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Highlights

• Characterizing navigation methods via their desirable properties

• New cones to facilitate navigation on nonconvex Pareto fronts

• Reflecting trade-off rates on navigation using the cones

• Introducing the new Nonconvex Pareto Navigator method

• The new method uses cones and satisfies the desirable properties
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Abstract

We introduce a new interactive multiobjective optimization method oper-
ating in the objective space called Nonconvex Pareto Navigator. It extends
the Pareto Navigator method for nonconvex problems. An approximation of
the Pareto optimal front in the objective space is first generated with the
PAINT method using a relatively small set of Pareto optimal outcomes that
is assumed to be given or computed prior to the interaction with the decision
maker. The decision maker can then navigate on the approximation and di-
rect the search for interesting regions in the objective space. In this way, the
decision maker can conveniently learn about the interdependencies between
the conflicting objectives and possibly adjust one’s preferences. To facilitate
the navigation, we introduce special cones that enable extrapolation beyond
the given Pareto optimal outcomes. Besides handling nonconvexity, the new
method contains new options for directing the navigation that have been
inspired by the classification-based interactive NIMBUS method. The Non-
convex Pareto Navigator method is especially well-suited for computationally
expensive problems, because the navigation on the approximation is compu-
tationally inexpensive. We demonstrate the method with an example. Be-
sides proposing the new method, we characterize interactive navigation based
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methods in general and discuss desirable properties of navigation methods
overall and in particular with respect to Nonconvex Pareto Navigator.

Keywords: Multiple objective programming, interactive multiobjective
optimization, navigation, nonconvex problems, Pareto optimality

1. Introduction

We study whether and how navigation methods developed for multiob-
jective optimization can be extended from linear and convex problems to
nonconvex ones and what theoretical considerations this necessitates. Multi-
objective optimization refers to optimizing multiple conflicting objectives at
the same time, see, e.g., [24, 37, 39] for more introduction in this topic. Mul-
tiobjective optimization problems exist in many application areas, because
optimization involves balancing between various needs like cost and qual-
ity. Typically, multiobjective optimization problems have multiple Pareto
optimal solutions, where none of the objectives can be improved without im-
pairing at least one of the others (see [32] for an original reference). However,
typically one of the Pareto optimal solutions needs to be chosen for imple-
mentation. Thus, there is a need for preference information concerning the
conflicting objectives and it is usually assumed that there exists a decision
maker (DM) who can give this preference information. The ultimate aim of
multiobjective optimization is to help the DM in finding a solution that is
preferable to him/her with as little cognitive load as possible.

One can classify multiobjective optimization methods (see, e.g. [14, 24])
based on when the DM expresses his/her preferences. If no preferences are
available, the method is called a no-preference method. In a priori methods,
the DM first specifies preferences and then a Pareto optimal solution is found
with respect to them, while, in a posteriori methods, many Pareto optimal
solutions are generated and the DM is expected to choose one among them.
Finally, interactive methods employ an iterative procedure and allow the
DM to correct his/her preferences and, also, enable the DM to learn about
the problem, see, e.g., [25] for a recent review. Interactive methods have
in many instances been seen as a practically efficient approach because they
allow the DM to gain more insight about the problem while solving it without
introducing too much cognitive load at a time. In other words, the DM can
consider only those Pareto optimal solutions that have been generated based
on his/her preferences and learn about the feasibility of the preferences. For
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these reasons, we focus on interactive methods.
One type of interactive methods is navigation-based methods that were

pioneered by [19] with the Pareto Race method. Pareto Race was originally
developed for multiobjective linear problems and has inspired many further
developments, see, e.g., [16, 17, 18, 21] for linear or quadratic problems,
[3, 28, 29] for general convex problems, and [23] for a first application to
nonconvex problems. See also [2] for a brief survey of navigation based and
related methods.

Navigation-based methods dynamically generate and visualize Pareto op-
timal outcomes in the objective space and this is directed by a DM so that
(s)he can smoothly move on the Pareto optimal front (i.e., the image of the
Pareto optimal set in the objective space). Thanks to the navigation, the
DM can learn about the interdependencies among the objective functions.
The idea is to support the DM in the identification of a most preferred Pareto
optimal outcome. In what follows, we refer to such methods as navigation
methods. For example, the DM can express preference information to specify
a direction along which Pareto optimal solutions are generated. One can also
connect the decision space in the consideration.

Unfortunately, many real-life problems are computationally expensive
(see, e.g., [8, 13]), i.e., it takes a long time to compute the values of the
objective and/or constraint functions for given variable values. For these
problems, it takes a long time to find new Pareto optimal outcomes. This
implies a complication with navigation methods, because the DM has to wait
while new Pareto optimal outcomes are generated according to his/her up-
dated preferences in each iteration. This may lead to the unwillingness of
the DM in exploring different outcomes and the DM may end up with less
than preferable outcomes.

For computationally expensive problems, surrogate representations and
approximations of the Pareto optimal front can be constructed to facilitate
navigation methods. It is important to note that the DM is not involved
in the construction of the approximation which may take time. An approx-
imation that is computationally inexpensive to optimize allows the DM to
avoid waiting times in navigation. Examples of such approaches for convex
problems are given in [3, 28, 29]. For example, the Pareto Navigator method
[3] allows the DM to continuously move on a convex hull approximation of
the Pareto optimal front by providing reference points. Like in [21], the ref-
erence point is interpreted to set a reference direction and the DM can move
in the reference direction as long as he/she wants. A Two-Step Framework for
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general nonconvex problems is introduced in a report [23]. In this method,
a specific sampling method (aiming at an approximately equidistant repre-
sentation of the Pareto optimal front) is first applied and then a Delaunay
triangulation (as in [10]) of a lower dimension is created using linear combina-
tions of subsets of samples. This is used to approximate the Pareto optimal
front with simplices. Once this is done, an approach of finding preferable
solutions on the relevant simplices of that approximation is introduced that
uses preferences provided by the DM (changing the value of one objective
function, fixing objective function values and/or setting a constraint or giv-
ing corresponding preference for variables). The implementation is based on
solving multiple linear problems, each restricted to one of the simplices. The
simplex with the best solution is presented to the DM who can then choose
to continue the search, and/or to verify the result by computing a projection
onto the real Pareto optimal front using the scalarization method of [33].

Recently, many neurobiological and behavioral experiments have shown
that decision making tasks include a learning phase and a decision phase
(e.g., [44]), which often also are inherent in computational models of decision
making (e.g., [35]). This is in line with findings in multiobjective optimization
e.g., in [20, 27]. In the learning phase in multiobjective optimization, the
DM explores different solutions in order to find the most interesting region
of the Pareto optimal set or the Pareto optimal front. The final solution is
then to be identified in the decision phase. Navigation methods support the
learning phase, in particular. Instead of jumping to the solution that best
matches with the preferences of the DM, navigation methods continuously
show to the DM how objective function values evolve when moving from the
current solution along the reference direction. (S)he can stop the movement
at any time and provide new preference information. This is in line with the
brain’s mechanisms of movement selection that incorporates all the elements
of a deliberate decision, i.e., decision making designed to achieve goals in a
dynamic environment [7]).

By following in real time how objective function values evolve, the DM
can gain insight of the interdependencies involved as well as understand the
feasibility of one’s own preferences and modify the preferences (i.e., change
one’s mind) if needed. One can also return to any of the previously seen
solutions and re-specify preferences there in order to navigate to a new direc-
tion. Thus, the speed of finding the final solution is not an end in itself but
the confidence of the DM that (s)he has found a satisfactory solution and
can justify it. (Once the most preferred area is found in the learning phase,
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the DM may continue with any other interactive multiobjective optimization
method to fine-tune and find the final preferred outcome).

In this paper, we extend the Pareto Navigator method of [3] to nonconvex,
computationally expensive multiobjective optimization problems and demon-
strate that the positive properties of navigation methods can be extended for
nonconvex problems. The paper includes a discussion of the technical dif-
ficulties that are induced by nonconvex and possibly disconnected Pareto
optimal fronts and suggests a general approach to overcome these difficul-
ties. The new method is called Nonconvex Pareto Navigator. The Nonconvex
Pareto Navigator method has some similarities with the Two-Step Framework
introduced in [23]. Both methods are aimed at nonconvex and computation-
ally expensive problems. The main similarity is that both methods create
a piecewise linear approximation of the Pareto optimal front using samples
of Pareto optimal outcomes, computed prior to the involvement of the DM.
However, the approximations differ significantly with respect to how difficul-
ties occuring in nonconvex problems (like, for example, disconnected Pareto
optimal fronts and partial dominance in the approximation) are handled.
This also leads to significant differences in user experience, and what gen-
eral properties the navigation can be guaranteed to satisfy. Moreover, in the
Nonconvex Pareto Navigator method the navigation is realized using moving
reference points in combination with the achievement scalarizing problem of
[43], while [23] suggests to use bounds and fixing values or changing the value
of an objective function in combination with the direction method of Pasco-
letti and Serafini [33]. We also provide a rigorous analysis of the properties
of the Nonconvex Pareto Navigator method.

Advancing navigation methods for nonconvex problems is important as
many real problems actually are nonconvex. For example, simulation-based
multiobjective optimization problems, where function evaluations are derived
from simulation and modelling tools which can be of black-box nature, cannot
be assumed to be convex in general, see, e.g., [40].

The contribution of this paper is three-fold: First, we formally characterize
navigation methods by proposing their desirable properties from both techni-
cal and user experience perspectives, and hence give a more formal definition
of navigation methods compared to what has been presented in the literature
so far, c.f. [2]. Because nonconvex problems pose challenges not present in
convex problems (like, for example, potentially disconnected Pareto optimal
fronts), second, we introduce a new type of cones to facilitate navigation on
nonconvex and disconnected Pareto optimal fronts. We refer to these extrap-
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olating cones as e-cones. The use of the e-cones is different from what we
have found in the multiobjective optimization literature. The e-cones also
reflect trade-off rates in the Pareto optimal front. Finally, we introduce the
new Nonconvex Pareto Navigator method utilizing the approximation method
PAINT [10, 11] and the e-cones information. Inspired by the interactive NIM-
BUS method [26], the new method employs both reference points or bounds
not to be exceeded as preference information. As concluded in the literature
survey in [40], there are not many interactive methods for computationally
expensive problems and the Nonconvex Pareto Navigator method has been
directed for such problems whenever the DM wishes to express preference
information in the form or aspiration levels and/or bounds.

In what follows, we summarize the basic concepts of multiobjective op-
timization used in Section 2. Then, we characterize navigation methods for
(computationally expensive) multiobjective optimization problems and their
desirable properties in Section 3. In Section 4, we introduce the new Noncon-
vex Pareto Navigator and in Section 5, we evaluate how well the new method
performs with respect to the properties of Section 3. Section 6 discusses the
connections between the e-cones introduced in Section 4 and trade-off rates.
Nonconvex Pareto Navigator is demonstrated with an example in wastewater
treatment plant operation in Section 7. Finally, we conclude in Section 8.

2. Preliminaries

We deal with multiobjective optimization problems of the form

min f(x) := (f1(x), . . . , fk(x))T

s.t. x ∈ S, (1)

where k ≥ 2 is the number of objective functions fi : S → R (i = 1, . . . , k)
and the set S ⊆ Rn is the feasible set formed by constraint functions. A
decision vector x ∈ S is called a feasible solution and the vector f(x) ∈ f(S)
is called an outcome or an objective vector. The Euclidean spaces Rn and
Rk are called the decision and objective space, respectively.

A solution x1 ∈ S and the corresponding outcome f(x1) are said to dom-
inate another solution x2 ∈ S and the corresponding f(x2), if fi(x

1) ≤ fi(x
2)

for all i = 1, . . . , k and fj(x
1) < fj(x

2) for some j ∈ {1, . . . , k}. A solution
x1 ∈ S and the corresponding f(x1) are called Pareto optimal (PO), if there
does not exist another solution x2 ∈ S (and f(x2)) that dominates it. A
solution x1 ∈ S is said to be weakly PO if there does not exist a solution
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x2 ∈ S such that fi(x
2) < fi(x

1) for all i = 1, . . . , k. The set of PO outcomes
in the objective space is called the Pareto optimal front, or for short PO
front. Analogously, the nondominated subset of a set A ⊆ Rk is given by

ND(A) :=
{
a ∈ A : there does not exist b ∈ A that dominates a

}

and is called the PO front of A.
Furthermore, we denote the nonnegative orthant as Rk

+ := {x ∈ Rk : xi ≥
0 for all i = 1, . . . , k}. The boundary of a set A ⊆ Rm (where m ∈ N) is
denoted by ∂(A) and the sum of sets A,B ⊆ Rm (where m ∈ N) is defined
as

A+B = {a + b : a ∈ A,b ∈ B}.
In this paper, we assume that the multiobjective optimization problem

is computationally expensive, i.e., it takes a relatively long time to compute
the values of the objective or the constraint functions for a given solution
x ∈ Rn. Computationally expensive problems occur, e.g., when the functions
to be evaluated are only available through computer simulations (as, e.g., in
[8, 13]) or real experiments.

There exist many interactive methods allowing the DM to learn about
the problem and find preferred outcomes and these methods differ, e.g., in
the type of preference information obtained from the DM (see, e.g., [25] for a
recent survey). In this paper, we use mostly reference point based methods.
A reference point zref ∈ Rk contains desirable objective function values for
the DM. Its components are also often called aspiration levels. A reference
point can be used to generate preferred PO outcomes in many ways. In this
paper, we mostly use the augmented version of the achievement scalarizing
problem of Wierzbicki [43] that can be formulated for problem (1) as

min
x

max
i=1,...,k

[
fi(x)− zref

i

znad
i − zutopia

i

]
+ ρ

k∑

i=1

fi(x)

znad
i − zutopia

i

s.t. x ∈ S,
(2)

where the term ρ
∑k

i=1
fi(x)

znadi −zutopiai

is called an augmentation term, ρ > 0 is a

small augmentation constant, and

znad :=

(
max

x∈S is PO
f1(x), . . . , max

x∈S is PO
fk(x)

)T
and
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zutopia :=

(
min
x∈S

f1(x)− γ, . . . ,min
x∈S

fk(x)− γ
)T

are, respectively, the nadir objective vector and the utopian objective vector
of problem (1), where γ > 0 is a small constant. They represent ranges of
objective functions in the PO front. An optimal solution to (2) is PO [43].
If the augmentation term is removed from (2), then the optimal solution is
weakly PO. For further information on the optimality results and estimating
the nadir objective vector, see [24] and references therein. In the context of
this paper, estimations of the nadir objective vector znad can be computed,
for example, based on an upper bound on acceptable objective values or on
a precomputed finite set of PO outcomes.

3. Navigation Methods for Computationally Expensive Problems

In this section, we first characterize the core of navigation methods for
computationally expensive problems in terms of modules. Then, we introduce
desirable properties of these methods to formally characterize them.

As mentioned in the introduction, to be able to navigate efficiently in
computationally expensive problems, approximations of the PO front are in-
dispensable. For this reason, we consider two types of outcomes: approximate
outcomes and outcomes of the original computationally expensive problems.
In what follows, for brevity, we refer to the latter type simply as solutions
and outcomes (in decision and objective spaces, respectively). In addition,
we assume to have available an approximation of the PO front and it is
created based on a set of given PO outcomes P ⊆ ND(f(S)).

3.1. General Modules

Navigation methods for computationally expensive problems can be char-
acterized with a clear modular structure, which can be named as a

navigation set, which is a set in the objective space, where the DM may
navigate and find preferable values for the objectives,

navigation control that allows the DM to set the direction and the speed
of navigation (i.e., movement), and

projection that allows the DM to find the closest PO outcome to any point
in the navigation set that he/she desires.
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Note that the first two modules are also valid for navigation methods applied
in computationally inexpensive problems, where the navigation set is the PO
front (instead of an approximation). Thus, the projection is needed only
in computationally expensive problems where navigation takes place in the
approximation.

In this paper, we assume that the navigation set is an approximation of
the PO front and it is created based on the set P . Furthermore, the naviga-
tion control keeps solving a single objective optimization problem involving a
reference point that moves on the ray originating from the last PO outcome
that was shown to the DM and aims at the reference point given by the DM.

In what follows, the reference point that is given by the DM is called
merely a reference point and the reference point that is a technical element in
creating new approximate PO outcomes and moves within the method (after
the DM has given his/her preferences) is called a moving reference point.
Furthermore, the point on the navigation set that is the optimal solution
to the single objective optimization problem involving the moving reference
point is called the navigated point. The vector in the navigation set where
the DM has stopped the navigation is called the current navigated point. The
continuous-like movement in the navigation set is realized in this way. To
be more specific, the following steps are repeated: (1) the DM provides a
reference point and (2) new navigated points are iteratively calculated for
the DM as the moving reference point travels along the ray originating from
the current navigated point aiming at the reference point.

As a concrete example of the modules and concepts introduced, let us
consider the Pareto Navigator method [3] for convex problems. There, the
navigation set is the boundary of the convex hull of the given PO outcomes
P . In this case, the boundary of the convex hull can be assumed to ap-
proximate the complete PO front. In navigation control, the single objective
optimization problem is the achievement scalarizing problem (2) (with the
moving reference point as the reference point) and its feasible set is the
above-mentioned convex hull. The DM can also control the speed how fast
the moving reference point moves towards the reference point given by the
DM. The speed is controlled indirectly through a step length for shifting the
moving reference point.

An essential part of any navigation method is the graphical user interface
to visualize the dynamic movement in the navigation set. The Pareto Naviga-
tor method has been implemented in the IND-NIMBUS R© software framework
[30]. Designing the user interface is discussed in [41] and the implementation
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of Nonconvex Pareto Navigator to be introduced follows similar ideas.

3.2. Desirable Properties

In this section, we introduce desirable properties of navigation methods
for computationally expensive multiobjective optimization problems. We
distinguish between technical and user experience related properties. For
characterizing navigation methods in general, the desirable properties are
based on findings and common characteristics between related methods in
the literature (we mainly rely on [16, 17, 18, 19, 21] in this context). As far
as computational cost is concerned, the desirable properties originate from
both the literature and analysis of the authors based on practical experience.

3.2.1. Technical Properties

The properties in this subsection are technical by nature and a method
either fulfills or does not fulfill them. They differ from the properties related
to user experience given in Subsection 3.2.2 that may depend on the DM in
question.

Navigation is complete. The method should not restrict the DM in what (ap-
proximate) PO outcomes he/she can find by navigating. The completeness
of navigation is analogical to the completeness property of a scalarization
method given in [37], which states that every PO outcome must be reachable
with some parameters of the scalarization. To be more precise, this property
can be posed as follows: given a current outcome n1 in the navigation set N
and a PO outcome f(x) ∈ f(S), there exist preferences of the DM so that the
PO outcome f(x) is the projection of an outcome n2 ∈ N and the preferences
of the DM lead to navigating on the outcome n2.

Navigation is computationally efficient. It is essential that the navigation is
computationally efficient, because the use of an approximation based navi-
gation set and not the original PO front is intended to alleviate the compu-
tational burden. This means that calculating outcomes in the navigation set
must be fast. The speed of calculation is naturally relative, but the naviga-
tion on the navigation set should be substantially more efficient than that on
the PO front. In particular, the interaction with the DM should be realisable
in “real time”, i.e., the DM should not have to wait more than, say, a couple
of seconds for a new outcome.
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Construction of the navigation set is computationally efficient. The construc-
tion of the navigation set should not take a very long time. Although the
construction can be done offline before involving the DM, it should not take
very long. Especially, the construction should take less time than computing
more PO outcomes.

Accuracy of the navigation set can be measured. As the navigation set is an
approximation of the PO front, the accuracy of the approximation should be
measurable. The accuracy information can be used to determine when the
navigation set is accurate enough to involve the DM and accuracy information
can also be conveyed to the DM.

Accuracy of the navigation set can be improved. If we find that the navigation
set is not accurate enough, then it has to be possible to increase the accuracy.
This can be done, e.g., by adding more PO outcomes to the set P and then
reconstructing the navigation set.

3.2.2. Properties Related to the User Experience

In this section, we introduce desirable properties related to the user expe-
rience of the DM. They are much more difficult to measure than the technical
properties and may depend on the DM in question.

The DM can control the navigation. The DM should be able to control the
navigation. To measure this, the following tests can be performed on DMs:

1. If a DM has in mind preferable values that are attainable, i.e., that
correspond to a vector in the navigation set, is he/she able to reach it
by navigating?

2. If a DM has in mind values of objectives that he/she does not like, can
he/she restrict this area from being navigated to?

Low cognitive load is set on the DM. The navigation should cognitively bur-
den the DM as little as possible. This can be separated into (at least) two
concrete sub-properties: 1. controlling the navigation is intuitive and 2. nav-
igation is visualized in an understandable way.

The DM is allowed to learn. The DM must be allowed to learn and change
one’s mind. The navigation should allow the DM to re-examine areas of the
navigation set that have already been passed. In this way, the method should
support psychological convergence of the DM rather than mathematical con-
vergence as discussed, e.g., in [27].

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The given set
of PO outcomes

Construct the
navigation set

Navigate

Project

PO outcome to
the computation-

ally expensive
multiobjective op-
timization problem

Starting point

Current

navigated

point

preferred

by DM?

DM wants

to give

a new

direction of

navigation?

Calculate next
navigated point

Stop navigation

Preferred nav-
igated point

DM chooses
aspiration levels

and upper
bounds for the

chosen objectives

yes

yes

no

no

Figure 1: The flowchart of the Nonconvex Pareto Navigator method

The DM can get additional information of the navigation set. In addition to
the navigated points, the DM should be given further information about the
navigation set. For example, the DM can be shown the ranges of the objective
function values in the navigation set. Another possibility is to show a set of
feasible directions from a current navigated point (if it is in a corner).

4. The Nonconvex Pareto Navigator Method

In this section, we introduce the Nonconvex Pareto Navigator method. The
new method includes the modules introduced in Section 3.1: a navigation
set, a navigation control and a projection. Figure 1 shows the flowchart of
the Nonconvex Pareto Navigator method. The main steps of the method are
given on the left. Once a set of PO outcomes P is available, the navigation
set is constructed with the help of the PAINT method and e-cones. The
navigation step is described in more detail on the right of the figure. To
get the navigation started, the DM can select one of the points in P as a
starting point. From the current navigated point (the starting point in the
first iteration), the DM can specify desirable aspiration levels for improving
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the components or specify upper bounds for some components that should
not be exceeded. The DM navigates like this and once (s)he has found a
preferred navigated point, the solution process proceeds to the projection
step. There, problem (2) is used for projection and the result is a final PO
solution to the original problem. If the final PO solution is not preferable,
although the navigated point was, then we find that the navigation set did
not reflect the set of PO outcomes well enough, and the accuracy of the
navigation set must be improved and a new navigation must be performed.

The steps and the related modules of the method are described in more
detail in the following subsections.

4.1. Constructing the Navigation Set

As the name suggests, the step called constructing the navigation set
refers to the module navigation set. The essence of constructing the navi-
gation set is an approximation of the PO front based on a given set of PO
outcomes P (see Section 2), for which we suggest to use the PAINT method
[10, 11]. However, the PAINT approximation method only interpolates and
we want to allow the DM to also search for outcomes that may be outside
the convex hull of P . This is crucial for the navigation to be complete, as
defined in Section 3.2, and will be realised by an extension based on e-cones.

Approximation. Many approximation methods are available in the field of
multiobjective optimization, see, e.g., [36] for a survey. Many of these may
be used to construct the navigation set. For example, [23] suggest to use an
(at most) (k − 1) dimensional representation of the PO front that is com-
posed of simplices. While this approximation can usually be computed very
efficiently, we note that it may produce undesirable solutions even for small
examples. Consider, e.g., the set P = {(0, 0, 1)T , (0, 1, 0)T , (0.8, 0.8, 0)T} of
three PO outcomes in R3. In this situation, the method of [23] yields a 2-
dimensional polytope with corners at the three sampled PO outcomes. The
approximation contains, e.g., the point (0.5, 0.5, 0)T which dominates the PO
outcome (0.8, 0.8, 0)T and would, thus, mislead the DM in falsely indicating
that the point (0.8, 0.8, 0)T was dominated. To overcome this difficulty, we
suggest to use an approximation that, in addition to containing all points
from the set P , is inherently nondominated, i.e., the approximation does not
contain any points that dominate other points of the approximation. This
implies in particulary that none of the points from the set P is dominated by
a point in the approximation. The PAINT approximation has this property
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[10, 11] and is thus used as the underlying approximation method in the
Nonconvex Pareto Navigator method. Note that the PAINT approximation
applied to the above set P yields two line segments joining the PO outcomes
(0, 0, 1)T and (0.8, 0.8, 0)T , and the PO outcomes (0, 1, 0)T and (0.8, 0.8, 0)T ,
respectively, which is more meaningful.

PAINT takes as input a set of given PO outcomes P ⊆ f(S) and employs
Delaunay triangulations. The resulting approximation is piecewise linear
and inherently nondominated (as defined above), contains all points in P ,
and can be represented as a mixed integer linear multiobjective optimization
problem. Thus, one can use most multiobjective optimization methods to
find a preferred outcome on the approximation by replacing the original
problem by the surrogate problem generated by PAINT.

e-Cones. The core element of the Nonconvex Pareto Navigator that makes it
complete for nonconvex problems in the sense of Subsection 3.2.1 is that the
PAINT approximation is extended by adding e-cones in the objective space.
The goal is to enable navigation on disconnected navigation sets by joining
the disconnected parts in the objective space, but without giving misleading
(i.e., overly optimistic) information to the DM. The e-cones can be viewed
as an outer approximation of the positive orthant Rk

+. They are convex
polyehdral cones that contain the positive orthant Rk

+. For more information
on polyhedral cones and polyhedral computation, we refer, e.g., to [4, 5]; see
also [42, 45] for a different interpretation in the context of dominance cones.

As said, we introduce e-cones to join disconnected parts of the PAINT
approximation to facilitate navigation. A drawback of this approach is that
the DM may navigate to a point on the navigation set for which no corre-
sponding feasible outcome exists. Since we do not want to raise unrealistic
expectations by suggesting overly optimistic outcomes, the e-cones are de-
fined as outer approximations of the positive orthant, i.e., the dominance
cone. Using such a definition, it is unlikely that a point in the navigation
set that is induced by e-cones is preferred by the DM since such points are
”almost” dominated by at least one feasible alternative in the navigation set.
If desired, outcomes on e-cones can be associated with a search direction that
leads to an “almost dominating” outcome in the original approximation. In
any case, the final projection step will at the latest make sure that the DM
gets to see the closest outcome which does not involve approximation. Note
that the property that none of the points in the navigation set dominates
any of the given Pareto optimal outcomes remains valid even in this case.
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f1

0

f2

Bεεε

f1

0

f2

Bεεε

B◦εεε

Figure 2: (a) On the left: An example of an e-cone Bεεε (the grey area bounded by the
dashed halflines) in R2 with εεε = (0.1, 0.2)T . (b) On the right: The e-cone Bεεε drawn
together with its polar cone B◦

εεε , c.f. Section 5.1 and Example 1 below.

More formally, we define an e-cone using a k-dimensional parameter vec-
tor εεε which controls the tradeoffs defined by the e-cone. For each εεε ∈ int(Rk

+)
(chosen sufficiently small), the e-cone Bεεε is defined by k extreme rays as

Bεεε =

{ ∑

j=1,...,k

λjv
j : λj ≥ 0 for all j = 1, . . . , k

}
, (3)

where the extreme rays vj, j = 1, . . . , k, are given by

vji =

{
1 , if j = i and
−εj , otherwise

(4)

and εεε = (ε1, . . . , εk)
T ∈ int(Rk

+) satisfies

0 < εj <
1

k − 1
=: ε̂ (5)

for all j = 1, . . . , k. In what follows, we call all εεε ∈ Rk
+ satisfying inequality

(5) admissible. Note that Bεεε is a convex cone and that 0 ∈ Bεεε by con-
struction, and thus Bεεε is pointed for all εεε ∈ Rk

+. See Figure 2(a) for an
illustration.

The most important reason for inequality (5) is that the e-cones Bεεε should
include the positive orthant Rk

+. This is not the case with too large values of
εi, i = 1, . . . , k. To see this, we transform the representation of e-cones based
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on extreme rays given in (3) into a description based on linear inequalities.
More generally, (3) is an extreme ray representation of the form

Bεεε =
{
z ∈ Rk : z = V Tλλλ with λλλ ∈ Rk

+

}
,

where V ∈ Rk×k is the matrix containing the extreme rays vj, j = 1, . . . , k
of Bεεε as its rows. Then the polar cone B◦εεε of Bεεε is given by

B◦εεε =
{
z ∈ Rk : −V z ≥ 0

}
,

i.e., by a description based on k linear inequalities. Clearly, both sets Bεεε
and B◦εεε are convex cones and, according to the Weyl-Minkowski theorem,
both have a representation based on extreme rays and a description based
on linear inequalities. In this particular case, Bεεε ⊆ Rk is represented by k
extreme rays, and B◦εεε ∈ Rk is described by k inequalities, i.e., both Bεεε and
B◦εεε are simplicial cones. Thus, the extreme ray representation of B◦εεε and, by
polarity, the inequality description of Bεεε can be obtained (as a special case
of the double description method, see, e.g., [4, 5]) as

B◦εεε =
{
z ∈ Rk : z = (−V )−1λλλ with λλλ ∈ Rk

+

}
, and

Bεεε =
{
z ∈ Rk : (V −1)Tz ≥ 0

}
.

Here,

V =




1 −ε1 · · · −ε1
−ε2 1 · · · −ε2

. . .

−εk−εk · · · 1


=




1 + ε1 0 · · · 0
0 1 + ε2 · · · 0

. . .

0 0 · · · 1 + εk




︸ ︷︷ ︸
=:D

+




−ε1
−ε2
. . .
−εk




︸ ︷︷ ︸
=:u

· (1, . . . , 1)︸ ︷︷ ︸
=:vT

.

The inverse V −1 always exists and can be computed by the Sherman-Morrison
formula as V −1 = D−1 − ( 1

1+vtD−1u
)(D−1uvTD−1), see, e.g., [38]. Setting

ξj := 1
1+εj

for j = 1 . . . , k, we obtain

V −1 =




ξ1 0 · · · 0
0 ξ2 · · · 0

. . .

0 0 · · · ξk


+

1

1−
k∑
j=1

εjξj




ξ2
1ε1 ξ1ξ2ε1 · · · ξ1ξkε1

ξ2ξ1ε2 ξ2
2ε2 · · · ξ2ξkε2

. . .

ξkξ1εk ξkξ2εk · · · ξ2
kεk


 . (6)
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Note that all components of V −1 are nonnegative if εεε is admissible, i.e., if
εεε satisfies (5). Indeed, let ε̄ := maxj=1,...,k εj. The only value that may

potentially be negative in (6) is the scalar 1−∑k
j=1 εjξj = 1−∑k

j=1
εj

1+εj
≥

1− k · ε̄
1+ε̄

, which is positive if 1 + ε̄− kε̄ > 0, i.e., if ε̄ < 1
k−1

= ε̂.

Example 1. Consider a two-dimensional example with εεε = (0.1, 0.2)T . Then

V =

(
1 −0.1
−0.2 1

)
and V −1 =

(
1.020408 0.102041
0.204082 1.020408

)
,

and hence

Bεεε =

{
z ∈ R2 : z =

(
1 −0.2
−0.1 1

)
λλλ with λλλ ∈ R2

+

}

=

{
z ∈ R2 :

(
1.020408 0.204082
0.102041 1.020408

)
z ≥ 0

}
, and

B◦εεε =

{
z ∈ R2 :

(
−1 0.1
0.2 −1

)
z ≥ 0

}

=

{
z ∈ R2 : z =

(
−1.020408 −0.102041
−0.204082 −1.020408

)
λλλ with λλλ ∈ R2

+

}
.

See Figure 2(b) for an illustration.

The following result is an immediate consequence of the discussion above.

Theorem 1. Let εεε be admissible. Then Rk
+ ⊆ Bεεε and Rk

+ \ {0} ⊂ int(Bεεε).

Proof. The claim follows from the fact that Bεεε =
{
z ∈ Rk : (V −1)Tz ≥ 0

}
,

where (V −1)T is a matrix whose entries are all strictly positive if εεε is admis-
sible. In particular, (V −1)Tz ≥ 0 for all z ∈ Rk

+, and (V −1)Tz > 0 for all
z ∈ Rk

+ \ {0}.

Theorem 1 will be needed when discussing the completeness of navigation.
The following property interrelates e-cones for different parameter vectors εεε
and is included here for the sake of completeness.

Theorem 2. Let εεε2 be admissible. If εεε1, εεε2 ∈ Rk
+ such that 0 < ε1j ≤ ε2j for

all j = 1, . . . , k, then Bεεε1 ⊆ Bεεε2.
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Proof. First note that if εεε2 is admissible, then so is εεε1. Let V ` ∈ Rk×k be
the matrix containing the extreme rays of Bεεε` in its rows, ` = 1, 2. Then the
respective polar cones are given by B◦

εεε`
=
{
z ∈ Rk : −V `z ≥ 0

}
, where the

components v`ij of V `, ` = 1, 2, satisfy −v1
ii = −v2

ii = −1 for all i = 1, . . . , k
and 0 < −v1

ij ≤ −v2
ij for all i, j = 1, . . . , k, i 6= j. It immediately follows that

B◦εεε2 ⊆ B◦εεε1 and thus, by polarity, Bεεε1 ⊆ Bεεε2 .

Note that the particular choice of the parameter εεε is important when
discussing trade-off rates, and we return to this in Section 5.

Navigation set. Now the navigation set Nεεε is defined as a sum of the PAINT
approximation A and the e-cones Bεεε:

Nεεε := A+Bεεε = {a + b : a ∈ A, b ∈ Bεεε}. (7)

An example of Nεεε where the set P consists of three PO outcomes is given in
Figure 3.

In practice, the parameters εj > 0, j = 1, . . . , k, will often be selected all
equal, i.e., εj = ε > 0 for all j = 1, . . . , k, and close to zero to ensure that
the e-cones only slightly enlarge the positive orthant Rk

+. In this way, the
navigation set is connected and does not contain any weakly PO outcomes,
but it also contains no points that raise expectations that can not be realized
by an existing PO outcome. Note that, however, εεε should be chosen large
enough to avoid numerical difficulties. Despite the fact that the e-cones are
convex, the set Nεεε is in general nonconvex. Note moreover that the way that
e-cones are used here is different from their use, e.g., in dominance relations,
see, e.g., [42, 45].

4.2. Navigation Control

The core of the navigation step of the Nonconvex Pareto Navigator flowchart
in Figure 1 is the module navigation control. As mentioned earlier, in the
(convex) Pareto Navigator method, the DM specifies preference information
as a reference point. In the Nonconvex Pareto Navigator method, we pro-
vide more options for the DM in navigation control to facilitate navigation
in cases were the PO front is nonconvex or even disconnected. For this, we
adapt the type of preference information used in the classification-based in-
teractive NIMBUS method [24, 26]. The idea is that the DM can specify both
aspiration levels and upper bounds for objective function values. This allows
the DM to give preference information in a way that has been shown to be
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f(x2)

f(x3)
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Figure 3: An example of the navigation set Nεεε in R2 with P consisting of three PO
outcomes. The extension given by the e-cones is indicated by dashed lines. (a) On the
left: εεε = (ε, ε)T with a small value of ε > 0; (b) on the right: εεε = (ε, ε)T with a larger
value of ε > 0, leading to potentially misleading outcomes in the navigation set.

intuitive for a DM [22], i.e., in a way that is directly related to the values
of objectives. In addition, similarly to the NIMBUS method, the DM can
allow some of the objectives to change freely for the next iteration, which
decreases the cognitive burden as the DM can concentrate only on a subset
of the objectives at a time.

Let us assume that the current navigated point is n1 ∈ Nεεε and the DM
has provided aspiration levels for a subset of objectives with indices in I1 ⊆
{1, . . . , k}, and upper bounds for a subset of objectives with indices in I2 ⊆
{1, . . . , k}. Note that I1 and I2 do not have to be disjoint. More precisely,
we assume that the DM has provided aspiration levels zasp

i for objectives fi
with i ∈ I1, and upper bounds zup

i (≥ n1
i ) for objectives fi with i ∈ I2.

This implicitly means that the objectives with indices in {1, . . . , k}\ (I1∪ I2)
are allowed to change freely. Then, the navigation is technically performed
by solving a series of single-objective optimization problems with iteratively
updated (i.e., moving) reference points zj, j = 1 . . . , J . The index j =
1, 2, . . . , J is the navigation parameter that is increased up to a predetermined
upper bound J (i.e., J defines how far one navigates into a single direction)
to simulate the movement from the current navigated point n1 towards (and
possibly past) the aspiration levels zasp

i , i ∈ I1. With a predetermined step
length 1/t, t ∈ N, the reference points zj, j = 1, . . . , J , are defined by

zji = n1
i +

j

t
(zasp
i − n1

i ) for all i ∈ I1. (8)
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The components zji with i 6∈ I1 are not relevant and can be chosen arbitrarily.
In our computational tests, we have used J = 2t.

Using these parameters, the following optimization problem is solved it-
eratively during the navigation phase for j = 1, . . . , J , or until some other
stopping condition is satisfied:

min
z

max
i∈I1

(
zi − zji

)
(9)

s.t. zi ≤ zup
i for all i ∈ I2 (10)

z ∈ A+Bεεε. (11)

In the above problem, z = (z1, . . . , zk)
T is the vector of variables. The

aspiration levels zji , i ∈ I1, are parameters defined according to (8), and the
upper bounds zup

i , i ∈ I2, are parameters given by the DM according to
the above specifications. Note that alternative and/or additional preference
information (e.g., information on a particular region of interest in the decision
and/or in the objective space) may be incorporated into this model if so
desired by the DM.

The optimization problem (9)–(11) is equivalent to solving (2) (without
the augmentation term) in the navigation set with respect to objectives with
indices in I1 with additional hard constraints for upper bounds for objectives
with indices in I2. Note that the augmentation term is not needed as we are
in the navigation set Nεεε that does not contain any weakly PO points.

The optimization problem (9)–(11) can be written as a mixed-integer
linear problem because of the following observations:

1. the objective function (9) can be linearized by the standard way of
linearizing min-max objectives with an additional continuous variable
representing the maximum (see e.g., [24]),

2. the constraint (10) is linear and

3. the PAINT approximation can be linearly parametrized with additional
binary variables as described in [11] and, thus, the constraint (11) is
linear.

This means that navigation, that is, generating navigated outcomes, is com-
putationally inexpensive as compared to the original problem.

4.3. Projection

When the current navigated outcome n ∈ Nεεε in the navigation set is
interesting or desirable for the DM, he/she can be shown the corresponding
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PO outcome by projecting n to the PO front. This can be done by solving
problem (2) with n as the reference point. As mentioned earlier, this yields
a PO outcome. (Note that this step is identical e.g. to the projection in the
Pareto Navigator method.)

5. Evaluation of Nonconvex Pareto Navigator

In this section, we evaluate how well the proposed Nonconvex Pareto Nav-
igator method meets the desirable properties stated in Section 3.2. The
criteria are considered in the same order as in Section 3.2.

5.1. Technical properties

In the following, we analyze whether or not, and if yes how well the
Nonconvex Pareto Navigator method performs w.r.t. the technical properties
from Section 3.2. Particularly completeness of navigation requires a rigorous
analysis of the properties of the navigation set, the navigation control and
the projection method.

Navigation is complete. In the following, we prove that any PO outcome can
be obtained by navigating with the Nonconvex Pareto Navigator method. This
means that the navigation is complete as defined in Section 3.2. Note that
the e-cones Bεεε play an important role for the completeness of navigation
since they allow to span the complete objective space, also in the case of
disconnected approximations of the PO front. The e-cones are thus a versatile
tool that can be used in combination with approximations or representations
of the PO front in general.

We therefore keep the analysis in this section general by assuming that
A is a closed set that approximates the PO front (for example, given by the
PAINT approximation). Questions regarding the approximation quality and
the relation to trade-off rates will be discussed later in Section 6.

Using the general properties of e-cones derived in Section 4.1, we can
prove that the boundary of the navigation set is exactly its PO front. This is
a very important result for the functioning of the Nonconvex Pareto Navigator
method, because it gives a simple geometric description of the PO front of
the navigation set, which is exactly where the navigation takes place.

Theorem 3. If εεε is admissible, then ND(A+Bεεε) = ∂(A+Bεεε).
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Proof. Because of the definition of dominance, ND(A+Bεεε) ⊂ ∂(A+Bεεε) and
we have to show that ∂(A + Bεεε) ⊂ ND(A + Bεεε). Let z ∈ ∂(A + Bεεε) and
suppose that there exists a vector z̄ ∈ (A + Bεεε) such that z̄ dominates z.
Hence, z̄ = ā + b̄ with ā ∈ A and b̄ ∈ Rk

+ \ {0}, and using Theorem 1,

z ∈ z̄ + (Rk
+ \ {0}) = (ā + b̄) + (Rk

+ \ {0}) = ā + (Rk
+ \ {0})

⊂ ā + int(Bεεε) ⊂ int(A+Bεεε),

in contradiction to z ∈ ∂(A+Bεεε).

With the following lemma, we are almost finished with proving the com-
pleteness of the navigation. The proof is simple, because we can use Theo-
rem 3.

Lemma 1. Let z ∈ Rk, let εεε > 0 be admissible, and let A be closed. Then
there exist t ∈ R and n ∈ ND(A + Bεεε) such that z + t1 = n, i.e., zi + t=ni
for all i = 1, . . . , k.

Proof. Let z ∈ Rk be arbitrary, and choose any z′ ∈ A + Bεεε and z′′ ∈
(A+Bεεε)

c= Rk \ (A+Bεεε). Now z+ t1 ∈ A+Bεεε, when t ≥ maxi=1,...,k(z
′
i−zi)

and z + t1 ∈ (A + Bεεε)
c, when t ≤ −maxi=1,...,k(zi − z′′i ). (Note that, if

z + t̄1 ∈ (A + Bεεε) for some t̄ ∈ R, then z + t1 ∈ (A + Bεεε) for all t ≥ t̄, and
conversely, if z + t̃1 ∈ (A + Bεεε)

c for some t̃ ∈ R, then z + t1 ∈ (A + Bεεε)
c

for all t ≤ t̃.) Since A + Bεεε is closed, there must exist t ∈ R such that
z + t1 ∈ ∂(A+Bεεε). The claim follows from this.

Finally we can prove the main result of this section. The following the-
orem shows that the navigation in the Nonconvex Pareto Navigator method
is complete. To keep the notation simple, we assume in the following that
znad
i − zutopia

i = 1 for all i = 1, . . . , k, and thus (2) simplifies to

min
x∈S

max
i=1,...,k

[
fi(x)− zref

i

]
+ ρ

k∑

i=1

fi(x).

Theorem 4. Assume that εεε > 0 is admissible and that A is closed. Let
n′ ∈ A + Bεεε be a current navigated point, and consider an arbitrary PO
outcome f(x′) ∈ ND(f(S)). Then there exist aspiration levels zasp

i ∈ R,
i = 1, . . . , k, a step length t ∈ R+, and a sufficiently small augmentation
parameter ρ > 0 such that the navigation leads to a point

n′′ = arg min
n∈A+Bεεε

max
i=1,...,k

ni − ((1− t)n′i + tzasp
i ),
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and the projection of n′′ onto ND(f(S)) is the PO outcome f(x′), i.e.,

x′ = arg min
x∈S

max
i=1,...,k

[fi(x)− n′′i ] + ρ
k∑

i=1

fi(x).

Proof. By Lemma 1, we may choose zasp such that zasp ∈ ND(A + Bεεε) and
zasp = f(x′) + s1 for some s ∈ R, i.e., for all i = 1, . . . , k it holds that
zasp
i = fi(x

′) + s. Furthermore, choose t = 1. Then n′′ = zasp, and the
projection of n′′ onto ND(f(S)) is obtained as arg minx∈S maxi=1,...,k[fi(x)−
(fi(x

′) + s)] + ρ
∑k

i=1 fi(x). Since x′ is PO, the minimum is attained at x′ if
ρ > 0 is sufficiently small.

The navigation is computationally efficient. As described in Section 4.2,
the navigation can be realized by solving mixed integer linear optimization
problems. Solving these problems is fast, when compared to solving e.g.,
simulation-based optimization problems.

The construction of the navigation set is computationally efficient. The com-
putational cost of constructing the navigation set is due to constructing the
PAINT approximation. As shown in [11], PAINT approximations can be con-
structed for large numbers of PO outcomes in a relatively short time.

The accuracy of the navigation set can be measured. As described in [10], the
accuracy of the PAINT approximation A at a point a ∈ A can be measured
by an error vector d(a) ∈ Rk that can be estimated from the structure of the
PAINT approximation. The error vector has the following two properties:

1. there exists an outcome z ∈ f(S) so that zi ≤ ai + di(a) for all i =
1, . . . , k and

2. there does not exist an outcome z ∈ f(S) so that zi ≤ ai− di(a) for all
i = 1, . . . , k.

These error estimates should have a clear meaning to the DM: 1. implies
that there exists an PO outcome that is at least as good as a + d(a) in all
objectives and 2. implies that there is no outcome that dominates a− d(a).

The above implies that at least when the navigation takes place on the
PAINT approximation the accuracy can be measured. In addition, since the
navigation set Nεεε is a sum of the PAINT approximation and the e-cone Bεεε,
the accuracy measure on the PAINT approximation also implies an accuracy
measure for the accuracy of the complete navigation set.
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The accuracy of the navigation set can be improved. By computing more
PO outcomes, it is indeed possible to make the PAINT approximation and,
thus, the navigation set more accurate. Especially, the PAINT approximation
always contains all the given PO outcomes. Thus, the accuracy of the nav-
igation set can be increased by computing more PO outcomes. When com-
puting the approximation again, there, however, may be global changes to
the approximation, so, theoretically, the approximation could become worse
in some areas. However, since the new point will be part of the updated
approximation, it can be guaranteed that the approximation becomes more
accurate in the area that the DM was interested in.

5.2. Properties Related to the User Experience

The DM can control the navigation and low cognitive load is set on the DM.
The DM can use aspiration levels and upper bounds when controlling naviga-
tion, that is, when indicating what kind of objective values are more preferred
than the current navigated point. Both of these have been found intuitive
in [22]. In addition, the DM can let some of the objectives change freely for
a while, which has been found useful in real-life problems solved with the
interactive NIMBUS method (see e.g., [8]). This decreases the cognitive load
in particular when dealing with problems with a large number of objectives.

The DM is allowed to learn. The DM can go backwards i.e., the DM can
choose any of the previously navigated outcomes as the current navigated
point. After this, the DM can give different preferences than previously and,
thus, change his/her mind and navigate to a different direction. In a more
general level, changing one’s mind is made possible, because the outcomes
generated in the navigation set depend only on the current navigated point
and the current preferences given by the DM, that is, current navigation
control, and not preferences previously given.

The DM can get additional information of the navigation set. Guidance de-
pends highly on the graphical user interface of the implementation. The
implementation of the Nonconvex Pareto Navigator method mentioned in Sec-
tion 7 shows all the time the set P to the DM. Thus, if the DM gets lost,
he/she can restart the search from any of the outcomes in P .

To conclude this section, we can see that the Nonconvex Pareto Navigator
method meets the desirable properties of navigation methods well. This is
true from both technical and user experience points of view. The latter is
further considered in Section 7 when solving an example problem.
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6. Connection Between e-Cones and Trade-Off Rates

As mentioned in Section 4.1, the parameter vector εεε plays an important
role in defining an intuitive extrapolation Nεεε = A+Bεεε of the PAINT approx-
imation A that facilitates navigation in nonconvex problems and, if chosen
appropriately, guarantees a complete representation (c.f. Theorem 4). To
realize this goal, the parameter εεε has to be admissible, i.e., satisfy inequality
(5). On the other hand, the choice of the parameter εεε affects the navigated
points that the DM can see. This may be overly optimistic for large val-
ues of εεε and the real structure of the nondominated set may be hidden by
extrapolating with a large e-cone Bεεε. Figure 4a shows an example where a
very large value of εεε may cause the DM to navigate on points that are clearly
infeasible, while in Figure 4b the parameter εεε has been selected appropriately
for this example problem. Since the PAINT approximation has been shown
to interpolate well between the given PO outcomes [10, 11], a reasonable
requirement, avoiding the problem shown in Figure 4a, is that the PAINT
approximation is included in the PO front of the navigation set.

We show how the parameter εεε is connected to the trade-off rates on the
navigation set. Thus, information about acceptable trade-offs can be used
to set the value of εεε. The result guarantees that with an appropriate value
of the parameter εεε, the PAINT approximation is indeed included in the PO
front of the navigation set. In setting the parameter εεε, there is an analogy to
setting the augmentation constant in problem (2), which is discussed, e.g.,
in [15, 43].

The following results show that within an e-cone Bεεε the vector parameter
εεε controls how small the components of a vector can be in relation to its
other components. This implies a trade-off type of inequality.

Theorem 5. Let εεε be admissible. Then for all z ∈ Bεεε it holds that

zi ≥ −
1

1−∑k
j=1,j 6=i

εj
1+εj

k∑

j=1,j 6=i

εj
1 + εj

zj for all i = 1, . . . , k.

Proof. Let z ∈ Bεεε. The inequality description Bεεε = {z ∈ Rk : (V −1)Tz ≥ 0}
with V −1 given by (6) implies that

ξizi +
1

1−∑k
j=1 ξjεj

k∑

j=1

ξiξjεjzj ≥ 0
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f1

f1

(a) Undesirable navigation set
with a large εεε = (0.5, 0.5)T ; the
PAINT approximation is partly
in the interior of the navigation
set and thus not in the PO front
of the navigation set.

f1

f1

f(x1)

f(x2)
f(x3)

(b) A desirable navigation set
with small enough parameter
εεε = (0.08, 0.08)T ; the PAINT ap-
proximation is contained in the
boundary of the navigation set.

Figure 4: Two navigation sets Nεεε with different parameter vectors εεε, but with the same
PAINT approximation. The PAINTapproximation is illustrated with two line segments and
connects the PO outcomes f(x1) = (4, 1)T , f(x2) = (3, 3)T and f(x3) = (1, 3.25)T . The
navigation set is shown in grey color.

for all i = 1, . . . , k, where ξi = 1
1+εi

> 0, i = 1, . . . , k. Multiplying by
1−∑k

j=1 ξjεj

ξi
(which is nonnegative since εεε is admissible), we obtain

zi

(
1−

k∑

j=1,j 6=i
ξjεj

)
+

k∑

j=1,j 6=i
ξjεjzj ≥ 0

where 1−∑k
j=1,j 6=i ξjεj ≥ 1−∑k

j=1 ξjεj > 0 since εεε is admissible, and thus

zi ≥ −
1

1−∑k
j=1,j 6=i ξjεj

k∑

j=1,j 6=i
ξjεjzj.

Theorem 5 immediately implies the following slightly weaker but consid-
erably simpler result.

Corollary 1. Let εεε be admissible. Then for all z ∈ Bεεε \ {0} it holds that

zi > −
k∑

j=1,j 6=i
εjzj for all i = 1, . . . , k.
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Proof. The claim follows immediately from Theorem 5 since εεε is admissible
and thus

1 >
1

1−∑k
j=1,j 6=i

εj
1+εj

and εj >
εj

1 + εj
for all i, j = 1, . . . , k.

As in Section 5.1, the following results are general in the sense that they
apply to any set A that is a closed set that approximates the PO front.
The following theorem shows that if a trade-off type property is satisfied for
a point on an approximation A, then the point is on the PO front of the
navigation set. Thus, points on the approximation satisfying this trade-off
type property can be navigated on. Note that Theorem 6 provides a sufficient
condition, not a necessary condition. Thus, if a point on the approximation
violates (12), it may nevertheless be on the PO front of the navigation set.

Theorem 6. Let εεε be admissible and let Nεεε = A + Bεεε. If a ∈ A such that
for all a′ ∈ A\{a} there exists an index i ∈ {1, . . . , k} with

a′i − ai >
k∑

j=1,j 6=i
εj(aj − a′j) (12)

then a ∈ ND(Nεεε).

Proof. Let us assume that, to the contrary, that there exist a′ ∈ A\{a} and
b ∈ Bεεε such that a′ + b dominates a, i.e., a′i + bi ≤ ai for all i = 1, . . . , k,
where one of the inequalities is strict. Using Corollary 1 for b ∈ Bεεε and the
fact that bj ≤ aj − a′j for all j = 1, . . . , k by assumption, we get directly

a′i − ai ≤ −bi ≤
k∑

j=1,j 6=i
εjbj ≤

k∑

j=1,j 6=i
εj(aj − a′j)

for all i ∈ {1, . . . , k}, where for at least one i ∈ {1, . . . , k} the inequality is
strict. This is a contradiction to the assumption, and the result follows.

Note that condition (12) of Theorem 6 simplifies if εεε = (ε, . . . , ε)T , i.e., if
εi = εj = ε for all i, j ∈ {1, . . . , k}. Indeed, in this case (12) can be rewritten
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as a′i − ai > ε
∑k

j=1,j 6=i(aj − a′j). If in this case, for example, a′i > ai and∑
j 6=i(aj − a′j) > 0, then (12) can be rewritten as

a′i − ai∑k
j=1,j 6=i(aj − a′j)

> ε

which has to be satisfied for at least one index i ∈ {1, . . . , k}. In the biob-
jective case k = 2, this is even clearer. Assuming (without loss of generality)
that a′1 > a1 and a2 > a′2, then (12) can be restated as

a′1 − a1

a2 − a′2
> ε and equivalently

a2 − a′2
a′1 − a1

<
1

ε
.

This observation directly relates the parameter vector εεε = (ε, . . . , ε)T with
the trade-off of the PAINT approximation at a point a ∈ A, see, e.g. [6] for
the related concept of proper Pareto optimality.

Thus, when we have constructed the PAINT approximation A, we can
estimate an upper bound for the trade-offs on the approximation and then
choose εεε as described above. This guarantees that the PAINT approximation
is included in the PO front of the navigation set.

7. An Example in Wastewater Treatment Plant Operation

7.1. Solution Process with Nonconvex Pareto Navigator

We demonstrate how the Nonconvex Pareto Navigator method can be ap-
plied to enable learning with a problem of operating a wastewater treatment
plant (studied also in [8, 12]). This is a simulation-based problem where ob-
jective function evaluations necessitate calling a GPS-X simulator [31]. One
simulation takes minutes on an Intel R© Core

TM
2 Duo CPU P8600, both pro-

cessors running at 2.40 GHz, and finding a single PO outcome takes approx-
imately half an hour. The problem has five objectives: minimize total nitro-
gen, minimize blower/aerator wire power consumption, minimize methanol
dosage rate, minimize mass flow total suspended solids and maximize total
gas flow. In what follows, we refer to the objectives in this order. Even
though the method was introduced for minimization problems, for the fifth
objective, upper bounds do actually refer to lower bounds. For simplicity,
we refer to bounds.
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The navigation set was constructed based on 195 PO outcomes that were
computed using the GPS-X simulator and hybridizing the UPS-EMO evolu-
tionary algorithm [1] and the controlled random search algorithm [34]. Con-
structing the navigation set took about 19 hours on Intel R© Xeon

TM
E5410

CPU, but this was no problem since the DM was not involved.
Because of the dynamic nature of the Nonconvex Pareto Navigator method,

it is easier to demonstrate its performance with graphical user interfaces
and visualizations. As said, the method has been implemented in the IND-
NIMBUS R© software framework. In Figure 5a, an example of the user interface
is shown. It has been divided into three panels. In the left panel, under each
objective name, the current objective value, the aspiration level and bound
for that objective can be seen in that order. Below the numbers, there are
two check boxes, which the DM can use if he/she does not want to provide
values for aspiration levels or bounds, or alternatively disable the previously
given values.

In the middle panel, the set P is shown (the values of objectives for dif-
ferent outcomes have been connected with a line for visual clarity). The
estimated components of the nadir and the ideal objective vectors are shown
on the left. The bounds and the aspiration levels are visualized with hori-
zontal (green and blue, respectively) dotted lines. Finally, the (red) vertical
dotted line visualizes the starting point of the navigation. The bounds and
aspiration levels can be modified by either dragging and dropping the lines or
inputting the numbers in the corresponding text boxes. The starting point
can be chosen by clicking one of the points in P . Navigated points are shown
in the right panel and they appear in real time. Before the actual navigation,
the right panel is naturally empty in Figure 5a.

The DM can start or stop navigation and project navigated points by
clicking appropriate buttons below the three panels. Finally, with a slider
below the buttons, the DM can adjust the speed of navigation. Technically,
this refers to setting the step length t in formula (8).

The solution process starts by selecting the starting point. The DM can
sort the points in P with respect to the values of any of the objectives. In
Figure 5a, the DM has sorted the points with respect to the first objective.
In our case, the DM selected the point (16.1, 421, 42, 15320, 9852)T as the
starting point and provided the following preference information: aspiration
levels 15.1, 427, 43, 15150 and 8920 and bounds 16.1, 452, 49, 15500 and
8860. These values can be seen in the left panel of the figure.

Once the DM had provided the preference information, the navigation
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Objectives Pareto optimal outcomes Navigated points

Total nitrogen [g/m3]

Aerator wire power [kWh]

Methanol dosage rate [g/m3]

Total suspended solids [T/d]

Total gas flow [m3/d]

18

15

452

402

50

0

15900

14400

10300

8840

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

18

15

452

402

50

0

15900

14400

10300

8840

Navigation speed HighLow

Path 1

16.1
15.1
16.1

421
427
452

42
43
49

15320
15150
15500

9852
8920
8860

(a) First navigation of the Nonconvex Pareto Navigator method.

Objectives Pareto optimal outcomes Navigated points

Total nitrogen [g/m3]

Aerator wire power [kWh]

Methanol dosage rate [g/m3]

Total suspended solids [T/d]

Total gas flow [m3/d]

18

15

452

402

50

0

15900

14400

10300

8840

X Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

Aspiration disabled
Bound disabled

X

X

18

15

452

402

50

0

15900

14400

10300

8840

Navigation speed HighLow

Path 1 Path 2 Path 3

18.0
15.0
16.8

408
407
426

12
0

38

14830
14620
15000

9574
9972
9574

(b) Third navigation (with some bounds and aspiration levels disabled).

Figure 5: Two navigations of Nonconvex Pareto Navigator.31
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was started and the navigated points are shown in the right panel of the
figure. There, the DM can see how the values of the objectives tend toward
the aspiration levels (when possible) and always respect the given bounds.
The last point where the DM stopped the navigation is the current navigated
point. The vertical line has now moved to the right panel indicating that
the DM can choose any of the navigated points as the starting point for
navigating in a new direction.

The DM stopped the first navigation with the values of objectives as
(16.1, 421, 42, 15320, 9652)T and started a new navigation from it. For the
new navigation, the DM wanted to know what happens, if he improved
the amount of nitrogen (aspiration level 15.7, bound 16.6), the aerator wire
power (aspiration level 404 and bound 421), and biogas production (aspira-
tion 10052, bound 8920) by giving up on methanol dosage (aspiration level 46,
bound 50) and total suspended solids (aspiration level 15640, bound 15762).
With this preference information, the DM continued the navigation until the
outcome with the values of objectives as (15.7, 408, 38, 14852, 9210)T . After
this, the DM continued the navigation to that direction and when he was
happy, he then started the third navigation.

Figure 5b shows the third navigation of the DM (right panel in the fig-
ure), where the DM disabled some of the aspiration levels and bounds by
checking the corresponding boxes in the left panel. To be more specific, the
DM specified aspiration levels for the second, third and fourth objective and
bounds for all but the first objective. As can be seen, when the bound is
disabled, e.g., for total nitrogen, the navigation can go beyond the bound.
In addition, since the total nitrogen did not have an aspiration level either,
the objective values did impair. The latter was the case also for the last
objective.

The DM continued navigating for two more rounds. Because of space
limitations, we do not give the details here. Finally, the DM found a prefer-
able navigated point with the objective values as follows: total nitrogen at
17.9 grams per a cubic meter of effluent, aerator wire power consumption at
413.0 kilowatt hours, methanol dosage rate at 11.3 grams per cubic meter
of effluent, total suspended solids at 14800.0 tons per day and biogas pro-
duction at 9480.0 cubic meters per day. When this point was projected, an
actual PO outcome had a total nitrogen at 16.49 grams per cubic meter of
effluent, aerator wire power consumption at 423.8 kilowatt hours, methanol
dosage rate at 8.6 grams per cubic meter of effluent, total suspended solids
at 14662.0 tons per day and biogas production at 9235.3 cubic meters per
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day. To the DM, the actual PO outcome was also preferable, as it complied
with the navigated outcome well and the solution process was completed and
the solution could be implemented in the wastewater treatment plant.

The example shows that the method complies well with the properties
related to the user experience given in Section 3.2. The DM was able to
find a preferable outcome by navigating. In addition, providing aspiration
levels and upper bounds for the objectives was intuitive to the DM. Finally,
the method did not bound the choices that the DM was able to make while
navigating and, thus, the DM was allowed to learn.

7.2. Comparison

We compare the solution process with Nonconvex Pareto Navigator with
the one presented in [12], where the same problem was solved by first cre-
ating a PAINT approximation to replace the original problem and then the
interactive NIMBUS method [26] was applied to the approximate problem.
In NIMBUS, whenever the DM has given preferences information, the DM
can get one to four PO outcomes corresponding to the preferences. In [12],
the DM wanted to study only one approximate outcome for given preferences
at a time, and the DM had to give 19 different preferences and study the
corresponding approximate PO outcomes before finding a preferable solu-
tion. In Nonconvex Pareto Navigator, the type of preference information used
was similar but the DM was able to gain the necessary understanding of the
interdependencies of the objectives with only five different preferences and,
importantly, did not have to wait for solutions corresponding to the prefer-
ences being generated. Overall, he could find a preferable solution and get
convinced of its goodness faster thanks to the navigation.

The essential difference between the approach in [12] and our approach
here is that in the former, the DM only saw one PO outcome for given pref-
erences, while in our approach the DM could see multiple outcomes tending
towards and beyond the given preferences which supported learning better,
as mentioned in the introduction. When objective values gradually change
towards the given preferences, the DM gains more insight about the problem.
These differences are essential when comparing the Nonconvex Pareto Navi-
gator method against any other interactive reference point or classification
based method that is not a navigation method as defined in this paper.
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8. Conclusions

We have presented an interactive multiobjective optimization method
that is based on the idea of navigation. As the term navigation has not
been well defined previously even though some methods have been proposed,
we first characterized the idea of navigation methods and then articulated
what is intended to be achieved by navigation as a list of desirable proper-
ties. We wanted to extend navigation to nonconvex problems and, thus, paid
special attention to challenges of nonconvex problems and computationally
expensive problems, where function evaluations are time-consuming.

In order to enable navigation in nonconvex sets we introduced a new
type of cones called an e-cone and provided guidelines as how to set its
parameters. After presenting the Nonconvex Pareto Navigator method, we
discussed its performance with respect to its technical properties and its
properties related to user experience.

The Nonconvex Pareto Navigator method was implemented in the IND-
NIMBUS R© software framework and its functionality was demonstrated with
a computationally expensive multiobjective optimization problem related to
operating a wastewater treatment plant. With the example, it was demon-
strated that the new method supports, in particular, the so-called learning
phase of decision making where the DM learns about the interdependencies
of the conflicting objectives and attainable outcomes as well as one’s own
preferences. The new method enables free search in the objective space and
provides different ways for the DM to control the navigation and learning.

The preference information employed by the new method consists of aspi-
ration levels and bounds not to be exceeded. If the DM is willing to provide
this type of preference information when solving a computationally expen-
sive problem, Nonconvex Pareto Navigator is a viable choice as it enables the
DM to learn more efficiently of the interdependencies of the objectives and,
thus, find a preferred solution. This was demonstrated with the example
considered, which serves as a proof of concept for the new method.

Future research could involve behavioral aspects of decision making in
navigation methods, see, e.g., [9]. This could lead to alternative, learning-
based interactive decision support systems, possibly extending navigation
methods, using an a priori computed approximation of the Pareto optimal
front as suggested in this paper. Moreover, if (partial) preference information
is known beforehand, e.g., by bounds in trade-offs or some (or all) objective
function values, it could be used when generating the approximation.
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