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Abstract: We study a simple superconvergent scheme which recovers the gradient when solving a second-order elliptic
problem in the plane by the usual linear elements. The recovered gradient globally approximates the true gradient even
by one order of accuracy higher in the L2-norm than the piecewise constant gradient of the Ritz—Galerkin solution. A
superconvergent approximation to the boundary flux is presented as well.

Keywords: Global superconvergence for the gradient, post-processing of the Ritz—Galerkin scheme, error estimates,
boundary flux.

1. Introduction

When a displacement finite element method is used a recovery of the gradient is often done by
post-processing the FE-solution to improve the accuracy. We propose a simple post-processing
technique which globally improves the approximation for the gradient of the solution to a second
order elliptic problem when using linear triangular elements.

This paper can be considered as an extension of the local superconvergence results investi-
gated by the authors in [11]. Another scheme which recovers the gradient at midpoints of sides
can be found in [6,14]. For a recovery at centroids of triangles we refer to [13]. For a
post-processing technique by convolution for the gradient when using B-splines, see [19]. In the
survey article [12] other post-processing techniques can be found.

The paper is organized as follows. In Section 2 the global averaged operator G, for the
gradient of a piecewise linear FE-solution is introduced. In Section 3 its approximation
properties are studied. We will show under certain assumptions on triangulations that

llgrad v — G, (IT,v) Il 0.0 < Ch2|vla,sz (1.1)

for all v € H?(£2), where IT,» denotes the piecewise linear interpolant of v.
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The global superconvergence result proved in Section 4 reads:
llgrad u — Gy (uy) Il 0,0 < Ch? || ul 3,0, (1.2)

where # is a solution of a second-order elliptic equation and u, is its piecewise linear
Ritz—Galerkin approximation. Then we introduce a simple superconvergence technique for
calculation the boundary flux. Our technique differs from that presented in (8, p.389] which is
based on some ideas of {7].

In Section 5 some results of numerical tests are reported which confirm the theoretical error
estimate (1.2). Finally, we notice that the post-processing technique proposed here requires only
O(m) arithmetic operators, where m is the number of nodal points in question.

2. Preliminaries and the averaged gradient

Let 2 R? be a bounded domain with a polygonal boundary Q2. The usual norm and
seminorm in the (product) Sobolev space (VV;‘(Q))’ = W;(.Q) X e X H{,,"(Q), k>0, pe|l, ],

r=1,2,..., are denoted by |- || ;.o and || , o, respectively. We shall omit the subscript p in
the case p = 2 and we write H*(2) = W(2). The notation (-, ) is used for the inner product
in (L3(2))", r=1, 2,.... All the vectors are supposed to be column vectors. By || - || we denote

the Fuclidean norm. The space Ha(£2) is the subspace of H'(£2), consisting of functions with
zero traces. By P;({2) we mean the space of polynomials of the degree ;.

The notations C, C’,... are reserved for generic positive constants which may vary with
context. Moreover, all our statements will always hold only for a sufficiently small discretization
parameter A.

Consider the problem

—div(4 grad u)=f in £, (2.1)
u=20 on 0§2,
where A € (H*(2))>*? (for some a > 2) is a symmetric uniformly positive definite matrix and
fe L*(). The standard Ritz—Galerkin method for (2.1) based on linear triangular elements
consists in finding
u, € V, = {v, € Ho(Q) | vnlr € P(T) VT €T, )
for which
(A grad u,, grad Uh)o,.(z =(f, Uh)o,sz Vv, €V,

where J, belongs to a regular family of triangulations of Q (see [3] for Zlamal’s condition);
triangles are assumed to be closed.

We denote by N, the set of all nodal points corresponding to a given triangulation J,. Let
Y c N, be the (finite) set of vertices of Q and let

E,=N,Nn (32— 7Y) (boundary nodes except vertices),
I,=N,NQ (internal nodes).

Consequently,
N,=YUE,UI,

where Y, E,, I, are mutually disjoint.
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Fig. 1.
We define a linear interpolant IT,w € W, of w € H'(2) N C(2) by setting
(IL,w)(x) =w(x) Vx€&N,,

where

—

W,={weH(2)|w|r€P(T)VTET,}.

Definition 2.1. A triangulation J, is said to be uniform, if any two adjacent triangles of .7,
form a parallelogram.

For later use we take a closer look at a polygonal domain {2 with a uniform triangulation
Referring to the notations in Fig. 1 we find that N}_,7, is a point x € E, and N}_,7; is a triangle

whose side lying on 342 has x as midpoint.
For T€Z, we define a subset U(T') of 2 by

[ ur)= U 7,
T' €7,
T'NT+#f

see Fig. 1.
Suppose that we have a uniform triangulation 7, of £. Referring to the notations of Fig. 1

I we introduce the averaged gradient
! Gy: V> W, X W,

uniquely determined by the formulae
0, xey, (2.2a)
3
(Gulo)(x)={ &7 ol S By L
h h =0
(2.2¢)

I
¢ X grady,lp, x€Il,
TN{x}+#d
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1

—Wo=W; =W, =W3=7. (2.3)

Remark 2.1. As u| o = 0 (which implies that the tangential derivatives of u vanishes on 3{2), we
get for u€ H 3(Q) that grad u(x) =0 for all x €Y, which justifies (2.2a). For another choice of
G, see Remark 3.6.

3. Approximation properties of the averaged gradient
The aim of this section is to prove the following theorem.
Theorem 3.1. Let {J,} be a regular family of uniform triangulations of Q. Then

llgrad v — G,(ILY) [l 0.0 < Ch*|v| se VU € H*(2) N Hy(Q). (3.1)

The proof is based on several auxiliary lemmas. We first give some definitions. Consider the
reference uniform triangulation J of a half-plane Z consisting of right-angled triangles with
mesh size 1 (see e.g. Fig. 2).
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Fig. 2.
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Let £ and I be the sets of the boundary and internal nodes of 7, respectively. Setting
Ww={6eC(Z)|6|,€P(T)VTeT),
we define the reference averaged gradient G: W—) W x W in the way analogous to (2.2b) and
(2.2¢). Let us introduce the reference interpolant ITo € W for 6 € C(Z) given by
I15(£)=0(%) vieEUTl
Then a direct calculation (cf. [11, p.108]) leads to the following lemma.

Lemma 3.2. The equality
G(ITp)=grad p VpeP,(Z) (3.2)

is valid.

Lemma 3.3. Let T'= f’, for some i € {0, 1, 2} and let U= U(f). Then
lgrad 0 — G(IT0) || o0, < C| 859 VD€ HX D). (3.3)

Proof. Take any 6 € H*(U). As the function é(ﬁﬁ) | # is linear we have from (2.2), (2.3) and [3,
p.123],

|G (IT8) || g0 7= max [|G(18)(£) || = | G(118)(9) |

<211grad(I18) || 0,000 < 2 llgrad 81| o0, 0 (3.4)

where § is a convenient vertex of 7. Let j € {1,2} and £ € T be arbitrarily fixed and define the
linear functional ¢ by

() = ((grad 6 - G(119))(%)),, deH* (D).
Applying the Sobolev imbedding theorem H 3(U) = Cl((j ), we get from (3.4)

|#(0) | < llgrad 6= G(I18) || o.00,7 < 3lgrad 01l 6,000 < C 18]l 5,0
Thus ¢ is continuous and by (3.2) it vanishes for all quadratics. Now (3.3) follows from the
Bramble—Hilbert lemma [2,3]. O

Henceforth, for any T€4,, TN Y=, we define a linearly affine continuous one-to-one
mapping Fj: I]'\P2 — R? so that F (T) T, where i € {0, 1, 2} is the number of vertices of T'
belonging to E,. (For instance, if TN 3R = ﬂ T'€J,, then its original is TO) Moreover, we
assume that vertices of T,- which belong to E and [ are mapped into E, and I,,, respectively.
Clearly, the mappings F; are of the form F(%) = B;% + b, £ € R?, where br€R? and B, are
regular 2 X 2 matrices satlsfymg

I Brll <Ch,  ||Br'||<Ch7Y, (3.5)

when .7, belongs to some regular family of the uniform triangulations # = { T} }.

Lemma 3.4. There is a constant C >0 such that for any T€ T, €M, TN Y =40 the inequality
llgrad v — G, (II) [l o.r < Ch*|v |5, VveE HY(U), (3.6)
is valid, where U = U(T).
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Proof. As TNY= and I, Is uniform, U is mapped by Fi! ontoAl7= U(f’,) c Z for some
i€{0,1,2}. Define 0 € HYU) by 8(%) =v(Fp(X)), vE HY(2), £ € U. Hence,

grad v(x) = (B;l)T grad 0( Fr'(x)) Vve H*(U) vxeU, (3.7
where (-)T denotes the transposition. As (IT,p) "= 16, we find that a similar formula holds also
for the averaged gradient (cf. [11])

(6, (TTp))(x) = (B7) (G(0))(Fr'(x)) WoeH(U) VxeU. (3.5)
Thus, employing the substitution x = Fr(%) and (3.3), we obtain
lerad v — G, (ILp) 127 < || B 11 * lgrad 6 — G(I16) |57 |det Bz |
<1 B3|\ % |grad 6 — G(116) 2., ¢ |det Br| <3C?|Br' | |det Br||6130-
Now the lemma follows from (3.5) and inequality (see [3, p.118])
lﬁ|3,g<Cl|BTH3ldet Br| 2| v]|sy. O (3.9)

Lemma 3.5. There is a constant C > 0 such that for any T €T, e, T’ NY+f

llgrad v — G, (IL) o1 < Ch*|v|sq VVE H*(2) 0 Hy(2). (3.10)
Proof. Define the linear interpolation function L, € (Pl(T’))2 by

(L,w)(x) =grad v(x) (3.11)
for all vertices x of T'. Hence [3, p.121],

llgrad v — Ly |l o < Ch? |grad v], < Ch*|v| ;0 (3.12)

Let y be that vertex of T’ which is also a vertex of 0. Thus, from (2.2a), (3.11) and from the fact
that grad v(y) =0, we infer (G,(ILY)(y) = (Lp)(y) = 0. Consequently,

|| Lo — Gh(HhU) ”02,T’ <meas T’ || Lo — Gh(HnU) “02.:.\0.7"
< Ch*||(grad v — G, (IL))(x) 1|2 (3.13)

for a suitable vertex x of T’ which is distinct from y. Let T €7, be such a triangle containing
% for which TN Y =#@. Then, from (3.13), (3.7), (3.8), (3.3) and (3.5), we get

| Ly — Gh(Hhv) | 0.7 < Ch llgrad v — Gh(Hh_U) | 0,00,7
| < Ch|| B;' || llgrad & — G(II8) | g0, < €' 1015,0- (3.14)

As |det B, | V2 < Ch', the relations (3.14), (3.9) and (3.5) yield

| Ly — Gy (IT0) 0.7 < Ch*|v| 3.0
This together with (3.12) gives (3.10). O
Proof of Theorem 3.1. Squaring and summing the formulae (3.6) and (3.10), we get (note that Y
is finite)

llgrad v — G,(ILp) oo < Ch4( |vlZg+ 2 v l32,U(T))

TNY=§

<Ch4(|u|3%9+13 Y |u|§T)<c’h4|u|§9, (3.15)
TNY=68
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Fig. 3.

since any T €7, is contained in at most 13 sets U(T"), i=1,...,k (k <13), where T?,
T3,..., T* are neighbouring triangles to T' = T (see Fig. 1). O

Remark 3.6. Theorem 3.1 can be easily modified also for other choices of G,. The values of some

other convenient weights for nodes from E, are marked in Fig. 3 (Lemma 3.2 remains valid for

them). As one can easily verify, also the choice of weights w'= --- = wS=1 in (2.1c) may be

appropriately altered.

4. Global superconvergence estimates to the gradient and boundary flux

At first we shall show that for the weak solution u of (2.1) and its Ritz—Galerkin approxima-
tion u, it is
) lgrad u — G, (u,) |l 0,0 < Ch? lull 3,0 (4.1)
whereas
llgrad u — grad u, || oo < Ch|lul| 2 0

is the best possible rate.

Remark 4.1. In the proof of (4.1) we shall utilize the fact that
|y — yully0 < Ch® lullsq- (4.2)

This important result has been studied by several authors. We refer to [17,18] for the case of
linear triangular elements, where @ is a rectangle and the triangulations 7, are uniform
consisting of right-angled isosceles triangles. The results of [17,18] have later been improved (see
[13]) for any regular family of uniform triangulations of a polygonal domain including the effect
of numerical quadrature (giving rise the term || f || 2.0)

||“h‘Hhu||1,9<Ch2(||u|| a0t ||f||29) (4.3)
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Note that the inequalities (4.2) and (4.3) are true also for quasi-uniform triangulations [13]. For
related estimates to (4.2) and (4.3) see also recent results in [1,4].

Theorem 4.2. Let the solution u of the problem (2.1) be in H 3(R2). Then for a regular family of
uniform triangulations of polygonal domain Q the bound (4.1) is valid.

Proof. Using the analogous arguments which we applied in proving (3.4), we find that

| Gy (uy, — Iu) |l or <2 llgrad(u, — ILu) lloury YT €T,
As any T €7, is contained in at most 13 sets U(T") (cf. (3.15)), it is

11 Gy (1 = TTu) || .0 < 213 Il grad(uy — IT,u) [l o,0- (4.4)
Making use of Theorem 3.1, (4.2) and (4.4), we come to

l|grad u — Gh(uh) Il 0,0
< ||grad u— Gh(Hhu) 0.0+ Il Gh(“h . Hhu) o0 < Ch? fulls,q- |

Remark 4.3. Sufficient assumptions guaranteeing u € H 3(2) for domains having corners have
been established by many authors [9,10,16,20]. For instance, if f€ H'(2) in (2.1) and the angle
of some corner is less than 37 then we have the H 3_regularity of u in a neighbourhood of the
angular point (see e.g. [10, p.277]). If / belongs to some weighted Sobolev space, we get the
H*-regularity also for the right angle when considering the Poisson equation (see [10, p.280]). For
instance, if f& C*(2) and f(y)=0Vy €Y, then u € H?(2) provided  is a rectangle (see [16],
p. 185]). Although the above assumptions are very restrictive, the post-processing (2.2) can give
good numerical results even when u ¢& H>(2)—cf. Section 5.

Furthermore, we show that the post-processing (2.2) may be applied to compute the boundary
flux du/dn which we approximate by n - G,(u,) on 98, where n is the outward unit normal to
98. To this end we introduce the estimate (cf. (4.2))

V= Tt | 1 00,0 < CH* |l0g | |1 14 3,00, 225 (4.5)
which has been derived in [13,15] for the Poisson equation on a bounded convex domain 2. The
same bound was further obtained in [6] even for 4 € (W4 (2))**? (see (2.1)). Note that for
non-convex domains an interior W_.-estimate analogous to (4.5) is known [5].

Similarly to Section 3 we prove the following lemma.
Lemma 4.4. Let #={7,} be a regular family of uniform triangulations of Q. Then

||grad u — Gh(HhU) I 0,00, < Ch? |01 3,00,0 Vv e Woi(g) N Hé(ﬂ)- (4-6)

Proof. Choose T €7, € A4 such that TN Y =#. Then by (3.7), (3.8), and Lemma 3.3
lgrad u — G, (IL0) [l oo < | Bz Il ligrad &= G (119) Il 0.7

<CUBF I 0]50<C I Br 11201300
Since (see [3, p.118])

191 3,00,0 < CIl Bz l1? 10]3,00,05
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it follows from (3.5) that

llgrad v = G, (IL,0) | 00,7 < Ch? | 0] 3 00,0 < Ch? | V] 305 - (4.7)
Next, let 7' €7, be such that { y} € T" N Y. Then (see [3, p.121])
llgrad v = Ly || o007 < Ch* |grad v 3 o 7 < Ch? [ 0] 5,05 0 (4.8)

where L, is defined by (3.11). As (L,v)(y) = (G,(11,v))(y), there exists an appropriate vertex x
(x#y) of T' such that

| Lo — Gh(HhU) Il 0,00,7 = l (grad U— Gh(HhU))(x) I
< |lgrad v — G, (ILp) || 0,00,T S Ch*|v| 300,05 (4.9)

where T €.7, contains x and TN Y = . Now, the combination of (4.7), (4.8) and (4.9) leads to
the estimate (4.6). O

The last theorem shows that n- G,(u,) | ;o produce higher-order correct approximation to the
boundary flux than (du,/0n) | 4.

Theorem 4.5. Let u € W2(82) be the solution of (2.1) with A € (WL(2))**%. Then for a regular
family of uniform triangulations of a convex polygon {2 it is

| 0u/dn — n- G,(u,) || 0,00,00 < |lgrad u — Gy (uy) || 0,00,
< Ch?|log h| ||l 3,0.0-

Proof. The first inequality is obvious. Since u, — I, u is piecewise linear, we find likewise (3.4)
that

|G (up — TTu) || o007 < 2 || grad(u, — IT,u) || 0,00,U(T)
<2 up—Hpuly 00
for all T €Z,. Thus the use of (4.5) and (4.6) yields
llgrad u — G, (uy) || 0,00, T
< llgrad u— G, (ILu) || o o7+ | Gu(ITyte = uy) [l .00 1
<SCh*|log h| ||l 300 O

5. Numerical tests

The averaged gradient proposed in this paper has been compared with the gradient of the
Ritz—Galerkin solution based on linear elements.

Example 5.1. Assume £ = (0, 1) X (0, 1) and choose f such that
u(x, y)=x*(1—x)sinmy, a>0,

is the exact solution of the problem
—Au=f in £,

5.1
u=20 on d£2. o)
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Table 1

ht a1l 0.0 841l 0.0 17 Yo ll 00,00 17851l 000,00 N
4 0.332371 0.134338 0.426777 0.241622
8 0.174089 0.039866 0.220132 0.066431

16 0.088090 0.010663 0.106613 0.016991

32 0.044177 0.002740 0.051667 0.004235

i

Qgp- 447-
o~

Fig. 4. First component of FE-grad and post-proc grad.
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R7AY ||5h||o,sz 172 ¥4l 0,00,00 ||”'3h||o,oo,ao
iR 0.250312 0.124575 0.500345 0.328147
8 0.133086 0.034031 0.277955 0.098464
16 0.067719 0.008633 0.138006 0.025873
32 0.034046 0.002182 0.067914 0.006582

Fig. 5. Second component of FE-grad and post-proc. grad.
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In Table 1 we have listed the values of the L*-norms for vy, = grad u —grad u, and §, <
grad u — G, (u,) for different discretization parameters 4 and o = 1.

Table 1 confirms the theoretical results. The growth of the CPU-time due to the post-processing
is essentially negligible. In Example 5.1 the time requirements of the Ritz—Galerkin procedure
are 0.153, 1.04, 6.49, 41.7, 273 seconds whereas those of the post-processing are 0.031, 0.098,
0.355, 1.32, 5.24 seconds, respectively.

In Figs. 4 and 5 the gradient of the Ritz—Galerkin approximation (piecewise constant) and the
corresponding post-processed approximation (piecewise linear) have been illustrated (7 = ).

Table 2 shows the errors for a = 3, i.e. u & H(2).

Remark 5.2. The post-processing method presented here can also be applied in three-dimensional
problems and time-dependent problems.
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