

Let 0 < t < 1, and for each n ≥ n0 set Dn = {i ∈ D : |i| ≤ n}. Since A is
compact and the sets {

x ∈ I∞ :
∑
i∈Dn

ciχ[i](x) > t

}

form an open cover of A, there is some N ∈ N such that∑
i∈DN

ciχ[i](x) ≥ t for every x ∈ A.

We assume (with no loss of generality) that A ∩ [i] 
= ∅ for every i ∈ DN .
Our objective is now to find a pairwise incomparable collection D′ ⊂ DN

such that

(2.3)
∑
i∈D′

tψ(i) ≤
∑

i∈DN

ciψ(i) and A ⊂
⋃
i∈D′

[i].

We may assume that there is some i ∈ DN such that ci < t and [i] 
⊂ [j] for
every j ∈ DN \ {i}, as otherwise we are done. Let

Di =
{
j ∈ DN \ {i} : [j] ⊂ [i]

}
.

The given assumptions imply that Di 
= ∅ and A ∩ [i] = A ∩
⋃

j∈Di
[j]. Now

consider the inequality

(2.4) ψ(i) ≤ 1
t − ci

∑
j∈Di

cjψ(j).
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If (2.4) holds, then

tψ(i) = ciψ(i) + (t − ci)ψ(i) ≤ ciψ(i) +
∑
j∈Di

cjψ(j).

If (2.4) does not hold, then
t

t − ci

∑
j∈Di

cjψ(j) =
ci

t − ci

∑
j∈Di

cjψ(j) +
∑
j∈Di

cjψ(j)

< ciψ(i) +
∑
j∈Di

cjψ(j).

Thus, in either case, we get a reduced collection D′
N � DN and constants

c′
i ≥ ci such that

∑
i∈D′

N
c′
iχ[i](x) ≥ t for every x ∈ A and∑

i∈D′
N

c′
iψ(i) ≤

∑
i∈DN

ciψ(i).

By reiterating the above procedure we ultimately end up with a collection
D′

N such that the subcollection

D′ :=
{
i ∈ D′

N : [i] 
⊂ [j] for every j ∈ D′
N \ {i}

}
satisfies (2.3). Then we have

tMψ
n0

(A) ≤
∑
i∈D′

tψ(i) ≤
∑

i∈DN

ciψ(i) ≤
∑
i∈D

ciψ(i).

Letting t → 1 wraps up the proof. �

3. Separation conditions for Moran constructions

With any n ∈ N the sets Xi, i ∈ In, of a WCMC can have very different
diameters. Therefore we define for r > 0

Z(r) :=
{
i ∈ I∗ : diam(Xi) ≤ r < diam(Xi− )

}
.

Then each Xi with i ∈ Z(r) is a set of roughly diameter r. Also notice that
i ⊥ j for two distinct i,j ∈ Z(r). We define a local version of this for every
r > 0 and x ∈ E as

Z(x, r) :=
{
i ∈ Z(r) : Xi ∩ B(x, r) 
= ∅

}
.

Now we are ready to pass to the actual metric space and look for conditions
on the sets Xi which imply estimates on the Hausdorff measures. A WCMC
has the finite clustering property if

sup
x∈E

limsup
r↓0

#Z(x, r) < ∞.

This property is a sufficient separation condition to guarantee the positivity
of the Hausdorff measure of the limit set of a WCMC.
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Proposition 3.1. Assume that for a WCMC the finite clustering property
holds and P (t) ≥ 0. Then Ht(E) > 0. Moreover, Ht(E) < ∞ if and only if
M t(I∞) < ∞.

Proof. Because P (t) ≥ 0, Lemma 2.7 gives M t(I∞) > 0. Therefore from
Proposition 2.8 we see that there exists a Borel measure μ on I∞ such that
0 < μ(I∞) < ∞ and

μ
(
[i]

)
≤ diam(Xi)t

for every i ∈ I∗. Let
K = sup

x∈E
limsup

r↓0
#Z(x, r).

Take k ∈ N and define

Ek =
{

x ∈ E : #Z(x, r) ≤ K for every 0 < r <
1
k

}
.

Choose any collection of sets Ai ⊂ M , i ∈ N, for which diam(Ai) < 1
k , Ai ∩

Ek 
= ∅ and Ek ⊂
⋃∞

i=1 Ai. Fix for each i ∈ N a point xi ∈ Ai ∩ Ek. Now we
can estimate

μ ◦ π−1(Ek) ≤
∞∑

i=1

μ ◦ π−1
(
B

(
xi,diam(Ai)

))

≤
∞∑

i=1

∑
i∈Z(xi,diam(Ai))

μ
(
[i]

)
≤

∞∑
i=1

K diam(Ai)t.

Therefore by letting k → ∞, we get

Ht(E) ≥ 1
K

μ
(
I∞)

> 0

and the first claim is proved.
Suppose M t(I∞) < ∞. Because of (2.1) the sets Xi serve as covering sets

Ai when calculating the Hausdorff measure. Hence, Ht(E) < ∞.
Assume then that Ht(E) < ∞. Take n ∈ N and let k ∈ N be so large that

1
k < diam(Xi) for every i ∈ In. Define Ek as before and take any collection of
sets Ai ⊂ M , i ∈ N, for which diam(Ai) < 1

k , Ai ∩ Ek 
= ∅ and Ek ⊂
⋃∞

i=1 Ai.
Choose for each i ∈ N a point xi ∈ Ai ∩ Ek. Now

π−1(Ek) ⊂
⋃
i∈N

i∈Z(xi,diam(Ai))

[i].

Since diam(Xi) ≤ diam(Ai) < 1
k for i ∈ Z(xi,diam(Ai)) and thus |i| ≥ n, we

have

M t
n

(
π−1(Ek)

)
≤ K

∞∑
i=1

diam(Ai)t.
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Therefore, M t(π−1(Ek)) ≤ KHt(Ek). Because Ek1 ⊂ Ek2 for 0 < k2 < k1, we
get

M t
(
I∞)

= lim
k→∞

M t
(
π−1(Ek)

)
≤ KHt(E)

which completes the proof. �
By combining Proposition 3.1 with Proposition 2.6, we see that

dimH(E) = dimM(E) = P −1(0)

for the limit set E of a WCMC with the finite clustering property. In the
Euclidean case, this follows alternatively from a result by L. Barreira. Al-
though in [5, Theorem 2.1] he assumed a stronger separation condition, he
only needed the finite clustering property for the construction in the proof of
[5, Theorem 2.1(b)].

For the limit set E of a WCMC it is not generally true that Ht(E) < ∞
when P (t) = 0. This can be seen from the following example.

Example 3.2. Take I = {1,2} and define diam(Xi) = 1
2 for i ∈ I and

diam(Xi) = 2−2+ 1
n diam(Xi− ) for i ∈ I∗ \ I . Now

P (t) = lim
n→∞

1
n

(
n − t

(
2n −

n∑
k=1

1
k

))
log 2 = (1 − 2t) log 2.

Therefore, P ( 1
2 ) = 0. On the other hand, one can construct a Cantor set E

on R using such construction pieces to obtain H 1
2 (E) = ∞, see [21] for an

exact formula for the Hausdorff measure of such constructions. Notice that
the construction given there has the finite clustering property.

Remarks 3.3. (i) With a proof similar to that of Proposition 3.1 we
can improve a result [13, Theorem 5.1] on sub-self-affine sets. Namely, for
a tractable sub-self-affine set EK in Rn having the finite clustering prop-
erty we have Hs(EK) > 0 when PK(s) = 0. (See [13] for the definition of a
tractable sub-self-affine set.) Previously it was shown in [13] that dimH(EK) =
dimM(EK) = s.

Self-affinity means that the constructing sets Xi are obtained by iterating
affine mappings {f1, . . . , fN }. The compact set K ⊂ I∞, referring to the prefix
sub, is assumed to be such that for every (i1, i2, . . .) ∈ K also (i2, i3, . . .) ∈ K.
The sub-self-affine set is defined as EK = π(K). Tractability for the sub-self-
affine set is a condition which guarantees that the diameters of the construct-
ing sets are comparable to the largest singular values of the constructing affine
mappings, see [12, Lemma A.3].

In this setting, the proof of Lemma 2.7 can still be carried out and using
A = K in Proposition 2.8 gives a measure μ on K such that 0 < μ(K) < ∞
and μ([i|n]) ≤ diam(Xi|n

)s for every i ∈ K and n ∈ N. The improvement is
then finished with a similar use of the finite clustering property as in Propo-
sition 3.1.
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(ii) Self-affine constructions are an important subclass of WCMC. They
can have, similarily to the Example 3.2, Ht(E) = ∞ when P (t) = 0. Take
for example a set in R2 constructed using two affine mappings f1((x, y)) =
λ(x,x+y) and f2((x, y)) = λ(x,x+y)+(1,1) with some fixed 0 < λ < 1

2 . The
fact that Ht(E) = ∞ follows by observing that diam(Xi) is essentially |i|λ|i|

and that there is enough separation among the construction pieces, see [13,
Example 6.4].

The finite clustering property is not always easy to check. Therefore, we
make the following definition. A WCMC satisfies the ball condition if there
exists a constant 0 < δ < 1 such that for every x ∈ E we can take a radius
rx > 0 so that with every 0 < r < rx there is a set {xi : dist(xi,Xi) < r,i ∈
Z(x, r)} for which the collection {B(xi, δr) : i ∈ Z(x, r)} is pairwise disjoint.

We give now a basic example of a WCMC on the Euclidean plane R2 which,
in general, is not a CMC.

Example 3.4. We define a self-affine set E using two affine mappings.
Choose 0 < a0, a1, b0, b1 < 1 so that a0 +a1 ≤ 1 and b0 + b1 ≤ 1. Let c = 1 − a1

and d = 1 − b1. We define f0, f1 : R2 → R2 by setting

f0(x, y) = (a0x, b0y),
f1(x, y) = (a1x + c, b1y + d)

for x, y ∈ R. The unit square Q = [0,1] × [0,1] is mapped into itself by these
mappings with f0(Q) = [0, a0] × [0, b0] and f1(Q) = [1 − a1,1] × [1 − b1,1]. We
let I = {0,1} and for each i= (i1, i2, . . . , ik), k ∈ N, define

Xi = fi1 ◦ fi2 ◦ · · · ◦ fik
(Q)

which is a rectangle of width ai = ai1ai2 · · · aik
and height bi = bi1bi2 · · · bik

.
To see that {Xi : i ∈ I∗ } is a WCMC, note that

1
2
(ai + bi) ≤ max{ai, bi} < diam(Xi) =

√
a2
i + b2

i < ai + bi

for i ∈ I∗, from which (W3) and (W4) easily follow (for a suitably large
D > 1). Conditions (W1) and (W2) are trivial to check.

Let xi = (ui, vi) be the center point of Xi for i ∈ I∗. By looking at the
coordinates separately we get for i ⊥ j

d(xi, xj) ≥

√(
ai + aj

2

)2

+
(

bi + bj
2

)2

≥ ai + aj + bi + bj
4

≥ 1
4

√
a2
i + b2

i +
1
4

√
a2
j + b2

j

=
1
4

diam(Xi) +
1
4

diam(Xj).
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Thus for i ⊥ j we have

B

(
xi,

1
4

diam(Xi)
)

∩ B

(
xj,

1
4

diam(Xj)
)

= ∅.

It follows now from (W4) that the ball condition holds.
The following Proposition 3.5 and Remark 3.6(ii) will show that in R2 the

ball condition and the finite clustering property are equivalent. We use this
fact to determine the Hausdorff dimension of the limit set E. The topological
pressure is easily calculated to be

P (t) = max
{
log

(
at
0 + at

1

)
, log

(
bt
0 + bt

1

)}
,

see [13, (6.1)]. Let s = P −1(0). It is clear that 0 < s ≤ 1 and by Proposition 3.1
we have dimH(E) = s and Hs(E) > 0. We also have Hs(E) < ∞. To see this,
note that E ⊂

⋃
i∈In B(xi,

1
2 (ai + bi)) and the diameters of these balls tend

to zero as n → ∞. Also note that as
0 + as

1 ≤ 1 and bs
0 + as

1 ≤ 1. Therefore, for
each ε > 0 there is an n ∈ N such that

Hs
ε(E) ≤

∑
i∈In

(ai + bi)s ≤
∑
i∈In

as
i +

∑
i∈In

bs
i

=
(
as
0 + as

1

)n +
(
bs
0 + bs

1

)n ≤ 2.

Consequently, 0 < Hs(E) ≤ 2.

We will show that the ball condition is equivalent to the finite clustering
property under some natural conditions for the space or for the WCMC. We
start by tracking down how certain bounds for possible cardinalities of collec-
tions of disjoint balls with equal radii affect the situation (see Proposition 3.5
below).

Let A ⊂ M and r > 0. We call a collection of balls {B(x, r) : x ∈ H} an
r-packing of the set A, if H ⊂ A and B(x, r) ∩ B(y, r) = ∅ for every y,x ∈ H ,
x 
= y. Furthermore we call the packing maximal, if

A ⊂
⋃

y∈H

B(y,2r).

With these notions we can formulate our primary conditions as to when the
finite clustering property and the ball condition imply each other. This gen-
eralizes [14, Proposition 3.5].

Proposition 3.5. Suppose we have a WCMC. Let c, r0 > 0 and α1 ≥ α2 >
0 be constants. Assume that for every x ∈ M and 0 < r < R < r0, and for
every maximal r-packing {B(x, r) : x ∈ H} of B(x,R) we have

(3.1) #H < c

(
R

r

)α1

.
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Then the ball condition implies the finite clustering property. If we, on the
other hand, have

(3.2) #H > c−1

(
R

r

)α2

then the finite clustering property implies the ball condition.

Proof. Assume that (3.1) and the ball condition hold. Take x ∈ E and
let 0 < r < min{rx,5−1r0}. For every i ∈ Z(x, r), choose a point xi so that
dist(xi,Xi) < r and the collection {B(xi, δr) : i ∈ Z(x, r)} is pairwise disjoint.
Now

d(xi, x) ≤ dist(xi,Xi) + diam(Xi) + r ≤ 3r

and therefore by (3.1) we have

#Z(x, r) ≤ c

(
4r

δr

)α1

= c

(
4
δ

)α1

.

Thus, the WCMC has the finite clustering property.
Assume now (3.2) and the finite clustering property. Then there exists

L > 0 such that for every x ∈ E there is 0 < rx < r0 so that #Z(x, r) < L
whenever 0 < r < rx. Define

δ =
1
2
(Lc)− 1

α2 .

For each i ∈ Z(x, r) choose a point yi ∈ B(x, r) ∩ Xi. We will find the disjoint
collection of balls B(xi, δr) with centers inside the balls B(yi, r). Let us write
Z(x, r) = {ij : j = 1, . . . ,#Z(x, r)}. Now as the first center, xi1 , choose any
point from B(yi1 , r). Rest will be chosen by induction. Assume that for
0 < k < #Z(x, r) the points xij , j = 1, . . . , k have been chosen. The claim is
that there exists a point

xik+1 ∈ B(yik+1 , r)
∖ k⋃

j=1

B(xij ,2δr).

Assume the contrary. Now writing down the inequality (3.2) gives

k > c−1

(
r

2δr

)α2

= L,

a contradiction. Ball condition is then satisfied. �

Remarks 3.6. (i) We can achieve the equivalence between the ball condi-
tion and the finite clustering property by requiring the existence of a measure
μ on M so that for every x ∈ M and 0 < r < R < r0 we have

(3.3) c−1

(
R

r

)α2

<
μ(B(x,R))
μ(B(x, r))

< c

(
R

r

)α1

.
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This forces the inequalities (3.1) and (3.2) to hold: if we let H be as in
Proposition 3.5, then by comparing the measures we get

#Hc−1

(
r

4R

)α1

<
∑
y∈H

μ(B(y, r))
μ(B(y,4R))

≤
∑
y∈H

μ(B(y, r))
μ(B(x,2R))

≤ 1

and
1

c4α1
<

μ(B(x,R))
μ(B(x,4R))

≤
∑
y∈H

μ(B(y,2r))
μ(B(x,4R))

≤
∑
y∈H

μ(B(y,2r))
μ(B(y,2R))

< #Hc

(
r

R

)α2

.

(ii) Assume that the space M is Ahlfors s-regular, which means that there
exists a measure μ on M and constants r0, c > 0 so that

c−1rs ≤ μ
(
B(x, r)

)
≤ crs

for every x ∈ M and 0 < r < r0. The measure μ now satisfies the condition
(3.3). Hence by Proposition 3.5 and the remark above, the finite clustering
property and the ball condition are equivalent. This holds, in particular, in
Rn (which is n-regular).

(iii) Now assume that the space M contains at least two points and is
uniformly perfect, which means that there exists a constant C > 1 so that
for each x ∈ M and for each r > 0 the set B(x, r) \ B(x, r/C) is non-empty
whenever the set M \ B(x, r) is non-empty. In this situation, the inequality
(3.2) holds. To see this, let 0 < r0 < 1

2 diam(M) and define δ = (2C + 1)−1.
Then for 0 < R < r0 and x ∈ M the set M \ B(x,R − δR) is non-empty and
therefore B(x,R − δR) \ B(x, R−δR

C ) is non-empty. Hence every maximal δR-
packing of B(x,R − δR) contains at least 2 balls. Now iterating this we get
that inequality (3.2) holds with c = 2 and α2 = − log 2

log δ . Consequently, the finite
clustering property implies the ball condition in a uniformly perfect space.

(iv) Finally, let us assume that the space M is doubling. Doubling means
that there exists a constant κ ∈ N so that every ball B(x,2r) can be covered
with κ balls of radius r. Now for 0 < r < R let n ∈ N be so that 2−nR ≤ r <
2−n+1R. Let H be as in Proposition 3.5. For any point y ∈ M there can be
at most one point in H ∩ B(y,2−n−1R). Therefore by iterating the doubling
condition, we get

#H ≤ κn+1 = κ2
(
2n−1

)log2 κ ≤ κ2

(
R

r

)log2 κ

.

The inequality (3.1) then holds. We conclude that for a WCMC defined on a
doubling metric space, the ball condition implies the finite clustering property.

In the remaining part of this section, we will work under the assumption
that M is doubling. With doubling metric spaces we can make use of certain
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nicely behaved embeddings of these spaces into Euclidean spaces. Working
with several spaces and metrics at the same time, we will emphasize the
corresponding space, metric or construction with a subscript in the notation
whenever there is a possibility of confusion. The standard Euclidean distance
function (x, y) �→ |x − y| will be denoted by de. Accordingly, diame(A) will
mean the Euclidean diameter of A and diste(A,B) the Euclidean distance
between A and B for A,B ⊂ Rn (with any n ∈ N).

From a metric d on M we can derive a snowflaked metric for a parameter
0 < p < 1 by defining dp(x, y) = (d(x, y))p. A celebrated theorem of P. Assouad
[1, Proposition 2.6] gives then the following.

Theorem 3.7. Let (M,d) be a doubling metric space. Then for each 0 <
p < 1 there exists n ∈ N and a bi-Lipschitz embedding

f :
(
M,dp

)
→

(
Rn, de

)
.

In the next proposition, we see that the WCMC structure is preserved
under the embedding of Theorem 3.7. However, it is not clear if all the sep-
aration conditions can be transferred in both directions with the embedding.
In particular, the ball condition uses points from a neighborhood of the con-
struction pieces and when the ball condition is considered in Rn these points
might lie in Rn \ f(M).

Proposition 3.8 lists the properties which behave well under the embedding:
the Hausdorff measures, topological pressure and finite clustering property can
be transferred back and forth between the spaces, whereas the ball condition
and tractability can be pushed to the image side. This last property is defined
as follows: a WCMC is tractable if there is a constant C ≥ 1 such that for
each r > 0 we have

dist(Xhi,Xhj) ≤ C diam(Xh)r
whenever h ∈ I∗, i,j ∈ Z(r), and dist(Xi,Xj) ≤ r.

Proposition 3.8. Let M = {Xi : i ∈ I∗ } be a WCMC (or CMC) in a
doubling metric space M and p, n and f as in Theorem 3.7. Then
(1) M ′ := {f(Xi) : i ∈ I∗ } is a WCMC (or CMC respectively) in Rn,
(2) PM(pt) = PM′ (t) for every t ≥ 0,
(3) there exists a constant C > 0 so that

C−1Hs
e

(
f(A)

)
≤ Hsp

d (A) ≤ CHs
e

(
f(A)

)
for every Borel set A ⊂ M ,

(4) the following three are equivalent:
(a) M has the finite clustering property,
(b) M′ has the finite clustering property,
(c) M ′ satisfies the ball condition.
These three conditions also hold if M satisfies the ball condition,

(5) if M is tractable, then M ′ is tractable.
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Proof. We will prove the proposition for a WCMC. The proof for a CMC
is similar. Let L be the bi-Lipschitz constant of f and constants c and � from
Lemma 2.2. Assume M is a WCMC. Take t ≥ 0. Since

L−t diame

(
f(Xi)

)t ≤ diamd(Xi)pt ≤ Lt diame

(
f(Xi)

)t
,

(2) and (3) are true.
Let us check (1). For M′ the condition (W1) is obvious. To see (W3) we

calculate for every i,j ∈ I∗

diame

(
f(Xij)

)
≤ Ldiamd(Xij)p ≤ LDp diamd(Xi)p diamd(Xj)p

≤ L3Dp diame

(
f(Xi)

)
diame

(
f(Xj)

)
.

Similarly for (W4), we get

diame

(
f(Xi)

)
≥ L−1 diamd(Xi)p ≥ L−1D−p diamd(Xi− )p

≥ L−2D−p diame

(
f(Xi− )

)
.

Finally, (W2) follows from (2.1) with large enough n ∈ N by

max
i∈In

diame

(
f(Xi)

)
≤ Lmax

i∈In
diamd(Xi)p ≤ cpL�pn < D−1.

We denote by D′ the constant D for M ′ in the definition of a WCMC.
Next, we prove (4). Since the ball condition implies the finite clustering

property in a doubling metric space, we only need to prove the three equiv-
alences. Assume that M has the finite clustering property. Take x ∈ E and
r > 0. First, we notice that

f −1
(
Be

(
f(x), r

))
⊂ Bd

(
x, (Lr)1/p

)
.

Take i ∈ ZM(x, (Lr)1/p). Now diame(f(Xi)) ≤ L2r. Let l be the smallest
integer which satisfies

l >
− log(D′L3cp)

log(�p)
.

Now for any h ∈ I l

diame

(
f(Xih)

)
≤ D′ diame

(
f(Xi)

)
diame

(
f(Xh)

)
≤ D′ · L2r · Lcp�pl ≤ r.

Therefore
#ZM′

(
f(x), r

)
≤ #I l#ZM

(
x, (Lr)1/p

)
so the finite clustering property holds for M ′.

Assume that M does not have the finite clustering property. Take M ∈ N.
There exists a point x ∈ X such that limsupr↓0 #ZM(x, r) > M . Let r > 0

be small so that #ZM(x, r) ≥ M . Fix m ∈ N so that m > log(L4/pD2c)
− log� . Our

claim is that

(3.4) #ZM′
(
f(x),Lrp

)
≥ M

#Im
.
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Take any i ∈ ZM(x, r) and for it find k ∈ N so that

diame

(
f(Xi|k

)
)

≤ Lrp < diame

(
f(Xi|k−1)

)
.

Now f(Xi|k
) ∩ Be(f(x),Lrp) 
= ∅ and by (W4), (W3) and (2.1) we have

rp

L
< diame

(
f(Xi− )

)
≤ LDp diamd(Xi)p ≤ LD2p diamd(Xi|k

)p diamd(Xj)p

≤ L2D2p diame

(
f(Xi|k

)
)
diamd(Xj)p ≤ L3D2prpcp�p|j|,

where i = i|kj. From the choice of m we see that |j| ≤ m and thus (3.4)
holds. Therefore M ′ does not have the finite clustering property.

Lastly, because M ′ is a WCMC in Rn, the finite clustering property and
the ball condition are equivalent.

We are left with proving (5). Take r > 0, h ∈ I∗ and i,j ∈ ZM′ (r) so that
diste(f(Xi), f(Xj)) ≤ r. Now distd(Xi,Xj) ≤ (Lr)1/p and

max
{
diamd(Xi),diamd(Xj)

}
≤ (Lr)1/p.

Let i′,j′ ∈ ZM((Lr)1/p) so that [i] ⊂ [i′] and [j] ⊂ [j′]. Because M is
tractable, we have

distd(Xhi′ ,Xhj′ ) ≤ C diamd(Xh)(Lr)1/p.

Therefore

diste

(
f(Xhi′ ), f(Xhj′ )

)
≤ Ldistd(Xhi′ ,Xhj′ )p ≤ L2Cp diamd(Xh)pr

≤ L3Cp diame

(
f(Xh)

)
r.

On the other hand we get

diame

(
f(Xhi′ )

)
≤ D′ diame

(
f(Xh)

)
diame

(
f(Xi′ )

)
≤ D′ diame

(
f(Xh)

)
Ldiamd(Xi′ )p

≤ L2D′ diame

(
f(Xh)

)
r

and the same estimate for diame(f(Xhj′ )). By combining these estimates we
get

diste

(
f(Xhi), f(Xhj)

)
≤ diame

(
f(Xhi′ )

)
+ diame

(
f(Xhj′ )

)
+ diste

(
f(Xhi′ ), f(Xhj′ )

)
≤

(
L3Cp + 2L2D′)diame

(
f(Xh)

)
r

and we are done. �

As a first consequence of Proposition 3.8, we prove the following result.

Proposition 3.9. A tractable CMC in a doubling metric space has the
finite clustering property if Ht(E) > 0 with t = P −1(0).
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Proof. This result is true in Rn, [14, Theorem 3.9]. Let {Xi : i ∈ I∗ } be a
tractable CMC in M so that Ht(E) > 0 with P (t) = 0. Take 0 < p < 1. Then
by Proposition 3.8 {f(Xi) : i ∈ I∗ } is a tractable CMC in Rn with P ( t

p ) = 0

and Ht/p
e (f(E)) > 0. Therefore, we know that {f(Xi) : i ∈ I∗ } satisfies the

finite clustering property. The finite clustering property for the original CMC
follows then from Proposition 3.8. �

4. Semiconformal iterated function systems

Assume that M is a complete metric space and that for each i ∈ I there
is a contractive injection ϕi : M → M . By contractivity of a mapping ϕ we
mean that there is a constant 0 < s < 1 so that

d
(
ϕ(x), ϕ(y)

)
≤ sd(x, y)

for every x, y ∈ M . The collection {ϕi : i ∈ I} is called an iterated function
system (IFS). As is well known, there is a unique non-empty compact set
E ⊂ M (which we call the invariant set of the IFS) such that

E =
⋃
i∈I

ϕi(E).

We call the contractive mapping ϕi a similitude if there exists a fixed ratio
0 < ri < 1 such that d(ϕi(x), ϕi(y)) = rid(x, y) for every x, y ∈ M . If all the
mappings of the IFS are similitudes, the invariant set is called self-similar.

Write ϕi = ϕi1 ◦ · · · ◦ ϕin for i= (i1, . . . , in) and n ∈ N. We say that the IFS
is semiconformal if the invariant set E has positive diameter and there are
constants D ≥ 1 and 0 < si ≤ si < 1 (for each i ∈ I∗) such that si ≤ Dsi and

(4.1) sid(x, y) ≤ d
(
ϕi(x), ϕi(y)

)
≤ sid(x, y)

for any x, y ∈ M and i ∈ I∗. Note that then

(4.2)
D−1

diam(E)
diam

(
ϕi(E)

)
≤ si ≤ si ≤ D

diam(E)
diam

(
ϕi(E)

)
for each i ∈ I∗.

The following was proved in [14, Lemmas 5.1 and 5.2] for semiconformal
IFSs in Rd. Although the proof is the same in metric spaces, we repeat it here.

Proposition 4.1. Let E be the invariant set of a semiconformal IFS
{ϕi : i ∈ I}. Then {ϕi(E) : i ∈ I∗ } is a tractable CMC.

Proof. Let us first prove that {ϕi(E) : i ∈ I∗ } is a CMC. By semiconfor-
mality, we have diam(E) > 0. Since E =

⋃
i∈I ϕi(E), (W1) is satisfied. From

(4.1) and (4.2), we get

diam
(
ϕij(E)

)
≤ si diam

(
ϕj(E)

)
≤ D

diam(E)
diam

(
ϕi(E)

)
diam

(
ϕj(E)

)
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and

diam
(
ϕij(E)

)
≥ si diam

(
ϕj(E)

)
≥ D−1

diam(E)
diam

(
ϕi(E)

)
diam

(
ϕj(E)

)
.

Thus (C1) holds. Contractivity of ϕi for every i ∈ I ensures (W2).
To see tractability, assume r > 0, take any h ∈ I∗ and choose i,j ∈ Z(r) so

that dist(ϕi(E), ϕj(E)) ≤ r. Then

dist
(
ϕhi(E), ϕhj(E)

)
≤ sh dist

(
ϕi(E), ϕj(E)

)
≤ Dsh dist

(
ϕi(E), ϕj(E)

)
≤ D

diam(E)
diam

(
ϕh(E)

)
r,

and we are done. �

In the sequel, we will denote ϕi(E) by Ei whenever the need to sim-
plify the notation arises. Given an IFS {ϕi}i∈I , the set system {Ei}i∈I∗

is not necessarily a WCMC but when it is, we call the topological pressure
of the WCMC also the pressure of the corresponding IFS. By (4.2), it is
clear that the pressure of a semiconformal IFS can be calculated by the for-
mula

P (t) = lim
n→∞

1
n

log
∑
i∈In

st
i,

where each si, i ∈ I∗, is allowed to be any of the numbers diam(Ei), si or
si. In the special case that every ϕi is a similitude and ri, i ∈ I , are the
corresponding contraction ratios, the most natural choice for si indexed by
i = (i1, . . . , in) ∈ I |i| is si = ri1 · · · rin . Then the equation P (t) = 0 simplifies
to the so-called Moran equation ∑

i∈I

rt
i = 0.

The solution of this equation is usually called the similarity dimension of the
corresponding similitude IFS.

We say that an IFS satisfies the ball condition if the iterated images of the
invariant set constitute a WCMC that satisfies the ball condition. We define
the finite clustering property for an IFS similarly. The next proposition and
its corollary show that if the IFS in question is semiconformal and defined
on a doubling space, then the ball condition is in fact equivalent to the finite
clustering property.

Proposition 4.2. Let M be a complete doubling metric space and {ϕi}i∈I

a semiconformal IFS on M such that {ϕi(E)}i∈I∗ has the finite clustering
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property. Then there is a constant δ > 0 and a point x ∈ E so that

B
(
ϕi(x), δ diam(Ei)

)
∩ B

(
ϕj(x), δ diam(Ej)

)
= ∅

whenever i ⊥ j.

Proof. Let 0 < p < 1. With the Assouad embedding f : (M,dp) → (Rn, de)
we get a tractable CMC {f(Ei)}i∈I∗ on Rn. By Proposition 3.8 it satisfies
the ball condition. Furthermore, letting L denote the bi-Lipschitz constant
of f , it is straightforward to check, simply by using the definitions, that by
choosing C∗ = L4D2p (where the constant D ≥ 1 is from the definition of
semiconformality) we get

diste(f(Ehi), f(Ehj))
diame(f(Eh))

≤ C∗ diste(f(Eki), f(Ekj))
diame(f(Ek))

for all i,j,h,k ∈ I∗. Thus {f(Ei)}i∈I∗ is, using the terminology of [14], a
semiconformal CMC. This property allows us to utilize [14, Corollary 4.8] to
get a constant δ′ > 0 and a point x ∈ E so that

B
(
f
(
ϕi(x)

)
, δ′ diame

(
f(Ei)

))
∩ B

(
f
(
ϕj(x)

)
, δ′ diame

(
f(Ej)

))
= ∅

whenever i ⊥ j. Now by combining the facts that

f −1
(
B

(
f(z), r

))
⊃ B

(
z,

(
L−1r

)1/p)
for z ∈ M , r > 0 and diame(f(Ei)) ≥ L−1 diam(Ei)p for i ∈ I∗, we find that
with δ = (δ′L−2)1/p we have

B
(
ϕi(x), δ diam(Ei)

)
∩ B

(
ϕj(x), δ diam(Ej)

)
= ∅

whenever i ⊥ j. �

Corollary 4.3. For a CMC {ϕi(E)}i∈I∗ corresponding to a semiconfor-
mal IFS defined on a complete doubling metric space, the following conditions
are equivalent:
(1) The ball condition.
(2) The finite clustering property.
(3) Ht(E) > 0 with P (t) = 0.
(4) There exist x ∈ M and ε > 0 such that

(4.3) d
(
ϕi(x), ϕj(x)

)
≥ ε(si + sj) whenever i ⊥ j.

Proof. Assume that {ϕi : M → M }i∈I is a semiconformal IFS and M is
doubling. If the ball condition is satisfied, then by Remark 3.6(iv) the cor-
responding CMC has the finite clustering property. Proposition 4.2 gives the
other direction. By Proposition 4.1, the corresponding CMC is tractable.
Hence Propositions 3.1 and 3.9 together give the equivalence between the
finite clustering property and the positivity of Ht(E) for t = P −1(0). Con-
sequently, the first three conditions are equivalent. Furthermore, it follows
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immediately from (4.2) and Proposition 4.2 that the ball condition implies
the fourth condition.

As the final step, we will show that the last condition implies the ball
condition. Assume that x ∈ M and ε > 0 satisfy (4.3). Let 0 < r < diam(E).
By (W4) and the definition of Z(r), there is a constant d0 > 0, not depending
on r, such that d0r ≤ diam(Ei) ≤ r for all i ∈ Z(r). Now choose h ∈ I∗ long
enough so that

D

diam(E)
d(x,E)sh ≤ 1

and take xi = ϕih(x) for each i ∈ I∗. Then, using (4.2), for each i ∈ Z(r) we
have

d(xi,Ei) ≤ sid
(
ϕh(x),E

)
≤ D

diam(E)
diam(Ei)d

(
ϕh(x),Eh

)
≤ D

diam(E)
rshd(x,E) ≤ r.

Moreover, using (4.2) this time twice, we get

d(xi, xj) ≥ ε
(
D diam(E)

)−2 diam(Eh)
(
diam(Ei) + diam(Ej)

)
≥ 2ε

(
D diam(E)

)−2 diam(Eh)d0r

for distinct i,j ∈ Z(r). This implies that by choosing

δ = ε
(
D diam(E)

)−2 diam(Eh)d0

we get B(xi, δr) ∩ B(xj, δr) = ∅ for any two distinct i,j ∈ Z(z, r) with any
z ∈ M . Thus the ball condition holds, and the proof is complete. �

Our next effort is to relate the ball condition to a more familiar separation
condition defined here as follows. An IFS satisfies the open set condition
(OSC) if there exists a non-empty open set U ⊂ M such that

(4.4) ϕi(U) ∩ ϕj(U) = ∅ whenever i ⊥ j.

We call such an open set U feasible for the OSC. If there exists a feasible U
for which U ∩ E 
= ∅, the IFS satisfies the strong open set condition (SOSC).

Remark 4.4. The standard version of the OSC, from [10], assumes the
existence of a non-empty open set O ⊂ M such that ϕi(O) ⊂ O for each i ∈ I
and ϕi(O) ∩ ϕj(O) = ∅ whenever i, j ∈ I and i 
= j. By assuming further
that O intersects the invariant set E, we get the standard SOSC. As regards
to when the standard versions of the OSC and SOSC are equivalent to our
versions, this certainly holds if the non-empty open set U satisfying (4.4)
can be chosen so that the set O := U ∪

⋃
i∈I∗ ϕi(U) is open as well, because

then O is a feasible open set for the standard OSC and it intersects E if U
intersects E. We refer to the proof of [14, Lemma 5.3] for details.
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The ball condition implies the OSC for a semiconformal IFS. We defer
the easy verification of this fact until later (see the proof of Theorem 4.9).
Instead, we show now by a simple example that the reverse implication is not
generally true, not even for a similitude IFS defined on a complete doubling
metric space. The example also shows that the OSC and the SOSC are not
equivalent in the setting of doubling metric spaces.

Example 4.5. Let 1
2 < r < 1 and consider the pair ϕ0, ϕ1 of similitudes

defined at each x ∈ R2 by

(4.5) ϕ0(x) = rx, ϕ1(x) = rx + (1,0).

Letting I = {(x,0) ∈ R2 : 0 ≤ x ≤ 1
1−r }, it is easy to check that

I = ϕ0(I) ∪ ϕ1(I).

This means that the horizontal line segment I is the invariant set of the
similitude IFS {ϕ0, ϕ1}. The similarity dimension of this IFS, denoted here
by s, satisfies the Moran equation rs + rs = 1 so we have

(4.6) s = P −1(0) =
log 2

log(1/r)
> 1 = dimH(I).

Now let J = {(0, y) ∈ R2 : 0 ≤ y ≤ 1} and set

M = I ∪ J ∪
⋃

i∈{0,1} ∗

ϕi(J ).

Note that for each i ∈ {0,1} ∗, the set ϕi(J ) is a vertical line segment with
lower endpoint ϕi(0,0) ∈ I and of height r|i|. It is simple to check that the
complement of M is open, so M itself is closed. Hence, equipped with the
inherited Euclidean metric, M is a complete doubling metric space.

Since we have ϕi(M) ⊂ M for i ∈ {0,1}, we may regard {ϕ0, ϕ1} as a simil-
itude IFS on M . Due to the strict inequality in (4.6), the SOSC cannot hold
for this IFS because under the SOSC, the similarity dimension of the IFS
equals the Hausdorff dimension of the invariant set (see [23, Theorem 2.6] or
Proposition 4.12 later in this section). For the same reason, recalling Corol-
lary 4.3, neither is the ball condition satisfied. However, the OSC is satisfied
for all but countably many values of r in (4.5): letting

U = J \
{
(0,0)

}
which is open in M , we claim that ϕi(U) ∩ ϕj(U) = ∅ whenever i ⊥ j provided
that r is a transcendental number. To see this, first note that ϕi(U) and
ϕj(U) intersect if and only if ϕi(0,0) = ϕj(0,0). Moreover, given m ∈ N and
i = (i1, i2, . . . , im) ∈ {0,1}m, it is easy to verify by induction that ϕi(0,0) =
(xi,0) where

xi =
m∑

k=1

ikrk−1.
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In particular, ϕi(0,0) = ϕi0(0,0) for each i ∈ {0,1} ∗. Thus if there exist
symbols i = (i1, i2, . . . , im) and j = (j1, j2, . . . , jn) in {0,1} ∗ such that i ⊥ j
and ϕi(U) ∩ ϕj(U) 
= ∅, there is no loss of generality to assume m = n (extend
i or j with trailing zeros if necessary). Then

xi − xj =
m∑

k=1

(ik − jk)rk−1 = 0

and ik − jk 
= 0 for at least one k ∈ {2, . . . ,m}. This all shows that if U is not
feasible for the OSC, then r has to be an algebraic number. We conclude that
the OSC is satisfied for each transcendental value of r. Recall that the set of
algebraic numbers is only countable.

Note that if r is transcendental, then by Remark 4.4 the standard OSC is
satisfied with O = U ∪

⋃
i∈{0,1} ∗ ϕi(U) = M \ I as the feasible open set.

We now strive for a better situation with respect to separation between
disjoint images of a feasible open set than what was observed in the example
above. It is in fact easy to see that if there is a feasible open set U such that
for every i ∈ I∗, one can find a large enough ball inside ϕi(U), with radius
comparable to the diameter of ϕi(U), then the ball condition holds. Fortu-
nately, in the semiconformal setting there is a natural condition under which
every bounded feasible open set U is like this. To introduce the condition, we
assume that F = {ϕi : M → M }i∈I is a semiconformal IFS with invariant set
E, and refer any dense open set W ⊂ M satisfying W ∩ E 
= ∅ as an essential
open set (for F ). We say that F is properly semiconformal if there is an
essential open set W 
= M such that for each x ∈ W there is a constant λx ≥ 1
so that

(4.7) dist
(
ϕi(x), ϕi(M \ W )

)
≤ λx dist

(
ϕi(x),M \ ϕi(W )

)
for every i ∈ I∗. The next proposition will put this definition in a proper
perspective. Note that with i ∈ I∗ and si from (4.1) we always have

(4.8) ϕi

(
B(x, r)

)
⊂ B

(
ϕi(x), sir

)
for x ∈ M and r > 0, whether F is properly semiconformal or not.

Proposition 4.6. A semiconformal IFS is properly semiconformal if and
only if there is an essential open set W � M such that for each x ∈ W there
is rx > 0 so that

(4.9) B
(
ϕi(x), sir

)
⊂ ϕi

(
B(x, r)

)
whenever x ∈ W , 0 < r ≤ rx and i ∈ I∗.

Proof. First, assume that {ϕi}i∈I is a properly semiconformal IFS with
an essential open set W having the required properties. Take any x ∈ W
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with λx > 0 as in (4.7) and choose R > 0 so that B(x,R) ⊂ W . We begin by
showing that

B
(
ϕi(x), siλ

−1
x R

)
⊂ ϕi(W )

for any i ∈ I∗. Assume that for some i ∈ I∗ the contrary holds. Then there
are points y ∈ M \ ϕi(W ) and x′ ∈ M \ W such that d(ϕi(x), y) < siλ

−1
x R

and d(ϕi(x), ϕi(x′)) < siR. Noticing that x′ /∈ B(x,R) however leads to the
contradiction

R ≤ d
(
x,x′) ≤ s−1

i d
(
ϕi(x), ϕi

(
x′)) < R.

Thus for each y ∈ B(ϕi(x), siλ
−1
x R) there is an x′ ∈ W for which ϕi(x′) = y.

Now choose rx = λ−1
x R and assume that i ∈ I∗ and 0 < r ≤ rx. Then with

any y = ϕi(x′) ∈ B(ϕi(x), sir) we have

d
(
x,x′) ≤ s−1

i d
(
ϕi(x), ϕi

(
x′)) < s−1

i · sir = r

so that y ∈ ϕi(B(x, r)). Consequently, we have (4.9).
For the reverse implication, take x ∈ W , i ∈ I∗ and assume that (4.9) holds

for 0 < r ≤ rx. Also fix an arbitrary x0 ∈ M \ W . We may assume that rx is
so small that B(x, rx) ⊂ W . Then B(ϕi(x), sirx) ⊂ ϕi(W ) and thus

dist
(
ϕi(x),M \ ϕi(W )

)
≥ sirx.

On the other hand, with D ≥ 1 from the definition of semiconformality we get

dist
(
ϕi(x), ϕi(M \ W )

)
≤ d

(
ϕi(x), ϕi(x0)

)
≤ Dsid(x,x0).

As a conclusion,

dist
(
ϕi(x), ϕi(M \ W )

)
≤ Dr−1

x d(x,x0)dist
(
ϕi(x),M \ ϕi(W )

)
and we are done. �

Remarks 4.7. (i) Assume that we have a properly semiconformal IFS
which satisfies the (S)OSC. Let E be the invariant set and let U be a feasible
open set. The denseness of the essential open set W and having W ∩ E 
= ∅
allow us to assume that U ⊂ W . Then Proposition 4.6 clearly implies that
ϕi(U) is open for each i ∈ I∗. Therefore, recalling Remark 4.4, the OSC and
the SOSC are equivalent to their standard versions. Furthermore, given any
feasible open set U , we can take x ∈ U ∩ W and choose 0 < r < rx such that
B(x, r) ⊂ U , and then it is easy to see that (4.3) holds with ε = r

2 . This allows
us to conclude that if we have a properly semiconformal IFS, then the OSC
implies the ball condition.

(ii) Given two IFSs {ϕi : M → M }i∈I and {ψi : M ′ → M ′ }i∈I which are
topologically conjugated by a bi-Lipschitz homeomorphism h : M → M ′ (so
that ψi = h ◦ ϕi ◦ h−1 for each i ∈ I), it is simple to verify that if either one
is properly semiconformal then the same holds for the other. In this sense,
proper semiconformality is a metric invariant.
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(iii) Any semiconformal IFS for which the defining mappings ϕi are bijec-
tions is properly semiconformal (in the definition choose W = M \ {x0} with
an arbitrary x0 ∈ M ). Bijectivity was assumed by A. Schief in [23] where he
studied the self-similar case in complete metric spaces. It was also assumed
(although not mentioned in the paper) by Z. Balogh and H. Rohner in [2]
where they carried on the study of the self-similar case. However, the bijec-
tivity assumption is too strong already in the important special case of con-
formal iterated function systems on Euclidean spaces, as there are no bijective
conformal contractions on Rn with n ≥ 2 other than the contractive simili-
tudes. Conformal IFSs and separation conditions for them have been studied
extensively. For recent developments, see [16] and the references therein.

Let us now consider a setting suitable, in particular, for conformal iterated
function systems on Euclidean spaces. Assuming here that M ⊂ Rn, we say
that an IFS F formed by mappings ϕi : M → M , i ∈ I , is properly Euclidean
if the Euclidean metric is used and M is the closure, in Rn, of an open set
W � Rn such that ϕi(M) ⊂ W for each i ∈ I . Then W is an essential open
set for F . Another crucial observation is that if U is an open proper subset
of Rn and x ∈ U , then there is a point z ∈ Rn \ U at minimum distance to x,
and z is a fortiori a boundary point of U (simply because z + t(x − z) ∈ U for
all 0 < t ≤ 1). Thus, noting that for each i ∈ I∗ the closed set ϕi(M) contains
the boundary of the open set ϕi(W ), we have

dist
(
ϕi(x),M \ ϕi(W )

)
= dist

(
ϕi(x), ϕi(M) \ ϕi(W )

)
for x ∈ W and i ∈ I∗. So (4.7) holds here with λx = 1. Consequently, any
semiconformal IFS which is properly Euclidean is properly semiconformal.

Using similar reasoning, we get the following generalization beyond the
Euclidean case: if M is the closure of an open and proper subset W of a
complete quasiconvex space and W meets the same criteria as above, then a
semiconformal IFS defined on M is always properly semiconformal. Here by a
quasiconvex space we mean a metric space (X,d) for which there is a constant
C ≥ 1 such that any two points x, y ∈ X can be joined by a rectifiable curve
of length at most Cd(x, y).

Example 4.8. To get a further example of a situation where semicon-
formality implies proper semiconformality, this time in a totally disconnected
space, assume that for each i ∈ I there is a contractive mapping ϕi : I∞ → I∞

on the symbol space (I∞, d2) such that ϕi(C) is a cylinder whenever C is a
cylinder. Then ϕi(I∞) is a cylinder for each i ∈ I∗. Choose an arbitrary
x0 ∈ I∞ and set W = I∞ \ {x0}. Let i ∈ I∗. Note that by the definition of
the metric d2, for any j ∈ I∗ and h ∈ [j] we have

dist
(
h, I∞ \ [j]

)
= dist

(
[j], I∞ \ [j]

)
= 21− |j| = 2diam

(
[j]

)
.
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So if ϕi(I∞) = [j] then

dist
(
ϕi(x), ϕi

(
I∞ \ W

))
= d2

(
ϕi(x), ϕi(x0)

)
≤ diam

(
[j]

)
=

1
2

dist
(
ϕi(x), I∞ \ [j]

)
which implies that (4.7) holds with λx = 1 and M = I∞. Using this observa-
tion, we can now give a simple non-Euclidean example of a non-similitude IFS
which is properly semiconformal. Let I = {0,1,2} and J = {1,2}. By defining

ϕ1(ij) =

{
1j if i 
= 0,

10j if i = 0,
ϕ2(ij) =

{
2j if i 
= 0,
20j if i = 0,

for i ∈ I and j ∈ I∞, we get an IFS {ϕ1, ϕ2} on I∞. Given a cylinder [i],
i ∈ I∗, it is clear that ϕj([i]) for j ∈ J is one of the following cylinders: [1i],
[10i], [2i] or [20i]. It is also easy to see that with any j ∈ J ∗ and h ∈ I∞ we
have either ϕj(h) = jh or ϕj(h) = j0h. This gives

2− |j|−1d2(h,k) ≤ d2

(
ϕj(h), ϕj(k)

)
≤ 2− |j|d2(h,k)

for j ∈ J ∗ and h,k ∈ I∞, establishing the semiconformality of the IFS. More-
over, since both ϕ1 and ϕ2 map cylinders to cylinders, the IFS in this example
is properly semiconformal.

The following theorem was proved for the properly Euclidean case in [14,
Corollary 5.8]. In [2, Remark 6.2], it was suggested that the generalization
to doubling metric spaces could be done by extending the thermodynamical
formalism [8] to that setting. The proof given here uses the more direct Moran
construction approach.

Theorem 4.9. For a properly semiconformal IFS in a complete doubling
metric space the following conditions are equivalent:
(1) The ball condition.
(2) Ht(E) > 0 with P (t) = 0.
(3) The open set condition.
(4) The strong open set condition.

Proof. The equivalence of (1) and (2) has been established in Corollary 4.3.
In Remark 4.7(i), it was noted that under the given assumptions, (3) implies
(1). Clearly (4) implies (3). To complete the proof, it is thus enough show
that (1) implies (4).

Assume that (1) holds. Let δ > 0 and x ∈ E be from Proposition 4.2 and
D ≥ 1 from the definition on semiconformality. Then by (4.8) we get

ϕi

(
B

(
x,D−1δ diam(E)

))
⊂ B

(
ϕi(x),D−1δsi diam(E)

)
⊂ B

(
ϕi(x), δsi diam(E)

)
⊂ B

(
ϕi(x), δ diam

(
ϕi(E)

))



MORAN CONSTRUCTIONS IN METRIC SPACES 1043

for every i ∈ I∗. Therefore from Proposition 4.2, we get

ϕi

(
B

(
x,D−1δ diam(E)

))
∩ ϕj

(
B

(
x,D−1δ diam(E)

))
= ∅

whenever i ⊥ j. Clearly, x ∈ E ∩ B(x,D−1δ diam(E)). Thus, the IFS satisfies
the SOSC, and the proof is finished. �

For the rest of this section, we let M be any complete metric space. In
this setting, the OSC ceases to imply any bounds on the size of the invariant
set. As shown in [23, Example 3.1], the invariant set of a similitude IFS in a
complete metric space might consist of a single point, even when the OSC is
satisfied. The SOSC, however, continues to be relevant in the general setting.
To show this, we first recall a useful result by K. Falconer. An IFS is said to
satisfy the strong separation condition (SSC) if the images ϕi(E), i ∈ I , are
pairwise disjoint for the invariant set E.

Proposition 4.10. Let E be the invariant set of an IFS {ϕi : i ∈ I} for
which there are constants si, i ∈ I , such that

d
(
ϕi(x), ϕi(y)

)
≥ sid(x, y)

for x, y ∈ M and i ∈ I . If the IFS satisfies the SSC, we have dimH(E) ≥ d
where ∑

i∈I

sd
i = 1.

Proof. Although the proof of this result in [7, Proposition 9.7] is formulated
in the Euclidean setting, it remains valid in the general case. �

Lemma 4.11. Assuming that constants si, i ∈ I∗, correspond to a semi-
conformal IFS (with pressure P ) by way of (4.1), there is a constant C ≥ 1
such that

C−1sisj ≤ sij ≤ Csisj
for any i,j ∈ I∗ and

C−tenP (t) ≤
∑
i∈In

st
i ≤ CtenP (t)

for all t ≥ 0 and n ∈ N.

Proof. For the first pair of inequalities combine (4.2) with the fact that we
have a CMC by Proposition 4.1. The second pair of inequalities follows from
[14, Lemma 2.1]. �

The first part of the following result was originally shown by A. Schief for
self-similar sets on complete metric spaces [23, Theorem 2.6]. The second
part makes it clear that in the semiconformal setting, the overlap between
the parts ϕi(E), i ∈ I , of the invariant set E is negligible, at least in the
measure-theoretical sense, provided that the SOSC holds.
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Proposition 4.12. Let E be the invariant set of a semiconformal IFS
{ϕi : i ∈ I} defined on a complete metric space. If the SOSC holds, then
(i) dimH(E) = P −1(0).
(ii) dimM(ϕi(E) ∩ ϕj(E)) < dimH(E) whenever i ⊥ j.

Proof. Assume that U is an open set given by the SOSC. Then there exist
x ∈ U ∩ E and h ∈ I∗ such that x ∈ Eh ⊂ U .

(i) We follow the proof of [23, Theorem 2.6] with appropriate modifications.
Let k ∈ N. Since the sets ϕih(E) ⊂ ϕi(U) and ϕi′h(E) ⊂ ϕi′ (U) are disjoint
for distinct i,i′ ∈ Ik, the IFS Fk := {ϕih : i ∈ Ik } satisfies the SSC. Let Fk

be the invariant set for Fk and let dk be the unique positive number that
satisfies ∑

i∈Ik

sdk
ih = 1,

where the constants si, i ∈ I∗, are from the definition of semiconformality.
By Proposition 4.10, we have dimH(Fk) ≥ dk. On the other hand, Lemma 2.6
gives dimH(E) ≤ dimM(E) ≤ P −1(0) and clearly Fk ⊂ E, so

dk ≤ dimH(Fk) ≤ dimH(E) ≤ P −1(0).

Set t = dimH(E) and T = P −1(0). The proof of (i) is now completed by
showing that we cannot have t < T . Apply Lemma 4.11 to get a constant
C ≥ 1 such that sih ≥ C−1sish for each i ∈ Ik and

C−T ≤
∑
i∈Ik

sT
i ≤ CT .

Now since 0 < si < 1 for each i ∈ I∗ and dk ≤ t for each k ∈ N, we have

1 =
∑
i∈Ik

sdk
ih ≥ C−dksdk

h

∑
i∈Ik

sdk
i ≥ C−tsdk

h

∑
i∈Ik

st
i,

so by assuming t < T we would get

s−t
h ≥ s−dk

h ≥ C−t
∑
i∈Ik

st
i = C−t

∑
i∈Ik

sT
i st−T

i

≥ C−(t+T )
(
max
i∈Ik

si

)t−T

for any k ∈ N. However, this contradicts the observation that by Lemma 2.2
we have limk→∞(maxi∈Ik si)

t−T = ∞ if t < T . Thus, t = T .
(ii) Here we essentially reproduce the proof of [14, Proposition 4.9]. It is

easy to see that the set
A := Eh ∪

⋃
k∈I∗

Ekh

satisfies ϕi(A) ∩ ϕj(A) = ∅ whenever i ⊥ j. Therefore,

Ei ∩ Ej ⊂ ϕi(E \ A) ∪ ϕj(E \ A)
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whenever i ⊥ j. The bi-Lipschitz mappings ϕi, i ∈ I∗, preserve the Minkowski
dimension, so it is now enough to show that dimM(E \ A) < dimH(E).

Let F be the invariant set of the semiconformal IFS {ϕk : k ∈ J0} where
J0 = I |h| \ {h}. It is evident that E \ A ⊂ F . Set m = |h|, let J = Im, let
PJ and PJ0 be the pressures of {ϕk}k∈J and {ϕk}k∈J0 , respectively, and let
u = P −1

J (0). Recalling that by Lemma 4.11 we have a constant C ≥ 1 such that
C−1sisj ≤ sij ≤ Csisj for all i,j ∈ I∗ and it further holds that maxi∈In si →
0 as n → ∞, we can apply [14, Lemma 2.4] to infer that PJ0(u) < 0. Thus
P −1

J0
(0) < P −1

J (0) by Lemma 2.5. On the other hand,

0 =
1
m

PJ (u) = lim
n→∞

1
mn

log
∑
k∈Jn

su
k = lim

n→∞
1

mn
log

∑
i∈Imn

su
i = P (u)

which shows that P −1
J (0) = u = P −1(0) = dimH(E). By Proposition 2.6 we

now have

dimM(E \ A) ≤ dimM(F ) ≤ P −1
J0

(0) < P −1
J (0) = dimH(E)

and the proof is complete. �
We end this section by uncovering a natural topological prerequisite for the

validity of the dimension formula dimH(E) = P −1(0) when E is the invariant
set of a semiconformal IFS. The result shows, in particular, that in the semi-
conformal setting the overlap between the parts ϕi(E), i ∈ I , is insignificant
also in the topological sense if the SOSC holds.

Proposition 4.13. Let {ϕi}i∈I be a semiconformal IFS with pressure P
and invariant set E such that dimH(E) = P −1(0). Then ϕi(E) ∩ ϕj(E) is
nowhere dense in E whenever i ⊥ j.

Proof. Assume that i ⊥ j. It is to be proved that there are no balls B(x, r)
with x ∈ ϕi(E) ∩ ϕj(E) and r > 0 such that B(x, r) ∩ E ⊂ ϕi(E) ∩ ϕj(E).
Assume, to the contrary, that such a ball B(x, r) exists. Then x = π(h) for
some h ∈ I∞ starting with i. Now by taking a sufficiently large m ∈ N we get
m > |j| and

ϕh|m
(E) ⊂ B(x, r) ⊂ ϕj(E) =

⋃
i∈Im− |j|

ϕji(E),

from which we infer that
E =

⋃
k∈Im

k �=h|m

ϕk(E).

Thus E is also the invariant set of the semiconformal IFS F := {ϕk : k ∈
J0} where J0 = Im \ {h|m}. Denoting the pressure of F by PJ0 , we should
now have dimH(E) ≤ P −1

J0
(0). However, as we showed in the proof of the

second part of Proposition 4.12, P −1
J0

(0) is strictly smaller than dimH(E).
This contradiction finishes the proof. �
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5. Sub-constructions

In Sections 2 and 3, we studied the generalization of controlled Moran con-
structions in the direction of weakly controlled Moran constructions. This
meant, in particular, that we used the whole space of words I∞ and relaxed
the requirement on the compact sets by replacing the condition (C1) with con-
ditions (W3) and (W4). There is another natural way to generalize controlled
Moran constructions. That is to consider suitable subsets of I∞.

It is clear that the projection of an arbitrary subset of I∞ can be geomet-
rically extremely bad. For our purpose, we impose a very strict condition
on these subsets. This will give a simple way of constructing sets of desired
Hausdorff dimension. The example in the Carnot groups we present at the
end was the motivation for the following definition.

Suppose we have a compact set J ⊂ I∞ and a collection {Xi ⊂ M : i ∈ J∗ }
of compact sets with positive diameter. We write Jn := {i ∈ In : [i] ∩ J 
= ∅}
and J∗ :=

⋃∞
n=1 Jn. The collection {Xi : i ∈ J∗ } is to be called a t-controlled

Moran sub-construction (t-CMSC), with t > 0, provided that conditions (W1)
and (W2) are satisfied and the following holds: There exists a constant C > 0
so that for every i ∈ J∗ and n ∈ N

(5.1) C−1 diam(Xi)t <
∑
j∈In

ij∈J∗

diam(Xij)t < C diam(Xi)t.

The set E = π(J) is then called the limit set of the CMSC. Notice the relation
between the condition (5.1) and the condition (C1) in the definition of a CMC.

Example 5.1. Let us consider sub-constructions of a 1
3 -Cantor set on the

real line. Take I = {1,2}, f1(x) = x/3 and f2(x) = x/3 + 2/3, and define
Xi = fi([0,1]). The standard 1

3 -Cantor set C1/3 is then the limit set of the
CMC {Xi : i ∈ I∗ }. For it, we have 0 < Hs(C1/3) < ∞ with s = log 2

log 3 . Now
for any 0 < t < s we can make a t-CMSC for example in the following way:

Let j1 = 2. For i ≥ 1 define ji+1 = 1 if (
∏i

l=1 jl)3−tl > 1, and ji+1 = 2
otherwise. Let J = {1, . . . , j1} × {1, . . . , j2} × · · · . Now for every i ∈ J∗ and
n ∈ N ∑

j∈In

ij∈J∗

diam(Xij)t = 3−tl
n∏

l=1

j|i|+l ∈
[
1
4

diam(Xi)t,4diam(Xi)t

]
,

and so {Xi : i ∈ J∗ } is a t-CMSC.

Proposition 5.2. Suppose that we have a t-CMSC. Then Ht(E) < ∞. If
the CMSC satisfies the finite clustering property, then Ht(E) > 0.

Proof. The first claim follows immediately by noticing from (W2) that we
can use {Xi,i ∈ Jn} as a cover when estimating the Hausdorff measure of E.
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Let us prove the second claim. For this it is enough to prove that M t(J) > 0.
The rest will follow as in the proof of Proposition 3.1. Because J is compact
it is enough to look at finite covers. Let Q ⊂ J∗ be finite so that J ⊂

⋃
i∈Q[i]

and [i] ∩ [j] = ∅ for i,j ∈ Q with i 
= j. Define m = max{|i| : i ∈ Q}. Now
from the condition (5.1) we get∑

i∈Q

diam(Xi)t ≥ C−1
∑
i∈Q

∑
ij∈Jm+1

diam(Xij)t

= C−1
∑

j∈Jm+1

diam(Xj)t ≥ C−2
∑
j∈J1

diam(Xj)t

giving the claim. �

5.1. An example in Carnot groups. In [3], Z. Balogh, J. Tyson and B.
Warhurst studied Hausdorff dimensions of sets in Carnot groups. They gave
the following comprehensive answer to what the Hausdorff dimensions can be
with respect to Carnot–Carathéodory and Euclidean metrics.

Theorem 5.3 ([3, Theorem 2.4]). In any Carnot group G, we have

β−(dimE S) ≤ dimcc S ≤ β+(dimE S)

for every S ⊂ G.

Here β− and β+ are the lower and upper dimension comparison functions
for G, which will be defined later. The sharpness of the first inequality in
Theorem 5.3 was established by using a set of self-similar examples, see [3,
Theorem 4.8]. The answer was not completely satisfying as the construction
worked only for a dense set of dimensions and only for those dimensions gave
the answer on the level of positive and finite measures. We will construct the
missing compact sets by combining two constructions of the type used in [3,
Proposition 4.14]. Formally the modification on their construction is a re-
placement of self-similar construction with a CMSC. Some of the calculations
will be omitted and they can be found from [3].

We will use the notation from [3], but for the convenience we shall recall
here some of it. Let (G, ∗) be a step s Carnot group with stratified Lie algebra
g = v1 ⊕ · · · ⊕ vs, where [v1,vj ] = vj+1 for j = 1, . . . , s − 1 and [v1,vs] = 0. Let
m0 = 0 and denote mj = dimvj for j = 1, . . . , s. The dilations δr of g for r > 0
are given by

δr

(
s∑

j=1

Uj

)
=

s∑
j=1

rjUj

with Uj ∈ vj . The corresponding dilations on G are also denoted δr.
We use the exponential coordinates in G which are formed using the expo-

nential map exp : g → G and a graded orthonormal basis {Ejk : j = 1, . . . , s;
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k = 1, . . . ,mj } of g by identifying a point (x1, . . . , xs) ∈ Rm1 × · · · × Rms with

exp

(
s∑

j=1

mj∑
k=1

〈xj , ejk 〉Ejk

)
,

where {ejk }mj

k=1 is the standard orthonormal basis of Rmj . With these coor-
dinates, we can view the space R

∑s
j=1 mj with appropriate group operation

as our group G. The projections πj : G → Rmj are given by the exponential
coordinates as πj(x1, . . . , xs) = xj .

Denote by dcc the Carnot–Carathéodory metric (see, for example, [3] for
a definition) and by de the Euclidean metric. Instead of the metric dcc we
could use any sub-Riemannian metric on the group G which is left invariant
and compatible with the dilations.

Define the lower dimension comparison function of G as

β−(α) =
l−∑

j=1

jmj + (1 + l−)

(
α −

l−∑
j=1

mj

)

for α ∈ ]0,
∑s

j=1 mj ], with l− ∈ {0, . . . , s − 1} so that

l−∑
j=1

mj < α ≤
1+l−∑
j=1

mj .

The upper dimension comparison function for G is defined as

β+(α) =
s∑

j=l+

jmj + (−1 + l+)

(
α −

s∑
j=l+

mj

)

for α ∈ ]0,
∑s

j=1 mj ] with l+ ∈ {0, . . . , s − 1} so that
s∑

j=l+

mj < α ≤
s∑

j=−1+l+

mj .

Now we are ready to start with the construction which answers the Re-
marks 4.9 and 4.10 in [3].

Theorem 5.4. Let G be a Carnot group. Then for every α ∈ ]0,dime G]
there exists a compact set K ⊂ G with

0 < Hα
e (K) and Hβ−(α)

cc (K) < ∞.

Proof. We prove the proposition using the ideas of [3, Proposition 4.14].
Let l ∈ {0, . . . , s − 1} so that

l∑
j=0

mj < α ≤
l+1∑
j=0

mj .
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Let Aj = {0, . . . ,2j − 1}mj for each j = 1, . . . , s. Define

F1 = {Fa1···al
: a1 ∈ A1, . . . , al ∈ Al}

and
F2 = {Fa1···al+1 : a1 ∈ A1, . . . , al+1 ∈ Al+1},

where the functions Fa1···ak
are defined as

Fa1···ak
(p) = pa1···ak

∗ δ1/2

(
p−1

a1···ak
∗ p

)
with pa1···ak

= (a1, . . . , ak,0, . . . ,0).
Next, we define a sequence (ni)i∈N ⊂ {1,2}N which tells us what system of

functions will be used at step i. Let n1 = 2 and define the rest by induction
as follows: Assume that n1, . . . , nt have been defined. Then nt+1 = 2 if

t∏
i=1

n
(l+1)ml+1
i < 2t(l+1)(α−

∑l
j=0 mj).

Otherwise define nt+1 = 1.
Let E be the attractor of F2. Write F2 = {g1, . . . , g

2
∑l+1

j=0 jmj
} with gt /∈

F1 for 2
∑l

j=0 jmj < t ≤ 2
∑l+1

j=0 jmj . Write I = {1, . . . ,2
∑l+1

j=0 jmj }. With this
enumeration define for i= (i1, . . . , it) ∈ It

Xi = gi1 ◦ · · · ◦ git(E).

By Proposition 4.1, the collection {Xi : i ∈ I∗ } is a CMC. Let now

J =
{
i= (i1, i2, . . .) : ij ∈ N,1 ≤ ij ≤ n

(l+1)Ml+1
j 2

∑l
j=0 jmj

}
.

The collection {Xi : i ∈ J∗ } is then a β−(α)-CMSC: Let i ∈ J∗ and n > |i|.
Then by ∑

ij∈Jn

diamcc(Xij)β−(α)

=
(
2|i|−n diamcc(Xi)

)β−(α)
n∏

i=|i|+1

n
(l+1)ml+1
i 2

∑l
j=0 jmj

and the definition of the sequence (nj)∞
j=1 we get

C−1 diamcc(Xi)β−(α) ≤
∑

ij∈Jn

diamcc(Xij)β−(α) ≤ C diamcc(Xi)β−(α),

where C = 22(l+1)ml+1 . Therefore by Proposition 5.2, we have Hβ−(α)
cc (K) <

∞, where K is the limit set of the sub-construction.
To see that 0 < Hα

e (K), we estimate the level sets of a Lipschitz mapping
as in [3], but now they are not translates of an invariant set of a self-similar
IFS. Let Πl = π1 × · · · × πl : G → R

∑l
j=1 mj . With a similar calculation as in

the proof of [3, Lemma 4.16] we see that for almost every x ∈ Πl(K) the set
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πl+1(K ∩ Π−1
l (x)) is a Euclidean translate of the limit set K ′ of the Euclidean

construction {Yi : i ∈ J ′
∗ } with

Yi = hi1 ◦ · · · ◦ him

(
[0,2]ml+1

)
,

J ′ = {i = (i1, . . .) : 1 ≤ ij ≤ n
(l+1)ml+1
j } and hj(y) = 2−l−1y + (1 − 2−l−1)aj .

Clearly the sub-construction satisfies the finite clustering property. Write
γ = α −

∑l
j=0 mj . The collection {Yi : i ∈ J ′

∗ } is now a γ-CMSC: Let i ∈ J ′
∗

and n > |i|. Now

∑
ij∈J ′

n

diame(Yij)γ =
(
2(l+1)(|i|−n) diame(Yi)

)γ
n∏

i=|i|+1

n
(l+1)ml+1
i

gives
C−1 diame(Yi)γ ≤

∑
ij∈J ′

n

diame(Yij)γ ≤ C diame(Yi)γ

with C as before. Then by Proposition 5.2, we get Hγ
e (K ′) > 0. Integrating

over Πl(K) gives Hα
e (K) > 0. �
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[12] A. Käenmäki and P. Shmerkin, Overlapping self-affine sets of Kakeya type, Ergodic
Theory Dynam. Systems 29 (2009), 941–965. MR 2505323
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