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Abstract

One of the most used methods in condensed matter theory and quantum chemistry for the description
of matter properties is Time-dependent density-functional theory (TDDFT), an alternative formalism
to wave function methods which uses the time-dependent electronic density for the determination of
any quantum average of an electronic system. The usual approach in TDDFT is by means a non-
interacting system, where all the interaction e�ects are encoded in an e�ective one-body potential
that exactly reproduces the time-dependent density of any interacting system. The e�ective potential
is called the exchange-correlation (xc) potential. For the calculation of the excited states in TDDFT,
one needs the knowledge of the xc potential and its functional derivative with respect to the density,
which is known as the xc kernel. For practical applications, both the xc potential and the xc kernel
needs to be approximated. In the last years, better approximations for the xc potential and kernel have
been constructed, but it turns out that the usual approximations fail for the description of strongly
correlated systems. Recently, a new type of density functionals, the strictly correlated electrons (SCE)
formalism [1�3] have been constructed with the aim to describe the physics of strongly correlated
systems, but not tested so far for the obtaining of excitation energies. One way to gain insight and
test the performance of the density functionals is to compare them against exact expressions obtained
from exactly solvable systems. In this work, we construct such strongly correlated systems, and we
solve them exactly for the subsequent comparison with the predictions provided by the SCE density
functionals. The comparison of the results, therefore, will provide insights of the applicability of this
kind of density functionals, establishing in this way its range of validity.
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1 Introduction

In electronic structure theory, the usual approach within the �eld of quantum chemistry is based
on solving the time-dependent Schrödinger equation for the system of interest and calculate the
desired observables from the time-dependent wave function. The key di�culty in doing this is that
it requires the solution of a problem with many variables. The method is conceptually straightfor-
ward, but it becomes practically impossible as soon as the system consists of more than just a few
electrons, which is commonly known as "The many-body problem." Consequently, the development
of e�cient methods to calculate the properties of many-electron systems is of crucial importance for
the prediction of material properties within the research areas of theoretical chemistry, nanoscience,
and solid-state physics.

(Time-dependent) density-functional theory (TD)DFT [4�10] provides an alternative to traditional
wave-function methods. It uses the fact that the time-dependent electronic density contains all the
information to determine the properties of any electronic system. The standard procedure used
within density-functional theory for obtaining the time-dependent density is the Kohn-Sham (KS)
system, a non-interacting system that reproduces the same electronic density as the interacting
system of interest. The KS system uses an e�ective one-body potential that exactly, describes the
many-body interactions as a functional of the electronic density. This e�ective potential is called the
exchange-correlation (xc) potential, and the properties of the many body systems are encoded in it.
For practical applications, the xc potential must be approximated, a task that has been the focus of
intense research over many years, since the type of the approximation used crucially determines the
quality of the results. To calculate the excitation energies of a system in TDDFT, it is not enough
only the knowledge of xc potential, but also its functional derivative with respect to the density,
evaluated at the ground state density [7]. The latter quantity is called the xc kernel, which also
needs to be approximated. In recent years progressively better approximate functionals have been
constructed leading to more accurate predictions of material properties. Currently, there exist some
reliable and useful approximate density functionals that can deal with a wide variety of situations,
but there are also well-known failures. In particular, the most commonly used approximate density
functionals can not deal with strongly correlated systems. For example, an important situation is
the breaking of chemical bonds in molecules, which is a key process in any chemical reaction and
therefore of crucial importance in chemistry. The simplest and most commonly used approximation in
TDDFT is the adiabatic local-density approximation (ALDA). The adiabatic approximation assumes
that the xc potential of a general system at a given time is the same as that of a system having
the instantaneous density at its ground state, whereas the local density approximation assumes that
spatial variations of the density are small. The ALDA has a number of de�ciencies such as, for
example, the inability to predict charge transfer excitations [11�14] and Born-Oppenheimer surfaces
of excited states in dissociating molecules [15�17]. Some improvements have been made using hybrid
functionals, which are non-local in space but still adiabatic, thus lacking the ability to describe
complex multi-particle excitations. These methods are not systematic and often system-dependent
[18�21]. Other more systematic approaches often rely on perturbative expansions [22�31], which
makes them questionable for the description of strongly correlated systems, as the case of molecular
dissociation. Thus, it is necessary to develop new functional that can describe the strongly correlated
systems.
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2 Introduction

Recently a new type of density functional which can capture the physics of strongly interacting
systems have been developed within the so-called Strictly Correlated Electrons (SCE) [1, 2], and
it was found that because of its non-local spatial dependence as a function of the density, it can
describe chemical bond breaking well although it fails to describe bond distances [32, 33]. Since the
work has been restricted to the ground-state only, for the description of time-dependent processes
and excited states, a time-dependent extension of the formalism is needed. The SCE formalism,
therefore, has been extended to the time-dependent domain in the adiabatic approximation in [3].
In this work, the formalism was presented, its properties were studied, and it was shown that the xc
kernel constructed based on the SCE formalism in the adiabatic approximation could describe the
physics that a system with strong correlation shows correctly. The xc kernel was studied for �nite
one-dimensional systems with density pro�les that resemble a molecule in its dissociation process.
It was found that due to the spatial non-local dependence of the kernel as a function of the density,
the kernel exhibits the right analytical structure to describe dissociation processes accurately.

It is, therefore, the topic of this Ph.D. research project to �nd improved approximations for the xc
kernel that are also reliable in the strong correlation regime. The goal is to extend and apply the SCE
formalism within the time-dependent regime to describe excitations in correlated systems such as
dissociating molecules and hence, to adequately describe excited state Born-Oppenheimer surfaces.
Furthermore, we are interested in describing the electronic response properties of such correlated
systems, which are essential for (photo)-chemical reactions and molecular spectroscopy.

This thesis organizes as follows. In Sec. 1.1 and Sec. 1.4 we describe the electronic many-body system
and the electronic time-dependent many-body system respectively, we study its exact properties,
and we brie�y comment the standard methods that are commonly used to �nd approaches for
coping with the many-body problem. In Sec. 2 and Sec. 3 we introduce the foundations of DFT
and TDDFT respectively. We review the fundamental theorems that allow using the density as a
fundamental variable as a replacement of the electronic wave-function and we summarize the most
relevant exact conditions that the xc potential and the xc kernel must obey. We introduce the most
used approximations, i.e., local approximations for DFT and adiabatic local approximations for
TDDFT, and we explain why these approximations cannot deal with strongly correlated systems
like a dissociating molecule. We introduce the ground-state SCE formalism and its extension for the
time-domain in the adiabatic approximation, we explain how the ground-state theory performs for
the calculation of the energy curve of H2 in its dissociation process and we point out the insights that
are behind the SCE theory in time domain for this functional to successfully describe the excitation
energies of the H2 in its dissociation process. In Sec. 4 we review the work done in [34], which consist
on solving an interacting model system in an exact way for any range of the interaction strength,
such that it allows obtaining the exact Hartree-xc (Hxc) kernel of TDDFT. With the exact Hxc
kernel we develop an asymptotic expansion valid for large values of the interaction strength, and
we compare the results with those that are obtained by using the SCE formalism in the adiabatic
approximation, �nding agreement with the leading order and the next to the leading order of the
asymptotic expansion. We, therefore, conclude that the SCE formalism can correctly describe strongly
interacting systems. Based on the positive results obtained in [34], in Sec. 5 we summarize the work
done in [35]. In this work, we construct a simple interacting model system in a way that it reproduces
the main features of a H2 molecule, and with the purpose to analyze it in its dissociation regime.
We solve the model exactly, and we calculate both the wave functions and energy spectrum in the
dissociation limit, and in the limit when the interaction strength becomes very large, but for arbitrary
but �nite bond distance. Additionally, we obtain the excitation energies with the SCE formalism in
the adiabatic approximation, and we analyze them in the limit of large bond distances. The goal
is to test if such formalism reproduces the excitation energies of a dissociating molecule and hence,
establish the range of validity of the SCE formalism.
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1.1 The electronic many-body system

Consider a system of N non-relativistic electrons, under the in�uence of an external potential v, and
with a two-body electron-electron interaction w. The interacting N -electron many-body Hamiltonian
in the the Born-Oppenheimer approximation is given in atomic units by

Ĥ = T̂ + V̂ + Ŵ , (1.1)

where

T̂ =
1

2

N∑
i=1

p̂2
i (1.2)

is the kinetic energy operator and p̂i is the single particle momentum operator, which in position
space reads p̂ = i∇r. In turn, the external potential operator which acts on each electron i reads

V̂e =

N∑
i=1

ve (ri) , (1.3)

and the two-body electron-electron interaction between electrons i and j reads

Ŵ =

N∑
i<j

w(ri, rj). (1.4)

The electron-electron interaction is assumed in general to depend only of the distance between
electrons as w(|ri − rj |), being the fundamental interaction the Coulomb interaction w (|r|) = 1

|r| .
It is instructive to write the interacting N -electron many-body Hamiltonian as the sum of the N
one-body Hamiltonian acting at each electron plus the sum of interactions between the pairs as

H(r1, ..., rN ) =

N∑
i=1

h(ri) +

N∑
i<j

w(|ri − rj |), (1.5)

where h is de�ned to be the single-particle Hamiltonian

h(r) = −1

2
∇2

r + ve(r). (1.6)

The full description of the N electron system is given by the N -electron wave function, which is the
solution of the time-independent Schrödinger equation and which in position-spin basis reads

H(r1, ..., rN )Ψ(x1, ...,xN ) = EΨ(x1, ...,xN ), (1.7)

where E is the energy eigenvalue and Ψ the eigenstate and the variable xi = (ri, σi) refers to both
position and spin. The full N -electron wave-function must be antisymmetric under the simultaneous
interchange of space and spin variables. With the information of the interacting N -electron wave
function any physical observable is calculated according to

O = 〈Ψ|Ô|Ψ〉. (1.8)

for a normalized antisymmetric wave function Ψ.

Consider now a non-interacting N -electrons system under the in�uence of an external potential, and
in the absence of the two-body electron-electron interaction. In this particular case, the N -electron
Hamiltonian is composed merely by the sum of N single particle Hamiltonians

H(r1, ..., rN ) =

N∑
i=1

h(ri), (1.9)
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and consequently, the non-interacting N -particle Schrödinger equation decouples in N identical
single-particle Schrödinger equations

h(r)ϕni(x) = εniϕni(x), (1.10)

where ni is the level of the occupied orbital and i its label which runs from 1 to N . The totally
antisymmetric non-interacting N -electron wave functions is a Slater determinant where two electrons
can occupy each orbital with opposite spins. The eigenenergies of an arbitrary excited-state are simply
the sum of the single N -electron eigenenergies for the occupied levels

E =

N∑
i=1

εni (1.11)

We then see that for the ground-state energy, the occupation numbers are simply (n1, ...nN ) =
(1, ..., N).

When the electron-electron interaction is considered and because the interacting N -electron many-
body Hamiltonian is not separable anymore, the single-particle picture is lost. We, therefore, see
that once the two-body electron-electron interaction is present, the task of solving the Schrödinger
equation becomes hard and thus it is needed to �nd alternative methods for calculating both the
wave functions and the energy spectrum of the N interacting many-body system. Some of these
methods we proceed to explain in the following section.

1.2 Energy functional and approximate wave-function method

An important method for the calculation of approximate ground-state wave function and ground-
state energy is given by means the Rayleigh-Ritz variational method, whose criteria is based on the
variational theorem which states that for a Hamiltonian, the following inequality holds

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

≤ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (1.12)

where E0 is the ground-state energy and |Ψ0〉 represents one element of the set of ground-state
wave functions since we are also considering degenerate ground-states. The N -particle many-body
Hamiltonian that solves the time-independent Schrödinger equation reads

Ĥ|Ψi〉 = Ei|Ψi〉, (1.13)

where i 6= 0 refers to excited states, ordered according to E0 ≤ E1 ≤ ... . The theorem can be proved
by expressing every general state Ψ written as a linear combination of the basis spanned by the
Hamiltonian operator Ĥ, i.e.

|Ψ〉 =
∑
i

ci|Ψi〉. (1.14)

By means the de�nition of the ground-state energy we have

E0 =

∑
i |ci|2|E0∑
i |ci|2

≤
∑
i |ci|2|Ei∑
i |ci|2

=
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (1.15)

which proves the inequality Eq.(1.12). From the variational theorem, therefore, it can be de�ned a
wave-function functional as follows

E[Ψ] ≡ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0, (1.16)
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whose domain is de�ned for all normalizable antisymmetric ground-state wave functions Ψ where the
minimum is the ground-state energy, and where the equal sign holds only for the elements of the set
of the ground-state wave function Ψ = Ψ0. This condition bounds from below the energy functional
and we can write the variational property as

E0 = min
Ψ

E[Ψ], (1.17)

which means that the ground-state wave function is a stationary point of the energy functional. It can
be shown that the stationary condition is satis�ed when Ψ is an eigenfunction of the Hamiltonian,
i.e., when the wave function ful�lls the Schrödinger equation.

Ĥ|Ψ〉 = E|Ψ〉. (1.18)

Therefore, the stationary condition provides a criterion and a procedure to calculate approximations
for the ground-state energy and ground-state wave function in a systematic way. Given a trial ground-
state wave function Ψ̃, the variational theorem states that

E0 ≤
〈Ψ̃|Ĥ|Ψ̃〉
〈Ψ̃|Ψ̃〉

(1.19)

where the equality holds only for every element of the set of ground-states Ψ̃ = Ψ0 wave functions.

1.3 Reduced density matrices

For the proper introduction of the objects called reduced density matrices, let us express the quantum
average of a general k-body operator 〈Ô〉 in the position-spin basis, being k ≤ N , and where N is
the number of interacting electrons. The expectation of the operator Ô then reads

〈Ψ|Ô|Ψ〉 =

∫
dx1...dxNdx

′
1...dx

′
N Ψ∗(x′1, ...,x

′
N )O(x′1, ...,x

′
k;x1, ...,xk)Ψ(x1, ...,xN ). (1.20)

We see that the calculation of a quantum average 〈Ψ|Ô|Ψ〉 of a general N -body operator (k = 0) Ô
of a system of N interacting electrons requires from the knowledge of the interacting N -particle wave
function. However, from the above expression we notice that for the calculation of the expectation
value of a k-body operator it is not needed the full interacting N -particle wave function, since in
the evaluation of such expectations, the matrix elements of the operator Ô do not depend on all
the position-spin coordinates, but they depend only on k x′ and k x coordinates. Thus, N − k
coordinates of the N -particle wave function have been integrated out, which means that practically
(but not fundamentally), limited information of the full N -particle wave function is required. We
thus can de�ne conveniently a new object which is called k-particle reduced density matrix, which is
de�ned from the N -particle wave function once having integrated the N − k coordinates xi and x′i
for i = k + 1, ..., N and whose knowledge determines the knowledge of the desired quantum average
completely. For example, and as we will see later in the case of the calculation of the ground-state
energy as the expectation average of the Hamiltonian Eq.(1.5), only the 2-particle reduced density
matrix is needed.

Let us de�ne the spin summed N -particle density matrix as

ΓN (x1, ...,xN ;x1′ , ...,xN ′) = Ψ∗(x′1, ...,x
′
N )Ψ(x1, ...,xN ), (1.21)
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and let us also de�ne the spin integrated N -particle density matrix as

ΓN (r1, ..., rN ; r1′ , ..., rN ′) =
∑

σ1...σN
σ1′ ...σN′

Ψ∗(x′1, ...,x
′
N )Ψ(x1, ...,xN ). (1.22)

The k-particle reduced density matrix is obtained from the N -particle density matrix integrating out
N − k coordinates as follows

Γk(x1, ...,xk;x′1, ...x
′
k) =

N !

(N − k)!

∫
dxk+1...dxN Ψ∗(x′1, ...,x

′
k,xk+1, ...xN )Ψ∗(x1, ...,xk,xk+1, ...xN ).

(1.23)
From the de�nitions Eq.(1.21) and Eq.(1.23) it follows that

Γk(x1, ...,xk;x′1, ...,x
′
k) =

1

(N −K)!

∫
dxk+1...dxN ΓN (x1, ...,xk,xk+1, ...,xN ;x′1, ...,x

′
k,xk+1, ...,xN )

(1.24)
and

Γk(x1, ...,xk;x′1, ...,x
′
k) =

1

(N −K)

∫
dxk+1 Γk+1(x1, ...,xk,xk+1;x′1, ...,x

′
k,xk+1). (1.25)

Particular interest have the traces of the Γ1 and Γ2 that from Eq.(1.23), Eq.(1.24) and Eq.(1.25)
they integrate to ∫

dx Γ1(x;x) = N (1.26)

and ∫
dx1dx2 Γ2(x1,x2;x1,x2) = N(N − 1). (1.27)

Let us analyze the probability interpretation of the reduced matrices Γ1 and Γ2. The trace of the
1-particle reduced density matrix is the particle density Γ1(x;x) = n(x) which integrates to N
particles. This means that it gives the probability distribution to �nd an electron at the point x
with spin σ. The trace of the 2-particle density matrix in turn, integrates to N(N − 1), which is the
double of the number of pairs we can form with N electrons and therefore Γ2(x,x′;x,x′) represents
the probability distribution of �nding one electron at point r with spin σ and other electron at point
r′ with spin σ′.

For the calculation of the ground-state energy of the interacting N -electron system, we average the
Hamiltonian Eq.(1.5) with the N -electron ground-state wave function, which can be expressed in
terms of the 1 and 2-particle reduced density matrices as

E0 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (1.28)

where

〈Ψ|Ĥ|Ψ〉 =

∫
dr h(r) Γ1(r; r′)|r=r′ +

1

2

∫
drdr w(|r− r′|)Γ2(r, r′; r, r′). (1.29)

From the ground-state energy expression Eq.(1.29) we see that because the part of the Hamiltonian
that contains the one-body operator h(r) depends only on one coordinate, it is averaged with the
diagonal of the 1-particle reduced density matrix or electronic density. The two-body electron-electron
interaction, in turn, it is a two-body operator which depends on two position coordinates w(|r− r′|),
and hence it is averaged with the pair density. We, therefore, see that for the calculation of the
N -electron interacting ground-state energy the full knowledge of the N -particle wave function is
not needed provided the complete knowledge of the spin integrated 1 and 2-particle reduced density
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matrices are known. We can say more and express the N -electron ground-state energy implicitly as
a function of the spin integrated 2-particle reduced density matrix, since we note that by Eq.(1.25)
we have the relation

Γ1(x1;x′1) =
1

(N − 1)

∫
dx2 Γ2(x1,x2;x′1,x2) (1.30)

and thus, the variational principle Eq.(1.16) can be reformulated as a minimization of a functional
of the 2-reduced particle density instead of the wave function as follows

E[Γ2] = inf
Ψ→Γ2

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (1.31)

where the minimization consists on searching over all the set of 2-particle reduced density matri-
ces that are obtained from antisymmetric normalized wave functions. Such a domain is called N -
representable. To proceed with the minimization, it is needed to know the constraints the 2-particle
reduced density matrix has to ful�ll. These constraints are known as N -representable constraints for
the 2-reduced particle density matrix and they have been known recently [36]. Discussion about this
issue is out of the scope of this work and extended discussions about this topic can be found at [36].
Assuming then that the N -representability conditions are known for the 2-particle reduced density
matrix, one has the variational property for the ground-state energy

E0 ≤ E[Γ2], (1.32)

where the equal sign holds only for the 2-particle reduced density matrix obtained from the interacting
N -electron ground-state wave function.

1.3.1 The pair correlation function and the exchange correlation hole

Two speci�c probability distribution functions constructed from the spin integrated 2-reduced particle
density matrix are particularly relevant because of its physical meaning. These objects are the pair-
correlation function and the exchange-correlation hole.

Let us de�ne a new probability distribution according to the relation

g(x,x′) =
Γ2(x,x′)

n(x)n(x′)
. (1.33)

This probability distribution function is called the pair-correlation function, and it provides in-
formation about the degree of correlation of an N -electron system. When the probability to �nd
an electron at the position r with spin σ and another at the position r′ with spin σ′ are inde-
pendent events, then the 2-particle reduced density matrix is just the product of the electronic
densities Γ2(x,x′) = n(x)n(x′), and hence the correlation factor is g(x,x′) = 1. We say then that
the N -electron system is completely uncorrelated. This situation happens when the system is a
non-interacting system, whose correlation function reads

g(x,x′) = 1− |γ(x,x′)|2

n(x)n(x′)
, (1.34)

where the function γ(x,x′) is known as the exchange contribution, originated due to the antisym-
metry of the Slater determinant and which it is zero if we have di�erent spins σ 6= σ′. The source of
spin correlations are due to the Pauli exclusion principle encoded in the antisymmetry property of
the non-interacting N -electron wave function, since the electrons that are in the same position r = r′

avoid to have the same spin projection and therefore, even if there is not present in the Hamiltonian
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a two-body electron-electron interaction, there is still a correlation. These type of correlations are
due to the spin interaction, or correlations due to the exchange. The rest of the correlations are due
to the two-body electron-electron interaction term.

Let us now re-express the interaction term of the energy expectation value Eq.(1.29) as a function
of the spin integrated pair-correlation function, which reads

W =
1

2

∫
drdr′ w(|r− r′|)n(r)n(r′)g(r, r′) (1.35)

and let us separate the full interaction energy in its classical electrostatic contribution or the so-called
Hartree energy and the xc part, which is the contribution with genuine quantum origins, as follows

W = Wxc + UH, (1.36)

where

UH =
1

2

∫
drdr′ w(|r− r′|)n(r)n(r′) (1.37)

is the Hartree energy and the xc part of the interaction energy Wxc is de�ned as

Wxc =

∫
drdr′ w(|r− r′|)n(r)n(r′)[g(r, r′)− 1], (1.38)

where g(r, r′) is the spin integrated pair-correlation function.

From the 2-particle reduced density matrix we can construct in turn another equivalent probability
distribution, which is called the xc hole, and it is de�ned as

nhxc(x,x
′) =

Γ2(x;x′)

n(x′)
− n(x) = n(x)[g(x,x′)− 1], (1.39)

where the term Γ2(x;x′)
n(x′) represents the conditional probability to �nd an electron on the position r

with spin projection σ, provided that a reference electron is at the position r′ with spin projection
σ′. By the de�nition of the pair-correlation function and the normalization of the 2-reduced particle
density matrix, we can derive the sum rule for the xc hole, which reads∫

dx nhxc(x,x
′) =

∫
dx n(x)[g(x,x′)− 1] = −1, (1.40)

meaning that the hole is a probability distribution that integrates to −1 electron. Now the physical
meaning of the xc hole distribution becomes clear. It represents the probability distribution to �nd
a minus electron at position r with spin projection σ, given a reference electron at position r′ with
spin projection σ′. Since the probability to �nd an electron near to the reference one is reduced
because of both the Pauli exclusion principle and electron-electron interaction, then we say that the
presence of correlations create a hole in the electronic density distribution n(x). When the electrons

are completely uncorrelated the conditional probability reads Γ2(x;x′)
n(x) = n(x′) and therefore, the xc

hole distribution function is identically zero.

If we once again express the xc part of the interaction energy as a function of the xc hole distribution
function, it reads

Wxc =
1

2

∫
dxdx′ n(x)nhxc(x,x

′)w(|r− r′|). (1.41)

We see that to calculate the properties of a N -electron interacting system, such as its ground-
state energy, it is needed to model the 1 and 2-particle reduced density matrices. Many methods
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for coping with this problem have been developed during the years for calculating these objects in
an approximate way. Some of them, wave function methods are based on the variational principle
previously explained, such as con�guration-interaction [37], which for a basis set considering just
single and double excitations it is easy to implement, while for larger basis sets it turns out that the
method is very expensive to implement computationally for a system of just few electrons. Another
method relies on perturbation expansions with respect of the interaction term, and for a detailed
discussion we refer to [38], but the method is questionable for describing strongly correlated systems.
The method which is the one that we proceed to explain in the next chapters, Sec. 2 and Sec. 3 is
density-functional theory, but before it, we brie�y review the electronic time-dependent many-body
problem.

1.4 The electronic time-dependent many-body system

Consider a system of N non-relativistic electrons, under the in�uence of a time dependent external
potential v(r, t), and with an electron-electron interaction w(|ri − rj |) between electrons i and j.
The interacting time-dependent Hamiltonian of the N electron system in the Born-Oppenheimer
approximation is given in atomic units by

Ĥ(t) = T̂ + V̂ (t) + Ŵ , (1.42)

where now the one-body external potential operator which acts on each electron i is time-dependent
and reads

V̂e(t) =

N∑
i=1

Ve (ri, t) . (1.43)

The full description of the N electron system is given by the interacting time-dependent N -electron
wave function, which is the solution of the time-dependent Schrödinger equation

H(r1, ..., rN , t)Ψ(x1, ...,xN , t) = i∂tΨ(x1, ...,xN , t), (1.44)

which propagates a given initial state Ψ(t0) = Ψ0 being t0 the initial time and where in most
of the cases is chosen to be the ground-state. The full time dependent N -electron wave function
must be antisymmetric under the simultaneous interchange of the space and spin variables. With
the information of the interacting N -electron wave function any physical observable is calculated
according to

O(t) = 〈Ψ(t)|Ô(t)|Ψ(t)〉. (1.45)

We can also introduce the time-dependent reduced density matrices, which are de�ned by means
the interacting time-dependent N -electron wave function in the same fashion as we did for the
time-independent case, Sec. 1.3, and therefore there is no need for more discussion about them.

Before going through time-dependent density functional theory, it is needed to discuss some exact
properties of the time-dependent many body systems.

1.4.1 Continuity equation and local conservation laws

In this section, we discuss the exact relations of the time-dependent many-electron that will be used
in the following sections to derive the fundamental theorem time-dependent density-functional theory
relies on, which can be found at [6, 7]
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First of all, let us de�ne the density operator as

n̂(r) =

N∑
i=1

δ(r− ri), (1.46)

and the current-density operator as

ĵ(r) =
1

2i

N∑
i=1

[∇iδ(r− ri) + δ(r− ri)∇i] . (1.47)

Let us calculate the time-dependent expectation values of both the density operator and the current
density operator. The time-dependent expectation values are given by averaging the operator with
the time-dependent wave function Ψ(t) which is the solution of the time-dependent Schrödinger
equation as

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 (1.48)

j(r, t) = 〈Ψ(t)|̂j(r)|Ψ(t)〉. (1.49)

The evolution of the quantum average of any operator is obtained according to

∂t〈Ψ(t)|Ô(t)|Ψ(t)〉 = −i〈Ψ(t)|[Ô(t), Ĥ]|Ψ(t)〉+ 〈Ψ(t)|∂tÔ(t)|Ψ(t)〉. (1.50)

Let us now calculate the evolution equation for the density operator, which reads

∂tn(r, t) = −i〈Ψ(t)|[n̂(r), Ĥ(t)]|Ψ(t)〉, (1.51)

and after working out the commutator, we �nd the continuity equation

∂tn(r, t) = −∇j(r, t). (1.52)

Analogously, we can take the current-density operator to �nd its evolution equation as

∂tj(r, t) = −i〈Ψ(t)|[̂j(r), Ĥ(t)]|Ψ(t)〉 (1.53)

and working out the commutator we arrive at the following equation for the i component of the
current

∂tji(r, t) = −n(r, t)∂ive(r, t)− F kin
i (r, t)− F int

i (r, t), (1.54)

where i = 1, 2, 3 are the Cartesian coordinates. The last equation has the meaning of a local force
balance equation. The vectors F kin

i and F int
i correspond to the internal forces due to the kinetic and

interaction energy respectively. The kinetic force is given by F kin
i =

∑
j ∂iτij , where the kinetic stress

tensor is de�ned as

τij(r, t) =
1

2

[
lim
r→r′

(
∂ri∂r′j + ∂rj∂r′i

)
Γ(r, r′, t)− δij

2
∇2n(r, t)

]
, (1.55)

and Γ(r, r′, t) is the 1-particle reduced density matrix. In turn, the interaction force density is

F int
i (r, t) = 2

∫
dr′ Γ2(r, r′, t)∂iw(|r− r′|), (1.56)

where Γ2(r, r′, t) is the diagonal of the 2-reduced particle density matrix. The interaction force can
also be written in the form of a divergence of a tensor as F int

i =
∑
i ∂iwij , where the interaction

stress tensor is

wij(r, t) = −
∫
dr′

r′ir
′
j

r′

∫ 1

0

dλΓ2(r + λr′, r− (1− λ)r′, t). (1.57)
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Let us now de�ne the total momentum that acts on the many-electron system as

P(t) =

∫
dr J(r, t). (1.58)

Taking the time derivative and using the time evolution equation for the current-density Eq.(1.54)
we get

∂tP(t) = −
∫
dr n(r, t)∇ve(r, t), (1.59)

where the total kinetic energy force and interaction force do not contribute since they are written
in terms of a total divergence, and therefore its integral over the space is zero provided that the
stress tensor vanishes su�ciently quick at in�nity. The physical reason why these terms vanish is
because neither the total kinetic energy nor the two-body electron interaction can provide a change
of momentum to the system and therefore, the total kinetic energy term and the interaction term
cannot produce a net force. This is nothing but the second Newton's law where the variation of the
total momentum of the system is due to the external force, which is caused by the one-body external
potential.

Similarly, we can de�ne the total angular momentum as

L(t) =

∫
dr r× j(r, t) (1.60)

Proceeding analogously as the total momentum, and taking its time derivative, we also obtain

∂tL(t) = −
∫
dr n(r, t)r×∇v(r, t), (1.61)

which the contributions from the kinetic and the interaction vanish. Also, in this case, the physical
meaning is clear since neither kinetic energy force nor the two body electron-electron interaction
can provide to the system a change of angular momentum, i.e., they cannot produce a torque in the
system since it can only be produced by an external force.

We are now ready for the derivation of the central equation we will use for establishing the density-
potential mapping in TDDFT. Taking the divergence of evolution equation for the current-density
Eq.(1.54) and using the continuity equation we arrive to

∂2
t n(r, t) = ∇[n(r, t)∇ve(r, t)] + q(r, t), (1.62)

where we have de�ned q to be

q(r, t) = ∇Fkin(r, t) +∇Fint(r, t). (1.63)

This is the equation that provides a relation between densities and one-body external potential since
also q depends implicitly on the density by means the 1 and 2-particle reduced density matrices. The
above equation is just a formal equation which shows how the one-body external potential depends
on the density and vice versa, but it is not possible to solve for the one-body external potential unless
the reduced density matrices are known and which are given via the N -electron time-dependent wave
function. The above-derived equations Eq.(1.62) and Eq.(1.63) will be the objects for proving the
unique mapping of densities and potentials.



2 Density-functional theory

2.1 The density-potential mapping: The Hohenberg-Kohn the-

orem

In this section, we introduce the foundations of the density-functional theory. In the previous section
and by the variational property, we have shown that the ground-state energy Eq.(1.29) of a N -
electron interacting system is completely determined with the knowledge of the 2-particle reduced
density matrix. Likewise, we are going to show that the ground-state electronic density completely
determines the ground-state energy and every quantum average of any electronic system.

For an N -electron interacting system described by the Hamiltonian Eq.(1.5), the ground-state wave
function which for simplicity we assume to be non-degenerate up to a global phase factor, is deter-
mined via the solution of the time-independent Schrödinger equation Eq.(1.7). Once the one-body
external potential is speci�ed and for a �xed two-body electron-electron interaction, the Schrödinger
equation, therefore, de�nes a map between the set of the external one-body potentials which di�er
more than a constant, V and the ground-state wave functions which vary more than a global phase
factor, G. Let us denote the map from V to G, A as

A : V −→ G. (2.1)

The N -electron wave function, in turn, determines the spin integrated ground-state density according
to Eq.(1.23) as

n0[ve](r) = 〈Ψ[ve]|n̂(r)|Ψ[ve]〉 = N

∫
dx2...dxN |Ψ0[ve](x,x2, ...,xN )|2, (2.2)

where the density operator is Eq.(1.46), and where we wrote Ψ0[ve], which indicates that the ground-
state wave function is a functional of the external potential, which is obtained via the map A. We
have then introduced a second map between the set of ground-state wave functions G and the set of
ground-state densities N generated by Eq.(2.2), which we call B

B : G −→ N . (2.3)

We, therefore, can say that the ground-state density is obtained via the composite map B◦A between
the set of one-body external potentials V to the set of ground-state densities N as

V G NA

B◦A

B

and hence, the ground-state density constitutes a functional of the external potential,ie, we write
n0[ve]. We are interested in showing that there exists an inverse map (B ◦A)

−1 between the set of
ground-state densities N to the set of one-body external potentials V. For showing it, it is needed to

12
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be proved that the map B ◦A is unique. This proof forms the content of the Hohenberg-Kohn (HK)
theorem [39, 40], which we proceed to announce in the following:

Hohenberg-Kohn theorem: For an N -electron interacting system with a �xed electron-electron
interaction, there exist a one-to-one correspondence between the external potential ve and the ground-
state density n0, i.e., the one-body external potential is a unique functional of the ground-state
density ve[n0], up to an arbitrary constant.

The proof is given in two steps via reductio ad absurdum as follows. In the �rst part of the proof,
it is shown that two potentials that di�er more than a constant lead to di�erent ground-state wave
functions which di�er more than a phase factor. For proving it we assume the contrary, that is, two
di�erent one-body external potentials produce the same ground-state wave function, and we write(

T̂ + V̂e1 + Ŵ
)
|Ψ〉 = E1|Ψ〉 (2.4)(

T̂ + V̂e2 + Ŵ
)
|Ψ〉 = E2|Ψ〉. (2.5)

By subtraction of both equations and writing the resulting one-body operator in position basis one
�nds

N∑
i=1

[ve1(ri)− ve2(ri)] Ψ = (E1 − E2) Ψ. (2.6)

Furthermore, assuming that the wave function does not vanish on a set of non-zero measure, ie,
wherever Ψ 6= 0, we can factorize the wave function, and we get

N∑
i=1

[ve1(ri)− ve2(ri)] = E1 − E2, (2.7)

which means that both external potentials are related by a constant, thus in contradiction of the
initial assumption. Therefore, two di�erent external potentials produce two di�erent ground-state
wave functions.

For the second part of the proof, we want to show that two di�erent ground-state wave functions,
which are produced by two di�erent one-body external potentials via the solution of the Schrödinger
equation, produce two di�erent ground state densities. For proving it we assume the contrary again,
that is, two di�erent ground-states, namely Ψ1 and Ψ2, produce the same ground-state density.
Applying the Ritz variational theorem, we have that

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2 + V̂e1 − V̂e2|Ψ2〉 = E2 +

∫
dr n1(r) [ve2(r)− ve1(r)] . (2.8)

But we can invert the reasoning and do the change 1→ 2 and 2→ 1 for obtaining

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|Ĥ1 + V̂e2 − V̂e1|Ψ1〉 = E1 +

∫
dr n02(r) [ve1(r)− ve2(r)] . (2.9)

Summing up the above equations we get the inequality∫
dr [n01(r)− n02(r)] [ve1(r)− ve2(r)] > 0, (2.10)

but we assumed that two di�erent one-body potentials which di�er more than a constant produce the
same ground-state density, i.e., n01 = n02 leading again to a contradiction resulting from Eq.(2.10).
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Therefore, we conclude that one ground-state wave function produces one ground-state density. With
all together we have shown that the composite map B◦A is unique and therefore the inverse composite
map (B ◦A)

−1 from the set of ground-state densities N to the set of one-body external potentials
V, exist, so that, the ground-state density uniquely determines the one-body external potential of
an N -particle many-body system. As an important remark, note that for proving the HK theorem it
has been needed to write the one-body potential in position basis since in this particular basis it is
a diagonal operator, fact that allowed to factorize the ground-state wave function in Eq.(2.7), which
it is not guaranteed to follow if the many-body Hamiltonian is written in an arbitrary basis. As an
immediate consequence of the HK theorem, we deduce that the N -particle interacting Hamiltonian is
also a functional of the ground-state density since the one-body external potential is. Therefore, the
many body N -particle ground-state wave function, all the excited-states and the energy spectrum
which are solution of the Schrödinger equation are also unique functionals of the ground-density,
which we denote by Ψi[n0]. Indeed, the Schrödinger equation reads

Ĥ[n0]|Ψi[n0]〉 = Ei[n0]|Ψi[n0]〉, (2.11)

and therefore any expectation value of a general operator Ô is a functional of the ground-state density

Oi[n0] = 〈Ψi[n0]|Ô|Ψi[n0]〉. (2.12)

Thus, all the properties of the N -electron interacting system are determined by the ground-state
density. Since it has particular interest the ground-state energy of an interacting N -electron system,
let us take as a speci�c case of Eq.(2.12) the Hamiltonian, i.e., Ô = Ĥ[ve], which with the "notation
[ve]" we want to emphasize that the Hamiltonian now is �xed by its one-body external potential. By
means the variational theorem Eq.(1.12), the following inequality is satis�ed

Eve [n0] = 〈Ψ0[n0]|Ĥ[ve]|Ψ0[n0]〉 < 〈Ψ[n]|Ĥ[ve]|Ψ[n]〉 for n 6= n0, (2.13)

where we have considered any normalized antisymmetric wave functions Ψ0[n0] that produces the
ground-state density n0. The set of ground-state densities N which are produced by a suitable
normalized antisymmetric wave-functions are called N -representable densities and it can be shown
by explicit construction that one can always �nd such a wave-function, which in fact, it is a Slater
determinant and therefore, Ψ[n0] can be de�ned for arbitrary ground-state densities [40, 41].

The variational property of the ground-state energy Eq.(2.13) can also be expressed as follows

Eve [n0] = min
n
〈Ψ[n]|Ĥ[ve]|Ψ[n]〉 = min

n
Eve [n] (2.14)

and since by the HK theorem it is proved that the ground-state energy for a non-degenerate system
is a unique functional of the ground-state density, we can write the energy functional as

Eve [n] = F [n] +

∫
dr ve(r)n(r), (2.15)

where the functional F [n] is the HK universal functional de�ned as

F [n] = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉, (2.16)

which is de�ned by construction for all ground-state densities. Note that despite of the HK theorem
has been proved only for non-degenerate ground-state energy, the F [n] functional can also be de�ned
for degenerate ground-states because all of them produce the same ground-state energy, but in general
no other expectation value is a functional of the density since not all the ground-state wave functions
produce the same ground-sate density. We called the HK functional universal in the sense that it
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does not depend on the external potential ve and once the two-body electron-electron interaction is
�xed, the functional is the same for all electronic systems.

The minimum condition Eq.(2.14) can also be formulated by means the variational equation as
follows

δF [n]

δn(r)

∣∣∣∣
n0

+ ve(r) = µ, (2.17)

where µ ensures the density to integrate to N particles. The above equation Eq.(2.17) is an equation
to be solved for the ground-state density n0 once the universal functional F [n] is known. Of course,
the form of the exact HK functional is not known as a functional of the density in a simple way, and
for practical applications, it needs to be approximated.

2.2 The Kohn-Sham equations

We have established that the ground-state density of N -electron interacting system, as an alternative
of the N -particle wave function contains enough information for the determination of any expectation
value. The Kohn-Sham (KS) construction allows to calculate the ground-state density of an N -
electron interacting system by means a N -electron non-interacting system which produces the same
ground-state density as the interacting one.

For deducing the KS equations, consider �rst an N -electron non-interacting system, i.e., Ŵ = 0
such that it produces a given ground-state density n. The single-particle Hamiltonian hs is given by
Eq.(1.9) where we introduced the subindex "s" for making explicit that it stands for "single particle",
and where the single particle equations Eq.(1.10) in position-spin basis read[

−1

2
∇2

r + vs[n](r)

]
ϕi(x) = εσiϕi(x)

with

n(r) =
∑
σ,i

|ϕi(x)|2 , (2.18)

where vs[n] is the one-body external potential that produces a given non-interacting ground-state
density n and where the sum in the ground-state density runs over all occupied orbitals. Note that
since the external potential is a functional of the ground-state density, the single-particle orbitals
and the energy spectrum are both also functionals of the ground-state density. Let us write the
non-interacting energy functional as

Es[n] = Ts[n] +

∫
dr vs(r)n(r), (2.19)

where Ts[n] is the kinetic energy of the N -electron non-interacting system. According to the varia-
tional principle, the ground-state density is obtained by solving the variational equation

δTs[n]

δn(r)

∣∣∣∣
n0

+ vs(r) = µs, (2.20)

where the constant µs ensures that the density integrates to N particles.
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Consider now a N -electron interacting system described by the Hamiltonian Eq.(1.5), with a given
one-body external potential ve such that it produces a ground-state density n0. The key point of
the KS scheme is that it is assumed that for any electronic N -interacting system with external
one-body potential ve0 producing a density n0, there always exist a non-interacting system with one-
body external potential vs[ve, n0] which produces the same density n0. The following construction
determines by means the non-interacting system the ground-state density of the interacting one, for
a given one-body external potential. By writing the N -electron interacting energy functional in the
following convenient way

Eve [n] = Ts[n] +

∫
dr ve(r)n(r) + EHxc[n], (2.21)

where we have added and subtracted the kinetic energy of the non-interacting system Ts[n], and
where the Hxc energy functional is de�ned as

EHxc[n] = F [n]− Ts[n], (2.22)

then the variational equation that solves for the ground-state density n0 now reads

δTs[n]

δn(r)

∣∣∣∣
n0

+ ve(r) + vHxc[n0](r) = µs, (2.23)

where we have de�ned the Hxc potential as

vHxc[n](r) =
δEHxc[n]

δn(r)
(2.24)

for all ground-state densities. Now, and by virtue of the HK theorem, we know there exist only one
potential producing a given ground-state density and therefore

vs[n0](r) = ve(r) + vHxc[n0](r), (2.25)

de�ned for any ground-state density n = n0. The external potential vs and more speci�cally, the Hxc
potential vHxc is not known as a functional of the density in a simple way, and for practical purposes,
it needs to be approximated. Finding, therefore, good approximations for the Hxc potential has been
the task during the last years. It is important to notice that the KS scheme only reproduces the
N -particle interacting ground-state density by means the KS ground-state wave function, but being
both ground-state wave function and energy spectrum di�erent than the interacting one.

Once the ground-state density of the interacting system is known, the ground-state energy of the
N -electron interacting system can be expressed as a function of the ground-state density in the
following way. By multiplying the KS equations Eq.(2.18) by the hermitic conjugate KS orbital, we
have for the kinetic energy that

Ts[n] =
∑
σ,i

∫
dx ϕ∗i (x)

(
−∇

2

2

)
ϕi(x) =

∑
σ,i

εσ,i −
∫
dx vs[n](r)n(r), (2.26)

wherein the second step we used the KS equation. Inserting the KS kinetic energy in Eq.(2.19) �nally
one obtains

Eve0 [n] =
∑
σ,i

εσ,i −
∫
dx vHxc[n](r)n(r) + EHxc[n], (2.27)

which is an exact expression for the interacting N -particle ground-state energy as a functional of the
ground-state density which depends on both the Hxc energy and Hxc potential.
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Let us analyze the compounds of the Hxc energy functional for their subsequent use in the following
sections. First of all, we de�ne the two-body expectation value due only to correlation e�ects in the
same fashion as Eq.(2.31), by subtracting the classical electron-electron interaction expectation value
as

Wxc[n] = W [n]− UH[n]. (2.28)

Furthermore, we note that since the interacting and the non-interacting system both produce the
same density, by using the variational theorem and the fact that Ψ and Ψs produce the same ground-
state density, we get the following inequality

Ts[n] = 〈Ψs[n]|T̂ |Ψs[n]〉 < 〈Ψ[n]|T̂ |Ψ[n]〉 = T [n] (2.29)

and hence we can de�ne the kinetic energy due to the correlation e�ects by subtracting the kinetic
energy of the non-interacting system as

Txc[n] = T [n]− Ts[n] ≥ 0. (2.30)

Then, we see that the xc energy takes into account the energy due to correlation e�ects and which
is compound of a kinetic and a two-body interaction part as

Exc[n] = Txc[n] +Wxc[n], (2.31)

being the original Hxc energy related with the xc by the addition of the classical electron-electron
interaction as

EHxc[n] = Exc[n] + UH[n] (2.32)

The next section is devoted to constructing an alternative expression of the Hxc energy functional
which allow for practical approximations.

2.3 The coupling constant integration

In this section we introduce a more general N -electron interacting Hamiltonian as a useful tool
which allows deriving relations among density functionals and in particular, it provides a convenient
expression for the Hxc/xc energy functional.

Let us introduce the N -electron interacting λ-Hamiltonian as follows

Ĥλ[n] = T̂ + V̂λ[n] + λŴ , (2.33)

where T̂ is the kinetic energy operator and Ŵ is the two-body electron-electron interaction operator
which are given by the expression Eq.(1.2) and Eq.(1.4) respectively. The electron-electron interaction
is now scaled with λ, a non-dimensional, continuous and real parameter. Finally the one-body external
potential operator reads

V̂λ[n] =

N∑
i=1

Vλ[n] (ri) . (2.34)

The one-body external potential is de�ned in a way that the ground-state density that it produces is
independent of λ and equal to the ground-state density that a given external potential for V̂λ=1 ≡ V̂e
produces. We can write this condition as follows

n(r) = 〈Ψλ,0|n̂(r)|Ψλ,0〉 = N

∫
dx2...dxN |Ψλ,0[n](x,x2, ...,xN )|2, (2.35)
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where the density operator was de�ned at Eq.(1.46) and where Ψλ,0 is the ground-state eigenvector
of the interacting N -particle many-body Hamiltonian Eq.(2.33) that solves the time-independent
Schrödinger equation

Ĥλ[n]|Ψλ,i〉 = Eλi[n]|Ψλ,i〉, (2.36)

where Eλi and Ψλ,i are its eigenvalue and eigenstates respectively. Therefore, for a given external
potential for λ = 1, V̂e, the one-body external potential of the λ-Hamiltonian is an implicit functional
of the density which is assumed to exist for all λ, ie, we assume all the densities are vλ-representable
and according to with the HK theorem, if the vλ exist, it is unique for each λ. Therefore with the
λ-Hamiltonian we can describe di�erent scenarios. For example, for λ = 1 the Hamiltonian Eq.(2.33)
describes the system at full coupling constant while for λ = 0 it describes a non-interacting system
producing the same density than the full interacting one λ = 1, i.e., the KS system.

Having introduced the λ-Hamiltonian, we now derive an expression for the Hxc energy as a function
of the pair-correlation distribution function gλ. We start by considering the ground-state energy
obtained by the Hamiltonian Eq.(2.33). Taking its derivative as a function of λ and by Hellman-
Feynman theorem we have

dEλ[n]

dλ
= 〈Ψλ[n]|dĤλ

dλ
|Ψλ[n]〉, (2.37)

where we have dropped the "0" of the ground-state eigenstate and energy since none of the excited-
states are used. Integrating the above relation back from 0 to λ we get

Eλ[n]− E0[n] =

∫ λ

0

〈Ψα[n]|dĤα

dα
|Ψα[n]〉dα =

∫ λ

0

〈Ψα[n]|dV̂α
dα

+ Ŵ |Ψα[n]〉dα

=

∫
dr n(r) [vλ(r)− v0(r)] +

∫ λ

0

dα〈Ψα[n]|Ŵ |Ψα[n]〉, (2.38)

wherein the last step, we interchanged the integration in λ and space. We now recognize E0 as the
the KS ground-state energy functional, and therefore we obtain the following expression for Eλ

Eλ[n] = Ts[n] +

∫
dr n(r) vλ(r) +

∫ λ

0

dα〈Ψα[n]|Ŵ |Ψα[n]〉. (2.39)

Now and because the external one-body potential is uniquely de�ned, according to the HK theorem
we can construct the universal HK functional for all λ de�ned as

Fλ[n] = 〈Ψλ[n]|T̂ + λŴ |Ψλ[n]〉, (2.40)

and then we can de�ne a Hxc energy functional

EλHxc[n] = Fλ[n]− Ts[n]. (2.41)

By comparing with Eq.(2.41), we recognize the last term of Eq.(2.39) to be the Hxc energy functional,
i.e.,

EλHxc[n] =

∫ λ

0

dα Wα[n] =
1

2

∫
drdr′n(r)n(r′)ḡ(r, r′)w(|r− r′|), (2.42)

and we see that the Hxc energy of one system λ is given by the contribution of all the systems α. We
have then obtained an expression for the Hxc energy functional as a function of the coupling con-
stant pair-correlation distribution function gα, where we have de�ned the integrated pair-correlation
function ḡλ as,

ḡλ(r, r′) =

∫ λ

0

dα
Γα(r, r′)

n(r)n(r′)
=

∫ λ

0

dα gα(r, r′). (2.43)
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The above expression has been found to be very useful in the construction of approximate density
functionals, and it is the expression we will base our future analysis on. Furthermore, since by the
variational principle we have that Tλ > Ts for all λ, we can de�ne the Hxc kinetic energy TλHxc as
the kinetic energy due to correlation e�ects as

TλHxc[n] = Tλ[n]− Ts[n], (2.44)

and then, we can express the Hxc energy functional as a kinetic plus electron-electron interaction
contribution as

EλHxc[n] = TλHxc[n] + λWλ[n]. (2.45)

As a �nal remark, we note by means the de�nition of the Hxc Eq.(2.42) that the kinetic and the
electron-electron interaction functionals as a function of the Hxc energy read respectively

Wλ
Hxc[n] =

dEλHxc[n]

dλ
(2.46)

TλHxc[n] = EλHxc[n]− λdE
λ
Hxc[n]

dλ
. (2.47)

2.4 The exchange-correlation potential

2.4.1 Asymptotic properties of the xc potential

In this section, we brie�y discuss the asymptotic properties of the xc potential for Coulomb systems.
Since for practical implementation of the KS scheme the xc potential needs to be approximated,
the knowledge of the asymptotic behavior of the xc potential is useful for the construction of such
approximations.

Consider a neutral atom with Z = N , being Z the nuclear charge and N the number of electrons.
We are interested in the behavior of the xc potential far away from the density cloud when (r→∞).
For doing so, we remove one electron of the system, and we bring it far away from the atom, leaving
N − 1 electrons. The potential that will experience this electron because of the N positive charges
and N − 1 negative charges will be that one created by a positive charge. Thus, far away from the
density cloud the KS potential behaves as

vs(r) = − 1

|r|
(|r| → ∞). (2.48)

We also know that the external potential of the interacting system and the Hartree potential respec-
tively accomplish that

ve(r) = −N
|r|
, vH(|r|) =

N

|r|
(|r| → ∞). (2.49)

Therefore, the xc potential must have the following asymptotic behavior

vxc(r) = − 1

|r|
(|r| → ∞). (2.50)

A rigorous derivation of this result can be found in [42].
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2.5 Approximate density functionals: Local density approxi-

mation and gradient expansion approximations

The simplest and the most used approximation in DFT is the so-called local density approximation
(LDA). The LDA assumes the Hxc energy functional to depend on the density in one single point
of the space, i.e., locally. For a practical implementation of the LDA, it is assumed that the system
at hand we want to study behaves locally as it would be an homogeneous electron gas (HEG). The
reason for taking the HEG as a reference physical system is because the density at one point describes
the density everywhere and therefore, the approximation is aimed to work for those inhomogeneous
systems that do not deviate so much from homogeneous ones. Doing a local approximation, the Hxc
energy functional reads

ELDA
Hxc [n] =

∫
dr ehHxc(n)

∣∣
n(r)

, (2.51)

where ehHxc(n) is the energy density of the HEG which is replaced by the density of the inhomogeneous
system n(r). We see that the LDA is an enormous simpli�cation since for an arbitrary inhomogeneous
system, the Hxc energy and the Hxc potential have in general a complicated dependence of the
density, as it is manifest from the exact expression Eq.(2.41). Thus, the LDA Hxc potential gets
the spatial dependence only by means the density at one spatial point. E�ectively, taking functional
derivatives with respect to the density of the LDA energy functional, the Hxc potential reads

vLDAHxc (r)[n] =
dehHxc(n)

dn

∣∣∣∣
n=n(r)

, (2.52)

where the homogeneous density is replaced by the density of an inhomogeneous system. For the
HEG, and because the exchange pair correlation function can be calculated exactly, the exchange
energy density contribution is known exactly and reads

εhomx = −3

4

(
3

π

)1/3

n1/3, (2.53)

where it is de�ned the Fermi vector |k| =
(
3π2n

)1/3
as the wave modulus vector which refers to the

highest occupied energy level. For the correlation contribution, only the high and low-density limits
are known analytically. For the high-density limit or weak interaction limit, the energy density per
volume reads [43]

eHEGc = c0 ln rs − c1 + c2rs ln rs − c3rs + ... (rs → 0). (2.54)

where the Wigner-Seitz radius rs =
(

3
4πn

)1/3
is de�ned as the radius of a sphere whose volume is

equal to the mean volume per atom in a solid. For the low-density limit or the strong interaction
limit, the HEG crystallizes in the form of a b.c.c. lattice, which is the so-called Wigner crystal
[44, 45]. In the strong or low-density limit, the kinetic energy of the electrons becomes negligible in
comparison of the contribution of the electron-electron repulsion. Since when the electron-electron
repulsion becomes in�nitely strong, the lowest energy con�guration is that one that the electrons
remain in their equilibrium positions, it is assumed that when the system acquires kinetic energy,
their motion is just restricted to perform small oscillations around their equilibrium position. By
implementing an expansion around the minimum of the potential, corrections to the leading order
of the correlation energy per volume in the strong/low-density limit are obtained, which read

ehomc = −d0

rs
+

d1

r
3/2
s

+
d2

r2
s

+ ... (rs →∞). (2.55)
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The energy per particle of the HEG provide a Hxc energy functional and Hxc potential where we
insert the density of any arbitrary inhomogeneous system.

One has to consider that although an inhomogeneous system can have a density that does not deviate
so much from the uniform density in one point, it can still have rapid variations, i.e., the gradient of
the density can be important. Consider a density evaluated at r + dr. The Hxc potential evaluated
in that density reads

vHxc[n(r + dr)] = vHxc[n(r) +∇n(r)dr], (2.56)

from where we see that if the gradients of the density are negligible in comparison with the density,
the evaluation of the Hxc potential at the local density can be a good approximation, but if the
gradients of the density are not negligible they must be taken into account. A systematic way to
generate semi-local corrections to the LDA is to consider the Hxc energy to depend not only on the
local density but also on its gradients, generating like this a semi-local functional. It is in this spirit
how the gradient expansions approximations are constructed [46]. For its derivation, it is considered
weakly inhomogeneous systems such that the density of the inhomogeneous system vary not so much
in comparison with the HEG, and also the gradients of the density are taken into consideration,
leading to an energy functional constructed as follows

EGEA
Hxc [n] =

∫
dr ehHxc

[
n(r),∇n(r),∇2n(r), ...

]
. (2.57)

As a �nal remark on the local approximations, we point that the LDA can be performed not only
in the energy functional but also in other relevant quantities, like the pair-correlation distribution
function, or the exchange-correlation hole.

It is needed to comment that there are other systematic approaches to generate Hxc energy functional
more than the local and semi-local approximations we explained in this section. An example is
what is known as Görling-Levy perturbation theory [47], which is a perturbation expansion that
generates a Hxc functional based on the coupling constant integration Hamiltonian Sec. 2.3. The
perturbation expansion is performed around the KS Hamiltonian, i.e., for small interaction strength
with the constraint that in each order of the perturbation expansion, the ground-state density remains
independent of the interaction strength. As we commented in the introduction, it is dubious that
these approaches to generating a Hxc energy functional that relies on perturbation expansions for a
weak interaction perform well to describe strongly correlated systems.

2.6 Dissociation of H2

In this section, we review a strongly correlated system which we are interested in describing by density
functional methods, namely, the H2 molecule in the limit of large bond distances or dissociation
limit. We �rst describe the system in terms of its 2-electron wave function in the limit of large
bond distances, and we discuss on the basis of the asymptotic wave function the correlations that
the system shows. We then study how local approximations of the density perform to describe the
physics of this strongly correlated system.
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2.6.1 Wave function description

The starting point is the Hamiltonian of the H2 molecule, which is given by

H(r1, r2) = −1

2

(
∇2

r1 +∇2
r2

)
+ ve(r1) + ve(r2) +

1

|r1 − r2|
, (2.58)

and where the external one-body potential is

ve(r) = − 1

|r|
− 1

|r−R|
, (2.59)

being |R| the bond distance between the nucleus. For the two electrons system, the ground-state
wave function which is the solution of the Schrödinger equation can be written as the product of the
spatial times the spin wave function in the following way

Ψ(x1,x2) = ψ(r1, r2)χ(σ1, σ2). (2.60)

Because the ground-state is a singlet, then the spin wave function reads

χ(σ1, σ2) =
1√
2

(δσ1↑δσ2↓ − δσ1↓δσ2↑) , (2.61)

and since the spin wave function is antisymmetric, it follows that the space wave function must
be symmetric under the interchange of space variables, in order the total wave function to be an-
tisymmetric under simultaneous interchange of space and spin variables. We are interested in the
description of the system in the large separation limit, when |R| → ∞. At large bond distances, the
two-body interaction becomes negligible, and the system must become that one of two independent
atoms. The wave function that minimizes the energy functional for all two-body interactions is the
well-known Heitler-London (HL) wave function, which reads

ψHL(r1, r2) =
1√
2

[ψg(r1)ψg(r2)− ψu(r1)ψu(r2)] , (2.62)

where g and u stands for "gerade" and "ungerade" respectively, and which are given by

ψg(r) =
1√
2

[ϕa(|r|) + ϕb(|r−R|)] (2.63)

ψu(r) =
1√
2

[ϕa(|r|)− ϕb(|r−R|)] , (2.64)

where ϕa(r) = exp(−|r|) and ϕb(r) = exp(−|r − R‖) are the localized orbitals. Without loss of
generality, since the Hamiltonian Eq.(2.58) is invariant under a translation of the separation |R|, the
atoms have been placed one in r = 0 and the other at r = R.

Let us look at the probability distributions constructed by the HL wave function Eq.(2.62). The
exact conditional probability constructed by the HL ground-state wave function reads

|ψ(r, r′)|2

n(r)
=
ϕ2
a(|r|)ϕ2

b(|r′|) + ϕ2
b(|r|)ϕ2

a(|r′|)
ϕ2
a(|r|) + ϕ2

b(|r|)
. (2.65)

If we now suppose that the reference electron is close to the r ∼ 0, then the conditional probability
in the limit of large bond distances reduces to

|ψ(r, r′)|2

n(r)
= ϕ2

b(|r′|), for (|R→∞|), (2.66)
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which means that if we put a reference electron close to the atom 1, then the probability to �nd
the second electron somewhere in the space is an exponential probability distribution picked in the
center of the atom 2, |r| ∼ |R|, reducing in this way the probability to �nd it close to the atom
1. It is with this meaning that we can say that the electrons are strongly correlated, since if the
reference electron is close to the atom 1, the other electron is around the atom 2 with the probability
distribution Eq.(2.66), hence being the electrons strongly correlated.

Once the general features of a H2 molecule in dissociation are presented, we discuss in the next
section how the LDA performs for the description of such correlations.

2.6.2 Molecular dissociation in the LDA

In this section, we review qualitatively the performance of the Hxc potential constructed from LDA
for the description of a dissociating molecule [41]. For �nite systems like atoms and molecules, the
exact density is known to have an exponential decay far away from the electronic cloud as [42]

n(r) ∼ e−2
√

2I|r|, (|r| → ∞), (2.67)

where I is the ionization energy. Since the density decays exponentially, the behavior of the Hxc
potential in the LDA approximation is known to have also an exponential decaying far away from
the electronic cloud region |r| → ∞, which as we explained, it is the wrong asymptotic behavior.
Since the asymptotic behavior is not the Coulomb −1/|r|, a direct consequence of this fact is that
the KS energy spectrum obtained by means the LDA for atoms and molecules does not reproduce
the Rydberg series correctly. One observes that the Hxc potential is to much short range as it
must be, and the reason is because it depends on the density in only one point, i.e., the density
dependence is too much simple. Since the density behaves exponentially, then all the derivatives of
the density also behave exponentially meaning that they are equally important. Therefore, making
local approximations, we would have to take into account all the gradients, which already indicates
that any functional based on local and semi-local approximations of the density is condemned to fail
for this type of systems, in the same way that LDA does.

It is therefore needed to construct new density functionals which can capture the correct non-local
dependence of the Hxc functional as a function of the density to describe a strongly correlated
system like a molecule under dissociation. It is in this spirit how the strictly correlated electrons
functional, a formalism which aims to deal with strongly correlated electrons in DFT framework has
been introduced.

2.7 The strictly correlated electrons formalism: Ground-state

theory

The strictly correlated electrons (SCE) formalism is a ground-state density-functional theory which
can capture the physics of an interacting N -particle system when the interaction between electrons
becomes very large. The starting point of the formalism is to de�ne the SCE energy functional as
the in�mum of the two-body electron interaction

VSCE[n] = inf
Ψ→ n

〈Ψ|Ŵ |Ψ〉. (2.68)
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The form of the minimizer is a spin-integrated distribution function, the so-called the SCE distri-
bution function

∣∣ΨSCE
∣∣ and it is searched in a way that it guarantees a given smooth density. The

minimizer was already introduced in [1, 2] without proof, and it has recently been proved to be the
correct minimizer of the functional Eq.(2.68) [48], which is∣∣ΨSCE(r1, ...rN )

∣∣2 =
1

N !

∑
P

∫
ds

n(s)

N
δ
(
r1 − fP(1)(s)

)
× ...× δ

(
rN − fP(N)(s)

)
, (2.69)

wherein Eq.(2.69) the P denotes a permutation over the label 1...N . The distribution function
|ΨSCE|

2 is zero everywhere except in a subspace of the full space IR3N , which we denote by M
and which is de�ned as

M = {r, f1(s), ..., fN (s) |s ∈ P}, (2.70)

where P is the subspace such that P ⊆ IR3 is the region where the ground-state density is de�ned. It
is in M where the ground-state energy reaches its minimum, which must be degenerate, a required
condition to guarantee a smooth density. If the minimum was not degenerate in this subspace, there
would be a set of discrete points such that the ground-state energy would reach its minimum, forcing
in this way the electrons to collapse in those positions to minimize the energy of the system and
producing a non smooth density, in contradiction with the requirement. The physical meaning of the
co-motion functions fi(s) is that provided the position of a reference electron, namely s is �xed, the
position of all others N − 1 electrons are given by means the co-motion functions at the positions
ri = fi(s) for i = 1, ..., N . Because of the electrons are indistinguishable, the position of the reference
electron is chosen arbitrarily, and then the co-motion functions must obey the cyclic properties

fi(s) = f (...f(s))︸ ︷︷ ︸
i times

s = f (...f(s))︸ ︷︷ ︸
N times

. (2.71)

Since the position of the reference electron determines the positions of all the others N −1 electrons,
the probability of �nding the reference electron in the volume element dr around the position r must
be the same that the probability of �nding the ith electron in the volume element dfi(r) around
the position fi(r). It thus means that the co-motion function must satisfy the following di�erential
equation

n(fi(s)) dfi = n(s) ds for i = 2, ..., N , (2.72)

and therefore, they are determined by the ground-state density. For one dimensional systems, the
di�erential equation for the co-motion functions allows for an integrated solution [49], and whose
form is shown in the appendix A. After the substitution of the SCE distribution function in Eq.(2.68),
the SCE energy functional takes the form

VSCE[n] =
1

2

N∑
i<j

∫
ds

n(r)

N
w (|fi(s)− fj(s)|) =

1

2

N∑
i=2

∫
ds

n(r)

N
w (|s− fi(s)|) , (2.73)

and then, the SCE total energy can be written as

ESCE[n] = VSCE[n] +

∫
dr vSCE(r)n(r) (2.74)

where vSCE is the SCE one-body external potential that guarantees the required smooth density.

Now we establish the connection with the energy functional Eq.(2.40). The SCE energy functional
was introduced without proof as the reasonable limit of the HK functional in the strong interaction
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limit λ → ∞ of Fλ[n]
λ , since in this limit, by Eq.(2.46) and Eq.(2.47), the kinetic energy becomes

negligible in comparison with the two-body interaction contribution, but it was never proved that
in the λ in�nity limit, the resulting distribution function is that one that minimizes the two-body
interaction functional only [48]. The result is the following

lim
λ→∞

Fλ[n]

λ
= VSCE[n], (2.75)

and therefore,the variational equation Eq.(2.17) leads to the de�nition of the SCE potential as the
functional derivative with respect to the density of the SCE energy functional as

vSCE(r) = −δVSCE[n]

δn(r)
, (2.76)

which it has been proved it can be calculated via the expression [50]

∇vSCE[n](s) = −
N∑
i=2

w′(|s− fi(s)|)
s− fi(s)
|s− fi(s)|

, (2.77)

and which has the following physical meaning: The SCE potential acting in one electron i counteracts
the two-body electron-electron repulsion between pairs of the others N − 1 electrons to keep the
prescribed density n(s). As an illustrative example, we compute in the appendix B the functional
derivative of the SCE energy functional for two particles systems in one dimension in a straightforward
way, obtaining the general result Eq.(2.77).

Because of result Eq.(2.75), the SCE energy functional can be understood as the leading order term
of an expansion it is assumed to exist, of the coupling constant Wλ[n] energy functional for the large
interaction strength λ → ∞. The following step is to introduce a model for giving an expression to
the next to the leading order term in the large interaction strengths limit. It then can be thought
that since in the SCE limit, the electrons are frozen in their equilibrium position ri = fi(s) such
that the energy functional is minimized while keeping a smooth density, it is, therefore, a plausible
assumption that when the coupling constant is large, but not strictly in�nity, the electrons are allowed
to perform small vibrations around the equilibrium positions ri ∼ fi, which for an N -electron system
in D dimensions is given by [2]

VZPE[n] =
1

2

DN−D∑
i=4

∫
ds
n(s)

N

ωµ(s)

2
, (2.78)

where ZPE stands for "zero-point energy", and where ωi are the frequencies of the local normal
modes, which are given by the diagonal elements of the Hessian matrix around the SCE energy
minimum. For two electrons systems in one dimension, systems which we are interested in, there is
a single frequency which has an explicit expression as a function of the two body interaction and the
single co-motion function f(s) as [32]

ω(s) =

√
w′′(|s− f(s)|)

[
n(s)

n(f(s))
+
n(f(s))

n(s)

]
. (2.79)

The harmonic approximation assumption implies that the DN −D frequencies are proportional to
the square root of the interaction strength, and it is believed that the remaining terms in the large
interaction strength expansion of the functionalWλ[n] obey a power expansion in terms of the square
root of the interaction strength as

Wλ[n] = VSCE[n] +
VZPE[n]√

λ
+O

(
λ−3/2

)
. (2.80)
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All together amounts for an expression for the Hxc energy functional in terms of powers of the square
root of the interaction strength as follows

EλHxc[n] = λVSCE[n] + 2
√
λVZPE[n] + V3[n] +O

(
λ−1/2

)
, (2.81)

where we see that the contribution for the Hxc of the zero-point energy is twice the two-body interac-
tion expectation, since Txc[n] = Wλ[n]. Assuming then we are allowed to take functional derivatives
term-wise, the �rst order functional derivative with respect to the density gives an expansion for the
Hxc potential in orders of

√
λ as

vλHxc(r) = λvSCE(r) +
√
λvZPE(r) + v3(r) +O

(
λ−1/2

)
. (2.82)

For the ZPE potential in the case of 2-electrons systems in one dimension, we refer to the appendix
B for a detailed derivation.

The SCE formalism, therefore, proposes a construction of the Hxc energy functional and Hxc poten-
tial which encodes in them a non-local ground-state density dependence via the co-motion functions
and thus it becomes a good candidate functional to describe strongly correlated systems. The next
section is devoted to study the SCE formalism for a strongly correlated system of interest, i.e., the
dissociation of molecules.

The KS-SCE equations and the H2 dissociation

The KS-SCE consists of the use of the large interaction strength expansion of the Hxc potential
obtained by the SCE Eq.(2.82) in a KS scheme, and evaluate such expansion in the physical system
λ = 1. The �rst approximation with this approach is to take the leading term of the large λ expansion
which in this case is vHxc(r) = vSCE(r). The KS-SCE equations then read[

−1

2
∇2

r + v(r) + vSCE[n](r)

]
ϕi(r) = εiϕi(r)

with

N∑
i=1

|ϕi(r)|2 = n(r). (2.83)

The KS-SCE has been tested for reproducing the energy curve of a H2 in dissociation in [33, 51].
It has been found that the SCE potential indeed dissociates correctly. The reason is that the co-
motion function, in the limit of large bond distances, localize each of the electrons exactly where the
positions of the nucleus are, depicting in this way the right physics of a dissociation process in the
asymptotic region although the SCE electronic wave function is di�erent than the HL wave function.
By any manner, the SCE formalism only reproduces the asymptotic region, and the energy gets
underestimated when the bond distance approaches to the equilibrium distance, since the KS-SCE
energy ful�lls

Ts[n] + VSCE[n] ≤ F [n], (2.84)

which becomes equal only in the asymptotic region. Also, the SCE+ZPE have been used as a Hxc
potential, i.e.,

vHxc(r) = vSCE(r) + vZPE(r), (2.85)

producing in this way a much worse result [32]. The reason is because despite the co-motion func-
tions describe the physics of dissociation correctly and therefore the SCE leading order describes
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the dissociation limit accurately, there is not an energy contribution due to vibrations around an
equilibrium position since the system we want to describe, the dissociating H2 molecule is not an
interacting system with an in�nitely strong repulsion, and therefore the ZPE picture does not apply
to a dissociating system.

A proof of the fact that the KS-SCE formalism gives the correct ground-state energy in the disso-
ciation limit R → ∞ can be found in [50]. The theorem proves nothing but the KS-SCE energy of
a H2 molecule gives the energy of 2 separate H atoms in the dissociation limit. This result indicates
that the SCE-DFT model correctly describes the H2 molecule in its dissociating limit and put on
solid foundations the KS-SCE scheme.



3 Time-dependent density functional

theory

3.1 The time dependent density-potential mapping: The ex-

tended Runge-Gross theorem

Consider an interacting time-dependent N -electron system described by the Hamiltonian Eq.(1.42).
The time-dependentN -electron wave function is determined by solving the time-dependent Schrödinger
equation Eq.(1.44) for a given initial state Ψ0. The time-dependent density is calculated according
to

n[Ψ0, ve](r, t) = 〈Ψ[Ψ0, ve](t)|n̂(r)|Ψ[Ψ0, ve](t)〉 =
∑

σ1,...,σN

∫
dr2...rN |Ψ[Ψ0, ve](x1, ...,xN , t)|2 (3.1)

As in the ground-state case, for a �xed two-body interaction, the time-dependent Schrödinger equa-
tion de�nes a map by which each external potential v(r, t) produces a given time-dependent density,
once the initial state is speci�ed. The content of the extended Runge-Gross (RG) theorem shows not
only the uniqueness of the map which allows de�ning the time-dependent density as a fundamental
variable, but also shows that the time-dependent density can be produced by another time-dependent
potential v′(r, t). The extended RG theorem contains two statements, which are announced as follows
[4, 9, 52, 53]

Extended Runge-Gross theorem:

• The time-dependent density produced by an interacting N -electron time-dependent system
described by the Hamiltonian Ĥ(t), with a two-body electron-electron interaction Ŵ and for
a given initial state Ψ0 is a unique functional of the time dependent external potential ve(r, t),
up to a time-dependent constant.

• The time-dependent density produced by an interacting N -electron time-dependent system
described by the Hamiltonian Ĥ(t) and two-body electron-electron interaction Ŵ , for a given
initial state Ψ0 can also be reproduced by another time-dependent system Ĥ ′(t) with two-body
electron-electron interaction Ŵ ′ and initial state Ψ′0, up to a time-dependent constant. The
initial state Ψ′0 must be chosen in a way that it correctly yields the given density and its time
derivative at the initial time.

Let us now prove the theorem. Consider the time-dependent many-body system Eq.(1.42) whose
solution of the time-dependent Schrödinger equation is Ψ(t) and its initial state is Ψ0. Consider a
second many-body system described by the Hamiltonian

Ĥ ′(t) = T̂ + V̂ ′(t) + Ŵ ′, (3.2)

28
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whose solution of the time-dependent Schrödinger equation is Ψ′(t) and its initial state is Ψ′0. Our
hypothesis assumption is that the time-dependent wave function solution of the primed system Ψ′

with initial state Ψ′0 produces the same density as the time-dependent wave function of the original
system, i.e., we assume that the time-dependent densities of each system are the same for all times,
ie, n(r, t) = n′(r, t). We further assume that the time-dependent external potential of both systems
are analytic in time, i.e., for all times their time derivatives exist

ve(r, t) =

∞∑
k=0

vk(r)(t− t0)k (3.3)

v′e(r, t) =

∞∑
k=0

v′k(r)(t− t0)k (3.4)

Now we make use of the equation which relates the time-dependent potential with the time-dependent
densities. The equation that relates time-dependent densities and time-dependent external potentials
Eq.(1.62) for both systems reads

∂2
t n(r, t) = ∇[n(r, t)∇ve(r, t)] + q(r, t) (3.5)

∂2
t n(r, t) = ∇[n(r, t)∇v′e(r, t)] + q′(r, t) (3.6)

where q′ is de�ned in and analogous way as Eq.(1.63) for the primed system. Since the equations
Eq.(3.5) and Eq.(3.6) are second order partial di�erential equations in time domain for the density,
we need to impose two initial conditions. The �rst one is that both initial states of the unprimed
and primed systems must yield the same density at the initial time

n(r, t0) = n′(r, t0) (3.7)

The second initial condition involves the �rst derivatives of the density of the unprimed and primed
system, which must also be equal

∂tn(r, t)|t=t0 = ∂tn
′(r, t)|t=t0 (3.8)

This condition means that the initial state Ψ′0 must be chosen such that the initial momentum of
both systems are the same, and �nite, i.e.,

P(t) =

∫
dr J(r, t) =

∫
dr r∂tn(r, t) <∞, (3.9)

since the momentum depends on the density and no other quantity. Because the densities are the
same by assumption for all times and hence its time derivatives, it implies that the momenta are the
same for all times, which cannot be satis�ed if the momenta of the unprimed and primed systems
are di�erent at the initial time, which would require an in�nite force to make them equal at an
immediate time after the initial time t > t0. By subtracting Eq.(3.5) and Eq.(3.6) we obtain

∇ [n(r, t)∇ω(r, t)] = ζ(r, t) (3.10)

where we de�ned ω = v−v′ and ζ = q′−q. The above equation does not contain time derivatives any
more. It is a a Sturm-Liouville equation type, which has a unique solution for ω if n and ζ are given,
and if we further specify the boundary conditions for ω such that it vanishes at in�nity. Notice also
that imposing the boundary conditions at in�nity also means that we are �xing the time-dependent
gauge C(t) in v′e(r, t). Let us now �rst look at t = t0, where the equation Eq.(3.10) becomes

∇ [n(r, t0)∇ω(r, t0)] = ζ(r, t0) (3.11)
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and since n(r, t) is known for all the times, and ζ0 can be calculated from the both the initial states
of the unprimed and primed system, then there is a unique solution for the zeroth order coe�cient
of the Taylor expansion

v′(r, t0) = v(r, t0) + ζ(r, t0) (3.12)

Proceeding in the same way, we can take the k derivative of the equation Eq.(3.10), which in general
yields to

∇
[
n(r, t0)∇ω(k)(r)

]
= Qk(r) (3.13)

where the operator Qk is given by

Qk(r) = ζk(r)−
k−1∑
l=0

(
k

l

)
∇
[
n(k−l)(r)∇ω(l)(r)

]
(3.14)

and where ζk involves commutators between the operator q̂ and the Hamiltonians averaged between
their respective initial states, and time derivatives of the Hamiltonians. Therefore, the term Qk
is wholly determined provided we have determined the previous Qk−1 by means the density, the
potential of the unprimed system, and the initial states Ψ0 and Ψ′0 are known. This procedure, then,
determines all the Taylor expansion coe�cients systematically and hence, the method provides a
complete determination of the primed potential at all times. The meaning of the extended Runge-
Gross theorem can be seen schematically in the Fig. 3.1. Since the extended Runge-Gross theorem

Figure 3.1: Extended Runge-Gross theorem: The time-dependent density produced by Ĥ(t) and a
given initial state Ψ0 can also be produced by Ĥ ′(t) with an initial state Ψ′0.

does not depend on the shape of the primed two-body interaction Ŵ , let us now take the particular
case that the unprimed system is equal to the primed, i.e., w = w′ and Ψ0 = Ψ′0. Since the unprimed
and primed systems and their initial states are the same, it means that the time-dependent density
is a unique functional of the external time-dependent potential and the initial state Ψ0. Therefore
the map of the set of time-dependent densities to the set of time-dependent potentials is invertible,
meaning that the time-dependent external potential is a unique functional of the time-dependent
density and the initial state and hence, the N interacting time-dependent many body Hamiltonian
is a unique functional of the time-dependent density and the initial state, which we write as

Ĥ[n,Ψ0](t)Ψ[n,Ψ0](t) = i∂tΨ[n,Ψ0](t) (3.15)

As a consequence, the time-dependent many-body wave function and therefore all the physical ob-
servables given by a quantum average are functionals of the time-dependent density and the initial
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state, and thus, every quantum average is a functional of the time-dependent density and the initial
state as

O[Ψ0, n](t) = 〈Ψ[Ψ0, n](t)|Ô(t)|Ψ[Ψ0, n](t)〉 , (3.16)

which puts on solid foundations the use of the time-dependent density as an alternative variable
instead of the time-dependent wave function.

Another case of interest is when the primed system is a non-interacting system, i.e., when w′ = 0 with
the initial state of the non-interacting system Ψ′0 = Φ0. According with the extended Runge-Gross
theorem there is a unique potential, namely vs(r, t) up to a time-dependent constant such that it
produces the time-dependent density n(r, t) for all times t > t0. This justi�es the time-dependent
KS (TDKS) scheme.

3.2 The time-dependent Kohn-Sham scheme

In the previous section, we have proved the extended Runge-Gross theorem. It not only states that
for a given a time-dependent many-body Hamiltonian Ĥ(t) given by Eq.(1.42) with a �xed two-
body interaction, there is a one-to-one correspondence between time-dependent one-body external
potentials and time-dependent ground-state densities for a given initial state Ψ0, but also it states
that the time-dependent ground-state density can be obtained via another Ĥ ′(t) for a given initial
state Ψ′0. In particular, we are interested in the choice of the primed system such that Ŵ ′ = 0 which
immediately allows for the TDKS construction [6].

Consider a non-interacting system hs where the single particle equations in position-spin basis are
given by [

−1

2
∇2

r + vs[Φ0, n](x, t)

]
ϕi(x, t) = i∂tϕi(x, t)

with

n(r, t) =
∑
σ,i

|ϕi(x, t)|2 (3.17)

where vs[Φ0, n] is the time-dependent one-body external potential that produces a given time-
dependent ground-state density n(t), for a given initial state Φ0 of the non-interacting N -electron
many-body wave function, and where the sum in the ground-state density runs over all occupied or-
bitals. Consider now a N -electron interacting time-dependent system described by the Hamiltonian
Eq.(1.42), with a given one-body external potential ve(t) featuring a time dependent density n0(t).
According to the extended Runge-Gross theorem, we can always �nd a time-dependent N -electron
non-interacting system with a time-dependent one-body external potential vks(t) featuring the same
time-dependent density n0(t). In this case, the single particle equations in position-spin basis read[

−1

2
∇2

r + vks[Ψ0,Φ0, ve, n](r, t)

]
ϕi(x, t) = εσiϕi(x, t)

with

n(r, t) =
∑
σ,i

|ϕi(x, t)|2 (3.18)
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where now the single particle one-body potential of the non interacting system is a functional of
the one-body potential of the interacting system, the initial states of both the interacting and non-
interacting system and the time-dependent density. The one body potential vks[ve0, n] is constructed
in the following way

vks[Ψ0,Φ0, ve, n](r, t) = ve(r, t) + vHxc[Ψ0,Φ0, n](r, t)

with

vHxc[Ψ0,Φ0, n](r, t) = vs[Φ0, n](r, t)− ve[Ψ0, n](r, t) (3.19)

Whenever the density n = n0 and according to the extended Runge-Gross theorem, there exist only a
unique potential producing a given time-dependent density provided the two-body electron-electron
interaction is �xed, and therefore

ve(r, t) = ve[Ψ0, n0](r, t) (3.20)

and thus

vks[Ψ0,Φ0, ve, n](r, t) = vs[Φ0, n](r, t) (3.21)

for all time-dependent densities n = n0. We therefore see that the set of equations Eq.(3.19) have
a solution at the density n = n0 for given initial state Ψ0 and Φ0. From the expression of the
KS potential Eq.(3.19) we explicitly see that vHxc[Ψ0,Φ0, n] is an object which in general depends
on the ground-state density, the initial state of the interacting system and the initial state of the
non-interacting system. It is also customary in the TDKS scheme to split the time-dependent Hxc
potential in the Hartree potential plus the xc potential.

3.3 The exact time-dependent Hxc potential

The central object of the TDKS scheme is the Hxc or the xc time-dependent potential, where all the
e�ect of the two-body electron interaction are encoded. We dedicate this section to study the most
relevant properties of the xc potential that are important for the present work.

From the general expression Eq.(3.6) we can derive the fundamental equation that the xc potential
obeys. Particularizing the primed system to be the KS system, ie, Ŵ = 0, we have that ω = −vHxc,
which inserted in Eq.(3.11) we obtain for the Hxc potential [54]

∇ [n(r, t)∇vHxc(r, t)] = q(r, t)− qs(r, t) (3.22)

where the quantities q and qs depend on the 1 and 2 time-dependent reduced particle density matrices
of the interacting system and the KS system respectively. Equation Eq.(3.22) is a Sturm-Liouville
equation for the Hxc potential, which gives a unique solution for given n, Γ, Γs, for speci�ed boundary
conditions for vxc as it was discussed before in the previous section for the more general case.
Expression Eq.(3.22) shows that the Hxc potential has a contribution that comes purely from kinetic
origin while there is another part coming from the interaction energy. We therefore see explicitly and
not surprisingly that for approximations for the Hxc potential as a function of the density and the
initial states one needs to model the time-dependent 1 and 2-particle reduced density matrices as
functionals of the density and the initial states of both interacting and non-interacting system.
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3.3.1 Exact conditions for the time-dependent exchange potential

As in the static case, a Hxc potential is an unknown object which has to be approximated, and the
knowledge of exact properties of the exact Hxc potential can be a guide for the construction of such
approximations. In this section, we list some of the exact conditions we will use in the construction
of the Hxc potentials. These exact conditions can be found in [7].

The zero-force theorem

Consider the total momentum of the time-dependent interacting system which was de�ned in
Eq.(1.58). Since the total momentum is a quantity that depends only on the time-dependent density
and no other quantity, the KS momentum must be the same as the interacting one, and hence

P(t) =

∫
dr j(r, t) =

∫
dr r∂tn(r, t) =

∫
dr js(r, t) = Ps(t) (3.23)

where the KS current-density Js is de�ned in an analogous way as

js(r, t) = 〈Φ(t)|̂j(r)|Ψ(t)〉 (3.24)

Threfore the following identity follows

0 = ∂t [P(t)−Ps(t)] = −
∫
dr n(r, t)∇ [v(r, t)− vs(r, t)] =

∫
dr n(r, t)∇vHxc(r, t) (3.25)

The last equation represents the force applied by the Hxc potential, which is originated by internal
forces. Thus, the total force applied to the system must vanish identically, according to Newton's
law. It happens that both vanish separately as the Hartree contribution vanishes by itself [7].

The generalized translational invariance

Another exact condition any Hxc potential must ful�ll is what is known as generalized translational
invariance, and in this section, we proceed to announce it without proof. For a detailed derivation,
we refer to [7].

Let us consider a time-dependent density na(r, t) which is obtained by performing a translation
in a time-dependent density n(r, t) with a vector X(t), ie na(r, t) = n(r + X(t), t). The theorem
states than the Hxc potential associated with the translated density na is obtained by performing a
translation of the Hxc potential associated with the original density n, i.e.,

vHxc[na](r, t) = vHxc[n] (r +X(t), t) (3.26)

3.3.2 Temporal non-locality and initial state dependence of the time-

dependent Hxc potential

In this section, we brie�y comment on what is known as memory dependence of the Hxc potential as
a function of the time-density. The complete knowledge of the interacting time-dependent N -electron
wave function and its initial state are the needed objects for the calculation of any time-dependent
quantum average. The time-dependent wave function is an object that depends on only one time t and
no earlier times are needed for its determination of the time-dependent expectation values. Having
substituted the fundamental variable from time-dependent wave function to the time-dependent
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density in a KS scheme with a Hxc potential that reproduces the time-dependent density introduces
a non-linear dependence of the Hxc potential as a function of the density which depends on it at
all previous times. To understand what we mean by non-locality in time or memory dependence
it is enough to analyze the procedure how the Hxc potential is constructed as a function of the
time-dependent density. By virtue of the extended Runge-Gross theorem and assuming analyticity
in time of the Hxc potential, the set of equations Eq.(3.22), Eq.(3.13), Eq.(3.14) give, as we explained
previously, a systematic way to obtain the Taylor coe�cients of the Hxc potential in a climbing way
such that the k + 1 Taylor coe�cient depends on the k Taylor coe�cient, which in turn it depends
on the derivatives of the density. It means that for the knowledge of the Hxc potential at a given
time t it is required the knowledge of the density at the time t and all previous times, and also the
initial states of both the interacting and non-interacting initial states Ψ0 and Φ0. An explicit example
showing how the Hxc potential depends on the density at precious times and the initial states of the
interacting and non-interacting system can be found in [7].

3.3.3 The adiabatic approximation for the Hxc potential

Let us consider the most used approximation for the Hxc potential of TDDFT, which is the adiabatic
approximation. The adiabatic approximation consists on to consider a Hxc potential that depends
on the instantaneous density, discarding in this way all the density dependence at all previous times.
To make the scheme practical, what is typically done is to take a Hxc potential of the ground-state
DFT, which depends on the ground-state density, and replace it by the time-dependent density in
the following way

vAHxc[n](r, t) = v0
Hxc[n0](r)

∣∣
n0(r)→n(r,t)

(3.27)

where n0(r) is the ground-state density. The functional v0
xc[n0] is still a complicated functional of the

ground-state density and therefore, to make it useful one takes one of the many approximate Hxc
functionals constructed for ground-state DFT. This is indeed the case of the adiabatic local-density
approximation (ALDA), in which the functional dependence of space and time of the Hxc potential
are given by means the time-dependent density, and where all the space and time dependence comes
from the local density. The adiabatic approximation then is supposed to work in the limit when the
instantaneous density is at its ground state. In that situation, the functional dependence of the Hxc
potential at the time t is only by means the instantaneous density and approximately it does not
depend on the density at previous times. Again, and for making the ALDA a practical scheme, one
relies on physical arguments and it is taken the energy per volume from HEG

vALDAHxc [n0](r, t) =
dehHxc(n̄0)

dn̄0

∣∣∣∣
n(r,t)

(3.28)

where n̄0 is the density of the HEG which is replaced by the time-dependent density of the system
of interest.

3.4 Linear-response theory

In this section we introduce the linear response function, an object of particular, interest since
the knowledge of the response function provides information about the excitation energies and the
absorption spectrum of a given time-independent system.

For the introduction of the density response function, we consider time-independent many-body
system Ĥ0 to which we apply an small external time-dependent potential δv(r, t) for which t ≥ t0,
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being δv(r, t) = 0 for t < 0. We are interested in the study of the change in the ground-density caused
by the time-dependent potential. The response in the ground-state density at �rst order perturbation
theory that produces the time-dependent external potential is given by [6, 7]

δn(r, t) =

∫
dr′dt′ χ(r, t; r′, t′) δv(r, t) (3.29)

where the density response function is de�ned to be the functional derivative of the time-dependent
density as a function of the external potential, evaluated at any external reference potential

χ(r, t; r′, t′) =
δn(r, t)

δv(r′, t′)

∣∣∣∣
ṽ(r,t)

(3.30)

which for our particular interest we will take to be the time-independent reference potential of the
unperturbed system, i.e., the external potential at t = 0. The explicit form of the density response
function is

χ(r, t; r′, t′) = −iθ(t− t′)〈Ψ0|[n̂H(r, t), n̂H(r, t′)]|Ψ0〉 (3.31)

where θ(t − t′) ensures the density response function to be a causal function, and where Ψ0 is the
ground-state of the time-independent Hamiltonian Ĥ0. Because we choose the reference Hamiltonian
to be time-independent, the density response function must depend only on the di�erence t− t′ . We
can then Fourier transform the Eq.(3.31) to frequency space and obtain the expression [6, 7]

χ̃(r, r′, ω) = lim
η→0+

∑
n

[
〈Ψ0|n̂(r)|Ψn〉〈Ψn|n̂(r′)|Ψ0〉

ω −∆En + iη
− 〈Ψ0|n̂(r′)|Ψn〉〈Ψn|n̂(r)|Ψ0〉

ω −∆En + iη

]
(3.32)

which is known as the Lehmann representation of the response function, where η is a positive in-
�nitesimal parameter that keeps the causal structure of the retarded response function and whose
limit has to be taken to zero from the right. From the expression Eq.(3.32) it is shown explicitly how
the poles of the linear response function are the excitation energies of the unperturbed system. We
therefore see that the knowledge of the linear response function is enough for the knowledge of the
excitation energies of the time-independent system.

3.5 The large frequency limit of the density response function

With the purpose of the study of the analytic structure in the time domain of the density response
function and also the Hxc kernel of TDDFT, which we will introduce in the next section, we proceed
to describe the large frequency limit of the density response function.

It can be shown that the inverse of the density response function in the large frequency limit admits
the expansion [6]

χ−1(r, r′, ω) = ω2a(r, r′) + b(r, r′) + h̃reg(r, r
′, ω), (3.33)

where the coe�cients a can be constructed from the ground-state density and the second coe�cient
b is derived by the so-called third frequency moment sum rule. Transforming back the response
function in the high-frequency limit to the time domain, it attains the form

χ−1(r, r′, t− t′) = a(r, r′)δ′′(t− t′) + b(r, r′)δ(t− t′) + hreg(r, r
′, t− t′), (3.34)

where δ′′ is the second derivative of the delta function and where hreg is the regular part of the density
response function in the sense that it does not contain any delta functions in the time variable, and
moreover it can be shown to be a causal function.

After having discussed the properties and the time/frequency structure of the density response
function, we will show in the next section how to calculate it in the TDDFT framework.
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3.6 Linear response function in TDDFT

The linear response function of the interacting system is calculated in the TDDFT formalism using
the linear response function of a non-interacting system. Consider the KS potential Eq.(3.19), which
depends on the external one-body potential of the interacting system, and let us apply a small time-
dependent perturbation. The external potential of the interacting system and the KS potential both
produce the same time-dependent ground-state density. By the extended Runge-Gross theorem, the
variation of the KS potential due to the variation of the external potential of the interacting system
will produce the same density variations. Taking variations of the KS potential as a function of the
time-dependent density yields the following equation

χ−1(rt, r′t′) = χ−1
s (rt, r′t′) + fHxc(rt, r

′t′) (3.35)

where we have de�ned the density response function of the non-interacting system to be the functional
derivative of the KS potential as a function of the time-dependent density, evaluated at a time-
dependent reference density

χ−1(rt, r′t′) =
δv(r, t)

δn(r′, t′)

∣∣∣∣
ñ(r,t)

(3.36)

which for our purposes we choose to be the ground-state density of the unperturbed system since it
is the system we are interested in. The object fHxc is the so-called Hxc kernel of TDDFT, de�ned as
the functional derivative of the Hxc potential with respect to the time-dependent density, evaluated
at a reference density

fHxc(rt, r
′t′) =

δvHxc(r, t)

δn(r′, t′)

∣∣∣∣
ñ(r,t)

(3.37)

and also for our purposes, we will evaluate at the unperturbed density. Taking the inverse of the
Eq.(3.35) yields the following equation

χ(1, 2) = χs(1, 2) +

∫
d3d4 χ(1, 3)fHxc(3, 4)χs(4, 2) (3.38)

where we have introduced the compact notation i = (ri, ti). We see that the Hxc kernel is, therefore,
the operator that connects the density response function of the non-interacting system with the
density response function of the interacting one, and as it was the case in the KS scheme for the Hxc
potential, for practical purposes, it needs to be approximated.

For the discussion in the next section Sec. 4, it is important to note a formal property regarding the
Hxc kernel, that is, the functional derivative Eq.(3.37) is not a uniquely de�ned function [55], since
for a system with a �xed number of particles the density variations must integrate to zero. If we
de�ne a new Hxc kernel in the following way

f̃Hxc(rt, r
′t′) = fHxc(rt, r

′t′) + g(r, t, t′) + h(r′, t, t′) (3.39)

with g and h arbitrary functions, then the change in the Hxc potential produced by the kernel of
Eq.(3.39) due to a density change δn is given by

δṽHxc(rt) =

∫
dr′dt′f̃Hxc(rt, r

′t′)δn(r′t′) =

∫
dr′dt′fHxc(rt, r

′t′)δn(r′t′)

+

∫
dr′dt′[g(r, t, t′) + h(r′, t, t′)]δn(r′t′) = δvHxc(rt) + C(t) (3.40)

which as consequence of the particle conservation, the integral over g integrates to zero, and the
integral over h yields only a time-dependent constant. We therefore see that f̃Hxc and fHxc are
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physically equivalent Hxc kernels. The quantity that is de�ned unambiguously is the mixed spatial
derivative [3]

∇r∇r′ f̃Hxc(rt, r
′t′) = ∇r∇r′fHxc(rt, r

′t′), (3.41)

a property that will be used in the next chapter.

It is instructive to write explicitly the density response function of the non-interacting system for
further comprehension and subsequent analysis. The non-interacting KS ground-state and excited
states are pure Slater determinant. Since the density operator is a one-body operator, it connects
only two orbitals of both the ground-state and the excited state Slater determinants, and therefore,
the excited states can only be single particle excited states for the matrix element of the KS density
response function not to be zero. Otherwise the matrix element 〈Φ0|n̂(r)|Φn〉 is zero. The KS density
response function therefore reads

χs(r, r
′, ω) =

∞∑
j,k=1

(fk − fj)
ϕ0
j (r)ϕ0∗

k (r)ϕ0∗
j (r′)ϕ0

k(r′)

ω − ωjk + iε
(3.42)

where fj and fk are the occupation numbers for the KS ground-state, i.e., 1 for occupied and 0
for unoccupied orbitals, and where ωjk = εj − εk are the KS eigenvalues which are the excitation
energies of the single excited state. We see that the KS density response function has information
about single excitations, but in general, in an interacting system, we can have all kind of excitations
and not only single excitations ones. As we will see in the next section, the Hxc kernel does the job
to correct the KS excitation energies to the ones of the interacting system.

For ending this section and with the purpose to use it in the next one, we comment the analytical
decomposition of the Hxc kernel for the high-frequency limit which reads [6]

fHxc(r, t, r
′, t′) = fHxc(r, r

′, ω =∞)δ(t− t′) + f regHxc(r, r
′, t− t′) (3.43)

where we de�ned

fHxc(r, r
′, ω =∞) = bs(r, r

′)− b(r, r′) (3.44)

which is the high-frequency limit of the Hxc kernel. The remaining part, which is

f regHxc(r, r
′, t− t′) = hreg,s(r, r

′, t− t′)− hreg(r, r′, t− t′) (3.45)

is the subtraction of the regular parts, which do not contain delta functions and is a causal function.
From the expression Eq.(3.45) we can see that the Hxc kernel consists of a piece fHxc(r, r′, ω =∞)
which is instantaneous in time, i.e., it has no memory depth and the remaining part in which all the
memory e�ects are incorporated. Therefore, the analytical decomposition of the Hxc kernel allows
studying at the linear response level the memory dependence of the Hxc potential as a function of
the time-dependent density, which is the discussion will be addressed in the next section.

3.6.1 The memory dependence

We have seen that the inverse of the density response function in the time domain is compound of
one part that is instantaneous in time and the regular part that has a memory depth Eq.(3.45).
As we already announced, this decomposition is useful to study in an explicit way the memory and
initial state dependence of the Hxc potential that is generated by a small perturbation on the time-
dependent density given by its linear response. The Hxc potential that is created by the Hxc kernel
reads [56, 57]

δvHxc(rt) =

∫
dr′dt′fHxc(rt, r

′t′)δn(r′t′). (3.46)
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Inserting in the above expression the Hxc kernel in its high frequency limit decomposition Eq.(3.45),
we see how the �rst term gives a contribution that depends on the density at instantaneous times
while the regular part, which does not contain delta functions is the responsible to provide the
dependence of the Hxc potential as a function of the density at time t, and at all previous times and
as well both the initial states of the interacting and the non-interacting systems.

3.7 Local approximations for the Hxc kernel

As in the xc potential, the most used approximation for the Hxc kernel are based on local ap-
proximations, which we proceed to enumerate. The simplest approximation is the random-phase
approximation, which consist on setting the Hxc kernel to zero

fRPAxc (r, r′, ω) = 0 (3.47)

and which means that all the correlation e�ects are ignored. This simpli�cation automatically ap-
proximates the linear density response of an interacting system by the KS one. Another common
approximation for the Hxc kernel is the adiabatic approximation. By adiabatic at the regime of the
Hxc kernel, we mean that we approximate the kernel such that it has no memory depth, i.e., we
consider a kernel where we discard the regular part in the expression Eq.(3.45), being of the form

fAHxc(r, r
′, ω) = f(r, r′) (3.48)

where f(r, r′) is a function which does not depend on the frequency and which depends only on space
coordinates. In particular, it is of interest the ALDA for the Hxc kernel that is obtained from the
homogeneous electron gas, i.e.,

fAHxc(r, r
′, ω) =

d2ehHxc(n)

dn2

∣∣∣∣
n→n(r)

δ(r− r′). (3.49)

3.7.1 The zero-force theorem and the long-range property

In this section, we review the zero-force theorem in the linear response regime. Consider the zero-
force theorem of TDDFT Eq.(3.25) and consider small variations of the Hxc potential produced by
a small change in the ground-state density. Using the equation of the Hxc potential generated by the
Hxc kernel, and after some manipulations, one arrives to [7, 58]∫

dr fHxc(r, r
′, ω)∇′n0(r′) = ∇vHxc(r) (3.50)

From this expression, we can study the spatial range property of the Hxc kernel. Let us suppose that
we have a frequency dependent Hxc kernel that has been derived from a local or a semi-local approx-
imation in space, i.e., such that it contains Dirac delta functions in space δ(r − r′) and derivatives
of Dirac deltas. If we insert such Hxc kernel in the integral Eq.(3.50), we immediately see the conse-
quences. The right-hand side does not depend on the frequency while the left-hand side depends on it,
leading to a contradiction. The integration over space had to cancel the frequency dependence of the
exact Hxc kernel to have a consistent result. The assumption therefore, which has been to construct
a Hxc kernel which is frequency dependent and local in space is in contradiction. The contradiction
means that the initial assumption was wrong and therefore there are no frequency dependent kernels
that are constructed from local or semi-local approximations. A frequency dependent Hxc kernel,
therefore, must be spatially non-local. Note that the contrary does not follow. We can still have a
non-local Hxc kernel in space and local in time or adiabatic.
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3.7.2 Calculation of the excitation energies: The Casida equation

A practical application of the density response function in TDDFT is to calculate the excitation
energies. In this section we present Casida equation, which is an eigenvalue-like equation derived
from the linear response TDDFT equation Eq.(3.38) and which solves for the excitation energies of
the interacting system, i.e., for the poles of the density response of the interacting system, knowing the
KS single excitations. The Casida equation is derived from the density response function observing
that since the excitation energies are the poles of the density response function, and since the density
variations once a small perturbation to the system is applied are always �nite, we need the external
potential to approach to zero in the same way the linear response diverges. Casida equation then is
obtained by writing the equation Eq.(3.38) in a basis of KS orbitals, which in its matrix form reads
[7] ∑

j,b

[
δijδabω

2
bj + 4

√
ωaiωbj Kia,jb(Ω)

]
Zjb = Ω2Zia (3.51)

where we de�ned the matrices

εia,jb = ωaiδijδab

Kia,jb(ω) =

∫
dr1r2ϕi(r1)ϕa(r1)fHxc(r1, r2;ω)ϕj(r2)ϕb(r2) (3.52)

and where i, j refer to KS occupied levels, a, b to unoccupied levels and ωai = (εa − εi) are the
excitation energies of the KS system. The eigenvalues Ω are the excitation energies of the full many-
body system, and the eigenvectors Zia are related with the probability of the excitation from the
level i to level a to occur, and they will not be discussed in this introduction. We now see that
for the knowledge of the excitation energies we have to calculate the KS orbitals and eigenvalues.
For solving the equation, it is needed the exact ground-state Hxc potential and the exact frequency
dependent Hxc kernel. We now see the role of the Hxc kernel. It is the object that corrects the
KS excitation energies to the excitation energies of the fully interacting system. How does the Hxc
kernel work to obtain the right excitation energies? We have seen that the KS excitation energies
that appear on the density response function are single excitation energies. The poles of the KS
system, as we commented previously contain only single excitations but multiple excitations are
present in the interacting density response. It means that to reproduce such excitations, the matrix
elements provided by the Hxc kernel Eq.(3.52) are needed to be frequency dependent since in this way
the equation becomes a non-linear equation in the frequency, and therefore it is possible to create or
destroy more poles that the number of the KS poles. On the other hand, if the Hxc kernel is frequency
independent, it does not generate a di�erent number of poles that the number of the KS excitations,
but they su�er just a translation in the frequency axis. We then see that in order to calculate the
excitation energies of an interacting system, we need a good approximation for the Hxc potential
which produces the correct KS orbitals and KS eigenspectrum, and we need a good approximation
for its functional derivative, the Hxc kernel which does the work to produce the excitation energies
via Casida equation.

3.8 Performance of the ALDA for the calculation of excitation

energies of a dissociating H2 molecule

The ALDA approximation of TDDFT has been tested in the Casida formalism for the calculation
of the lowest excitation energies of a dissociating H2 molecule in [15�17], and it has been shown
that it fails in reproducing the energy curve for such excitation. The reason why it fails is due to its
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too simple spatial dependence of the Hxc kernel as a function of the density. For the case of the H2

molecule using a minimal two orbital model, the correction term to the KS �rst excitation in Casida
equation Eq.(3.52) reads [15]

(εu − εg)Kgu,gu, (3.53)

where "g" and "u" stands for "gerade" and "ungerade", which have been de�ned in Eq.(2.63) and
Eq.(2.64) respectively, and where gerade is the KS occupied orbital and ungerade the unoccupied
orbital. An analysis of correction term indicates that since the �rst KS excitation approaches to
zero in the limit of large bond distances, for obtaining a �nite correction term and therefore �nite
excitation energy, the matrix elements Kgu,gu must diverge in the same way the KS excitations
approach to zero. The possible cases for making diverge the matrix elements are either a strong
frequency-dependent Hxc kernel or an adiabatic Hxc kernel [15]. A study of the exact Hxc kernel for
the limit of large bond distance using minimal models suggest that the spatial dependence of the
kernel is rather more complicated than a kernel constructed by local approximations as a function of
the density. Therefore, it is needed to construct a Hxc kernel such that it can capture the spacial non-
local dependence that such a kernel must have to describe the strong correlation that a dissociation
process shows.

3.9 Strictly correlated electrons in TDDFT

3.9.1 The adiabatic SCE functional

In this section we introduce the extension of the SCE formalism to the time domain, in the adiabatic
approximation. Following the adiabatic approximation of the linear response theory in TDDFT, we
use the ground-state theory that describes the strong interaction limit of DFT, in which the SCE
formalism can be used in the adiabatic approximation for the construction of a Hxc kernel which,
as it was explained in the previous section, it contains a non-local spacial dependence as a function
of the density. For the ground-state SCE formalism, the Hxc energy functional is assumed to admit
an expansion as a function of the square root of the interaction strength. Assuming then that we
can take functional derivatives termwise of the expansion, the adiabatic Hxc kernel is de�ned as the
second order variation of of the Hxc energy functional with respect to the density, which gives an
expansion as a function of the square root of the interaction strength as follows

fAHxc(r, r
′) = λ fASCE(r, r′) +

√
λ fAZPE(r, r′) + f (3)(r, r′) +O

(
λ−1/2

)
, (3.54)

where the leading term of the expansion and the next to the leading term, the ASCE and the AZPE,
are de�ned as

fASCE(r, r′) =
δ2VSCE

δn(r)δn(r′)
(3.55)

fAZPE(r, r′) = 2
δ2VZPE

δn(r)δn(r′)
(3.56)

It has been shown in [3] that the ASCE Eq.(3.55) satis�es the general constraints of many-body
theories, like the generalized translational invariance or the zero-force theorem.

The ASCE functional has been calculated for one dimensional systems to be [3]

fASCE(x, x′) =

x∫
−∞

ds
w′′(s− f(s))

n(f(s))
[θ(s− x′)− θ(f(s)− x′)] . (3.57)
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The expression above derived for the Hxc kernel Eq.(3.57) has been studied for �nite one-dimensional
systems with di�erent density pro�les, some of which resemble the dissociation of two-electron
molecules. It has been found that since the kernel is spatially non-local, it exhibits the correct
analytical structure needed to describe a system under dissociation correctly, i.e., the kernel has
an exponential growth as a function of the bond distance that makes diverge the matrix elements.
This feature makes the ASCE kernel a good candidate for canceling the approach to zero of the
KS eigenvalue di�erence and hence, producing the correct dissociation energies of a dissociating
molecule.

It is our aim �rst to test whether the ASCE kernel can reproduce the kernel of a strongly interacting
system. In the following chapter, therefore, we test the SCE formalism in the adiabatic approximation
against an exact expression obtained from a model system such that the Schrödinger equation can be
solved exactly, and therefore we can get the exact wave function, and in particular, we can compute
with it the exact response properties we are interested in. In this work, we consider a model of
two interacting electrons on a ring, for which we can compute the exact Hxc kernel and study it
in the limit when the interaction between the electrons is strong. We can then compare the results
with those given by the SCE formalism in the adiabatic approximation and establish if the SCE
formalism in the adiabatic approximation can capture the correct physics of a strongly interacting
system.



4 An exactly solvable system

4.1 Two interacting electrons on a ring

We consider an analytically solvable model, which consist on two interacting electrons of coordinates
x1, x2 de�ned on a ring of length L, which we refer to as the quantum ring (QR) model. The
Hamiltonian that describes the system reads

Ĥ = −1

2
(∂2
x1

+ ∂2
x2

) + λV0 cos2
[π
L

(x1 − x2)
]

(4.1)

where the �rst two terms are the kinetic energy of each electron and the last term is the two-body
interaction. The strength of the interaction λ ≥ 0 is a dimensionless, semi-continuous and positive
parameter allowing in this way the Hamiltonian Eq.(4.1) to describe di�erent physical situations,
which range from λ = 0, describing a non-interacting system, until strongly interacting system.
Since the external one-body potential is zero vext(x) = 0 the ground-state density of the system is
homogeneous and n(x) = 2

L .

The properties of the system are obtained by means the many-body wave function, which is the
solution of the time-independent Schrödinger equation. For a system of two particles, the full solution
of the Schrödinger is written as a product of the spatial wave function and the spin wave function
as follows

Ψ(x1σ1, x2σ2) = ψ±(x1, x2) Ξ±(σ1, σ2).

where "+" refers to the singlet wave function, which is antisymmetric under the interchange of the
spin variables and is given by

Ξ+(σ1, σ2) =
1√
2

(δσ1↑δσ2↓ − δσ1↓δσ2↑) (4.2)

and "−" refers to the triplet wave functions. There are three linearly independent symmetric spin
functions under the interchange of spin variables, which we all denote by Ξ−. The full two-electron
wave function must be antisymmetric under the simultaneous interchange of both spin and space
variables, and therefore the spatial wave function ψ± needs to ful�ll the following symmetry relations

ψ±(x1, x2) = ±ψ±(x2, x1).

Also, we must impose to the full solution of the Schrödinger periodic boundary conditions both for
the solution and for its �rst spatial derivatives which have to be invariant under the translation
x1 = xi + L for i = 1, 2. Under these conditions, the Schrödinger equation can be solved by means
the coordinate transformation from the original coordinates to the center-of-mass coordinate de�ned
as R = 1

2 (x1 +x2) and the dimensionless relative coordinate, de�ned as z = π
L (x1−x2). Transforming

the Hamiltonian Eq.(4.1) to the new set of coordinates, the Schrödinger equation reads[
−1

4
∂2
R −

π2

L2
∂2
z + λv0 cos2(z)

]
ψ(R, z) = Eψ(R, z) (4.3)

42
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We can solve the Schrödinger equation by inserting a product Ansatz of the form ψ(R, z) = f(R)M(z)
where we �nd that the center-of-mass coordinate wave function becomes a free particle

− 1

4
f ′′k (R) = εkfk(R) (4.4)

and then the solution can be written as

ψ±(R, z) = NL exp

(
2πikR

L

)
M±(z) (4.5)

where NL is a normalization constant which depends on the length of the ring, where k is an integer
label and the function M±(z) satis�es the Mathieu equation which reads[

− d2

dz2
+ 2q cos(2z)

]
M±l (z) = a±l M

±
l (z) (4.6)

where the constants q and al are de�ned as

q = λV0

(
L

2π

)2

(4.7)

a±l = −k2 − 2q +
EL2

π2
. (4.8)

where al is the Mathieu characteristic value and l ≥ 0. The eigenfunctions M+
l are the Mathieu-

cosine functions, which we denote by Cl and whose characteristic value is a+
l . Its label is a positive

integer index which starts at l = 0. In turn M−l are the Mathieu-Sine functions which we denote by
Sl, its characteristic value is a

−
l and its label is a positive index which starts from l = 1. The spatial

part solution of the Schrödinger equation Eq.(4.5) then reads

ψ+
kl(R, z; q) =

√
2

L
exp

(
2πikR

L

)
Cl (z; q) (4.9)

ψ−kl(R, z; q) =

√
2

L
exp

(
2πikR

L

)
Sl (z; q) (4.10)

where we have normalized the wave function according to the normalization criteria of the Mathieu
functions, which is chosen to be

π∫
0

dz |Cl(z; q)| =
π∫

0

dz |Sl(z; q)| =
π

2
(4.11)

Since the center-of-mass wave function is a symmetric function under the interchange of the spatial
coordinates and also the Mathieu-cosine are symmetric functions under the interchange of the spatial
variable, the singlet wave function must be described by the solution Eq.(4.9). In turn, the triplet
wave function must be described by the Mathieu-sine because they are antisymmetric under the
interchange of the spatial coordinates Eq.(4.10). Note also that the Mathieu functions have the
periodicity property M±l (z) = (−1)lMl(z + π), ie, they are periodic in π for even values of l and
anti-periodic for odd values of l. Since the center-of-mass wave function also has the periodicity
property fk(R) = (−1)kfk(R) for the translation xi → xi + L for xi = 1, 2, then in order for the
wave function to satisfy the periodic boundary condition, the labels k and l have to be both even or
both odd. Finally, from Eq.(4.8) we can isolate the energy spectrum, which reads

E±kl(q) =
(π
L

)2 [
k2 + a±l (q) + 2q

]
. (4.12)
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and then, the excitation energies of the system are obtained subtracting the ground-state energy

∆E±kl(q) = E±kl(q)− E
+
00(q) (4.13)

It is also useful to give the general expressions for both the two-body interaction and the kinetic
energy expectation values for its subsequent analysis. Multiplying Mathieu equation Eq.(4.6) by

Mp′

l′ and applying orthogonality of Mathieu functions in the left-hand side of the equation we get an
expression for the Mathieu characteristic value in terms of Mathieu functions. Taking its derivative as
a function of q and making use of the Hellman-Feynman theorem we obtain the following expression
for its derivative

dapl (q)

dq
δll′δpp′ =

2

π

∫ π

−π
dz cos(2z)Mp′

l′ (z; q)Mp
l (z; q) (4.14)

The above expression appears in the expectation values of both the two-body interaction and kinetic
energy expectation values, and therefore we can write them as a single function of the Mathieu
characteristic value as

〈Ŵ 〉±kl(q) = 2q
(π
L

)2
[
1 +

1

2

da±l (q)

dq

]
(4.15)

〈T̂ 〉±kl(q) =
(π
L

)2
[
k2 + a±l (q)− q

da±l (q)

dq

]
(4.16)

Note that because the electron-electron two-body interaction depends on the distance between elec-
trons, the two-body interaction energy expression Eq.(4.15) depends only on the relative coordinate
quantum number l. On the other hand, the kinetic energy Eq.(4.16) receives a contribution from both
k and l quantum numbers, being the k term a pure kinetic contribution since the center-of-mass wave
function performs a free motion on the ring. This is special of the quantum ring system because we
chose the system to be homogeneous.

Once the general solution of the Schrödinger equation is presented, we proceed to discuss the strong
interaction limit of the quantum ring system.

4.2 The strong interaction expansion of the exact solution

In this section, we analyze both the eigenstates and the energy spectrum of the quantum ring
model when the interaction strength is very large. As the interaction strength q grows, the two-body
repulsive interaction becomes more important and the electrons repel each other to lye in opposite
sides of the ring to minimize the two-body interaction energy. This behavior is shown in Fig. 4.1
where the two-body interaction is a well of height q. When the interaction strength becomes large,
the well becomes deep and therefore the relative coordinate wave function M±l becomes localized
around the relative position z = π, which also corresponds to a relative position of x1 − x2 = L/2.
Based on this description we can qualitatively analyze the strong interaction limit by expanding the
potential energy around its minimum and obtaining

2q cos 2z = − 2q + 4q
(
z − π

2

)2

+ ... (q →∞) (4.17)

We see that for large interaction strength the potential becomes harmonic with a frequency Ω =
2
√
q and therefore the Mathieu equation Eq.(4.6) becomes the harmonic oscillator equation whose

eigenfunctions consist on Hermite functions which are centered around the relative coordinate z =
π/2 with a width 1/Ω = 1/

√
2q1/4

M±l (z; q) =

[
Ω1/2

π1/2l!2l

]1/2

Hl

[
Ω1/2

(
z − π

2

)]
exp

[
−Ω

2

(
z − π

2

)2]
(4.18)
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Figure 4.1: The squared ground-state wave function |ψ00|2 for two values of the interaction strength
q, and the interaction cos2 z using a suitable scaling for showing it in the same plot. For large q, the
wave function localizes around z = π/2 where cos2 z is almost parabolic and |ψ00|2 then tends to a
sharp Gaussian.

where Hl(x) are Hermite polynomials. We see that in the large interaction strength limit the fre-
quency increases and the width of the Hermite functions decreases hence becoming the relative wave
function more localized around z = π/2. From the general expression of the harmonic oscillator
energy spectrum and by means the Mathieu equation Eq.(4.6) we deduce the following relation for
the Mathieu characteristic value in the limit of large interaction strength (a±l + 2q)/2 = Ω(l + 1/2),
which reads

a±l (q) = −2q + 2
√
q(2l + 1) + ... (4.19)

Inserting it in Eq.(4.12) we �nd an asymptotic expansion for the energy spectrum in the large
interaction strength limit. We also note that in the large interaction limit the singlet and the triplet
wave functions Eq.(4.9) and Eq.(4.10) have the same asymptotic expression for the large q limit, and
as a consequence, the energy spectrum becomes degenerate for these states. These qualitative results
and the connection with the harmonic oscillator are made rigorous by making the change of variable
u(z) =

√
2q1/4 cos z and transforming the Mathieu equation Eq.(4.6) to the form[

−1

2

(
1− u2

2
√
q

)
d2

du2
+

u

4
√
q

d

du
+
u2

2

]
M±l [z(u)] = ε±l M

±
l [z(u)] (4.20)

where we de�ned ε±l = (a±l + 2q)/4
√
q. From the transformed equation it becomes manifest how if

we assume the wave function to be localized around z = π/2, which corresponds the new coordinate
to be around u2

√
q ∼ 0, then Mathieu equation reduces to the Schrödinger equation of the harmonic

oscillator. Based on this qualitative analysis, we are interested in an asymptotic expansion of Mathieu
functions for the large q limit. Such expansion is provided by the Sips expansion of Mathieu functions,
which is accurate in the region around z = π/2. For our purposes, we just show the Sips expansion
of the Mathieu-cosine, since it is the one that is relevant for the discussion of the singlet, which are
the states our future derivations are based on. The interested reader can �nd the Sips expansion of
Mathieu functions in [59, 60]. The Sips expansion of the Mathieu-Cosine reads

Cl(z; q) = Cl(q)
∞∑

n=−∞
g2n,l(q)Dl+2n [u(z)] (4.21)

where Dm(u) are the parabolic cylinder functions, which are de�ned as

Dm(u) =
(−1)m

2m/2
eu

2/2 d
m

dum
e−u

2

=
1

2m/2
e−u

2/2Hm(u) (4.22)
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where Hm are the "physicist" Hermite polynomials and where Dm<0 = 0. The prefactor Cl(q) is
chosen such that the Sips expansion of the Mathieu-cosine satis�es the normalization condition
Eq.(4.11), and the coe�cients g2n,l(q) are decaying functions of the square root of the interaction
strength q, whose explicit form is obtained from a recursion relation. We refer to [59, 60] for a more
detailed discussion. The Mathieu-sine has a similar expansion, and the interested reader can consult
the references [59, 60].

From the Sips' expansion we note that in the large q limit, for a z ∼ π/2 we are allowed to keep
only the leading order of the expansion for the Mathieu-cosine Eq.(4.21) where c0,l(q) = Cl(q), (see
Appendix B of [34]) recovering in this way the solution Eq.(4.18) we obtained from the qualitative
discussion. For closing this section and making use of the large q limit of the Mathieu characteristic
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Figure 4.2: Is is shown the square root of the excited-state of the center-of-mass excitations |Ψk0|
(left panel) and the relative coordinate excitations |Ψk0| (right panel) for q = 1000. The center-
of-mass excited states show the same probability distribution for all the ranges of the interaction
strength, while the relative-coordinate excited-states show a probability distribution which has two
maxima around the equilibrium position z = π/2.

value, we obtain an asymptotic expansion for k, l two-body interaction energy, kinetic energy and total
energy as a function of the square root of the interaction strength. From the expression Eq.(4.12),
Eq.(4.16) and Eq.(4.15), and using the �rst few leading terms of the expansion of the Mathieu
characteristic value, their expressions for the QR (Appendix B of [Ref] for its derivation) in the limit
of large interaction strengths read

〈Ŵ 〉±kl(q) =
(π
L

)2
[
√
q(2l + 1) +

(2l + 1)

256
√
q

(
(2l + 1)2 + 3

)]
+O

(
q−1
)

(4.23)

〈T̂ 〉±kl(q) =
(π
L

)2
[
k2 +

√
q(2l + 1)− 1

4
(2l2 + 2l + 1)− 3(2l + 1)

256
√
q

(
(2l + 1)2 + 3

)]
+O

(
q−1
)
(4.24)

E±kl(q) =
(π
L

)2
[
k2 + 2

√
q (2l + 1)− 1

4
(2l2 + 2l + 1)− (2l + 1)

128
√
q

(
(2l + 1)2 + 3

)]
+O

(
q−1
)
(4.25)

If we consider the limit of large interaction strengths in the energy expressions, the k contribution
becomes negligible, and they obey the relations 〈Ŵ 〉±kl = 〈T̂ 〉±kl = E±kl/2, in agreement with the virial
theorem for harmonic oscillators. From energy expressions, we also see that they are degenerate for
the singlet and triplet, as we noticed before since their di�erence becomes exponentially small in
the large q limit. To illustrate the q-dependence of the two-body interaction energy, kinetic energy
and total energy we show in Fig. 4.3 some of the lowest eigenvalues and their respective asymptotic



4.3 Density response of the quantum ring system 47

expansion from Eq.(4.23), Eq.(4.24) and Eq.(4.25) as a function of q. We see that the asymptotic
expansion converges more slowly for higher values of l, and for these l we need high values of q to
have a reliable estimate. Let us have a study on the type of excitations that the system shows. From
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Figure 4.3: The ground-state (l = 0) and excited-state (l = 1, 2, 3) two-body interaction energy,
kinetic energy and total energy divided by

√
q for k = 0 as function of the interaction strength q in

units of L−2. We plot the exact energies (solid lines) versus the approximate energies (dashed lines)
from the expansion in Eq.(4.23), Eq.(4.24) and Eq.(4.25).

the expression Eq.(4.13) we see that ∆Ek0 are excitations which are independent of the interaction
strength, which is the center-of-mass excitations, and for q = 0 they are related as double excitations
(see [7] for a detailed discussion). On the other hand, the excitations ∆E0l are interaction strength
dependent and they grow with the square root of the interaction strength. These excited-states are
plotted in Fig. 4.2, where it is shown the square of the wave function as a function of the relative
coordinate. The excitations ψk0 give the same probability distribution as the ground state, to �nd the
electrons in opposite sides of the ring (since the center-of-mass wave function is a phase). Conversely,
the excitations ψ0l are the excitations which are referred to the relative coordinate excited-states,
which in the large q limit they give the probability to �nd the electrons a bit away of z = π/2 as it
can be seen from Fig. 4.2. These excitations are caused by the small oscillations that the electrons
perform around their equilibrium position. When the interaction strength becomes truly in�nite the
electrons relative position freezes in z = π/2 and the only allowed excitations are the center-of-
mass ones since when the interaction strength grows, the two maxima become closer and higher
until they merge in one maximum of in�nite high at z = π/2. The approach of the maxima in the
probability distribution costs energy which depends on the interaction strength and therefore, when
the interaction strength grows, the excitations grow with it. These di�erent types of excitations have
a very important role in the density response function, which we proceed to analyze in the following.

4.3 Density response of the quantum ring system

4.3.1 Exact density response of the quantum ring system

This section is devoted to the study of the exact frequency dependent density response function
of the QR system. The exact expression will allow for its calculation and analysis in the strong
interaction limit regime, as well as its calculation and analysis in the non-interacting case q = 0, the
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case which is needed for the density-functional theory discussion since for homogeneous systems the
non-interacting case also corresponds to the KS case.

For the analysis of the density response function for the QR model, we start by expressing the density
response function in frequency space in its the Lehmann representation Eq.(3.32), which reads

χ(x, x′, ω) = lim
η→0+

∑
k,l,p=±

[
〈Ψ+

0 |n̂(x)|Ψp
kl〉〈Ψ

p
kl|n̂(x′)|Ψ+

0 〉
ω −∆Epkl + iη

−
〈Ψ+

0 |n̂(x′)|Ψp
kl〉〈Ψ

p
kl|n̂(x)|Ψ+

0 〉
ω −∆Epkl + iη

]
(4.26)

where the sum runs over all the excited states of the quantum ring. The label k runs over all integers
while for the label l the sum runs over the positive integers, constrained by the condition that k and l
must be both even or both odd. In turn, the sum for p runs over the singlet and triplet states. Since the
spin wave function is transparent to the density operator n̂, the matrix elements 〈Ψ+

0 |n̂(x)|Ψ−kl〉 = 0
and therefore the density response function receives contribution only from excited states with p = +,
i.e., from the singlet. The remaining non-zero matrix elements read

〈Ψ+
00|n̂(x)|Ψ+

kl〉 = 2

∫ L

0

dx2 ψ
+∗
00 (x, x2)ψ+

kl(x, x2) =
2

L
e2πikx/LDkl(q) (4.27)

where ψ+
00 is the spatial part of the singlet wave function, and the objectDkl is the so-called excitation

amplitude, which reads

Dkl(q) =
2

π

π∫
0

dz C0(z; q)Cl(z; q)e
−ikz (4.28)

The excitation amplitude Dkl(q) has a number of properties which are direct consequence of the
properties of the Mathieu functions. Since Cl(z; q) is real we have D∗kl(q) = D(−k)l(q), and because of
the orthogonality of the Mathieu functions, D0l(q) = δ0l. Moreover if we use the features that Cl(z+
π; q) = (−1)lCl(z; q) and that Mathieu-cosine is a function with even parity in z, this property leads to
Dkl(q) = (−1)k+lD∗kl(q). Using the mentioned properties and using also that the excitation energies
satisfy ∆Ekl = ∆E(−k)l, we can write the response function in a more compact and convenient way
as follows

χ(x, x′, ω) =
1

L

∞∑
k=−∞

χ(k, ω) e2πik(x−x′)/L (4.29)

where

χ(k, ω) =
4

L

∑
l

(
|Dkl(q)|2

ω −∆E+
kl(q) + iη

− |Dkl(q)|2

ω + ∆E+
kl(q) + iη

)
=

8

L

∑
l

∆E+
kl(q) |Dkl(q)|2

(ω + iη)2 − (∆E+
kl(q))

2
(4.30)

and where the label l runs over even numbers for k even and over odd numbers for k odd. Because of
the homogeneity of the quantum ring system we see that the linear response function satis�es that
χ(x, x′, ω) = χ(x − x′, ω). It is therefore convenient to de�ne the expansion of a periodic function
f(x, ω) = f(x+ L, ω) on the ring in terms of its Fourier series as

f(x, ω) =
1

L

∞∑
k=−∞

e
2πik
L xf(k, ω) (4.31)

where the coe�cents of the expansion are given by

f(k, ω) =

∫ L

0

dx e−
2πik
L xf(x, ω) (4.32)

We see that the density response function can be written as a Fourier series with respect of the
relative coordinate z = x− x′, whose coe�cients are Eq.(4.30). For later analysis, we also write as a
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Fourier series the linear response in the density produced by a small perturbing potential Eq.(3.29).
The coe�cients of the expansion are given by

δn(k, ω) = χ(k, ω)δv(k, ω) (4.33)

We obtained an expression of the exact linear response function in terms of the excitation energies
∆E+

kl and the oscillator strengths Eq.(4.28) for arbitrary value of the interaction strength which is
suitable for its analysis in the large interaction strength limit.

Before focusing on the strong interaction limit of the density response function and because in the
TDDFT section the non-interacting linear response function is needed, we give the form of the
response function for the non-interacting system q = 0, which is the the KS response function since
the system is homogeneous and it has the same density for all values of q. For the non-interacting
system, the excitation energies Eq.(4.12) read

Ekl(0) =
(π
L

)2

[k2 + l2] (4.34)

and the corresponding excitation amplitude can be calculated from Eq.(4.28) by making use of the
non-interacting eigenstates, which is a Slater determinant of the form

ψ+
kl(x1, x2) = 1√

2

[
φk+l

2

(x1)φk−l
2

(x2) + φk+l
2

(x2)φk−l
2

(x1)

]
(4.35)

Apart from the amplitude D00(0) = 1, which does not contribute to the sum since ∆E+
00 = 0, the

excitation amplitudes read

Dkl(0) =

{
1/
√

2 if l = |k|√
2
π

ik
k2−l2 [(−1)k+l − 1] if l 6= |k|.

(4.36)

where only the terms where k+ l is even contribute to the sum and then the only non-zero excitation
amplitudes that contribute to the linear response function are those ones with l = |k|, which we
already discussed in Sec. 3.6 it corresponds to single excitations. Inserting Eq.(4.36) into Eq.(4.30)
we �nd that the non-interacting response function χs(k, ω) is given by

χs(k, ω) =
4

L

∆E+
kk(0)

(ω + iη)2 − (∆E+
kk(0))2

(4.37)

with ∆E+
kk(0) = 2(πk/L)2. We note that χs has only a single pole at ω = 2(πk/L)2, and no zeroes.

Having determined the non-interacting response function, the next section will be devoted to the
study of the density response function in the limit of strong interaction strength.

4.3.2 Strong interaction expansion of the dynamic density response func-

tion

For the analysis of the linear response function in the strong interaction limit regime, we need to study
the excitation energies ∆E+

kl(q) and excitation amplitudes Dkl(q) in the limit of large interaction
strengths q. Since for ∆E+

kl(q) explicit asymptotic expansions are known by using the asymptotic
expansion of the Mathieu characteristic value [34, 59, 61], what is left is the determination of the
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excitation amplitudes Dkl(q) (4.28) for the limit of large interaction strengths q. For this purpose,
we start by inserting the Sips expansion of the Mathieu-cosine Eq.(4.21) into Eq.(4.28), which gives

Dkl(q) =
2

π

∞∑
n1,n2=−∞

c2n1,0(q)c2n2,l(q)J
n1n2

kl (q) (4.38)

where we de�ned

J n1n2

kl (q) =

∫ π

0

dz e−ikzD2n1 [u(z)]D2n2+l[u(z)] (4.39)

and where u(z) =
√

2 q1/4 cos z. The coe�cients c2n,l(q) are given in [34]. It remains to evaluate
J n1n2

kl (q) for the large q. For doing it, we change to the integration variable u(z) =
√

2q1/4 cos z,
obtaining the expression

J n1n2

kl (q) =
1√

2q1/4

∫ √2q1/4

−
√

2q1/4
du fk

(
u√

2q1/4

)
D2n1

(u)D2n2+l(u) (4.40)

where we de�ned the function

fk(x) =
e−ik arccos(x)

√
1− x2

=

∞∑
r=0

ar(k)xr (4.41)

and ar(k) to be its Taylor coe�cients. Inserting this Taylor series into Eq.(4.40), gives the expansion

J n1n2

kl (q) =

∞∑
r=0

ar(k)(√
2q1/4

)r+1

∫ √2q1/4

−
√

2q1/4
duur D2n1(u)D2n2+l(u) (4.42)

where we interchanged the integral and sum provided that the Taylor series of the function f(x) is an
absolutely convergent series. Due to the Gaussian decay of the functions Dn(u) in the limit q →∞,
the error we make if we replace

√
2q1/4 in the limits of the integral by in�nity is exponentially small

(see Appendix G) and then, we obtain the asymptotic expansion.

J n1n2

kl (q) =

∞∑
r=0

ar(k)I ln1n2,r

(
√

2q1/4)r+1
(4.43)

where we introduced coe�cients

I ln1n2,r =

∫ ∞
−∞

duur D2n1(u)D2n2+l(u). (4.44)

The integral In1n2,r can be computed analytically, and also its explicit expression is given in Ap-
pendix G). We note that since the integral In1n2,r is performed in a symmetric interval and because
the Dn is an even function if n is even or an odd function if n is odd, then the integral vanishes
unless r and l are both even or both odd, which implies that the sum r + l is always even and the
whole integrand is an even function. Therefore, the summation index r in Eq.(4.43) can be taken to
run only over even or only over odd values depending on whether l is even or odd. With expression
Eq.(4.38) together with Eq.(4.43) we developed an explicit and systematic procedure to calculate
the asymptotic expansions of the excitation amplitudes analytically in the limit of large interaction
strengths, whose expression Dkl and its modulus square |Dkl|2 are given in the [34].

Inserting the asymptotic expansion of |Dkl|2 and the asymptotic expansion of the excitation energies
∆Ekl into the general expression Eq.(4.30) we �nally �nd the asymptotic expansion of the density



4.3 Density response of the quantum ring system 51

response function for large interaction strengths

χ(k, ω) =


8
L

(πk/L)2

(ω+iη)2−(πkL )
4

[
1− k2

4
√
q + k2(k2−2)

32q

]
+O(q−3/2) if k is even

L
2π2

[
−k

2

q + k2(k2−1)
2q3/2

− k2

q2

(
368k4−928k2+947

2304 + 1
16

(
L
π

)4
ω2
)]

+O(q−5/2) if k is odd.

(4.45)
Let us analyze the pole structure of the density response function in the strong interaction limit
Eq.(4.45). If we take the limit of in�nite interaction strength, from the expression Eq.(4.45) we see
the density response function attains for even values of k the form

lim
q→∞

χ(k, ω) =
8

L

(πk/L)2

(ω + iη)2 −
(
πk
L

)4 (4.46)

and it vanishes for odd values of k. We recognize the single pole as the center-of-mass excitations
Ek0, which are the only excitations that do not shift towards in�nity as q grows, since they are
independent of the interaction strength. Therefore, in the limit q →∞ the center-of-mass excitations
are the remaining poles that are kept in the density response function. This property is genuine of the
quantum ring model because the system is separable and therefore the energy spectrum Eq.(4.12)
splits in an interaction strength dependent and interaction strength independent parts. Despite for
other inhomogeneous systems the separability does not hold anymore, as we will see in the next
section, it can be shown that in the strong interaction limit the energy spectrum still splits in a
weakly interaction strength dependent part and strong interaction strength dependent part which
causes that there are excitation energies that move to in�nity in the λ in�nity limit while there are
also remaining excitations that become independent on the interaction strength.

Let us now analyze the external one body potential which is needed to produce a change in the
ground-state density for driving the system a bit far away from homogeneity. The external one body
potential, in frequency and momentum space, reads

δv(k, ω) = χ−1(k, ω)δn(k, ω) (4.47)

If we perform a change the density δn(k, ω) such that in Fourier space it has general Fourier coe�-
cients, the external one body potential given by the linear response Eq.(4.47) shows an expansion in
terms of the square root of the interaction strength, as the density response function does, and it is
dominated by the leading term which is linear in q and the next to the leading term, which grows as√
q. The next term is independent of the interaction strength, and the rest terms are functions which

decay as powers of
√
q. The dependence of the external potential as a function of the interaction

strength can be understood in the following way. The generation of an external potential with an
odd k implies a change in the density which ful�lls antisymmetry at antipodal points of the ring, ie,
n(x, t) = −n(x + L/2, t) which requires in the linear response function to consider the excitations
form the ground-state to sates with l odd, and as we explained it requires a large energy when the
interaction strength is large. Therefore the applied external potential for producing such a density
change produces must grow with the interaction strength in order to counteract the two-body repul-
sion. On the other hand, the generation of a potential with only even Fourier components implies a
change in the density which is symmetric at antipodal points of the ring, ie, n(x, t) = n(x+ L/2, t)
which requires in the linear response function to consider the excitations to states with an l even
and which in the limit of large interaction strengths the only contribution is for the l = 0 states,
which we already discussed they are the center-of-mass excitations. Since they are independent of the
interaction strength, the external potential that such a density change produces is a �nite potential,
and in the large q limit it does not depend on the interaction strength.

From the asymptotic expansion of the density response function Eq.(4.45), we see that for odd k,
the response function is frequency independent, and therefore will produce an instantaneous density
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variation, ie. if a perturbation δv(k, ω) is applied to the system and its range of frequency is bellow
from any of the excitation energies ω � ∆Ekl. Then we can regard the density response function to
be frequency independent. Because of the excitation energies ∆E+

kl for odd k (which must have odd
l as well) increase proportionally to

√
q, the frequency range of the applied external potential are

much lower than any excitation energy, i.e., ω � ∆Ekl and hence the density response function is in
this case well approximated by a frequency independent function for ω � √q. This can be seen from
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Figure 4.4: The real part of χ(k = 2, ω) in units of L (top) in units of L−1 (bottom) for di�erent
values of the interaction strength q. The exact results are obtained by numerical integration, and the
expansion of χ is taken up to the same order as shown in Eq. (4.45).

Fig. 4.4, where we show the plots of the expressions Eq.(4.45) we show the comparison of the exact
response function and the expanded one as a function of the frequency, for k = 2 and for several
values of the interaction strength. We see that for small interactions (q = 1/3) the exact response
function has two poles; Since the value of q is small, one is located approximately at the same place as
the KS pole (ω = 2(πk/L)2). A new pole with a weight given by the oscillation amplitude Eq.(4.28)
also appears at the center-of-mass excitation energy, at ω = (πk/L)2, which is suppressed by the
excitation amplitude as the interaction strength becomes smaller and it vanishes for q = 0 according
to Eq.(4.36). For further details of see [34].

4.4 TDDFT in the strong interaction limit

4.4.1 The exchange-correlation kernel

This section is devoted to analyzing the strong interaction limit of the Hxc kernel of TDDFT de�ned
by means Eq.(3.35) for the QR model system.

Since the density response function is diagonal in momentum space for all values of the interaction
strength, it is immediate to obtain the inverse of the density response and hence also the Hxc kernel.
The Fourier coe�cients of the Hxc kernel for the QR system read

fHxc(k, ω) = χ−1
s (k, ω)− χ−1(k, ω) (4.48)

being well-de�ned for all values of k except for k = 0 for which the density response function is
not invertible since in this case, it vanishes. Because of the system is homogeneous, the KS response
function coincides with the response function of non-interacting one of Eq.(4.37). Combining it
together with the expansion of Eq.(4.45), we obtain an explicit expression for the Hxc kernel in the
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strong interaction limit, which reads

fHxc(k, ω) =


− 3π2k2

8L − 1√
λ
L2
√
V0

1
16π

[
ω2 −

(
πk
L

)4]
+ 1

λ
L
V0

k2+2
64

[
ω2 −

(
πk
L

)4]
+O(λ−3/2) if k is even

λ V0L
2k2 +

√
λ
√
V0π(k2−1)

2k2 − π2(368k4+224k2+371)
1152k2L +O

(
λ−1/2

)
if k is odd

(4.49)

where the variable λ has been reintroduced back instead of q by means the expression Eq.(4.7) due
to that the λ notation is commonly used in the DFT context, from the coupling constant integration
construction, and which will be the focus of the discussion in the next section, we will therefore refer
to the large interaction regime as when either q and/or λ approaches to in�nity. We see that the
Hxc kernel is adiabatic in the leading terms and the frequency dependence start to play a role in the
λ−1/2 term. The adiabatic character of the λ0 term comes from the fact that the response function
has the same prefactor for all interaction strengths, and the non-interacting response, as well as
the large interaction strength response functions, have no zeroes. Therefore the Hxc kernel does not
present any pole in this order of expansion. The frequency dependence starts to appear in the next
term, a feature that in principle is genuine of the quantum ring system since the non-interacting
response function of a general system would present zeroes and poles, which would imply to have a
frequency dependence already at the λ0 order. Since the Hxc kernel is the object that corrects the
KS poles to the poles of the interacting system, for even Fourier components, in the large q limit the
Hxc kernel shifts the KS pole to the strongly interacting one. Because for each k value there is the
same number of poles both in the KS response function and the interacting response function, there
is no need for the Hxc kernel to be frequency dependent. On the other hand, for general Fourier
coe�cients and also for odd Fourier coe�cients the kernel has to correct the KS pole to the poles of
the interacting system which in this case have shifted to in�nity in the large q limit. Since the KS
density response does not depend on the interaction strength, the leading term and the next to the
leading term of the kernel are fHxc(k, ω) = −χ−1 and therefore they will be adiabatic as the response
function is. The kernel, therefore, is frequency independent when we consider frequencies ω � ∆Ekl
and the frequency dependent terms start to appear at order λ−1/2. To illustrate the accuracy of the
expansion in Eq.(4.49) we show the exact Hxc kernel and the expanded one in the bottom panels of
Fig. 4.5 for k = 2 and several values of the interaction strength. where we can see that the expansion
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Figure 4.5: The real part of χ(k = 2, ω) in units of L (top) and fHxc(k = 2, ω) in units of L−1

(bottom) for di�erent values of the interaction strength q. The exact results are obtained by numerical
integration, and the expansion of χ and fHxc is taken up to the same order as shown in Eq. (4.45).

is accurate up to the lowest excitation energy .

Once the non-locality in time of the Hxc kernel is studied, we proceed to study its spacial dependence.
For this purpose, we write the Hxc kernel in real space tranforming back Eq.(4.49) according to

fHxc(r, ω) =
1

L

∞∑
k=−∞

fHxc(k, ω)e
2πikr
L (4.50)
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where r = x− x′ is the relative distance between the points x and x′. Because both x, x′ belong to
the interval 0 to L, the variable r ∈ (−L,L] and then we �nd that the asymptotic expansion in real
space of the Hxc kernel reads

fHxc(r, ω) = λf1(r) +
√
λf2(r) + f3(r) +O(λ−1/2) (4.51)

where r = x − x′. Because in the next section we will study the leading term and the next to the
leading term of the Hxc kernel in the limit of strong interaction, we just transform Fourier back f1(r)
and f2(r), which read respectively

f1(r) =
V0π

2

2L

[
− |r|+

∣∣∣∣r +
L

2

∣∣∣∣+

∣∣∣∣r − L

2

∣∣∣∣− 3L

4

]
(4.52)

in which we choose the freedom Eq.(3.39), which in Fourier space is translated to add an arbitrary
constant function for homogeneous systems, to de�ne the Hxc kernel such that the Fourier coe�cient
of f1 becomes zero for k = 0. For f2 we �nd that

f2(r) =

√
V0π

4

[
δ(r)− δ

(
r +

L

2

)
− δ

(
r − L

2

)]
−
√
V0π

3

2L2

[
−|r|+

∣∣∣∣r +
L

2

∣∣∣∣+

∣∣∣∣r − L

2

∣∣∣∣− 3L

4

]
.

(4.53)
In the �gure Fig. 4.6 we show the leading term of the Hxc kernel f1. As it can be seen from its

Figure 4.6: The Hxc kernel f1(x− x′) of Eq.(4.52). The x and x′-axes are in units of L and fHxc is
given in arbitrary units.

expression Eq.(4.52) and Eq.(4.53), the kernel encodes information of the whole space where it is
de�ned, being hence a non-local function of the space. We can study the spacial non-locality of the
Hxc kernel by studying the Hxc potential that a small change in the density produces. The change
in the Hxc potential is given in linear response theory by the Hxc kernel according to with Eq.(3.37).
In the strong interaction limit, to the leading order in the interaction strength, it reads

δvHxc(x, t) = λ

∫ L

0

dx′ f1(x− x′)δn(x′, t) (4.54)

and inserting the expression for f1 Eq.(4.52) and taking the second derivative with respect to the
coordinate x of the Hxc potential we �nd

∂2
xδvHxc(x, t) = λ

V0π
2

L
[−δn(x, t) + δn(x+ L/2, t) + δn(x− L/2, t)] , (4.55)
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where since the second derivative of the Eq.(4.52) yields delta functions, we use them to integrate
the density variations. From Eq.(4.55) we see how a change in the density in a point x not only
induces a change in the Hxc potential n x, but also induces a change in the Hxc potential in x±L/2,
ie, in precisely the other side of the ring. The above expression shows clearly how the Hxc potential
depends on the density locally in time but non-locally in space.

Let us brie�y compare the results given by the Hxc kernel in the strong interaction limit with those
results given by the usual local in space and time approximations. The simplest approximation is the
random phase approximation, which sets to zero the Hxc kernel fRPAHxc (x− x′′, ω) = 0. The adiabatic
local density approximation reads

fALDAHxc (x− x′, ω) = C(x)δ(x− x′), (4.56)

where for the case of homogeneous systems, the function C(x) can only be a constant function
C(x) = C. We can use the freedom we have in the Hxc potential in Fourier space for choosing
the arbitrary constant such that it cancels the contribution of the constant C, and therefore, the
fALDAHxc (k, ω) = 0. As a consequence, both local Hxc kernels do not yield any correction of the KS
poles, which means that they predict the poles of the interacting system to be the poles of the non-
interacting one, showing the drastic result of the approximation. We can already see how bad is the
ALDA if we compare it with the one given by the asymptotic expansion Eq.(4.51). By looking at the
plot of Eq.(4.6) we realize that while f1 has information of the whole space where it is de�ned, the
ALDA is zero everywhere except in the diagonal x = x′, losing all the information of the rest of space,
thus being this the reason of the bad approximation. This fact shows that in the strong interaction
regime, local functionals of the density do not provide a good answer since the Hxc kernel does
depend on the density in a non-local way and therefore non-local functional need to be developed.

4.4.2 SCE formalism for the quantum ring

Ground-state SCE for the quantum ring system

In this section, we brie�y comment on how the ground-state SCE formalism performs to describe the
properties of the strong interaction limit of DFT for the QR model system. In the SCE formalism,
the spin-integrated square of the wave function is a distribution which is zero everywhere except in
the subspace M where the energy functional reaches its degenerate minimum. The set Eq.(2.70) is
given by the co-motion functions, which in turn they are determined by the density. For the case of
the QR system, there is one co-motion function f : [0, L]→ [0, L], given by

f(x) =

{
x+ L

2 if x ∈ [0, L2 [

x− L
2 if x ∈ [L2 , L].

(4.57)

The meaning of the co-motion function is that if one electron is at the reference position x, the co-
motion function Eq.(4.57) puts the other electron in the opposite side of the ring, hence, minimizing
in this way the interaction energy. Since |x − f(x)| = L/2 we have from our interaction w(x) =
V0 cos2(πx/L) it is straightforward to obtain the SCE energy for the QR model which applying
Eq.(2.68) we obtain VSCE = 0. When the zero-point oscillations start to appear, they give an energy
contribution which can be obtained using Eq.(2.78) with Eq.(2.79). If we calculate this frequency for
our quantum ring we �nd ω1(x) = 2π

√
V0/L and VZPE = π

√
V0/(2L). Since the KS kinetic energy,

as well as the external potential, is zero for the quantum ring system, EλHxc coincides with the total
energy, which is known in the strong interaction limit from the large interaction limit expansion of
the lowest Mathieu characteristic value given by Eq.(4.25). Regarding the SCE and ZPE potential,
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we can use the expressions obtained in the App.(C) and App.(D) where we obtain Eq.(D.1) and
Eq.(D.7), which are the expressions of the SCE and ZPE respectively for the case of 2 particles in
one dimension.

4.4.3 The ASCE for the quantum ring system

In this section, we want to test if the expansion Eq.(3.54) of the Hxc kernel in the adiabatic approx-
imation can capture the strong interaction limit of a strongly correlated system. For it, we obtain
the leading term, the (3.55) and the next to the leading term, (3.56) of the expansion for the QR
model system. The ASCE kernel is obtained from the expression Eq.(3.57), which for the QR model
system reads

fASCE(x, x′) = −
∫ x

0

dy
w′′(|y − f(y)|)

n [f(y)]
[θ(y − x′)− θ(f(y)− x′)]

= f1(x− x′)− f1(x)− f1(x′) + f1(0) (4.58)

where, by virtue of Eq.(3.39) f1(x) and f1(x′) are the two arbitrary functions we have the freedom
to add, and then we know that f1 is physically equivalent Hxc kernel to the kernel fASCE. The
function f1 is calculated in the appendix App(H) for the case of the QR and its expression agrees
with the leading term of the asymptotic expansion for the large interaction strength limit of the
exact Hxc kernel, that is, the function obtained in Eq.(4.52). The next to the leading term, the
AZPE kernel has been obtained in [34] and whose derivation is given in the App(E). Applying the
resulting expression Eq.(F.2) for the QR model is done also in the App(H), and we �nd that the
obtained expression agrees with the next to the leading term of the asymptotic expansion for the
large interaction strength limit of the exact Hxc kernel Eq.(4.53), up to two additional functions of x
and x′ separately. we therefore conclude that the �rst two leading terms of the expansion of the Hxc
kernel from the adiabatic SCE formalism agree with the exact results for the quantum ring in the
limit of large interaction strength. We have thus seen that, in the QR model system, the ASCE and
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Figure 4.7: The static fHxc(k, ω = 0)/q as function of q, for k = 3 (solid lines) and k = 5 (dashed
lines) in units of L−1. We show the exact kernel obtained by numerical integration, and compare
ASCE, ASCE+AZPE and ASCE+AZPE+f3 (denoted by f3 in the �gure) coming from Eq.(4.51).
Note that we plot the kernel as function of q instead of λ in order to be consistent with the previous
�gures.

AZPE terms agree with the terms f1 and f2 respectively of the exact asymptotic expansion. Since in
the SCE limit the position of one reference electron determines the position of the other electron, the
response in the density under a small perturbation of the system is instantaneous, i.e., adiabatic and
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hence, the Hxc kernel is this limit also is. Once the zero-point vibrations are introduced, we already
introduce a characteristic frequency, i.e., the frequency of the vibrations which is proportional to the
square root of the interactions strength. Even though a characteristic frequency is introduced, we
still �nd that the response function is still adiabatic. A plausible explanation is that none external
perturbation with a �nite frequency can reach the harmonic frequency of the zero-point vibrations,
which is proportional to

√
λ, but a more careful analysis is needed to state a strong conclusion. Thus,

the second order expansion Hxc kernel is also adiabatic.

To end the analysis of the strong interaction limit of the Hxc kernel of TDDFT for the QR system,
we show in Fig. 4.7 the �rst three terms of the asymptotic expansion of the exact QR Hxc kernel,
all scaled by λ, and we compare them with the expression for the exact kernel in Fourier space, for
k = 3 and k = 5. The ASCE term scaled with λ is a constant and it is a good approximation for very
large interactions strength while the AZPE improves the approximation on it for large λ-values and
worsens it for smaller ones. Finally, the third term, beyond the AZPE, improves the approximation
for large values of the interaction strength, and it shows a non-negligible contribution when the
interaction strength is small. We also observe that the accuracy of the expansion depends on the
value of k, i.e., the higher k value is, the higher interaction strength is required higher for more
accurate approximations for the Hxc kernel.

Based on the results of this work, we can conclude that the adiabatic SCE formalism and concretely,
the SCE kernel constructed in the adiabatic approximation is a good candidate density functional
to describe the features of the strong correlation limit correctly. The natural question that arises
is whether the adiabatic SCE kernel can be used to predict the excitation energies of dissociating
molecules correctly. Answering this question is the main focus of the next chapter. To attack this
problem, we developed a simpli�ed one-dimensional model of the hydrogen molecule having the
main physical characteristics of the real three-dimensional hydrogen molecule and for which we can
perform analytical mathematical results, and also obtain the many-body wave function for various
bond distances numerically.



5 A simpli�ed model for describing

H2

5.1 The model system

For the description of the simpli�ed H2 molecular model we consider two electrons of coordinates
x1, x2, de�ned on a ring of length L such that x1, x2 ∈

[
−L2 ,

L
2

]
. The form of the Hamiltonian is

given by

Ĥλ(x1, x2) =− 1

2

(
∂2
x1

+ ∂2
x2

)
+ vλ(x1) + vλ(x2) + λ cos2

[π
L

(x1 − x2)
]
, (5.1)

where the �rsts two terms are the kinetic energy of each electron, vλ is the one-body external
potential, and the last term is the two-body electron-electron interaction, which is scaled with a
strength λ. The strength of the interaction λ is a continuous semi-positive parameter λ ≥ 0, and
the external one-body potential is de�ned in a way that the ground-state density is the same for
all λ according to the construction Sec. 2.3. This construction is possible by virtue to the HK
theorem Sec. 2.1, which states that for �xed two-body interaction, i.e., for a �xed λ the ground-state
density determines uniquely the one-body external potential provided that this potential exists. The
external one-body potential is then a functional of the ground-state density vλ[n](x), and therefore
the Hamiltonian Eq.(5.1) is uniquely determined by the ground-state density.

5.2 The H2 molecular model

This section is devoted to constructing the model density able to mimic a real H2. Since the Hamil-
tonian Eq.(5.1) is built with the constraint that it produces the same density for each λ, one way
of choosing a suitable density is to pick a particular external potential. The easiest and the most
practical way to specify the given density is by means specifying the non-interacting system. Since
the non-interacting or KS system is de�ned from the Hamiltonian Eq.(5.1) for λ = 0 interaction
strength, which sets to zero the two-body electron-electron interaction, the resulting Hamiltonian
reduces to a two-particle non-interacting Hamiltonian, which reads

Ĥs(x1, x2) = −1

2

(
∂2
x1

+ ∂2
x2

)
+ vs(x1) + vs(x2) , (5.2)

where we write "s" as a subindex of the Hamiltonian instead of "0" because it stands for single
particle Hamiltonian. The KS potential is chosen to be

vs(x) = v0

[
cos

(
4πx

L

)
+ 1

]
, (5.3)

where v0 is a constant with units of energy. The choice of the KS potential is because it has two
minima located at x0 = ±L4 , and therefore, the ground-state density produced by such potential will

58
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have two maxima at ±L4 , represented in this way two electrons, each of them located around the
position ±L4 and separated by the bond distance L/2. We are interested in constructing a model such
that the density mimics a H2 molecule. In particular, we are interested in the model to reproduce
molecular dissociation for all the range of the interaction strength λ. For that purpose, we need
to impose the ground-state density to be independent of the interaction strength when we stretch
the molecule. We do that by imposing the width of the density maxima to be independent of the
bond distance L/2 while the distance between the maxima varies. This condition is guaranteed by
demanding the constraint that the width of the potential has to be independent of the L, i.e., u0 ∼ L2,
or in other words, we have to demand that the curvature of the potential at x0 = ±L4 has to be
independent of the length. This condition reads

v′′s (x)|x0
=

(
4π

L

)2

v0 ≡ α, (5.4)

where α is independent of L. As a consequence, the amplitude of the KS potential is enforced to
have the speci�c shape v0 = α

(
L
4π

)2
for an arbitrary but length independent curvature α. The KS

equation for the 2-spin compensated system read[
−1

2

d2

dx2
+ v0 cos

(
4πx

L

)]
ϕl(x) = (εl − v0)ϕl(x) (5.5)

The KS equations Eq.(5.5) must be solved together with the boundary conditions ϕl(−L/2) =
ϕl(L/2), and the same for its derivatives. For solving them, it is now convenient to de�ne the non-
dimensional coordinate z = 2πx

L and write the KS equations in terms of the new coordinate as
follows [

− d2

dz2
+ 2ν cos(2z)

]
M±l (z) = a±l M

±
l (z), (5.6)

where we have de�ned the following constants

a±l = 2

(
L

2π

)2

(ε±l − v0) (5.7)

ν =

(
L

2π

)2

v0 =
α

4

(
L

2π

)4

(5.8)

and where the equation Eq.(5.8) has been written in terms of the constraint Eq.(5.4). The equation
(5.6) is the Mathieu equation, its eigenfunctions M+

l are the Mathieu-cosine, which we denote by
Cl and M

−
l is the Mathieu-sine which is denoted by Sl. In turn, its eigenvalue a±l is the Mathieu

characteristic value. Now the boundary conditions for the Mathieu functions in terms of z read
M±l (−π) = M±l (π). Choosing the normalization convention of Mathieu functions to be Eq.(4.11),
we therefore see that the KS orbitals are Mathieu functions up to a multiplicative normalization
constant, which are expressed as follows

ϕ+
l (x) =

√
2

L
Cl

(
2πx

L
; ν

)
ϕ−l (x) =

√
2

L
Sl

(
2πx

L
; ν

)
(5.9)

and the orbitals ϕ+
l are labeled starting at l = 0, while the orbitals ϕ−l are labeled starting at l = 1.

Moreover, the single particle energies obey the relation ε+0 < ε−1 < ε+2 < ε−3 .... The KS eigenspectrum
in terms of the Mathieu characteristic reads

ε±l (ν)− v0(ν) =
1

2

(
2π

L

)2

a±l (ν), (5.10)
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Once the solution of the KS equation is analyzed, we proceed to describe the density of the molecular
model. The ground-state density is chosen to be

n(x) = 2|ϕ±0 (x)|2. (5.11)

As we anticipated before, such a ground-state exhibit two maxima at ±L4 , representing in this way
two electrons which each of them is located around the position ±L4 and separated by the bond
distance L/2. It is interesting to study the model density Eq.(5.11) for large bond distances. We
note that by the de�nition Eq.(5.8), the parameters L and ν di�er just a multiplicative constant.
Therefore, from now on, we will refer to the large/small bond distance limit as the limit in which
either two variables tends to in�nity/zero. Using the Sips expansion for large ν limit of the Mathieu
functions [35], the density attains the form

n(x) =

√
α1/2

π

[
e−2
√
α(x−L4 )

2

+ e−2
√
α(x+L

4 )
2]
. (5.12)

We can now see the condition Eq.(5.4) we enforced implemented. From the above expression we see
that for large bond distances, the density becomes two Gaussian centered in x = ±L/4 whose widths
are independent of L. This picture is represented in Fig. 5.1 from where we can see the plots of the
KS potential and the ground-state density for di�erent bond distances. It is shown that as the bond
distance L increases, the curvature of the potential and the width of the density are kept independent
of the length L. As a consequence, the two density maxima show an overlap that decreases when
the bond distance L increases, showing that in the symmetry point x = 0 the ground-state density
decays to zero as a function of the length L, depicting in this way the right features of a dissociation
process. We can then assert that the model density proposed, Eq.(5.11), reproduces properly the
main features of the H2 molecule. Because we are interested in spatially symmetric solutions, ie,
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Figure 5.1: Plot of the ground-state density n/L2 Eq.(5.11) as a function of the scaled coordinate
z = 2πx/L. It is shown how the width of the density is kept independent of L. As a consequence,
when the bond length is increased, the overlap between maxima becomes negligible in the large
separation limit L→∞.

those solutions such that the spin component is always the singlet, we identify the ground-state wave
function to be the Mathieu-Cosine C0

ΨGS
s (x1, x2) = ϕ+

0 (x1)ϕ+
0 (x2), (5.13)

and we construct the spatially symmetric �rst excited-state as

Ψ1st
s (x1, x2) =

1√
2

[
ϕ+

0 (x1)ϕ−1 (x2) + ϕ+
0 (x2)ϕ−1 (x1)

]
, (5.14)
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where we have added two Slater determinant to ful�ll the required symmetries for the full space-spin
wave-function. It is shown in Fig. 5.2 the Kohn-sham ground-state and the �rst symmetric excited-
state wave functions. From the solution of the KS equation, the ground-state and the �rst-excited

Figure 5.2: Plot of the Kohn-Sham ground state (above) and the �rst symmetric excited state
(below) wave function for bond distances L = 1 (left) and L = 21 (right).

state energies read

EGS
s (ν) = 2ε+

0 (ν) =

(
2π

L

)2

a+
0 (ν) + 2v0 (5.15)

E1st
s (ν) = ε−1 (ν) + ε+

0 (ν) =
1

2

(
2π

L

)2 [
a−1 (ν) + a+

0 (ν)
]

+ 2v0. (5.16)

By subtraction of the KS ground-state and the �rst-excited state, and using the asymptotic expansion
for the Mathieu characteristic value for L, ν →∞, we get

ε−1 (ν)− ε+
0 (ν) −−−−→

L→∞
0, (5.17)

which decays exponentially to zero as a function of the bond distance L. We can then identify for
the molecular model the localized orbitals "bonding" φa and "anti-bonding" φb as follows

φa(x) =
1√
2

[
ϕ+

0 (x) + ϕ−1 (x)
]

(5.18)

φb(x) =
1√
2

[
ϕ+

0 (x)− ϕ−1 (x)
]
. (5.19)

For ending this section, we comment that taking the limit ν → 0, the external potential becomes
0 for all interaction strength and the density becomes homogeneous, recovering in this way the
homogeneous solution Sec. 4.
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Our goal now is to is to construct the Hamiltonian Eq.(5.1) that produces the ground-state density
Eq.(5.11). Once the Hamiltonian is built, the solution of the Schrödinger equation will provide the
exact eigenstates and the exact excitation energies for all range of parameters of interest L and
λ. In particular, we are interested in describing the exact eigenstates and energy spectrum of the
simpli�ed hydrogen model as a function of the bond distance L and the interaction strength λ. We
will then analyze them in the limit of large bond distances, which describes the dissociation processes
of the H2 molecular model, for arbitrary but �nite interaction strength and also in the limit of large
interaction strength for arbitrary bond distance. We are also interested in studying the external one
body potential vλ that produces the ground-state density for all the range of parameters L and λ.

5.3 Construction of the Hamiltonian and exact solution of the

Schrödinger equation

The properties of the system are given by means the many-body wave function, which is the solution
of the Schrödinger equation. For the 2-electron system, the full solution to the Schrödinger equation
can be written as a product of a spatial wave function and a spin wave function as follows

Ψ(x1σ1, x2σ2) = ψ±(x1, x2)Ξ±(σ1, σ2). (5.20)

For the singlet case, which is the case we focus on, the normalized spin wave function reads

Ξ±(σ1, σ2) =
1√
2

(δσ1↑δσ2↓ − δσ1↓δσ2↑) . (5.21)

Regarding the triplet case, there are three independent symmetric wave functions which we denote
by Ξ−(σ1, σ2). Since the full two-electron wave function Ψ(x1σ1, x2σ2) must be antisymmetric under
the simultaneous interchange of space and spin variables, the spatial wave functions ψ± must satisfy
the following symmetry relations

ψ±(x1, x2) = ±ψ±(x2, x1). (5.22)

The solution of the Schrödinger equation has to be solved imposing periodic boundary conditions on
the variables x1 and x2, i.e., the wave function has to be invariant under the substitution xi → xi+L
for i = 1, 2, and the same for its derivatives.

For solving the Schrödinger equation, we constructed �rst the one-body external potential vλ[n] as
a function of L and λ that produces the density 5.11. With the external potential determined, the
Hamiltonian Eq.(5.1) is also uniquely determined, and then we can solve the Schrödinger equation
obtaining in this way the eigenstates and the energy spectrum as a function of the bond distance
and the interaction strength. Practically, this inversion problem involves an iterative procedure from
where the external one-body potential that yields the prescribed density, and the ground-state wave
function are calculated at a time within one iteration step, keeping the iteration procedure going until
the desired convergence is reached. This problem has already been studied, and the algorithm we
have used in our numerical calculations is explained in detail in [62, 63]. For calculating the one-body
external potential that yields our model density Eq.(5.11) for a nonzero interaction strength and the
subsequent resolution of the Schrödinger equation, we have kept the width of the density to be α = 1
for all the numerical calculations. The numerical reason for having picked this particular two-body
interaction in Eq.(5.1) becomes clearer, and it is because if we perform the limit ν → 0, we recover
the homogeneous quantum ring system which we can solve analytically, and whose study has been
explained in Sec. 4 and [34]. For the set of parameters L ranging from 1 to 21 and λ ranging from
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0 to 10000 we have obtained the external one-body potential that yields the prescribed density, the
ground-state and the �rst spatially symmetric excited-state wave functions with their corresponding
energy spectrum.

Because we are interested in the solution of the wave function and the energy spectrum for the limits
of large bond distance and large interaction strength for its subsequent comparison, the following
sections, therefore, are devoted to the detailed analysis of such limits, and as well to develop analytic
models that are useful for the better understanding of both physical situations.

5.3.1 The limit of large bond distance: The HL system

The HL system is de�ned from the Hamiltonian (5.1) by doing the limit of large bond distances L→
∞ no matter the strength of the interaction λ, provided that it is �nite. We are interested in giving
approximate expressions for the Hamiltonian Eq.(5.1), the ground-state and the spatially symmetric
excited-states and its corresponding excitation energies for the limit of large bond distances L, for all
but �nite interaction strengths. For a H2 molecule, for the limit of large bond distances, the external
potential in the near neighborhood of each atom is approximately the external potential of this single
atom, since the two-body interaction is negligible. Then the Hamiltonian that describes the system
in the dissociation limit is Eq.(5.1) with the one-body potential given by

vλ,HL(x) = v0

[
cos

(
4πx

L

)
+ 1

]
. (5.23)

The ground-state wave function that describes the limit of large bond distances and �nite interaction
strength is the HL ground-state wave function, whose spatial part reads

ΨGS
λ,HL(x1, x2) =

1√
2

[
ϕ+

0 (x1)ϕ+
0 (x2)− ϕ−1 (x2)ϕ−1 (x1)

]
. (5.24)

For the calculation of the ground-state energy, if we take into account the expressions Eq.(5.5),
Eq.(5.10) for the limit of large bond distance, and the fact that the di�erence a+

k − a
−
k+1 for �xed k

is exponentially small [35], we can write a+
0 = a−1 ≡ a0, and then the ground-state HL energy reads

EGS
λ,HL = 2ε+

0 =
√
α− π2

L2
+O

(
L−4

)
, (L→∞). (5.25)

Since we are interested in the description of excited states in molecular dissociation, we focus our
attention in that HL spatially symmetric excited-state wave function that represents each electron
located in each atom, and one of the electrons promoted to the �rst excited-state of any of the atoms.
The �rst excited-state of this kind reads

Ψ
(1)
λ,HL(x1, x2) =

1

2

[
ϕ+

1 (x1)ϕ−1 (x2) + ϕ−1 (x1)ϕ+
1 (x2)− ϕ+

0 (x1)ϕ−2 (x2)− ϕ−2 (x1)ϕ+
0 (x2)

]
. (5.26)

For the calculation of the HL �rst excited energy we again make use of the Eq.(5.5) and Eq.(5.10),
and the fact that the di�erence a+

0 − a
−
1 is exponentially small such that we can write a+

0 = a−1 ≡ a0

and a+
1 = a−2 ≡ a1. Then, the energy of the �rst excitation reads

E
(1)
λ,HL = ε0 + ε1 = 2

√
α− 3π2

L2
+O

(
L−4

)
, (L→∞). (5.27)

Subtracting the ground-state HL energy, we get the excitation energy for large bond distance and
arbitrary but �nite interaction strength, which in the very limit of large bond distances reads

E
(1)
λ,HL − E

GS
λ,HL =

√
α, (L→∞). (5.28)



64 A simpli�ed model for describing H2

We have derived expressions for the ground-state wave function, the 1st spatially symmetric excited
states and their corresponding eigenenergies which can be compared with the numerical results given
by the exact solution of the Schrödinger equation.

We show in the plot Fig. 5.3 the ground-state and �rst symmetric excited state energy curves as a
function of the bond distance, for the various strength of the interaction, in comparison with the
asymptotic expressions derived for large bond distance for all but �nite interaction strength. For
the ground-state, the plot shows how the exact energy curves converge to the asymptotic expression
Eq.(5.25) as the bond distance grows. In turn, for the �rst excited state, the plot shows that the
convergence of the exact energy curves to the asymptotic expression Eq.(5.27) occurs much slower
than in the ground-state, which means that larger bond distance is needed for considering the system
completely dissociated.
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Figure 5.3: Plot of the exact ground-state energy curve for λ = 0.25, 0.5, 0.75, 1, in comparison
with the asymptotic expression Eq.(5.25) (left panel). Plot of the �rst symmetric excited-state for
λ = 1, 2, 3 in comparison with the asymptotic expression Eq.(5.27) (Right panel). Unlike the ground-
state, the excited-state wave function is still described by the KS one for the values of λ0.25, 0.5,
and the excited state HL starts to appear at higher values of the interaction strength, which means
that higher values of the bond distances are needed for bringing the excited-state to the dissociation
regime.

We also show in Fig. 5.4 how the HL wave functions both for the ground-state Eq.(5.24) and the
�rst symmetric excited state Eq.(5.26) �t to the exact wave function for large bond distances, where
it is plotted the exact wave functions and the error made by approximating them by the HL wave
functions. We then see that for large enough bond distances the HL wave functions approximate well
the exact wave function around x1, x2 = ±L/4, since the error made in this zone is about one order
of magnitude less than the maximum value of the exact wave function.

For �nishing the analysis of the large bond distances, we show in the plots Fig. 5.5 the comparison
of the exact external one body potential that yields the density Eq.(5.11) versus the HL potential
Eq.(5.23). It is shown that for large bond distances, the exact external potential is well described by
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L=21, λ=1

L=21, λ=1

Figure 5.4: Exact ground-sate and �rst symmetric excited state for L = 21 and λ = 1. It is also
shown the absolute value of the di�erence between the exact wave function and its approximation
by the HL wave functions Eq.(5.24) and Eq.(5.26).

the HL potential in almost all the domain of the potential. However, the exact potential displays a
central pick in the midpoint which is not described by the HL potential. The pick decreases as the
di�erence between the bond distances and the interaction strength increases, and it is related with
the Hxc potential, as we will see in the DFT section. A thorough analysis of the e�ect of molecular
dissociation on the Hxc potential is given in [64, 65].

5.3.2 The limit of large interaction strength: The strongly correlated sys-

tem

In this section, we proceed to analyze the strong interaction limit of the model system. The strongly
correlated system is de�ned from the Hamiltonian (5.1) by doing the limit λ → ∞ for any bond
distance. We are interested in doing a general description of the system for the limit of large inter-
action strength for any bond distance, and give approximate expressions for the Hamiltonian, its
eigenstates and its energy spectrum. For a proper analysis of the large interaction strength limit, it
is convenient to introduce the coordinates of the center of mass R = x1+x2

2 and relative coordinate
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Figure 5.5: Exact external potential in comparison with the HL potential Eq.(5.23) for the bond
distances L = 21 and interaction strength λ = 0.25, 1. The HL potential approximates well the exact
potential around x = ±L/4 and displays the characteristic pick related with the Hxc potential of a
dissociating system.

r = x1 − x2. The Hamiltonian (5.1) in the new coordinates reads

Ĥλ(s, z) =− 1

4
∂2
R − ∂2

r + vλ

(
R+

r

2

)
+ vλ

(
R− r

2

)
+ λ cos2

(
2πr

L

)
. (5.29)

To analyze the strong interaction limit and based on the numerical resolution of the Schrödinger
equation, we make the following plausible assumption for the one-body external potential in the
large λ limit: We assume that in the large λ limit, the external potential admits a Taylor expansion
around the lines r = ±L/4 as follows

vλ

(
R+

r

2

)
+ vλ

(
R− r

2

)
= 2vλ (R) +

∂2vλ
(
R− r

2

)
∂r2

∣∣∣∣∣
r=±L2

(
−r ± L

2

)2

+O
(
r4
)
, (5.30)

and we also assume that its derivatives along the r direction, i.e., the corrections of the expansion
to the leading term in the r direction are decaying functions of the interaction strength. Under these
assumptions, the Hamiltonian (5.1) in the large λ limit attains the form

ĤSC,λ(R, r) ≡
(
−1

4
∂2
R − ∂2

r

)
+ 2vλ (R) + λ cos

(
2πr

L

)
, (5.31)

where the subindex "SC" stands for strong coupling. We now write the Schrödinger equation in
terms of the non-dimensional coordinates s = π

LR and z = π
Lr, which reads[(

−1

4
∂2
s − ∂2

z

)
+ 2

(
L

π

)2

vλ

(
Ls

π

)
+ 2q cos (2z)

]
ΨSC,λ(s, z) = ẼSC,λΨSC,λ(s, z) (5.32)

where we have de�ned

ẼSC,λ =

(
L

π

)2

ESC,λ − 2q (5.33)

q = λω0

(
L

2π

)2

. (5.34)

As before, since the parameter q and λ di�er only a multiplicative constant, we will, therefore,
refer to the large interaction strength limit when either both variables tend to in�nity. Since the
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Hamiltonian (5.31) is separable, the Schrödinger equation (5.32) admits a product solution. Note
that the Schrödinger equation is only separable in the very limit of large interaction strengths. If
we consider adding the next to the leading order in the expansion of the external potential for
large interaction strength in Eq.(5.30), it already mixes both coordinates and the equation be-
comes non-separable. We can write the solution of the Schrödinger Eq.(5.32) as a product ansatz as
ΨSC,λ

(
Ls
π ,

Lz
π

)
= Nλϕλ(s)Mλ(z) where Nλ is a normalization factor. Inserting the ansatz into the

Schrödinger equation (5.32) we get one equation for each coordinate[
−1

4
∂2
s + 2

(
L

π

)2

vλ

(
Ls

π

)]
ϕλ(s) = aϕλ(s) (5.35)[

−∂2
z + 2q cos(2z)

]
Ml(z; q) = al(q)Ml(z; q), (5.36)

where ẼSC,λ = a + al(q). We can solve the equation for the z coordinate since it is the Mathieu
equation, its solutions M±l are Mathieu functions, and the eigenvalue is the Mathieu characteristic
value a±l . We do not know still the one-body potential vλ in the limit of the strong interaction, but
we know that by the density constraint, it is the unique external potential that produces the given
ground-state density, and hence it must be determined entirely by means the ground-state density.
This is indeed the case, and if we calculate the ground density, we get

n(x) =

L/2∫
−L/2

dx2 |ΨSC,λ (x, x2) |2

=
4

L2

L/2∫
−L/2

dx2 ϕ
(0)
λ

[
π

L

(
x+ x2

2

)]2

C0

[π
L

(x− x2); q
]2
. (5.37)

But the above expression has only sense in the limit λ → ∞. Therefore we use the explicit form of
the Mathieu-cosine function for the large q limit given by the Sips expansion [35], which reads

lim
q→∞

C2
0 (z; q) =

π

2

[
δ
(
z − π

2

)
+ δ

(
z +

π

2

)]
(5.38)

and which inserted in Eq.(5.37), we �nally get

n(x) =
4

L
ϕ

(0)
λ

[
π

L

(
x± L

4

)]2

, (5.39)

wherein the last step we have used the symmetry properties of ϕ(0) to gather both terms into one. For
our particular density 5.11, and knowing that in the limit of large interaction strength s = π

L

(
x+ L

4

)
,

then we can �nally calculate the external potential for the large interaction strength, which is given
explicitly by the ground-state density by equation (5.35)

vλ

(
Ls

π

)
=
( π

2L

)2 ∂2
s

√
n(2s)√
n(2s)

=
( π

2L

)2 ∂2
sϕ

(0)
λ (s)

ϕ
(0)
λ (s)

+
v0

4
=
v0

4
[cos (4s) + 1] , (q →∞), (5.40)

which is independent of the interaction strength in the large λ limit, being consistent with the
assumption made Eq.(5.30). With the external potential for large interaction strength determined,
the part of the Schrödinger equation for the center-of-mass coordinate Eq.(5.35) can be solved by
doing the change of variable t = 2s in the equation (5.41), which becomes a Mathieu equation again.[

−∂2
t + 2ν cos (2t)

]
Mk(t; ν) =

[
ε±k (ν)− v0

4

]
Mk(t; ν), (5.41)
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where we wrote the potential in terms of the parameter ν given by Eq.(5.8). Finally, changing back to
the original coordinates, the full solution for the Schrödinger equation for the large λ limit Eq.(5.32)
reads

Ψ
(k,p;l,p′)
SC,λ (R, r) =

2

L
Mp
k

(
2πR

L
± π

2
; ν

)
Mp′

l

(πr
L

; q
)
, (5.42)

where p, p = ±. Since the Mathieu functions have the periodicity propertyM±n (x) = (−1)lM±n (x+π),
they are periodic in π for even values of n and anti-periodic for odd values of n. Therefore, for the
wave function Eq.(5.42) to satisfy the periodic boundary conditions under the change xi → xi + L
for i = 1, 2, the labels k and l must be both even or both odd. In turn, the energy spectrum reads

E
(k,±;l,±)
SC,λ =

(π
L

)2 [
a±k (ν) + a±l (q) + 2ν + 2q

]
=
π2

L2

[
a±k (ν) + 2ν + 2(2l + 1)

√
q − 1

4
(2l2 + 2l + 1) +O

(
q−1/2

)]
, (5.43)

where we have used in the last step again the large q asymptotic expansion for the Mathieu charac-
teristic value.

To illustrate how the wave functions for large interaction strength look like, we showed in Fig. 5.6
the plots of the exact ground-state and the �rst symmetric excited-state, and how they deviate
from the product solution Eq.(5.42). For large interaction strength, the exact wave function is well
represented by the product solution around r = ±L/4, which justi�es our initial assumption. We see
from the plots that for any bond distance, both the ground-state and the �rst symmetric excited-
state wave function get squeezed along the r direction, which according to the product solutions for
large interaction strength, Mathieu functions become Hermite functions with a width proportional to
1/
√

2q1/4. The Mathieu function along the r direction is modulated by the Mathieu function along
the R direction, which for small ν are well approximated by plane waves and we obtain back the
homogeneous QR, and for large ν they are also represented by Hermite functions.

After having obtained the wave functions for both systems, we can see that the wave function
of large bond distance and large interaction strength look very di�erent between them. To better
understand their physical meaning, let us have a look at the conditional probability of having one
reference electron at x = −L/4, constructed by both HL and SC wave functions. Both conditional
probabilities are shown in Fig. 5.7. We see that both probability distributions correlate the other
electron around L = L/2, but the SC probability distribution becomes narrower in the limit of
large interaction strength with a broadening which is due to the zero-point oscillations around the
equilibrium relative position. In the very limit, the SC probability distribution becomes a Dirac delta
function while the HL probability distribution maintains the width invariant.

Let us discuss the type of excitations that the system shows in the limit of large interaction strength.
Consider the excitations Eq.(5.43) from the ground-state to another state with k = 0. These excita-
tions are given by

E
(0+;l+)
SC,λ − E(0+;0+)

SC,λ =

(
2π

L

)2

l
√
q. (5.44)

These are excitations of the relative coordinate while keeping the center-of-mass excitations in its
ground-state, and therefore they cost an amount of energy that grows with the interaction strength.
It is plotted in Fig. 5.8 the exact ground-state and �rst symmetric excited-state energy as a function
of the interaction strength, for various bond distances, and they are compared with the asymptotic
expressions Eq.(5.42) for the ground-state and �rst symmetric excited-state that were obtained for
the strong interaction limit. We see that when the interaction strength is large enough, the energy
spectrum follow the square root behavior Eq.(5.43) as a function of the interaction strength, for any
bond distance.
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L=1, λ=10000 L=21, λ=10000

Figure 5.6: Plot of the ground-state, the �rst symmetric-excited state for L = 1 and λ = 10000
(left) and for L = 21 and λ = 10000 (right). It is also shown the absolute value of the di�erence
between the exact wave function and its approximation by the SC wave functions, showing that for
the large interaction strength limit, the product solution Eq.(5.42) is a good approximation to the
exact wave function around r = ±L/4.
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Figure 5.7: Ground state conditional probability of �nding an electron at position x = L/4 having
put a reference electron at the position x1 = −L/4 for both HL and SC systems, for L = 21 and
λ = 10000
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Figure 5.8: Plots of the ground-state and the �rst excited-state curves as a function of λ for values
of the bond distance L = 0.5, 1, 3. It can be seen that for large values of the interaction, both the
ground-state and the excited-state grow proportional to

√
λ.
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Consider now the excitations Eq.(5.43) from the ground-state to another excited state with l = 0.
These excitations are given by

E
(k+;0+)
SC,λ − E(0+;0+)

SC,λ =
π2

L2

[
a±k (ν)− a+

0 (ν)
]
, (5.45)

which are excitations independent of the interaction strength. These excitations correspond to the
center-of-mass excitations, keeping the relative coordinate in its ground-state and therefore the energy
does not grow with the interaction strength. In the plot Fig. 5.9 we show the excitation energy
Eq.(5.45) for k = 2, l = 0. As the interaction strength grows, the exact curve approaches to the
asymptotic excitation, having a total agreement for very large interaction strengths. Moreover, we
note that performing the limit of small bond distances, we recover the center-of-mass excitations of
the homogeneous QR, since when ν → 0, a±k (ν) = k2. If we now consider the excitations that are
independent of the interaction strength in the large q limit expansion, and we perform the large L
expansion of Eq.(5.45), using the asymptotic expansion of the Mathieu eigenvalue [35], we get

lim
ν→∞

E
(k+;0+)
SC,λ − E(0+;0+)

SC,λ =

√
α

2
k. (5.46)

where k must be an even number, because l = 0 and both k, l must be both even or both odd. Taking
in the above expression the value k = 1, we see that the center-of-mass excitations in the large L
limit coincide with the HL �rst excitation Eq.(5.28).
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Figure 5.9: Exact �rst symmetric excitation energy (k = 2, l = 0) (red dots) in comparison with
the asymptotic expression for the large interaction limit as a function of the bond distance (blue
line) for λ = 1 (left panel) and for λ = 10000 (right panel). We see that the exact excitation energy
approaches to the asymptotic expansion π2

L2 [a−2 (ν)− a+
0 (ν)] as the interaction strength grows.

Finally and for completing the strong interaction limit discussion, in the plot Fig. 5.10 we show
how the exact external one-body potential �ts the external one-body potential when the interaction
strength is large enough, given by the expression Eq.(5.40), for di�erent values of the bond distance.
We see also in the SC regime that the exact potential displays a pick, which is reduced the bigger is
the strength of the interaction. In the strong interaction limit, the external potential is assumed to
follow a power law expansion as a function of the

√
λ [2]. The power law dependence of the external

potential in the strong interaction limit can be studied analytically at the linear response regime.
For bond distances near homogeneity, the external potential is well determined by means the linear
response function of the homogeneous system. The response function was calculated exactly for the
homogeneous QR in the previous chapter, and then the external potential is obtained according
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Figure 5.10: Exact external one body potential in comparison with the external potential obtained
for the large interaction strength limit Eq.(5.40) for L = 1 (left panel) and for L = 21 (right panel),
and for an interaction strength λ = 10000. The SC potential reproduces the exact potential except
in the midpoint, where the remaining ṽ(x)√

λ
becomes important and therefore, very big interaction

strength are needed to make vanish the remaining term, since it is suppressed very weakly, i.e., by
the square root of the interaction strength.

to the expression Eq.(4.47), where the response function in the strong interaction limit is given by
Eq.(4.45) for k even, since the density Eq.(5.11) has only even Fourier coe�cients. After transforming
back to real space the Fourier coe�cients according to

δv(x, ω) =
1

L

∞∑
k=−∞

χ−1(k, ω)δn(k, ω)e
2πikx
L , (5.47)

then, the leading order and the next to the leading order of the one-body external potential in the
linear response regime read

vλ(x) =
L

32
∂2
xn(x)− L2

256π
√
λw0

∂4
xn(x), (λ→∞). (5.48)

from where we can see the power law expansion as a function of the
√
λ.

The next section is devoted to describe with the SCE formalism both the ground-state and for the
excited-states.

5.4 Strictly correlated electrons

In this section, we apply the formalism of SCE for the molecular model system. In the formalism
of SCE, the co-motion function determines the position of N − 1 electrons given the position one
reference electron. For a 2-electron system and for a general density on the ring with even symmetry
such that n(x+L/2) = n(x), it can be shown that the co-motion function is always a linear function.
Using the cumulant function Eq.(A.2) to be the function that counts the number of particles on the
ring, i.e., de�ned from −L/2 to the point x with x ∈ [−L/2, L/2] and with N(L) = 2 as

N(x) =

∫ x

−L/2
n(s)ds, (5.49)
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and using the even symmetry properties of the density and the fact that the density always integrates
to one particle if we integrate at half of the circle, we get

1 =

∫ f(x)

x

n(s)ds =

∫ f(x)

x

n(s∓ L/2)ds =

∫ f(x)±L/2

x±L/2
n(s)ds =

∫ f(x±L/2)

x±L/2
n(s)ds, (5.50)

from where we obtain ∫ f(x)±L/2

f(x±L/2)

n(s)ds = 0. (5.51)

Taking inverse of the cumulant function we have that f(x±L/2) = f(x)±L/2, and thus the co-motion
function must be linear. Therefore, for a system of two particles producing a general even density
like n(x + L/2) = n(x) on the ring, the co-motion function reads f : [−L/2, L/2] → [−L/2, L/2],
given by

f(x) =

{
x+ L

2 if x ∈ [−L2 , 0[

x− L
2 if x ∈ [0, L2 ].

(5.52)

This is a particularity of the two-electron system, since the density always integrates to one particle
in half of the ring, no matter the origin of integration we choose.

Following the SCE formalism, the square of the wave function becomes a probability distribution
that is zero everywhere except where the energy functional attains its degenerate minimum, i.e.,
in the set M = {s, f(s)} Eq.(2.70). As we explained before, for large but still �nite interaction
strength, the electrons are expected to perform small oscillations around the energy minimum, and
the Hamiltonian can be expanded around the setM , i.e., around (x1, x2) = (s, f(s)). Performing such
an expansion, it leads to the set of equations Eq.(5.35) and Eq.(5.36), and the energy spectrum that
SCE formalism predict agrees with the ground-state energy given by Eq.(5.43). We conclude that
the SCE formalism describes well the model system in the limit of large interaction strength limit,
as it was expected.

5.4.1 Kohn-Sham SCE approach

In this section, we study whether the Hxc kernel given by the SCE formalism can reproduce bond
breaking dissociation for our one-dimensional model system. Because the SCE Hxc functional has
a spacial non-local dependence on the density by means the co-motion functions, we showed in the
last section Sec. 4 it can capture the strong correlation that a strongly interacting system shows.
Moreover, in Sec. 5, we showed that despite the conditional probabilities formed by the HL and the
SC systems to have a reference electron at x1 = −L/2 are not the same probability distribution,
they both correlate the other electron around x2 = L/2. Thus, the question now is if the SCE
Hxc functional can as well describe the correlation that bond breaking of molecules shows. As we
explained in Sec. 2.7, the question whether the SCE Hxc functional can reproduce ground-state
breaking dissociation curves for the H2 molecule has already been addressed, and it was shown that
the leading order in the SCE expansion of the Hxc potential evaluated in the realistic system λ = 1
dissociates correctly. For our molecular model system, KS equations for the spin compensated system
read [

−1

2
∂2
x + ve(x) + vHxc[n](x)

]
ϕi(x) = εiϕi(x), (5.53)

and according to the KS-SCE formalism, we choose the Hxc potential given by the SCE asymptotic
expansion evaluated at λ = 1. Consider in the �rst place to take as a Hxc potential the leading term
and the next to the leading term, the SCE and the ZPE potentials, which for our model system they
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are identically zero. Since in the limit of large bond distances the one-body external potential becomes
Eq.(5.23), we can conclude that not only the SCE potential dissociates correctly, in agreement with
[33, 51], but also the ZPE potential does. This is a particularity of our periodic system, and the
the fact that the density ful�lls even symmetry, which is the reason that makes vanish both SCE
and ZPE potentials. Now introduce the third term in the expansion Eq.(2.77), the term v(3), which
by means of the exact relation vs(x) = vλ(x) + vHxc,λ(x), and knowing that the external potential
obtained previously for the strong interaction limit is vλ(x) = vs(x)/4, the Hxc potential reads

v(3)(x) = vs(x)− vλ(x) =
3

4
vs(x), (λ→∞) (5.54)

which added to the expansion for the Hxc potential and inserted in the KS equations gives the wrong
prediction. What went wrong is that we have used an asymptotic expansion for the Hxc potential
for the large interaction limit and we evaluated it at the realistic system λ = 1, and the fact that we
add more terms of the expansion does not guarantee a better result.

The nature of correlations in both large bond distances limit and large interaction limit can be better
understood if we directly analyze the Hxc potential for both cases. The Hxc potential is plotted in
Fig. 5.11 for various bond distances and interaction strengths. We see that the one corresponding
to the system under dissociation is entirely di�erent than the Hxc potential that describes an SC
system. The Hxc potential which corresponds to a system under dissociation tends asymptotically
to zero since in the dissociation limit the one-body external potential tends asymptotically to the
Eq.(5.23). We also see that the Hxc potential displays the pick in the central region that we were
commenting before, which we refer to [64, 65] for a detailed discussion. On the other hand,the Hxc
potential of the SC system attains the value Eq.(5.54), showing explicitly the very di�erent nature
of these correlated systems. Since the SCE formalism in the ground-state theory reproduces the
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Figure 5.11: The Hxc potential for various bond distances L = 21 and interaction strength λ = 1
(left panel) and λ = 10000 (right panel). It can be seen that the Hxc potential of a system under
dissociation tends asymptotically to zero, displaying the characteristic pick, while the Hxc potential
of the SC system tends asymptotically to the Eq.(5.54).

dissociation limit of a dissociating molecule correctly, these trends are a good motivation to study
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within the SCE formalism if it can predict the excitation energy curves accurately for large bond
distances. The next section is therefore devoted to studying how the SCE Hxc functional performs
to calculate excited states of the molecular model.

5.4.2 Calculation of the excitations in the SCE formalism

For the calculation of the excitation energies, we need to solve the eigenvalue equation we introduced
in 3.51. Our goal is to check if the leading term of the large interaction strength expansion for the
Hxc kernel in the adiabatic approximation can reproduce the excitation energies of the molecular
model in the dissociation process. We will compare them with the excitation energies obtained by
direct solution of the Schrödinger equation and with the model we elaborated for describing both
the system under dissociation and the strongly correlated system.

The ASCE Hxc kernel

We start by writing the leading term of the large interaction strength expansion for the Hxc kernel
in the adiabatic approximation, the ASCE kernel 3.57, which for the molecular model reads

fASCE(x, x′) =

x∫
−L/2

dy
w′′(y − f(y))

n(f(y))
[θ(y − x′)− θ(f(y)− x′)] , (5.55)

being w the two body interaction and n(x) the electronic ground-sate density of the system. For its
calculation, we �rst de�ne the function P(x) to be

P(x) ≡
x∫

−L/2

dy
w′′(y − f(y))

n(f(y))
(5.56)

and we construct the kernel for x > 0, x′ > 0 and x < 0, x′ < 0 [35].

fASCE(x, x′) = P(−x)θ(x− x′) + P(−x′)θ(x′ − x) (5.57)

and for x > 0, x′ < 0 and x < 0, x′ > 0 we have

fASCE(x, x′) = [P(x)− P(x′) + P(0)] θ (f(x)− x′) . (5.58)

We see from Eq.(5.56) that the integral gets its main contribution when the density is small. In the
limit of large bond distances this contribution is bigger in the bond midpoint when the density has
the lowest value, and since the overlap of the maxima of the density decreases exponentially, the
contribution to the integral will grow exponentially precisely at that point. This exponential growth
of the kernel, as was explained in Sec. 3.8 is what is needed to compensate the exponential decreasing
of the KS orbitals to produce a �nite excitation energy [3, 15]. Since in the limit of the large bond
distance the KS orbitals get localized around ±L/4, the main contribution of the Hxc kernel to the
eigenvalue equation is around x, x′ = ±L/4. For the limit of large bond distance, it can be shown
[35] that the ASCE kernel around x, x′ = ±L/4 attains the form

fASCE(x, x′) =
1

2
P(0) [θ(x)θ(x′) + θ(−x)θ(−x′)] , (5.59)
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for x, x′ 6= 0,±L/2, and where P(0) is the value of P(x) evaluated in the midpoint, which is given
by

P(0) = ω′′(±L/2)

[
L2

16(2π3)

]
e4
√
ν

ν3/4
. (5.60)

In Fig. 5.12 it is plotted the Hxc kernel for di�erent bond distances. We can see that as the bond
distance grows, the kernel develops two "plateaux" in the �rst and the third quadrant that grows
exponentially as a function of the bond distance, while the kernel tends to zero in the second and the
fourth quadrant. For showing the exponential growth of the plateaux, we plot in Fig. 5.13 diagonal of
the ASCE kernel fASCE(x, x′) divided by P(0), for various bond distances. When the bond distance
is large enough and for x, x′ 6= 0,±L/2, the function fASCE attains the value P(0), whose explicit
expression is given by Eq.(5.60).

L=1
L=10

L=20

Figure 5.12: Plot of the fASCE(x, x′) for L = 1 (left panel), L = 10 (central panel) and L = 20
(right panel). For L = 1 we recober the homogeneous case while as soon as the bond distance grows,
the kernel develops the exponential growing and a function of the bond distance.

As a �nal remark in the analysis of the Hxc kernel for large bond distances, let us now consider the
variation in the Hxc potential when we perform a small change of the density. This variation is given
by

δvλHxc(x) =

x∫
−L/2

dx′fλHxc(x, x
′)δn(x′). (5.61)

In the limit of large interaction strength, the Hxc kernel is given by the ASCE Eq.(5.55) and therefore,
the change in the Hxc potential caused by a small change in the density reads

δvλHxc(x) = λδvSCE(x), (5.62)

where

δvSCE(x) =

x∫
−L/2

dx′fASCE(x, x′)δn(x′). (5.63)
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Figure 5.13: Plot of the diagonal x = x′ of ASCE kernel normalized with the height of the plateaux
fASCE(x,x)
P(0) for L = 10, 15, 20. It is manifest how the curve becomes �at in the central region.

Since vSCE(x) = 0 for all densities which ful�ll the symmetry property n(x) = n(x+ L/2), from the
equation Eq.(5.63) it must hold that if the small variations of the density have the same property,
δvSCE(x) = 0. For a density that does not ful�ll the even symmetry, δvSCE(x) is in general di�erent
than zero, as it was explicitly shown in the case of the homogeneous QR in Eq.(4.55). Consider now
a small change in the Hxc potential caused by a small change in the density, now in the limit of
large bond distances. Since the ASCE Hxc kernel becomes a constant Eq.(5.59), we get δvλHxc(x) = 0
provided that the number of particles is conserved, a result that is independent of the symmetry
of the density variations. When the interaction strength is very large, if we apply a general change
in the density to the system with no particular symmetry, it is also needed an in�nite one-body
external potential which can counteract the two-body interaction and therefore generate a �nite
density change in the system. In the limit of large bond distance, when the interaction becomes
negligible, such a potential is not needed anymore since every density change can be done without
any cost. We are now ready to calculate the excitation energies provided by the ASCE Hxc kernel

5.4.3 The excitation energies

For studying if the leading order of the expansion for the large interaction strength of the Hxc
kernel, the ASCE Hxc kernel, can reproduce the excitation energies of the molecular model in the
dissociation regime, it is enough to look at the �rst excitation. Because there is only one occupied
level, which is the lowest KS level, and in the region where the Hxc kernel gives the main contribution,
the kernel becomes a constant for the limit of large bond distances. Therefore, in this limit, the only
non-zero contribution for the excitation energies will be given when the non-occupied state is the
�rst KS excited state. The other non-occupied excited states give zero contribution because they
vanish because of orthogonality. We are then allowed to take the small-matrix approximation (SMA)
where the o�-diagonal terms of Kia,jb are small contributions. In the (SMA) the eigenvalue equation
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is reduced to [7]
Ω2
± = ω2

ug + 4ωugKgu,gu(Ω), (5.64)

where we have written "g" for the occupied state, standing for "gerade" and "u" for the unoccupied
state, standing for "ungerade". Once we have an expression for the ASCE kernel, we can calculate
the matrix element Kgu,gu. Assuming we can take the leading term of the asymptotic expansion for
the large bond distances of the matrix elements, we perform the asymptotic expansion inside the
integral and therefore we use the leading term expression for the ASCE kernel in the limit of large
bond distance, i.e., the expression Eq.(5.59). Performing the integral, we obtain

KASCE
gu,gu

λ
=
P(0)

2

L/2∫
−L/2

dx ψg(x)ψu(x)

L/2∫
−L/2

dx′ [θ(x)θ(x′) + θ(−x)θ(−x′)]ψg(x′)ψu(x′)

= P(0)

L/2∫
0

dx ψg(x)ψu(x)

L/2∫
0

dx′ ψg(x
′)ψu(x′) =

P(0)

4
, (5.65)

and using the value for the P(0), Eq.(5.60), we get

ωugKgu,gu

λ
=
P(0)

4

(
ε−1 − ε

+
0

)
=
P(0)

4

[
1

2

(
2π

L

)2 (
a−1 − a

+
0

)]
=
w′′(±L/2)

2
. (5.66)

Putting all together, the excitation energies given by the fASCE read

Ω2
± = 2λw′′(±L/2) (5.67)

Particularizing for our interaction strength w(z) = cos2
(

2πz
L

)
being z = x1 − x2, the excitation

energy reads Ω = 2π
L

√
λω0, which is exactly the �rst excitation l = 1 for the relative coordinate we

obtained in the limit of large interaction strength (5.44) if we replace the value of the interaction
strength Eq.(5.34). We can understand this result: Despite the ASCE kernel in the limit of large
bond distances has the right asymptotic behavior for producing �nite excitations in the eigenvalue
equation Eq.(3.51), it cannot produce single atomic excitations of a dissociating molecule, i.e., the HL
atomic excitations Eq.(5.28), since the ASCE kernel by construction involves a strong dependence on
the interaction. Thus, it produces the interaction strength dependent excitation energies of a strongly
interacting system, which are the zero-point vibrations excitations. Nevertheless, for producing the
zero-point vibration excitations, we still have used a Hxc kernel in the adiabatic approximation,
obtaining the right harmonic excitations. As was the case in the homogeneous QR, a plausible
explanation of this fact is because the characteristic frequency of the vibrations is proportional to
the square root of the interaction strength, and therefore no external potential with a �nite frequency
can produce such vibration, but as in the case of the homogeneous QR, a deeper analysis needs to
be done about this issue.



6 Summary & Outlook

In the �rst work [34], we have considered an exactly solvable interacting system, which consists of
two electrons on a ring. Because we can obtain the exact solution of the system for all the range
of the interaction, we have got the exact energy spectrum, the density response function and the
Hxc kernel of TDDFT. We have studied the behavior of the wave function and the energy spectrum
in the limit of large interaction strength, obtaining an expansion in powers of the square root of
the interaction strength. We also have developed an asymptotic expansion in the limit of large
interaction strength for both the response function and the Hxc kernel in powers of the square root
of the interaction strength. We found that the leading order and the next to the leading order of the
expansion of the exact Hxc kernel are local in time, i.e., adiabatic, but non-local in space, showing
that a local and a semi-local approximation would fail for modeling a Hxc kernel in the strongly
interacting regime. We have tested the expansion of the Hxc kernel functional Eq.(3.54) based on the
ground-state SCE formalism in the adiabatic approximation, which by construction is a non-local
functional in space, and we found that the leading term functional that was derived in [3] predicts
the �rst term of the asymptotic expansion we derived from the exact solution. We obtained the next
to the leading order SCE Hxc kernel in the adiabatic approximation, and we also �nd agreement
with the second order term of the asymptotic expansion, which indicates that the SCE kernel in the
adiabatic approximation indeed captures the spatial non-local dependence correctly as a function of
the density to reproduce the physics of strongly interacting systems. We found for the QR system
that the third term in the expansion is still adiabatic, but we showed that the adiabatic character
of such term for a general system would not be adiabatic, showing in this way the limitations of the
adiabatic approximation.

In this work [35], we have constructed a one-dimensional model system consisting of two interact-
ing electrons on a ring, whose ground-state density can model the main features of a dissociating
molecule. We have solved the Schrödinger equation exactly, and we have calculated the ground-state,
the �rst symmetric excited-state wave function, and their energy spectrum as a function of the bond
distance and the interaction strength. We also obtained and analyzed the external potential that
produces the prescribed model density. For the limit case of large bond distance and any �nite in-
teraction strength, the wave functions and their energy spectrum are described by their HL system,
while for the limit of large interaction strength and any �nite bond distance, the wave function and
the energy spectrum are described by the SC model that has been derived in this work and whose
description is well captured by the SCE formalism. We found that even though the wave functions
of both systems are di�erent, they exhibit similar probability distributions although the SC one over
correlates the electron in the very limit of large interaction strength. For the SC limit, we found that
the energy spectrum splits in a part that is interaction strength dependent and a part that does not
depend on the strength of the interaction, and we found that these last excitations coincide with
those HL excitations that represent each electron located in each atom. Nevertheless, one cannot
conclude anything general since the model system is a very particular system. We also have tested
the KS-SCE formalism with the model system for the calculation of the ground-state dissociation
curve of the H2 model, and we found that the SCE and the ZPE Hxc potentials correctly predict
dissociation, but we found that the scheme fails if we add more terms of the large interaction strength
expansion of the Hxc potential. For the calculation of the excitation energies of a dissociating H2

model molecule in TDDFT theory, we used the expansion of the Hxc kernel as a function of the
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square root of the interaction strength, based on the SCE formalism in the adiabatic approximation.
We took the leading order of the Hxc kernel expansion, the ASCE kernel and we obtained it for large
bond distances with the purpose of the determination of the �rst excitation energy of the dissociat-
ing system. What is found is that although the ASCE Hxc kernel is adiabatic, it still produces the
harmonic excitations, i.e., the interaction strength dependent excitations of the SC system, but it
does not reproduce the single atomic excitations. Therefore, we conclude that the ASCE kernel is
not able to describe excitation energies of a dissociating molecule.
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Appendix A:

Co-motion functions in one dimension

Given a one dimensional system of N electrons in a density n(x), we can formally construct the N−1
co-motion functions x, ...fN (x), by using that the probability to �nd an electron between the space
points fi and fi+1 is always one. Using the convention that f1(x) = x, we express this condition as
follows [49]. ∫ fi+1(x)

fi(x)

ds n(s) = 1 (A.1)

Let us de�ne the cumulant function as the function that counts the number of electrons N in the
region of the space N ∈ (−∞, x) as

N(x) =

∫ x

−∞
ds n(s) (A.2)

we can then express the equation Eq.(A.1) in terms of the cumulant function as

N [fi+1(x)]−N [fi(x)] = 1 (A.3)

Let us now count the number of electrons in the region of space such that x < fi(x). This number
can be expressed in terms of the cumulant function as

N [fi(x)]−N(x) = i− 1 (A.4)

and then we can express the co-motion function by taking the inverse of the cumulant function as

f+
i (x) = N−1 [N(x) + i− 1] , x ≤ N−1 [N − i+ 1] (A.5)

where the condition in Eq.(A.5) means that the highest x0 allowed in the domain x < fi(x) is that
one such that N (x0) = N − i+ 1. On the other hand, the number of electrons in the region of space
such that x > fi(x) amounts to

N(x)−N [fi(x)] = N − (i− 1) (A.6)

and then, inverting the relation, the co-motion function reads

f−i (x) = N−1 [N(x) + i− 1−N ] , x > N−1 [N − i+ 1] (A.7)

We can put all together as

fi(x) = f+
i (x)θ (aN−i+1 − x) + f−i (x)θ (x− aN−i+1) (A.8)

where we de�ned ak by means the relation N(ak) = k.
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Appendix B:

Functional derivative of the co-motion

function in one dimension

In this appendix we take the functional derivative of the co-motion function Eq.(A.8) with respect
to the density. First of all, we notice that the functional derivative of the cumulant function Eq.(A.2)
with respect to the density gives

δN(x)

δn(x′)
=

∫ x

−∞
ds δ(s− x′) = θ(x− x′) (B.1)

Taking now the functional derivative with respect to the density to Eq.(A.4), using the above relation
Eq.(B.1) and applying chain rule, we get

δN
[
f+
i (x)

]
δn(x′)

− δN(x)

δn(x′)
= n

(
f+
i (x)

) δfi(x)

δn(x′)
+ θ

(
f+
i (x)− x′

)
− θ(x− x′) = 0 (B.2)

from where we can isolate the functional derivative of the co-motion

δfi(x)

δn(x′)
=
θ(x− x′)− θ

(
f+
i (x)− x′

)
n
(
f+
i (x)

) (B.3)

For the next sections we will need the second functional derivative of the co-motion function with
respect to the density. Applying the chain rule to Eq.(B.3) we obtain

δ2fi(x)

δn(x′′)δn(x)
= −

{[
θ(x− x′)− θ

(
f+
i (x)− x′

)
n2
(
f+
i (x)

) dn(s)

ds

∣∣∣∣
s=f+

i (x)

]
+
δ
(
f+
i (x)− x′

)
n
(
f+
i (x)

) }
δfi(x)

δn(x′)
(B.4)
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Appendix C:

The SCE potential in one dimension

In this appendix we perform the functional derivative of the SCE energy functional with respect to
the density for the 1D case. For simplicity, we consider the SCE functional for two electrons, such
that there is only one co-motion function f(x). In this case, the SCE energy functional reads

VSCE[n] =
1

2

∫
ds n(s)w (|s− f(s)|) (C.1)

and the SCE potential is de�ned as

vSCE(x) = −δVSCE[n]

δn(x)
(C.2)

Taking the �rst variation of the SCE functional with respect to the density we get

− 2vSCE(x) = w (|x− f(x)|)−
∫
ds n(s)w (|s− f(s)|) Sgn (s− f(s))

δf [n](s)

δn(x)
(C.3)

where Sgn(x) is the sign function which is 1 for x > 0 and −1 for x < 0. Now, using the expression
for the co-motion function derived in the previous appendix and taking the derivative with respect
to x of the SCE potential, we get

−2v′SCE(x) =w′ (|x− f(x)|) Sgn (x− f(x)) [1− f ′(x)]

−
∫
ds n(s)w′ (|s− f(s)|) Sgn (s− f(s))

[
−δ(s− x) + δ (f(s)− x)

n (f(s))

]
(C.4)

Using the equation for the co-motion functions in its di�erential form, which reads f ′(s) = n(s)
n(f(s)) ,

and using the properties of the Dirac delta, we get for the �rst term of the integral in Eq.(C.4)∫
ds

n(s)

n (f(s))
w′ (|s− f(s)|) Sgn (s− f(s)) δ(s− x) = f ′(x)w′ (|x− f(x)|)Sgn (x− f(x)) (C.5)

We can manipulate the second term of the integral in Eq.(2.77) by using the Dirac delta property of
composite functions, which states

δ (g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

(C.6)

where xi are the zeroes of the function g(x). Applying this property to the second term of the integral
gives∫
ds

n(s)

n (f(s))
w′ (|s− f(s)|)Sgn (s− f(s)) δ (f(s)− x) =

=
1

f ′ (f−1(x))

n
(
f−1(x)

)
f(x)

w′ (|x− f(x)|) Sgn
(
f−1 (x)− x

)
− w′ (|x− f(x)|) Sgn (x− f (x))

(C.7)
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The SCE potential in one dimension 85

where in the second step we used again the co-motion function equation and the cyclic properties of
the co-motion functions, which for the case of two particles is f(x) = f−1(x). Using also the fact that
Sgn

(
f−1 (x)− x

)
= −Sgn

(
x− f−1 (x)

)
, all together combined with the equation Eq.(C.3) amounts

for the expression

vSCE(x) = −
∫ x

c

ds w′ (|s− f(s)|)Sgn (s− f (s)) (C.8)

where c is an arbitrary integration constant. The above expression is the one we already announced
in the main text Eq.(2.77), but for the dimensional systems.



Appendix D:

The ZPE potential

In this appendix we perform the derivative of the ZPE energy functional. The ZPE energy functional
for a system of N electrons in one dimension is given by the expression Eq.(2.78) with Eq.(2.79). In
the special case of two particles, there is only one harmonic frequency, and the ZPE energy functional
explicitly reads

EZPE[n] =
1

4

∫
dx n(x)

√
w′′(|x− f(x)|)

[
n(x)

n(f(x))
+
n(f(x))

n(x)

]
(D.1)

De�ning

B(x) = w′′(|x− f(x)|) (D.2)

C(x) =
n(x)

n(f(x))
+
n(f(x))

n(x)
(D.3)

the ZPE term reads

EZPE
Hxc [n] =

1

4

∫
dx n(x)B1/2(x)C1/2(x) (D.4)

The ZPE potential is obtained by taking the functional derivative of the ZPE energy functional with
respect to the density

vZPE[n](x′) =
δEZPE

Hxc [n]

δn(x′)
(D.5)

Applying the chain rule we have

vZPE(x′) =
1

4

∫
dx

[
δn(x)

δn(x′)
B1/2(x)C1/2(x) (D.6)

+
n(x)

2
B−1/2(x)

δB(x)

δn(x′)
C1/2(x) +

n(x)

2
B1/2(x)C−1/2(x)

δC(x)

δn(x′)

]
(D.7)

and the ZPE potential reads

vZPE(x′) =
1

4

∫
dx

[
δ(x− x′)B1/2(x)C1/2(x) (D.8)

+
n(x)

2
B−1/2(x)Ḃ(x, x′)δn(x′)C1/2(x) +

n(x)

2
B1/2(x)C−1/2(x)Ċ(x, x′)

]
(D.9)

Working out each of the terms we get

Ḃ(x, x′) ≡ δB(x)

δn(x′)
= −Sgn(x− f(x))w′′′(|x− f(x)|) δf(x)

δn(x′)
(D.10)

Ċ(x, x′) ≡ δC(x)

δn(x′)
=

1− 1(
df(x)
dx

)2

 d

dx

(
δf(x)

δn(x′)

)
(D.11)
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Appendix E:

Functional derivative of the SCE

potential

In this appendix we give the expression for the ASCE Hxc kernel, which is de�ned to as the functional
derivative of the SCE potential with respect to the density as

fASCE[n](x′, x′′) =
δvSCE[n](x′)

δn(x′′)
(E.1)

Consider a composite function of the co-motion functions g(fi(s)), where g is a general function of
the co-motion function. Because of the general shape of the co-motion function for one dimensional
systems Eq.(A.8), this composite function can be written as

g(f(x) = g(f+
i (x)θ(a− x) + g(f−i x)θ(x− a) (E.2)

where for simplicity we call aN−i+1 ≡ a since it is always the same. We want now to take variations
of this general function with respect to the density. Applying the chain rule, we get

δg(fi(x))

δn(x′)
=
∂g(f+

i )

∂f+
i

δf+
i (x)

δn(x′)
+
∂g(f−i )

∂f+
i

δf−i (x)

δn(x′)
− [g(f+

i x)− g(f−i (x)]δ(x− a)
θ(a− x′)
n(a)

=
∂g(fi)

∂fi

θ(x− x′)− θ
(
f+
i (x)− x′

)
n
(
f+
i (x)

) − [g(f+(a)− g(f−(a)]δ(x− a)
θ(a− x′)
n(a)

(E.3)

We are now interested in taking as a special case of g the SCE potential Eq.(C.8). Then, using the
general rule Eq.(E.3) we obtain

fASCE(x, x′) = −
∫ x

c

ds w′′(|s− f(s)|)
[
θ(s− x′) + θ(f(s)− x′)

n(f(s)

]
−
∫ x

c

ds
[
w′(|s− f+(s)|)Sgn(s− f+(s))− w′(|s− f−(s)|)Sgn(s− f−(s))

]
× θ(a− x′)δ(s− a)

n(a)

= −
∫ x

c

ds w′′(|s− f(s)|)
[
θ(s− x′) + θ(f(s)− x′)

n(f(s)

]
+

∫ x

c

ds [w′(|s− f(s)|) + w′(|s− f(s)|)] θ(a− x
′)δ(s− a)

n(a)
(E.4)

where in the second step we have reorganized the + and − branches of the co-motion function, and
where c is an arbitrary integration constant

87



Appendix F:

Functional derivative of the ZPE

potential

In this appendix we give the expression for the AZPE Hxc kernel, which is de�ned to as the functional
derivative of the ZPE potential with respect to the density as

fAZPE[n](x′, x′′) =
δvZPE[n](x′)

δn(x′′)
(F.1)

fZPE(x′, x′′) =
1

4

∫
dx
{δ(x− x′)

2

[
B−1/2(x)Ḃ(x, x′)C−1/2(x) + B1/2(x)Ċ(x, x′)C−1/2(x)

]
+

1

2

[
δ(x− x′′)B−1/2(x)C1/2(x)Ḃ(x, x′)− 1

2
n(x)B−3/2(x)Ḃ(x, x′′)C1/2(x)Ḃ(x, x′)

+
1

2
n(x)B−1/2(x)Ċ(x, x′′)C−1/2(x)Ḃ(x, x′) + n(x)B−1/2(x)B̈(x, x′, x′′)C1/2(x) ]

+
1

2

[
δ(x− x′′)B1/2(x)C−1/2(x)Ċ(x, x′) +

1

2
n(x)B−1/2(x)Ḃ(x, x′′)C−1/2(x)Ċ(x, x′′)

− 1

2
n(x)B−1/2(x)Ċ(x, x′′)C−3/2(x)Ċ(x, x′) + n(x)B1/2(x)C̈(x, x′, x′′)C−1/2(x) ]

}
(F.2)

having de�ned the quantities

B̈(x, x′, x′′) ≡δḂ(x, x′)

δn(x′′)

=w′′′′(|x− f(x)|) δf(x)

δn(x′′)

δf(x)

δn(x′)
− w′′′(|x− f(x)|)Sgn(x− f(x))

δ2f(x)

δn(x′′)δn(x′)
(F.3)

C̈(x, x′, x′′) ≡δĊ(x, x
′)

δn(x′′)

=
2

f ′(x)3

d

dx

[
δf(x)

δn(x′)

]
+

1− 1(
df(x)
dx

)2

 d

dx

[
δ2f(x)

δn(x′′)δn(x′)

]
(F.4)
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Appendix G:

Expansion of the excitation

amplitudes

In this appendix we show how the integral Eq.(4.40) can be approximated by the expression Eq.(4.42).
Consider the expression Eq.(4.42)

J n1,n2

kl (q) =
1√

2q1/4

√
2q1/4∫

−
√

2q1/4

du fk

(
u√

2q1/4

)
D2n1(u)D2n2+l(u) (G.1)

The integral J n1n2

kl is convergent

|J n1n2

kl (q)| ≤ 1√
2q1/4

√
2q1/4∫

−
√

2q−1/4

du
|D2n1

(u)| |D2n2+l (u)|(
1− u2

2q1/2

)1/2

≤ c2n1c2n2√
2πq1/4

√
2q1/4∫

−
√

2q1/4

du(
1− u2

2q1/2

)1/2
= c2n1c2n2+l

√
π <∞ (G.2)

with cn = and where we have used Cramér's inequality for Hermite functions, ie |ψ(x)| ≤ c π−1/4

We can expand the function the function fk in its Taylor expansion, which reads

fk(x) =
e−ik arccos(x)

√
1− x2

=

∞∑
r=0

ar(k)xr (G.3)

and inserted the above expansion in J n1n2

kl we have

|J n1n2

kl (q)| ≤

√
2q1/4∫

−
√

2q1/4

du
e
ikarccos

(
u√

2q1/4

)
(

1− u2

2q1/2

)1/2
D2n1

(u)D2n2+l(u)

=

√
2q1/4∫

−
√

2q1/4

du

( ∞∑
r=0

ar(k)
ur

qr/4

)
D2n1

(u)D2n2+l(u) (G.4)

and because of the radius of convergence of the series is R =
∣∣∣ u√

2q1/2

∣∣∣ < 1, the series represent the

function in all the interval.
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We now show that we can interchange the sum and the integral. Because of the inequality Eq.(G.2),
we can write

|J n1n2

kl (q)| ≤ 1√
2q1/4

√
2q1/4∫

−
√

2
√

2q1/4

du

( ∞∑
r=0

ar
u2r

(
√

2q1/4)r

)
|D2n1(u)| |D2n2+l(u)| <∞ (G.5)

and then, according to Fubini's Theorem 1 we are allowed to write,

|J n1n2

kl (q)| = 1√
2q1/4

√
2q1/4∫

−
√

2q1/4

du

( ∞∑
r=0

ar(k)
ur

qr/4

)
D2n1(u)D2n2+l(u) =

∞∑
r=0

ar(k)

(
√

2q1/4)r+1
I ln1,n2,r

(G.6)

where we de�ned the coe�cients

I ln1,n2,r =

√
2q1/4∫

−
√

2q1/4

du urD2n1
(u)D2n2+l(u) (G.7)

For showing the extension of the integral limits, is is enough to analyze I0
n,m,r for a particular value

of n and m. Using the de�nition of the Dn functions and the Hermite polynomials Hn(x) =
bn2 c∑
l=0

blx
l

with bl ≡ n! (−1)l(2n−2l)
l!(n−2l)! , the integral writes

I0
nm,r = 2(n+m)/2

bn2 c∑
i=0

bm2 c∑
i=0

bibj

√
2q1/4∫

−
√

2q1/4

du e−u
2

ur+i+j . (G.8)

Let us consider the integral in Eq.(G.8), which is the incomplete gamma function that we write as

√
2q1/2∫

−
√

2q1/2

du e−u
2

ur+i+j =

∞∫
−∞

du e−u
2

ur+i+j −
[
1 + (−1)i+j+r

]
2

Γ

(
i+ j + r + 1

2
, 2
√
q

)
(G.9)

In the large q limit, the incomplete gamma function has the following expansion

Γ

(
α+ 1

2
, 2
√
q

)
=

(q→∞)
qα/4e−2

√
q
∞∑
l=0

cl(α)q−(2l+1)/4 (G.10)

where cl(α) are some coe�cients of the expansion and we de�ned α = i + j + r. We are therefore
allowed to extend the integral limits to in�nite making an exponentially small error

I ln1,n2,r =
(q→∞)

∞∫
−∞

du urD2n1(u)D2n2+l(u) (G.11)

1If
∫ ∑

n
|fn| < ∞ or

∑
n

∫
|fn| < ∞, then

∫ ∑
n

fn =
∑
n

∫
fn
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The explicit expression for I ln1n2,r is given by

I ln1n2,r =

∫ ∞
−∞

duur D2n1(u)D2n2+l(u)

=

{
0 If r + l odd

r!
2r
√
π 2n1+n2+ l

2

∑min(2n1,2n2+l)
p=max (0,−s)

(
2n1

p

)(
2n2+l
p

)
p!

2p(s+p)! otherwise

where we de�ned s = r/2− n1 − n2 − l/2 [66].



Appendix H:

ASCE and AZPE Hxc kernel for the

homogeneous QR

In this appendix we apply the general expressions we derived for both the ASCE Eq.(E.4) and the
AZPE Eq.(F.2) Hxc kernels for the case of the homogeneous QR, whose density is n = 2

L , the co-
motion function is given by Eq.(4.57) and the two body interaction is V0 cos2

[
π
Lz
]
with z = x1−x2.

We start with the general expression for the ASCE Eq.(E.4), which for the case of the homogeneous
QR, it reduces to

fASCE(x, x′) =
π2V0

L

∫ x

0

ds [θ(s− x′)− θ(s− x′ + L/2)θ(s+ L/2)− θ(s− x′ − L/2)θ(s− L/2)]

(H.1)

For its integration, we �rst compute the cross derivatives and then we integrate the result back. The
cross derivatives read

∂2

∂x∂x′
fASCE(x, x′) =

π2V0

L
[−δ(x− x′) + δ(x− x′ + L/2) + δ(x− x′ − L/2)] (H.2)

and making use of the relation d2|x|
dx2 = 2δ(x), we integrate back Eq.(H.2) obtaining

fASCE(x, x′) =
π2V0

2L
(|x− x′| − |x− x′ + L/2| − |x− x′ − L/2|) + C (H.3)

where C is an arbitrary constant.

For the calculation of the AZPE kernel, we obtain for the quantities previously de�ned Eq.(D.2),
Eq.(D.3), Eq.(D.10), Eq.(D.10), Eq.(F.3) and Eq.(F.4) for the case of the homogeneous QR the
following values

B(x) =
2π2

L2
V0 (H.4)

C(x) = 2 (H.5)

B̈(x) = −8π4

L4

δf(x)

δn(x′′)

δf(x)

δn(x′)
(H.6)

C̈(x) = 2
d

dx

δf(x)

δn(x′′)

δf(x)

δn(x′)
(H.7)

and Ḃ(x) = Ċ(x) = 0. The expression from the general expression Eq.(F.2) therefore reduces to

fAZPE(x′, x′′) =
π
√
V0

2L2

∫
dx

d

dx

[
δf(x)

δn(x′′)

]
d

dx

[
δf(x)

δn(x′)

]
− 2π3

√
V0

L4

∫
dx

δf(x)

δn(x′′)

δf(x)

δn(x′)
(H.8)
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and now we proceed to calculate the remaining integrals. Computing the �rst one, we obtain∫
dx

d

dx

[
δf(x)

δn(x′′)

]
d

dx

[
δf(x)

δn(x′)

]
=
L2

4

∫
dx [δ(x− x′′)− δ (f(x)− x′′)] [δ(x− x′)− δ (f(x)− x′)]

=
L2

4
[2δ(x′′ − x′)− δ (f(x′′)− x′)− δ (f(x′)− x′′)]

=
L2

4
[δ(x′′ − x′)− δ(x′′ − x′ − L/2)− δ(x′′ − x′ + L/2)] (H.9)

where in the last step we made use of the explicit expression of the co-motion function. The second
integral reads∫

dx
δf(x)

δn(x′′)

δf(x)

δn(x′)
=
L2

4

∫
[θ(x− x′′)− θ (f(x)− x′′)] [θ(x− x′)− θ (f(x)− x′)] (H.10)

We now use the same way we used to obtain the ASCE kernel, ie, to obtain the cross derivatives and
integrate back

∂2

∂x∂x′

[∫
dx

δf(x)

δn(x′′)

δf(x)

δn(x′)

]
=
L2

4

∫
dx [δ(x− x′′)− δ (f(x)− x′′)] [δ(x− x′)− δ (f(x)− x′)]

=
L2

4
[δ(x′′ − x′)− δ(x′′ − x′ − L/2)− δ(x′′ − x′ + L/2)] (H.11)

where in the last step we have used the same argument that in the �rst integral. Making use again

of the relation d2|x|
dx2 = 2δ(x), we integrate back the cross derivatives to obtain

δf(x)

δn(x′′)

δf(x)

δn(x′)
=
L2

4
[−|x′ − x′′|+ |x′′ − x′ + L/2|+ |x′′ − x′ − L/2|] (H.12)

Puting all together, we obtain for the AZPE Hxc kernel

fAZPE(x′, x′′) =− π3
√
V0

2L2
[−|x′ − x′′|+ |x′′ − x′ + L/2|+ |x′′ − x′ − L/2|]

+
π
√
V0

4
[δ(x′′ − x′)− δ(x′′ − x′ − L/2)− δ(x′′ − x′ + L/2)] + C (H.13)

where C is an arbitrary constant.
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We consider an analytically solvable model of two interacting electrons that allows for the calculation of
the exact exchange-correlation kernel of time-dependent density functional theory. This kernel, as well as the
corresponding density response function, is studied in the limit of large repulsive interactions between the electrons
and we give analytical results for these quantities as an asymptotic expansion in powers of the square root of
the interaction strength. We find that in the strong interaction limit the three leading terms in the expansion
of the kernel act instantaneously while memory terms only appear in the next orders. We further derive an
alternative expansion for the kernel in the strong interaction limit on the basis of the theory developed previously
[Phys. Chem. Chem. Phys. 18, 21092 (2016)] using the formalism of strictly correlated electrons in the adiabatic
approximation. We find that the first two leading terms in this series, corresponding to the strictly correlated limit
and its zero-point vibration correction, coincide with the two leading terms of the exact expansion. We finally
analyze the spatial nonlocality of these terms and show when the adiabatic approximation breaks down. The
ability to reproduce the exact kernel in the strong interaction limit indicates that the adiabatic strictly correlated
electron formalism is useful for studying the density response and excitation properties of other systems with
strong electronic interactions.

DOI: 10.1103/PhysRevA.95.042505

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) [1–7]
is a well-established approach to study the time-dependent
and excitation properties of many-electron systems. One of the
main reasons for its popularity is that within this formalism the
time-dependent interacting many-body problem can be recast
exactly into an equivalent one-particle framework, which
is advantageous for numerical implementations. The corre-
sponding one-particle equations, called the time-dependent
Kohn-Sham equations, contain an effective potential, known
as the Kohn-Sham potential, which is defined in such a way
that the noninteracting system has the same time-dependent
density as the original interacting many-body system. The
Kohn-Sham potential is typically written as the sum of the
external potential of the interacting system and of the Hartree
and the exchange-correlation (xc) potential.

In practical applications of TDDFT, the xc potential
vxc is approximated. The type of approximation employed
crucially determines the quality of the results, and therefore
a considerable amount of research has gone into the difficult
task of finding reliable and accurate approximations for this
quantity. This task is simpler in the linear response regime
where we consider small variations in the density caused
by applied perturbations. This regime is of interest as the
knowledge of the density response function is sufficient to
calculate the excitation energies and the absorption spectrum
of the system [8]. For this purpose, it is enough to know vxc

and its functional derivative δvxc/δn = fxc with respect to the
density n, evaluated at the ground-state density. The quantity
fxc is called the xc kernel and has been the subject of intense
investigations.

The simplest possible approximation is the adiabatic
local-density approximation (ALDA) in which the xc kernel
is local in space and time. The ALDA has, however, a

number of deficiencies [4] such as, for example, the in-
ability to produce correct charge transfer excitations [9–12],
Born-Oppenheimer surfaces of excited states in dissociating
molecules [13–15] and semiconductor band gaps [16]. Some
improvements have been made using hybrid functionals which
contain mixtures of exact exchange and traditional local
functionals. These methods are nonlocal in space but still
adiabatic. However, they are not systematic and the optimal
mixture of exact exchange is often system dependent [17–20].
Other, more systematic, approximations for fxc beyond the
ALDA often rely on perturbative expansions [21–30] and many
of them are restricted to the exchange-only approximation.
Their perturbative nature makes these approaches questionable
in the strong correlation regime which is relevant in various
physical situations, notably the case of molecular dissociation,
and hence it is highly desirable to develop new techniques to
tackle this regime.

In a recent work [31], the so-called strictly correlated elec-
trons (SCE) framework [32–34], a formalism well suited for
the description of strong interactions, has been applied within
the time-dependent domain. The authors derived an expression
for the xc kernel in the so-called adiabatic approximation and
established that the adiabatic SCE (ASCE) kernel satisfies
the zero-force theorem [35], an exact property related to
generalized translational invariance [36,37]. The kernel was
furthermore studied for finite one-dimensional systems with
different density profiles, some of which are prototypical of the
dissociation of two-electron homonuclear molecules. It was
found that the ASCE kernel is spatially nonlocal and exhibits
a divergent behavior as the molecular bond is stretched. For
adiabatic kernels, this diverging behavior is crucial [13] for
describing bond-breaking excitations, which is a notoriously
challenging problem in linear response TDDFT. Since the
kernel was derived in the adiabatic approximation, not much
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could be concluded about the limitations of its adiabatic nature
in the context of the physics of strong static correlation. The
case of infinitely strong electron-electron correlation is quite
peculiar and to date it is not known how accurate the adiabatic
approximation can be in such a regime.

One way to shed light on this issue is to benchmark the
ASCE kernel against an exact expression for fxc obtained
from a model system where the density response function and
thus the xc kernel can be calculated analytically. In this work,
we consider such a model, namely two interacting electrons on
a quantum ring [6,38–40], for which we not only compute the
exact density response function and xc kernel but also obtain
these quantities for various two-body interaction strengths,
including the infinitely strong one, and we compare these
results with those given by the SCE theory in the adiabatic
approximation. The leading order of the asymptotic expansion
for the exact fxc and the expression for the ASCE kernel are
found to be identical. We also derive the next-order correction
term beyond the ASCE, called the adiabatic zero-point-energy
approximation (AZPE), and show that also this adiabatic term
is the same as the next order from the asymptotic expansion.
The third order in the expansion for the kernel is still adiabatic,
while a frequency dependence appears in the fourth order. In
this order, an adiabatic approximation would break down. This
is one of the central results of the paper and elucidates both the
strengths and the weaknesses of the adiabatic approximation
in the limit of strong electron-electron interaction.

The paper is organized as follows. In Sec. II we introduce
the quantum ring model and, after computing the full spectrum
of its Hamiltonian, we discuss asymptotic expansions for its
eigenenergies and eigenstates in the case of strong interactions
and analyze them. In Sec. III we study the density response
function of strongly interacting systems, while in Sec. IV we
focus on TDDFT in the same regime and give an asymptotic
expansion for the xc kernel. Our conclusions are finally
presented in Sec. V.

II. AN EXACTLY SOLVABLE SYSTEM

A. Two interacting electrons on a quantum ring

For our study of electron correlations, we consider an
analytically solvable model, which we will refer to as the
quantum ring model, of two electrons on a ring of length
L which repel each other with a two-body interaction. The
interaction strength can be adjusted using a parameter, which
allows us to study the exact properties of the system ranging
from weak to very strong interactions. The explicit form of the
Hamiltonian of the quantum ring is given by

Ĥ = −1

2

(
∂2
x1

+ ∂2
x2

) + λV0 cos2

[
π

L
(x1 − x2)

]
, (1)

where λ � 0 is a dimensionless parameter and V0 has units
of energy. The coordinates x1 and x2 are the coordinates of
the electrons on the ring which run from 0 to L. The ground-
state density n0 = 2/L is spatially constant and independent
of λ; for this reason the model can be used to illustrate
several features of the coupling strength dependence in density
functional theory.

In order to calculate the properties of the system we have
to determine the eigenfunctions � which satisfy the stationary

Schrödinger equation Ĥ� = E�, where E are the energy
eigenvalues. For our two-particle system, these eigenfunctions
can be written as a product of a spatial wave function and a
spin function as follows:

�(x1σ1,x2σ2) = ψ±(x1,x2) 	±(σ1,σ2).

For the singlet case (which we will focus on), the normalized
spin function is given by

	+(σ1,σ2) = 1√
2

(
δσ1↑δσ2↓ − δσ1↓δσ2↑

)
and is antisymmetric in the spin variables. For the triplet,
there are three linearly independent symmetric spin functions
which we, for simplicity, all denote by 	−(σ1,σ2). Since
the two-electron wave function � is antisymmetric under
the simultaneous interchange of space and spin variables,
it follows that the spatial wave functions ψ± satisfy the
symmetry relation

ψ±(x1,x2) = ±ψ±(x2,x1).

Apart from these symmetry conditions, the Schrödinger
equation needs to be solved with periodic boundary conditions
on the variables x1 and x2; i.e., the wave function and its first
spatial derivatives are invariant under the substitution xi →
xi + L for i = 1,2. Using these conditions, we can solve the
Schrödinger equation by a suitable coordinate transformation.
Since these steps are carried out in detail in Ref. [41], here we
just outline the main steps relevant for this work.

The Hamiltonian (1) becomes separable in the terms R =
(x1 + x2)/2, the center-of-mass coordinate, and z = π (x1 −
x2)/L, the dimensionless relative coordinate. This variable
transformation gives

Ĥ = −1

4
∂2
R − π2

L2
∂2
z + λV0 cos2(z).

By inserting a product ansatz of the form ψ(R,z) = f (R)M(z)
into the Schrödinger equation, we find that the spatial two-
particle eigenfunctions are of the form

ψ(R,z) = exp

(
2πikR

L

)
M(z), (2)

where k is an integer and the function M(z) satisfies the
Mathieu equation, which we write in its standard form as
[42,43] [−∂2

z + 2q cos(2z)
]
M(z) = a M(z), (3)

where the constants q and a are given by

q = λV0

(
L

2π

)2

, (4)

a = −k2 − 2q + EL2

π2
. (5)

For a given value of q, the Mathieu equation (3) has only
periodic solutions for particular values a(q), which are called
the Mathieu characteristic values. Moreover, this equation
has either even or odd periodic solutions, which are called
the Mathieu cosine and Mathieu sine functions respectively.
Both sets of functions form a countable set; therefore its
members can be labeled by a non-negative integer l. For
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the Mathieu cosines, this label starts at l = 0 and for the
Mathieu sines at l = 1. The even Mathieu cosine function
is denoted by Cl(z; q) and its characteristic value by a+

l (q),
while the odd Mathieu sine function is denoted by Sl(z; q)
and its characteristic value by a−

l (q). Since the center-of-mass
wave functions are symmetric under the interchange of the
spatial coordinates of the electrons, we see from Eq. (2) that
the singlet wave functions must be described by even Mathieu
functions whereas the triplet ones must be described by odd
Mathieu functions. The final form of the normalized singlet
and triplet wave functions therefore is

ψ+
kl (R,z; q) =

√
2

L
exp

(
2πikR

L

)
Cl(z; q), (6)

ψ−
kl (R,z; q) =

√
2

L
exp

(
2πikR

L

)
Sl(z; q), (7)

in which the normalization of the Mathieu functions is chosen
such that∫ π

0
dz|Cl(z; q)|2 =

∫ π

0
dz|Sl(z; q)|2 = π

2
. (8)

The Mathieu functions further have the periodicity property
Ml(z + π ) = (−1)lMl(z); i.e., they are periodic in π for even
values of l and antiperiodic for odd values of l. Furthermore,
the center-of-mass wave function in Eq. (2) changes with a
prefactor (−1)k when xi → xi + L, for i = 1,2. Therefore,
for the wave functions in Eqs. (6) and (7) to satisfy periodic
boundary conditions, the labels k and l must be both even or
both odd. Note that k runs over all integers while l only runs
over the non-negative integers. From Eq. (5) we see that the
energy eigenvalues are given by

E±
kl(q) =

(
π

L

)2

[k2 + a±
l (q) + 2q]. (9)

Since in the subsequent discussion of the density response
function we focus on the singlet excitations in particular, we
write the singlet wave functions in a slightly different form
for the purpose of a better interpretation. By multiplying the
spatial wave function of Eq. (6) with its singlet spin function,
the full space-spin function can be written as

�kl(x1σ1,x2σ2) = 
k(x1σ1,x2σ2)
√

2 Cl

[
π

L
(x1 − x2)

]
, (10)

where we defined the Slater determinant


k(x1σ1,x2σ2) = 1√
2

∣∣∣∣φk/2(x1)δσ1↑ φk/2(x1)δσ1↓
φk/2(x2)δσ2↑ φk/2(x2)δσ2↓

∣∣∣∣
and we further defined the spatial normalized orbital by
φk(x) = e2πikx/L/

√
L which corresponds to a periodic single-

particle wave function of a free particle on the quantum ring.
Let us consider the excitation from the ground state to another
singlet state with l = 0, which requires that the excited state
is characterized by an even k value. In that case, φk/2 in the
Slater determinant above is a proper periodic wave function as
k/2 is an integer. According to Eq. (9) the excitation energy is

�E+
k0 = E+

k0 − E+
00 =

(
πk

L

)2

, (11)

which is independent of the interaction strength q as the
excited state has the same relative wave function as the ground
state. For the case that q = 0, we have C0(z; q = 0) = 1/

√
2

and the ground and excited states both become pure Slater
determinants. The excitation then represents a promotion of
two electrons from a doubly occupied k = 0 state to a doubly
occupied state with a one-particle quantum number k/2, which
is commonly called a double excitation. When q is nonzero,
this language is not accurate anymore as also the relative wave
function becomes relevant. If the interaction strength becomes
very large, the energy required to excite to a state with nonzero
l becomes very large too and the excitations with energy
�E+

k0 give the dominant contribution to the density response
function, as we will see later.

B. The strong interaction expansion of the exact solution

As the interaction strength q increases, the electronic
repulsion becomes more important and the electrons tend to
stay in opposite positions on the ring. This physically intuitive
picture can be analyzed in more detail using the Mathieu
equation. According to Eqs. (6) and (7), the square of the
spatial wave function is given by

|ψ±
kl (R,z; q)|2 = 2

L2
M2

l (z; q),

where Ml(z; q) is either a Mathieu cosine Cl or a Mathieu
sine Sl depending on whether the wave function is a singlet
or a triplet one. We therefore see that the probability to find a
given electron at x2 given an electron at x1 only depends on the
relative coordinate x1 − x2, as one would expect on the basis
of the symmetry of the system. This probability distribution is
given by the square of the Mathieu function Ml .

Let us analyze the properties of this function in the large
interaction limit which according to Eq. (3) satisfies a single-
particle Schrödinger type of equation in a potential of the form
V (z) = 2q cos(2z). For large values of q, we can see that the
relative wave function described by Ml becomes localized in
the minimum of the potential at z = π/2, which corresponds
to a relative distance of the particles of L/2. We can expand
the potential around this minimum to obtain

2q cos(2z) = −2q + 4q

(
z − π

2

)2

+ · · · .

This potential describes (apart from a shift of the minimum)
a harmonic oscillator with frequency 
 = 2

√
q. The eigen-

functions of the harmonic oscillator are well known to consist
of Gaussians of width proportional to 1/

√

 = 1/(

√
2 q1/4).

In the limit of large q, the harmonic frequency increases
and the wave functions become localized around z = π/2.
This behavior is illustrated in Fig. 1. The eigenenergies εl

of the harmonic oscillator are well known and given by εl =
−q + 
(l + 1/2) = a/2. This also immediately provides an
asymptotic formula for the characteristic value of the Mathieu
equation for large values of q:

a±
l (q) = −2q + 2

√
q (2l + 1) + · · ·

and consequently also an asymptotic expansion for the
eigenenergies of the quantum ring from Eq. (9).
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FIG. 1. The squared ground-state wave function |ψ00|2 for two
values of the interaction strength q, and the interaction cos2 z using a
suitable scaling for showing it in the same plot. For large q, the wave
function localizes around z = π/2 where cos2 z is almost parabolic
and |ψ00|2 then tends to a sharp Gaussian.

A more rigorous connection to the harmonic oscillator
wave functions can be made on the basis of the substitution
u(z) = √

2 q1/4 cos z which transforms the Mathieu equa-
tion (3) to the new form[

−1

2

(
1 − u2

2
√

q

)
d2

du2
+ u

4
√

q

d

du
+ u2

2

]
M(u) = ε M(u),

where we defined ε = (a + 2q)/(4
√

q) and M(u(z)) =
M(z; q). In the large q limit, this equation attains the form of
the Schrödinger equation for the harmonic oscillator. Its eigen-
functions are well known and, apart from a normalization, are
given by the parabolic cylinder functions Dm(u) defined by

Dm(u) = (−1)m

2m/2
eu2/2 dm

dum
e−u2

= 1

2m/2
e−u2/2Hm(u), (12)

where Hm(u) are the Hermite polynomials. On the basis of
this analysis, we may suspect that it is possible to find an
asymptotic large-q expansion of the Mathieu functions in
terms of harmonic oscillator functions Dm of argument u.
Sips [44–47] already derived such an expansion on the basis
of the transformed Mathieu equation. For reference, in the
next section we briefly outline its main features for the case
of the Mathieu cosine, which is relevant for the discussion
of singlet states. The general form of the Sips expansion is
given by

Cl(z; q) =
∞∑

n=−∞
c2n,l(q)Dl+2n[u(z)], (13)

in which we defined Dm<0 = 0. The specific form of the
coefficients c2n,l(q) is given in the work of Sips [44–46], who
outlined a systematic procedure to obtain them. In general they
can be obtained from a recursion relation [47] and we refer to
Appendix B for a more detailed discussion.

In Eq. (13) we see that for odd values of l the Mathieu
cosine is expanded in functions Dm with only odd values of
m while for even l it is expanded in functions Dm with only

FIG. 2. The ground-state (l = 0) and excited-state (l = 1,2,3)
energies divided by

√
q for k = 0 as function of the interaction

strength q in units of L−2. We plot the exact energies (solid lines)
vs the approximate energies (dashed lines) from the expansion in
Eq. (14).

even values of m. This follows directly from the derivation
by Sips [44] but we see with hindsight that this condition is
necessary to make the Mathieu cosine satisfy Cl(z + π ; q) =
(−1)lCl(z; q). Namely, if we replace z by z + π then the
variable u changes to −u, yielding this desired property for
a series of the form (13) since Dm(−u) = (−1)mDm(u). The
Sips expansion, Eq. (13), will be used in the next section to de-
termine the large interaction expansion of the density response
function.

We conclude the section with a remark on the eigenenergies
of the quantum ring. We can obtain an asymptotic expansion
for them as the work of Sips also derives the large q behavior
of the Mathieu characteristic values in terms of an asymptotic
series expansion in power of q1/2 (see Appendix B). Taking
the first few leading orders, we obtain the following expression
for the eigenenergies of the quantum ring:

E±
kl =

(
π

L

)2[
k2 + 2

√
q (2l + 1) − 1

4
(2l2 + 2l + 1)

+ (2l + 1)

128
√

q
[(2l + 1)2 + 3]

]
+ O(q−1). (14)

The asymptotic expansion is the same for the singlet and triplet
energies as their difference becomes exponentially small in the
large q limit (see Appendix B). To illustrate the q dependence
of the eigenenergies, we present in Fig. 2 some of the lowest
eigenvalues and their asymptotic expansion from Eq. (14) as a
function of q. We see that the asymptotic expansion converges
more slowly for higher values of l, and for these l we need
high values of q in order to have a reliable estimate.

III. DENSITY RESPONSE OF STRONGLY
INTERACTING ELECTRONS

After having discussed the two-particle wave function and
energy spectrum of the system, let us now move to its response
properties. Particularly relevant to TDDFT is the induced
density change δn(r,t) when a small time-dependent external
potential δv(r,t) is applied. They are related by the retarded

042505-4



TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW A 95, 042505 (2017)

density response function χ (rt,r′t ′) as follows:

δn(r,t) =
∫

dr′
∫

dt ′ χ (rt,r′t ′)δv(r′,t ′), (15)

where χ is defined via

χ (rt,r′t ′) = δn(r,t)
δv(r′,t ′)

= −iθ (t − t ′)〈�0|[n̂H (r,t),n̂H (r′,t ′)]|�0〉, (16)

where n̂H is the density operator in the Heisenberg picture and
�0 is the ground state of the system. Since the unperturbed
system is time independent, the density response function is a
function of the relative time τ = t − t ′ only and we can Fourier
transform it with respect to τ :

χ (r,r′,ω) =
∫

dτ χ (r,r′,τ ) eiωτ .

Before addressing in greater detail the properties of χ of the
quantum ring in the large interaction limit, let us first make
some considerations about the static density response function
in a more general context.

A. Static density response in the strong interaction limit

Let us consider an interacting many-electron system in its
ground state. The Hamiltonian consists of a kinetic energy
operator, an external potential v(r), and a two-body interaction.
If we consider a small variation δv(r) in the static external
potential, the ground-state density will vary by an amount
δn(r), which can be expressed as

δn(r) =
∫

dr′ χ (r,r′) δv(r′), (17)

where χ (r,r′) = χ (r,r′,ω = 0) is the static density response
function. Let us now consider a shifted potential v′(r) =
v(r + R). The ground-state density for this new potential
is given by n′(r) = n(r + R). For small translations, we
can write that δn(r) = n′(r) − n(r) = R · ∇n(r) and similarly
δv(r) = v′(r) − v(r) = R · ∇v(r). Since this is valid for all
small vectors R, we find from Eq. (17) that

∇n(r) =
∫

dr′ χ (r,r′) ∇′v(r′). (18)

This equation relates the gradient of the external potential to
the gradient of the ground-state density, and amounts to the
static limit of an equation derived for the dynamic density
response function by Vignale [48].

Let us now consider a system in which we scale the two-
body interaction with a parameter λ and let us choose the
external potential vλ(r) in such a way that the density n(r) is
the same for all values of λ. According to the Hohenberg-Kohn
theorem [49], such a potential is unique when it exists. For such
a system, the density response function will depend on λ as
well and Eq. (18) becomes

∇n(r) =
∫

dr′ χλ(r,r′) ∇′vλ(r′). (19)

Let us now consider the limit of very large values of λ.
One can show, for a general inhomogeneous system, that

asymptotically vλ(r) = λu(r) + · · · , where u(r) is the so-
called strictly correlated electron potential [32,33,50]. The
result is intuitively clear as the linearly growing repulsive two-
body interaction must be compensated by a linearly growing
attractive one-body potential in order to keep the density profile
constant. This has consequences for the behavior of χλ. We
consider two cases. Let us first assume that for λ → ∞ the
response function χλ attains a finite value α(r,r′). Because the
left-hand side of Eq. (19) is independent of λ, this implies that

0 =
∫

dr′ α(r,r′) ∇′u(r′), (20)

which means that the three vector components of ∇u must be
eigenfunctions of α with zero eigenvalue. Since the density
response function reaches a finite limit, the system does not
become rigid even when the interaction becomes infinitely
large. This is a possible situation in systems in which the
Hamiltonian by a coordinate transformation can be separated
in two parts, in which one of the parts is weakly dependent
on the interaction strength. That such inhomogeneous systems
exist is demonstrated for the harmonic model system described
in Appendix A and for which we demonstrate that Eq. (20) is
indeed valid.

A probably more common situation is that such a separation
is either not possible or that both parts of such a Hamiltonian
are still strongly λ dependent. In this case, one would expect
that the energy required to excite the system grows with λ, and
as such the density response function would vanish for large
λ. If this is the case, it is to be expected that χλ in Eq. (19)
asymptotically behaves as

χλ(r,r′) = 1

λ
β(r,r′) + · · · , (21)

where β is a λ-independent function and the terms that
follow decay faster than 1/λ. This means that for a given
perturbation δv(r), the density response δn(r) decays as 1/λ

and therefore the strong interaction makes the system more
rigid and suppresses density variations. In such a case, Eq. (19)
reduces to

∇n(r) =
∫

dr′ β(r,r′) ∇′u(r′), (22)

which is an exact equation for the leading order in λ.
When we finally consider systems in which the ground-

state density and external potential are spatially constant, the
reasoning that we carried out does not apply anymore since
the gradients in Eq. (19) are identically zero. However, such
systems are homogeneous, which implies that the center of
mass can be separated off and we can therefore expect the
response function to attain a finite value in the large interaction
limit. This is exactly the case of our quantum ring model.
Indeed, we saw in Eq. (11) that the quantum ring admits
excitation energies that are independent of the interaction
strength and these correspond to excitations that only change
the center-of-mass wave function and do not affect the relative
probability distribution of the particles. As we will see in
more detail below, such excitations give a contribution to the
density response function that survives in the large interaction
limit, while the remaining excitations give a contribution which
behaves as in Eq. (21).
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It is interesting to connect this analysis to the f -sum rule
for the dynamic density response function. In a system where
the density is kept independent of λ with vλ(r), the f -sum rule
attains the form [51]

1

π

∫
dω ω χλ(r,r′,ω) = ∇[n(r)∇δ(r − r′)]. (23)

We therefore see that the frequency integration removes the
λ dependence. This is not in contradiction with Eq. (21).
Although the density response function itself can become
very small for large λ, the integrand in Eq. (23) can remain
finite as it is weighted by the frequency ω. As a consequence
the integral gets contributions proportional to the excitation
energies, which grow with increasing interaction strength.

B. Exact density response of the quantum ring

After having discussed the general static case, we now turn
our attention to the exact dynamical density response function
of the quantum ring. Inserting a complete set of eigenstates
of the Hamiltonian Ĥ from Eq. (1) into the one-dimensional
analog of Eq. (16), we find the Lehmann representation [51]
of the retarded response function

χ (x,x ′,ω) =
∑

k,l,p=±

[
〈�+

00|n̂(x)
∣∣�p

kl

〉〈
�

p

kl

∣∣n̂(x ′)|�+
00〉

ω − �E
p

kl(q) + iη

− 〈�+
00|n̂(x ′)

∣∣�p

kl

〉〈
�

p

kl

∣∣n̂(x)|�+
00〉

ω + �E
p

kl(q) + iη

]
, (24)

where we defined the excitation energies as �E
p

kl(q) =
E

p

kl(q) − E+
00(q). The expression contains an infinitesimal

parameter η > 0 that arises from the Fourier transform of
the Heaviside function and the limit η → 0 is implied after
the evaluation of all terms. Furthermore, n̂(x) is the density
operator in the Schrödinger picture and p = ± labels the
singlet or triplet eigenstates. The label k runs over all positive
and negative integers while l runs over non-negative integers,
with the condition that both are even or both are odd. The
expression in Eq. (24) is simplified by the fact that the triplet
terms vanish because the triplet spin function is orthogonal to
the singlet spin function of the ground state, which yields
〈�+

00|n̂(x)|�−
kl 〉 = 0. The remaining nonzero terms can be

evaluated as

〈�+
00|n̂(x1)|�+

kl 〉 = 2
∫ L

0
dx2 ψ+∗

00 (x1,x2)ψ+
kl (x1,x2)

= 2

L
e2πikx1/LDkl(q), (25)

where ψ+
kl denotes the spatial part of the singlet wave function

of Eq. (6) expressed in the original coordinates and the
excitation amplitudes Dkl(q) read

Dkl(q) = 2

π

∫ π

0
dz C0(z; q)Cl(z; q)e−ikz. (26)

The amplitude Dkl(q) has a number of properties directly
related to properties of the Mathieu functions. Since Cl(z; q) is
real, D∗

kl(q) = D(−k)l(q), and as a consequence of the orthog-
onality of the Mathieu functions, D0l(q) = δl0. Moreover, the
fact that Cl(z + π ; q) = (−1)lCl(z; q) and that these functions

are even in z leads to Dkl(q) = (−1)k+lD∗
kl(q). Making use of

the symmetry properties of Dkl(q) described, combined with
�E+

kl(q) = �E+
(−k)l(q), yields the following expansion of the

response function:

χ (x,x ′,ω) = 1

L

∞∑
k=−∞

χ (k,ω) e2πik(x−x ′)/L, (27)

where

χ (k,ω) = 4

L

∑
l

[ |Dkl(q)|2
ω − �E+

kl(q) + iη
− |Dkl(q)|2

ω + �E+
kl(q) + iη

]

= 8

L

∑
l

�E+
kl(q) |Dkl(q)|2

(ω + iη)2 − [�E+
kl(q)]2

, (28)

in which the sum runs over even values of l for k even and over
odd values of l for k odd. We see from Eq. (27) that χ (k,ω)
can be regarded as the discrete Fourier transform of χ (x,x ′,ω)
with respect to the relative spatial coordinate x − x ′ as was
to be expected on the basis of the symmetry of the system.
It will be now convenient to define the spatially discrete and
temporally continuous Fourier transform of a function f (x,t)
and its inverse as

f (k,ω) =
∫ L

0
dx e− 2πik

L
x

∫ ∞

−∞
dt eiωtf (x,t), (29)

f (x,t) = 1

L

∞∑
k=−∞

e
2πik

L
x

∫ ∞

−∞

dω

2π
e−iωtf (k,ω). (30)

By using this Fourier transformation in Eq. (15) we rewrite the
density response as

δn(k,ω) = χ (k,ω)δv(k,ω), (31)

in which k is an integer and ω is a continuous variable. We
will make use of this relation below. We have now obtained an
explicit form of the density response function that allows for
an analytical analysis in the strong interaction limit.

However, before moving to that, we briefly give the form
of the response function for the noninteracting system, i.e.,
q = 0, which in the density functional context will be the
same as the Kohn-Sham response function, since the system
has the same density for all values of q. For the noninteracting
case, the Mathieu characteristic value is a+

l (0) = l2 and the
Mathieu cosine functions are given by C0(z; 0) = 1/

√
2 and

Cl(z; 0) = cos(lz) for l � 1. The excitation energies are given
by Eq. (9),

E+
kl(0) =

(
π

L

)2

[k2 + l2],

while the eigenstates are given by Eq. (6) as

ψ+
kl (x1,x2) = 1√

2

[
φk+l

2
(x1)φk−l

2
(x2) + φk+l

2
(x2)φk−l

2
(x1)

]
, (32)

in which k ± l is always even. Note that l �= |k| yields a
doubly excited state. The corresponding excitation amplitude
can be calculated from Eq. (26). Apart from the amplitude
D00(0) = 1, which does not contribute to the Lehmann sum
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since �E+
00 = 0, for (kl) �= (00) we have that

Dkl(0) =
{

1/
√

2 if l = |k|√
2

π
ik

k2−l2 [(−1)k+l − 1] if l �= |k|. (33)

Since only terms where k + l is even contribute, we see that the
only nonzero excitation amplitudes are the ones with l = |k|.
This implies the absence of double excitations in the density-
response function, a well-known property of noninteracting
systems [4,52]. Inserting Eq. (33) into Eq. (28) we find that
the noninteracting response function χs(k,ω) is given by

χs(k,ω) = 4

L

�E+
kk(0)

(ω + iη)2 − [�E+
kk(0)]2

(34)

with �E+
kk(0) = 2(πk/L)2. We note that in k space, χs has

only a single pole for ω > 0 and no zeros.
Having determined the noninteracting response function,

it now remains to study the density response function in
the complementary limit of very strong interactions. For this
purpose, we need to study the excitation energies �E+

kl(q) and
excitation amplitudes Dkl(q) in the limit of large q. This is the
topic of the next section.

C. Strong interaction expansion of the dynamic density
response function

Let us focus on the excitation energies �E+
kl(q) and the

excitation amplitudes Dkl(q) for large q. Because for �Ekl(q),
explicit asymptotic expansions are known (see Appendix B),
and this leaves us with the determination of Dkl(q) defined by
Eq. (26). We start by inserting the Sips expansion of Eq. (13)
into Eq. (26), which gives

Dkl(q) = 2

π

∞∑
n1,n2=−∞

c2n1,0(q)c2n2,l(q)J n1n2
kl (q), (35)

where we defined

J n1n2
kl (q) =

∫ π

0
dz e−ikzD2n1 (u)D2n2+l(u), (36)

where u(z) = √
2 q1/4 cos z. Since the coefficents c2n,l(q) are

known (see Appendix B for explicit expressions), it remains to
evaluate J n1n2

kl (q). Changing the integration variable to u and

defining b = √
2q1/4 gives the expression

J n1n2
kl (q) = 1

b

∫ b

−b

du fk

(
u

b

)
D2n1 (u)D2n2+l(u), (37)

where we defined the function

fk(x) = e−ik arccos(x)

√
1 − x2

=
∞∑

r=0

ar (k) xr (38)

and its Taylor coefficients ar (k). Inserting this Taylor series
into Eq. (37) then gives the expansion

J n1n2
kl (q) =

∞∑
r=0

ar (k)

br+1

∫ b

−b

du ur D2n1 (u)D2n2+l(u),

where the interchange of integral and sum is allowed as we
have an absolutely convergent series. Due to the Gaussian
decay of the functions Dn(u), in the limit q → ∞, we make
an error which, as a function of q, decays faster than any
polynomial function if we replace b in the limits of the integral
by infinity. We therefore obtain the asymptotic expansion

J n1n2
kl (q) =

∞∑
r=0

ar (k)I l
n1n2,r

(
√

2q1/4)r+1
, (39)

where we introduced coefficients of the form

I l
n1n2,r

=
∫ ∞

−∞
du ur D2n1 (u)D2n2+l(u). (40)

This integral can be computed analytically, and the explicit
expression is given in Appendix C. Also note that due to the
parity properties of the integrand I l

n1n2,r
vanishes unless r and

l are both even or both odd. Therefore, depending on whether
l is even or odd, the summation index r in Eq. (39) can be
taken to run only over even or only over odd values.

Expression (39) together with Eq. (35) gives an explicit
procedure to calculate the large q expansion of the excitation
amplitudes. The asymptotic expansions of Dkl(q) and of
|Dkl(q)|2 are given in Appendix C in Eqs. (C5) and (C6)
respectively. Together with the asymptotic expansion for the
excitation energies, Eq. (B4), inserted into Eq. (28), we find
that the asymptotic expansion of the density response function
is given by

χ (k,ω) =
⎧⎨
⎩

8
L

(πk/L)2

(ω+iη)2−( πk
L )4

[
1 − k2

4
√

q
+ k2(k2−2)

32q

] + O(q−3/2) if k is even

L
2π2

{− k2

q
+ k2(k2−1)

2q3/2 − k2

q2

[
368k4−928k2+947

2304 + 1
16

(
L
π

)4
ω2

]} + O(q−5/2) if k is odd.
(41)

From this expression, we can draw a number of interesting
conclusions. We find that the response function behaves quite
differently for even and odd Fourier coefficients in the strong
interaction regime. If we apply a potential with general
coefficients δv(k,ω) to the system, the density change δn(k,ω)
is strongly suppressed for odd k as χ (k,ω) becomes very
small. In this limit it will therefore mainly have even Fourier
coefficients, which implies that δn(x,t) = δn(x + L

2 ,t), i.e.,
the density change at antipodal points of the ring is the
same. If we, however, apply a potential with only odd Fourier
coefficients, the density change has the symmetry δn(x,t) =

−δn(x + L
2 ,t) and is therefore opposite in antipodal points of

the ring. From Eq. (41) we find that the leading term in real
space in this case is given by

δn(x,t) = n0

q

(
L

2π

)4

∂2
x δv(x,t). (42)

We can understand the dependence on q as follows. The
generation of an antisymmetric antipodal density requires
excitation to states with an odd number of nodes in the
relative wave function, which requires a large energy in the
strong interaction limit and therefore the density response is
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FIG. 3. The real part of χ (k = 2,ω) in units of L (top) and fHxc(k = 2,ω) in units of L−1 (bottom) for different values of the interaction
strength q. The exact results are obtained by numerical integration, and the expansion of χ and fHxc is taken up to the same order as shown in
Eqs. (41) and (52).

suppressed for large interaction strength. From Eq. (42) we
also see that the density increases instantaneously around
the points where the potential has positive curvature. The
instantaneous nature of the response has a simple explanation.
If we perturb the system with a potential δv(k,ω) which is
only nonzero for frequencies ω well below the first excitation
energy, the temporal variation of the perturbation is much
slower than a typical time scale of the free evolution of
the system and the density response can be regarded as
instantaneous. Since the excitation energies �E+

kl for odd k

(which must have odd l as well) increase proportionally to
√

q,
the density response function in this case is well approximated
by a frequency-independent function for ω � √

q, which
explains the instantaneous dependence of the density variation
on the perturbation in Eq. (42).

For even values of k, the density response function has
a more interesting frequency dependence. In the strong
interaction limit

lim
q→∞ χ (k,ω) = 8

L

(πk/L)2

(ω + iη)2 − (
πk
L

)4 . (43)

The poles of this response function correspond to the
center-of-mass excitations of Eq. (11). Being independent of
q, they are not shifted towards infinity when we increase the
interaction strength. This is a peculiarity of the quantum ring
system as the Hamiltonian is separable in a λ-dependent and a
λ-independent part. This happens also for some other homoge-
neous systems such as the three-dimensional electron gas with
periodic boundary conditions or for electrons restricted to the
surface of a sphere [53]. The analysis based on Eq. (19) shows
that such a separation is usually not possible in inhomogeneous
systems. When it is possible, both parts will generally still
depend on λ (see Appendix A for an example).

To illustrate the accuracy of the expansion in Eq. (41) we
display the exact response function and the expanded one in
the top panels of Fig. 3 for k = 2 and for some values of
the interaction strength. For small interactions (q = 1/3), the

exact response function has two poles; one is approximately
at the same location as the Kohn-Sham response function
(ω = 2(πk/L)2), while a new pole with a small weight appears
at the center-of-mass excitation energy at ω = (πk/L)2. The
expansion captures this pole, albeit with a very different
weight. When we increase the interaction strength, the pole
originally at the Kohn-Sham energy will shift to higher
energies to a position proportional to

√
q, while the pole

corresponding to the center-of-mass excitation stays fixed
and increases in weight. Already at q = 5, the asymptotic
expansion yields good results for this k value. We thus see
that the expansion is accurate for frequencies that are small
compared to

√
q. This result was to be expected since in the

expansion of Eq. (41) we treated the frequency ω as a constant
that is small compared

√
q.

Having obtained the exact response function, we have
obtained all information needed to study the xc kernel of
TDDFT, which will be the topic of the next section.

IV. TDDFT IN THE STRONG INTERACTION LIMIT

A. The exchange-correlation kernel

In TDDFT an effective noninteracting system, known as
the Kohn-Sham system, is constructed in such a way as to
have exactly the same density as the interacting many-particle
system of interest. The external potential in this system,
vs([n]; rt), is a functional of the density [6,41] and is often
written as follows

vs(rt) = v(rt) +
∫

dr′ w(r,r′)n(r′,t) + vxc(rt). (44)

Here v(rt) is the external potential of the interacting system
of interest and w(r,r′) is the two-particle interaction of that
system. The second term in Eq. (44) is the Hartree potential
and the last one is the exchange-correlation (xc) potential.
Taking the functional derivative of Eq. (44) with respect to the
density, one obtains

χ−1
s (rt,r′t ′) = χ−1(rt,r′t ′) + fHxc(rt,r′t ′). (45)
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Here χ−1
s is the inverse of the Kohn-Sham density response

function whereas χ−1 is the inverse of the density response
function of the interacting system and fHxc, the Hartree-xc
kernel, is defined as

fHxc(rt,r′t ′) = δvHxc(rt)
δn(r′t ′)

, (46)

where vHxc is the sum of the Hartree and the xc potential.
Equation (45) is commonly used to calculate χ from the
knowledge of χs at the price of approximating fHxc.

For the discussion in the next section, it is important to
note that the functional derivative is not a uniquely defined
function [41,54] due to the fact that for a system with a fixed
number of particles the density change must integrate to zero
at any time, i.e.,

0 =
∫

dr δn(rt). (47)

Let us define a new function

f̃Hxc(rt,r′t ′) = fHxc(rt,r′t ′) + g(r,t,t ′) + h(r′,t,t ′) (48)

with g and h arbitrary functions. The change in the Hartree-xc
potential produced by the kernel of Eq. (48) due to a density
change δn is given by

δṽHxc(rt) =
∫

dr′dt ′f̃Hxc(rt,r′t ′)δn(r′t ′)

=
∫

dr′dt ′fHxc(rt,r′t ′)δn(r′t ′)

+
∫

dr′dt ′[g(r,t,t ′) + h(r′,t,t ′)]δn(r′t ′)

= δvHxc(rt) + C(t), (49)

where the integral over g integrates to zero as a consequence
of Eq. (47) and the integral over h yields a function C(t)
of time t only, which is merely a gauge of the potential.
We therefore see that f̃Hxc and fHxc are physically equivalent
integral kernels. The quantity that is defined unambiguously1

is the mixed spatial derivative

∇r∇r′ f̃Hxc(rt,r′t ′) = ∇r∇r′fHxc(rt,r′t ′), (50)

a property that will be used below.
Let us turn to the specific case of the quantum ring. The

density response function is diagonal in the momentum-energy
representation and for the Fourier components the following
relation holds:

fHxc(k,ω) = 1

χs(k,ω)
− 1

χ (k,ω)
. (51)

By Fourier transforming the kernel fHxc we impose a depen-
dence on the relative coordinate in real space, which reduces
the ambiguity of Eq. (48) to that of adding an arbitrary spatially
constant function. In Eq. (51) this freedom is reflected in the
fact that the kernel is well defined for all k values except
for k = 0, since in this case both the response functions
vanish. For the homogeneous quantum ring, the Kohn-Sham
response function coincides with the response function of
truly noninteracting electrons of Eq. (34). Using this equation,
together with the expansion of Eq. (41), we obtain an explicit
expression for fHxc in the strong interaction limit:

fHxc(k,ω) =
⎧⎨
⎩

− 3π2k2

8L
− 1√

λ

L2√
V0

1
16π

[
ω2 − (

πk
L

)4] + 1
λ

L
V0

k2+2
64

[
ω2 − (

πk
L

)4] + O(λ−3/2) if k is even

λ V0L

2k2 + √
λ

√
V0π(k2−1)

2k2 − π2(368k4+224k2+371)
1152k2L

+ O(λ−1/2) if k is odd
(52)

where we have reintroduced the variable λ rather than q as the
λ notation is commonly used in the density functional context,
which will be central for the discussion in the next section.
Since these quantities only differ by a numerical prefactor [see
Eq. (4)] we will refer to the large interaction regime as the
regime in which either of these two variables tends to infinity.

To illustrate the accuracy of the expansion in Eq. (52) we
display the exact fHxc kernel and the expanded one in the
bottom panels of Fig. 3 for k = 2 and some values of the
interaction strength. We see that the corresponding asymptotic
expansion for fHxc is accurate up to the lowest excitation
energy corresponding to a change in the relative wave function.
In this energy region fHxc has a pole at an energy corresponding
to a zero in χ , as a consequence of Eq. (51). It is worth
noticing that since the noninteracting response function has no
zeros, there is no pole in fHxc originating from the first term
in Eq. (51). This is peculiar to our quantum ring system for
which the noninteracting response function has only a single
pole for ω > 0. Instead, for a general system, the Kohn-Sham
response function will have multiple poles and zeros which
implies that, to order λ0, fHxc is frequency dependent, causing
the adiabatic approximation to fail in this order. In our system,

fHxc for even k tends to a frequency-independent function
for all ω when the interaction strength approaches infinity. Its
static value, given by fHxc = − 3L

8 (πk
L

)
2 = χ−1

s [k,ω = (πk
L

)
2
],

is the value needed to shift the Kohn-Sham pole to the q → ∞
pole.

For the odd k values (not shown here), all poles in the
response function shift to infinity as q → ∞. The asymptotic
expansion for fHxc captures this, and the kernel becomes
frequency independent in this limit. In fact, for odd values
of k in Eq. (52), all the leading terms up to order λ0 are
frequency independent. However, frequency-dependent terms
will appear to order λ−1/2 (not presented here) as is also the
case for even k.

For the discussion in the next section it is useful to recast the
kernel in real space. The expressions in Eq. (52) are sufficient
to calculate this quantity to order λ0 in real space using the

1Note that Ref. [31] did not discuss the possible addition of arbitrary
functions of one spatial variable to the kernel.
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Fourier transform of Eq. (53)

fHxc(r,ω) = 1

L

∞∑
k=−∞

fHxc(k,ω)e
2πikr

L (53)

and r = x − x ′ is the relative distance between the points x and
x ′, which are the one-dimensional counterparts of the spatial
points in Eq. (46). Since x and x ′ are both in the interval from
0 to L we have that r ∈ [−L,L]. We find that

fHxc(r,ω) = λf1(r) +
√

λf2(r) + f3(r) + O(λ−1/2). (54)

The leading term is given explicitly by

f1(r) = V0π
2

2L

[
−|r| +

∣∣∣∣r + L

2

∣∣∣∣ +
∣∣∣∣r − L

2

∣∣∣∣ − 3L

4

]
(55)

in which we choose the arbitrary constant function [see the
discussion below Eq. (51)] such that the Fourier coefficient of
f1 becomes zero for k = 0. For f2 we find (up to a constant)
that

f2(r) =
√

V0π

4

[
δ(r) − δ

(
r + L

2

)
− δ

(
r − L

2

)]

−
√

V0π
3

2L2

[
−|r| +

∣∣∣∣r + L

2

∣∣∣∣ +
∣∣∣∣r − L

2

∣∣∣∣ − 3L

4

]
. (56)

Since in the next section we will focus mostly on f1 and f2,
we do not report here the real space representation of f3. In
the next section, we will show how f1 and f2 can be calculated
in an alternative manner using the SCE theory in the adiabatic
approximation.

B. Expanding the xc kernel in the theory of strictly
correlated electrons

To date, no good and reliable approximations for electrons
in the strong correlation regime have been developed within
TDDFT. A ground-state theory of so-called strictly correlated
electrons (SCE) [32,50] has been constructed and applied
within the adiabatic approximation to calculate the xc kernel
to the leading order in the interaction strength. In this section,
we will first benchmark this approximation against the exact
solution for the quantum ring model and then derive and
compare the next order.

Let us begin with a brief overview of the ingredients of SCE
theory that we will use. The Hartree-xc energy for a system
with interaction strength λ can be written as [55]

Eλ
Hxc =

∫ λ

0
dλ′ Wλ′[n], (57)

where we defined

Wλ[n] = 〈�λ[n]|Ŵ |�λ[n]〉. (58)

In this expression, Ŵ is the two-particle interaction and �λ[n]
is the ground-state wave function of a system with a local
external potential, interaction λŴ , and ground-state density n.

In the strong interaction limit, Wλ[n] can be expanded as [33]2

Wλ[n] = VSCE[n] + VZPE[n]√
λ

+ O(λ−3/2), (59)

where the first term is the SCE energy, which has the explicit
form

VSCE[n] = 1

2

N∑
i=2

∫
dr n(r)w(|r − fi([n]; r)|), (60)

where w is the two-particle interaction which we assume
to depend only on the distance between the particles. The
functions fi([n]; r) are the so-called comotion functions, which
specify the position of N − 1 electrons given the position
of one electron at r. The second term in Eq. (59) contains
the so-called zero-point energy (ZPE), which describes the
vibrations of the electrons around their equilibrium positions
and is given explicitly as

VZPE[n] = 1

2

∫
dr

n(r)

N

D(N−1)∑
n=1

ωn(r)

2
, (61)

where D is the spatial dimensionality of the system and ωn are
the harmonic frequencies. Inserting Eq. (59) into Eq. (57), we
find the large λ expansion of the Hartree-xc energy to be

Eλ
Hxc = λVSCE[n] + 2

√
λVZPE[n] + O(λ0). (62)

The ground-state theory can be used in the adiabatic ap-
proximation [31] to find an approximate exchange-correlation
kernel from

f A
Hxc(rt,r′t ′) = δ2Eλ

Hxc

δn(r)δn(r′)
δ(t − t ′), (63)

where we added the superscript A to indicate that we make
the adiabatic approximation. This approximation yields a
frequency-independent Hartree-xc kernel when transformed
to frequency space, which we denote as f A

Hxc(r,r′). The
second-order variation of Eq. (62) with respect to the density
gives an expansion in orders of

√
λ for the Hartree-xc kernel:

f A
Hxc(r,r′) = λ f ASCE(r,r′) +

√
λ f AZPE(r,r′) + O(λ0), (64)

where we defined the adiabatic SCE and ZPE kernels as

f ASCE(r,r′) = δ2VSCE

δn(r)δn(r′)
, (65)

f AZPE(r,r′) = 2
δ2VZPE

δn(r)δn(r′)
. (66)

Let us now turn again to the case of the quantum ring. In this
case, there are two electrons and just one simple comotion

2Strictly speaking, the absence of a term of order λ−1 in this
expansion has only been shown for a Coulomb system but we find it
to be true in our model as well.
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function f : [0,L] → [0,L] given by

f(x) =
{

x + L
2 if x ∈ [

0,L
2

)
x − L

2 if x ∈ [
L
2 ,L

]
.

(67)

If one electron is at x, this function simply puts the
other electron at the antipodal point of the quantum ring.
From this comotion function, it is straightforward to calculate
the SCE energy. Since |x − f(x)| = L/2, we have from our
interaction w(x) = V0 cos2(πx/L) in Hamiltonian (1) that
w(|x − f(x)|) = 0 and therefore VSCE = 0 for our density.
Physically this means that the electrons are simply localized
at the bottom of a potential well with zero energy.

To next order, oscillations around these equilibrium po-
sitions start to appear. These zero-point oscillations give an
energy contribution which can be calculated using Eq. (61).
For a one-dimensional two-electron system there is only one
nonzero harmonic frequency given by [56]

ω1(x) =
√

w′′(|x − f(x)|)
(

n(x)

n[f(x)]
+ n[f(x)]

n(x)

)
, (68)

where w′′(x) = ∂2
xw(x). If we calculate this frequency for

our quantum ring, we find ω1(x) = 2π
√

V0/L and VZPE =
π

√
V0/(2L). We can verify that this is in accordance with the

exact strong interaction expansion of the Hartree-xc energy.
Since the Kohn-Sham kinetic energy as well as the external
potential is zero for the quantum ring system, Eλ

Hxc simply
coincides with the total energy, which is known in the strong
interaction limit from the large-q expansion of the lowest
Mathieu characteristic value (see Appendix B). This gives

Eλ
Hxc = π

√
V0

L

√
λ − π2

4L2
− π3

16L3
√

V0

1√
λ

+ O(λ−1), (69)

where the leading coefficient indeed exactly gives 2VZPE. The
expansion of Wλ can be calculated from Eq. (57) to give

Wλ = dEλ
Hxc

dλ
= π

√
V0

2L

1√
λ

+ π3

32L3
√

V0

1

λ3/2
+ O(λ−2).

(70)

This result agrees with a direct calculation of Wλ using
the Sips expansion of the Mathieu functions and indeed has
the structure of the expansion in Eq. (59) in which we also
included the term to order λ−3/2.

Let us turn to the calculation of the kernels of Eqs. (65)
and (66).

The ASCE kernel is obtained from the expression derived
in Ref. [31] and reads

f ASCE(x,x ′) = −
∫ x

0
dy

w′′(|y − f(y)|)
n[f(y)]

× [θ (y − x ′) − θ (f(y) − x ′)]

= f1(x − x ′) − f1(x) − f1(x ′) + f1(0), (71)

where f1 is the function given in Eq. (55). Because of the
freedom in Eq. (48) f ASCE is physically equivalent to the kernel
f1(x − x ′) and agrees with the leading term in the expansion
of Eq. (54) in the strong interaction limit. Both kernels are
shown in Fig. 4. Since f1(x − x ′) has a simpler shape, we will
restrict ourselves to this function. The kernel describes how a

FIG. 4. Top: The Hxc kernel f ASCE(x,x ′) of Eq. (71). Bottom:
The physically equivalent Hxc kernel f1(x − x ′) of Eq. (55). The x

and x ′ axes are in units of L and fHxc is given in arbitrary units.

density variation induces a change in vHxc. To leading order in
λ we have

δvHxc(x,t) = λ

∫
dx ′f1(x − x ′)δn(x ′,t).

By taking the second derivative of this equation, we obtain

∂2
x δvHxc(x,t) = λ

V0π
2

L
[−δn(x,t) + δn(x + L/2,t)

+ δn(x − L/2,t)], (72)

where we stress that δn(x,t) is periodic with L. Since f1(x −
x ′) is linear everywhere except at the kinks at x − x ′ = 0,

± L/2, the second derivatives yield δ functions at these points.
Also note that the sign of the density change yields the
curvature of the induced potential. Equation (72) has some
interesting consequences. If we make a localized density
variation δn(x,t) in a very small interval of the ring, there
will not only be a change δvHxc in the same interval, but at
the same time a similar change in the potential with opposite
sign in an antipodal interval. This shows very clearly that
the Hxc-potential depends nonlocally, but instantaneously, on
the density.

Let us analyze the next orders in the strong interaction
expansion. The calculation of f AZPE allows for a comparison
with the next leading term in Eq. (54), which is proportional
to

√
λ. The kernel f AZPE was obtained by taking the second

functional derivative of the one-dimensional counterpart of
Eq. (61), using Eq. (68) and the functional derivative of the
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FIG. 5. The static fHxc(k,ω = 0)/q as function of q, for k = 3
(solid lines) and k = 5 (dashed lines) in units of L−1. We show the
exact kernel obtained by numerical integration, and compare ASCE,
ASCE+AZPE, and ASCE+AZPE+f3 (denoted by f3 in the figure)
coming from Eq. (54). Note that we plot the kernel as function of q

instead of λ [see Eq. (4)] in order to be consistent with the previous
figures.

comotion functions (derived already in Ref. [31]). We also find
agreement between this expression and that of the next leading
term in Eq. (56), i.e., f AZPE(x,x ′) = f2(x − x ′) modulo the
addition of arbitrary functions of x and x ′ separately [see
again Eq. (48)]. We observe that the first two leading terms of
the expansion of the Hartree-xc kernel from the adiabatic SCE
theory agree with the exact results for the quantum ring. An
interpretation of this fact will be presented below.

We have thus seen that, in this model, the ASCE and AZPE
terms agree with the terms f1 and f2 respectively of the exact
asymptotic expansion. To better elucidate their role in the
strong interaction limit, we show in Fig. 5 the first three terms
contributing to fHxc, all scaled by λ, and compare them with
the expression for the exact kernel, in Fourier space for k = 3
and k = 5. As was pointed out earlier, the accuracy of the
expansion depends on the value of k: high k values require
higher λ values to achieve better accuracy. The first term, that
is the ASCE, is constant, while the second one, that is the
AZPE, only improves on it for large λ values and worsens
it for smaller ones, as one would expect for an asymptotic
expansion. The third term, beyond the AZPE, also exhibits a
non-negligible contribution in the small-λ regime.

We will now offer a physical interpretation of the above
terms and make some considerations about their properties
in the case of more general systems than the quantum
ring model. In the (infinitely) strong interaction limit, a
given system behaves very rigidly, since the position of the
reference electron determines the positions of all the remaining
electrons. Upon application of a perturbation, the response of
the system is instantaneous, or adiabatic, while maintaining its
rigidity, unless special symmetries are present. This behavior is
likely to apply to a wider class of systems, both with a uniform
(such as the quantum ring) and a nonuniform density. On the
other hand, it is unclear whether the frequency independence of
f2 is equally general as we already move away from the strictly
correlated electron limit by introducing zero-point vibrations:
Thus the adiabaticity of f2 for general systems is still an open

issue. Finally, as already noted before, the third term f3 of the
expansion will be nonadiabatic for general systems.

V. CONCLUSIONS

In this work, we have considered an exactly solvable
model consisting of two interacting electrons on a quantum
ring. We focused on the response properties and calculated
the energy spectrum, the excitation amplitudes, the density
response function, and the exchange-correlation kernel of
time-dependent density functional theory. In the limit of strong
interaction, we derived the asymptotic expansion in powers of
the square root of the interaction strength for the response
function and kernel. For the kernel, we found that its leading
terms are local in time but nonlocal in space. This already
shows that the commonly used adiabatic local-density, or
semilocal, approximations will fail for such strongly correlated
systems, since they are local both in time and space. We
compared the expansion for the kernel to a similar one obtained
from the adiabatic-SCE formalism [31] which has the spatial
nonlocality built in. The leading term of the exact expansion
was found to coincide with the adiabatic-SCE kernel derived
in Ref. [31]. After working out the next order term, the
so-called zero-point energy contribution, we found that it also
coincided with the exact next-to-leading term. For our model,
the subsequent term in the expansion is still adiabatic, but we
showed that in general systems this term will be nonadiabatic.

The agreement with our exact results puts the adiabatic-
SCE and the adiabatic-ZPE approximations on firmer ground
and gives confidence in employing the formalism of strictly
correlated electrons in the adiabatic approximation for calcu-
lating response properties of strongly correlated systems.
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APPENDIX A: RESPONSE FUNCTION OF
A HARMONIC MODEL SYSTEM

To illustrate some properties of the response function in
the large interaction limit for an inhomogeneous system, let
us analyze a model system of two harmonically confined
electrons in three dimensions with a harmonic repulsion [57].
The Hamiltonian of the system is given by

Ĥ = −1

2

(∇2
1 + ∇2

2

) + 1

2
ω2

λ(|r1|2 + |r2|2) − λ

2
|r1 − r2|2,

(A1)

in which the harmonic frequency ωλ is chosen in such a way
that the density is independent of λ. Using the coordinate
transformation s = (r1 + r2)/

√
2 and r = (r1 − r2)/

√
2, the

Hamiltonian can be written as that of two independent
harmonic oscillators

Ĥ = − 1
2

(∇2
s + ∇2

r

) + 1
2ω2

λ|s|2 + 1
2ν2

λ|r|2, (A2)
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where ν2
λ = ω2

λ − 2λ. The eigenfunctions and eigenvalues of
this Hamiltonian are well known. The normalized eigenfunc-
tions are given by

�nm(s,r) = (ωλνλ)3/4
n(
√

ωλ s)
m(
√

νλ r), (A3)

where we defined the triplet of non-negative integers n =
(n1,n2,n3) and m = (m1,m2,m3) and the functions


n(x) = Hn(x)
e−|x|2/2

π3/4

in which we denoted

Hn(x) = Hn1 (x1)Hn2 (x2)Hn3 (x3)√
2|n|n1!n2!n3!

, (A4)

where |n| = n1 + n2 + n3 and Hn(x) is the Hermite polyno-
mial of order n. The energy eigenvalues are given by

Enm = ωλ

(|n| + 3
2

) + νλ

(|m| + 3
2

)
. (A5)

The ground-state wave function �0 = �00 has the explicit
form

�0(s,r) =
[
ωλνλ

π2

]3/4

e−ωλ|s|2/2−νλ|r|2/2. (A6)

From this function, the density is readily obtained as

n(x) = 2

[
β

π

]3/2

e−β|x|2 , (A7)

where we defined

β = 2ωλνλ

ωλ + νλ

. (A8)

If we insert νλ =
√

ω2
λ − 2λ into this relation, we can deter-

mine the λ dependence of ωλ as β is independent of λ. We
find

ωλ =
√

λ

2

(
y + 1

y

)
, (A9)

νλ =
√

λ

2

(
y − 1

y

)
, (A10)

where y solves the quartic equation

y4 − β

√
2

λ
y3 − 1 = 0. (A11)

In the limit of large interaction, we find that y = 1 +
β/(2

√
2λ) + O(λ−1) such that

ωλ =
√

2λ + O(1) (A12)

νλ = β/2 + O(λ−1). (A13)

We see that the harmonic frequency of the center-of-mass
mode approaches infinity, whereas the one of the relative mode
approaches a finite value. This has interesting consequences
for the excitation spectrum. For the excitation energies of the
relative mode, it implies that

lim
λ→∞

(E0m − E00) = β

2
|m| (A14)

while all other excitation energies diverge to infinite values at
large interaction strength. The latter correspond to excitations
of the center-of-mass mode. In contrast to the quantum ring,
only the excitation energies of the relative mode remain finite
in the large interaction limit, which is due to the very different
nature of the two-body interaction.

Let us turn our attention to the density response function. In
the response function, only the singlet excitations contribute.
This means that the spatial wave functions that we need to
consider are symmetric in the interchange of the particle
positions. For this to be true, the relative wave functions need
to be even and we have to require that |m| only attains even
values. The response function therefore has the form

χ (r1,r2,ω) =
∑
n,m

[
Dnm(r1)D∗

nm(r2)

ω − �Enm + iη
− Dnm(r2)D∗

nm(r1)

ω + �Enm + iη

]
,

(A15)

where �Enm = Enm − E00 are the excitation energies and we
further put the restriction that we sum over all m such that
|m| is even. The excitation amplitudes corresponding to these
excitations are given by

Dnm(r1) = 〈�0|n̂(r1)|�nm〉

= 2
∫

dr2�
∗
00(r1,r2)�nm(r1,r2), (A16)

where we rewrote the eigenfunctions in terms of the original
coordinates. Let us now consider the large interaction limit
λ → ∞ of the response function. Since only the excitation
energies of the form �E0m remain finite in this limit, we only
need to consider the excitation amplitudes of the form

D0m(r1) = 2

[
ωλνλ

π2

]3/2 ∫
dr2 Hm(

√
νλ/2(r1 − r2))

× e− ωλ
2 (r1+r2)2− νλ

2 (r1−r2)2
. (A17)

If we now use that

lim
λ→∞

[
ωλ

2π

]3/2

e− ωλ
2 (r1+r2)2 = δ(r1 + r2) (A18)

is a limit representation for the delta distribution and the fact
that νλ → β/2 in the large interaction limit, we find that

lim
λ→∞

D0m(r1) = 2

(
β

π

)3/2

Hm(
√

β r1)e−β|r1|2 . (A19)

For the response function in the large interaction limit, we
therefore obtain

α(r1,r2,ω) = lim
λ→∞

χ (r1,r2,ω)

= n(r1)n(r2)
∑

m

Hm(
√

β r1)Hm(
√

β r2)

×
[

1

ω − β

2 |m| + iη
− 1

ω + β

2 |m| + iη

]
,

(A20)

where the sum runs over m values such that |m| is even. We
see that in the large interaction limit it is still possible to excite
the relative modes of the system.
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Let us now have a look at the external potential in the strong
interaction limit

vλ(r) = 1
2ω2

λ|r|2 = λ|r|2 + O(
√

λ), (A21)

which implies ∇vλ(r) = 2λr + O(
√

λ). Since the response
function does not vanish in the large interaction limit, Eq. (20)
tells us that

0 =
∫

dr2 α(r1,r2; ω = 0) r2

must hold, where we took the static limit of the response
function of Eq. (A20). Since the polynomial functions in
Eq. (A20) are all even (since |m| is even), and r2 is an odd
function, we find that this relation is indeed satisfied.

APPENDIX B: SIPS’S EXPANSION
OF THE MATHIEU FUNCTION

In this appendix we describe the details of the expansion of
the Mathieu functions for large q. A recent general discussion
is given by Frenkel and Portugal [47], who give an overview
of various expansions for the Mathieu functions for large and
small values of q in different regions of their domain and
recursion formulas to determine the expansion coefficients.
The expansion that we are interested in for this work is the
large q expansion for the Mathieu cosine function Cl(z; q) in
the region enclosing the value z = π/2. Such an expansion
was derived originally by Sips [43–46], who developed a
systematic theory. For the Mathieu cosine, this expansion is
of the form of Eq. (13). We here give the explicit expressions
for the coefficients c2n,l(q) in Eq. (13), and for this it will be
convenient to define new coefficients g2n,l(q)

c2n,l(q) = Cl(q) g2n,l(q), (B1)

which only differ from the coefficients c2n,l(q) by a prefactor
Cl(q). This is done to ensure that g0,l(q) = 1, which is conve-
nient for a recursive calculation of the remaining coefficients
g2n,l(q) as is done in Refs. [46,47]. The prefactor Cl(q) is
chosen such that the Mathieu cosine satisfies the normalization
of Eq. (8). It has the explicit asymptotic expansion [44,46,47]

Cl(q) =
(

π
√

q

2(l!)2

)1/4(
1 + 2l + 1

8
√

q

+ l4 + 2l3 + 263l2 + 262l + 108

2048q
+ · · ·

)−1/2

.

(B2)

In terms of the new coefficients g2n,l(q), the Sips expansion of
Eq. (13) becomes [46]

Cl(z; q) = Cl(q)
∞∑

n=−∞
g2n,l(q)D2n+l(u), (B3)

where the functions Dl(u) are defined in Eq. (12) and u =√
2 q1/4 cos z. Note that the expansion here differs in the choice

of argument u compared to that of Ref. [43] by a factor
of

√
2 as we preferred to use the physicists’ convention for

the Hermite polynomials appearing in the harmonic oscillator
functions Dl . We prefer here to avoid a general discussion on

the determination of g2n,l(q) and refer the interested reader to
Refs. [46,47] for details. Instead, we give the explicit forms of
the coefficients g2n,l(q) up to order 1/q, which is sufficient for
this work:

g−8,l(q) = 1

213q
8!

(
l

8

)
,

g−6,l(q) = − 1

210q
6!

(
l

6

)
,

g−4,l(q) =
[

1

26√q
+ (l − 1)

28q

]
4!

(
l

4

)
,

g−2,l(q) = −
[

1

24√q
+ (l2 + 27l − 10)

210q

]
l(l − 1),

g0,l(q) = 1,

g2,l(q) =
[
− 1

24√q
+ (l2 − 25l − 36)

210q

]
,

g4,l(q) =
[
− 1

26√q
− (l + 2)

28q

]
,

g6,l(q) = 1

210q
, g8,l(q) = 1

213q
,

where we define ( n

m
) = 0 if n < m. From the formulas given

in Ref. [47], it is readily seen that to know the Sips expansion
to order q−k/2 we need to know the coefficients g2n,l(q) for
n ∈ {−2k, . . . ,2k}. For example, the knowledge of the next
order q−3/2 would need the knowledge of the coefficients from
g−12,l(q) up to g12,l(q); see, for example, Ref. [46].

To show the accuracy of the Sips expansion we display
in Fig. 6 the Mathieu cosine Cl(q; z) for l = 0 and l = 3 for
q = 1 and q = 10 and compare them to the Sips expansion
using the coefficients g2n,l(q) given explicitly above. We see
that already at q = 10 the Sips expansion performs very well.
In general, we find that for higher values of l more terms in
the expansion need to be taken into account for high accuracy.

FIG. 6. Comparison of the exact Mathieu functions to the
expansion Eq. (B3) for the large q limit in which the expansion
coefficients g2n,l(q) that contain terms up to order 1/q were used.
The upper (lower) panels have q = 1 (q = 10), while the left (right)
panels have l = 0 (l = 3). The accuracy of the expansion converges
to the exact case more quickly for lower values of l.
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It remains to give the asymptotic values of the Mathieu
characteristic value. The characteristic values a+

l (q) and a−
l (q)

have the same asymptotic expansion of the form [47]

a±
l (q) = −2q + 2(2l + 1)

√
q − 1

4
(2l2 + 2l + 1)

− (2l + 1)

128
√

q
[(2l + 1)2 + 3] + O(q−1), (B4)

while the difference a+
l (q) − a−

l (q) is exponentially small in
the large q limit [43].

APPENDIX C: EXPANSION OF
THE EXCITATION AMPLITUDES

Here we further outline some general features of the
expansion of the excitation amplitudes Dkl(q). If we rewrite
the expansion of Eq. (35) using the coefficients of Eq. (B1),
we have the expression

Dkl(q) = 2

π
C0(q) Cl(q)

∞∑
n1,n2=−∞

g2n1,0(q)

× g2n2,l(q)J n1n2
kl (q). (C1)

For the products of the prefactors we can write

C0(q)Cl(q) = q1/4 Fl(q), (C2)

where Fl(q) has an expansion in powers of q−1/2, i.e.,

Fl(q) = 1

l!

√
π

2

[
1 − l + 1

8
√

q
+ O(q−1)

]
(C3)

and higher powers can be calculated from expression (B2).
With these definitions and Eq. (39) we can rewrite the
expansion of Eq. (C1) as

Dkl(q) = 2

π
Fl(q)

∞∑
n1,n2=−∞

g2n1,0(q)g2n2,l(q)

×
∞∑

r=0

ar (k)I l
n1n2,r

(
√

2)r+1qr/4
, (C4)

where the factor q1/4 from Eq. (C2) has been absorbed in the
last sum. The function Fl(q) and the coefficients g2n,l(q) have
an expansion in powers of q−1/2. Now since the coefficients
I l
n1n2,r

vanish unless k and l are both even or both odd, we
conclude that Dkl(q) has an expansion only in odd powers of
q−1/4 if l is odd and only in even powers of q−1/4 otherwise.
The explicit expression for I l

n1n2,r
is given by

I l
n1n2,r

=
∫ ∞

−∞
du ur D2n1 (u)D2n2+l(u) =

{
0 If r + l odd
r!
2r

√
π 2n1+n2+ l

2
∑min(2n1,2n2+l)

p=max (0,−s)

(2n1

p

)(2n2+l

p

)
p!

2p(s+p)! otherwise

where we defined s = r/2 − n1 − n2 − l/2 [58]. Finally the coefficients ar (k) can be obtained from a Taylor expansion of the
function fk(x) defined in Eq. (38). Taking all these terms together, we find the following expansion of the excitation amplitude:

Dkl(q) = (−i)k
[

1 − k2

8
√

q
+ k2(k2 − 4)

128 q
− k2(k4 − 14k2 + 46)

3072 q3/2
+ O(q−2)

]
δl0

+ (−i)k+1

[
− k

2q1/4
+ k(k2 − 1)

16 q3/4
− k(2k4 − 16k2 + 13)

512 q5/4
+ O(q−7/4)

]
δl1

+ (−i)k
[
− k2

4
√

2
√

q
+ k2(2k2 − 5)

64
√

2 q
+ O(q−3/2)

]
δl2 + (−i)k+1

[
k(2k2 + 1)

16
√

6 q3/4
+ O(q−5/4)

]
δl3. (C5)

The excitation amplitude indeed has an expansion in odd powers of q−1/4 for odd l and in even powers of q−1/4 for even
l, as we demonstrated above. This implies that |Dkl(q)|2 has an expansion in powers of q−1/2. The expansion derived here has
been checked numerically to ensure the correctness of the derivations. As a further check on the result, we see that the excitation
amplitude satisfies Dkl(q) = (−1)k+lD∗

kl(q) as well as D0l(q) = δl0.
The order for Dkl(q) given in Eq. (C5) is enough to yield the following asymptotic expansion for the absolute value squared

of the excitation amplitudes to order q−3/2:

|Dkl(q)|2 =
[

1 − k2

4
√

q
+ k2(k2 − 2)

32 q
− k2(2k4 − 13k2 + 23)

768 q3/2

]
δl0 +

[
k2

4
√

q
+ k2(1 − k2)

16 q
+ k2(4k4 − 20k2 + 15)

512 q3/2

]
δl1

+
[

k4

32 q
− k4(2k2 − 5)

256 q3/2

]
δl2 +

[
k2(4k4 + 4k2 + 1)

1536 q3/2

]
δl3 + O(q−2). (C6)

We compare the expansion of |Dkl(q)|2 to the exact values
obtained by numerically integrating Eq. (26) in Fig. 7. We see
from this figure that higher values of k require higher values

of q to make the expansion accurate. This was to be expected
since larger k values imply a more oscillatory integrand in
Eq. (26), while a larger value of q makes the Mathieu functions
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FIG. 7. Square |Dkl(q)|2 of the excitation amplitudes for l = 0
(top) and l = 1 (bottom) for k = 3 (left) and k = 5 (right) as function
of q. We compare the square of Eq. (26) (denoted by Exact) to the
expansion of Eq. (C6) (denoted by Exp.).

more localized and thereby makes the expansion of Eq. (38)
used in the integrand more accurate.

We finally note that the frequency-sum rule, Eq. (23), can be
used to check the validity of some of the terms of Eq. (C6). If
we insert the explicit form of Eq. (28) into the one-dimensional
equivalent of Eq. (23) for the frequency sum rule, we can derive
that

∑
l

(k2 + [a+
l (q) − a+

0 (q)])|Dkl(q)|2 = k2, (C7)

where the sum runs over even l if k is even and over odd
l when k is odd. The right-hand side is independent of the
interaction strength q; thus in the sum on the left-hand side
the q dependence in the excitation amplitudes has to be
compensated by the q dependence of the Mathieu charac-
teristic values to give a result independent of the interaction
strength.
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In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently
proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE).
We map out the full two-particle wave function for a wide range of bond distances and interaction strengths
and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak
interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation
(Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation
energies. We study an approximation based on adiabatic SCE (ASCE) theory which was shown to display a
particular feature of the exact Hxc kernel, namely, a spatial divergence as function of the bond distance. This
makes the ASCE kernel a candidate for correcting a notorious failure of the commonly used adiabatic local
density approximation (ALDA) in the calculation of excitation energies of dissociating molecules. Unlike the
ALDA, we obtain nonzero excitation energies from the ASCE kernel in the dissociation regime but they do not
correspond to those of the true spectrum unless the interaction strength is taken to be very large such that the
SCE theory has the right regime of validity, in which case the excitation energies become exact and represent the
so-called zero-point oscillations of the strictly correlated electrons. The commonly studied physical dissociation
regime, namely, large molecular separation at intermediate interaction strength, therefore remains a challenge
for density functional approximations based on SCE theory.

DOI: 10.1103/PhysRevA.99.022501

I. INTRODUCTION

Density functional theory (DFT) is a commonly used elec-
tronic structure method. Its ground-state version is mainly
used to calculate energies and structures of electronic sys-
tems [1], while its time-dependent (TD) counterpart TDDFT
also allows for the calculation of dynamic properties and
excitation energies [2]. Virtually all density functional cal-
culations are based on the Kohn-Sham (KS) system, a non-
interacting system that produces the same electronic density
as the true system of interest. The KS system provides a
considerable simplification of the many-body problem which
is advantageous for numerical implementations. However, all
the complications of the true many-body system are hidden
in the effective potential of the KS system. This KS potential
is typically expressed as a sum of the external potential of
the interacting system of interest and the Hartree-exchange-
correlation (Hxc) potential containing implicitly the many-
body effects of the interacting system. The KS formalism is
equally applicable in ground-state and time-dependent DFT,
but in this work we will focus on the calculation of excita-
tion energies which are obtained in TDDFT using a linear
response formalism. For this purpose, it is enough to know
the functional derivative of the Hxc potential with respect
to the density which yields a quantity known as the Hxc
kernel. The simplest possible approximation for the Hxc
kernel is the adiabatic local density approximation (ALDA),
for which the kernel is local in space and time. Although this
approximation has been used successfully [2], it has a number

of important deficiencies, such as the inability to reproduce
Born-Oppenheimer surfaces of excited states in dissociating
molecules [3,4].

When a molecule separates into fragments, its excitation
energies should approach those of the separate fragments.
This behavior is not reproduced by the ALDA since upon
dissociation the gap between the bonding and antibonding
KS eigenvalues decreases exponentially fast with the bond
distance, and the ALDA kernel is unable to correct for this
thereby rendering many of the excitation energies to become
zero in the dissociation limit. To correct for this, asymptotic
corrections have been devised [3,4] that introduce exponen-
tially growing terms in the kernel that compensate for the
closing of the bonding-antibonding gap. Although such cor-
rections can reproduce the main features of the exact bonding
curve for the lowest excited state [3,4], there is no systematic
way to construct such functionals. Other more systematic
approximations often rely on perturbative expansions, which
makes them questionable in the multiconfiguration regime
required to describe molecular dissociation.

In recent work [5], an approximate kernel was derived
within the framework of so-called strictly correlate electrons
(SCE). This is a ground-state DFT formalism that becomes
exact in the limit of very large two-body interactions. When
the simplest approximation within this formalism is applied
within the adiabatic approximation, an approximate Hxc ker-
nel can be derived. This so-called adiabatic SCE (ASCE)
kernel was shown to have a number of desirable features.
It was shown to obey the so-called zero-force theorem [2,6]

2469-9926/2019/99(2)/022501(11) 022501-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.022501&domain=pdf&date_stamp=2019-02-04
https://doi.org/10.1103/PhysRevA.99.022501


CORT, NIELSEN, AND VAN LEEUWEN PHYSICAL REVIEW A 99, 022501 (2019)

and it was shown that in the case of molecular dissociation,
it exhibits an exponential growth with the bond distance [5].
The kernel therefore displays a very nonlocal spatial behavior
that has the potential to cure the deficiency of the ALDA
kernel for molecular dissociation. We recently investigated the
ASCE kernel [7] in a model system for which the exchange-
correlation kernel can be obtained exactly for various two-
body interaction strengths. It was found that the leading order
and the next to leading order of the asymptotic expansion for
the exact Hxc kernel in terms of the interaction strength agreed
with that one predicted by the adiabatic SCE formalism. This
result shows that the SCE formalism is a promising method
for describing the linear response properties in the strong
interaction limit. Moreover, these terms were also shown
to be frequency independent in the exact theory such that
the adiabatic approximation in this limit is in fact exact. In
view of these favorable properties of the ASCE kernel, the
natural question arises as to whether this kernel can be used
to correctly predict the excitation energies of dissociating
molecules. Answering this question is the main aim of this
work.

To attack this problem, we developed a simplified one-
dimensional model of a diatomic molecule having the main
physical characteristics of a real three-dimensional hydrogen
molecule and for which we can perform analytical and numer-
ical calculations for arbitrary bond distance and interaction
strength. In particular, the KS orbitals and eigenvalues are
known analytically, a feature that is very desirable as it pro-
vides an analytic expression for the KS gap upon dissociation.
The model is used to benchmark the performance of the
ASCE kernel as well as to discuss many features of the SCE
formalism in the limit of large interactions.

The paper is organized as follows: In Sec. II we give a
brief introduction to the main elements of SCE theory that we
need. In Sec. III we introduce the model system and discuss
its properties. In Sec. IV we discuss the ASCE kernel for our
model density and obtain the excitation energies. In Sec. V we
present our conclusions.

II. DENSITY FUNCTIONAL THEORY IN THE LARGE
INTERACTION LIMIT

The main motivation of this work is to benchmark the re-
cently proposed approximations for the exchange-correlation
(xc) potential and xc kernel based on the so-called the-
ory of strictly correlated electrons [5,7]. To provide a self-
contained minimal background for the reader, we briefly
review some basic aspects of DFT. Our starting point is the
time-independent N-body Hamiltonian of a system which we
write as [1]

Ĥλ = T̂ + V̂λ + λŴ , (1)

where T̂ is the kinetic energy and Ŵ the two-body interaction,
the strength of which is regulated by a real parameter λ.
Finally, V̂λ represents the external potential and is the sum
of one-body potentials vλ(r). The latter potential depends
on the interaction strength λ via the requirement that for
each value of λ, the same electronic density n(r) is obtained
from the ground state of Eq. (1). This makes vλ a functional
of the density via the Hohenberg-Kohn theorem [8] and we

will therefore sometimes write vλ[n] to stress this fact when
necessary.

Typically, the Hamiltonian is given at λ = 1 with a known
external potential and the key many-body problem is to solve
for its eigenstates. However, consideration of the full λ depen-
dence is useful in formal derivations in DFT and is particularly
relevant for this work. An important limit is obtained by taking
λ = 0, in which case the system becomes noninteracting while
retaining the density of the interacting system. This system
is denoted as the Kohn-Sham (KS) system and its external
potential is commonly denoted by vs(r). The ground state of
the KS system is a Slater determinant consisting of KS orbitals
ϕi satisfying(− 1

2∇2 + vs[n](r)
)
ϕi(r, σ ) = εi ϕi(r, σ ), (2)

where σ is a spin index. The KS equations are a device for
obtaining the density of the interacting system by solving one-
particle equations. However, to make the procedure useful,
we need to make a connection to the interacting system
which we will take at a general interaction strength λ. To do
this, we define the Hxc potential as

vλ
Hxc[n](r) = vs[n](r) − vλ[n](r). (3)

A given approximation for this quantity allows us to obtain
the density of the interacting system by using the potential
vKS[n, vλ] = vλ + vλ

Hxc[n] in Eq. (2) instead of vs[n] where vλ

is a given and known potential of the interacting system at
interaction strength λ (which is commonly taken to be λ = 1
but we would like here to use a general interaction strength
for the discussion below) [9]. The central object of DFT is
therefore the Hxc potential. This quantity in turn is given by
the functional derivative of the Hxc energy with respect to
the density vλ

Hxc(r) = δEλ
Hxc/δn(r). The Hxc energy can be

obtained from

Eλ
Hxc[n] =

∫ λ

0
dλ′Wλ′[n], (4)

where we defined

Wλ[n] = 〈�λ[n]|Ŵ |�λ[n]〉, (5)

where �λ[n] is the ground state of Hamiltonian (1). The
quantity Wλ has been studied in limiting cases. For small
values of λ it is accessible via perturbation theory, while in the
limit of large values of λ there is an asymptotic expansion that
is derived from SCE theory. This expansion has the form [10]

Wλ[n] = VSCE[n] + VZPE[n]√
λ

+ O(λ−3/2), (6)

where the leading term is the interaction energy of the strictly
correlated electrons and the next term arises from their zero-
point energy (ZPE) in vibrations around their equilibrium
positions. Correspondingly, the asymptotic expansion of the
Hxc energy for large λ is given by

Eλ
Hxc[n] = λVSCE[n] + 2

√
λVZPE[n] + E2[n] + O(λ−1/2),

(7)

as can be checked by differentiation with respect to λ and
comparison to Eq. (6). This expression further introduces
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a density functional E2[n], the relevance of which will be-
come clear later. The functional derivative with respect to the
density gives an expansion of the Hxc potential in powers
of

√
λ:

vλ
Hxc(r) = λvSCE(r) +

√
λvZPE(r) + v2(r) + O(λ−1/2) (8)

which is valid for large value of λ. A very interesting point
is that, at least for one-dimensional many-electron systems,
the two leading terms are explicitly known functionals of the
density and can be calculated explicitly in a rather simple way
from so-called co-motion functions [11]. Before we discuss
the applicability of this expansion, let us further define the
adiabatic Hxc kernel by

f λ
Hxc(r, r′) = δvλ

Hxc(r)

δn(r′)
(9)

which according to Eq. (8) has the expansion

f λ
Hxc(r, r′) = λ

δvSCE(r)

δn(r′)
+ O(

√
λ). (10)

The first term on the right-hand side represents the so-called
adiabatic SCE kernel λ f ASCE

Hxc which has been studied in detail
in Refs. [5,7] which we refer to for more details. So far, our
discussion has been very general and, apart from the adia-
batic approximation to the time-dependent kernel of TDDFT
in Eq. (10), no approximations have been used. The main
question is, however, how reliable the asymptotic expansions
in Eqs. (7) and (8) are for values close to the physically
relevant interaction strength λ = 1. Since the expansion is
asymptotic, retaining higher-order terms typically worsen the
approximation unless we increase the value of λ. This means
that for values of λ close to one, the best approximation
may be obtained by only retaining the term vSCE. Indeed, it
was pointed out in Ref. [12] that in this interaction regime
adding the ZPE contribution generally will give a worsening
of the result. It was found that at the lowest SCE level for a
model one-dimensional diatomic molecule the bonding curve
is correct at large separation but inaccurate at equilibrium
separation, while adding the ZPE contribution gives an overall
worse result for the bonding curve. The asymptotic expansion
can therefore not been applied as such and, consequently,
Ref. [12] considers various amendments. A similar conclusion
was obtained from our previous work on the model system of
a quantum ring [7] where we found the ZPE contribution to
worsen the results at smaller interaction strengths. This work
was done for a homogeneous system in which we mainly
studied the properties of the kernel itself. In this work, we
extend that work to an inhomogeneous model system in which
again the kernel will be at the focus of attention. The equations
derived in the present section will be referenced in later
sections.

III. MOLECULAR MODEL

A. Definition of the model

For our description of the simplified molecular model, we
consider two electrons with spatial coordinates x1 and x2 both
in the domain [− L

2 , L
2 ] on a ring of length L. The Hamiltonian

of our system is given by

Ĥλ = −1

2

(
∂2

x1
+ ∂2

x2

) + vλ(x1) + vλ(x2)

+ λ cos2

[
π

L
(x1 − x2)

]
, (11)

where the first two terms are the kinetic energy of each
electron, vλ is the one-body external potential, and w(x) =
λ cos2(πx/L) is the electron-electron repulsion. We impose
periodic boundary conditions such that the particles effec-
tively move on a ring which is commonly referred to as a
quantum ring (QR) system [9]. The strength of the interaction
λ is a parameter which we will take to be positive. The
interaction tends to keep particles on opposing parts of the
ring and has a convenient form for numerical considerations.
In accordance with Eq. (1), the potential vλ is chosen in such
a way that for each value of λ the same ground-state density
is produced. For our model, it turns out to be useful to specify
the external potential at λ = 0 which corresponds to the KS
potential. In this way, we can choose the potential in such a
way that we obtain an analytic solution for the KS orbitals.
The potential at all other interaction strengths, including the
physically relevant case λ = 1, is subsequently determined by
the constraint that the density is the same for all values of λ as
we will discuss in more detail later.

B. Kohn-Sham system

The KS system is obtained from Eq. (11) by taking λ = 0
and we adopt the common notation of denoting the KS po-
tential by vs, i.e., vs = vλ=0. In this limit, the Hamiltonian of
Eq. (11), which we now denote by Ĥs, attains the form

Ĥs = − 1
2

(
∂2

x1
+ ∂2

x2

) + vs(x1) + vs(x2). (12)

We now specify an explicit choice for vs which we take to be

vs(x) = V0

[
1 + cos

(
4πx

L

)]
, (13)

where V0 is a constant with units of energy. This potential has
two minima located at x0 = ±L/4 where vs(x0) = 0 and is
positive everywhere else. The ground-state density has two
maxima at the potential minima and therefore represents a
simple model of a diatomic molecule in which the atoms are
separated by a bond distance L/2. We want to use this model
to describe molecular dissociation and therefore vary the bond
length L. While doing this we want to guarantee that the width
of each atomic density remains fixed upon separation, which
can be achieved by requiring that the curvature of the potential
at x0 = ±L/4 is independent of L. This condition reads as

v′′
s (x0) =

(
4π

L

)2

V0 = α, (14)

where α is length independent which gives V0 = α(L/(4π ))2

for an arbitrary α (in this paper we will always take α = 1).
The KS orbitals of our system satisfy the eigenvalue equation[− 1

2∂2
x + vs(x)

]
ϕ±

l (x) = ε±
l ϕ±

l (x), (15)

where we added a symmetry label ± for orbitals that are
even or odd with respect to reflection in the origin, i.e.,
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FIG. 1. The ground-state density n as a function of the dimen-
sionless coordinate z = 2πx/L. The densities for various L values
are denoted by nL in the plot. The corresponding KS potential vs/L2

[Eq. (13)] is plotted in arbitrary units for comparison and indicated
by a dashed line. For large L, we obtain two peaks of fixed width
while for small L the system becomes homogeneous.

ϕ±
l (−x) = ±ϕ±

l (x). These equations must be solved together
with the boundary conditions ϕl (−L/2) = ϕl (L/2) and the
same for their first derivatives. It is convenient to define
the dimensionless coordinate z = 2πx/L and use the explicit
form of the potential to rewrite Eq. (15) as[−∂2

z + 2ν cos(2z)
]
M±

l (z) = a±
l (ν)M±

l (z), (16)

where we have defined the following constants:

a±
l (ν) = 2

(
L

2π

)2

(ε±
l − V0), (17)

ν(L) = α

4

(
L

2π

)4

. (18)

We recover the KS orbitals from ϕ±
l (x) = M±

l (2πx/L). Equa-
tion (16) is the well-known Mathieu equation and its eigen-
functions and eigenvalues have been intensively studied [13].
The functions M+

l and M−
l are commonly denoted as the

Mathieu-cosine Cl and the Mathieu-sine Sl functions, respec-
tively, while the values a±

l are called the Mathieu characteris-
tic values. The convention is that the label of the even states
start at l = 0 whereas the labels of the odd states start at l = 1.
The Mathieu functions satisfy M±

l (z + π ) = (−1)lM±
l (z) and

are therefore 2π periodic. They are commonly normalized as
follows: ∫ π

−π

dz(M±
l (z))2 = π. (19)

Correspondingly, the normalized (to one) KS orbitals are
expressed in terms of Mathieu functions as

ϕ+
l (x) =

√
2

L
Cl

(
2πx

L
; ν

)
, (20)

ϕ−
l (x) =

√
2

L
Sl

(
2πx

L
; ν

)
, (21)

while the Kohn-Sham eigenenergies can be recovered from
the Mathieu characteristic values by means of Eq. (17). In
Fig. 1 we plot the KS potential and the ground-state density
for different bond distances to illustrate the main features that
we mentioned, in particular, the fact that the width of the

FIG. 2. Selected KS orbitals as a function of the dimension-
less coordinate z = 2πx/L ∈ [−π, π ] plotted for the bond distance
L/2 = 10.5. We display the ground state and first few excited states
corresponding to the bonding and antibonding orbital pairs repre-
sented by the pair of Mathieu functions C0 and S1 as well as the
pair C1 and S2. For this bond distance, the bonding and antibonding
orbitals coincide for positive z.

maxima becomes independent of the bond distance for large
L. Although we are not particularly interested in the case of
very short bond distances, we note that in the limit L → 0 the
parameter ν becomes equal to zero and the ground-state KS
orbital is given by the constant function ϕ0(x) = 1/

√
L repre-

senting a system of constant density. We will not investigate
this limit in detail; a homogenous QR at various interaction
strength has been studied in detail in Ref. [7].

In Fig. 2 we plot the ground state and the first few excited-
state KS orbitals. Of particular interest for our later discussion
of the Hxc kernel is the lowest pair of bonding and antibond-
ing states represented by the pair of Mathieu functions C0 and
S1. The corresponding energy gap between the KS eigenvalues
closes exponentially fast with increasing bond distance:

ε−
1 − ε+

0 = 2π2

L2
[a−

1 (ν) − a+
0 (ν)] (22)

= 32

L2
(2π )3/2ν3/4e−4

√
ν −−−→

L→∞
0, (23)

where we used the asymptotic expansion for the Mathieu
characteristic value given in Appendix A. We remind the
reader that ν is an increasing function of L given by Eq. (18).
The density in the bond midpoint has a similar exponential
decay [see Eq. (A6) in Appendix A] given by

n(0) = 16

L
(2π )

1
2 ν1/4e−4

√
ν (L → ∞). (24)

The knowledge of this precise behavior of the KS gap as well
as the density in the bond midpoint will facilitate considerably
the calculation of the excitation energy from the ASCE kernel
in Sec. IV.

C. Exact solution of the model

After having considered the model in the KS limit, we
will now consider the case of finite interaction strength λ.
The potential vλ in Eq. (11) can not be obtained analytically
except in some limiting cases that we will discuss below. We
therefore obtain vλ directly from the constraint that the density
is independent of λ using the numerical algorithm outlined in
Ref. [14]. In our case, the density is given by the ground-state
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KS orbital from Eq. (20) to be

n(x) = 2|ϕ+
0 (x)|2 = 4

L
C2

0

(
2πx

L
; ν

)
(25)

for all λ where we remind the reader that ν depends on L
via Eq. (18). Therefore, for a given value of L we have the
numerical task to find vλ for a range of interaction strengths
of interest. The ground state is a spin-singlet state and, con-
sequently, we will mostly be interested in the singlet excited
states. The singlet wave function has the structure

�(x1σ1, x2σ2) = ψ (x1, x2)
1√
2

(
δσ1↑δσ2↓ − δσ1↓δσ2↑

)
,

where σi for i = 1, 2 are spin variables and where the spatial
part of the wave function is symmetric ψ (x1, x2) = ψ (x2, x1)
to ensure antisymmetry of the full space-spin wave function.
To obtain deeper insight in the results, we will also derive
analytic results in the regime of large bond distance L/2 for
fixed interaction strength λ, which is the common molecular
dissociation regime, and the complementary regime of large
interaction strength λ for fixed bond distance L/2, which is
the SCE regime. We will start in the next subsection with the
first regime.

1. Large bond distance for fixed interaction strength

We first consider the regime of large bond distance L/2
at fixed values of λ. In this regime, the molecule is typically
dissociated in two one-electron atoms (unless the interacting
strength λ is very small such that there are contributions from
the ionic states with two or zero electrons on each atom).
For a one-electron atom, the KS potential is equal to the true
external potential and therefore we have vλ(x) = vs(x) for x
in the neighborhood of each atom at large separation. The
ground-state atomic orbitals A(x) and B(x) on atoms A and
B are localized around x = ±L/4 and can be expressed in
terms of the first bonding and antibonding molecular KS or-
bitals as A(x) = [ϕ+

0 (x) + ϕ−
1 (x)]/

√
2 and B(x) = [ϕ+

0 (x) −
ϕ−

1 (x)]/
√

2 (see, for example, Fig. 2). The exact ground-state
(GS) wave function for the large bond distance limit is the
well-known Heitler-London (HL) wave function

�GS
λ (x1, x2) = 1√

2
[A(x1)B(x2) + B(x1)A(x2)]

= 1√
2

[ϕ+
0 (x1)ϕ+

0 (x2) − ϕ−
1 (x1)ϕ−

1 (x2)]. (26)

The ground-state energy is given by

EGS
λ = 2ε+

0 = √
α − π2

L2
+ O(L−4) (L → ∞), (27)

where we used that ε+
0 = ε−

1 in the large-L limit and the
asymptotic expansion of the Mathieu characteristic values
in Appendix A. This result is easy to understand. Since at
the atomic positions x0 = ±L/4 we have that v′′

s (x0) = α the
potential around each atom is given by vs(x) = α(x − x0)2/2
which corresponds to a harmonic well with harmonic fre-
quency

√
α. Each atomic oscillator has ground-state energy√

α/2, thereby adding up to the molecular ground-state en-
ergy

√
α.

FIG. 3. The ground- and first-excited-state wave functions for
interaction strength λ = 1 plotted for L = 9 and 21. The rightmost
panels display the corresponding ground-state densities.

Let us now consider the first excited state which in the
large-L limit is given by

�
(1)
λ (x1, x2) = 1

2 [ϕ+
1 (x1)ϕ−

1 (x2) + ϕ−
1 (x1)ϕ+

1 (x2)

−ϕ+
0 (x1)ϕ−

2 (x2) − ϕ−
2 (x1)ϕ+

0 (x2)]. (28)

The orbitals used in this expression are displayed in Fig. 2. For
large L the states ϕ+

0 and ϕ−
1 become degenerate and the same

is true for the states ϕ+
1 and ϕ−

2 . These orbitals can be used to
construct localized ground- and excited-state atomic orbitals
from the combinations ϕ+

0 ± ϕ−
1 and ϕ+

1 ± ϕ−
2 if desired. The

energy of the two-particle state of Eq. (28) is given by

E (1)
λ = ε+

0 + ε+
1 = 2

√
α − 3π2

L2
+ O(L−4) (L → ∞).

(29)

Again, it is straightforward to interpret the energy. The system
is a superposition of two states in which one atom is a ground-
state oscillator with energy

√
α/2 and the other one a first

excited oscillator with energy 3
√

α/2 giving a total molecular
energy of 2

√
α.

To judge the accuracy of these limiting wave functions, we
plot the exact ψλ for λ = 1 and L = 9 and 21 (corresponding
to bond lengths 4.5 and 10.5) in Fig. 3. We see that for L = 21
the wave functions (26) and (28) are a good approximation
to the true wave functions (as we also checked numerically).
At L = 9 the system still has a considerable density at the
bond midpoint and the HL-type wave functions are a less good
approximation.

Finally, we compare in Fig. 4 the exact external potential
vλ to vs. We see that around the atoms both potentials agree,
but that around the bond midpoint there is a considerable
deviation. This amounts to a peak in the Hxc potential vλ

Hxc =
vs − vλ at the bond midpoint. This is a well-known feature of
the Hxc potential [15] and is related to the so-called left-right
correlation in the system. We refer to the cited reference for a
more in-depth discussion.
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FIG. 4. The potential vλ for λ = 1 for L = 21 compared to vs.

2. Large interaction strength at fixed bond distance

We now turn our attention to the complementary regime of
larger interaction strength λ for fixed bond distance. This is
the regime in which SCE become exact. From our numerical
work we find that in this limit the two-particle wave function
localizes in a region where |x1 − x2| ≈ L/2 as displayed in
Fig. 5. This is in accordance with SCE theory which tells
that in the very strong interaction limit, the position of a
single electron determines the positions of the remaining elec-
trons uniquely. For this reason, it is convenient to introduce
the center of mass R = (x1 + x2)/2 and relative coordinate
r = x1 − x2, where R ∈ [−L/2, L/2] and r ∈ [−L, L]. The
Hamiltonian (11) in the new coordinates attains the form

Ĥλ = −1

4
∂2

R − ∂2
r + vλ

(
R + r

2

)
+ vλ

(
R − r

2

)

+ λ cos2

(
πr

L

)
. (30)

We want to give an explicit approximate expression of the
Hamiltonian (11) for the limit λ → ∞ for any fixed bond
distance L/2. Since the wave function is localized around the

FIG. 5. The ground- and excited-state wave functions at large
interaction strength λ = 1000 for the bond distances L/2 = 3 and
10.5. We note that the wave function localizes in narrow strips
along the lines |x1 − x2| = L/2. The rightmost panels display the
corresponding ground-state densities.

lines r = ±L/2, it is natural to expand the external potential
vλ around these values. For example, for r = L/2 we have to
second order

vλ

(
R + r

2

)
+ vλ

(
R − r

2

)

= v̄λ(R) + βλ(R)

(
r − L

2

)2

, (31)

where we defined

v̄λ(R) = 2 vλ

(
R + L

4

)
, (32)

βλ(R) = ∂2vλ(R ± r/2)

∂r2

∣∣∣∣
r=L/2

(33)

with an essentially identical result for the expansion around
r = −L/2, and where we used the property vλ(x) = vλ(x +
L/2) in the definitions of v̄λ and βλ and in the cancellation of
the linear term. With the expansion of Eq. (31), the Hamilto-
nian becomes

Ĥλ = −1

4
∂2

R − ∂2
r + v̄λ(R) + βλ(R)

(
r − L

2

)2

+ λ cos2

(
πr

L

)
(34)

with a similar expansion around r = −L/2. We see that
this Hamiltonian becomes separable when we neglect the
term βλ. However, the two-body interaction has form w(r) =
λ(π/L)2(r − L/2)2 around r = L/2 and the question is there-
fore whether we can neglect βλ compared to λ(π/L)2. From
our calculation we find that vλ and therefore also βλ converge
to a finite value for large λ. Therefore, for fixed L and large
enough λ we can neglect βλ and the system becomes approxi-
mately separable. If we write the wave function in this limit as
�λ(r, R) = χλ(r)ϕλ(R), then its factors are determined from
the equations

[
−1

4
∂2

R + 2 vλ

(
R + L

4

)]
ϕλ(R) = ε ϕλ(R), (35)

[
−∂2

r + λ cos2

(
πr

L

)]
χλ(r) = ε̃ χλ(r). (36)

These equations determine all the eigenstates in the large-λ
limit. Let us, however, focus on the ground state and take χλ

and ϕλ to be ground states of their corresponding Hamiltoni-
ans. The ground-state density is then obtained from

n(x1) = 2
∫ L/2

−L/2
dx1

∣∣∣∣ϕλ

(
x1 + x2

2

)∣∣∣∣
2

|χλ(x1 − x2)|2. (37)

The function |χλ(r)|2 becomes very narrowly peaked around
r = ±L/2 as λ becomes very large. We can therefore normal-
ize it such that for the limit that λ → ∞,

|χλ(r)|2 → δ

(
r − L

2

)
+ δ

(
r + L

2

)
(38)
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FIG. 6. The potential vλ for λ = 1000 for L = 21 compared to
vs/4.

from which we obtain, using Eq. (37), that for large interaction
strength

n(x) = 2

[∣∣∣∣ϕλ

(
x + L

4

)∣∣∣∣
2

+
∣∣∣∣ϕλ

(
x − L

4

)∣∣∣∣
2
]

= 4

∣∣∣∣ϕλ

(
x − L

4

)∣∣∣∣
2

. (39)

The ground-state density is also given by n(x) = 2|ϕ+
0 (x)|2 in

which ϕ+
0 (x) solves Eq. (15). Comparison of this equation to

Eq. (35) then immediately yields that

vλ(x) = vs(x)

4
= V0

4

[
1 + cos

(
4πx

L

)]
(40)

and ϕ+
0 (x) = √

2 ϕλ(x − L/4). From our derivation we there-
fore deduce that in our system

lim
λ→∞

vλ(x) = vs(x)

4
. (41)

A comparison with the general Eq. (8) from SCE theory shows
that in our case vSCE and vZPE are zero and that v2(x) = vs −
vλ = 3vs(x)/4. The fact that vSCE and vZPE vanish can also be
directly derived from SCE theory and is a consequence of the
symmetry of our system. In Fig. 6 we compare vλ to vs/4 for
various large values of λ and note a good agreement between
them with the exception of some deviations around the bond
midpoint. This discrepancy becomes smaller for higher values
of λ.

Let us now consider the energies of the system. The
eigenenergies of the two-particle state are given by E = ε + ε̃

where ε and ε̃ are the eigenvalues of the Hamiltonians in
Eqs. (35) and (36). From the fact that vλ = vs/4 in Eq. (35)
we see that the eigenvalues ε are half of the KS eigenvalues of
Eq. (15). These eigenvalues correspond to an excitation which
only involves a change of the center-of-mass wave function
without changing the relative wave function. The eigenvalues
ε̃ are calculated from Eq. (36). The transformation z = πr/L
transforms this Hamiltonian to[−∂2

z + 2q cos(2z)
]
M(z) = a(q)M(z), (42)

FIG. 7. The ASCE kernel for L = 1, 10, 20. We see that with
growing L plateaus develop the heights of which grow exponentially
with L.

where

q = λ

(
L

2π

)2

, (43)

a(q) = L2

π2
ε̃ − 2q. (44)

Equation (42) is again the Mathieu equation with this time
a parameter q that depends on the interaction strength. The
eigenvalues in the limit of large interactions have the form

ε̃l = π2

L2
[2q + a+

l (q)] =
(

l + 1

2

)
2π

L

√
λ (λ → ∞), (45)

which is a harmonic spectrum with harmonic frequency ωλ =
2π

√
λ/L. These excitations of involve a change of the relative

wave function and represent the zero-point vibrations of the
strictly correlated electrons of SCE theory. The lowest excita-
tion energy for this mode is therefore ωλ. This will be relevant
of our discussion of the excitation energy obtained from the
ASCE kernel.

IV. ADIABATIC SCE KERNEL

A. Definition and properties

We have studied in detail the excitation properties of our
model system in two different regimes. We will now inves-
tigate the adiabatic SCE kernel (Fig. 7). As was discussed
below Eq. (10), the ASCE kernel is defined as

f ASCE(x, x′) = δvSCE(x)

δn(x′)
. (46)

The SCE potential vanishes for our system, but its functional
derivative does not. As was discussed in detail in Refs. [5,7],
it is explicitly given by the expression

f ASCE(x, x′) =
∫ x

−L/2
dy

w′′[y − f (y)]

n( f (y))
(47)

×{θ (y − x′) − θ [ f (y) − x′]}, (48)

where θ is the usual Heaviside function and w(x) the two-
body interaction. The function f (x) is the so-called comotion
function which specifies the position of another electron given
the position of a reference electron. For our system, the
comotion function attains the simple form

f (x) =
{

x − L
2 if x > 0,

x + L
2 if x � 0.

(49)
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If we define the function P (x) to be

P (x) =
∫ x

−L/2
dy

w′′[y − f (y)]

n( f (y))
, (50)

then the integrand contains dP/dx and we can obtain f ASCE

by partial integration while usefully manipulating the results
using the fact that P (x) − P (0) is an odd function. In the
quadrant x, x′ > 0 we obtain

f ASCE(x, x′) = P (−x)θ (x − x′) + P (−x′)θ (x′ − x), (51)

while in the quadrant x < 0, x′ > 0 we have

f ASCE(x, x′) = [P (x) − P (x′) + P (0)]θ [ f (x) − x′]. (52)

The function in the remaining quadrants is determined from
the symmetry f ASCE(x, x′) = f ASCE(−x,−x′). For our sys-
tem, the function P (x) can be written more explicitly as

P (x) = w′′
(

L

2

)∫ x

−L/2

dy

n(y)
, (53)

where for our two-body potential w′′(L/2) = 2π2/L2. In Ap-
pendix B we show that

lim
L→∞

P (x) = P (0)

[
1

2
+ θ (x)

]
(54)

for x 
= 0. This equation implies that for large values of L, the
kernel assumes the form

f ASCE(x, x′) = 1
2P (0)[θ (x)θ (x′) + θ (−x)θ (−x′)] (55)

for x, x′ 
= 0. The function exhibits plateaus of height P (0) in
the quadrants in which both coordinates have the same sign
and is zero otherwise. In Appendix B we show that this height
grows exponentially fast with L according to

P (0) = w′′
(

L

2

)
L2

16(2π )3/2ν3/4
e4

√
ν (L → ∞) (56)

[we remind the reader that ν depends on L according to
Eq. (18)]. With these results we are ready to calculate exci-
tation energies from the ASCE kernel.

Lowest excitation energy

We now address the issue of calculating the excitation en-
ergy of the system. To make our point, it is sufficient to restrict
ourselves to the so-called small matrix approximation [2] in
which the singlet excitation energy � from an occupied state
i to an unoccupied state a is given by

�2 = ω2
ia + 4ωiaKia,ia, (57)

where ωia = εa − εi is the difference in KS energies, and

Kia,ia =
∫

dx dx′�ia(x) fHxc(x, x′)�ia(x′), (58)

where �ia(x) = ϕi(x)ϕa(x) is an excitation function (in which
we take the orbitals to be real for simplicity) and fHxc the Hxc
kernel which we took in an adiabatic approximation relevant
to the discussion below. In our particular case we consider the
excitation from the lowest KS orbital ϕ+

0 to ϕ−
1 . For ease of

notation and to be in accordance with adopted language we

denote the orbitals by the gerade and ungerade sigma orbitals
σg(x) and σu(x) and their eigenvalues by εg and εu. We know
that in the dissociation limit, the KS gap ωgu vanishes. The
excitation energy is therefore given by

�2 = lim
L→∞

4ωguKgu,gu. (59)

In the ALDA this expression vanishes as the kernel can not
compensate for the decay of the KS gap. However, as we
will show now, the ASCE kernel [we remind the reader of
Eq. (10)] will lead to a finite contribution. The matrix element
in the large separation limit is readily calculated from Eq. (55)
to be

Kgu,gu = λ

4
P (0), (60)

where we used the symmetry and normalization of the KS
orbitals. If we use this in Eq. (59), we find that in the large-L
limit

�2 = λ(εu − εg)P (0) = 2λw′′
(

L

2

)
(L → ∞). (61)

For our system we have w′′(L/2) = 2π2/L2 and we obtain
� = 2π

√
λ/L which is exactly the harmonic frequency of

the zero-point oscillation of Eq. (45). We therefore deduce
that the excitations that we recover from the ASCE kernel are
exactly the ones that correspond to the zero-point oscillations.
With hindsight, this may not be surprising as, after all, the
zero-point oscillations represent an always present set of ex-
citations in SCE theory. Note that in the derivation of Eq. (61),
it is important to consider a fixed but arbitrary large L and then
take the limit λ → ∞, i.e., the standard SCE regime, and not
the other way around otherwise � = 2π

√
λ/L → 0.

B. ASCE kernel in the conventional molecular
dissociation regime

In the previous subsection we found that in the limit that
the interaction strength λ becomes very large at fixed bond
distance L/2, the lowest excitation energy is that of the lowest
zero-point oscillation of the strictly correlated electrons, and
in that regime the ASCE kernel gives an exact result. Let
us now see how the ASCE kernel performs in the opposite
regime in which the bond distance becomes large at fixed
interaction strength, in particular for the chemically relevant
case of interaction strength λ = 1. This is the conventional
dissociation regime as commonly studied in bond breaking in
chemistry. Note that we now apply the ASCE kernel outside
its formal range of applicability and, therefore, the approxima-
tion becomes uncontrolled. The consideration is nevertheless
illuminating as it illustrates the reasons for the breakdown of
the approximation. For λ = 1, the matrix element (60) of the
ASCE kernel is given by P (0)/4 and we have for the lowest
excitation energy

�ASCE =
[

2w′′
(

L

2

)] 1
2

(L → ∞). (62)

Let us compare this to the exact excitation energy

�exact = √
α (L → ∞) (63)
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as follows directly from Eqs. (27) and (29). We remind the
reader that the parameter α [see Eq. (14)] is given by the
curvature of the external potential at its minima (as vs be-
comes the true external potential around the atoms in the
dissociation limit). Since upon dissociation the separate atoms
become independent single-particle oscillators, Eq. (63) is a
natural result. If we consider the ASCE approximation, on
the other hand, we see that according to Eq. (62) the lowest
excitation energy is determined solely by the curvature of the
interaction potential w′′(L/2). This is because, by using the
ASCE kernel, we pretend that the separated atoms still be-
have as strictly correlated electrons with an excitation energy
determined by the zero-point oscillations. This is the wrong
physical picture in this regime and, therefore, the ASCE
approximation fails to describe the right physics. In fact, in our
system w′′(L/2) = 2π2/L2 → 0 for L → ∞ and therefore
the ASCE excitation energy becomes zero in the dissociation
limit. For other forms of the two-body interaction this may not
be the case, but this does not change our conclusion regarding
the physical picture. The ASCE approximation is therefore not
an improvement over the ALDA in the dissociation regime.
Both approximations attain the wrong dissociation limit; in
the case of the ALDA the excitation energy becomes zero,
whereas in the case of the ASCE approximation the excitation
energy is determined by the two-body interaction potential
rather than by the external potential of the separated atoms.
This result is not surprising as we have used the ASCE
kernel outside its regime of applicability. The ASCE kernel is
therefore not of use if one is interested in the regime of large
bond length at intermediate interaction strength, which is the
relevant case for bond breaking in most common chemical
applications. To correct these problems within the present
formalism, a natural way to proceed would be include ZPE
and higher-order kernels in the expansion of the Hxc kernel
as was done in Ref. [7]. However, that work showed that the
extra terms lead to worse approximation than just the ASCE
approximation for low interaction strengths, as is typical for
an asymptotic expansion. The description of the conventional
dissociation regime using density functional methods there-
fore remains a challenging task.

V. CONCLUSIONS

In this work, we studied the properties of an approximate
adiabatic Hxc kernel based on the theory of strictly correlated
electrons. To benchmark this approximation, we studied a
numerically and analytically solvable system which is able
to simulate the main features of a dissociating molecule.
We studied in detail the two-particle eigenstates in various
limits and calculated the excitation spectrum in the limit
of large interaction strength. The ASCE kernel was shown
to reproduce the so-called zero-point oscillation part of the
spectrum. The attainment of this exact result shows that
the ASCE kernel becomes exact in this regime as we also
concluded from earlier work [7]. However, most current in-
terest in molecular dissociation in chemistry is devoted to the
complementary regime of large bond distance at intermedi-
ate interaction strength. In this regime, the ASCE kernel is
not suitable for obtaining the excitation spectrum. We con-
clude that the description of molecular dissociation based on

functionals founded on SCE theory remains a challenge for
the future.

APPENDIX A: PROPERTIES OF MATHIEU FUNCTIONS

In this Appendix we describe a few useful properties of
the Mathieu functions and their characteristic values that
we use in the main text. Many properties of these functions
can be found in Ref. [13]. The Mathieu characteristic values
have the following expansion for large q (where q is the
parameter in the Mathieu equation):

a+
l (q), a−

l+1(q) = −2q + 2(2l + 1)
√

q − 1

4
(2l2 + 2l + 1)

+ (2l + 1)

128
√

q
[(2l + 1)2 + 3] + O(q−1).

(A1)

The difference a−
l+1(q) − a+

l (q) is exponentially small in the
large-q limit [13]

a−
l+1(q) − a+

l (q) = 24l+5

l!

(
2

π

) 1
2

q
l
2 + 3

4 e−4
√

q

×
[

1 − 6l2 + 14l + 7

32
√

q
+ O(q−1)

]
.

(A2)

We note that in our previous work [7] we denoted a−
l+1 by a−

l
in the asymptotic formula (A1) which amounts to a different
labeling convention for the characteristic values. Here, we
stick to a more common convention.

For this work we need an accurate representation of
C0(z; q) for small values of z. A representation that is valid
for large q in the interval |z| < π/2 is given by

C0(z, q)= C0(0, q)√
2

× e2
√

q sin(z) cos
(

z
2 + π

4

) + e−2
√

q sin(z) sin
(

z
2 + π

4

)
cos z

.

(A3)

To determine this function, we also need to know its prefactor
C0(0; q) which is given by [16]

C0(0, q) = C0

(
π

2
; q

)
23/2e−2

√
q

[
1 + 1

16q1/2
+ 9

256q

]
.

(A4)

This equation involves yet another prefactor which is obtain-
able from Sips’ expansion [7] and given in leading order in q
to be

C0

(
π

2
; q

)
=

(
π

√
q

2

)1/4(
1 + 1

8
√

q
+ 27

512q
+ · · ·

)−1/2

.

(A5)

In particular, we find that

C2
0 (0, q) = 4(2π )1/2q1/4e−4

√
q (q → ∞) (A6)
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from which we obtain the density in the bond midpoint of
Eq. (24).

APPENDIX B: ANALYSIS OF THE FUNCTION P (x)

We study here the properties of the function P (x) defined
in Eq. (53) which we rewrite here as

P (x) = w′′
(

L

2

)
L

4

∫ x

−L/2

dy

C2
0 (2πy/L; ν)

= γ

∫ 2πx/L

−π

f (t, ν)dt, (B1)

where we used the explicit form of the density and we defined

f (z, ν) = C2
0 (0, ν)

C2
0 (z, ν)

,

γ = L2

8π

w′′( L
2

)
C2

0 (0; ν)
. (B2)

It will be convenient to further introduce the functions

I (z, ν) =
∫ z

0
dt f (t ; ν) (B3)

and J (ν) = I (π/2, ν) such that we can write

P (x) = γ

[
2J (ν) + I

(
2πx

L
, ν

)]
, (B4)

where we used the symmetry of the integrand. Using then the
asymptotic expansion of Mathieu functions functions (A3),
the f (t ; ν) reads as

f (z, ν)= 2 cos2 z[
e2

√
ν sin(z) cos

(
z
2 + π

4

) + e−2
√

ν sin(z) sin
(

z
2 + π

4

)]2 .

(B5)

For ν very large this function has its main contributions from
z = 0 and we can approximate

f (z, ν) = cos z

cosh2(2
√

ν sin z)
(B6)

FIG. 8. The function P (x)/P (0) for L = 10 (left panel) and L =
20 (right panel) where we clearly see a step structure appearing for
increasing L.

which inserted into Eq. (B3) gives

I (z, ν) = tanh(2
√

ν sin z)

2
√

ν
(B7)

and, consequently,

J (ν) = tanh(2
√

ν)

2
√

ν
= 1

2
√

ν
(ν → ∞). (B8)

From this we can evaluate P (0). Using Eqs. (A6) and (B2),
we find

P (0)=2γJ (ν)=w′′
(

L

2

)
L2

16(2π )3/2ν3/4
e4

√
ν (L → ∞),

(B9)

which yields Eq. (56). Finally, we consider the quantity

P (x) − P (0)

P (0)
= I (2πx/L, ν)

2J (ν)

= tanh(2
√

ν sin(2πx/L))

2 tanh(2
√

ν)

= θ (x) − 1

2
(L → ∞) (B10)

and, therefore,

P (x) = P (0)
[

1
2 + θ (x)

]
(L → ∞). (B11)

This behavior of the function P (x) is illustrated in Fig. 8
where we plotted P (x)/P (0). In this figure, we clearly see
the step appearing with increasing L.
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