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We investigate two-loop gluino corrections to the effective Lagrangian for b! s� ��g� in the
minimal supersymmetric extension of the standard model (MSSM) at large tan�, including the
contributions in which quark flavor change is mediated by charginos. Using the translation invariance
of loop momenta and the Ward-Takahashi identities that are required by the SU�3�c �U�1�em gauge
invariance, we simplify our expressions to concise forms. As an example, we discuss two-loop gluino
corrections to the CP asymmetry of inclusive B! Xs� decay in CP violating MSSM.
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I. INTRODUCTION

The measurements of the branching ratios at CLEO,
ALEPH, and BELLE [1] give the combined result

BR�B! Xs�� � �3:11� 0:42� 0:21� � 10�4; (1)

which agrees with the next-to-leading order (NLO) stan-
dard model (SM) prediction [2]

BR�B! Xs�� � �3:29� 0:33� � 10�4: (2)

Good agreement between the experiment and the theo-
retical prediction of the SM implies that the new physics
scale should lie well above the electroweak (EW) scale.
The systematic analysis of new physics corrections to
B! Xs� up to two-loop order can help us understand
where the new physics scale sets in, and the distribution of
new physical particle masses around this scale. In prin-
ciple, the two-loop corrections can be large when some
additional parameters are involved at this perturbation
order beside the parameters appearing in one-loop results.
In other words, including the two-loop contributions one
can obtain a more exact constraint on the new physics
parameter space from the present experimental results.

Beside the Cabibbo-Kobayashi-Maskawa (CKM)
mechanism, the soft breaking terms provide a new source
of CP and flavor violation in the minimal supersymmet-
ric standard model (MSSM). Those CP violating phases
can affect the important observables in the mixing of
Higgs bosons [3], the lepton and neutron’s electric dipole
moments (EDMs) [4,5], lepton polarization asymmetries
in the semileptonic decays [6], the production of P-wave
charmonium and bottomonium [7], and CP violation in
rare B decays and in B0 
B0 mixing [8]. At present, the
strictest constraints on those CP violation phases origi-
nate from the lepton and neutron’s EDMs. Nevertheless, if
we invoke a cancellation mechanism among different
supersymmetric contributions [4], or choose the fermions
of the first generation heavy enough [5], the loop inducing
lepton and neutron’s EDMs bound the argument of the �
04=70(9)=096012(11)$22.50 70 0960
parameter to be 	 �=�5 tan��, leaving no constraints on
the other explicitly CP violating phases.

The supersymmetry models at large tan� are implied
by grand unified theories, where the unification of up- and
down-type quark Yukawa couplings is made [9]. From the
technical viewpoint, the dominant contributions to the
relevant effective Lagrangian are the terms proportional
to �tan��n �n � 1; 2; . . .� in a large tan� scenario. This
will simplify our two-loop analysis drastically since we
just keep those terms enhanced by tan�.

Assuming no additional sources of flavor violation
other than the CKM matrix elements, the authors of
[10] present an exact analysis of two-loop gluino correc-
tions to the rare decay b! s� ��g� in which quark
flavor change is mediated by the charged Higgs in CP
conserving MSSM at large tan�. They also compare their
exact result with that originating from the heavy mass
expansion (HME) approximation [11]. Although the
HME result approximates the exact two-loop analysis
adequately when the supersymmetry energy scale is
high enough, their analysis implies that the difference
between the HME approximation and exact calculation is
obvious in some parameter space of the MSSM. However,
they do not consider the case in which quark flavor change
is mediated by the charginos (the super partners of the
charged Higgs and W bosons). In fact, we cannot provide
any strong reason to ignore the contribution from the
diagrams in which quark flavor change is induced by
the charginos, even within large tan� scenarios. In this
work, we present a complete analysis on the two-loop
gluino corrections to the rare transitions b! s� ��g� by
including the contributions of those diagrams where
quark flavor change is mediated by charginos in the
framework of CP violating MSSM at large tan�.
Furthermore, we also simplify our expressions to concise
forms through loop momentum invariance and the Ward-
Takahashi identities (WTIs) that are required by the
SU�3�c �U�1�em gauge invariance.

The paper is organized as follows. In Sec. II, we give
all the diagrams needed to evaluate the O��s tan�� con-
12-1  2004 The American Physical Society



TAI-FU FENG PHYSICAL REVIEW D 70 096012
tributions to the Wilson coefficients C7 and C8 entering
the branching ratio BR�B! Xs��. The corresponding
Wilson coefficients at the matching EW scale �EW are
also presented there. We apply the effective Lagrangian to
the rare decay B! Xs� in Sec. III. By the numerical
method, we show the two-loop corrections on the CP
asymmetry for the process. Our conclusion is given in
Sec. IV, and some long formulas are collected in the
Appendices.

II. THE WILSON COEFFICIENTS FROM THE
TWO-LOOP DIAGRAMS

In this section, we derive the relevant Wilson coeffi-
cients for the partonic decay b! s� including two-loop
gluino corrections. In a conventional form, the effective
Hamilton is written as

Heff � �
4GF���
2

p V�
tsVtb

X8
i�1

Ci���Oi; (3)

where V is the CKM matrix. The definitions of the
magnetic and chromomagnetic dipole operators are

O 7 �
e

�4��2
mb���
sL 

�!bRF�!;

O8 �
gs

�4��2
mb��� 
sLT

a �!bRG
a
�!;

(4)
FIG. 1. The self-energy diagrams which lead to the magnetic an
triangle diagrams are obtained by attaching a photon or gluon in
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where F�! and Ga�! are the field strengths of the photon
and gluon, respectively, and Ta �a � 1; . . . ; 8� are SU�3�c
generators. In addition, e and gs represent the EW and
strong couplings, respectively. The other operators Oi
�i � 1; . . . ; 6� are defined in [12].

In the framework of CP violating MSSM, the
one-loop analysis on the CP asymmetry of inclusive
B! Xs� decay has been presented elsewhere [9]. The
two-loop gluino diagrams, contributing at O��s tan��
to the Wilson coefficients of the magnetic and chromo-
magnetic dipole operators, are obtained from the self-
energy diagrams Fig. 1(a) and 1(b) by attaching a
photon or gluon in all possible ways. The calculation of
the Wilson coefficients for the operators in Eq. (4) at two-
loop order is more challenging than that at
one-loop order. Before we give those Wilson coefficient
expressions explicitly, we state first the concrete steps
required to obtain the coefficients from those two-loop
diagrams.

(i) After writing the amplitudes of those two-loop
triangle diagrams, we expand them in powers of external
momenta to the second order.

(ii) The even rank tensors in loop momenta can be
replaced as follows:
Z dDq1
�2��D

dDq2
�2��D

q1�q1!; q1�q2!
D0

!
g�!
D

Z dDq1
�2��D

dDq2
�2��D

q21; q1 � q2
D0

;

Z dDq1
�2��D

dDq2
�2��D

q1�q1!q1'q1 ; q1�q1!q1'q2 
D0

!
T�!' 

D�D� 2�

Z dDq1
�2��D

dDq2
�2��D

q41; q
2
1�q1 � q2�
D0

;

Z dDq1
�2��D

dDq2
�2��D

q1�q1!q2'q2 
D0

!
Z dDq1

�2��D
dDq2
�2��D

1

D0

�

�
D�q1 � q2�2 � q21q

2
2

D�D� 1��D� 2�
T�!' �

�q1 � q2�2 � q21q
2
2

D�D� 1�
g�!g' 

�
; (5)
whereD is the time-space dimension, T�!' � g�!g' � g�'g! � g� g'!, and D0 � 
�q2 � q1�2 �m20��q
2
1 �m2a��

�q22 �m2��. The odd rank tensors in loop momenta can be dropped since the integrations are symmetric under the
transformation q1;2 ! �q1;2. Here, we only retain the simplest two-loop propagator composition 1=D0 which corre-
sponds to the two-loop vacuum diagram (Fig. 2). Any complicated composition of two-loop propagators can be
expressed as the linear combination of the simplest one 1=D0 by use of the obvious decomposition formula
d chromomagnetic operators in the MSSM, the corresponding
all possible ways.
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FIG. 3. A triangle diagram in which the external photon is
attached to squark ~si.

FIG. 2. The two-loop vacuum diagram with momenta and
masses as in Eq. (5).
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1

�Q2�m2A��Q
2�m2B�

�
1

m2A�m
2
B

�
1

Q2�m2A
�

1

Q2�m2B

�
;

(6)

with Q � q1; q2, or q2 � q1. As an example, we apply
096012
the above steps to the triangle diagram in which an
external photon is attached to the internal squark ~si line
(Fig. 3). After expanding the corresponding amplitude
in powers of external momenta to the second order, we
have
iA�
�1���p; k� � �i

4

3
edg

2
s
e3

mws2w
V�
tsVtb

�
mb
mw

tan�
�
�Z~s�2;i�Z

y
~s �i;2

�
j�jmte

�i,��Z~t�2;j �

���
2

p
mwswAs

e
�Z~t�1;j

�

�
Z dDq1

�2��D
dDq2
�2��D

1

DH�q
2
1 �m2~si�

�
1�

2q1 � �2p� k�

q21 �m2~si
�

2q2 � p

q22 �m2H�

	

� f�Zy
~t �j;3 6q1 6q2�2q1 � 2p� k��!� �mtjm3je

i,3�Zy
~t �j;2�2q1 � 2p� k��!�g; (7)
where p; k represent the incoming momenta of the exter-
nal quark b and photon, respectively, DH � 
�q2 �
q1�2 �m2~tj��q

2
1 � jm3j2��q21 �m2~si��q

2
2 �m2t ��q22 �m2H��

�i; j � 1; 2� and ed � �1=3. Z~q �q � u; d; . . . ; t� are the
mixing matrices of scalar quarks, and Aq are the corre-
sponding trilinear soft breaking parameters.
Furthermore, ,3;� denote the CP phases of the SU�3�c
gaugino mass and of the � parameter, respectively. Since
the quark mass mb from the bottom quark Yukawa cou-
pling is same order as the external momenta p; k in
magnitude, we just expand the propagators in powers of
external momenta to the first order. In the soft breaking
potential, the CP phase ,3 is contained in the gluino mass
terms

jm3je
i,3
X
a

0aG0
a
G � jm3je

�i,3
X
a

0aG0
a
G; (8)

where 0aG �a � 1; . . . ; 8� denote the gluino fields in two-
component Majorana spinors. With the redefinition of
gluino fields

0aG ! 0aGe
��i=2�,3 ; 0aG ! 0aGe

�i=2�,3 ; (9)
the mass terms are transformed into

jm3j
X
a

~ga ~ga (10)

with the four-component Majorana spinors

~g a �
0aG
0aG

� �
: (11)

Correspondingly, the CP phase ,3 is transferred from the
mass terms to the quark-squark-gluino vertex which is
given by [13]

�L~qq~g �
���
2

p
gsT

a
��

X
q


�e��i=2�,3�Z~q�2;iq
�!�~ga~q

�
i

� e�i=2�,3�Z~q�1;iq�!�~ga~q
�
i � � H:c: (12)

Here, �;� � 1; 2; 3 are quark and squark color indices,
and !� � 1��5

2 . This is the reason why there is a jm3j
rather than m3 in the gluino propagator. Using Eqs. (5)
and (6), the amplitude of Fig. 3 is finally formulated as
-3
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iA�
�1���p; k� � �i

4

3
edg

2
s
e3

mws2w
V�
tsVtb

�
mb
mw

tan�
�
�Z~s�2;i�Z

y
~s �i;2

�
j�jmte

�i,��Z~t�2;j �

���
2

p
mwswAs

e
�Z~t�1;j

�

�
Z dDq1

�2��D
dDq2
�2��D

1

DH�q21 �m2~si�

�
�Zy

~t �j;3

�
4

D
q21q1 � q2
q21 �m2~si

�2p� k��!� � q1 � q2�2p� k��!� �
4

q22 �m2H�

�

�
D�q1 � q2�2 � q21q

2
2

D�D� 1�
p�!� �

�q1 � q2�2 � q21q
2
2

D�D� 1�
�� 6p!�

��
�mtjm3je

i,3�Zy
~t �j;2

�

�
4

D
q21

q21 �m2~si
�2p� k��!� �

4

D
q1 � q2
q22 �m2H�

p�!� � �2p� k��!�

�	
: (13)
In a similar way, we can obtain the other triangle dia-
gram amplitudes.

(iii) Using loop momentum translation invariance, we
formulate the sum of those amplitudes in gauge invariant
form explicitly, then extract the corresponding Wilson
coefficients which are expressed by the two-loop vacuum
integrals [14]. In fact, there are many identities among
those two-loop integrations. In order to obtain those
necessary identities which are used to simplify the sum
of those triangle amplitudes, we start from the zero in-
096012
tegration such as

Z dDq1
�2��D

dDq2
�2��D

q1 � p6q1�6q2 � 6q1�
D0

� 0: (14)

Under the loop momentum translation q2 ! q2 � a,
where a is same order as the external momentum p in
magnitude, we expand the integration in powers of the
momenta p; a to the second order
Z dDq1
�2��D

dDq2
�2��D

q1 � p
D0

6q1�6q2 � 6q1� �
Z dDq1

�2��D
dDq2
�2��D

q1 � p
D0

�
1�

2�q2 � q1� � a

�q2 � q1�
2 �m20

�
2q2 � a

q22 �m2�

	
f6q1�6q2 � 6q1� � 6q1a6 g

�
Z dDq1

�2��D
dDq2
�2��D

1

D0

�
�
q21
D

6pa6 �
2

�q2 � q1�2 �m20

�

��
D�q1 � q2�

2 � q21q
2
2

D�D� 1�
�
q41 � 2q21q1 � q2

D

�
�p � a� �

�q1 � q2�
2 � q21q

2
2

D�D� 1�
�6pa6 �

�

�
2

q22 �m2�

��
D�q1 � q2�

2 � q21q
2
2

D�D� 1�
�
q21q1 � q2

D

�
�p � a� �

�q1 � q2�
2 � q21q

2
2

D�D� 1�
�6pa6 �

�	

� 0: (15)

The above identical equation implies

Z dDq1
�2��D

dDq2
�2��D

1

D0

�
1

�q2 � q1�2 �m20

�
D�q1 � q2�

2 � q21q
2
2

D�D� 1�
�
q41 � 2q21q1 � q2

D

�
�

1

q22 �m2�

�
D�q1 � q2�

2 � q21q
2
2

D�D� 1�
�
q21q1 � q2

D

�	
� 0;

Z dDq1
�2��D

dDq2
�2��D

1

D0

�
2

�q2 � q1�
2 �m20

�q1 � q2�
2 � q21q

2
2

D�D� 1�
�

2

q22 �m2�

�q1 � q2�
2 � q21q

2
2

D�D� 1�
�
q21
D

	
� 0:

(16)

Similarly, we can get the following identities from the invariance of Eq. (14) under the loop momentum translation
q1 ! q1 � a; q2 ! q2 � a:

Z dDq1
�2��D

dDq2
�2��D

1

D0

�
�
2�D
D

q1 � �q2 � q1� �
2

q21 �m2a

q21q1 � �q2 � q1�
D

�

2

q22 �m2�

�
D�q1 � q2�

2 � q21q
2
2

D�D� 1�
�
q21q1 � q2

D

�	
� 0;

Z dDq1
�2��D

dDq2
�2��D

1

D0

�
q1 � �q2 � q1�

D
�

2

q22 �m2�

�q1 � q2�
2 � q21q

2
2

D�D� 1�

	
� 0:

(17)
-4
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Using the concrete expressions of two-loop vacuum in-
tegrals in Ref. [14], we can also verify those equations in
Eqs. (16) and (17) directly after some tedious calcula-
tions. Replacing the numerator of Eq. (14) with other odd
rank tensors in loop momenta, the more additional iden-
tities among two-loop integrations are gotten. In general,
those identities are linearly dependent. After some
simplification, we obtain those linearly independent
equations in Appendix A. Certainly, those linearly inde-
096012
pendent equations can also be derived from the two-loop
integrations in which numerators are even rank tensors of
loop momenta. However, the process to derive the linearly
independent equations with the numerators in even
powers of loop momenta is more complicated than that
with the numerators in odd powers of loop momenta.

After the above procedure, we finally obtain the rele-
vant coefficients from the charged Higgs contribution up
to O��s tan��
C7;H��w� �
8

���
2

p

3
�4��3ed��s tan���Z~s�2;i�Z

y
~s �i;2

�
j�jmte�i,��Z~t�2;j �

���
2

p
swmwAs
e

�Z~t�1;j

�

�
Z d4q1

�2��4
d4q2
�2��4

1

DH

�
�Zy

~t �j;1N
�
H�1� �mtjm3je

i,3�Zy
~t �j;2N

�
H�2�

	
;

C8;H��w� �
8

���
2

p

3
�4��3��s tan���Z~s�2;i�Z

y
~s �i;2

�
j�jmte

�i,��Z~t�2;j �

���
2

p
swmwAs
e

�Z~t�1;j

�

�
Z d4q1

�2��4
d4q2
�2��4

1

DH

�
�Zy

~t �j;1N
g
H�1� �mtjm3je

i,3�Zy
~t �j;2N

g
H�2�

	
;

(18)

where�s � g2s=4�, and the expressions of the form factors N �;g
H�1;2� can be found in Appendix B. Note, Ref. [10] has also

obtained theWilson coefficients from the same diagrams. We formulate our expressions in the more concise forms using
the identities from Appendix A. For the chargino contribution that is ignored by Ref. [10], we can similarly have

C7;1k��w� �
8

���
2

p

3
ed�4��

3��s tan���Z~s�2;i�Z
y
~s �i;2�Z

y
~t �j;1�Z

y
��k;2

Z d4q1
�2��4

d4q2
�2��4

1

D1k

�

�
mtm1k�Z~t�2;j�Z��2;kN

�
1�
k �1�

�
���
2

p
mwmt�Z~t�2;j�Z��1;kN

�
1�
k �2�

�
���
2

p
mwjm3je

i,3�Z~t�1;j�Z��1;kN
�
1�
k �3�

�m2t m1k jm3je
i,3�Z~t�1;j�Z��2;kN

�
1�
k �4�

	
;

C8;1k��w� �
8

���
2

p

3
�4��3��s tan���Z~s�2;i�Z

y
~s �i;2�Z

y
~t �j;1�Z

y
��k;2

Z d4q1
�2��4

d4q2
�2��4

1

D1k

�

�
mtm1k�Z~t�2;j�Z��2;kN

g
1�
k �1�

�
���
2

p
mwmt�Z~t�2;j�Z��1;kN

g
1�
k �2�

�
���
2

p
mwjm3jei,3�Z~t�1;j�Z��1;kN

g
1�
k �3�

�m2t m1k jm3je
i,3�Z~t�1;j�Z��2;kN

g
1�
k �4�

	
;

(19)
with D1k � 
�q2 � q1�2 �m2t ��q21 � jm3j2��q21 �m2~si��
�q22 �m2~tj��q

2
2 �m21k�. Z�;Z� are the left- and right-

handed mixing matrices of charginos, and the form fac-
tors N �;g

1�
k �i�

�i � 1; 2; 3; 4� are collected in Appendix B.
After we simplify the sum of the 
sb��g� triangle diagram
amplitudes using the identities in Appendix A, we find
that the effective 
sb��g� vertices should also include the
two-point operator

O se �
1

�4��2
mb���
sL�i 6D�2bR; (20)

beside the magnetic (chromomagnetic) dipole operators
O7 (O8). Here, the covariant derivative acting on the
quark fields is
D� � @� � ieeqA� � igsG�; (21)

with G� � Ga�Ta. Certainly, the Wilson coefficient of
this operator does not give any contribution to the rare
process b! s� after we evolve the corresponding coef-
ficients from the matching EWscale to the hadronic scale.
Nevertheless, when we extract the Wilson coefficients of
O7 (O8), it makes sense to keep this operator for the
following reason. Beside the effective vertex with two
quarks

O se �
i

�4��2
mbp

2!�; (22)

the operator Ose can also induce the effective vertices
with two quarks and one photon or gluon
-5
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Ose �
i

�4��2
eedmb�2p� � 6k���!�;

Ose �
i

�4��2
gsTamb�2p� � 6k���!�

(23)

in the momentum space. Here, p; k are the incoming
momenta of the external quark b and gauge boson (� or
g), respectively. For the effective 
sb��g� vertices
A��g�� �p; k�, the corresponding WTIs required by the
SU�3�c �U�1�em gauge invariance are written as

ieed
��p� k� � ��p�� � ik � A��p; k�;

igsT
a
��p� k� � ��p�� � ik � Ag�p; k�;

(24)

where i��p� represents the sum of amplitudes for the self-
energy diagrams (Fig. 1). Expanding the self-energy am-
plitudes in powers of external momentum to the third
order, we have

i��p� �
i

�4��2
B0mbp

2; (25)

where the function B0 only depends on the heavy free-
doms which are integrated out. In the effective theory,
there are two deductions from the WTIs:

(i) the effective 
sb��g� vertices can be formulated as

iA���p; k� �
i

�4��2
eedmbfB

�
1 �2p� � 6k���

� B�2 
6k; ���g!�;

iAg��p; k� �
i

�4��2
gsT

ambfB
g
1�2p� � 6k���

� Bg2
6k; ���g!�

(26)

after we expand A��g�� �p; k� in powers of external mo-
menta to the second order, where B�;g1;2 are the functions
of heavy freedoms only;

(ii) additionally, B0 � B�1 � Bg1 . The above deductions
can be taken as the criterion to test our calculations. In
Eq. (26), the functions B�;g2 are proportional to theWilson
coefficients of the magnetic and chromomagnetic dipole
operators, respectively.

As an application, we will investigate the CP asym-
metry of the rare decay B! Xs� within the framework
of MSSM.
III. DIRECT CP VIOLATION IN B ! XS�

In the SM, the CP asymmetry of the B! Xs� process

ACP�B! Xs�� �
�� 
B! X
s�� � ��B! Xs��

�� 
B! X
s�� � ��B! Xs��
(27)

is calculated to be rather small: ACP � 0:5% [15]. For
096012
experimental data, the recent measurement [16] of the
CP asymmetry implies the 95% range of

�0:30 	 ACP�B! Xs�� 	 0:14: (28)

In other words, studies of the direct CP asymmetry in
B! Xs� may uncover new sources of the CP violation
which lie outside the SM. Up to the NLO, the complete
theoretical prediction has been presented in Ref. [17]. In
order to eliminate the strong dependence on the b-quark
mass, the branching ratios is usually normalized by the
decay rate of the B meson semileptonic decay:

��B! Xs��
��B! Xce 
!�

�
6�
�f�z�









V
�
tsVtb
Vcb

C7��b�









2
; (29)

where f�z� � 1� 8z� 8z3 � z4 � 12z2 lnz is the phase-
space factor with z � �mc=mb�

2, and � � e2=�4�� is the
EW fine-structure constant. The CP asymmetry in the
rare decay B! Xs� is correspondingly formulated as
[15]

ACP�B!Xs���
�s��b�

jC7��b�j2

�
40

81
Im
C2��b�C

�
7��b��

�
4

9
Im
C8��b�C

�
7��b���

8z
9
g�z�Im

�

��
1�

V�
usVub
V�
tsVtb

�
C2��b�C�

7��b�
�	
; (30)

with g�z�� �5� lnz� ln2z��2=3���ln2z��2=3�z�
�28=9�4=3lnz�z2�O�z3�. The C2��b� is the Wilson co-
efficient of the operator O2 � 
sL��qL 
qL��bL �q � c; u�
at the hadronic scale. From now on we shall assume the
value BR�B! Xce 
!� � 10:5% for the semileptonic
branching ratio, �s�mz� � 0:118, ��mz� � 1=127. For
the standard particle masses, we take mt � 174, mb �
4:2, mw � 80:42, mz � 91:19 GeV, and z � mc=mb �
0:29. In the CKM matrix, we apply the Wolfenstein
parametrization and set A � 0:85; 0 � 0:22; ' �
0:22; 5 � 0:35 [18]. Without loss of generality, we always
assume the supersymmetric parameters � � Ate�i�=2 �
100,m3e�i�=4 � 300, Ase�i�=2 � mtR � 200 GeV,mtL �
msL � 5 TeV here. In order to suppress the one-loop
EDMs, we choose the � parameter CP phase ,� � 0.
As for the CP phase which is contained in the SU�2�
gaugino mass parameter m2, it is set as
,2 � arg�m2� � �=4.

Taking tan� � 30; jm2j � 300 GeV; msR � 500 GeV,
we plot the CP asymmetry and branching ratio of the
inclusive B! Xs� decay versus the charged Higgs mass
in Fig. 4. Considering the experimental constraint on the
-6
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FIG. 4. The CP asymmetry and branching ratio of the in-
clusive B! Xs� decay versus the charged Higgs mass mH� .
Dashed line: theoretical prediction at the one-loop order; solid
line: theoretical prediction at the two-loop order, when tan� �

30; jm2j � 300 GeV; msR � 500 GeV, the other parameters are
taken as in the text. The gray band is the experimental allowed
region for the branching ratio BR�B! Xs�� at 1 deviation.
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FIG. 5. The CP asymmetry and branching ratio of the in-
clusive B! Xs� decay versus the charged Higgs mass mH� .
Dashed line: theoretical prediction at the one-loop order; solid
line: theoretical prediction at the two-loop order, when tan� �

60; jm2j � 300 GeV; msR � 500 GeV, the other parameters are
taken as in the text. The gray band is the experimental allowed
region for the branching ratio BR�B! Xs�� at 1 deviation.
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branching ratio BR�B! Xs�� at 1 tolerance, the CP
asymmetry including the two-loop corrections can be
larger than 3%, and the one-loop result is smaller than
1% with our chosen parameters. The choice of parameter
space of Fig. 5 is identical with that of Fig. 4 except for
tan� � 60. After including the two-loop corrections, we
find that the CP asymmetry can reach 5% with an in-
creasing of the charged Higgs mass when tan� � 60,
while at the same time keeping the branching ratio
BR�B! Xs�� within the 1 deviation experimental
bound. Since the two-loop correction is proportional to
tan�, we can understand why the differences between the
one- and two-loop predictions of Fig. 5 ( tan� � 60) are
larger than that of Fig. 4 ( tan� � 30). From the numeri-
cal analysis, we find that the two-loop corrections to the
Wilson coefficients are still rather smaller than the one-
loop results at tan� � 30, while the two-loop corrections
are comparable with the one-loop results at tan� � 60.
Since the bottom quark Yukawa coupling approximates
to 1 at tan� � 60, it should be argued whether or not we
can safely apply the perturbative expansion to give the
096012
theoretical predictions of physics observables for such
high tan�.

Now, let us study the variance of two-loop results with
the soft SU�2� gaugino mass parameter jm2j. Taking
tan� � 30; msR � 200 GeV; mH� � 600 GeV, we plot
the theoretical predictions for the CP asymmetry and
branching ratio of the inclusive B! Xs� decay versus
the parameter jm2j in Fig. 6 at one- and two-loop order,
respectively. If the theoretical prediction for the branch-
ing ratio satisfies with the experimental bound at 1 
deviation

2:48� 10�4 	 BR�B! Xs�� 	 3:74� 10�4;

the CP asymmetry including the two-loop corrections is
about �1:5%. The choice of the parameter space in Fig. 7
is identical with that of Fig. 6 except for tan� � 60.
In this scenario, the two-loop prediction on the asymme-
try is about �4%. Note that the dependence of the two-
loop corrections on the parameter jm2j is milder than
that on the charged Higgs mass mH� . This fact can be
understood as follows: the amplitudes of the correspond-
-7
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FIG. 6. The CP asymmetry and branching ratio of the in-
clusive B! Xs� decay versus the parameter jm2j. Dashed line:
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ing triangle diagrams depend on the charged Higgs mass
in the form 1=�Q2 �m2H�� (Q denotes loop momenta
q1; q2, or q2 � q1), and depend on the parameter jm2j
through the chargino propagator �Q6 �m1�=�Q

2 �m21�
(m1 denotes the chargino mass) before the loop momen-
tum integration.

In our analysis, we do not compare the exact two-loop
analysis with the HME result since the discussion has
already been presented in Ref. [10].

IV. CONCLUSIONS

In this work, we present the complete two-loop gluino
corrections to inclusive B! Xs� decay in explicit CP
violating MSSM within large tan� scenarios. Beside the
diagrams where quark flavor change is mediated by the
charged Higgs, we also include those diagrams in which
quark flavor change is mediated by the charginos. Using
loop momentum translation invariance, we formulate our
096012
expressions fulfilling the SU�3�c �U�1�em WTIs. From
the numerical analysis, we show that the two-loop cor-
rections to the branching ratio are comparable with the
one-loop predictions at large tan�. Correspondingly, the
CP asymmetry can also reach about 5%, which is much
larger than that predicted by the SM.
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APPENDIX A: IDENTITIES AMONG THE TWO-
LOOP SCALAR INTEGRALS

Here, we report the identities that are used in the
process of obtaining Eqs. (18) and (19). They can be
derived from the loop momentum translation invariance
of the amplitudes. They are
-8
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with D0 � 
�q2 � q1�2 �m20��q
2
1 �m2a��q22 �m2��, andD is the time-space dimension. In addition the two-loop vacuum

integral
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has been discussed in Ref. [14].

APPENDIX B: FORM FACTORS IN THE TWO-LOOP WILSON COEFFICIENTS
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