Alternative biosynthetic starter units enhance the structural diversity of cyanobacterial lipopeptides

Mareš, Jan; Hájek, Jan; Urajová, Petra; Kust, Andreja; Jokela, Jouni; Saurav, Kumar; Galica, Tomáš; Čapková, Kateřina; Mattila, Antti; Haapaniemi, Esa; Permi, Perttu; Mysterud, Ivar; Skulberg, Olav M.; Karlsen, Jan; Fewer, David P.; Sivonen, Kaarina; Tønnesen, Hanne Hjorth; Hrouzek, Pavel

Year: 2019

Version: Accepted version (Final draft)

Copyright: © 2019 American Society for Microbiology

Rights: In Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Alternative biosynthetic starter units enhance the structural diversity of cyanobacterial lipopeptides

Jan Mareš, Jan Hájek, Petra Urajová, Andreja Kust, Jouni Jokela, Kumar Saurav, Tomáš Galica, Kateřina Čapková, Antti Mattila, Esa Haapaniemi, Perttu Permi, Ivar Mysterud, Olav M. Skulberg, Jan Karlsen, David P. Fewer, Karina Sivonen, Hanne Hjorth Tønnesen, Pavel Hrouzek

1 The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České Budějovice, Czech Republic
2 The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech Republic
3 University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
4 Department of Microbiology, Biocenter 1, Helsinki, Finland
5 Department of Chemistry, University of Jyväskylä, Finland
6 Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Finland
7 Department of Biosciences, University of Oslo, Oslo, Norway
8 Norwegian Institute for Water Research (NIVA), Oslo, Norway
9 School of Pharmacy, University of Oslo, Oslo, Norway

Running title: Cyanobacterial lipopeptide biosynthesis

#Address correspondence to Pavel Hrouzek, hrouzekp@gmail.com
Abstract: Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although biosynthetic gene clusters for several PUW variants have been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing length and FA substitution. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUW/MIN interact preferentially with eukaryotic plasma membranes.

Importance: Herein, we aimed to decipher the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide
important insight into lipopeptide biosynthesis in prokaryotes. Some of the identified variants exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.

Introduction

Bacterial lipopeptides are a prominent group of secondary metabolites with pharmaceutical potential as antibacterial, antifungal, anticancer, and antiviral agents (1). Compounds such as fengycin, the iturin family antibiotics, octapeptins, and daptomycin are important pharmaceutical leads, the latter of which is already in clinical use (1–3). Their biological activity is the result of an amphipathic molecular structure that allows micellar interaction within the cell membranes of target organisms (4).

Lipopeptides are widespread in cyanobacteria and possess cytotoxic and antifungal activities (5–8). Puwainaphycins (PUWs) and minutissamides (MINs) are lipopeptides featuring a β-amino fatty acid and a 10-membered peptide ring (5, 9–11). Both classes exhibit considerable structural variability in terms of length and functionalization of the fatty acyl (FA) side chain attached to the stable peptide core (10–14). Only minor discrepancies in length and substitution of the FA chain separate these two types of lipopeptides. A wide array of bioactivities has been reported for these compounds. PUW C is a cardioactive compound (15) as demonstrated by positive inotropic activity in mouse atria, while PUW F/G exhibit cytotoxicity against human cells in vitro through cell membrane permeabilization (5). MINs A–L exhibited antiproliferative effects when tested against human cancer cell lines over a concentration range similar to PUWs (10, 11). The overall structural similarity suggests that PUWs and MINs share a similar biosynthetic origin. However, the biosynthetic mechanisms generating the conspicuous chemical variability remain unknown.
PUWs are synthesized by a hybrid polyketide/non-ribosomal peptide synthetase (PKS/NRPS) accompanied by tailoring enzymes (12). A characteristic feature of the PUW synthetase is the fatty acyl-AMP ligase (FAAL) starter unit (12). This enzyme specifically binds and adenylates FAs, and passes the activated acyl-adenylate to a downstream phosphopantetheine arm of the PKS acyl carrier protein (ACP) for further processing (12).

The whole process bears resemblance to the biosynthesis of iturin-family lipopeptides (16–19) as well as small lipopeptide-like cyanobacterial metabolites such as hectochlorin (20), hapalosin (21), and jamaicamide (22), as discussed previously (23). Bacterial FAAL enzymes originate from basal cell metabolism, and likely evolved from fatty acyl-CoA ligases (FACLs) following a specific insertion that hampered subsequent ligation to CoASH (24) or altered the catalytic conformation (25). FAAL enzymes play an important role in the assembly of other metabolites including olefins (26) and unusual lipids (27) in addition to lipopeptide synthesis.

The exact substrate-binding mechanism employed by FAALs was demonstrated experimentally in Mycobacterium tuberculosis using several homologous FAAL enzymes and FA substrates as models (28). The substrate specificity of these enzymes corresponds to the structure of the substrate-binding pocket (25, 28), although it overlaps among homologs.

Herein, we combined recently developed bioinformatics and high performance liquid chromatography combined with high resolution tandem mass spectrometry (HPLC-HRMS/MS) approaches (13, 23) to identify biosynthesis gene clusters for PUWs/MINs in five new cyanobacterial strains, and characterized the chemical variability of their products. We discuss the specific structural properties of the identified lipopeptide variants, and compare the predicted functions of synthetase enzymes.

Results and Discussion

Structural variability vs. common biosynthetic origin of PUWs and MINs
In the present study, we collected all known PUW/MIN producers (except for Anabaena sp. UIC10035). The strains were originally isolated from various soil habitats (Table 1). HPLC-HRMS/MS analysis detected multiple PUW and MIN variants in each of the strains studied (Fig. 1), ranging from 13 to 26 in strains 3 and 1, respectively (Table S1).

The MS/MS data acquired for crude extracts were used to create a molecular network (Fig. 2), analysis of which demonstrated that Cylindrospermum strains 1–3 and Anabaena strains 4 and 5 formed a single group with MIN A as the only variant common to all the strains (Fig. 2a). All major structural variants of these strains shared the common peptide sequence FA₁-Val₂-Dhb₃-Asn₄-Dhb₅-Asn₆-Ala₇-Thr₈-NMeAsn₉-Pro₁₀ (Fig. 3), described previously for PUW F and MIN A (5, 10). The pattern of variant production was almost identical in Cylindrospermum strains 2 and 3, which in addition to MIN A contained PUW F (Fig. 1, Table S1). By contrast, Anabaena strains 4 and 5 produced MIN C and D in addition to the major variant MIN A (Fig. 1). The peptide core of the molecule was different in Symplocastrum muelleri strain 6 (Fig. 3), forming a separate group in the molecular network (Fig. 2b), with the general peptide sequence FA₁-Val₂-Dhb₃-Thr₄-Thr/Val₅-Gln₆-Ala₇-OMe-Thr₈-NMeAsn₉-Pro₁₀ (Fig. 3), identical to PUW A–D and MIN I, K, L isolated previously from Anabaena sp. (9, 11).

The peptide core of the variants included in the network differed to some degree, but most variation was detected in the FA moiety (Fig. 4) when crude extracts were analyzed for the presence of characteristic FA immonium fragments (13).

Accordingly, bioinformatic analysis identified putative PUW and MIN gene clusters in each of the five newly sequenced strains (Fig. 5, Table 2). Based on BLASTp, CDD, and AntiSMASH searches, these gene clusters exhibited synteny and functional homology with the previously characterized puw biosynthesis gene cluster in strain 1 (12) (Fig. 5). Therefore,
our results strongly indicate a common biosynthetic origin of PUWs and MINs in cyanobacteria.

Variability in the peptide core

A common set of NRPS genes (puwA, puwE–H; Fig. 5) encoding a sequence of nine amino acid-incorporating modules (Fig. 6) was detected in all analyzed strains. Individual NRPS modules displayed variability in amino acid adenylation and tailoring domains that was generally congruent with the PUW/MIN peptide cores inferred using HPLC-HRMS/MS (Fig. 3). The two major observed types of peptide cores (represented by PUW A and PUW F, respectively) differed in the amino acids at positions 4 (Thr→Asn), 5 (Thr→Dhb), 6 (Gln→Asn), 7 (Ala→Gly) and 8 (Thr→OMe-Thr), as shown in Fig. 3 and Table S1. This was reflected in the predicted substrates of the corresponding A-domains, and by the presence of an O-methyltransferase domain in PuwH of S. muelleri strain 6, which is responsible for the methylation of Thr⁸ (Fig. 6, Table S2). In contrast to the variability observed at the previously noted amino acid positions, the two positions adjacent to both sides to the modified fatty acid (NMeAsn⁹-Pro¹⁰-(FA¹¹)-Val²-Dhb³) are conserved in all known PUW/MIN variants described here and previously (5, 9, 13–15) (Fig. 3, Table S1). Accordingly, no functional variation in A-domains corresponding to these positions was observed within the deduced PuwA, PuwE, and PuwF proteins (Table S2). This is interesting because these four hydrophobic amino acids surround the FA moiety, which is likely responsible for the membrane disruption effect suggested previously (5). Thus, we hypothesize that such an arrangement could further support hydrophobic interactions with the lipid layer of the plasma membrane.

For some of the other positions, minor variants were observed involving substitution of amino acids similar in structure and hydrophobicity, including Asn-Gln at position 4, Thr-
Val at position 5, Ala-Gly at position 7, and Thr-Ser at position 8 (Fig. 3, Table S1), indicative of probable substrate promiscuity in their respective adenylation domains (29). The A6-domains in strains 4 and 5 activated Ala as a major substrate, and Gly to a lesser extent, even though in silico analysis predicted Gly as their main substrate (Table S2). In strain 6, Gly was incorporated, in agreement with the predicted substrate specificity. An epimerase domain was present in each of the sixth NRPS modules of the pathways (Fig. 6), indicating probable formation of a D-amino acid enantiomer at position 7 of the peptide core. Indeed, the presence of D-Ala was previously confirmed in PUW F (5) and MIN A-H (10, 11), and D-Gly was identified in MIN I-L (10, 11). In two cases, the adenylation domains A3 (PuwF) and A6 (PuwG) are capable of incorporating significantly different amino acids such as Asn^4-Thr^4 and Ala^7-Ser^7, respectively (Fig. 6). This degree of substrate promiscuity is relatively uncommon. Activation of two divergent amino acids (Arg/Tyr) by a single adenylation domain, based on point mutations in just three codons, was previously demonstrated in the anabaenopeptin synthetase from the cyanobacterium Planktothrix agardhii (30). The substrate exchange of Ala vs. Ser was previously reported from fungal class IV adenylate-forming reductases that contain A-domains homologous to NRPS enzymes (31).

The last synthetase enzyme in the pathway (PuwA) is equipped with a terminal thioesterase domain (Fig. 6), which presumably catalyzes cleavage of the final product and formation of the cycle via a peptide bond between the terminal prolyl and the β-amino group of the FA chain, as previously suggested (12).

Two hypothetical starter units and their substrate range

The biosynthesis of bacterial lipopeptides is typically commenced by FA-activating enzymes (16, 18). Initiation of the biosynthesis of PUW/MIN is performed by a FAAL enzyme (12) and allows a much broader array of activated substrates than the relatively conserved oligopeptide core (13) (Fig. 4). We identified three alternative arrangements of the putative...
FAAL starter units (Fig. 5 and 6), each corresponding to a different array of FA side chains detected by HPLC-HRMS/MS, which presumably reflects the range of FA substrates activated during their biosynthesis (Fig. 4). *Cylindrospermum* sp. strains 1–3 possess the Type I putative starter unit consisting of a standalone FAAL enzyme PuwC and a separate ACP PuwD (Fig. 5, Table 2). By contrast, the biosynthetic gene cluster of *S. muelleri* strain 6 contains the Type II putative starter unit (PuwI) consisting of a FAAL fused to an ACP (Fig. 5, Table 2). *Anabaena* spp. strains 4 and 5 combine both Type I and Type II putative starter units in their biosynthetic gene clusters (Fig. 5, Table 2). Although the functions and substrate ranges of these hypothetical starter units requires further confirmation by gene manipulation experiments, they are supported by the patterns of lipopeptide variants detected by HPLC-HRMS/MS (Fig. 4, Table S1). In *Cylindrospermum* strains 1–3 that exclusively contain the Type I starter unit, the PUW/MIN products exhibited an almost continuous FA distribution between C\(_{10}\)–C\(_{15}\) (up to C\(_{17}\) in negligible trace amounts; Fig. 4). In *S. muelleri* strain 6, the presence of the Type II loading module resulted in production of PUW/MIN variants with discrete FA lengths of C\(_{16}\) and C\(_{18}\). Strains containing both Type I and Type II starter units (Anabaena strains 4 and 5) produced two sets of PUW/MIN products with no overlap (C\(_{12}\)–C\(_{14}\) for the Type I pathway, and C\(_{16}\) for the Type II pathway), but exhibited a slightly shifted length distribution (Fig. 4). Based on these results, it seems plausible that PuwC/D and PuwI represent two alternative FAAL starter modules capable of initiating PUW/MIN biosynthesis (Figs. 5, 6). An analogous situation was previously described for the alternative NRPS starter modules in the anabaenopeptin synthetase (32).

In the FA residue of the lipopeptide, proximal carbons in the linear aliphatic chain are incorporated into the nascent product by PKS enzymes (12). The PKS domains of PuwB and PuwE (Fig. 6, Table 2) catalyze two elongation steps. Therefore, the fatty acid is expected to be extended by four carbons. The substrate length specificity of the FAAL enzymes in
Mycobacterium tuberculosis was recently shown to be determined by the size and position of specific amino acid residues protruding into the FA-binding pocket (28). Experimental replacement of Gly or Ile by a larger Trp residue in the upper and middle parts of the pocket blocked the binding of the original C12 substrate, but shorter chains (C2 or C10, respectively) were still activated (28). Experimental data on FAAL substrate specificity in cyanobacteria are currently lacking. Alignment of amino acid residues from all putative PuwC and PuwI proteins demonstrates overall homology (Fig. S2a), including the positions corresponding to the FA-binding pocket, as previously shown in Mycobacterium (28) (Fig. S2b). Experimental evidence such as in vitro activity assays and crystallization of protein-ligand complexes is required to explain the variable substrate specificity of PuwC vs. PuwI. Also, we cannot exclude the possibility that the FA substrate length range is partially determined by the pool of free FAs available to the FAAL enzyme. Indeed, this possibility is supported by observations of Cylindrospermum strains 1–3, which share highly conserved PuwC proteins (Fig. S2a) with identical residues in the predicted FA-binding pockets (Fig. S2b), but display slightly different ranges and ratios of incorporated FAs in the PUW/MIN variants produced (Fig. 1, 4).

FA tailoring reactions: oxidation, halogenation, and acetylation

Intriguingly, all products originating from biosynthesis initiated by the Type II starter unit (variants with a C16 and C18 FA tail in Anabaena strains 4–5 and S. muelleri strain 6) include substitution of a hydroxy- or oxo-moiety (Fig. 6). For minutiissamides C and D, this substitution takes place on the third carbon from the FA terminus (C14), as described previously (10), and this position was confirmed by NMR in variants produced by Anabaena sp. strain 4 in our study (Table S3, Figs. S3–6). In agreement with this hydroxy- and oxo-substitution, the respective gene clusters each encode PuwJ, a putative cytochrome P450-like oxidase (Table 2), immediately downstream of the gene encoding the Type II starter module.
We therefore hypothesize that the PuwJ enzyme is responsible for hydroxylation of FA residues activated by PuwI (Fig. 6). However, the formation of the keto variant remains unexplained by our data.

Another gene, the putative halogenase \textit{puwK}, was associated with the Type II starter module in \textit{Anabaena} sp. strain 5 (Table 2). Although no conserved enzymatic domain was detected in the deduced protein, it shares similarity with proteins postulated to be involved in halogenation of cyanobacterial chlorinated acyl amides known as columbamides (33), and \textit{N}-oxygenases similar to \textit{p}-aminobenzoate \textit{N}-oxygenase AurF (34–36). The possible functional designation of this enzyme as a halogenase is further supported by the fact that the \textit{ω}-chlorinated product MIN B, originally described in strain \textit{Anabaena} sp. strain 5 (10), was also detected in this study (Table S1) as one of the major variants, while no MIN B or any other chlorinated PUW/MIN products were detected in \textit{Anabaena} sp. strain 4 (Fig. 1). \textit{Anabaena} sp. strains 4 and 5 share identical organization across the entire gene cluster, and lack of the putative halogenase gene \textit{puwK} is the only difference between these two clusters in terms of presence of genes (Fig. 5).

In \textit{Cylindrospermum} sp. strains 1–3 that exclusively possess the Type I starter unit, the presence of minor amounts of hydroxylated and chlorinated variants (Fig. 4) suggests the involvement of another biosynthetic mechanism unexplained by the current data. This ambiguity warrants experimental research such as gene knock-out experiments to confirm the proposed functions of \textit{puwJ} and \textit{puwK}.

Finally, the gene cluster identified in \textit{S. muelleri} strain 6 was the only one containing gene \textit{puwL}. The deduced product of this gene shares 53.4\% similarity with the \textit{O}-acetyltransferase McyL (Table 2) involved in acetylation of the aliphatic chain of microcystin in cyanobacteria (37). Additionally, this gene is similar to chloramphenicol and streptogramin A \textit{O}-acetyltransferases that serve as antibiotic resistance agents in various bacteria (38). The
function annotation of PuwL as a putative O-acetyltransferase is consistent with the detection of O-acetylated lipoprotein variants in *S. muelleri* strain 6 (Table 3, Fig. 7). Five PUW variants (m/z 1265.7338, 1279.7496, 1277.7695, 1291.7870 and 1293.7654) yielding high-energy fragments, proving the presence of an acetyl group bonded to the FA moiety, have been detected. In the m/z 1279.8 and 1293.8 peaks, the high-energy fragment ion at m/z 312 corresponds to the FA immonium ion bearing an acetyl group, and fragment ion at m/z 439 corresponds to the prolyl-FA-acetyl fragment. The subsequent loss of an acetyl group resulted in the presence of ions at m/z 252 and 379, respectively (Table 3, Fig. 7). Similarly, analysis of the m/z 1265.7 peak revealed analogous fragments at m/z 284/411 and 351/224 (Table 3).

Antimicrobial activity

Both PUWs and MINs possess cytotoxic activity against human cells *in vitro* (5, 10, 11). In the current study, we demonstrated that the major PUW/MIN variants (PUW F and MINs A, C, and D) did not exert antibacterial effects against either Gram-positive or Gram-negative bacteria using a panel of 13 selected strains (Table 4). PUW F was the only tested variant manifesting antagonistic activity against two yeast strains utilized in our experiment, namely *Candida albicans* HAMBI 261 and *Saccharomyces cerevisiae* HAMBI 1164, with inhibition zones of 14 and 18 mm, respectively, and minimum inhibitory concentration (MIC) values of 6.3 µg mL⁻¹ (5.5 µM; Fig. 8). No antifungal activity was recorded for the MIN C and D variants, and only weak inhibition of the two yeast strains was recorded for MIN A (Fig. S7). PUW F differs only slightly from MIN A by a -CH₂-CH₃ extension of the FA moiety, indicating that the FA length affects bioactivity. Furthermore, the lack of bioactivity for MIN C and MIN D suggests that hydroxy- and oxo- substitution also compromises antifungal efficacy. As previously demonstrated, cytotoxicity is due to membrane permeabilization activity accompanied by calcium flux into the cytoplasm (5), consistent with
the membrane effects documented for other bacterial lipopeptides (4). However, as apparent
from our data (Fig. 8), PUW/MIN products appear to be effective solely against eukaryotes
(thus far tested only on human and yeast cells). This finding is in contrast to the typical
antibacterial activity frequently described for many lipopeptides produced by Gram-positive
bacteria (4). Analogously, the cyanobacterial lipopeptides anabanenolysin A and hassalidins
preferentially interact with cholesterol-containing membranes, hence their predisposition for
activity against eukaryotic cells (6, 8).

Distribution of PUWs and MINs in cyanobacteria

PUWs and MINs form one of the most frequently reported groups of lipopeptides in
cyanobacteria, and have been isolated from heterocytous cyanobacteria, particularly members
of the genera Anabaena and Cylindrospermum that inhabit soil (5, 9–11). Only a single study
has mentioned the probable occurrence of puwainaphycins in a planktonic cyanobacterium
(Sphaerospermopsis) (39). Our current comprehensive analysis of these lipopeptides and their
biosynthetic genes further supports the hypothesis that lipopeptides occur predominantly in
non-planktic biofilm-forming cyanobacteria (23). In this context, it is worth mentioning that
S. muelleri strain 6 was isolated from a wetland bog in alpine mountains in coastal Norway
(40). This strain is a toxigenic member of a biofilm microbiome, and suspected to play a role
in the development of severe hemolytic Alveld disease among outfield grazing sheep (41, 42).
Biomass harvested from pure cultures of this strain exhibited strong cytotoxic activity toward
primary rat hepatocytes (43, 44), which indicates the production of secondary metabolites
with cytotoxic properties. Thus, the possible toxic potential of cyanobacterial lipopeptides
such as PUWs and MINs in the environment warrants further attention.

Conclusions

Our study highlights and explores the extensive structural versatility of cyanobacterial
lipopeptides from the PUW/MIN family by introducing previously unknown variants and
newly sequenced biosynthetic gene clusters. Intriguingly, all variants are synthesized by a relatively conserved PKS/NRPS machinery with a common genetic origin. We hypothesize that chemical diversity is generated largely by the presence of two alternative fatty acyl-AMP ligase starter units, one of which exhibits an unusually broad specificity for FA substrates of variable length. Additionally, putative halogenase and O-acetyltransferase genes were present in some gene clusters. This knowledge provides novel insight into the genetic background underpinning the biosynthesis of bacterial lipopeptides. The proposed biosynthetic mechanisms allow the studied microbes to generate a large pool of products that can be readily expanded by introducing relatively small genetic changes. This is consistent with the so-called ‘Screening Hypothesis’ (45, 46), which predicts an evolutionary benefit for organisms producing a large chemical diversity of secondary metabolites at minimum cost. Accessory antimicrobial tests on bacteria and yeasts, together with previously published results, suggest a specific toxic effect of PUWs against eukaryotic cells. Thus, their toxic potential for humans and other animals clearly warrants further investigation, and their possible use as antifungal agents is ripe for exploration.

Materials and Methods

Cultivation of cyanobacterial strains

Six cyanobacterial strains were included in the present study: *Cylindrospermum moravicum* CCALA 993 (strain 1), *Cylindrospermum alatosporum* CCALA 994 (strain 2), *Cylindrospermum alatosporum* CCALA 988 (strain 3), *Anabaena sp*. UHCC-0399 (previously *Anabaena* sp. SMIX 1; strain 4), *Anabaena minutissima* UTEX B 1613 (strain 5), and *Symplocastrum muelleri* NIVA-CYA 644 (strain 6). The origins of the strains are listed in Table 1. For chemical analysis, strains 1–5 were cultivated in BG-11 media (47) in glass columns (300 mL) bubbled with air enriched in 1.5% CO2 at a temperature of 28°C and
constant illumination of 100 μmol photons m\(^{-2}\) s\(^{-1}\). Strain 6 was maintained in culture using a custom liquid medium obtained by mixing 200 mL of Z8 medium (48), 800 mL distilled water, 30 mL soil extract, and common vitamin pre-mix (according to SAG – Sammlung von Algenkulturen der Universität Göttingen, but without biotin). Cultivation was performed in 100–200 mL Erlenmeyer flasks at 20°C with a 16:8 light:dark photoperiod under static conditions. Cultures were kept at low irradiance (4 μmol m\(^{-2}\) s\(^{-1}\) PHAR generated using RGB LED strips). Cells were harvested by centrifugation (3125 × g), stored at -80°C, and subsequently lyophilized. Strain 4 was cultivated at a larger scale for purification of major lipopeptide variants in a 10 L tubular photobioreactor under the above-mentioned conditions in BG-11 medium.

Molecular and bioinformatic analyses

Single filaments of strains 2, 3, 5, and 6 were isolated for whole-genome amplification (WGA) and subsequent preparation of a whole-genome sequencing (WGS) library, as described previously (12). Briefly, the glass capillary technique was used to isolate filaments excluding minor bacterial contaminants. A set of 20 filaments from each strain was then used as a template for WGA. Multiple displacement amplification (MDA) using a Repli-g Mini Kit (Qiagen, Hilden, Germany) was followed by PCR and sequencing to monitor the cyanobacterial 16S rRNA gene using primers 16S387F and 16S1494R (49). Positive samples (7–10 MDA products yielding clear 16S rRNA gene sequences of the respective genera) were then pooled to create a template for WGS. DNA samples were sent for commercial de novo genome sequencing (EMBL Genomics Core Facility, Heidelberg, Germany) using the Illumina MiSeq platform (Illumina, San Diego, CA, USA) with a ~350 bp average insert length Pair-End library and 250 bp reads (~1.4 Gbp data yield per strain). Raw data from de novo WGS were assembled using CLC Bio Genomics Workbench v. 7.5 (CLC Bio, Aarhus,
Denmark). Genomic DNA was isolated from strain 4 as previously described (37) and the quality was assessed using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and an Agilent TapeStation (Agilent Technologies, Santa Clara, CA, USA). High-molecular-weight DNA was used to construct an Illumina TruSeq PCR Free 350 bp library and sequenced using an Illumina HiSeq 2500 platform with a paired-end 100 cycles run. Genome data (1Gb for each strain) were first checked using SPAdes version 3.7.1 (51) for read correction and removal of erroneous reads, and then assembled using Newbler version 3.0 (454 Life Sciences, Branford, CT, USA). Genomic scaffolds were loaded into Geneious Pro R10 (Biomatters; available from http://www.geneious.com) and investigated for FAAL and NRPS genes using BLASTp searches to identify putative lipopeptide synthetase gene clusters (23). FAAL and NRPS adenylation domains (A-domains) from the single known PUW gene cluster (strain 1; KM078884) were used as queries since homologous gene clusters were expected. Contigs yielding high similarity hits (E-value <10^{-20}) were then analyzed using the Glimmer 3 (50) algorithm to discover putative open-reading frames (ORFs). Functional annotation of ORFs was conducted by applying a combination of BLASTp/CDD searches against the NCBI database, and using the antiSMASH 4.0 secondary metabolite gene cluster annotation pipeline (52, 53). Pairwise sequence identities and the presence of conserved residues in homologous putative proteins encoded in the gene clusters were assessed using Geneious Pro software based on amino acid alignment (MAFFT plugin, default parameters). Minor assembly gaps were identified in the genomic scaffolds of all investigated strains, either directly after pair-end read assembly, or based on mapping to the reference gene cluster from C. alatosporum CCALA 988. Gaps in PUW/MIN gene clusters were closed by PCR, and subsequent Sanger sequencing of PCR products was performed using custom primer annealing to regions adjacent to the assembly gaps.

Extraction and analysis of PUWs/MINs
To obtain comparable results, each strain was extracted using an identical ratio of lyophilized biomass (200 mg) to extraction solvent (10 mL of 70% MeOH, v/v). Extracts were evaporated using a rotary vacuum evaporator at 35°C and concentrated to 1 mL of 70% MeOH. The methanolic extracts were analyzed using a Thermo Scientific Dionex UltiMate 3000 UHPLC+ instrument equipped with a diode-array detector connected to a Bruker Impact HD (Bruker, Billerica, MA, USA) high-resolution mass spectrometer with electrospray ionization. Separation of extracts was performed on a reversed-phase Phenomenex Kinetex C18 column (150 x 4.6 mm, 2.6 µm) using H2O (A)/acetonitrile (B) containing 0.1% HCOOH as a mobile phase, at a flow rate of 0.6 mL min⁻¹. The gradient was as follows: A/B 85/15 (0 min), 85/15 (over 1 min), 0/100 (over 20 min), 0/100 (over 25 min), and 85/15 (over 30 min). For better resolution of minor PUW variants, another analytical method with a longer gradient (67 min) adopted from our previous study (13) was applied. The peptide sequence was reconstructed from the b ion series obtained after opening of the ring between the proline and N-methylasparagine residues, followed by the sequential loss of water and all the amino acids with exception of the last residue (Pro). The number of carbons in the FA moiety in PUW/MIN variants containing nonsubstituted and hydroxy-/chloro-substituted FA was determined using a method described previously by our team (13). Characteristic FA immonium fragments in oxo-substituted PUW/MIN variants were identified by employing this method to crude extracts of Anabaena strain 5 containing the oxo-substituted MIN D variant (10). Since a stable, prominent, and characteristic FA immonium fragment with the sum formula C_{15}H_{30}NO^{+} was obtained for MIN D (Fig. S1), analogous fragments with general formula C_{x}H_{2x}NO^{+} were used to identify oxo-substituted components in unknown PUW/MIN variants from other investigated strains.

Molecular networking
A molecular network was created using the Global Natural Products Social Molecular Networking (GNPS) online workflow (54). Data were filtered by removing all MS/MS peaks within +/- 17 Da of the precursor m/z. MS/MS spectra were window-filtered by choosing only the top six peaks in the +/- 50 Da window throughout the spectrum. Data were then clustered with MS-Cluster with a parent mass tolerance of 0.1 Da and a MS/MS fragment ion tolerance of 0.025 Da to create consensus spectra. Additionally, consensus spectra comprised of fewer than two spectra were discarded. A network was then created in which edges were filtered using a cosine score above 0.75 and more than three matched peaks. Additional edges between pairs of nodes were retained in the network only when both nodes were included in each other's respective top 10 most similar nodes. Spectra in the network were then searched against the GNPS spectral libraries, and library spectra were filtered in the same manner as the input data. All matches obtained between network spectra and library spectra were retained only when the score was above 0.7 and at least four peaks matched. Analog searching was performed against the library with a maximum mass shift of 200 Da.

Purification of MINs from Anabaena sp. strain 4 and its NMR analysis

Freeze-dried biomass of strain 4 (10 g) was extracted with 70% MeOH (500 mL). The extract was evaporated using a rotary vacuum evaporator to reduce the MeOH content, and the sample was subsequently diluted with distilled water to reach a final MeOH concentration >5%. The diluted extract was pre-purified using a Supelco C18 SPE cartridge (10 g, 60 mL) pre-equilibrated with 60 mL of MeOH and 120 mL of H₂O. After loading, retained components were eluted with 60 mL of pure MeOH, concentrated to dryness, and resuspended in 10 mL of pure MeOH. MINs A, C, and D were purified in two HPLC purification steps. The first step was performed on a preparative chromatographic system (Agilent 1260 Infinity series) equipped with a multi-wavelength detector and automatic fraction collector. A preparative Reprosil 100 C18 column (252 × 25 mm) was employed for...
separation at a flow rate of 10 mL min\(^{-1}\) using the following gradient of MeOH containing 0.1% HCOOH (A) and 10% MeOH containing 0.1% HCOOH (B): 0 min (100% B), 6 min (100% B), 15 min (43% B), 43 min (12% B), 45 min (0% B), 58 min (0% B), 60 min (100% B), and 64 min (100% B). Fractions were collected using an automatic fraction collector at 1 min intervals, and fractions were analyzed for MIN A, C, and D using the method described above. Fractions containing MIN A, C, and D were collected in separate vials and concentrated using a rotary evaporator. The second purification step was performed on a semi-preparative HPLC (Agilent 1100 Infinity series) using a Reprosil 100 Phenyl column (250 × 8 mm) with (A) acetonitrile containing 0.1% HCOOH and (B) water containing 0.1% HCOOH using the following gradient: 0 min (60% B), 2 min (60% B), 6 min (50% B), 28 min (18% B), 30 min (0% B), 30 min (0% B), 32 min (0% B), 31 min (60% B), and 36 min (60% B). The flow rate was 1 mL min\(^{-1}\) throughout, fractions were collected manually, and the purity was analyzed using the HPLC-HRMS method described above. NMR spectra of minutissamides were measured in dimethyl sulfoxide (DMSO)-d\(_6\) at 30°C. All NMR spectra were collected using a Bruker Avance III 500 MHz NMR spectrometer, equipped with a 5 mm Ø BBI probehead with actively shielded z-gradient.

Antibacterial and antifungal assays

The antimicrobial activity of four major variants (PUW F, and MINs A, C, and D) was tested against 13 bacterial and two yeast strains (Table 4) using disc diffusion assays (8) in three independent experiments with kanamycin/nystatin and MeOH as positive and negative controls, respectively. Antifungal activity of PUW F was further evaluated by determining the MIC against *Candida albicans* (HAMBI 261) and *Saccharomyces cerevisiae* (HAMBI 1164) as described previously (8). PUW F was isolated from *Cylindrospermum* strain 1 according to
a protocol described previously (5), and isolation of MIN A, C, and D was performed as
described above. The variants produced by *S. muelleri* strain 6 were impossible to isolate due
to the slow growth of the cyanobacterium, resulting in low biomass yields during the study
period.

Accession numbers for the newly sequenced complete putative biosynthetic gene
clusters uploaded to the NCBI GenBank database are MH325197-MH325201.

Acknowledgements
This work was supported by Czech Science Foundation grant no. 16-09381S (Bioactive
cyanobacterial lipopeptides: genome mining, detection, and structure-activity relationships),
and by the Ministry of Education, Youth and Sports of the Czech Republic, National
Programme of Sustainability I, ID: LO1416 project ALGAMIC (ID: CZ.1.05/2.1.00/19.0392)
and MSCA IF II project (CZ.02.2.69/0.0/0.0/18_070/0010493). Access to instruments and
other facilities was supported by the Czech Research Infrastructure for Systems Biology
(C4SYS; project no. LM2015055). This research was also supported by a grant from the
NordForsk NCoE programme “NordAqua” (project no. 82845). The Norwegian participation
was supported by grants from the Department of Agriculture and Forestry, the County
Governor of Møre og Romsdal, the County Governor of Sogn og Fjordane, the University of
Oslo, and the Norwegian Institute for Water Research. The authors declare no conflict of
interest. The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

References

9. Gregson JM, Chen JL, Patterson GML, Moore RE. 1992. Structures of

antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena

Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured

peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the
beta-amino fatty acid lipopeptides puwainaphycins in the cyanobacterium

chromatography-mass spectrometric method for the detection of cyclic beta-amino

2017. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by
countercurrent chromatography combined with polymeric resins and HPLC. Anal
Bioanal Chem 409:917–930.

15. Moore RE, Bornemann V, Niemczura WP, Gregson JM, Chen JL, Norton TR,
Patterson GML, Helms GL. 1989. Puwainaphycin C, a cardioactive cyclic peptide
from the blue-green alga Anabaena BQ-16-1. Use of two dimensional carbon-13-
carbon-13 and carbon-13-nitrogen-15 correlation spectroscopy in sequencing the

56. Tamrakar A. 2016. Isolation of benthic cyanobacteria and screening of bioactivities and natural products from culture collection strains. Master Thesis. University of Helsinki, Faculty of Agriculture and Forestry, Department of Food and Environmental Sciences.

Table 1. Strains analyzed for PUW/MIN production

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Strain</th>
<th>Isolated by</th>
<th>Date</th>
<th>Locality</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylindrospermum alatosporum CCALA 988</td>
<td>A. Lukešová</td>
<td>1989</td>
<td>Canada, Manitoba, Riding Mountain National Park, soil</td>
<td>Johansen et al. 2014<sup>55</sup></td>
</tr>
<tr>
<td>2</td>
<td>Cylindrospermum moravicum CCALA 993</td>
<td>A. Lukešová</td>
<td>2008</td>
<td>Czech Republic, South Moravia, Moravian Karst, Amaterska Cave, cave sediment</td>
<td>Johansen et al. 2014<sup>55</sup></td>
</tr>
<tr>
<td>3</td>
<td>Cylindrospermum alatosporum CCALA 994</td>
<td>A. Lukešová</td>
<td>2011</td>
<td>Czech Republic, Moravian Karst, earthworms collected from soil above Amaterska Cave, earthworm casings</td>
<td>Johansen et al. 2014<sup>55</sup></td>
</tr>
<tr>
<td>4</td>
<td>Anabaena sp. UHCC-0399</td>
<td>M. Wahlsten</td>
<td>N/A</td>
<td>Finland, Jurmo, Southwestern Archipelago National Park, copepods</td>
<td>Tamrakar 2016<sup>56</sup></td>
</tr>
<tr>
<td>5</td>
<td>Anabaena minutissima UTEX B1613</td>
<td>T. Kantz</td>
<td>1967</td>
<td>South Texas, USA, soil</td>
<td>Kantz & Bold 1969<sup>57</sup></td>
</tr>
<tr>
<td>6</td>
<td>Symplocastrum muelleri NIVA-CYA 644</td>
<td>O.M. Skulberg</td>
<td>2009</td>
<td>Norway: Møre og Romsdal county; Halsa municipality, western slope of Slettfjellet mountain in semiterrestrial alpine habitat, biofilm on turf in ombrotrophic blanket bog</td>
<td>Skulberg et al. 2012<sup>58</sup></td>
</tr>
</tbody>
</table>
Table 2. Deduced proteins encoded by the puw gene cluster in six cyanobacterial strains, including length and functional annotation. ACP, acyl carrier protein; FAAL, fatty acyl-AMP ligase; PKS, polyketide synthase; NRPS, non-ribosomal peptide synthetase.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Strain No.</th>
<th>Predicted Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>ORF1</td>
<td>659 664 664 643 643 647</td>
<td>ABC transporter</td>
</tr>
<tr>
<td>PuwA</td>
<td>2870 2870 2870 2854 2854 2866</td>
<td>NRPS</td>
</tr>
<tr>
<td>ORF2</td>
<td>1116 1499 1875 643 670 376</td>
<td>patatin-like phospholipase</td>
</tr>
<tr>
<td>ORF3</td>
<td>- - - 696 696 -</td>
<td>dynamin family protein</td>
</tr>
<tr>
<td>PuwI</td>
<td>- - - 709 702 711</td>
<td>FAAL, ACP</td>
</tr>
<tr>
<td>PuwJ</td>
<td>- - - 427 427 529</td>
<td>cytochrome-like protein</td>
</tr>
<tr>
<td>PuwB</td>
<td>2534 2592 2592 2549 2537 2555</td>
<td>hybrid PKS/NRPS, aminotransferase, oxygenase</td>
</tr>
<tr>
<td>PuwC</td>
<td>597 590 590 597 589 -</td>
<td>FAAL</td>
</tr>
<tr>
<td>PuwD</td>
<td>101 104 96 93 92 -</td>
<td>ACP</td>
</tr>
<tr>
<td>PuwK</td>
<td>- - - 465 -</td>
<td>halogenase</td>
</tr>
<tr>
<td>PuwE</td>
<td>3077 3121 3121 3099 3112 3113</td>
<td>NRPS</td>
</tr>
<tr>
<td>PuwF</td>
<td>2370 5877 5877 3310</td>
<td>NRPS</td>
</tr>
<tr>
<td>PuwG</td>
<td>3492 5851 5851 5871</td>
<td>NRPS</td>
</tr>
<tr>
<td>PuwH</td>
<td>1102 1081 1102 1121 1121 1408</td>
<td>NRPS</td>
</tr>
<tr>
<td>PuwL</td>
<td>- - - - 217</td>
<td>O-acetyltransferase</td>
</tr>
</tbody>
</table>
Table 3. Fragmentation of PUW variants from *Symplocosperma muelleri* strain 6 bearing acetyl substitutions on the FA moiety revealed by high energy (100 eV) fragmentation, and amino acid composition deduced by fragmentation at 60 eV.

<table>
<thead>
<tr>
<th>Fragment 1</th>
<th>Fragment 2</th>
<th>Fragment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>low int.</td>
<td>413.300</td>
<td>351.300</td>
</tr>
<tr>
<td>high int.</td>
<td>413.300</td>
<td>393.300</td>
</tr>
</tbody>
</table>

Δ(ppm) high int. = +5.1

m/z 413.300
Hed advances energy (100 eV)
Table 4. Bacterial and yeast strains used for antimicrobial testing of PUW F and MIN A, C, and D. HAMBI, culture collection of University of Helsinki, Faculty of Agriculture and Forestry, Department of Microbiology.

<table>
<thead>
<tr>
<th>Test organisms (HAMBI nr.)</th>
<th>Media*</th>
<th>Incubation temp. (°C)</th>
<th>Incubation time (h)</th>
<th>Gram strain reaction (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas sp. (2796)</td>
<td>TGY</td>
<td>28</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Micrococcus luteus (2688)</td>
<td>TGY</td>
<td>28</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>Bacillus subtilis (251)</td>
<td>TGY</td>
<td>28</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (25)</td>
<td>TGY</td>
<td>37</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli (396)</td>
<td>TGY</td>
<td>37</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Bacillus cereus (1881)</td>
<td>TSA</td>
<td>28</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>Burkholderia cepacia (2487)</td>
<td>TSA</td>
<td>37</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus aureus (11)</td>
<td>TSA</td>
<td>37</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>Xanthomonas campestris (104)</td>
<td>NA</td>
<td>28</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Burkholderia pseudomallei (33)</td>
<td>NA</td>
<td>37</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella typhi (1306)</td>
<td>NA</td>
<td>37</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Arthrobacter globiformis (1863)</td>
<td>NA</td>
<td>28</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Kocuria varians (40)</td>
<td>NA</td>
<td>28</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>Candida albicans (261)</td>
<td>YM agar</td>
<td>37</td>
<td>24</td>
<td>yeast</td>
</tr>
<tr>
<td>Cryptococcus albicus (264)</td>
<td>YM agar</td>
<td>28</td>
<td>24</td>
<td>yeast</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (1164)</td>
<td>YM agar</td>
<td>28</td>
<td>24</td>
<td>yeast</td>
</tr>
</tbody>
</table>

*The composition of all media was obtained from the American Type Culture Collection (ATCC).

TGY, tryptone glucose yeast; TSA, tryptic soy agar; NA, Nutrient agar; YM agar, yeast malt agar.
Figure legends

Fig. 1. HPLC-HRMS/MS analysis of crude extracts from the investigated strains. Major puwainaphycin (PUW) and minutissamide (MIN) variants are highlighted. Numbers in brackets following the peak designation refer to the corresponding Supplementary Figure containing full MS/MS data. For variants without complete structural information, only m/z values are shown.

Fig. 2. Molecular network created using the Global Natural Products Social Molecular Networking (GNPS) web platform. Two separate networks were obtained during GNPS analysis; (a) a group containing *Cylindrospermum* strains 1–3 and *Anabaena* strains 4–5, and (b) a group containing only variants detected in *Symplocastrum muelleri* strain 6. The separate groups differ mainly in the peptide core of the molecule. Numbers in brackets following the peak designation refer to the corresponding Supplementary Figure containing full MS/MS data. For variants without complete structural information, only m/z values are shown. (*) refers to compounds present in trace amounts and (#) refers to compounds for which MS/MS data failed to resolve the structural information.

Fig. 3. Structural variability of the peptide core of PUW/MIN variants. Examples of structural variants PUW F (a) and PUW A (b) with designated aminoacid positions representing the two major peptide cores. (c) Table summarizing all types of the PUW/MIN peptide core found in known compounds reported in literature and compounds (Comp.) detected in studied strains. Columns shaded in grey highlight the conserved aminoacid positions.

Fig. 4. Structural variability of the FA moiety of PUW/MIN variants. The relative proportion of variants with differences in FA length and substitution (y-axis) is depicted using a color scale (z-axis). For comparison, the peak area of a given variant was normalized against the
peak area of the major variant present in the strain (MIN A for strains 1–5, and m/z 1235.7 for strain 6).

Fig. 5. Structure of the *puw* gene cluster in the six investigated cyanobacterial strains. Gene arrangement and functional annotation of *puwA–L* genes and selected PKS/NRPS tailoring domains is indicated by colored arrows. The distribution of the two observed types of putative starter modules (shaded boxes) is indicated by bars.

Fig. 6. Schematic view of the proposed biosynthesis assembly line of puwainaphycins and minutissamides. Variable amino acid positions and the ranges of fatty acyl lengths incorporated by the two putative alternative starter units are listed for individual strains. A, adenylation domain; ACP, acyl carrier protein; AmT, aminotransferase; AT, acyltransferase; C, condensation domain; DH, dehydratase; E, epimerase; ER, enoylreductase; FAAL, fatty acyl-AMP ligase; MT, methyltransferase; NRPS, non-ribosomal peptide synthetase; KR, ketoreductase; KS, ketosynthetase; Ox, monooxygenase; PCP, peptidyl carrier protein; PKS, polyketide synthetase; TE, thioesterase.

Fig. 7. MS/MS fragmentation of MIN A (a, c, e) and the PUW variant at m/z 1279 bearing an acetyl substitution of the fatty acid chain (b, d, f). (a–b) base peak chromatograms; (c–d) fragmentation of the protonated molecule at low fragmentation energy, yielding b series of ions corresponding to the losses of particular amino acid residues, (e–f) fragmentation of the protonated molecule at high energy (100 eV) yielding fragments characteristic for the β-amino fatty acid.

Fig. 8. Antifungal activity of PUW F against yeast strains (a) *Saccharomyces cerevisiae* HAMBI 1164 and (b) *Candida albicans* HAMBI 261. Discs were treated with a concentration range from 25.2 μg mL⁻¹ to 0.0394 μg/mL to determine the minimum inhibitory concentration (MIC). Numbers represent concentrations: (1) = 25.2 μg mL⁻¹; (2) = 12.6 μg mL⁻¹; (3) = 6.3 μg mL⁻¹; (+) = positive control (10 μg of nystatin). (-) = negative control (10 μL of methanol).
on December 4, 2018 by guest

MIN B (34)
MIN C (40)
MIN A (4)
MIN D (61)
PUW F (36)

XXXX.XX present in individual strain
XXXX.XX present in strain 6 only
XXXX.XX present in strains 1-3
XXXX.XX present in strains 4 and 5
XXXX.XX present in strains 1-5
Table C

<table>
<thead>
<tr>
<th>Core I</th>
<th>FA</th>
<th>Val</th>
<th>Dhb</th>
<th>Asn</th>
<th>Dhb</th>
<th>Asn</th>
<th>Ala</th>
<th>Thr</th>
<th>N-Me-Asn</th>
<th>Pro</th>
<th>Known Compounds</th>
<th>Variants Found in Strains 1-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Asn</td>
<td>Dhb</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>MIN A, MIN B, MIN C, MIN D, PUW F</td>
<td>Comp.1,3,10,11,12,14,16,19,20,25,26,28,30,31,37,45,51</td>
</tr>
<tr>
<td>Core II</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Gln</td>
<td>Dhb</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>PUW G</td>
<td>PUW G, Comp.2,6,13,15,17,27,29,32</td>
</tr>
<tr>
<td>Core III</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Thr</td>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
<td>O-Me-Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>PUW A, PUW C, PUW E, MIN I, MIN K</td>
<td>Comp. 38,46,50,52,53,56,58</td>
</tr>
<tr>
<td>Core IV</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Thr</td>
<td>Thr</td>
<td>Gln</td>
<td>Ala</td>
<td>O-Me-Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>MIN E, MIN G</td>
<td>Comp.39,47,53,57,59</td>
</tr>
<tr>
<td>Core V</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Thr</td>
<td>Thr</td>
<td>Val</td>
<td>Gln</td>
<td>O-Me-Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>PUW B, PUW D, MIN L</td>
<td>Comp.40,48,54,60</td>
</tr>
<tr>
<td>Core VI</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Thr</td>
<td>Thr</td>
<td>Val</td>
<td>Gln</td>
<td>O-Me-Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td>MIN H</td>
<td>Comp. 41,49,55,61</td>
</tr>
<tr>
<td>Core VII</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Asn</td>
<td>Dhb</td>
<td>Asn</td>
<td>Gly</td>
<td>Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td></td>
<td>Comp. 7,36,44</td>
</tr>
<tr>
<td>Core VIII</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Asn</td>
<td>Dhb</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td></td>
<td>Comp. 8,23,35</td>
</tr>
<tr>
<td>Core IX</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Asn</td>
<td>Dhb</td>
<td>Asn</td>
<td>Ala</td>
<td>Ser</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td></td>
<td>Comp. 9,18,24</td>
</tr>
<tr>
<td>Core X</td>
<td>FA</td>
<td>Val</td>
<td>Dhb</td>
<td>Thr</td>
<td>Dhb</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>N-Me-Asn</td>
<td>Pro</td>
<td></td>
<td>Comp. 5,34,43</td>
</tr>
</tbody>
</table>
Saccharomyces cerevisiae

Candida albicans

a

b

Downloaded from http://aem.asm.org/ on December 4, 2018 by guest