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Abstract. Software Engineering as an industry is highly diverse in terms of de-

velopment methods and practices. Practitioners employ a myriad of methods and 

tend to further tailor them by e.g. omitting some practices or rules. This diversity 

in development methods poses a challenge for software engineering education, 

creating a gap between education and industry. General theories such as the Es-

sence Theory of Software Engineering can help bridge this gap by presenting 

software engineering students with higher-level frameworks upon which to build 

an understanding of software engineering methods and practical project work. In 

this paper, we study Essence in an educational setting to evaluate its usefulness 

for software engineering students while also investigating barriers to its adoption 

in this context. To this end, we observe 102 student teams utilize Essence in prac-

tical software engineering projects during a semester long, project-based course. 

Keywords: Software Engineering, Method, Practice, Essence, SEMAT, Educa-

tion, Software Process Engineering 

1 Introduction 

Software Engineering (SE) work out in the field is diverse, with practitioners employ-

ing a myriad of different methods and practices in equally diverse SE endeavors [5, 10]. 

As little consensus exists in terms of best practices and methods, practitioners have 

taken to using what they consider to be the best option(s) for their own SE context, 

often tailoring them by omitting some suggested practices or rules [5]. Though e.g. 

Agile methods are currently widely employed out on the field, the practices and meth-

ods that are understood as being Agile are numerous [1]. Especially software startups 

use a diverse mix of agile methods and practices, with some simply opting to use ad 

hoc SE methods [17]. 

This diversity in the SE industry has, alongside other factors such as technological 

advances, resulted in a gap between education and practice in SE [2, 13]. As it is not 

possible to teach university students all the methods and practices employed by 
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practitioners, curriculum-makers are faced with choices on what to focus on. General 

theories and methods that can be taught to students to support them in the adoption of 

new practices in the future are one option in attempting to tackle this gap. One such 

theory is the Essence Theory of Software Engineering (Essence from here-on-out), pro-

posed by the SEMAT initiative1 [10]. 

Created to address the vast range of methods employed in the field, Essence is a 

method-agnostic progress control tool for SE. Essence is modular in nature and can be 

used to model any existing methods, practices, or combination of such [15]. Thus, Es-

sence is designed to suit any SE possible context [9], making it a potentially powerful 

tool. However, its flexibility is also a potential a downside: in order to use Essence, 

resources have to be devoted towards modeling the practices and methods being used, 

as well as learning how to do specifically by using Essence. 

Presently, Essence has yet to see widespread adoption among practitioners, although 

it has seen some traction among the academia [21]. It is possible that its rather resource-

intensive adoption is one barrier for its adoption, as has been discussed in extant re-

search [8, 18]. For this purpose, some tools have been suggested to aid practitioners in 

its adoption and in using it: e.g. [8] presented SematAcc to help users visually track the 

alpha states while using Essence and [11] presented an Essence-themed board game to 

make learning Essence easier. However, more tools and further studies specifically fo-

cusing on its supposedly difficult adoption are also required to better understand the 

barriers of its adoption and to consequently be able to tackle them. Additionally, an 

educational perspective on Essence is interesting because Essence can help address the 

gap between education and industry needs. For example, [2] report that SE graduates 

are often perceived by the industry as lacking in e.g. the ability to follow processes and 

project management skills, both of which Essence can help teach. 

In this paper, we study Essence in a large-scale classroom setting. We observe over 

one hundred project teams consisting of second year SE students employ Essence dur-

ing course projects mimicking a field SE endeavor. The teams carry out a complete SE 

project, from requirements formulation to a finished software product, using Essence 

to manage their project. Then, based on their projects, the students reflect on their ex-

periences with Essence in a written experience report. With the data collected from 

these experience reports, we seek to understand: 

RQ1: How useful do bachelor level students find Essence? 

RQ2: What are the challenges in adopting Essence, specifically for inexperienced 

software developers, and what could be done to make its adoption easier? 

The rest of this paper is structured as follows. In the next section, we discuss the 

Essence specification and extant research on it in further detail. In the third section, we 

present and discuss the study design. In the fourth section, we analyze the data and 

present our findings. We then discuss the practical and theoretical implications of our 

findings in the fifth section, as well as the potential limitations of the study and direc-

tions for future research. The sixth and final section concludes the paper. 

                                                        
1 semat.org 
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2 The Essence Theory of Software Engineering 

Essence is a modular, method-agnostic progress control tool for SE endeavors. Pro-

posed by the SEMAT initiative to address the myriad of methods and practices em-

ployed by industry practitioners, Essence is a framework into which any combination 

of existing methods or practices can be inserted. In practice, Essence consists of a kernel 

and a language. The kernel [14], its authors argue [10], contains all the elements present 

in every SE endeavor, while the language can be used to extend the kernel to fit any 

specific SE endeavor. I.e. Essence, in its base form, contains the elements required to 

track progress in a generic SE endeavor, but it is intended to be tailored for specific SE 

contexts. 

The Essence kernel consists of three views: alphas, activity spaces, and competen-

cies. In the kernel, there are seven alphas (Fig. 1.), “things to work with”: opportunity, 

stakeholders, requirements, software system, work, team, and way of working [10]. 

These alphas, Jacobson et al. [10] posit, are present in every SE endeavor. Alpha is an 

acronym for an “Abstract-Level Progress Health Attribute” [14]. For the project to pro-

gress, these alphas need to be worked on. To this end, the kernel contains activity 

spaces. Activity spaces may contain 0 or n activities, or “things to do”. The activity 

spaces in the kernel, much like the alphas, are elements Jacobson et al. [10] argue are 

found in every SE endeavor. Finally, the kernel contains a set of competencies: skills 

needed to carry out the endeavor [10]. These alphas, activity spaces, and competencies 

are further split into three areas of concern: endeavor, solution, and customer. 

 

 
Fig. 1. The Essence Kernel Alphas 

The alphas of the kernel serve as a way of tracking project health. Alpha states offer a 

way of tracking progress on the various areas of the endeavor. Each of the seven base 

alphas has a set of states that describe the progress made on each individual alpha. For 
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example, the states for the requirements alpha range from conceived, where the require-

ments have only just been formulated, to fulfilled, where they have been implemented 

into the system in a manner satisfying the stakeholders. 

Jacobson, Stimson & Hastie [9] suggest Essence as a solution to what they call 

method prisons. In speaking of method prisons, they refer to the idea of organizations 

being stuck following one method or set of methods regardless of their suitability in the 

current context at any given time. However, they posit, the SE practitioners often pre-

sent methods as monolithic for example by using very varied presentation styles to de-

scribe them. By presenting methods in a uniform manner, by e.g. using Essence, and 

by simply promoting a method-agnostic idea, Jacobson et al. [9] argue that organiza-

tions could escape method prisons and potentially improve their work processes by 

creating better methods specifically suited for their SE context. 

Though its modular and extensible nature is the greatest strength of Essence, it can 

also be its greatest weakness. Whereas it makes Essence a powerful tool, it also makes 

it both resource-intensive and potentially difficult to adopt. Perhaps consequently, Es-

sence has not gained widespread recognition among practitioners, although it has 

gained some traction among the academia [21]. Graziotin & Abrahamsson [8] suggest 

that the modest attention Essence has received among practitioners may well stem from 

the steep learning curve of the specification. Even though Jacobson et al. [9] make a 

potentially interesting case in promoting the idea of tailoring methods more actively, it 

may seem easier for practitioners to get started by simply using an existing method. 

3 Research Design and Methodology 

In this section, we describe the methodology of the classroom study on Essence in the 

context of student SE projects. In the first sub-section, we discuss the course from 

which the data was collected. The role of Essence in said course is then discussed in 

the second sub-section. The third and final sub-section discusses our data collection and 

analysis methodology in detail. The data is then analyzed in the following main section. 

 

3.1 The Course 

The study presented in this paper was conducted using data from the TDT4140 – Soft-

ware Engineering course at the Norwegian University of Science and Technology 

(NTNU). More specifically, all data for this study was collected during the 2017 spring 

iteration of the course during which the students utilized Essence in their projects. In 

this instance of the course, each project team was to engineer a functional software by 

carrying out a real SE project in a university setting. The theme of the projects was to 

radically improve university education by means of software robots. The exact goal of 

the projects was to “make a bot to replace Prof. Abrahamsson at his course on SE”. 

Following the first lecture of the course, the students were instructed to form project 

teams consisting of 4 to 5 students. The teams were formed by having the students give 

a subjective evaluation of their own programming skills in terms of programming con-

fidence and then form teams with individuals with similar evaluations. This was done 

to negate any potential internal issues (e.g. workload distribution issues) within the 
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teams arising from skill differences in programming. Starting from the first lecture, 

these teams were to work on their projects until the end of the course. The teams were 

first tasked with interviewing university teaching staff in order to discover tangible 

needs that could be addressed through their software. Stakeholders were involved in 

this fashion to make the project mimic a real SE endeavor more closely.  

After gathering needs through the interviews and selecting the one(s) they wished to 

address, the students were to plan their development methodology and start utilizing it. 

During the course and the projects, weekly two-hour-lectures continued to offer rele-

vant information and to support the project teams. The project work itself was carried 

out largely independently by each team. 

3.2 The Role of Essence in the Course 

Essence was introduced to the teams in the first lecture. The first lecture focused on 

discussing SE work in practice, specifically from the point of view of projects. During 

the lecture, Essence was discussed primarily in relation to its seven alphas, which were 

underlined to present the essential elements of an SE endeavor. In terms of methods, 

the students were instructed to initially work in whatever fashion they thought was best. 

The reasoning behind this line of action was to create fertile ground for the later adop-

tion of Essence: by letting the teams first work in a rather unsystematic or even ad hoc 

fashion, they would likely be more receptive to tools that could help them systematize 

their way of working. I.e. having experienced unsystematic SE project work, they 

would better understand the need for more structured approaches to SE. 

This approach, in practice, resulted in the teams largely working with various 

“ScrumBut”2 approaches for the first three weeks. Their use of Scrum was likely to 

have stemmed from a previous course at the university having introduced them to 

Scrum. After three weeks of working as they saw fit without outside assistance from 

the teaching team, the teams were introduced to the Ivar Jacobson Practice Library3. 

They were tasked with using the practice cards (Fig. 2) from the library to re-construct 

their way of working and to modify it as they saw fit based on their experiences so far.  

In this fashion, the teams were introduced to both the progress control aspect of Es-

sence and its method-agnostic philosophy during the course. After the introduction of 

the practice cards, the use of Essence was not enforced during the project work and 

there were no regular check-ups to confirm its utilization. Full and correct utilization 

of Essence was not mandatory, and its utilization or lack thereof did not affect the 

grades given to the teams. All teams were instructed to utilize it to what extent they felt 

they could, but this was not supervised in practice. This approach was chosen to gather 

more unbiased data on the possible barriers of adoption in the case of Essence. 

                                                        
2 ScrumBut refers to using Scrum while omitting some parts of it, “We use Scrum, but…” (refer 

to: https://www.scrum.org/resources/what-scrumbut) 
3 https://practicelibrary.ivarjacobson.com/start 
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Fig. 2. A project team showing their practice cards 

3.3 Data Collection and Analysis Methodology 

The data for this study was collected through written reflective reports provided by each 

team at the end of their projects4. In their report, each team was instructed to reflect on 

their experiences with Essence, along with other content unrelated to this study. As for 

Essence, they were to describe how they utilized it and how they felt about having done 

so. More specifically: (1) what they thought was good about Essence, (2) what they 

thought was bad about Essence, and (3) how they utilized Essence during their project. 

Ultimately, 102 project teams of 4-5 students finished the course and delivered a 

written project report. Our data analysis is based on these 102 reports. The teams were 

not given a strict format to follow in the sections of their reports describing Essence, 

which led to the data being somewhat diverse in presentation. Each report was to dis-

cuss the afore-mentioned three topics related to their use of Essence, but past these 

general guidelines the Essence sections of the reports were freeform. In practice, this 

largely just meant that teams that had utilized Essence relatively little wrote little about 

it whereas teams that had utilized it fully wrote far more about their experiences. 

Thematic analysis was chosen as the method of analysis for this study due to the 

large volume of the data, as well as the lack of pre-determined assumptions of how the 

students possibly perceived the use of Essence in this context. Both the final themes 

and the initial codes used to formulate them were generated from the data in an induc-

tive fashion. The analysis process was iterative and reflexive. 

Initially, the author conducting the thematic analysis went through the data and rec-

orded key points for each report, both by directly quoting the reports and by making 

summarizing remarks, in a separate text document. During this process, initial codes 

were formulated based on recurring sentiments in the reports. E.g. many reports turned 

                                                        
4 A book showcasing the results of the projects can be found on Figshare: https://figshare.com/ar-

ticles/100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutioniz-

ing_the_University_Learning_Experience_with_Bot_Technologies/5597983 
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out to describe various initial difficulties in adopting Essence. The analysis process was 

iterative, and reports and the recorded key points and quotations were regularly re-read 

as further codes were generated. This phase was concluded once all reports had been 

analyzed and the final set of codes had been applied to each of them where applicable. 

Finally, the themes were generated inductively from the coded data. Codes were 

arranged into matching themes, with each theme encompassing one or more codes. In 

determining the themes, the research questions were used as a framework for organiz-

ing the data under the themes as well as determining the relevance of the codes and 

what was to ultimately be included into the study. In presenting the results in the next 

section, some of the direct quotations used in the analysis process were also included. 

Additionally, in our first research question we speak of usefulness. Usefulness is a 

construct often used in relation to evaluating software systems designed especially for 

work-related use (e.g. [4]). In the context of this study, we define usefulness to be re-

lated to either learning something new about SE or SE progress control (educational 

usefulness) or providing help in SE project work (practical usefulness). These two 

seemingly separate types of usefulness are nonetheless closely linked together, how-

ever. E.g. a learning experience related to SE project work may simultaneously result 

in practical usefulness through the application the newly-learned information into prac-

tice, which may also take place at a later point in time. In our analysis, we thus speak 

of usefulness while referring to usefulness in both senses. 

4 Results 

The reports showed a very varying degrees and success of utilization of Essence among 

the 102 project teams. Whereas some of the teams had clearly utilized Essence in its 

entirety and reflected upon it in depth, some of the teams had done the bare minimum 

of selecting different practices to use while forgoing the progress control aspect of Es-

sence. However, despite the varying degree and success of Essence utilization among 

the teams, the reports discussed similar themes across the spectrum. 

4.1 Theme 1: Difficult or Resource-Intensive to Learn 

The reports indicated that the majority of the teams considered Essence difficult to learn 

to some extent. Even most of the teams that ultimately utilized Essence successfully 

considered it to have been difficult to initially grasp. As the course involved only a 

general introduction to Essence and its principles, the teams were to study and use Es-

sence on their own using what resources they would find on the SEMAT website or the 

Internet in general. This resulted in most teams feeling that Essence was difficult to 

learn, or “hard to get a grasp on when first introduced” (Report 048). The teams gener-

ally considered to be a direct result of the types of resources available online:  

 

…we felt that almost anywhere we went to read about SEMAT we were either 

drowned with information (the Essence Kernel PDF has 308 pages) or the infor-

mation was too abstract that we felt left confused after reading. (Report 041) 
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The web page material, the articles and the academic resources about SEMAT are 

filled with many new terms, but few clear definitions. It would be easier for the next 

years students to grasp what SEMAT really is, if there existed some sort of document 

on blackboard explaining the SEMAT terminology. (Report 016) 

 

Largely in line with the quotation above, though Essence was considered difficult to 

learn, the teams almost uniformly cited the lack of good tutorial resources as the main 

reason for this. The existing ones were considered either too lengthy or to simply be 

written in a needlessly complex manner, failing to offer a good initial touch to the spec-

ification. This is also supported by some reports directly stating that past the initial 

barrier of adoption, Essence was a useful tool. However, due to its resource-intensive 

adoption, many felt that they wanted to focus on the practical SE work instead: 

 

We just wanted to get on with the programming and it seemed like it was just one 

more unnecessary thing we needed put effort into when we already had quite a lot 

with learning new technologies and languages. (Report 044) 

 

Past the self-reported issues related to learning Essence, it was also occasionally possi-

ble to determine that a team had not managed to internalize Essence based on the con-

tents of their report. It was evident that some teams had only utilized the practice cards, 

as they had been directly instructed to do, and ignored the kernel and its alphas and 

other views, i.e. the progress control aspect of Essence. It is likely that this was caused 

by the perceived difficulty of learning the specification: some of these teams likely felt 

that they had understood Essence despite only grasping parts of it. Though the difficulty 

of learning Essence was primarily blamed on the lack of good tutorial resources, one of 

the teams did specifically state that they felt Essence itself was too abstract for them. 

Despite Essence being considered somewhat difficult to initially learn by the teams, 

it was generally considered to have been a positive experience. Even the teams that 

reported having particularly struggled with learning it, or having been unwilling to in-

itially devote resources towards doing so, felt that it had ultimately been useful: 

 

In retrospective, perhaps we would have had even greater progress with our project 

and higher learning outcome from the course if our understanding of SEMAT had 

improved at an earlier stage (Report 062) 

 

When we later, a bit too late probably, actually sat down and studied what it meant 

and how to use it, it seemed kind of genius. (Report 044) 

4.2 Theme 2: Inexperience 

Another recurring theme present in the reports was inexperience in relation to SE. In 

their reports, the teams often discussed their own perceived inexperience with SE in 

relation to Essence. The inexperience of the teams evidently had a multifaceted signif-

icance to their experiences with Essence.  
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On one hand, the teams felt that Essence was more useful because they were inex-

perienced. They felt that, being inexperienced developers, Essence helped them (1) 

structure their way of working, (2) learn about new methods and practices, and (3) 

manage their projects better. In conjunction with the practice library, Essence was per-

ceived to have been very educational in relation to SE methods and practices. 

 

While still being on our own and with little experience, SEMAT provided us guide-

lines that allowed us to improve and learn while planning and working on the pro-

ject. Resulting in a much better experience with projects than before and a concept 

we are proud of. Knowledge we absolutely will include in future projects and pro-

gramming. (Report 078) 

 

...our experience with the ESSENCE kernel has been almost exclusively positive. 

Given that is prevents overlooking parts of the software development cycle, we per-

ceived it as more beginner friendly than other competing, more fragmented ap-

proaches to software development methodology. (Report 047) 

 

On the other hand, some teams felt that their inexperience with SE might have also had 

a negative impact on the usefulness of Essence. As Essence encourages one to develop 

their own way of working, these teams felt they could not make the most of Essence 

due to their lack of knowledge about practices: 

 

A team of beginner developers such as ourselves might get locked up in the [prac-

tice] cards already made, resulting in using methods that is ineffective for us since 

we wouldn’t make up any new techniques that isn’t “available”. We think that with 

a little more experienced team that hasn’t made their own method yet, this would be 

extremely helpful. (Report 013) 

 

Not all teams considered this to be a negative situation, however. Some teams felt that 

the way Essence encouraged them to experiment with new practices and to learn by 

working as a team was helpful, even though they initially did not have a clear idea of 

what practices might work for their team. Essence, they felt, challenged them to actively 

think about what they were doing and why, and even though it did not provide direct 

answers to those questions, it facilitated learning in a positive manner. Thus, the general 

sentiment among the groups was that Essence, as well as the practice library related to 

it, had been very useful for them as inexperienced developers. As a concluding remark, 

it is worth noting that while not all of the teams comprised of individuals with little or 

no past experience with practical SE work, the resounding majority of them nonetheless 

did, being comprised of second year SE students. This was also evident in the way the 

teams actively reflected on their own inexperience in various ways in their reports. 

4.3 Theme 3: Way of Working and the Method Prison 

One of the most discussed positive aspects of Essence perceived by the teams was its 

method-agnostic approach. The ability to freely choose between methods and practices 
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was considered both new and highly positive, letting them, in the words of Jacobson et 

al. (2017), escape the “method prison”: 

 

Our team really liked the freedom SEMAT gives you in defining the way you develop 

something and how you can customize it, choose the practices you want and not be 

forced to use practices you don’t want to use (Report 036) 

 

There were many positives of applying the kernel to our project, like choosing what 

we wanted to implement in our regular work day allowed us to use only what we 

wanted and thought we could benefit from. This level of freedom created a higher 

level of productivity than for example Scrum, where we are forced to use all aspects 

of the framework that do not necessarily benefit us. Not being forced to do things 

that we feel would slow us down and not benefit us really made us appreciate the 

SEMAT Essence Kernel (Report 071) 

 

As many of the students in the course had previously taken a course on Scrum, many 

of the reports consequently also included reflections related to Scrum. These teams dis-

cussed how they had initially started using Scrum or ScrumBut but had then begun to 

reflect on what they were doing and why, resulting in them refining their own way of 

working by using Essence. Used in conjunction with the practice card library, Essence 

provided them with new alternative practices to utilize. This resulted in the teams ex-

perimenting with different practices. On a more general level, they felt that the method-

agnostic approach of Essence prepared them for different ways of working in the future. 

 Additionally, the teams reported positive experiences with actively reflecting on 

their way of working. Aside from initially tailoring a method for themselves, some of 

the teams reported having found Essence useful in facilitating the idea of continuously 

improving their work processes based on their experiences. Furthermore, some teams 

also noted that Essence had made it easier to communicate their way of working to the 

team as well as to discuss it within the team: 

 

This overview of all practices really benefited us when we put together our way of 

working and made it easy to visualize our workflow. Whenever a team member was 

unhappy with any aspect of our work methodology we reviewed the cards and added 

or removed any if needed. (Report 060) 

 

Finally, the teams discussed having learned much about new methods and practices 

simply by browsing through the practice cards available in the Ivar Jacobson practice 

library. This serves to underline the importance of tools related to adopting Essence. In 

this case, the practice cards helped teams of inexperienced developers tailor methods 

using Essence despite not having any previous experience with different SE practices. 

4.4 Theme 4: Progress Control 

The Essence kernel provides a framework upon which to build a project-specific tool. 

However, even without any modifications, the kernel already serves as a basic progress 
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control tool. This was also reflected in the reports. Most teams that had properly utilized 

the kernel had had positive experiences using Essence to manage and track progress: 

 

Selecting and using the alpha state cards that were relevant to our circumstances to 

assess our progress proved extremely effective. When we used them for the first time 

we were surprised to learn that we had not made as much progress as we thought. 

The cards were useful in seeing where we wanted to be in terms of progress in the 

different alphas, and thus facilitated the process of fixing our impediments. (Report 

005) 

 

The team then agreed to purchase a cork board and print out the Alpha State Cards 

in order to quickly and easily get an overview over the team’s overall progress. This 

proved valuable, as none of the team members had partaken in any projects of this 

scale previously. The clear visualization the cards provided gave a much clearer 

picture of the project’s progression overall than what the team found orally. (Report 

055) 

 

Although Essence did clearly facilitate the idea of tailoring methods and choosing the 

methods that work best, this may not always be preferable. If the alternative to being 

locked in a “method prison” is the use of ineffective ad hoc methods, following an 

established method by the book may well be the more effective option. However, the 

teams felt that Essence helped them formalize their way of working aside from also 

facilitating the idea of tailoring it to suit their context-specific needs. 

In relation to the inexperience of the teams discussed in a preceding sub-section, 

many of the teams felt that the Essence kernel provided a good overview of a software 

engineering endeavor especially because they had little experience with SE project 

work. Even though not all teams that utilized the kernel extended it, they nonetheless 

felt the Essence kernel in its base form was already useful in tracking their progress – 

except for one. One of the teams felt that they had had a solid understanding of the state 

of their project prior to using Essence and that “it didn’t help us anything to convert it 

into cards and more complicated sentences” (Report 059). This is not surprising as tools 

are just that: tools. Similarly, though formal methods and practices are typically pre-

ferred, it is quite possible to carry out SE endeavors using ad hoc methods, as e.g. a 

notable number of software startups chooses to do [17]. 

4.5 Summary of Findings 

Having discussed the results through the themes present in the data set, we now turn 

back to our formal research problem. Below, we provide summarizing answers for the 

two research questions posed in the introduction before going into more detail: 

 

RQ1: Do bachelor level students find Essence useful?  

Results: Essence was considered useful by the students, for varying reasons 

RQ2: What are the challenges in adopting Essence, specifically for inexperienced 

software developers, and what could be done to make its adoption easier? 
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Results: The largest challenge in adopting Essence was the lack of good tutorial 

resources, which consequently could be addressed by creating better such resources. 

 

Though the student teams nearly universally considered Essence useful, there were dif-

ferences between the teams in terms of why they considered it useful, largely based on 

the extent to which they had utilized it. Essence was considered useful for (1) teaching 

new methods and practices, (2) teaching a method-agnostic approach to SE, (3) helping 

the team properly structure their way of working, and (4) providing a useful framework 

for managing an SE project, depending on the degree of its utilization among each team. 

Few teams had anything negative to say about the specification itself, with most of the 

negative feedback relating to difficulties in adopting Essence. 

Indeed, though Essence was considered useful by the teams, it was nonetheless evi-

dently difficult for them to adopt. Many teams, even those that did utilize it the most, 

considered it to have been difficult to initially learn. The reports that discussed the rea-

sons behind its perceived difficult adoption all cited the lack of good tutorial resources 

as the main problem. The teams felt that the resources they could find online were either 

hundreds of pages long or did simply not describe Essence simply enough for begin-

ners. This resulted in some teams opting to focus their efforts elsewhere by e.g. focusing 

on learning to program and use programming tools, leaving Essence for later.  

Having discussed our findings in relation to our research questions, we present a 

further, visual summary of how the themes discussed earlier in this section are inter-

linked (Fig. 3). It is organized in a manner similar to how Giardino et al. [6] summarized 

their findings and depicts the adoption of Essence among students as a process. The 

student teams, as developers, were inexperienced. This inexperience resulted in a lack 

of resources as they had to divide their resources between e.g. learning to program, 

learning to use the programming tools, and learning Essence. In this situation, Essence 

often took on a lower priority, consequently becoming more difficult for the teams to 

learn. However, once the teams began to understand and utilize Essence, they began to 

work more systematically. All teams utilized Essence and the practice cards to work in 

a more systematic fashion, and many, but not all, teams grasped the kernel and began 

to use it as a progress control tool. For the teams that understood how to fully utilize 

Essence, its use ultimately resulted in an escape from the so-called method prison [10]. 

These teams actively reflected on their way of working and saw Essence also as a tool 

to facilitate learning in order to (attempt to) work in an efficient fashion in any given 

context in the future.  

 

 
Fig. 3. Adoption process of Essence among SE students 
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Based on our findings, we therefore argue that SE students find Essence useful for 

multiple reasons. Furthermore, we confirm that Essence is considered difficult to learn, 

and our data suggests that the largest challenges in adopting Essence currently stem 

from a lack of tutorials and guides aimed at beginners. The current resources available 

online were considered too lengthy or advanced to be of use for new users of Essence. 

5 Discussion 

As extant literature has suggested [8], our findings confirm that Essence is indeed con-

sidered difficult and resource-intensive to adopt. However, our findings indicate that 

stems from a lack of good tutorial resources as opposed to Essence being difficult to 

use as such. The current manuals and other resources available were considered by the 

student teams to be too complex for beginners. Thus, the most direct solution to this 

issue would simply be the creation of better tutorial resources specifically aimed at new 

users of Essence. 

As a solution to making Essence easier to adopt, [8] suggested the development of 

tools that could be used to make the practical use of Essence easier. This was not con-

firmed by our findings as none of the teams voiced explicit wishes for more tools to 

help utilized Essence. However, given that the practice card library, an external tool as 

well, was very positively received among the teams, it is likely that further tooling 

would also make Essence either easier to adopt and possibly more useful. 

In terms of the usefulness of Essence for bachelor level students, our data indicates 

that Essence was indeed considered useful by the resounding majority of the project 

teams we studied. Less than ten teams out of 102 reported having found the use of 

Essence an outright negative and useless experience. In this light, we argue that Essence 

is useful for bachelor level students. More specifically, it was found useful in terms of 

(1) teaching new methods and practices, (2) teaching a method-agnostic approach to 

SE, (3) helping the team properly structure their way of working, and (4) providing a 

useful framework for managing an SE project. 

From the point of view of SE education in universities, Essence is interesting as, 

based on our experiences, it can potentially provide a common ground for SE education 

through its method-agnostic nature. Such common ground is currently missing. We 

have showed that it can simultaneously teach students SE progress control as well as 

practical SE work. It also prepares SE students for working with different methods and 

practices out on the field. Essence could therefore be used to provide students with a 

higher-level understanding of the way SE work is structured. Essence can serve as a 

basis upon which SE students can build a general understanding of different SE meth-

ods as opposed to learning about single methods one at a time. 

Learning to construct a method out of practices is an important learning goal for 

software engineering education. Based on our observations during the course, it was 

noted that some teams also learned to include so called anti-patterns or bad practices 

explicitly in their process description. This is a novel thought and should be further 

elaborated in future studies. By labeling a practice as a bad-practice, the team in ques-

tion explicitly communicated about their improvement needs. Manual testing is an 
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example of such practice as it indicates lack of automated test suite, which slows down 

the development and is thus not a sustainable solution. 

Additionally, in terms of generalizing our findings, we suggest that our findings 

could also be interesting for future research from the point of software startups. SE 

students, like startup practitioners [3, 12], are often more inexperienced developers, and 

it is also not uncommon for university students to participate in software startups during 

their studies. Most software startups fail [7] for various reasons, and Kon et al. [12] 

posited that specifically younger, more inexperienced startup practitioners are consid-

ered more prone to failure among investors. Software startups face various challenges 

across their life cycles [22], including challenges with “building product”, “staying fo-

cused & disciplined”, and “over capacity/too much to do”, which Essence could poten-

tially be used to aid in solving. Finally, it has been established that software startups, 

like mature organizations, should concern themselves with structuring their work pro-

cesses [19], which is something we found Essence to be useful for among SE students. 

Relating these past studies to our findings here, we suggest that future studies could 

investigate Essence from the point of view of software startups. Our findings, however, 

do not offer direct support to this link between these two contexts. In possibly pursuing 

this line of research, it could be useful to also evaluate the suitability of the Essence 

kernel in the context of software startups, as software startups have been shown to de-

velop software in different ways than mature organizations [10], and their business as-

pect is linked with their SE process in a unique fashion. 

Finally, while we have studied perceived difficulties in adopting Essence in the con-

text of SE students, future studies may wish to study impediments to its adoption among 

practitioner organizations. As Essence has yet to see widespread practitioner adoption 

[21], the reasons behind this situation are worth investigating. Similarly, it is likely that 

more experienced practitioners find Essence useful or not useful for different reasons 

than the SE students studied in this paper. 

5.1 Limitations of the Study 

The primary limitations of the study are associated with the data collected during it. In 

collecting the data, we chose to rely on self-reported use of Essence over observation 

and regular check-ups. From this results that the validity of the reported utilization of 

Essence among the teams cannot be directly confirmed. However, the student teams 

seldom failed to report problems in utilizing Essence, with most teams that failed to 

utilize Essence fully reporting so themselves. In other cases, it was also largely possible 

to determine whether a team had understood the specification or not based on the way 

they reported on its utilization. We thus argue that this does not present a major threat 

to the validity of our data in such a large data set (102 teams). 

Additionally, while the use of students as subjects for scientific studies is a long-

standing topic of discussion across disciplines, including SE, the aim of this study was 

to study Essence specifically in relation to SE students and education. The use of stu-

dents as subjects in this context is therefore not an issue. 
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6 Conclusions 

In this paper, we have studied the Essence Theory of Software Engineering in a large-

scale bachelor level course through experience reports. We introduced Essence to 102 

project teams in a project-based SE course at a Norwegian university and observed its 

use during the projects. Based on 102 project reports discussing, among other things, 

the Essence use experiences of project teams of 4-5 individuals, we described the bar-

riers of adoption of Essence and its usefulness for SE students. 

We discovered that while Essence was considered difficult to learn by the teams, 

these difficulties largely stemmed from the lack of good tutorial resources. Some teams 

failed to fully utilize Essence, forgoing its progress control aspect partially or entirely, 

primarily due to its difficult adoption. There is thus a clear need for better introductory 

guides to Essence that are specifically designed for new users. 

Past its difficult adoption, Essence was nonetheless nearly universally considered 

useful by the project teams. Even the teams that had not fully utilized Essence consid-

ered the method-agnostic approach and the practice cards to have been useful for plan-

ning out and formalizing their way of working during their projects. Additionally, the 

teams that had grasped the Essence kernel (except for two teams) also reported Essence 

having been useful in tracking progress during their projects. They felt that Essence 

gave them a good general understanding of SE project work through the alphas and that 

the alpha states helped them keep track of progress on their endeavor. 

We therefore argue in favour of using Essence in SE education. By helping SE stu-

dents gain a better understanding of SE project work and by preparing them for future 

adoption of various practices and methods, Essence can help tackle gaps [2, 13] be-

tween SE education and practice. To summarize our findings: 

 

(1) Essence can teach students new methods and practices by encouraging them to 

study them in order to tailor their own methods using Essence 

(2) Essence encourages students to adjust their way of working based on the SE 

context at hand as opposed to following existing methods by the book 

(3) Essence helps students structure their way of working in a practical setting 

(4) Better tutorial resources for Essence are needed to make it easier to adopt 
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