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Scalable robust clustering method for large and
sparse data

Joonas Hämäläinen, Tommi Kärkkäinen∗ and Tuomo Rossi

University of Jyvaskyla, Faculty of Information Technology,
P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Abstract. Datasets for unsupervised clustering can be large and sparse,
with significant portion of missing values. We present here a scalable ver-
sion of a robust clustering method with the available data strategy. More
precisely, a general algorithm is described and the accuracy and scalability
of a distributed implementation of the algorithm is tested. The obtained
results allow us to conclude the viability of the proposed approach.

1 Introduction

Clustering is one of the core techniques in unsupervised learning. Based on a
similarity measure (e.g., Euclidean distance), its purpose is to partition a given
data into groups, clusters, where members belonging to one cluster are similar
to each other and dissimilar to other clusters. Classically, clustering is divided
into two main categories, partitional and hierarchical, although a large variety
of different approaches have been suggested [1, 2].

Since the real-world clustering problems are becoming larger and larger, ap-
plying sequential clustering algorithms to these problems becomes impractical.
Over the years, a lot of research related to the parallellizing of the well-known
K-means algorithm with various parallel computation models has been carried
out [3, 4, 5]. K-means‖ [6] is parallelizable version of the K-means++ [7]. Con-
trary to K-means++, imposed by the inherently sequential nature, K-means‖ is
scalalable and it can be easily implemented in parallel with multiple parallel pro-
gramming models. As shown by [6], proper initialization of a parallel algorithm
plays an important role both in accuracy and scalability.

K-spatialmedians is prototype-based clustering method which applies avail-
able data strategy and spatial median as cluster prototype [8]. The available data
strategy refers to an approach, where all distance computations are projected to
the available values. This ensures that no assumptions on the unknown distri-
bution of the missing values (MVs) is being made during clustering. Robustness
and accuracy of the approach for tens of percents of MVs was extensively tested
in [9]. However, differently to the use of the mean as in K-means, one needs
to apply an iterative method to compute the cluster prototype. Hence, scala-
bility of the parallel implementation is not self-evident. Therefore, the purpose
in this article is twofold: i) to compare clustering results between K-means and
K-spatialmedians, ii) to consider scalability of a parallel implementation of K-
spatialmedians

∗The work of TK has been supported by the Academy of Finland from the projects 311877
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2 Parallel K-spatialmedians‖
Let X = {x1, ...,xN} denote a dataset in M dimensional space and let P =
{p1, ...,pN} be a N ×M projection matrix where

(pi)j =

{
1, if (xi)j exists,

0, otherwise.
(1)

The clustering error function that is, after an initialization, locally minimized
by the K-spatialmedians algorithm reads as [10, 11]

J ({mk}Kk=1) =

N∑
i=1

min
k=1,...,K

‖Diag (pi) (xi −mk)‖2, (2)

where Diag (pi) creates a diagonal matrix using a vector pi. The result of the
minimization is the set of prototypes {mk}Kk=1, with the cluster memberships
Ck = {i : ‖Diag (pi) (xi − mk)‖2 ≤ ‖Diag (pi) (xi − mk′)‖2 for 1 ≤ k �= k′ ≤
K}. Multiplication with pi in (2) realizes the projection of the distance compu-
tation to only the available values of individual observations. As the definition
(2) suggests, the iterative relocation of cluster prototypes simply means that one
needs to solve the minimization problem iterative in each cluster. For this pur-
pose, successive over-relaxation (SOR) of the well-known Weiszfeld algorithm
for a candidate solution can be used [8, 9].

Let us assume that the data is partitioned into Q disjoint subsets: X =
{X1, ...,XQ} such as X = ∪Q

i=1Xi. Then the cluster memberships are spread
to data partitions such as Ck = {Ck1, ...,CkQ}. Moreover, we denote Ckq =
Ck ∩ {i : xi ∈ Xq}, where q = 1, ..., Q. Hence, in the SOR algorithm from the
current step t into t+1, the candidate prototype vk (see [9], p. 138) for the kth
cluster can be solved with

vk = (
∑
i∈Ck

αt
i Diag(pi))

−1
∑
i∈Ck

αt
i Diag(pi)xi

= (

Q∑
q=1

∑
i∈Ckq

αt
i Diag(pi))

−1

Q∑
q=1

∑
i∈Ckq

αt
i Diag(pi)xi,

where αt
i = 1/

√‖Diag(pi)(ut
k − xi)‖22 + ε, where ε is a small positive constant.

If we define At
qk =

∑
i∈Ckq

αt
i Diag(pi) and bt

qk =
∑

i∈Ckq
αt
i Diag(pi)xi, we get

vk = (

Q∑
q=1

At
qk)

−1

Q∑
q=1

bt
qk. (3)

Finally, the prototype uk is updated as follows

ut+1
k = ut

k + ω(vk − ut
k), (4)
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Algorithm 1: K-spatialmedians‖
Input: Data partitions X = {X1, ...,XQ}, projection matrix partitions P = {P1, ...,PQ},

the number of clusters K, the maximum number of SOR iterations tmax, the
threshold for convergence of SOR εtol.

Output: Final prototypes {mk}Kk=1.

1: Initialize {mk}Kk=1 with parallel K-spatialmedians‖0 for the complete rows in X.
(master and slaves)

2: Broadcast {mk}Kk=1 to all Q slave processes. (master)
3: Assign local cluster memberships Ckq for k = 1, ...,K. (slaves)
4: Set t = 0 and ut

k = mk for k = 1, ...,K. (master)
5: Compute At

qk and bt
qk for k = 1, ..., K. (slaves)

6: Compute the global sums
∑Q

q=1 A
t
qk and

∑Q
q=1 b

t
qk by parallel reduction for the

master process for k = 1, ..., K. (slaves)
7: Compute vk with Eq. 3 for k = 1, ...,K. (master)
8: Compute ut+1

k with Eq. 4 for k = 1, ...,K. (master)

9: Set t = t+ 1 and if t < tmax and median
k=1,...,K

‖ut
k − ut−1

k ‖∞ > εtol, then repeat steps

5-8. (master)
10: Set mk = ut

k for k = 1, ...,K. (master)
11: Repeat steps 2-10 until convergence.

where ω ∈ [0, 2] determines the stepsize along the direction of (vk−ut
k). For the

consecutive SOR iterations t and t+1, the stopping criterion for the kth cluster
is defined as ‖ut+1

k − ut
k‖∞ ≤ εtol.

The proposed parallel method K-spatialmedians‖ is described in Algorithm
1. The distribution is based on single program multiple data (SPMD) model.
The approach assumes that X and P are approximately equally distributed to
Q processing elements. The proposed method first applies modified K-means‖
for the initialization (referred as K-spatialmedians‖0). The first modification
to K-means‖ is that we use the Euclidean distance instead of the squared
Euclidean distance during the whole initialization procedure and we apply K-
spatialmedians instead of K-means to cluster the sampled points with weights.
The second modification deals with the MV handling, where, because we need
to have complete prototypes after the initialization, K-spatialmedians‖0 is run
only for the complete observations in X. In the steps 4-9, the spatial medians
are computed in parallel based on the SOR algorithm. The serial version of the
SOR algorithm is depicted in [9]. Note that the parallellized SOR algorithm
differs from the serial one in the stopping criterion. In the parallel version, the
number of SOR iterations required for convergence is the same for each cluster,
since the stopping criterion is based on the median of {‖ut+1

k − ut
k‖∞}Kk=1.

3 Experiments and results

The accuracy of K-spatialmedians‖ was compared with K-means‖ for a synthetic
dataset. The scalability properties of the parallel K-spatialmedians‖ implemen-
tation were experimented with a large real dataset.
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3.1 Experimental setup

All experiments were performed in the MATLAB R2017b environment. The
scalability experiments were performed using a cluster equipped with eight In-
tel Xeon CPU E7-8837 with each having 128 GB memory and 8 cores. We
implemented the parallel K-spatialmedians‖ with SPMD paradigm by utilizing
MATLAB’s parallel computing toolbox (PCT).

We realized the accuracy experiments with a synthetic S21 dataset. S2 is a
two-dimensional dataset with 5000 observations. In order to assess robustness
of K-spatialmedians‖, we disturbed original S2 with outliers and missing values.
First, we replaced 250 observations with uniformly random observations, where
both values were generated from two times larger range than the original S2.
Then, we generated the MVs by randomly selecting elements from data and
replacing them with MVs. Moreover, we ensured that we did not replace an
observation’s both elements with MVs.

For the scalability experiments we selected the Oxford buildings (OXB)
dataset2. The experiments were run with additional dataset, which consists
of 16,334,970 SIFT descriptors extracted from the original dataset with dimen-
sionality 128. Moreover, this dataset was modified by replacing 10 percent of
randomly chosen elements with MVs attached to N/2 randomly selected obser-
vations. The scalability related to the speedup was examined with a random 20
percent sample of OXB dataset with MVs. The scalability of with respect to the
data size was tested with varying a random sample size from 20 to 100 percents.

All datasets were min-max scaled to the range [−1, 1]. For K-means‖, we
run the initialization for the full rows of X and in the K-means search phase we
used the available data strategy. For K-means‖ and K-spatialmedians‖0, we set
l = 2 ∗ K and r = 5, based on the experiments in [6]. For K-spatialmedians‖,
we set εtol = 10−3, ω = 1.5, and tmax = 100. For S2 we set the number
of clusters to K = 15. For S2, the clustering iterations were ran until there
were no new cluster assignments with respect to the previous iteration, and
we repeated these runs 200 times. Since K-means‖ and K-spatialmedians‖ aim
to minimize different cost functions, to get fair comparison, all the reported
clustering errors were computed with respect to the ground truth prototypes.
For each prototype, we computed Euclidean distance to the closest ground truth
prototype and summed these distances. Furthermore, each of the ground truth
prototypes and the prototypes archieved from the experiments contributes to the
clustering error only once. In the experiments related to the speedup and the
data size we set K = 10. To analyze the scalability with respect to the number
of clusters, we varied K between 10 and 160, and this was conducted with 32
processing elements (MATLAB workers). We varied the number of processing
elements between 1 and 32 to test the speedup. In the scalability experiments,
clustering was performed once with 20 iterations for each setting.

1http://cs.uef.fi/sipu/datasets/
2http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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(a) 0% MVs (b) 10% MVs (c) 30% MVs

Fig. 1: Error distributions for S2 with varying level of MVs.

3.2 Clustering quality
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K-spatialmedians|| prototypes
K-means|| prototypes

Fig. 2: The best final prototypes out
of 200 runs for S2 with 10% MVs.

K-spatialmedians‖ and K-means‖ er-
ror distributions for S2 with 0%, 10%
and 30% MVs are shown in Figure 1.
Clearly, K-spatialmedians‖ finds bet-
ter clustering results than K-means‖.
Based on visual inspection of the best
resulting prototypes (selection based on
Eq. 2), K-spatialmedians‖ is able to
find an optimal clustering result for
0% and 10% MVs. For 30% MVs,
K-spatialmedians‖misplaces one proto-
type incorrectly. Similarly, based on vi-
sual inspection of the best resulting pro-
rotypes (selection based on SSE with
the available data strategy), K-means‖
misplaces six prototypes for 0%, 10%
and 30% MVs. These best resulting
prototypes for S2 with 10% MVs are shown in Figure 2, where they are plotted
in a frame of the original S2 data points with noise.

3.3 Scalability

The scalability results for K-spatialmedians‖ are shown in Figure 3. The exe-
cution time increases linearly with respect to the data size, similarly as for the
original K-spatialmedians. Moreover, we observed that time taken by the ini-
tialization is negligible with respect to total running time (about 1% of the total
running time). As a function of the number of processing elements, the parallel
implementation scales well. Speedup is nearly linear from 1 to 16 processing
elements. As a function of the number of clusters, the execution time increases
linearly after K = 20. The nonlinear behaviour in the beging of the curve is due
to a moderate increase of SOR iterations. The total number of SOR iterations
for K = 10 is 106, for K = 20 130, and for K = 40 127. Finally, we also
assessed Gustafson’s law with 32 processing elements, and we observed 60% of
the theoretical speedup.
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Fig. 3: Scalability of K-spatialmedians‖ for OXB dataset with 10% MVs.

4 Conclusions

In this paper, we proposed K-spatialmedians‖, which is a parallel version of K-
spatialmedians for large and sparse data. Moreover, K-spatialmedians‖ utilizes
an initialization strategy based on K-means‖. Based on the experiments on the
synthetic dataset with noise and missing values, K-spatialmedians‖ outperforms
K-means‖ in terms of clustering quality. Based on the experiments, the proposed
algorithm scales well with respect to the size of data, the speedup and the number
of clusters. In the future work, we plan to study the proposal in more detail in
terms of the initialization.
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