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Alessandro Ottazzi4

School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052 Australia

Abstract

We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of
Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal
maps are smooth in all contact sub-Riemannian manifolds. Together with the recent results in [15],
our work yields a new proof of the smoothness of boundary extensions of biholomorphims between
strictly pseudoconvex smooth domains [29].

Résumé
On étudie la régularité des applications 1−quasiconformes entre variétés sub-Riemanniennes qui
satisfait une hypothèse de régularité pour fonctions Q−harmonique. En particulier on prouve que
toute applications 1−quasiconformes entre variétés sub-Riemanniennes de contact sont des diffeo-
morphismés conformes.
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1. Introduction

The focus of this paper is on the interplay between analysis and geometry in the study of conformal
maps. Our setting is that of sub-Riemannian manifolds, and our main contribution is to show that
one can deduce smoothness of 1-quasiconformal homeomorphisms (see below for the definition) out
of certain regularity estimates for weak solutions of a class of quasilinear degenerate elliptic PDE,
i.e., the subelliptic p-Laplacian, see (2.15).

Moreover, we adapt recent results of Zhong [71] to show that such PDE regularity estimates hold
in the important special case of sub-Riemannian contact manifolds, thus fully establishing a Liouville
type theorem in this setting. In doing this we provide an extension of a result of Ferrand [48, 30, 49]
(see also Liimatainen and Salo [50]) from the Riemannian to the sub-Riemannian setting.

Theorem 1.1. Every 1-quasiconformal map between sub-Riemannian contact manifolds is confor-
mal.

For the proof see Section 6. For some related results in the setting of CR 3-manifolds see [65].

Prior to the present paper, the connection between regularity of quasiconformal maps and the
p-Laplacian, and the equivalence of different definitions of conformality, were only well understood
in the Euclidean, Riemannian, and Carnot-group settings. The general sub-Riemannian setting
presents genuinely new difficulties, e.g., sub-Riemannian manifolds are not locally bi-Lipschitz equiv-
alent to their tangent cones, Hausdorff measures are not smooth, there is a need to construct adequate
coordinate charts that are compatible both with the nonlinear PDE and with the sub-Riemannian
structure, although no complete system of harmonic or p-harmonic coordinates can be constructed.
Last but not least, Ferrand’s proof of the biLipschitz regularity for 1-quasiconformal maps does
not carry through to the sub-Riemannian setting since we do not have yet a sharp isoperimetric
inequality.

1.1. Motivations

One of the motivations that drove our work consists in establishing a connection between the
problem of classification of open sets in C

n by bi-holomorphisms and the study of quasiconformal
maps in sub-Riemannian geometry, in the spirit of Gromov hyperbolicity and Mostow’s rigidity: In
[5], Balogh and Bonk proved that the boundary extension of isometries with respect to the Bergman
metric (and so in particular of bi-holomorphisms) between strongly pseudoconvex smooth domains
in C

n are quasiconformal with respect to the underlying sub-Riemannian metric on the boundaries
associated to their Levi form. In [15], two of the authors of the present paper have refined this result
and established that such boundary extensions of isometries are in fact 1-quasiconformal with respect
to these sub-Riemannian structures. Since the boundaries of smooth strictly pseudoconvex domains
are contact manifolds, our main regularity result Theorem 1.1 yields immediately the smoothness
of the boundary extension of every biholomorphism between strictly pseudoconvex domains. This
alternative proof of Fefferman celebrated result [29] was originally suggested by Michael Cowling.

1.2. Previous results from the literature

The issue of regularity of 1-quasiconformal homeomorphisms in the Euclidean case was first studied
in 1850 in Liouville’s work, where the initial regularity of the conformal homeomorphism was assumed
to be C3. In 1958, the regularity assumption was lowered to C1 by Hartman [37] and then, in
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conjunction with the proof of the De Giorgi-Nash-Moser Regularity Theorem, further decreased
to the Sobolev spaces W 1,n, in the works of Gehring [33] and Rešetnjak [60]. The role of the De
Giorgi-Nash-Moser Theorem in Gehring’s proof consists in providing adequate C1,α estimates for
solutions of the Euclidean n-Laplacian, that are later bootstrapped to C∞ estimates by means of
elliptic regularity theory.

The regularity of 1-quasiconformal maps in the Riemannian case is considerably more difficult
than the Euclidan case. It was finally settled in 1976 by Ferrand [48, 30, 49] in occasion of her work on
Lichnerowitz’s conjecture, and was modeled after Rešetnjak’s original proof. More recently, inspired
by Taylor’s regularity proof for isometries via harmonic coordinates, Liimatainen and Salo [50]
provided a new proof for the regularity of biLipschitz 1-quasiconformal maps between Riemannian
manifolds. Their argument is based on the notion of n-harmonic coordinates, on the morphism
property for 1-quasiconformal maps, and on the C1,α regularity estimates for the n-Laplacian on
manifolds. The proofs in the present paper are modeled on the arguments developed by two of us
in [14] and on Taylor’s approach, as developed in [50] (see also the earlier [12] where that strategy
was used in the Carnot group case).

The introduction of conformal and quasiconformal maps in the sub-Riemannian setting goes
back to the proof of Mostow’s Rigidity Theorem [57], where such maps arise as boundary limits
of quasi-isometries between certain Gromov hyperbolic spaces. Because the class of spaces that
arises as such boundaries in other geometric problems includes sub-Riemannian manifolds that are
not Carnot groups, it becomes relevant to study conformality and quasiconformality in this more
general environment.

In the sub-Riemannian setting the regularity is currently known only in the special case of 1-
quasiconformal maps in Carnot groups, see [59, 45, 65, 12, 18, 3]. Since such groups arise as tangent
cones of sub-Riemannian manifolds then the regularity of 1-quasiconformal maps in Carnot groups
setting is an analogue of the Euclidean case as studied by Gehring and Rešetnjak. As remarked
above, the extension to the non-Carnot setting, even in the special step two case, brings in genuinely
new challenges.

1.3. From the regularity theory of the subelliptic p-Laplacian to the regularity of 1-quasiconformal
homeomorphisms.

Theorem 1.1 follows from a more general theorem. In fact, we show that in the class of sub-
Riemannian manifolds the Liouville theorem follows from a regularity theory for p-harmonic func-
tions, with p corresponding to the conformal dimension of the manifold. This class includes every
sub-Riemannian manifold that is locally contactomorphic to a Carnot group of step 2 or, equivalently,
every Carnot group of step 2 with a sub-Riemannian metric that is not necessarily left-invariant. We
remark that there are examples of step-2 sub-Riemannian manifolds that are not contactomorphic
to any Carnot group, see [47]. In order to describe in detail the more general result we introduce
the following definition.

Definition 1.2. Consider an equiregular5 sub-Riemannian manifold M of Hausdorff dimension Q,
with horizontal bundle of dimension r, endowed with a smooth volume form. We say thatM supports
regularity for Q-harmonic functions if the following holds: For every g = (g1, ..., gr) ∈ C∞(M,Rr),

5see Definition 2.1
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U ⊂⊂ M and for every � > 0, there exist constants α ∈ (0, 1), C = C(�, g) > 0 such that for each
weak solution u of the equation LQu = X∗

i g
i on M with ||u||W 1,Q

H
(U) < �, one has

||u||C1,α
H

(U) ≤ C.

In view of the work of Uraltseva [68] (but see also[67, 66, 21]) every Riemannian manifold supports
regularity for Q-harmonic functions. Things are less clear in the sub-Riemannian setting. The
Hölder regularity of weak solutions of quasilinear PDE

∑r
i=1 X

∗
IA(x,∇Hu) = 0, modeled on the

subelliptic p-Laplacian, for 1 < p < ∞, and for their parabolic counterpart, is well known, see
[13, 4]. However, in this generality the higher regularity of solutions is still an open problem. The
only results in the literature are for the case of left-invariant sub-Riemannian structures on step two
Carnot groups. Under these assumptions one has that solutions in the range p ≥ 2 have Hölder
regular horizontal gradient. This is a formidable achievement in itself, building on contributions
by several authors [9, 22, 20, 51, 24, 54, 25, 61], with the final result being established eventually
by Zhong in [71]. Beyond the Heisenberg group one has some promising results due to Domokos
and Manfredi [23, 27, 26] in the range of p near 2. In this paper we build on these previous
contributions, particularly on Zhong’s work [71] to include the dependence on x and prove that
contact sub-Riemannian manifolds support regularity for Q-harmonic functions (see Theorem 6.15).
The novelty of our approach is that we use a Riemannian approximation scheme to regularize the
Q-Laplacian operator, thus allowing to approximate its solutions with smooth functions. In carrying
out this approximation the main difficulty is to show that the regularity estimates do not blow up as
the approximating parameter approaches the critical case. Our main result in this context, proved
in Section 6, is the following.

Theorem 1.3. sub-Riemannian contact manifolds support regularity for p-harmonic functions for
every p ≥ 2.

The regularity hypotheses in Definition 1.2 have two important consequences. First, it allows
us to construct horizontal Q-harmonic coordinates. Second, together with the existence of such
coordinates, it eventually leads to an initial C1,α regularity for 1-quasiconformal maps (see Theorem
1.4.(ii)). When this basic regularity is present, one can use classical PDE arguments to derive
smoothness without the additional hypothesis of Definition 1.2 (see Theorem 1.4.(i)).

Theorem 1.4. Let f : M → N be a 1-quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q, endowed with smooth volume forms.

(i) If f is bi-Lipschitz and in C1,α
H,loc(M,N) ∩W 2,2

H,loc(M,N), then f is conformal.

(ii) If M and N support regularity for Q-harmonic functions (in the sense of Definition 1.2), then
f is bi-Lipschitz and in C1,α

H,loc(M,N) ∩W 2,2
H,loc(M,N), and hence conformal.

The function spaces in Theorem 1.4 are defined componentwise, see Section 5. Theorem 1.4.(i) is
proved in Section 5.1. Theorem 1.4.(ii) is proved in Section 5.2.

The above theorem provides the following result.

Corollary 1.5. Let f be a homeomorphism between two equiregular sub-Riemannian manifolds each
supporting the regularity estimates in Definition 1.2. The map f is conformal if and only if it is
1-quasiconformal.
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The proof of the first part of Theorem 1.4 rests on the morphism property for 1-quasiconformal
maps (see Theorem 3.17) and on Schauder’s estimates, as developed by Rothschild and Stein [63]
and Xu [70]. The second part is based on the construction of ad-hoc systems of coordinates, the
horizontal Q-harmonic coordinates, that play an analogue role to that of the n-harmonic coordinates
in the work of Liimatainen and Salo [50]. However, in contrast to the Riemannian setting, only a
subset of the coordinate systems (the horizontal components) can be constructed so that they are Q-
harmonic, but not the remaining ones. This yields a potential obstacle, as Q-harmonicity is the key
to the smoothness of the map. We remedy to this potential drawback by producing an argument
showing that if an ACC map has suitably regular horizontal components then such regularity is
transferred to all the other components (see Proposition 4.14). This method was introduced in [12]
in the special setting of Carnot groups, where Q-harmonic horizontal coordinates arise naturally as
the exponential coordinates associated to the first layer of the stratification.

Looking ahead, it seems plausible to conjecture that the Liouville theorem holds in any equiregular
sub-Riemannian manifold. Our work shows in fact that this is implied by the regularity theory for
p-Laplacians and the latter is widely expected to hold for general systems of Hörmander vector fields.
However the latter remains a challenging open problem.

We conclude this introduction with a comparison between our work and the Carnot group case as
studied in [12]. In the latter setting one has that all the canonical exponential horizontal coordinates
happen to be also smooth Q-harmonic (in fact they are also harmonic). Moreover, a simple argument
based on the existence of dilations and the 1-quasiconformal invariance of the conformal capacity
(see [59]) yields the bi-Lipschitz regularity for 1-quasiconformal maps immediately, without having
to invoke any PDE result. As a consequence the Liouville theorem in the Carnot group case can be
proved relying on a much weaker regularity theory than the one above, i.e., one has just to use the
C1,α estimates for the Q-Laplacian in the simpler case where the gradient is bounded away from zero
and from infinity (established in [10]) in the Carnot group setting. In our more general, non-group
setting, there are no canonical Q-harmonic coordinates, and so one has to invoke the PDE regularity
to construct them. Similarly, the lack of dilations makes it necessary to rely on the PDE regularity
also to show bi-Lipschitz regularity.

Acknowledgements. The authors would like to acknowledge Laszlo Lempert and Xiao Zhong for
interesting remarks. We are also grateful to Juan Manfredi for kindly alerting us about the need to
add further clarifications in an earlier version of the manuscript. Finally, we thank the anonymous
referee for suggesting several useful improvements.

2. Preliminaries

2.1. Sub-Riemannian geometry

A sub-Riemannian manifold is a connected, smooth manifold M endowed with a subbundle HM
of the tangent bundle TM that bracket generates TM and a smooth section of positive-definite
quadratic forms g on HM , see [56]. The form g is locally completely determined by any orthonormal
frame X1, . . . , Xr of HM . The bundle HM is called horizontal distribution. The section g is called
sub-Riemannian metric.
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Analogously to the Riemannian setting, one can endow a sub-Riemannian manifold M with a
metric space structure by defining the Carnot-Carathéodory distance: For any pair x, y ∈ M set

d(x, y) = inf{δ > 0 such that there exists a curve γ ∈ C∞([0, 1];M) with endpoints x, y

such that γ̇ ∈ HγM and |γ̇|g ≤ δ}.

Consider a sub-Riemannian manifold M with horizontal distribution HM and denote by Γ(HM)
the smooth sections of HM , i.e., the vector fields tangent to HM . For all k ∈ N, consider

HkM :=
⋃
q∈M

span{[Y1, [Y2, [. . . [Yl−1, Yl]]]]q : l ≤ k, Yj ∈ Γ(HM), j = 1, . . . , l}.

The bracket generating condition (also called Hörmander’s finite rank hypothesis) is expressed by
the existence of s ∈ N such that HsM = TM .

Definition 2.1. A sub-Riemannian manifold M with horizontal distribution HM is equiregular if,
for all k ∈ N, each set HkM defines a subbundle of TM .

Consider the metric space (M,d) where M with horizontal distribution Δ is an equiregular sub-
Riemannian manifold and d is the corresponding Carnot-Carathéodory distance. As a consequence
of Chow-Rashevsky Theorem such a distance is always finite and induces on M the original topology.
As a result of Mitchell [55], the Hausdorff dimension of (M,d) coincides with the Hausdorff dimension
of its tangents spaces.

Let X1, . . . , Xr be an orthonormal frame of the horizontal distribution of a sub-Riemannian man-
ifold M . We define the horizontal gradient of a function u : M → R with respect to X1, . . . , Xr as

∇Hu := (X1u)X1 + . . .+ (Xru)Xr. (2.2)

Remark 2.3. Let X ′
1, . . . , X

′
r be another frame of the same distribution. Let B be the matrix such

that

X ′
j(p) =

r∑
i=1

Bi
j(p)Xi(p).

Then the horizontal gradient ∇′
Hu of u with respect to X ′

1, . . . , X
′
r is

∇′
Hu(p) =

∑
j

(X ′
ju(p))X

′
j(p)

=
∑
j

(
∑
i

Bi
j(p)Xi(p)u)

∑
k

Bk
j (p)Xk(p)

=
∑
i

∑
j

∑
k

Bi
j(p)B

j
k(p)

TXiu(p)Xk(p)

= (B(p)B(p)T )ikXiu(p)Xk(p).

Remark 2.4. If X1, . . . , Xr and X ′
1, . . . , X

′
r are two frames that are orthonormal with respect to a

sub-Riemannian structure on the distribution, then ∇′
Hu = ∇Hu. Indeed, in this case the matrix

B(p) would be in O(r) for every p.

6



2.2. PDE preliminaries

In this section we collect some of the PDE results that will be used later in the paper. Let
X1, . . . , Xr be an orthonormal frame of the horizontal bundle of a sub-Riemannian manifold M . For
each i = 1, . . . , r denote by X∗

i the adjoint of Xi with respect to a smooth volume form vol, i.e.,∫
M

uXiφ d vol =

∫
M

X∗
i uφ d vol,

for every compactly supported φ for which the integral is finite. In any system of coordinates, the
smooth volume form can be expressed in terms of the Lebesgue measure L through a smooth density
ω, i.e., d vol = ω dL. If in local coordinates we write Xi =

∑n
k=1 b

i
k∂k, then one has

X∗
i u = −ω−1(Xi(ωu))− u∂kb

i
k. (2.5)

Next we define some of the function spaces that will be used in the paper.

Definition 2.6. LetX1, . . . , Xr be an orthonormal frame of the horizontal bundle of a sub-Riemannian
manifold M and consider an open subset Ω ⊂ M . For any k ∈ N, and α ∈ (0, 1) we define the Ck,α

H

norm

‖u‖2
Ck,α

H
(Ω)

:= sup
Ω

(
∑

|I|≤k−1

|XIu|2) + sup
p,q∈Ω and p �=q

∑
|I|=k |XIu(p)−XIu(q)|2

d(p, q)2α
,

where, for each m = 0, . . . , k and each m-tuple I = (i1, . . . , im) ∈ {1, . . . , r}m, we have denoted by
XI the m-order operator Xi1 · · ·Xim and we set |I| = m. We write

Ck,α
H (Ω) =

{
u : Ω → R : XIu is continuous in Ω for |I| ≤ k and ‖u‖Ck,α

H
(Ω) < ∞

}
.

A function u is in Ck,α
H,loc(Ω), if for any K ⊂⊂ Ω one has ‖u‖Ck,α

H
(K) < ∞.

Definition 2.7. LetX1, . . . , Xr be an orthonormal frame of the horizontal bundle of a sub-Riemannian
manifold M and consider an open subset Ω ⊂ M . For k ∈ N and for any multi-index I = (i1, ..., ik) ∈
{1, ..., r}k we define |I| = k and XIu = Xi1 ...Xiku. For p ∈ [1,∞) we define the horizontal Sobolev

space W k,p
H (Ω) to be the space of all u ∈ Lp(Ω) whose distributional derivatives XIu are also in

Lp(Ω) for all multi-indexes |I| ≤ k. This space can also be defined as the closure of the space of
C∞(Ω) functions with respect to the norm

‖u‖p
Wk,p

H

:= ‖u‖pLp(Ω) +

∫
Ω

[
k∑

|I|=1

(XIu)2]p/2 dvol, (2.8)

see [32], [31] and references therein. A function u ∈ Lp(Ω) is in the local Sobolev space W k,p
H,loc(Ω)

if, for any φ ∈ C∞
c (Ω), one has uφ ∈ W k,p

H (Ω).

2.3. Schauder estimates

Here we discuss Schauder estimates for second order, non-divergence form subelliptic linear op-
erators. Given an orthonormal frame X1, . . . , Xr of the horizontal bundle of M , one defines the
subLaplacian on M of a function u as

L2u :=
r∑

i=1

X∗
i Xiu. (2.9)

7



One can check that such an operator does not depend on the choice of the orthonormal frame, but
only on the sub-Riemannian structure of M and the choice of the volume form.

Let Ω be an open set ofM . A function u : Ω → R is called 2-harmonic (or, more simply, harmonic)
if L2u = 0 in Ω, in the sense of distribution. Hörmander’s celebrated Hypoellipticity Theorem [41]
implies that harmonic functions are smooth.

A well known result of Rothschild and Stein [63], yields Schauder estimates for subLaplacians,
that is if L2u ∈ Cα

H(Ω), then for any K ⊂⊂ Ω, there exists a constant C depending on K,α and the
sub-Riemannian structure such that

‖u‖C2,α
H

(K) ≤ C‖L2u‖Cα
H
(Ω).

In particular we shall use that

‖u‖C1,α
H

(Bε/2)
≤ C‖L2u‖Cα

H
(Bε). (2.10)

The Schauder estimates have been extended to subelliptic operators with low regularity by a number
of authors. For our purposes we will consider operators of the form

La(x)u(x) :=
r∑

i,j=1

aij(x)XiXju(x),

where aij is a symmetric matrix such that for some constants λ,Λ > 0 one has

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 (2.11)

for every x ∈ M and for all ξ ∈ R
r. We recall a version of the classical Schauder estimates as

established in [70]

Proposition 2.12. Let u ∈ C2,α
H,loc(M) for some α ∈ (0, 1). Let aij ∈ Ck,α

H,loc(M). If Lau ∈ Ck,α
H,loc(M),

then u ∈ Ck+2,α
H,loc (M) and for every U ⊂⊂ M there exists a positive constant C = C(U,α, k,X) such

that
||u||Ck+2,α(U) ≤ C||Lu||Ck,α(M).

In a similar spirit, the Schauder estimates hold for any operator of the form Lu =
∑r

i,j=1 aij(x)X
∗
i Xju

where X∗
i denotes the adjoint of Xi with respect to some fixed smooth volume form.

Next, following an argument originally introduced by Agmon, Douglis and Nirenberg [1, Theorem
A.5.1] in the Euclidean setting, we show that one can lift the burden of the a-priori regularity
hypothesis from the Schauder estimates.

Lemma 2.13. Let α ∈ (0, 1) and assume that u ∈ W 2,2
H,loc(M) is a function that satisfies for a.e.

x ∈ M

LA(x)u(x) =
r∑

i,j=1

aij(x)XiXju(x) ∈ Cα
H,loc(M).

If aij ∈ Cα
H,loc(M), then u is in fact a C2,α

H,loc(M) function.
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Proof. The strategy in [1] consists in setting up a bootstrap argument through which the integrability
of the weak second order derivatives XiXju of the solution increases until, in a finite number of steps,
one achieves that they are continuous. At this point ones invokes a standard extension of a classical
result of Hopf [40] or [1, page 723] (for a proof in the subelliptic setting see for instance Bramanti
et al., [8, Theorem 14.4]) which yields the last step in regularity, i.e., if XiXju are continuous then

u ∈ C2,α
H,loc.

For a fixed p0 ∈ M consider the frozen coefficients operator

LA(p0)w =
r∑

i,j=1

aij(p0)XiXjw.

For sake of simplicity we will write Lp, Lp0 for LA(p), LA(p0). Denote by Γp0(p, q) the fundamental
solution of Lp0

. For fixed r > 0, consider a smooth function η ∈ C∞
0 (B(p0, 2r)) such that η = 1 in

B(p0, r). For any p ∈ M and any smooth function w one has

η(p)w(p) =

∫
Γp0(p, q)Lp0(ηw)(q) d vol(q).

Differentiating the latter along two horizontal vector fields Xi, Xj i, j = 1, . . . , r one obtains that
for any p ∈ B(p0, r)

Xi,pu(p) =

∫ ï
Xi,pΓp0(p, q)Lq(uη) +Xi,pΓp0(p, q)(Lp0 − Lq)uη(q)

ò
d vol(q),

and

Xi,pXj,pu(p) =

∫ ï
Xi,pXj,pΓp0(p, q)Lq(uη)+Xi,pXj,pΓp0(p, q)(Lp0−Lq)uη(q)

ò
d vol(q)+C(p0)Lp(uη),

where Xi,p denotes differentiation in the variable p and C is a Hölder continuous function arising
from the principal value of the integral.

Setting p = p0 one obtains the identity

Xi,pXj,pu(p) =

∫ ï
Xi,pXj,pΓp(p, q)Lq(uη)+Xi,pXj,pΓp(p, q)(Lp−Lq)uη(q)

ò
d vol(q)+C(p0)Lp(uη),

(2.14)
where the differentiation in the first term in the integrand is intended in the first set of the argument
variables only. The next task is to show that identity (2.14) holds also for functions in W 2,2

H , in the
sense that the difference between the two sides has L2 norm zero. To see this we consider a sequence
of smooth approximations wn → u ∈ W 2,2

H in W 2,2
H norm. To guarantee convergence we observe

that in view of the work in [63] and [58], the expression Xi,pXj,pΓp(p, q) is a Calderon-Zygmund
kernel. To prove our claim it is then sufficient to invoke the boundedness between Lebesgue spaces
of Calderon-Zygmund operators in the setting of homogenous spaces (see [17]), and [19]).

Our next goal is to show an improvement in the integrability of the second derivatives of the
solution u ∈ W 2,2

H . We write
Xi,pXj,pu(p) = I1 + I2 + I3 + I4

where

I1(p) =

∫
Xi,pXj,pΓp(p, q)η(q)Lqu(q) d vol(q) + C(p)Lpu(p),
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I2(p) =

∫
Xi,pXj,pΓp(p, q)

r∑
i,j=1

aij(q)Xiη(q)Xju(q) + u(q)
r∑

i,j=1

aij(q)XiXjη(q) d vol(q),

I3(p) =

∫
Xi,pXj,pΓp(p, q)

r∑
i,j=1

(aij(p)− aij(q))XiXj(ηu) d vol(q).

Since Lu ∈ Cα and in view of the continuity of singular integral operators in Hölder spaces (see
Rothschild and Stein [63]) then I1 ∈ Cα and we can disregard this term in our argument.

Next we turn our attention to I2 and I3. Since u ∈ W 2,2 then Sobolev embedding theorem

[36] yields ∇Hu ∈ L
2Q

Q−2

loc and as a consequence of the continuity of Calderon-Zygmund operators in

homogenous spaces one has I2 ∈ L
2Q

Q−2 .

In view of the estimates on the fundamental solution for sublaplacians by Nagel, Stein and Wainger
[58], one has that

|XiXjΓp(p, q)| sup
i,j

|aij(p)− aij(q)| ≤ C(K)d(p, q)α−Q,

for every q ∈ K ⊂⊂ M . One can then bound I3 with fractional integral operators

Iα(ψ)(p) :=
∫

d(p, q)α−Qψ(q)dvol(q).

In the context of homogenous spaces (see for instance [17]), these operators are bounded between
the Lebesgue spaces Lβ → Lγ with 1

β − 1
γ = α

Q , whenever 1 < β < α
Q . When 1 + α

Q > β > α
Q one

has that Iα maps continuously Lβ into the Holder space C
β− α

Q

H .

In view of such continuity we infer that I3 ∈ L2κ with Q
Q−2 > κ = Q

Q−2α > 1.

In conclusion, so far we have showed that if u ∈ W 2,2
H,loc(M) is a solution of Lpu(p) ∈ Cα

H then

one has the integrability gain u ∈ W
2,2 Q

Q−2α

H,loc (M). Iterating this process for a finite number of steps,
in the manner described in [1, page 721-722], one can increase the integrability exponent until it is
larger than α/Q and at that point the fractional integral operators maps into a Hölder space and one
finally has that XiXju are continuous. As described above, to complete the proof one now invokes
Bramanti et al., [8, Theorem 14.4].

2.4. Subelliptic Q-Laplacian and C∞ estimates for non-degeneracy

Denote by Q the Hausdorff dimension of M . For u ∈ W 1,Q
H,loc(M), define the Q-Laplacian LQu by

means of the following identity∫
M

LQuφ d vol =

∫
M

|∇Hu|Q−2〈∇Hu,∇Hφ〉 d vol, for any φ ∈ W 1,Q
H,0 (M). (2.15)

If |∇Hu|Q−2Xiu ∈ W 1,2
H,loc(M) and u ∈ W 1,Q

H,loc(M) one can then write almost everywhere in M

LQu = X∗
i (|∇Hu|Q−2Xiu). (2.16)
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Definition 2.17 (Q-harmonic function). Let M be an equiregular sub-Riemannian manifold of Haus-

dorff dimension Q. Fixed a measure vol on M , a function u ∈ W 1,Q
H,loc(M) is called Q-harmonic

if ∫
M

|∇Hu|Q−2〈∇Hu,∇Hφ〉 d vol = 0, ∀φ ∈ W 1,Q
H,0 (M).

Proposition 2.18. Let M be an equiregular sub-Riemannian manifold endowed with a smooth volume
form vol. Let u ∈ W 1,Q

H,loc(M) be a weak solution of LQu = h in M , with h ∈ Cα
H,loc(M) and |∇Hu|

not vanishing in M . If u ∈ C1,α
H,loc(M) ∩W 2,2

H,loc(M), then u ∈ C2,α
H,loc(M).

Proof. In coordinates, let ω ∈ C∞ such that d vol = ωdL, where L is the Lebesgue measure. Since
|∇Hu| is continuous and bounded from above, and since u ∈ W 2,2

H,loc(M), then, a.e. in M , the
Q-Laplacian can be expressed in non-divergence form

(LQu)(x) = αij(x,∇Hu)XiXju+ g(x,∇Hu) = h(x), (2.19)

where
αij(x, ξ) = −|ξ|Q−4(δij + (Q− 2))ξiξj

and
g(x, ξ) = −ω(x)−1Xiω(x)|ξ|Q−2ξi + ∂kb

i
k(x)|ξ|Q−2ξi.

Set aij(x) = αij(x,∇Hu). Since u ∈ C1,α
H,loc(M), we have

aij(·) and g( · ,∇Hu) ∈ Cα
H,loc(M).

In view of the non-vanishing of ∇Hu, one can invoke Lemma 2.13, to obtain u ∈ C2,α
H,loc(M).

3. Definitions of 1-quasiconformal maps

In this section we introduce the notions of conformal and quasiconformal maps between sub-
Riemannian manifolds.

Definition 3.1 (Conformal map). A smooth diffeomorphism between two sub-Riemannian manifolds
is conformal if its differential maps horizontal vectors into horizontal vectors, and its restrictions to
the horizontal spaces are similarities6.

The notion of quasiconformality can be formulated with minimal regularity assumptions in arbi-
trary metric spaces.

Definition 3.2 (Quasiconformal map). A quasiconformal map between two metric spaces (X, dX)
and (Y, dY ) is a homeomorphism f : X → Y for which there exists a constant K ≥ 1 such that for
all p ∈ X

Hf (p) := lim sup
r→0

sup{dY (f(p), f(q)) : dX(p, q) ≤ r}
inf{dY (f(p), f(q)) : dX(p, q) ≥ r} ≤ K.

6A map F : X → Y between metric spaces is called a similarity if there exists a constant λ > 0 such that
d(F (x), F (x′)) = λd(x, x′), for all x, x′ ∈ X.
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We want to address the case K = 1, and clarify which one is the correct definition of 1-
quasiconformality, since in the literature there are several equivalent definitions of quasiconformality
associated to possibly different bounds for different types of distortion (metric, geometric, or ana-
lytic).

In order to state our results we need to recall a few basic notions and introduce some notation.
We consider the following metric quantities

Lf (p) := lim sup
q→p

d(f(p), f(q))

d(p, q)
and �f (p) := lim inf

q→p

d(f(p), f(q))

d(p, q)
.

The quantity Lf (p) is sometimes denoted by Lipf (p) and is called the pointwise Lipschitz constant.
Given an equiregular sub-Riemannian manifold M , we denote by Q its Hausdorff dimension with
respect to the Carnot-Carathéodory distance, and we write ∇H for the horizontal gradient, see
Section 2.1 for these definitions. We denote by volM the Popp measure on M and denote by JPoppf

the Jacobian of a map f between equiregular sub-Riemannian manifolds when these manifolds are
equipped with their Popp measures (see Section 3.4). ByW 1,Q

H (M) we indicate the space of functions
u ∈ LQ(volM ) such that |∇Hu| ∈ LQ(volM ). We use the standard notation CapQ and ModQ for
capacity and modulus (see Section 3.7). We also consider the nonlinear pairing

IQ(u, φ;U) :=

∫
U

|∇Hu|Q−2〈∇Hu,∇Hφ〉 d volM ,

with u, φ ∈ W 1,Q
H (U) and U ⊂ M an open subset. For short, we write IQ(u, φ) for IQ(u, φ;M)

and denote by EQ(u) = IQ(u, u;M) the Q-energy of u. The functional IQ(u, · ) defines the weak
form of the Q-Laplacian LQ when acting on the appropriate function space, see Section 2.4. Given
a quasiconformal homeomorphism f between two equiregular sub-Riemannian manifolds, we de-
note by Np(f) the Margulis-Mostow differential of f and by (dH f)p its horizontal differential (see
Section 3.2).

Our results rest on the following equivalence theorem, which we prove later in the section.

Theorem 3.3. Let f be a quasiconformal map between two equiregular sub-Riemannian manifolds of
Hausdorff dimension Q. The following are equivalent:

Hf (p) = 1 for a.e. p; (3.4)

H=
f (p) := lim sup

r→0

sup{d(f(p), f(q)) : d(p, q) = r}
inf{d(f(p), f(q)) : d(p, q) = r} = 1 for a.e. p; (3.5)

(dH f)p is a similarity for a.e. p; (3.6)

Np(f) is a similarity for a.e. p; (3.7)

�f (p) = Lf (p) for a.e. p, i.e., the limit lim
q→p

d(f(p), f(q))

d(p, q)
exists for a.e. p; (3.8)

�Np(f)(e) = LNp(f)(e) for a.e. p; (3.9)
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JPoppf (p) = Lf (p)
Q for a.e. p; (3.10)

The Q-modulus (w.r.t. Popp measure) is preserved: (3.11)

ModQ(Γ) = ModQ(f(Γ)), ∀Γ family of curves in M ;

The operators IQ (w.r.t. Popp measure) are preserved: (3.12)

IQ(v, φ;V ) = IQ(v ◦ f, φ ◦ f ; f−1(V )), ∀V ⊂ N open, ∀ v, φ ∈ W 1,Q
H (V ).

Definition 3.13 (1-quasiconformal map). We say that a quasiconformal map between two equiregular
sub-Riemannian manifolds is 1-quasiconformal if any of the conditions in Theorem 3.3 holds.

The equivalence of the definitions in Theorem 3.3 have as consequences some invariance properties
that are crucial in the proofs of this paper.

Corollary 3.14. Let f be a 1-quasiconformal map between equiregular sub-Riemannian manifolds of
Hausdorff dimension Q. Then

(i) the Q-energy (w.r.t. Popp measure) is preserved:

EQ(v) = EQ(v ◦ f), ∀ v ∈ W 1,Q
H (N); (3.15)

(ii) the Q-capacity (w.r.t. Popp measure) is preserved:

CapQ(E,F ) = CapQ(f(E), f(F )), ∀E,F ⊂ M compact. (3.16)

The proofs of Theorem 3.3 and Corollary 3.14 will be given later in this section.

While the Hausdorff measure may seem to be the natural volume measure to use in this context,
there is a subtle and important reason for choosing the Popp measure rather than the Hausdorff
measure. Indeed, the latter may not be smooth, even in equiregular sub-Riemannian manifolds, see
[2]. However, we show that for 1-quasiconformal maps the corresponding Jacobians coincide. As
a consequence of Theorem 3.3 and Proposition 3.54. we show that if f is a 1-quasiconformal map
between equiregular sub-Riemannian manifolds of Hausdorff dimension Q. Then for almost every p

�f (p)
Q = Lf (p)

Q = JPoppf (p) = JHaus
f (p).

Moreover, the inverse map f−1 is 1-quasiconformal.

Since the Popp measure is smooth, the associated Q-Laplacian operator LQ will involve smooth
coefficients and consequently it is plausible to conjecture the existence of a regularity theory of Q-
harmonic functions (see Section 2.4 for the definitions). In fact such a theory exists in the important
subclass of contact manifolds (see Section 6.2). The following result is the morphism property for
1-quasiconformal maps, and it is proved in Section 3.8. The Q-Laplacian operator LQ is defined in
(2.15).

Corollary 3.17 (Morphism property). Let f : M → N be a 1-quasiconformal map between equireg-
ular sub-Riemannian manifolds of Hausdorff dimension Q equipped with their Popp measures. The
following hold:
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(i) The Q-Laplacian is preserved:

If v ∈ W 1,Q
H (N), then LQ(v ◦ f) ◦ f∗ = LQv, where f∗ denotes the pull-back operator on

functions.

(ii) The Q-harmonicity is preserved:

If v is a Q-harmonic function on N , then v ◦ f is a Q-harmonic function on M .

Note that in the Euclidean case the converse is also true: Every map that satisfies the morphism
property is 1−quasiconformal. This is a result a Manfredi and Vespri [52].

In the rest of the section we prove Theorem 3.3 and the corollaries thereafter. In particular,
we show the equivalence of the definitions (3.4) - (3.12) of 1-quasiconformal maps, and show how
(3.15) and (3.16) are consequences. To help the reader, we provide the following road map. The
nodes of the graph indicate the definitions in Theorem 3.3, the tags on the arrows are the labels of
Propositions, Corollaries and Remarks in the present section.

(3.4)

3.30
��

�� 3.26 �� (3.5)

(3.6)
3.19 ���� �� (3.7)

3.43
��

�� 3.31 �� (3.8)

3.32

��

�� 3.31 �� (3.9)

⊕
3.49

��

(3.10)

3.44

��

�� 3.46 �� (3.11)

(3.12)

3.50
����������� 3.47 �� (3.15)

3.48 �� (3.16)

3.1. Ultratangents of 1-quasiconformal maps

We refer the reader who is not familiar with the notions of nonprincipal ultrafilters and ultralimits
to Chapter 9 of Kapovich’s book [42]. Roughly speaking, taking ultralimits with respect to a
nonprincipal ultrafilter is a consistent way of using the axiom of choice to select an accumulation
point of any bounded sequence of real numbers. Let ω be a nonprincipal ultrafilter. Given a sequence
Xj of metric spaces with base points �j ∈ Xj , we shall consider the based ultralimit metric space

(Xω, �ω) := (Xj , �j)ω := lim
j→ω

(Xj , �j).

We recall briefly the construction. Let

XN

b := {(pj)j∈N : pj ∈ Xj , sup{d(pj , �j) : j ∈ N} < ∞} .
For all (pj)j , (qj)j ∈ XN

b , set
dω((pj)j , (qj)j) := lim

j→ω
dj(pj , qj),

where limj→ω denotes the ω-limit of a sequence indexed by j. Then Xω is the metric space obtained
by taking the quotient of (XN

b , dω) by the semidistance dω. We denote by [pj ] the equivalence class
of (pj)j . The base point �ω in Xω is [�j ].
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Suppose fj : Xj → Yj are maps between metric spaces, �j ∈ Xj are base points, and we have
the property that (fj(pj))j ∈ Y N

b , for all (pj)j ∈ XN

b . Then the ultrafilter ω assigns a limit map
fω := limj→ω fj : (Xj , �j)ω → (Yj , fj(�j))ω as fω([pj ]) := [fj(pj)].

Let X be a metric space with distance dX . We fix a nonprincipal ultrafilter ω, a base point � ∈ X,
and a sequence of positive numbers λj → ∞ as j → ∞. We define the ultratangent at � of X as

Tω(X, �) := lim
j→ω

(X,λjdX , �).

Moreover, given f : (X, dX) → (Y, dY ), we call the ultratangent map of f at � the limit, whenever it
exists, of the maps f : (X,λjdX , �) → (Y, λjdY , f(�)), denoted Tω(f, �).

Lemma 3.18. Let X and Y be geodesic metric spaces and let f : X → Y be a quasiconformal map
satisfying Hf (�) = 1 at some point � ∈ X. Fix a nonprincipal ultrafilter ω and dilations factors
λj → ∞. If the ultratangent map fω = Tω(f, �) exists, then for p, q ∈ Tω(X, �)

d(�ω, p) = d(�ω, q) =⇒ d(fω(�ω), fω(p)) = d(fω(�ω), fω(q)).

Proof. Take p = [pj ], q = [qj ] ∈ Tω(X, �) with d(�ω, p) = d(�ω, q) =: R. Namely,

lim
j→ω

λjd(�, pj) = lim
j→ω

λjd(�, qj) = R.

Set rj := min{d(�, pj), d(�, qj)}. Fix j and suppose rj = d(�, pj) so rj ≤ d(�, qj). Since Y is
geodesic, there exists q′j ∈ X along a geodesic between � and qj with

d(�, q′j) = rj and d(qj , q
′
j) = d(�, qj)− rj .

We claim that [q′j ] = [qj ]. Indeed,

dω([q
′
j ], [qj ]) = lim

j→ω
λjd(q

′
j , qj)

= lim
j→ω

λj(d(�, qj)− rj)

= lim
j→ω

λjd(�, qj)− λjd(�, pj)

= R−R = 0.

Reasoning similarly with pj ’s, we may conclude that p = [p′j ] and q = [q′j ] with d(�, p′j) = d(�, q′j) =
rj . Hence, by definition of fω we have fω(p) = fω([p

′
j ]) = [fj(p

′
j)] and fω(q) = fω([q

′
j ]) = [fj(q

′
j)].

We then calculate

dω(fω(�ω), fω(p))

dω(fω(�ω), fω(q))
=

limj→ω λjd(f(�), f(p
′
j))

limj→ω λjd(f(�), f(q′j))

=
limj→ω d(f(�), f(p′j))
limj→ω d(f(�), f(q′j))

≤ lim
j→ω

sup{d(f(�), f(a)) : d(�, a) ≤ rj}
inf{d(f(�), f(b)) : d(�, b) ≥ rj}

= 1.

Arguing along the same lines one obtains dω(fω(�ω), fω(q)) ≤ dω(fω(�ω), fω(p)) and hence the
statement of the lemma follows.
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3.2. Tangents of quasiconformal maps in sub-Riemannian geometry

We recall now some known results due to Mitchell [55] and Margulis, Mostow [53], which are
needed to show that every 1-quasiconformal map induces at almost every point a 1-quasiconformal
isomorphism of the relative ultratangents. For the sake of our argument, we rephrase their results
using the convenient language of ultrafilters.

Let M be an equiregular sub-Riemannian manifold. From [55], for every p ∈ M the ultratangent
Tω(M,p) is isometric to a Carnot group, denoted Np(M), also called nilpotent approximation of
M at p. Each horizontal vector of M at p has a natural identification with an horizontal vector of
Np(M) at the identity. Such identification is an isometry between the horizontal space HpM and
the horizontal space of Np(M) at the identity, both equipped with the scalar products given by
respective sub-Riemannian structures. Next, consider f : M → N a quasiconformal map between
equiregular sub-Riemannian manifolds M and N . By the work of Margulis and Mostow [53], there
exists at almost every p ∈ M the ultratangent map Tω(f, p) that is a group isomorphism

Np(f) : Np(M) → Nf(p)(N)

that commutes with the group dilations, and it is independent on the ultrafilter ω and the sequence
λj . Part of Margulis and Mostow’s result is that the map f is almost everywhere differenziable
along horizontal vectors. Hence, for almost every p ∈ M and for all horizontal vectors v at p, we
can consider the push-forwarded vector, which we denote by (dH f)p(v). We call the map

(dH f)p : HpM → Hf(p)N

the horizontal differential of f at p.

Remark 3.19. With the above identification, we have

(dH f)p(v) = Np(f)∗v, ∀v ∈ HpM, (3.20)

so (dH f)p is a restriction of Np(f)∗. Vice versa, (dH f)p completely determines Np(f), since Np(f)
is a homomorphism and HpM generates the Lie algebra of Np(M). In particular, (dH f)p is a
similarity if and only if Np(f) is a similarity with same factor. Hence, Conditions (3.7) and (3.6)
are equivalent.

Next we introduce some expressions that can be used to quantify the distortion.

Lf (p) := lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

,

Lf (p) := lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

,

L=

f (p) := lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

,

L=
f (p) := lim inf

r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

,

‖Np(f)‖ := max{d(e,Np(f)(y)) : dNp(M)(e, y) ≤ 1}
= max{d(e,Np(f)(y)) : dNp(M)(e, y) = 1}.
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Remark 3.21. There exists a horizontal vector at p such that ‖X‖ = 1 and ‖f∗X‖ = ‖Np(f)‖, which
in other words means that X is in the first layer of the Carnot group Np(M), dNp(M)(e, exp(X)) = 1,
and dNf(p)(N)(e,Np(f)(exp(X))) = ‖Np(f)‖.

The following holds.

Lemma 3.22. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M → N be a
quasiconformal map. Let p be a point of differentiability for f . We have

Lf (p) = ‖Np(f)‖ = LNp(f)(e) = Lf (p) = Lf (p) = L=

f (p) = L=
f (p).

Proof. Proof of Lf (p) ≤ ‖Np(f)‖. Let pj ∈ M such that pj → p and

Lf (p) = lim
j→∞

d(f(p), f(pj))

d(p, pj)
.

Let λj := 1/d(p, pj), so λj → ∞. We fix now any nonprincipal ultrafilter ω and consider ultratan-
gents with respect to dilations λj . Hence,

Lf (p) = lim
j→∞

λjd(f(p), f(pj))

= dω([f(p)], [f(pj)])

= dω(Npf([p]),Npf([pj ]))

≤ ‖Npf‖ dω([p], [pj ])
= ‖Npf‖ lim

j→ω
λjd(p, pj)

= ‖Npf‖ .

Proof of Lf (p) ≥ ‖Np(f)‖. Take y ∈ Np(M) with d(e, y) = 1 that realizes the maximum in
‖Np(f)‖. Choose a sequence qj ∈ M such that [qj ] represents the point y. Let λj → ∞ be the
dilations factors for which we calculate the ultratangent. Since

1 = d(e, y) = lim
j→ω

λjd(p, qj),

then, up to passing to a subsequence of indices, d(p, qj) → 0. Moreover,

Lf (p) ≥ lim sup
j→∞

d(f(p), f(qj))

d(p, qj)

= lim sup
j→∞

λjd(f(p), f(qj))

= dω([f(p)], [f(qj)])

= dω(e,Npf(y))

= ‖Npf‖ .

Proof of Lf (p) ≤ ‖Np(f)‖. There exists rj → 0 and pj ∈ M with dM (p, pj) ≤ rj such that

Lf (p) = lim
j

dN (f(p), f(pj))

rj
.
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Then, using 1/rj as scaling for the ultratangent, we have dω([p], [pj ]) ≤ 1 and Lf (p) = limj
1
rj
dN (f(p), f(pj)) =

dω([f(p)], [f(pj)]) ≤ ‖Np(f)‖.
Proof of ‖Np(f)‖ ≤ Lf (p). Take y ∈ Np(M) with dNp(M)(e, y) ≤ 1 that realizes the maximum in

‖Np(f)‖. Choose subsequences sj → 0 that realizes the limit in the definition of Lf (p), i.e., so that

Lf (p) = lim
j

sup{dN (f(p), f(q)) : dM (p, q) ≤ sj}
sj

.

We use 1/sj as scaling factors for the ultratangent space. For any μ ∈ (0, 1) choose a sequence
qj ∈ M such that [qj ] represents the point δμ(y). Therefore, we have that

lim
j

dM (p, qj)

sj
= dNp(M)(e, δμ(y)) ≤ μdNp(M)(e, y) ≤ μ < 1.

For j big enough we then have dM (p, qj) < sj . So

dN (f(p), f(qj)) ≤ sup{dN (f(p), f(q)) : dM (p, q) ≤ sj},
whence, dividing both sides by sj and letting j → ∞, we get

dω([f(p)], [f(qj)]) ≤ Lf (p),

which, in view of the homogeneity of Np(f), yields

μ ‖Np(f)‖ = dNp(M)(e,Np(f)(δμy)) ≤ Lf (p).

Since the last inequality holds for all μ ∈ (0, 1), the conclusion follows.

Proof of Lf (p) ≥ L=

f (p). Since

sup{dN (f(p), f(q)) : dM (p, q) ≤ r} ≥ sup{dN (f(p), f(q)) : dM (p, q) = r},
one has

Lf (p) = lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

≥ lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

= L=

f (p).

Proof of Lf (p) ≤ L=

f (p). Choose a sequence rj → 0 such that

sup{dN (f(p), f(q)) : dM (p, q) ≤ rj}
rj

=
sup{dN (f(p), f(q)) : dM (p, q) = rj}

rj
,

and so in particular

Lf (p) = lim inf
j

sup{dN (f(p), f(q)) : dM (p, q) ≤ rj}
rj

≤ lim sup
j

sup{dN (f(p), f(q)) : dM (p, q) = rj}
rj

≤ L=

f (p).
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Proof of ‖Np(f)‖ ≤ L=
f (p). Take y ∈ Np(M) with d(e, y) = 1 that realizes the maximum in

‖Np(f)‖. Choose subsequences sj → 0 that realizes the limit in the definition of L=
f (p), i.e., so that

L=
f (p) = lim

j

sup{dN (f(p), f(q)) : dM (p, q) = sj}
sj

.

We use 1/sj as scaling factors for the ultratangent space. For any ε > 0 choose a sequence q′j ∈ M
such that [q′j ] represents the point δ1+ε(y). Therefore, we have that

1 + ε = d(e, δ1+ε(y)) = lim
j→ω

d(p, q′j)
sj

.

For j big enough we then have d(p, q′j) ∈ (sj , (1 + 2ε)sj). Since M is a geodesic space, we consider
a point q′′j ∈ M such that d(p, q′′j ) = sj and lies in the geodesic between p and q′j , consequently
d(q′j , q

′′
j ) ≤ 2εsj .

Set yε ∈ Np(M) the point being represented by the sequence q′′j . We have d(δ1+εy, yε) < 2ε. From
which we get that yε → y, as ε → 0. We then bound

L=
f (p) ≥ lim

j

d(f(p), f(q′′j ))
sj

= d(Np(f)(yε), e).

Since d(Np(f)(yε), e) is continuous at ε = 0 and converges to ‖Np(f)‖, as ε → 0, we obtain the
desired estimate.

To conclude the proof of the proposition, one observes that Lf (p) ≤ Lf (p) and L=
f (p) ≤ L=

f (p)
are trivial.

Corollary 3.23. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M → N be a
quasiconformal map. Let p be a point of differentiability for f . We have

Lf (p) = LNp(f)(e) and �f (p) = �Np(f)(e). (3.24)

Proof. The proof follows from Lemma 3.22 applied to f and f−1, and by observing that

�f (p) = 1/Lf−1(f(p)), and Np(f)
−1 = Nf(p)(f

−1). (3.25)

Corollary 3.26. Let M and N be (equiregular) sub-Riemannian manifolds and let f : M → N be a
quasiconformal map. Then for almost every p ∈ M

Hf (p) = H=
f (p).

Proof. Note that in every geodesic metric space

inf{dN (f(p), f(q)) : dM (p, q) ≥ r} = inf{dN (f(p), f(q)) : dM (p, q) = r}.

Hence Hf (p) ≥ H=
f (p) is immediate.
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Regarding the opposite inequality, let p be a point of differentiability for f . Consequently,

Hf (p)
def
= lim sup

r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
inf{dN (f(p), f(q)) : dM (p, q) ≥ r}

= lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
inf{dN (f(p), f(q)) : dM (p, q) = r}

≤ lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r} lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) ≤ r}
r

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}Lf (p)

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r}L
=
f (p)

= lim sup
r→0

r

inf{dN (f(p), f(q)) : dM (p, q) = r} lim inf
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
r

≤ lim sup
r→0

sup{dN (f(p), f(q)) : dM (p, q) = r}
inf{dN (f(p), f(q)) : dM (p, q) = r}

def
= H=

f (p),

where in the last two steps we have used that Lf (p) = L=
f (p) from Lemma 3.22 and the fact that

lim sup aj lim inf bj ≤ lim sup(ajbj).

Proposition 3.27. Let f : M → N be a quasiconformal map between sub-Riemannian manifolds. The
function p �→ ‖Np(f)‖ is the minimal upper-gradient of f .

Proof. The function p �→ ‖Np(f)‖ is an upper-gradient of f since Lf (·) is such and Lf (p) = ‖Np(f)‖
by Lemma 3.22 . Regarding the minimality, let g be a weak upper-gradient of f . We need to show
that

g(p) ≥ ‖Np(f)‖ , for almost all p. (3.28)

Localizing, we take a unit horizontal vector field X. For p ∈ M , let γp be the curve defined by the
flow of X, i.e.,

γp(t) := Φt
X(p),

which is defined for t small enough. We remark that the subfamilies of {γp}p∈M that have zero
Q-modulus are of the form {γp}p∈E with E ⊂ M of zero Q-measure. Then, for every unit horizontal
vector field X, there exists a set ΩX ⊆ M of full measure such that for all p ∈ ΩX we have∫

γp|[0,ε]
g ≥ d(f(γp(0)), f(γp(ε))).

Since ‖X‖ ≡ 1, then each γp is parametrized by arc length. Thus

1

ε

∫ ε

0

g(γp(t)) d t ≥ 1

ε
d(f(p), f(Φε

X(p))).

Assuming that p is a Lebesgue point for g, taking the limit as ε → 0, and considering ultratangents
with dilations 1/ε, we have

g(p) ≥ dω(e,Np(f)[Φ
ε
X(p)]),

= dω(e,Np(f) exp(X̃p)), ∀p ∈ ΩX , (3.29)
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where X̃p is the vector induced on Np(M) by Xp.

Set now X1, . . . Xr an orthonormal frame of Δ and consider for all θ ∈ S
r−1 ⊂ R

r, the unit
horizontal vector field Xθ :=

∑r
i=1 θiXi. Fix {θj}j∈N a countable dense subset of Sr−1 and define

Ω := ∩jΩXθj , which has full measure. Take p ∈ Ω and, recalling Remark 3.21, take Y ∈ Δp such
that ‖Y ‖ = 1 and

dω(e,Np(f) exp(Ỹ )) = ‖Np(f)‖
By density, there exists a sequence jk of integers such that θjk converges to some θ with the property
that Y = (Xθ)p. Therefore, by (3.29) we conclude (3.28).

3.3. Equivalence of metric definitions

Proposition 3.30 (Tangents of 1-QC maps). Let f : M → N be a quasiconformal map between
equiregular sub-Riemannian manifolds. Condition (3.4) implies Condition (3.7).

Proof. For almost every p ∈ M , the map Np(f) exists and coincides with the ultratangent fω with
respect to any nonprincipal ultrafilter and any sequence of dilations. Hence, we can apply Lemma
3.18 and deduce that spheres about the origin are sent to spheres about the origin. Therefore, the
distortion HNp(f)(e) at the origin is 1. Being Np(f) an isomorphism, the distortion is 1 at every
point, and in fact Np(f) is a similarity.

Corollary 3.31. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds. Conditions (3.7), (3.8), and (3.9) are equivalent.

Proof. For every point p of differentiability for f , we have that Np(f) is a similarity if and only if
LNp(f)(e) = �Np(f)(e), which by Corollary 3.23 is equivalent to �f (p) = Lf (p).

Proposition 3.32. Let f : M → N be a quasiconformal map between sub-Riemannian manifolds. At
every point p ∈ M such that Lf (p) = �f (p) one has that H=

f (p) = 1. Hence, Condition (3.8) implies
Conditions (3.5).

Proof. Notice that at every point in which Lf (p) = �f (p) one has the existence of the limit

lim
d(p,q)=r→0

d(f(p), f(q))

r
.

Consequently, at those points one has

H=
f (p) = lim

r→0

sup{dY (f(p),f(q)):dX(p,q)=r}
r

inf{dY (f(p),f(q)):dX(p,q)=r}
r

=
Lf (p)

�f (p)
= 1.

Therefore, we proved the equivalence of the metric definitions, i.e., Conditions (3.4), (3.5), (3.7),
(3.8), and (3.9).

21



3.4. Jacobians and Popp measure

Let (M,μM ) and (N,μN ) be metric measure spaces and let f : M → N be a homeomorphism. We
say that Jf : M → R is a Jacobian for f with respect to the measures μM and μN , if f∗μN = Jf μM ,
which is equivalent to the change of variable formula:∫

f(A)

hdμN =

∫
A

(h ◦ f) Jf dμM , (3.33)

for every A ⊂ M measurable and every continuous function h : N → R.

If M and N are equiregular sub-Riemannian manifolds of Hausdorff dimension Q, we consider μM

and μN to be both either the Q-dimensional spherical Hausdorff measures or the Popp measures.
See [56, 7] for the definition of the Popp measure and Example 3.37 for the case of step-2 Carnot

groups. In these cases, we denote the corresponding Jacobians as JHaus
f and JPoppf , respectively. If

f is a quasiconformal map, such Jacobians are uniquely determined up to sets of measure zero. In
fact, by Theorem [39, Theorem 4.9, Theorem 7.11] and [53, Theorem 7.1], they can be espressed as
volume derivatives. Moreover, by an elementary calculation using just the definition one checks that
the Jacobian satisfies the formula

Jf (p) = 1/ Jf−1(f(p)). (3.34)

Remark 3.35. We have that if f : M → N is quasiconformal and at almost every point p its
differential Np(f) is a similarity, then for almost every p ∈ M the Carnot groups Np(M) and
Nf(p)(N) are isometric. Indeed, if λp is the dilation factor of Np(f), then the composition of
Np(f) and the group dilation by λ−1

p gives an isometry. As a consequence, Np(M) and Nf(p)(N)
are isomorphic as metric measure spaces when equipped with their Popp measures volNp(M) and
volNf(p)(N), respectively. In particular, for almost every p ∈ M , we have

volNp(M)(BNp(M)(e, 1)) = volNf(p)(N)(BNf(p)(N)(e, 1)). (3.36)

Example 3.37. We recall in a simple case the construction of the Popp measure. Namely, we consider
a Carnot group of step 2, that is, the Lie algebra is stratified as V1 ⊕ V2. Let B ⊆ V1 ⊆ TeG be
the (horizontal) unit ball with respect to a sub-Riemannian metric tensor g1 at the identity, which
is the intersection of the metric unit ball at the identity with V1, in exponential coordinates. The
set [B,B] := {[X,Y ] : X,Y ∈ B} is the unit ball of a unique scalar product g2 on V2. The formula
g :=

√
g21 + g22 defines the unique scalar product on V1 ⊕ V2 that make V1 and V2 orthogonal and

extend g1 and g2. Extending the scalar product on TeG by left translation, one obtains a Riemannian
metric tensor g̃ on the Lie group G. For such a Carnot group the Popp measure is by definition the
Riemannian volume measure of g̃.

Remark 3.38. In Carnot groups the Popp measure is strictly monotone as a function of the distance,
in the sense that if d and d′ are two distances on the same Carnot group such that d′ ≤ d and
d′ �= d, then Poppd′ ≤ Poppd and Poppd′ �= Poppd. Indeed, this claim follows easily from the
construction of the measure. For simplicity of notation, we illustrate the proof for Popp measures
in Carnot groups of step 2 as we recalled in Example 3.37. If B′ is a set that strictly contains B
then clearly [B,B] ⊆ [B′, B′] and hence the unit ball for g is strictly contained in the unit ball for
g′. In other words, the vector space TeG is equipped with two different (Euclidean) distances, say
ρ and ρ′, and by assumption, the identity id : (TeG, ρ) → (TeG, ρ′) is 1-Lipschitz. Therefore, the
Hausdorff measure with respect to ρ is greater than the one with respect to ρ′. At this point we
recall that the Hausdorff measure of a Eulidean space equals the Lebesque measure with respect to
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orthonormal coordinates. In other words, the Hausdorff measure is equal to the measure induced
by the top-dimensional form that takes value 1 on any orthonormal basis, which is by definition the
Riemannian volume form. We therefore deduce that the Riemannian volume measure of g̃ is less
than the Riemannian volume measure of g̃′. Hence, Poppd′ ≤ Poppd. Moreover, the equality holds
only if g̃ = g̃′, which holds if and only if B′ = B.

Lemma 3.39. Let A : G → G′ be an isomophism of Carnot groups of Hausdorff dimension Q. If
either JA(e) = (LA(e))

Q or JA(e) = (�A(e))
Q, then A is a similarity.

Proof. Up to composing A with a dilation, we assume that LA(e) = 1, i.e., A is 1-Lipschitz. Then
if JA(e) = (LA(e))

Q we have that JA = 1, which means that the push forward via A of the Popp
measure on G is the Popp measure on G′. Moreover, identifying the group structures via A, we
assume that we are in the same group G (algebraically) that is equipped with two different Carnot
distances d and d′ such that d′ ≤ d, since the identity A = id : (G, d) → (G, d′) is 1-Lipschitz. If
d′ �= d, then by Remark 3.38 Poppd′ �= Poppd, which contradicts the assumption. We conclude that
d′ = d, i.e., A = id is an isometry. The case when JA(e) = (�A(e))

Q is similar.

3.5. A remark on tangent volumes

We prove that the Jacobian of a quasiconformal map coincides with the Jacobian of its tangent
map almost everywhere. We begin by recalling the Margulis and Mostow’s convergence [53]. Fix a
point p in a sub-Riemannian manifold M and consider privileged coordinates centered at p, see [53,
page 418]. Let g be the sub-Riemannian metric tensor of M . Let δε be the dilations associated to
the privileged coordinates. Notice that (δε)∗g is isometric via δε to g and gε :=

1
ε (δε)∗g is isometric

via δε to
1
ε g. A key fact is that gε converge to g0, as ε → 0, which is a sub-Riemannian metric. (This

convergence is the convergence of some orthonormal frames uniformly on compact sets).

Mitchell’s theorem [55] can be restated as the fact that (Rn, g0) is the tangent Carnot group
Np(M). Margulis and Mostow actually proved that the maps δ−1

ε ◦ f ◦ δε converge uniformly, as
ε → 0, on compact sets to the map Np(f). Moreover, by functoriality of the construction of the
Popp measure, we have that volgε → volg0 , in the sense that if ωε is the smooth function such that
volgε = ωεL, then ωε → ω0 uniformly on compact sets.

Proposition 3.40. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. For almost every p ∈ M

JNp(f)(e) = Jf (p).

Proof. Denote by Bgε
r the ball at 0 of radius r with respect to the metric gε. We have

ε−Q volg(f(Bg
ε )) = vol

1
ε g(f(B

1
ε g
1 )) (3.41)

= vol
1
ε g(δε ◦ δ−1

ε ◦ f ◦ δε(Bgε
1 )

= volgε(δ−1
ε ◦ f ◦ δε(Bgε

1 ))

→ volg∞(Np(f)(B
g0
1 )).

By [34, Lemma 1 (iii)], for all q ∈ M we have the expantion

volM (B(q, ε)) = εQvolNq(M)(BNq(M)(e, 1)) + o(εQ). (3.42)
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Using (3.41) and the latter, we conclude

JNp(f)(e) =
volNq(M)(Nq(f)(BNq(M)(e, 1)))

volNq(M)(BNq(M)(e, 1))

= lim
ε→0

volN (f(B(p, ε)))

εQvolNp(M)(BNp(M)(e, 1))

= lim
ε→0

volN (f(B(p, ε)))

volM (B(p, ε))

= Jf (p).

3.6. Equivalence of the analytic definition

Lemma 3.43. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian mani-
folds of Hausdorff dimension Q. If the differential Np(f) of f is a similarity for almost every p ∈ M ,
then

�f (p)
Q = JPoppf (p) = Lf (p)

Q, for almost every p ∈ M.

Proof. Let p be a point where JPoppf (p) is expressed as volume derivative. By definition, for all ε > 0,
there exists r̄ > 0 such that, if q ∈ M is such that d(q, p) ∈ (0, r̄), then

d(f(q), f(p))

d(p, q)
≤ Lf (p) + ε.

Hence for every r ∈ (0, r̄),
f(B(p, r)) ⊂ B(f(p), r(Lf (p) + ε)).

So one has
volN (f(B(p, r)))

volM (B(p, r))
≤ volN (B(f(p), r(Lf (p) + ε)))

volM (B(p, r))
.

Letting r → 0, using (3.42) with q = p and q = f(p), and using (3.36), we have

JPoppf (p) ≤ (Lf (p) + ε)Q.

Notice that equation (3.36) requires the assumption of the differential being a similarity. Since ε is

arbitrary, JPoppf (p) ≤ Lf (p)
Q. Once we recall that JPoppf (p) ·JPoppf−1 (f(p)) = 1 and �f (p) ·Lf−1(f(p)) =

1, the same argument applied to f−1 yields �f (p)
Q ≤ JPoppf (p). With Corollary 3.31 we conclude.

For an arbitrary quasiconformal map we expect the relation

�f (p)
Q ≤ JPoppf (p) ≤ Lf (p)

Q

to hold. However, our proof of Lemma 3.43 makes a crucial use of equation (3.36), which is not true
in general.
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Lemma 3.44. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian mani-
folds of Hausdorff dimension Q. If for almost every p ∈ M either

�f (p)
Q = JPoppf (p)

or

JPoppf (p) = Lf (p)
Q,

then Np(f) is a similarity, for almost every p.

Proof. In view of Proposition 3.40 and Corollary 3.23, we have either �Np(f)(e)
Q = JNp(f)(e) or

JNp(f)(e) = LNp(f)(e). Therefore, by Lemma 3.39 we get that Np(f) is a similarity.

3.7. Equivalence of geometric definitions

We recall the definition of the modulus of a family Γ of curves in a metric measure space (M, vol).
A Borel function ρ : M → [0,∞] is said to be admissible for Γ if for every rectifiable γ ∈ Γ,∫

γ

ρ ds ≥ 1. (3.45)

The Q-modulus of Γ is

ModQ(Γ) = inf

ß∫
M

ρQ d vol : ρ is admissible for Γ

™
.

Proposition 3.46. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. Then ModQ(Γ) = ModQ(f(Γ)) for every family Γ of curves

in M if and only if LQ
f (p) = Jf (p) for a.e. p.

Proof. This equivalence is actually a very general fact after the work of Cheeger [16] and Williams
[69]. Since locally sub-Riemannian manifolds are doubling metric spaces that satisfy a Poincaré
inequality, we have that the pointwise Lipschitz constant Lf (·) is the minimal upper gradient of the
map f , see Proposition 3.27 and Lemma 3.22. We also remark that any quasiconformal map is in
W 1,Q

loc and hence in the Newtonian space N1,Q
loc , see [6]. By a result of Williams [69, Theorem 1.1],

Lf (p)
Q ≤ Jf (p), for almost every p, if and only if ModQ(Γ) ≤ ModQ(f(Γ)), for every family Γ of

curves in M . Hence, we get the inequality Lf (p)
Q ≤ Jf (p).

Now consider the inverse map f−1. Such a map satisfies the same assumptions of f . In particular,
applying to f−1 William’s result, we have that ModQ(Γ) ≤ ModQ(f

−1(Γ)) for every family Γ of
curves in N if and only if Lf−1(q)Q ≤ Jf−1(q), for almost every q ∈ N . Writing f−1(Γ) = Γ′ and
q = f(p) and using (3.25) and (3.34), we conclude that ModQ(f(Γ

′)) ≤ ModQ(Γ
′) for every family

Γ′ of curves in M if and only if Jf (p) ≤ �Qf (p) ≤ LQ
f (p), for almost every p ∈ M

Let M be an equiregular sub-Riemannian manifold of Hausdorff dimension Q. Let volM be the
Popp measure of M . For all u ∈ W 1,Q

H (M, volM ), the Q-energy of u is

EQ(u) :=

∫
M

|∇Hu|Q d volM .
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Remark 3.47. Since EQ(u) = IQ(u, u), if the operator IQ is preserved, then the Q-energy is preserved.
Namely, Condition (3.12) implies Condition (3.15).

Proposition 3.48. For a quasiconformal map f : M → N between equiregular sub-Riemannian man-
ifolds of Hausdorff dimension Q, Condition (3.15) implies Condition (3.16).

Proof. Let E,F ⊂ M compact sets in M . We set S(E,F ) to denote the family of all u ∈ W 1,Q
H (M)

such that u|E = 1, u|F = 0 and 0 ≤ u ≤ 1. Recall that the Q-capacity CapQ(E,F ) is then defined
as the infimum of the Q-energy EQ(u) among all competitors u ∈ S(E,F ):

CapQ(E,F ) = inf

∫
M

|∇Hu|Q d vol .

Since f satisfies (3.15), the map v �→ v ◦ f is a bijection between S(f(E), f(F )) and S(E,F )

that preserves the Q-energy. Correspondingly, one has that

CapQ(f(E), f(F )) = inf{EQ(v) : v ∈ S(f(E), f(F ))}
= inf{EQ(v ◦ f) : v ∈ S(f(E), f(F ))}
= inf{EQ(u) : u ∈ S(E,F )}
= CapQ(E,F ),

completing the proof.

Proposition 3.49. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. Either of Condition (3.6) and Condition (3.10) implies Con-
dition (3.12).

Proof. Let p be a point of differentiability of f . Given an orthonormal basis {Xj} of HpM , from
(3.6) we have that vectors

Yj := Lf (p)
−1(dH f)pXj

form an orthonormal basis of HqN , with q = f(p). Then, for every open subset V ⊂ N and for

every v ∈ W 1,Q
H (N),

Xj(v ◦ f)p = dH(v ◦ f)p(Xj)

= (dH v)q(dH f)p(Xj)

= (dH v)q(Lf (p)Yj) = Lf (p)(Yju)q.

Therefore, for any v, φ ∈ W 1,Q
H (V ),

〈∇H(v ◦ f),∇H(φ ◦ f)〉p =
∑
j

Xj(v ◦ f)pXj(φ ◦ f)p

= L2
f (p)

∑
j

Yj(v)qYj(φ)q

= L2
f (p)〈∇Hv,∇Hφ〉q.

In particular
|∇H(v ◦ f)| = Lf (p)|(∇Hv)f(·)|.
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So, using Condition (3.10) and writing U = f−1(V ),

IQ(v ◦ f, φ ◦ f ;U) =

∫
U

|∇H(v ◦ f)|Q−2〈∇H(v ◦ f),∇H(φ ◦ f)〉 d volM

=

∫
U

LQ−2
f |(∇Hv)f(·)|Q−2L2

f 〈∇Hv,∇Hφ〉f(·) d volM

=

∫
U

Jf |(∇Hv)f(·)|Q−2〈∇Hv,∇Hφ〉f(·) d volM

=

∫
V

|∇Hv|Q−2〈∇Hv,∇Hφ〉 d volN
= IQ(v, φ;V ),

where we used (3.33).

Proposition 3.50. Let f : M → N be a quasiconformal map between equiregular sub-Riemannian
manifolds of Hausdorff dimension Q. Then Condition (3.12) implies Condition (3.10).

Proof. We start with the following chain of equalities, where we use (3.12), the chain rule and the
change of variable formula (3.33). For every open subset U ⊂ M , denote V = f(U) ⊂ N . For every

v, φ ∈ W 1,Q
H (V ),∫
V

|∇Hv|Q−2〈∇Hv,∇Hφ〉 d volN =

∫
U

|∇H(v ◦ f)|Q−2〈∇H(v ◦ f),∇H(φ ◦ f)〉 d volM

=

∫
U

|(dH f)Tf(·)(∇Hv)f(·)|Q−2〈(dH f)Tf(·)(∇Hv)f(·), (dH f)Tf(·)(∇Hφ)f(·)〉 d volM

=

∫
V

Jf−1(·)|(dH f)T· (∇Hv)·|Q−2〈(dH f)T· (∇Hv)·, (dH f)T· (∇Hφ)·〉 d volN

=

∫
V

Jf−1(·)|(dH f)T· (∇Hv)·|Q−2〈(dH f)f−1(·)(dH f)T· (∇Hv)·, (∇Hφ)·〉 d volN ,

where (dH f)Tq denotes the adjoint of (dH f)f−1(q) with respect to the metrics on N and M at q and
f−1(q) respectively. We then proved that∫
V

〈|(∇Hv)·|Q−2(∇Hv)· − Jf−1(·)|(dH f)T· (∇Hv)·|Q−2(dH f)f−1(·)(dH f)T· (∇Hv)·, (∇Hφ)·〉 d volN = 0

(3.51)

for every v, φ ∈ W 1,Q
H (V ) and for every open subset V ⊂ N . Note that (3.51) holds true for every

measurable subset V ⊂ N . We claim that, for almost every q ∈ N ,

|(∇Hv)q|Q−2(∇Hv)q − Jf−1(q)|(dH f)Tq (∇Hv)q|Q−2(dH f)f−1(q)(dH f)Tq (∇Hv)q = 0 (3.52)

for every v ∈ W 1,Q
H (N). Arguing by contradiction, assume that there is a set V ⊂ N of positive

measure where (3.52) fails for some v ∈ W 1,Q
H (N). Choose any smooth frame X1, . . . , Xr of HN ,

and write the left hand side of (3.52) as
∑r

i=1 ψiXi, with ψi ∈ LQ(N) for every i = 1, . . . , r. Then
at least one of the ψi must be different from zero in V . Without loosing generality, say ψ1 �= 0 on
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V . By possibly taking V smaller, we may assume that
∫
V
ψ1 d volN �= 0. Let φ be the coordinate

function x1, that is Xjφ = δj1. Substituting in the left hand side of (3.51), we conclude∫
V

〈(ψ1, . . . , ψr),∇Hφ〉 d volN =

∫
V

ψ1 d volN �= 0,

which contradicts (3.51). This completes the proof of (3.52).

Next, fix q ∈ N a point of differentiability where (3.52) holds. For every vector ξ ∈ HqN , consider
vξ such that (∇Hvξ)q = ξ. For every ξ ∈ HqN such that |ξ| = 1, the following holds

Jf−1(q)|(dH f)Tq ξ|Q−2〈(dH f)f−1(q)(dH f)Tq ξ, ξ〉 = 1.

Using (3.34), the equality above becomes

|(dH f)Tq ξ|Q−2〈(dH f)Tq ξ, (dH f)Tq ξ〉 = Jf (f
−1(q))

which is equivalent to
|(dH f)Tq ξ|Q = Jf (f

−1(q))

for every ξ on HqN of norm equal to one. From (3.20) we have |(dH f)Tq ξ(q)|Q = |Nq(f)
T
∗ ξ(q)|Q.

Therefore, at every point q ∈ N of differentiability,

‖Nf−1(q)(f)∗‖Q = max{|Nq(f)
T
∗ ξ|Q : ξ ∈ HqN, |ξ| = 1} = Jf (f

−1(q)).

By Lemma 3.22 and writing p = f−1(q), we conclude Lf (p)
Q = Jf (p) for almost every p ∈ M ,

establishing (3.10).

3.8. The morphism property

Proof of Corollary 3.17. Let v ∈ W 1,Q
H (N) and φ ∈ W 1,Q

H,0 (N) ⊂ W 1,Q
H (N), then from (3.12) it

follows
LQ(v)(φ) = IQ(v, φ) = IQ(v ◦ f, φ ◦ f) = LQ(v ◦ f) ◦ f∗(φ).

3.9. Equivalence of the two Jacobians

Given M an equiregular sub-Riemannian manifold of Hausdorff dimension Q, we prefer to work
with the Popp measure volM rather than the spherical Hausdorff measure SQ

M since volM is always

smooth whereas there are cases in which SQ
M is not (see [2]). However, one has the following formula

(see [2, pages 358-359], [34, Section 3.2]).

d volM = 2−Q volNp(M)(BNp(M)(e, 1))dSQ
M , (3.53)

where we used the fact that the measure induced on Np(M) by volM is volNp(M).

Proposition 3.54. If f : M → N is a 1-quasiconformal map between equiregular sub-Riemannian
manifolds, then for almost every p ∈ M ,

JPoppf (p) = JHaus
f (p).
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Proof. Let A ⊆ M be a measurable set. Since f−1 is 7 also 1-quasiconformal, then we have (3.36)
with p = f−1(q) for almost all q ∈ M , Then, using twice (3.53), we have

2Q(f∗ volN )(A) = 2Q volN (f(A))

=

∫
f(A)

volNq(N)(BNq(N)(e, 1)) dSQ
N (q)

=

∫
f(A)

volNf−1(q)(M)(BNf−1(q)(M)(e, 1)) dSQ
N (q)

=

∫
A

volNp(M)(BNp(M)(e, 1)) J
Haus
f (p) dSQ

M (p)

= 2Q(JHaus
f volM )(A).

Thus, we conclude that JPoppf volM = f∗ volN = JHaus
f volM .

4. Coordinates in sub-Riemannian manifolds

Given any system of coordinates near a point of a sub-Riemannian manifolds, we will identify
special subsets of these coordinates, that we call horizontal. By adapting a method of Liimatainen
and Salo [50], we show that they can be constructed so that in addition they are also either harmonic
or Q-harmonic (the more general construction of p-harmonic coordinates follows along the same
lines, modifying appropriately the hypothesis). The construction of Q-harmonic coordinates is based
upon a very strong hypothesis, namely that the sub-Riemannian structure supports regularity for
Q-harmonic functions. In contrast, the construction of horizontal harmonic coordinates rests on
well known Schauder estimates. The key point of this section, and one of the main contributions
of this paper, is that we can prove that the smoothness of maps that preserve in a weak sense the
horizontal bundles can be derived by the smoothness of the horizontal components alone.

4.1. Horizontal coordinates

Definition 4.1. Let M be a sub-Riemannian manifold. Let x1, . . . , xn be a system of coordinates
on an open set U of M and let X1, . . . , Xr be a frame of the horizontal distribution on U . We say
that x1, . . . , xr are horizontal coordinates with respect to X1, . . . , Xr if the matrix (Xix

j)(p), with
i, j = 1, . . . , r, is invertible, for every p ∈ U .

Remark 4.2. It is clear that any system of coordinates x1, . . . ., xn around a point p ∈ M can be
reordered so that the first r components become a system of horizontal coordinates.

The next result states that the notion of horizontal coordinate does not depend on the choice of
frame.

Proposition 4.3. Assume that x1, . . . , xn are coordinates such that x1, . . . , xr are horizontal with
respect to the frame X1, . . . , Xr. Then

(i) ∇Hx
1, . . . ,∇Hx

r are linearly independent and form a frame of Δ.

7Here we need to invoke [53, Corollary 6.5] or [39]
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(ii) If X ′
1, . . . , X

′
r is another frame of Δ, then x1, . . . , xr are horizontal coordinates with respect to

X ′
1, . . . , X

′
r.

Proof. Since O := (Xix
j)ij is invertible and X1, . . . , Xr is a frame, then

∇Hx
i =

r∑
i=1

(Xkx
i)Xk =

∑
k

Ok
i Xk

and (i) follows. Regarding (ii), let B be the matrix such that X ′
ix

j =
∑r

k=1 B
k
i Xkx

j = (BO)ij .
The conclusion follows from the invertibility of BO.

4.2. Horizontal harmonic coordinates

Let M be a sub-Riemannian manifold endowed with a volume form vol. Our goal is to construct
horizontal coordinates in the neighborhood of any point p ∈ M , that are also in the kernel of the
subLaplacian L2, defined in (2.9), associated to the sub-Riemannian structure and a volume form.

Theorem 4.4. Let M be an equiregular sub-Riemannian structure endowed with a smooth volume
form vol. For any point p ∈ M there exists a set of horizontal harmonic coordinates defined in a
neighborhood of p.

To prove this result we start by considering any system of coordinates x1, . . . , xn in a neighborhood
of p ∈ M . Without loss of generality we can assume that the vectors ∇Hx

1, . . . ,∇Hx
r are linearly

independent in a neighborhood of p, i.e., x1, .., xr are horizontal coordinates. Set Bε := Bε(p) =
{q ∈ M | d(p, q) < ε}. For ε > 0, let u1

ε , . . . , u
n
ε be the unique weak solution of the Dirichlet problem®

L2u
i
ε = 0 in Bε, i = 1, . . . , n

ui
ε = xi in ∂Bε, i = 1, . . . , n.

We will show that for ε > 0 sufficiently small, the n-tuple u1
ε , . . . , u

r
ε , x

r+1, . . . , xn is a system of
coordinates. Note that u1

ε , . . . , u
n
ε may fail to be a system of coordinates.

Hörmander’s hypoellipticity result [41] yields ui
ε ∈ C∞(Bε) ∩W 1,2

H (Bε). Consider now

wi
ε := ui

ε − xi ∈ C∞(Bε) ∩W 1,2
H,0(Bε).

Lemma 4.5. For p ∈ K ⊂⊂ M , the following estimate holds

−
∫
Bε

|∇Hw
i
ε|2 d vol ≤ C ′ε2. (4.6)

for a constant C ′ > 0 depending only on K, on the coordinates x1, .., xn, the Riemannian structure
of M and the volume form.

Proof. For every i = 1, . . . , n, the function wi
ε solves®

L2w
i
ε = −L2x

i =: gi

wi
ε = 0 in ∂Bε
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The equation can be interpreted in a weak sense as∫
Bε

∇Hw
i
ε∇Hφ d vol =

∫
Bε

giφ d vol

for every φ ∈ W 1,2
H,0(Bε). Choosing φ = wi

ε gives

∫
Bε

|∇Hw
i
ε|2 d vol =

∫
Bε

giw
i
ε d vol ≤

Ç∫
Bε

g2i d vol

å1/2Ç∫
Bε

(wi
ε)

2 d vol

å1/2

.

Poincaré inequality for functions with compact support gives∫
Bε

(wi
ε)

2 d vol ≤ Cε2
∫
Bε

|∇Hw
i
ε|2 d vol,

whence ∫
Bε

|∇Hw
i
ε|2 d vol ≤

Ç∫
Bε

g2i d vol

å1/2Ç
Cε2

∫
Bε

|∇Hw
i
ε|2 d vol

å1/2

.

We haveÇ∫
Bε

|∇Hw
i
ε|2 d vol

å1/2

≤ εC1/2

Ç∫
Bε

g2i d vol

å1/2

≤ εC1/2vol(Bε)
1/2

Ç
sup
Bε

g2i

å1/2

.

This completes the proof of (4.6).

Next we need an interpolation inequality that allows us to bridge the L2 estimates (4.6) and the
C1,α

H estimates from (2.10) to produce L∞ bounds. The following is very similar to the analogue
interpolation lemma in [50].

Lemma 4.7. Let p ∈ K ⊂⊂ M and let h be a function defined on Bε. If there are constants A,B > 0
such that for ε > 0 sufficiently small one has

(i) ‖h‖2L2(Bε)
≤ Aε2|Bε|2,

(ii) ‖h‖Cα
H
(Bε/2) ≤ B,

then ‖h‖L∞(Bε/4) ≤ o(1) as ε → 0, uniformly in p ∈ K.

Proof. Set q ∈ B ε
4
(p) so that B ε

4
(q) ⊂ B 3ε

4
(p). One has

‖h‖L2(B ε
4
(q)) ≥ ‖h(q)‖L2(B ε

4
(q)) − ‖h− h(q)‖L2(B ε

4
(q))

= |h(q)| · |B ε
4
(q))| 12 −

(∫
B ε

4
(q)

|h(·)− h(q)|2 d vol
) 1

2

≥ |h(q)| · |B ε
4
(q))| 12 − sup

B ε
4
(q)

|h(·)− h(q)|
d(·, q)α

(∫
B ε

4
(q)

d(·, q)2α d vol

) 1
2

.
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We then obtain that there exists constants C1 and C2, depending only on the sub-Riemannian
structure, the exponent α, and the compact set K, such that

‖h‖L2(B ε
4
(q)) ≥ C1ε

Q
2 |h(q)| − C2ε

α+Q
2 ‖h‖Cα

H
(B ε

4
(q)).

Using the hypotheses (i) and (ii), we conclude for all q ∈ B ε
2 (p)

|h(q)| ≤ C−1
1 ε−

Q
2

(
‖h‖L2(B ε

4
(q)) + C2ε

α+Q
2 ‖h‖Cα

H
(B ε

4 (q)
)
)

≤ C−1
1

¶
A1/2ε+ BC2ε

α
©
= o(1)

as ε → 0.

In view of (4.6) and (2.10) we can apply the previous lemma to h = ∇Hw
i
ε and infer

sup
B ε

4

|∇Hu
i
ε −∇Hx

i| ≤ o(1)

as ε → 0. Since the matrix (Xix
j)ij for i, j = 1, . . . , r is invertible in a neighborhood of p, then

for ε > 0 sufficiently small the same holds for the matrix (Xiu
j
ε)ij . Consequently, the n-tuple

(u1
ε , . . . , u

r
ε , x

r+1, . . . , xn) yields a system of coordinates in a neighborhood of p and its first r com-
ponents are both horizontal and harmonic. This concludes the proof of Theorem 4.4.

4.3. Horizontal Q-harmonic coordinates

Throughout this section we will assume that M is an equivariant sub-Riemannian structure,
endowed with a smooth volume form vol, that supports regularity for Q-harmonic functions, in the
sense of Definition 1.2.

We will need an interpolation lemma analogue to Lemma 4.7.

Lemma 4.8. Let p ∈ K ⊂⊂ M and let f be a function defined on Bε. If there are constants
β,A,B > 0 and α ∈ (0, 1) such that for ε > 0 sufficiently small one has

(i) ‖h‖LQ(Bε) ≤ Aε1+β

(ii) ‖h‖Cα
H
(B ε

2
) ≤ B,

then ‖h‖L∞(Bε/4) ≤ o(1) as ε → 0, uniformly in p ∈ K.

Proof. Using the notation and the argument in the proof of Lemma 4.7, one concludes that for any
q ∈ B ε

4
(p) one has

‖h‖LQ(B ε
4
(q)) ≥ |h(q)| · |B ε

4
(q)| 1

Q − ‖h‖Cα
H
(B ε

4
(q))ε

α+Q
p .

The proof follows immediately from the latter and from the hypothesis.

Theorem 4.9. Let M be an equiregular sub-Riemannian structure endowed with a smooth volume
form vol that supports regularity for Q-harmonic functions. For any point p ∈ M there exists a set
of horizontal coordinates defined in a neighborhood of p that are Q-harmonic.
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Proof. We follow the argument outlined in the special case of Theorem 4.4. For p ∈ K ⊂⊂ M and
ε > 0 to be determined later, we consider weak solutions ui

ε ∈ W 1,Q
H (Bε) to the Dirichlet problems®

LQu
i
ε = 0 in Bε, i = 1, . . . , n

ui
ε = xi in ∂Bε, i = 1, . . . , n,

where x1, . . . , xn is an arbitrary set of coordinates near p. These solutions exist and are unique
in view of the convexity of the Q-energy. The C1,α

H estimates assumptions guarantee that ui
ε ∈

C1,α
H,loc(Bε) ∩W 1,Q

H,loc(Bε). Arguing as in Lemma 4.5, we set

wi
ε := ui

ε − xi ∈ C1,α
H,loc(Bε) ∩W 1,Q

H,0 (Bε)

and observe that ∫
Bε

|∇Hu
i
ε|Q−2Xku

i
εXkw

i
ε d vol = 0.

As a consequence one has∫
Bε

|∇Hw
i
ε|Q d vol ≤

∫
Bε

(|∇Hu
i
ε|+ |∇εx

i|)Q−2|∇Hw
i
ε|2 d vol

≤
∫
Bε

(|∇Hu
i
ε|Q−2Xku

i
ε − |∇Hx

i|Q−2Xkx
i)Xkw

i
ε d vol

=

∫
Bε

−X∗
k(|∇Hx

i|Q−2Xkx
i)wi

ε d vol

≤
Å∫

Bε

|LQx
i|Q d vol

ãQ−1
Q
Å∫

Bε

|wi
ε|Q d vol

ã 1
Q

(applying Poincaré inequality) ≤ Cε

Å ∫
Bε

|LQx
i|Q d vol

ãQ−1
Q
Å∫

Bε

|∇Hw
i
ε|Q d vol

ã 1
Q

≤ C ′εQ||∇Hw
i||LQ(Bε), (4.10)

for constants C,C ′ > 0 depending only on Q,K, on the coordinates x1, . . . , xn, the sub-Riemannian
structure, and the volume form. From the latter it immediately follows that

‖∇Hw
i
ε‖LQ(Bε) ≤ C

′′
ε1+

1
Q−1 (4.11)

Arguing as in Theorem 4.4, and applying the C1,α
H estimates from the hypothesis that M supports

regularity for Q-harmonic functions, (4.11) and the interpolation Lemma 4.8, one has that for ε > 0
sufficiently small the matrix (Xiu

j
ε)ij , for i, j = 1, . . . , r is invertible in a neighborhood of q. On the

other hand, this implies that for each i = 1, . . . , r one has that |∇Hu
i
ε| is a Cα

H function bounded away
from zero in a neighborhood of p, and hence by part (2) of Definition 1.2 and by Proposition 2.18
one has that u1

ε , . . . , u
r
ε , x

r+1, . . . , xn is a smooth system of coordinates in a neighborhood of p, with
u1
ε , . . . , u

r
ε both horizontal and Q-harmonic.

4.4. Regularity from horizontal regularity

Let γ be an horizontal curve in M . Let x1, . . . , xn be coordinates on M such that x1, . . . , xr are
horizontal coordinates with respect to an horizontal frame X1, . . . , Xr. We write

γH = (x1 ◦ γ, . . . , xr ◦ γ) and γV = (xr+1 ◦ γ, . . . , xn ◦ γ).
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Hence γ = (γH, γV ) and γ̇ = (γ̇H, γ̇V ). There are functions β1, . . . , βr so that

γ̇ =
r∑

j=1

βj(Xj ◦ γ).

In coordinates we write Xj =
∑n

k=1 X
k
j

∂
∂xk . So

(γ̇H, γ̇V ) =
r∑

j=1

βj(Xj ◦ γ)

=
r∑

j=1

βj

n∑
k=1

(Xk
j ◦ γ) ∂

∂xk

=
r∑

k=1

r∑
j=1

βj(X
k
j ◦ γ) ∂

∂xk
+

n∑
k=r+1

r∑
j=1

βj(X
k
j ◦ γ) ∂

∂xk
.

Set O = (Xjx
i)ij = Xi

j . We have ˙γH =
∑r

k=1

∑r
j=1 βj(O

k
j ◦ γ) ∂

∂xk = Oβ, where we denoted

β = (β1, . . . , βr). Since O is invertible, (β1, . . . , βr) = (O−1 ◦ γ) ˙γH. Thus

γ̇V =
n∑

k=r+1

r∑
j=1

ï
(O−1 ◦ γ) ˙γH

ò
j

(Xk
j ◦ γ) ∂

∂xk
. (4.12)

In particular, the following holds.

Proposition 4.13. Let γ be an absolute continuous curve. If γH is smooth, then γ is smooth.

Proof. By hypothesis γ and ˙γH are absolute continuous. Then by (4.12) also γ̇V is absolute contin-
uous. Thus γ̇ is continuous. A bootstrap argument shows that γ is smooth.

In the following, we will consider maps that are absolutely continuous on curves (ACCQ). We
recall that such maps send almost every (with respect to the Q-modulus measure) rectifiable curve
into a rectifiable curve (see [64] for more details). In the case of a sub-Riemannian manifold M ,
ACC maps defined on M have the following property. Let X be any horizontal vector field in M
and denote by φt

X the corresponding flow. Then for almost every p ∈ M (with respect to Lebesgue
measure), one has that t → f(φt

X(p)) is a rectifiable curve.

Proposition 4.14. Let M and N two sub-Riemannian manifolds. Let f : M → N be an ACC map.
Let k ≥ 1, α ∈ (0, 1), and p ≥ 1. If f1, . . . , fr are in Ck,α

H,loc(M) (resp. in W k,p
H,loc(M)), then

f1, . . . , fn is Ck,α
H,loc(M) (resp. in W k,p

H,loc(M)).

Proof. Let X be any horizontal vector field in M . Notice that if f1, . . . , fr are in Ck,α
H,loc(M) (resp. in

W k,p
H,loc(M)), then Xf1, . . . , Xfr are in Ck−1,α

H,loc (M) (resp. in W k−1,p
H,loc (M)). For almost every p ∈ M ,

the curve
f(φt

X(p)) =: γ(p, t) = (γH(p, t), γV (p, t)),
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is an horizontal curve and hence (4.12) holds. Therefore, for almost every p, we have

(Xfm+1(p), . . . , Xfn(p)) =
d

dt
γV (p, t)|t=0

=
m∑
j=1

n∑
k=m+1

ï
(O−1 ◦ γ(p, 0))γ̇H(p, 0)

ò
j

Xk
j (γ(p, 0))

∂

∂xk

=
m∑
j=1

n∑
k=m+1

ï
O−1(f(p))(Xf1(p), . . . , Xfr(p))T

ò
j

(Xk
j ◦ f)(p) ∂

∂xk
.

Since the functions Xk
j ◦ f and Xf1, . . . , Xfr are continuous (resp. in Lp), then the functions

Xfm+1, . . . , Xfn are continuous (resp. in Lp), for all horizontal X. Hence, f1, . . . , fn ∈ C1
H,loc(M)

(resp. in W 1,p
H,loc(M)) and then Xk

j ◦f ∈ C1
H,loc(M) (resp. in W 1,p

H,loc(M)). Notice that, if f1, . . . , fn ∈
C1

H,loc(M) then on any compact K the functions ∇Hf
1, . . . ,∇Hf

n are bounded, say by a constant
C, therefore, for all horizontal curve σ : [0, 1] → K,

Length(f(σ)) =

∫ 1

0

‖f∗σ′‖ds ≤ C

∫ 1

0

‖σ′‖ds = CLength(σ).

Hence, f1, . . . , fn ∈ C1
H,loc(M) implies that f is Lipschitz and therefore its components are in Cα.

Bootstrapping, we conclude that f1, . . . , fn is Ck,α
H,loc(M) (resp. in W k,p

H,loc(M)).

5. Regularity of 1-quasiconformal maps

In this section we prove Theorem 1.4. Let us first clarify the definition of the function spaces
involved. Given two equiregular sub-Riemannian manifolds M,N , we say that a homeomorphism f
is in C1,α

H,loc(M,N)∩W 2,2
H,loc(M,N) if, in any (smooth) coordinate system of N , the components of f

belong to C1,α
H,loc(M) ∩W 2,2

H,loc(M).

5.1. Every 1-quasiconformal map in C1,α
H,loc(M,N) ∩W 2,2

H,loc(M,N) is conformal

We now show that, assuming that a 1-quasiconformal map has the basic regularity, then the map
is smooth. The proof is independent from the results in Section 4. Namely, we do not need to
assume any regularity theory for Q-Laplacian.

Proof of Theorem 1.4.(i). Denote by volM and volN the Popp measures of M and N . For p ∈ M ,
consider any system of smooth coordinates y1, ..., yn in a neighborhood of f(p) ∈ N . Set f i := yi ◦f
and hi := LQ(y

i) ∈ C∞(N). From Corollary 3.17.(i), it follows that for all u ∈ C∞
0 (M)∫

M

LQ(f
i)u d volM =

∫
M

hi ◦ f JPopp
f u d volM .

For i = 1, ..., n, set Hi := hi ◦ f JPopp
f . Since the Popp measures are smooth and f ∈ C1,α

H,loc(M,N),

we have that JPopp
f ∈ Cα

H,loc(M) and therefore Hi ∈ Cα
H,loc(M). At this point we have that LQf

i ∈
Cα

H,loc(M) and that f i ∈ C1,α
H,loc(M)∩W 2,2

H,loc(M). Notice that |∇Hf
i| is bounded away from 0, since

f is bi-Lipschitz. Therefore, Proposition 2.18 applies, yielding that f ∈ C2,α
H,loc(M,N). The proof

follows by bootstrap using the Schauder estimates in Proposition 2.12.
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5.2. Regularity of Q-harmonic functions implies conformality

We now reduce the smoothness assumption by using horizontal Q-harmonic coordinates, see
Section 4. To ensure their existence and to use them we need to assume that the manifolds support
the regularity theory for Q-Laplacian as defined in Definition 1.2.

Note that a standard argument, see for instance [9], shows that for every g = (g1, ..., gr) ∈
C∞(M,Rr), U ⊂⊂ M and for every �, �′ > 0, there exists a constant C > 0 such that for each weak
solution u of the equation LQu = X∗

i g
i on M with ||u||W 1,Q

H
(U) < � and 1

�′ < |∇Hu| < �′ on U , one

has
||u||W 2,2

H
(U) ≤ C.

Proof of Theorem 1.4.(ii). We shall use Proposition 4.14. Since sub-Riemannian manifolds are Q-
regular, by [39] any quasiconformal map is ACCQ (see also [53, Corollary 6.5]) In view of Theorem
4.9, consider u1, . . . , un a system of local coordinates around a point f(p) ∈ M for which the
horizontal coordinates u1, . . . , ur are Q-harmonic.

In view of the morphism property (Corollary 3.17) the pull-backs fi = ui ◦ f , for i = 1, . . . , r
are Q-harmonic functions in a neighborhood of p ∈ M . By the Q-harmonic regularity assumption,
both ui and f i = ui ◦ f are in C1,α

H,loc(M), for i = 1, . . . , r. Apply Proposition 4.14 to f with

k = 1 and get f ∈ C1,α
H,loc(M,N). Since also f−1 is 1-quasiconformal, the same argument shows that

f−1 ∈ C1,α
H,loc(N,M). In particular, the map f is bi-Lipschitz and f1, . . . , fn is a local system of

bi-Lipschitz coordinates. In particular, |∇Hf
1|, . . . , |∇Hf

n| are bounded away from zero. Because
of the observation above, we have that f1, . . . , fr are in W 2,2

H,loc(M). Invoking Proposition 4.14 once

more, we have that f1, . . . , fn are in W 2,2
H,loc(M).

We remark that in the setting of Carnot groups both the existence of horizontal Q-harmonic
coordinates and the Lipschitz regularity of 1-quasiconformal can be proven directly without using
any PDE argument, see [59].

6. Liouville Theorem for contact sub-Riemannian manifolds

6.1. Q-Laplacian with respect to a divergence-free frame

In this section we intend to write the Q-Laplacian in a sub-Riemannian manifold using a horizontal
frame that is not necessarily orthonormal, but is divergence-free with respect to some other volume
form. Recall that a vector field X is divergence-free with respect to a volume form μ if its adjoint
with respect to μ equals −X.

Let M be a sub-Riemannian manifold equipped with a smooth volume form vol. Let Y1, . . . , Yr

be an orthonormal frame for the horizontal distribution HM of M . Recall from (2.16) that the
Q-Laplacian of a twice differentiable function is

LQu =
∑
i

Y ∗
i

Ñ(∑
k

(Yku)
2

)Q−2
2

Yiu

é
(6.1)
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Assume that there exists another frame X1, . . . , Xr of HM and another smooth volume form μ
such that each Xi is divergence-free with respect to μ. If g is the sub-Riemannian metric of M , let

gij := g(Xi, Xj) ∈ C∞(M).

For all x ∈ M , let gij(x) be the inverse matrix of gij(x) and define the family of scalar products on
R

r as
g̃x(v, w) := vig

ij(x)wj , x ∈ M, v,w ∈ R
r.

Then there exists aji ∈ C∞(M) such that

Yi = ajiXj . (6.2)

So δij = aki a
l
jgkl and gij = aika

j
k.

Let ω be the smooth function such that vol = ωμ. Since Xi are divergence-free with respect to
μ, the adjoint vector fields with respect to vol of Yi are such that

Y ∗
i u = X∗

j (a
j
iu) = −ω−1Xj(ωa

j
iu).

We use the notation
∇0u := (X1u, . . . , Xru).

Noticing that
∑

k(Yku)
2 = g̃(∇0u,∇0u), the expression (6.1) becomes

(LQu)(x) = −ω(x)−1XiAi(x,∇0u),

where
Ai(x, ξ) := ω(x) g̃x(ξ, ξ)

Q−2
2 gik(x)ξk, for ξ ∈ R

r, x ∈ M. (6.3)

The derivatives of such functions are

∂xjAi(x, ξ) = ∂xjωg̃(ξ, ξ)
Q−2

2 gikξk + ωQ−2
2 g̃(ξ, ξ)

Q−2
2 −1∂xjg

l,l′ξlξl′g
ikξk + ωg̃(ξ, ξ)

Q−2
2 ∂xjg

ikξk

and
∂ξjAi(x, ξ) = ω

Ä
(Q− 2)g̃(ξ, ξ)

Q−4
2 gljgikξlξk + g̃(ξ, ξ)

Q−2
2 gij

ä
.

Hence,

∂ξjAi(x, ξ)ηiηj = ω
Ä
(Q− 2)g̃(ξ, ξ)

Q−4
2 g̃(ξ, η)2 + g̃(ξ, ξ)

Q−2
2 g̃(η, η)

ä
.

Using Cauchy-Schwarz inequality, the equivalence of norms in R
r, and the smoothness of the func-

tions ω and gij ’s, the functions Ai in (6.3) satisfy the following estimates: on each compact set of
M , for some λ,Λ > 0 depending only on Q, and for every χ ∈ R

r,

λ|ξ|Q−2|χ|2 ≤ ∂ξjAi(x, ξ)χiχj ≤ Λ|ξ|Q−2|χ|2 (6.4)

and
|∂xjAi(x, ξ)| ≤ Λ|ξ|Q−1. (6.5)

Summarizing, we have the following.
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Proposition 6.6. Let M be a sub-Riemannian manifold and consider vol and μ two smooth volume
forms on M . Assume there is a horizontal frame X1, . . . , Xr on M of vector fields that are divergence-
free with respect to μ. If u is a function on M that is Q-harmonic with respect to vol, then u satisfies

r∑
i=1

XiAi(x,∇0u) = 0,

for some Ai for which (6.4) and (6.5) hold.

Remark 6.7. In the above we used two different structures of metric measure space on the same
manifold M . These are (M, g, vol) and (M, g0, μ), where g0 is the metric for which X1, . . . , Xm form
an orthonormal frame. For each of these structures we may define corresponding Sobolev spaces
W p,q

H (M, g, vol) andW p,q
H (M, g0, μ). Similarly, we consider spaces C1,α

H (M, g) and C1,α
H (M, g0). Since

the the matrix (aji ) in (6.2) and its inverse have locally Lipschitz coefficients, it follows that on

compact sets Ω ⊂ M the space W p,2
H (Ω, g, vol) is biLipschitz to W p,2

H (Ω, g0, μ) for p = 1, 2, and

C1,α
H (Ω, g) is biLipschitz to C1,α

H (Ω, g0).

6.2. Darboux coordinates on contact manifolds

On every contact manifold, the existence of a frame of divergence-free vector fields with respect
to some measure is ensured by Darboux Theorem. More generally, every sub-Riemannian manifold
that is contactomorphic to a unimodular (e.g., nilpotent) Lie group equipped with a horizontal
left-invariant distribution admits such a frame. The reason is that left-invariant vector fields are
divergence-free with respect to the Haar measure of the group. We shall recall now Darboux Theorem
and we recall the standard contact structures, which are those of the Heisenberg groups.

Darboux Theorem states, see [28], that every two contact manifolds of the same dimension are
locally contactomorphic. In particular, any contact 2n + 1-manifold is locally contactomorphic to
the standard contact structure on R

2n+1, a frame of which is given by

Xi := ∂xi −
xn+i

2
∂x2n+1 , Xn+i := ∂xn+i +

xi

2
∂x2n+1 , (6.8)

where i = 1, . . . , n. For future reference we will also set X2n+1 = ∂x2n+1 . This frame is left-invariant
for a specific Lie group structure, which we denote by H

n: the Heisenberg group.

Corollary 6.9. (of Darboux Theorem) Let M be a contact sub-Riemannian 2n+1-manifold equipped
with a volume form vol. There are local coordinates x1, . . . , x2n+1 in which the horizontal distribution
is given by the vector fields in (6.8), which are divergence-free with respect to the Lebesgue measure
L, and there exists ω ∈ C∞ such that ω−1 ∈ C∞ and d vol = ω dL.

6.3. Riemannian approximations

Let us consider a contact 2n+1 manifold M , with sub-Riemannian metric g0 and volume form vol.
Let Y1, ..., Y2n denote a g0-orthonormal horizontal frame in a neighborhood Ω ⊂ M , and denote by
Y2n+1 the Reeb vector field. For every ε ∈ (0, 1) we may define a 1-parameter family of Riemannian
metrics gε on M so that the frame Y1, ..., Y2n, εY2n+1 is orthonormal. Denote by Y ε

1 , ..., Y
ε
2n+1 such
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gε-orthonormal frame. For ε ≥ 0 and δ ≥ 0 we will consider the family of regularized Q-Laplacian
operators

Lε,δ
Q u :=

2n+1∑
i=1

Y ε∗
i

Ñ(
δ +

∑
k

(Y ε
k u)

2

)Q−2
2

Y ε
i u

é
(6.10)

Invoking Corollary 6.9, and applying the same arguments as in Proposition 6.6, one can see that
such Q-Laplacian operators Lε,δ

Q , can be written in the form

Lε,δ
Q u =

2n+1∑
i=1

Xε
iA

ε,δ
i (x,∇εu) = 0, (6.11)

where Xε
i = Xi for i = 1, ..., 2n and Xε

2n+1 = εX2n+1, with X1, ..., X2n+1 as in (6.8). Here we have
set ∇εf = (Xε

1f, ..., X
ε
2n+1f). The case ε = δ = 0 in (6.11) reduces to the subelliptic Q-Laplacian.

The components Aε,δ
i in (6.11) are defined as in (6.3), starting with the gε metric, i.e., for every

ξ ∈ R
2n+1 and x ∈ Ω,

Aε,δ
i (x, ξ) := ω(x) (δ + g̃ε,x(ξ, ξ))

Q−2
2 gikε (x)ξk. (6.12)

By the same token as in (6.4), one has that there exists λ,Λ > 0 depending only on Q, such that
the estimates

λ(δ + |ξ|2)Q−2
2 |χ|2 ≤ ∑2n+1

i,j=1 ∂ξjA
ε,δ
i (x, ξ)χiχj ≤ Λ(δ + |ξ|2)Q−2

2 |χ|2. (6.13)

|∂xjA
ε,δ
i (x, ξ)| ≤ Λ(δ + |ξ|2)Q−1

2 . (6.14)

hold for all ε ≥ 0 and δ ≥ 0 and for all ξ ∈ R
2n+1 and χ ∈ R

2n+1.

In the next section we prove that contact sub-Riemannian manifolds support regularity for Q-
harmonic functions. The same arguments also imply regularity for p-harmonic functions for every
p ≥ 2. Hence, together with Theorem 1.4, this result will yield Theorem 1.1.

6.4. C1,α estimates after Zhong

In this section we consider weak solutions u ∈ W 1,Q
H,loc(Ω) of L0

Qu = 0, where L0
Q denotes the

Q-Laplacian operator corresponding to a sub-Riemannian metric g0 (not necessarily left-invariant)
in an open set Ω ⊂ H

n, endowed with its Haar measure, which coincides with the Lebesgue measure
in R

2n+1. We prove the following theorem

Theorem 6.15. For every open U ⊂⊂ Ω and for every � > 0, there exist constants α ∈ (0, 1), C > 0

such that for each u ∈ W 1,Q
H,loc(Ω) weak solution of L0

Qu = 0 with ||u||W 1,Q
H

(U) < �, one has

||u||C1,α
H

(U) ≤ C.

This result is due to Zhong [71], in the case when g0 is a left invariant sub-Riemannian metric in
H

n. A simpler proof, in the case p > 4, was recently given by Ricciotti in [62].

The proof in [71] breaks down with the additional dependence on x, in the coefficients of the
equation as expressed in Proposition 6.6. In fact, in one of the approximations used in [71], the
argument relies on the existence of explicit barrier functions, which one does not have in our setting.
To deal with this issue we use a Riemannian approximation scheme to carry out the regularization.
Apart from this aspect, the arguments in [71] apply to the present setting as well. Note that the
Hölder regularity of the solution u is considerably simpler (see for instance [13]).
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Remark 6.16. The proof in [71] applies to any Carnot group of step two, and likewise the conclusion
of Theorem 6.15 continues to hold in this more general setting.

Riemannian approximation

Throughout the rest of the section we will assume δ > 0 and let u denote a solution of L0
Qu = 0 in

Ω ⊂ H
n. For ε > 0 we consider W k,p

ε,loc and Ck,α
ε to be the Sobolev and Hölder spaces corresponding

to the frame Xε
1, ..., X

ε
2n+1. Observe that by virtue of classical elliptic theory (see for instance [46]

) for δ > 0 one has that the weak solutions uε ∈ W 1,Q
ε,loc(Ω) of (6.11) are in fact smooth in Ω. For

a fixed ball D ⊂⊂ Ω and for any ε ≥ 0, standard PDE arguments (see for instance [38]) yield the
existence and unicity of the solution to the Dirichlet problem®

Lε,δ
Q uε = 0 in D

uε − u ∈ W 1,Q
ε,0 (D).

(6.17)

Although the smoothness of uε may degenerate as ε → 0 and δ → 0, we will show that the estimates
on the Hölder norm of the gradient do not depend on these parameters and hence will hold uniformly
in the limit. Note that in view of the Caccioppoli inequality and of the uniform bounds on the Hölder
norm of uε as ε → 0 (such bounds depend only on the stability of the Poincaré inequality and on the
doubling constants of the Riemannian Heisenberg groups (Hn, gε) which are stable in view of [11]),
one has that for any K ⊂⊂ D there exists a constant MK,Q > 0 depending only on Q,K such that

||∇εu
ε||LQ(K) ≤ MK,Q.

The next proposition addresses the non trivial uniform bounds.

Proposition 6.18. For every open U ⊂⊂ D and for every � > 0, there exist constants α ∈ (0, 1), C > 0

such that if uε ∈ W 1,Q
ε,loc(D)∩C∞(D) is the unique solution of (6.17) with ||u||W 1,Q

H
(D) < �, then one

has
||uε||C1,α

ε (U) ≤ C, ∀ε > 0.

The main regularity result Theorem 6.15 then follows from Proposition 6.18, by means of Ascoli-
Arzela theorem and the uniqueness of the Dirichlet problem (6.17) when ε = 0.

The proof of Proposition 6.18 follows very closely the arguments in [71]. For the reader’s con-
venience we reproduce them in the two sections below. For the sake of notation’s simplicity, and
without any loss of generality, we will just present the proof in the case n = 1.

Uniform Lipschitz regularity

The aim of this section is to establish Lipschitz estimates that are uniform as ε → 0, on a open
ball B ⊂⊂ D.

Theorem 6.19. Let uε ∈ W 1,Q
ε,loc(D)∩C∞(D) be the unique solution of (6.17). If B ⊂ 2B ⊂⊂ D then

there exists C > 0, depending only on Q,Λ, λ of (6.13) and (6.14), such that

sup
B

|∇εu
ε| ≤ C

Å
1

L(2B)

∫
2B

(δ + |∇εu
ε|2)Q

2

ã 1
Q

,

where 2B denotes the ball with the same center of B and twice the radius.
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The proof of this theorem is developed across several lemmata in this section.

For ε, δ > 0 and i = 1, 2, 3 set vi = Xε
i u

ε and observe that by differentiating (6.11) along Xε
i ,

i = 1, 2, 3 one has

3∑
i,j=1

Xε
i

Å
Aε,δ

i,ξj
(x,∇εu

ε)Xε
jv1

ã
+

3∑
i=1

Xε
i

Å
Aε,δ

i,ξ2
(x,∇εu

ε)X3u
ε

ã
+X3

Å
Aε,δ

2 (x,∇εu
ε)

ã

+
3∑

i=1

Xε
i

Å
Aε,δ

i,x1
(x,∇εu

ε)− x2

2
Aε,δ

i,x3
(x,∇εu

ε)

ã
= 0; (6.20)

3∑
i,j=1

Xε
i

Å
Aε,δ

i,ξj
(x,∇εu

ε)Xε
jv2

ã
−

3∑
i=1

Xε
i

Å
Aε,δ

i,ξ1
(x,∇εu

ε)X3u
ε

ã
−X3

Å
Aε,δ

1 (x,∇εu
ε)

ã

+
3∑

i=1

Xε
i

Å
Aε,δ

i,x2
(x,∇εu

ε) +
x1

2
Aε,δ

i,x3
(x,∇εu

ε)

ã
= 0; (6.21)

and

3∑
i,j=1

Xε
i

Å
Aε,δ

i,ξj
(x,∇εu

ε)Xε
jv3

ã
+ ε

3∑
i=1

Xε
i

Å
Aε,δ

i,x3
(x,∇εu

ε)

ã
= 0. (6.22)

Remark 6.23. Note that the terms containing X3 in the equations above are not bounded as ε → 0
in the gε metric. In the following it will be crucial to obtain estimates that are stable as ε → 0.

The following results were originally proved for the case with no dependence of x, in [51, Theorem
7], [54, Lemma 5.1] and then again in [71] with a more direct argument bypassing the difference
quotients method. The proofs in our setting are very similar and we omit most of the details.

Lemma 6.24. For every β ≥ 0 and η ∈ C∞
0 (B) one has∫

B

(δ + |∇εu
ε|2)Q−2

2 |∇εv3|2|v3|βη2 dL ≤
Å

2Λ

λ(β + 1)
+ 2Λ

ã∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Å
1 +

1

λ(β + 1)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |v3|βη2 dL.

Proof. Multiply both sides of (6.22) by φ = η2|Xε
3u

ε|βXε
3u

ε and integrate over B. The result follows
in a standard way from Young’s inequality and from the structure conditions (6.13).

Note that dividing both sides of the inequality above by εβ+2 and letting β → 0 one recovers the
Manfredi-Mingione original lemma (see for instance [71, Lemma 3.3]).

Lemma 6.25. For every β ≥ 0 and η ∈ C∞
0 (B) one has

∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2η2 dL ≤ C(β + 1)4
∫
B

(δ + |∇εu
ε|2)Q−2+β

2 |X3u
ε|2η2 dL

+ C

∫
B

(η2 + |∇εη|2)(δ + |∇εu
ε|2)Q+β

2 dL+ C

∫
B

η2(δ + |∇εu
ε|2)Q+β+1

2 dL,
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for some constant C = C(λ,Λ) > 0.

Proof. The proof follows the arguments in [71] and [54], multiplying both sides of (6.20), (6.21) and

(6.22) by φ = η2(δ + |∇εu
ε|2) β

2 vi for i = 1, 2, 3, integrating over B and then using Young inequality
and the structure conditions (6.13).

The next step provides a crucial reverse Hölder-type inequality.

Lemma 6.26. For every β ≥ 2 and η ∈ C∞
0 (B) one has

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2ηβ+2 dL

≤ C (β + 1)2||∇εη||2L∞(B)

Å
ε2

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2
3∑

i,j=1

|Xε
iX

ε
ju

ε|2(ηβ+2 + ηβ) dL

+ εβ
∫
B

(δ + |∇εu
ε|2)Q+β

2 ηβdL
ã
.

Note that dividing by εβ and letting ε → 0 one recovers Zhong’s estimate.

Proof. Differentiating (6.11) along Xε
1, recalling that [Xε

1, X
ε
2] = X3, and multiplying by a test

function φ ∈ C∞
0 (B) yields∫

B

Xε
1A

ε,δ
i (x,∇εu

ε)Xε
iφ dL =

∫
B

X3A
ε,δ
2 (x,∇εu

ε)φ dL. (6.27)

Next set φ = ηβ+2|Xε
3u

ε|βXε
1u

ε in the previous identity to obtain in the left-hand side

∫
B

Xε
1A

ε,δ
i (x,∇εu

ε)Xε
iφ dL =

∫
B

Aε,δ
i,ξj

(x,∇εu
ε)Xε

1X
ε
ju

εXε
1X

ε
i u

εηβ+2|Xε
3u

ε|β dL

−
∫
B

Xε
1A

ε,δ
2 (x,∇εu

ε)X3u
εηβ+2|Xε

3u
ε|β dL

+ β

∫
B

Xε
1A

ε,δ
i (x,∇εu

ε)Xε
iX

ε
3u

ε|Xε
3u

ε|β−2Xε
3u

εXε
1u

εηβ+2 dL

+ (β + 2)

∫
B

Xε
1A

ε,δ
i (x,∇εu

ε)Xε
i η|Xε

3u
ε|βXε

1u
εηβ+1 dL.
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Substituting in (6.27) and using the structure conditions (6.13) one obtains

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β
3∑

j=1

|Xε
1X

ε
ju

ε|2ηβ+2 dL

≤
∫
B

Xε
1A

ε,δ
2 (x,∇εu

ε)X3u
εηβ+2|Xε

3u
ε|β dL

+ β

∫
B

|Xε
1A

ε,δ
i (x,∇εu

ε)Xε
iX

ε
3u

ε|Xε
3u

ε|β−1Xε
1u

εηβ+2| dL

+ (β + 2)

∫
B

|Xε
1A

ε,δ
i (x,∇εu

ε)Xε
i η|Xε

3u
ε|βXε

1u
εηβ+1| dL

+

∫
B

|X3A
ε,δ
2 (x,∇εu

ε)ηβ+2|Xε
3u

ε|βXε
1u

ε| dL (6.28)

≤
3∑

h,k=1

∣∣∣∣
∫
B

Xε
hA

ε
k(x,∇εu

ε)X3u
εηβ+2|Xε

3u
ε|β dL

∣∣∣∣
+ β

∫
B

|∇εA
ε,δ
i (x,∇εu

ε)||∇εX
ε
3u

ε||Xε
3u

ε|β−1|∇εu
ε|ηβ+2 dL

+ (β + 2)

∫
B

|∇εA
ε,δ
i (x,∇εu

ε)||∇εη|Xε
3u

ε|β |∇εu
ε|ηβ+1 dL

+

∫
B

2∑
j=1

|X3A
ε,δ
j (x,∇εu

ε)|ηβ+2|Xε
3u

ε|β |∇εu
ε| dL = I1 + I2 + I3 + I4.

In a similar fashion, differentiating (6.11) along Xε
2 and Xε

3, and using the test function φ =
ηβ+2|Xε

3u
ε|βXε

hu
ε with h = 2, 3, one arrives at a similar estimate for Xε

hX
ε
ju

ε in the left-hand
side. The combination of such estimate and (6.28) yields

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2ηβ+2 dL ≤ I1 + I2 + I3 + I4.

Next, for any τ > 0, we estimate each single component |Ik| in the following way

|Ih| ≤ τ

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2ηβ+2 dL

+ ε2
C(β + 1)2||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2
3∑

i,j=1

|Xε
iX

ε
ju

ε|2(ηβ+2 + ηβ) dL

+ τ−1ε2
∫
B

(δ + |∇εu
ε|2)Q+β

2 ηβdL, (6.29)

from which the conclusion will follow immediately. We begin by looking at I1.
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• Estimate of I1. Proceeding as in [71] we integrate by parts to obtain∫
B

Xε
hA

ε,δ
k (x,∇εu

ε)X3u
εηβ+2|Xε

3u
ε|β dL = −

∫
B

Aε,δ
k (x,∇εu

ε)Xε
h

Å
X3u

εηβ+2|Xε
3u

ε|β
ã
dL

= −ε−1(β + 1)

∫
B

Aε,δ
k (x,∇εu

ε)ηβ+2|Xε
3u

ε|βXε
3X

ε
hu

ε dL

− (β + 2)

∫
B

Aε,δ
k (x,∇εu

ε)ηβ+1Xε
hη|Xε

3u
ε|βX3u

ε dL = I + II (6.30)

– Estimate of I. Using Young inequality one has∣∣∣∣ε−1(β + 1)

∫
B

Aε,δ
k (x,∇εu

ε)ηβ+2|Xε
3u

ε|βXε
3X

ε
hu

ε dL
∣∣∣∣

≤ ε−1(β + 1)

∫
B

(δ + |∇εu
ε|2)Q−1

2 |Xε
3u

ε|β |∇εX
ε
3u

ε|ηβ+2 dL

≤ τ ||∇εη||−2
L∞(B)ε

−2(β + 1)

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β |∇εX
ε
3u

ε|2ηβ+4 dL

+
(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|βηβ dL = A+ B

Next, we invoke Lemma 6.24 to estimate the first integral A as∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β |∇εX
ε
3u

ε|2ηβ+4 dL

≤
Å

4Λ

λ(β + 6)
+ 2Λ

ã∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|∇εη|2|Xε
3u

ε|β+2 dL

+ 2ε2Λ

Å
1 +

2

λ(β + 3)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|βηβ dL

≤ ||∇εη||2L∞(B)

Å
4Λ

λ(β + 6)
+ 2Λ

ã ∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|Xε
3u

ε|β |Xε
3u

ε|2 dL

+ 2ε2Λ

Å
1 +

2

λ(β + 3)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2|Xε
3u

ε|2ηβ dL

(using the fact that |Xε
3u

ε| ≤ ε
∑3

i,j=1 |Xε
iX

ε
ju

ε| one concludes)

≤ ε2||∇εη||2L∞(B)

Å
4Λ

λ(β + 6)
+2Λ

ã ∫
B

(δ+ |∇εu
ε|2)Q−2

2 ηβ+2|Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2 dL

+ 2ε4Λ

Å
1 +

2

λ(β + 3)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2
3∑

i,j=1

|Xε
iX

ε
ju

ε|2ηβ dL

To estimate B we simply observe that

|B| ≤
ε2(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2ηβ
3∑

i,j=1

|Xε
iX

ε
ju

ε|2 dL
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In conclusion we have proved

|I| ≤ τ(β + 1)

[Å
4Λ

λ(β + 6)
+ 2Λ

ã ∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2 dL

+ 2||∇εη||−2
L∞(B)ε

2Λ

Å
1 +

2

λ(β + 3)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2
3∑

i,j=1

|Xε
iX

ε
ju

ε|2η2 dL
]

+
ε2(β + 1)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|β−2ηβ
3∑

i,j=1

|Xε
iX

ε
ju

ε|2 dL

– Estimate of II. Observe that, in view of Young’s inequality, one has

|II| ≤ τ

∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|∇εη||Xε
3u

ε|β |X3u
ε|2 dL

+
(β + 2)2

τ

∫
B

(δ + |∇εu
ε|2)Q

2 ηβ |∇εη|2|Xε
3u

ε|βdL

≤ τ

∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|∇εη||Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2 dL

+ ε2
(β + 2)2)||∇εη||2L∞(B)

τ

∫
B

(δ + |∇εu
ε|2)Q

2 ηβ |Xε
3u

ε|β−2
3∑

i,j=1

|Xε
iX

ε
ju

ε|2dL

This concludes the estimate of I1, as in (6.29).

• Estimate of I2. To estimate I2 we will note that in view of the structure conditions (6.13)
there exists a constant C depending on B (essentially maxB |xi|) such that

|
∫
B

|∇εA
ε,δ
i (x,∇εu

ε)||∇εX
ε
3u

ε||Xε
3u

ε|β−1|∇εu
ε|ηβ+2 dL|

≤
∫
B

(δ + |∇εu
ε|2)Q−2

2

3∑
i,j=1

|Xε
iX

ε
ju

ε||∇εu
ε|||∇εX

ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

+ C

∫
B

(δ + |∇εu
ε|2)Q−1

2 |∇εu
ε||∇εX

ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

≤
∫
B

(δ + |∇εu
ε|2)Q−1

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|||∇εX
ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

+ C

∫
B

(δ + |∇εu
ε|2)Q

2 |∇εX
ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL.

Note that the second integral occurs only because of the dependence of Ai on the space variable
x. The first integral is estimated exactly as in [71], by means of Young’s inequality and Lemma
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6.24. In fact one has

∫
B

(δ + |∇εu
ε|2)Q−1

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|||∇εX
ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

≤ ε−2||∇εη||−2
L∞τ

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εX
ε
3u

ε|2|Xε
3u

ε|βηβ+4dL

+ Cε2β2||∇εη||2L∞τ−1

∫
B

(δ + |∇εu
ε|2)Q

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2|Xε
3u

ε|β−2ηβdL

≤ Cε−2||∇εη||−2
L∞τ(β + 2)4

Å
2Λ

λ(β + 1)
+ 2Λ

ã ∫
B

(δ + |∇εu
ε|2)Q−2

2 ηβ+2|∇εη|2|Xε
3u

ε|β+2 dL

+ 2Cβ2||∇εη||−2
L∞τΛ

Å
1 +

1

λ(β + 1)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|βηβ+4 dL

+ Cε2β2||∇εη||2L∞τ−1

∫
B

(δ + |∇εu
ε|2)Q

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2|Xε
3u

ε|β−2ηβdL.

Estimate (6.29) then follows once one assumes (without loss of generalization) that ||∇εη||L∞ ≥
1 and using the fact that |Xε

3u
ε| ≤ ε

∑3
i,j=1 |Xε

iX
ε
ju

ε|.
For the second integral we first use Young inequality and obtain

∫
B

(δ + |∇εu
ε|2)Q

2 |∇εX
ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

≤ τε−2

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εX
ε
3u

ε|2|Xε
3u

ε|βηβ+4dL

+ ε2τ−1

∫
B

(δ + |∇εu
ε|2)Q+2

2 |Xε
3u

ε|β−2ηβdL.

Invoking Lemma 6.24 and Young inequality one then has

∫
B

(δ + |∇εu
ε|2)Q

2 |∇εX
ε
3u

ε||Xε
3u

ε|β−1ηβ+2dL

≤ τε−2

ïÅ
2Λ

λ(β + 1)
+ 2Λ

ã∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Å
1 +

1

λ(β + 1)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |v3|βη2 dL
ò

+ τ−1ε2
∫
B

(δ + |∇εu
ε|2)Q+2

2 |Xε
3u

ε|β−2ηβdL (6.31)
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≤ τε−2

ïÅ
2Λ

λ(β + 1)
+ 2Λ

ã ∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εη|2|v3|β+2 dL

+ 2ε2Λ

Å
1 +

1

λ(β + 1)2

ã∫
B

(δ + |∇εu
ε|2)Q

2 |v3|βη2 dL
ò

+ τ−1 β − 2

β

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|βηβdL

+ τ−1 2

β
εβ

∫
B

(δ + |∇εu
ε|2)Q+β

2 ηβdL.

From the latter, estimate (6.29) follows once one recalls that |Xε
3u

ε| ≤ ε
∑3

i,j=1 |Xε
iX

ε
ju

ε|.
• Estimate of I3. Using the structure conditions (6.13) one has

(β + 2)

∫
B

|∇εA
ε,δ
i (x,∇εu

ε)||∇εη|Xε
3u

ε|β |∇εu
ε|ηβ+1 dL

≤ (β + 2)

∫
B

(δ + |∇εu
ε|2)Q−2

2

3∑
i,j=1

|Xε
iX

ε
ju

ε||Xε
3u

ε|β |∇εu
ε|ηβ+1|∇εη| dL

+ C(β + 2)

∫
B

(δ + |∇εu
ε|2)Q−1

2 |Xε
3u

ε|β |∇εu
ε|ηβ+1|∇εη| dL

The second integrand in the right hand side is estimated as in (6.31). To estimate the first
integral we use Young inequality to obtain

∫
B

(δ + |∇εu
ε|2)Q−2

2

3∑
i,j=1

|Xε
iX

ε
ju

ε||Xε
3u

ε|β |∇εu
ε|ηβ+1|∇εη| dL

≤ τ

∫
B

(δ + |∇εu
ε|2)Q−2

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2|Xε
3u

ε|βηβ+2 dL

+ Cτ−1

∫
B

(δ + |∇εu
ε|2)Q

2 |Xε
3u

ε|βηβ |∇εη|2 dL

and consequently invoke |Xε
3u

ε| ≤ ε
∑3

i,j=1 |Xε
iX

ε
ju

ε| to conclude that (6.29) holds.

• Estimate of I4. The structure conditions (6.13) yield

∫
B

2∑
j=1

|X3A
ε
j(x,∇εu

ε)|ηβ+2|Xε
3u

ε|β |∇εu
ε| dL

≤ (β + 2)

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εX
ε
3u

ε||Xε
3u

ε|β |∇εu
ε|ηβ+2 dL

+ C

∫
B

(δ + |∇εu
ε|2)Q−1

2 |Xε
3u

ε|β |∇εu
ε|ηβ+2 dL,

which are estimated as for (6.30) and using |Xε
3u

ε| ≤ ε
∑3

i,j=1 |Xε
iX

ε
ju

ε|.
The argument in the previous proof can be adapted to the case β = 0 to obtain
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Corollary 6.32. There exists a constant C > 0 depending only on λ,Λ, Q such that for every η ∈
C∞

0 (B) with 0 ≤ η ≤ 1 one has

∫
B

(δ + |∇εu
ε|2)Q−2

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2η2 dL

≤ C (1 + ||∇εη||2L∞(B) + ||X3η||L∞(B))

∫
Supp(η)

(δ + |∇εu
ε|2)Q

2 dL
ã
.

Note that the previous result immediately implies part (2) of Proposition 6.18.

The following corollary is a straightforward consequence of Lemma 6.26 and the Young inequality
applyed to the right hand side of inequality of the lemma.

Corollary 6.33. For every β ≥ 2 and η ∈ C∞
0 (B) with 0 ≤ η ≤ 1, one has

∫
B

(δ + |∇εu
ε|2)Q−2

2 |Xε
3u

ε|β
3∑

i,j=1

|Xε
iX

ε
ju

ε|2ηβ+2 dL

≤ εβCβ(β + 1)4||∇εη||βL∞(B)

Å∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2ηβ dL

+

∫
B

(δ + |∇εu
ε|2)Q+β

2 ηβdL
ã
.

Theorem 6.34 (Caccioppoli Inequality, [71]). For every β ≥ 2 and η ∈ C∞
0 (B) with 0 ≤ η ≤ 1, one

has

∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2η2 dL

≤ C(β + 1)8(||∇εη||L∞(B) + ||ηX3η||L∞(B))

∫
Supp(η)

(δ + |∇εu
ε|2)Q+β

2 dL

+ C

∫
B

η2(δ + |∇εu
ε|2)Q+β+1

2 dL.
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Proof. We use Hölder inequality and Corollary 6.33 to obtain

∫
B

(δ + |∇εu
ε|2)Q−2+β

2 |X3u
ε|2η2 dL

≤
Å∫

B

(δ + |∇εu
ε|2)Q−2

2 |X3u|β+2ηβ+2 dL
ã 2

β+2
Å∫

Supp(η)

(δ + |∇εu
ε|2)Q+β

2 dL
ã β

β+2

≤
Å
ε−β

∫
B

(δ+ |∇εu
ε|2)Q−2

2 |Xε
3u|β

3∑
i,j=1

|Xε
iX

ε
ju

ε|2ηβ+2 dL
ã 2

β+2
Å∫

Supp(η)

(δ+ |∇εu
ε|2)Q+β

2 dL
ã β

β+2

≤
[
Cβ(β + 1)4||∇εη||βL∞(B)

Å∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2ηβ dL

+

∫
B

(δ + |∇εu
ε|2)Q+β

2 ηβdL
ã] 2

β+2Å∫
Supp(η)

(δ + |∇εu
ε|2)Q+β

2 dL
ã β

β+2

.

Recalling Lemma 6.25 the previous estimate then yields

∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2η2 dL ≤ C(β + 1)4
∫
B

(δ + |∇εu
ε|2)Q−2+β

2 |X3u
ε|2η2 dL

+ C

∫
B

(η2 + |∇εη|2)(δ + |∇εu
ε|2)Q+β

2 dL+ C

∫
B

η2(δ + |∇εu
ε|2)Q+β+1

2 dL

≤ C(β + 1)4

[
Cβ(β + 1)4||∇εη||βL∞(B)

Å∫
B

(δ + |∇εu
ε|2)Q−2+β

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2ηβ dL

+

∫
B

(δ+|∇εu
ε|2)Q+β

2 ηβdL
ã] 2

β+2Å∫
Supp(η)

(δ+|∇εu
ε|2)Q+β

2 dL
ã β

β+2

+C

∫
B

η2(δ+|∇εu
ε|2)Q+β+1

2 dL.

The conclusion follows immediately from the latter and from Young inequality.

Lemma 6.35. Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the unique solution of (6.17). For every β ≥ 2 set

w = (δ + |∇εu
ε|2)Q+β

4 . If η ∈ C∞
0 (B) with 0 ≤ η ≤ 1, and κ = Q/(Q− 2), then one has

Å∫
B

w2κη2 dL
ã 1

κ

≤ C(β + 1)8(||∇εη||L∞(B) + ||ηX3η||L∞(B))

∫
Supp(η)

w2 dL,

where C > 0 is a constant depending only on Q.

Proof. Recall that the Sobolev constant depends only on the constants in the Poincare’ inequality
and in the doubling inequality [36], both of which are stable in this Riemannian approximation
scheme (see [11]). The result follows immediately applying Sobolev inequality and invoking Theorem
6.34.
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The proof of Theorem 6.19 now follows in a standard fashion, as described in [71], from the Moser
iteration scheme (see for instance [35, Theorem 8.18]) and from [38, Lemma 3.38]. Note that the
constant involved in such iteration are stable as ε → 0 (see [11]).

Uniform C1,α
ε regularity

Throughout this section we will implicitly use the uniform (in ε) local Lipschitz regularity of
solutions of (6.17) and set for every B(x0, 2r0) ⊂ B, k ∈ R, l = 1, 2, 3, and 0 < r < r0/4 < 1,

με(r) = oscB(x0,r)|∇εu
ε|;A−

l,k,r = {x ∈ B(x0, r) such that Xε
l u

ε < k}
and A+

l,k,r = {x ∈ B(x0, r) such that Xε
l u

ε > k}.

The proof of Proposition 6.18 and in particular of the C1,α estimate in part (1) follows immediately
from the following theorem, which is the main result of the section:

Theorem 6.36. Let uε ∈ W 1,Q
ε,loc(B)∩C∞(B) be the unique solution of (6.17). There exists a constant

s > 0 depending only on Q, λ,Λ, r0 such that

μ(r) ≤ (1− 2−s)μ(4r) + 2s(δ + μ(r0)
2)

Q
2

Å
r

r0

ã 1
Q

,

for all 0 < r < r0/8.

Our first step in the proof of this theorem consists in establishing a Caccioppoli inequality, in
Proposition 6.57 for second order derivatives on super level sets A+

l,k,r. This result will imply that
the gradient ∇εu

ε is in a De Giorgi-type class and then Theorem 6.36 will follow from well known
results in the literature.

We begin with some preliminary lemmata. We indicate by |A| the Lebesque measure L(A) of a
set A.

Lemma 6.37. Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the unique solution of (6.17). For any q ≥ 4 there

exists a positive constant C depending only on q, λ,Λ such that for all k ∈ R, l = 1, 2, 3 and
0 < r′ < r < r0/2, η ∈ C∞

0 (B(x0, r)) such that η = 1 on B(x0, r
′) one has

∫
A+

l,k,r′

(δ + |∇εu
ε|2)Q−2

2 |∇εωl|2η2 dL

≤
∫
A+

l,k,r

(δ + |∇εu
ε|2)Q−2

2 |ωl|2|∇εη|2 dL+ C(δ + μ(r0)
2)

Q
2 |A+

l,k,r|1−
2
q + I3 (6.38)

where we have set ωl = (Xε
l u

ε − k)+ and

I3 =

∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 |∇εX3u
ε||ω1|η2 dL. (6.39)
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Proof. We study the case l = 1, since l = 2, 3 is similar. Select a cut-off function η ∈ C∞
0 (B(x0, r))

such that η = 1 on B(x0, r
′) and |∇εη| ≤ M(r− r′)−1, for some M > 0 independent of ε. Substitute

φ = η2ω1 in the weak form of (6.20) to obtain

∫
B

Aε,δ
i,ξj

(x,∇εu
ε)Xε

jX
ε
1u

εXε
iω1η

2 dL = −2

∫
B

Aε,δ
i,ξj

(x,∇εu
ε)Xε

jX
ε
1u

εXε
i ηηω1 dL

−
∫
B

Aε,δ
i,ξ2

(x,∇εu
ε)X3u

εXε
i (ω1η

2) dL

+

∫
B

X3A
ε,δ
i (x,∇εu

ε)η2ω1dL

−
∫
B

Å
Aε,δ

i,x1
(x,∇εu

ε)− x2

2
Aε,δ

i,x3
(x,∇εu

ε)

ã
Xε

i (η
2ω1)dL.

Using Young inequality and the structure conditions (6.13) one easily obtains the estimate

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εω1|2η2 dL ≤ C

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εη|2ω2
1 dL

+ C

∫
B

(δ + |∇εu
ε|2)Q−2

2 |X3u
ε|2η2 dL+ C

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εX3u
ε||ω1|η2 dL

+ C

∫
B

(δ + |∇εu
ε|2)Q−1

2

Å
ω1η

2 + 2ω1η|∇εη|+ η2|∇εω1|
ã
dL ≤ I1 + I2 + I3 + I4.

The terms I1 and I3 are already in the form needed for (6.58). To estimate I4 we observe that
for every τ > 0 one can estimate

I4 ≤ τ

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εω1|2η2 dL+

Cτ−1

∫
A+

1,k,r

(δ + |∇εu
ε|2)Q

2 dL+ C

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εη|2ω2
1 dL,

thus leading to the correct left hand side for (6.58). To estimate I2 we argue as in [71] and invoke
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Theorem 6.34 and Corollary 6.33 to show

I2 ≤
Å∫

A+
1,k,r

(δ + |∇εu
ε|2)Q−2

2 dL
ã1− 2

q
Å∫

B

(δ + |∇εu
ε|2)Q−2

2 |X3u
ε|qη2 dL

ã 2
q

≤ (δ + μ(r0)
2)

Q−2
2

q−2
q |A+

1,k,r|1−
2
q

Å∫
B(x0,r0/2)

(δ + |∇εu
ε|2)Q−2

2 |X3u
ε|q−2|Xε

iX
ε
ju

ε|2 dL
ã 2

q

≤ (δ+μ(r0)
2)

Q−2
2

q−2
q |A+

1,k,r|1−
2
q

[
Cq−2(q−1)4r2−q

0

Å∫
B(x0,

2
3 r0)

(δ+ |∇εu
ε|2)Q−4+q

2

3∑
i,j=1

|Xε
iX

ε
ju

ε|2dL

+

∫
B(x0,

2
3 r0)

(δ + |∇εu
ε|2)Q+q−2

2 dL
ã] 2

q

≤ Cq(q − 1)12r−q
0 (δ + μ(r0)

2)
Q−2

2
q−2
q |A+

1,k,r|1−
2
q

[∫
B(x0,r0)

(δ + |∇εu
ε|2)Q+q−2

2 dL

+

∫
B(x0,r0)

η2(δ + |∇εu
ε|2)Q+q−3

2 dL+

∫
B(x0,r0)

(δ + |∇εu
ε|2)Q+q−2

2 dL
] 2

q

≤ Cq(q − 1)12r−q
0 (δ + μ(r0)

2)
Q
2 |A+

1,k,r|1−
2
q .

In order to obtain from the previous lemma a Cacciopoli inequality we only need to obtain an
estimate of I3. The proof of the previous lemma yields the following

Corollary 6.40. In the hypothesis and notation of the previous lemma, one has that for any q ≥ 4
there exists a positive constant C depending only on q, λ,Λ such that for all k ∈ R, l = 1, 2, 3 and
η ∈ C∞

0 (B(x0, r)),

I3 ≤ C(δ + μ(r0)
2)

Q−2
4 |A+

l,k,r|
1
2G

1
2
0 (6.41)

where

G0 =

∫
(δ + |∇εu

ε|2)Q−2
2 ω2

l |∇εv3|2η2 dL.

Proof. From Hölder inequality one has,∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 |∇εX3u
ε||ω1|η2 dL

≤ C(δ + μ(r0)
2)

Q−2
4 |A+

l,k,r|
1
2

Å∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 ω2
1 |∇εX3u

ε|2η2 dL
ã 1

2

(6.42)

Lemma 6.43. In the hypothesis and notations of Lemma 6.40, for every m ∈ N, m ≥ 1 one has that
there exists a constant C depending on m,Q, λ,Λ, such that

G0 ≤ C
m∑

h=0

K2− 1

2m+h (δ + μ2(r0))
1+ Q

2m+h+2 (6.44)
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where

K =

Å∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 ω2
l (η

2 + |∇εη|2) dL+

∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 |∇εωl|2η2 dL
ã 1

2

.

Proof. In the following we will denote by C a series of positive constants depending only on
m,Q, λ,Λ. We study the case l = 1, since l = 2 is similar and l = 3 is slightly easier.

The bound (6.44) follows from a bootstrap argument, whose main step is the subject of the
following estimates.

For β ≥ 0 and for any cut-off function η ∈ C∞
0 (B(x0, r)), let

Gβ =

∫
B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 ω2
l |∇εv3|2|v3|βη2 dL,

Fβ =

∫
B(x0,r)

(δ + |∇εu
ε|2)Q

2 |v3|β |ωl|2η2 dL,

where we recall that ωl = (Xε
l u

ε − k)+, for l = 1, 2, 3.

We claim that there exists a constant C > 0, depending only on Q, λ,Λ such that

Gβ ≤
{

CK

Å
G

1
2

2β+2 + F
1
2

2β+2 + (δ + μ(r0)
2)

1
2F

1
2

2β

ã
, if β > 0

CK

Å
G

1
2
2 + F

1
2
2 + (δ + μ(r0)

2)1+
Qσ
4 K1−σ

ã
, if β = 0 and for any σ ∈ [0, 2),

(6.45)

and

Fβ ≤
{

CK(δ + μ(r0)
2)

1
2F

1
2

2β if β > 0,

C(δ + μ(r0)
2)K2 if β = 0,

(6.46)

In particular, for every β > 0 and m ≥ 2, it will follow that one has

Fβ ≤ (CK)2(1−
1

2m )(δ + μ(r0)
2)1−

1
2m F

1
2m

2mβ . (6.47)

Estimate (6.46) follows directly from Hölder inequality and from the gradient bounds in Theorem
6.19,

Fβ =

∫
B(x0,r)

(δ + |∇εu
ε|2)Q

2 |v3|β |ωl|2η2 dL

≤
Å∫

B(x0,r)

(δ + |∇εu
ε|2)Q−2

2 |ωl|2η2 dL
ã 1

2
Å ∫

B(x0,r)

(δ + |∇εu
ε|2)Q+2

2 |v3|2β |ωl|2η2 dL
ã 1

2

≤ CK(δ + μ(r0)
2)

1
2F

1
2

2β (6.48)

To prove (6.45) substitute φ = η2ω2
l |v3|βv3 in the weak form of (6.22) to obtain

(β + 1)

∫
B

Aε,δ
iξj

(x,∇εu
ε)Xε

jv3X
ε
i v3ω

2
l |v3|βη2 dL ≤

∫
B

|Aε,δ
iξj

(x,∇εu
ε)||Xε

jv3||Xε
i [η

2ω2
l ]||v3|β+1 dL

+ ε

∫
B

|Aε,δ
i,x3

(x,∇εu
ε)Xε

i

ï
η2ω2

l |v3|βv3
ò
| dL = A+B. (6.49)
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The first term on the left hand side is estimated via Young’s inequality

A ≤ CK

Å∫
B

(δ + |∇εu
ε|2)Q−2

2 |v3|2β+2|∇εv3|2|ω1|2η2 dL
ã 1

2

For the second term we note that

B ≤ Cε

∫
B

(δ + |∇εu
ε|2)Q−1

2

∣∣∣∣∇ε

ï
η2ω2

l |v3|βv3
ò∣∣∣∣| dL

≤ Cε

∫
B

(δ + |∇εu
ε|2)Q−1

2 |v3|β+1|ω1|2η|∇εη| dL

+ Cε

∫
B

(δ + |∇εu
ε|2)Q−1

2 |v3|β |∇εv3||ω1|2η2 dL

+ Cε

∫
B

(δ + |∇εu
ε|2)Q−1

2 |v3|β+1|∇εω1||ω1|η2 dL = T1 + T2 + T3. (6.50)

For any ε̄ > 0, Young inequality and (6.46) yield the estimate

T2 ≤ ε̄

∫
B

(δ + |∇εu
ε|2)Q−2

2 |v3|β |∇εv3|2|ω1|2η2 dL

+ Cε̄

∫
B

(δ + |∇εu
ε|2)Q

2 |v3|β |ω1|2η2 dL

≤ ε̄

∫
B

(δ + |∇εu
ε|2)Q−2

2 |v3|β |∇εv3|2|ω1|2η2 dL

+ Cε̄K(δ + μ(r0)
2)

1
2F

1
2

2β . (6.51)

The other two terms are estimated through Hölder inequality as

T1 + T3 ≤ K

(∫
B

(δ + |∇εu
ε|2)Q

2 |v3|2β+2|ω1|2η2 dL
) 1

2

.

In view of the structure conditions (6.13), of (6.49), and of the estimates above for A and B one has

∫
B

(δ + |∇εu
ε|2)Q−2

2 ω2
1 |∇εv3|2|v3|βη2 dL ≤ K

Å∫
B

(δ + |∇εu
ε|2)Q−2

2 |v3|2β+2|∇εv3|2|ω1|2η2 dL
ã 1

2

+K

(∫
B

(δ + |∇εu
ε|2)Q

2 |v3|2β+2|ω1|2η2 dL
) 1

2

+ Cε̄K(δ + μ(r0)
2)

1
2F

1
2

2β + ε̄

∫
B

(δ + |∇εu
ε|2)Q−2

2 |v3|β |∇εv3|2|ω1|2η2 dL.

Bringing the last term on the right hand side over to the left hand side one obtains (6.45) in the
case β > 0. For the case β = 0, the estimate on T2 above can be improved. We let σ ∈ [0, 2) and

54



observe that

T2 ≤ ε̄

∫
B

(δ + |∇εu
ε|2)Q−2

2 |∇εv3|2|ω1|2η2 dL

+ Cε̄

∫
B

(δ + |∇εu
ε|2)Q

2 |ω1|2η2 dL

≤ ε̄G0 + Cε̄(δ + μ(r0)
2)

∫
B

(δ + |∇εu
ε|2)Q−2

2 |ω1|2η2 dL

≤ ε̄G0 + Cε̄K
2(1−σ

2 )(δ + μ(r0)
2)

Å∫
B

(δ + |∇εu
ε|2)Q−2

2 |ω1|2η2 dL
ãσ

2

≤ ε̄G0 + Cε̄K
2(1−σ

2 )(δ + μ(r0)
2)1+

Qσ
4 . (6.52)

The latter concludes the proof of the estimates (6.45) and (6.46). At this point we can proceed
with the description of the bootstrap argument needed to prove the bound on G0.

In view of Lemma 6.24, Corollary 6.32, Corollary 6.33 and Theorem 6.34 one has the following

Gβ ≤ C(δ + μ(r0)
2)

Q+β+2
2 |B(x0, r0)| and Fβ ≤ C(δ + μ(r0)

2)
Q+β+2

2 |B(x0, r0)|. (6.53)

Combining (6.53) with (6.45) and (6.46) yields for all β > 0 and m ≥ 1,

Gβ ≤ CKG
1
2

2β+2 + (CK)2−
1

2m (δ + μ2(r0))
1
2 (1− 1

2m )F
1

2m+1

2m(2β+2)

+ (CK)2−
1

2m (δ + μ2(r0))
1
2+

1
2 (1− 1

2m )F
1

2m+1

2m(2β)

≤ CKG
1
2

2β+2 + (CK)2−
1

2m (δ + μ2(r0))
β+2
2 + 1

2m+1
Q
2 |B(x0, r0)|

1

2m+1

(6.54)

Iterating the latter m times and setting βm = 2m − 2 one obtains

Gβ2 ≤ C

ï
K2(1− 1

2m )G
1

2m

βm+2
+

m∑
h=1

K2(1− 1

2m+h )(δ + μ2(r0))
2(1+ Q

2m+h+2 )
ò
.

From the latter, (6.47), and keeping in mind the starting point (6.45) corresponding to β = 0,
one concludes that for any σ ∈ [0, 2),

G0 ≤ C

ï
K2(1− 1

2m+1 )G
1

2m+1

βm+2
+

m∑
h=1

K1− 1

2m+h (δ + μ2(r0))
1+ Q

2m+h+2 + F
1
2
2 +K2(δ + μ2(r0))

ò
.

≤ C

ï
K2(1− 1

2m+1 )G
1

2m+1

βm+2
+

m∑
h=1

K2− 1

2m+h (δ + μ2(r0))
1+ Q

2m+h+2

+K1− 1
2m (δ + μ2(r0))

1
2− 1

2m+1 F
1

2m+1

2m+1 +K2−σ(δ + μ2(r0))
1+Qσ

4

ò
. (6.55)

55



Applying (6.53) to the latter and letting σ = 1
2m , yields the estimate

G0 ≤ C

ï
K2− 1

2m (δ + μ2(r0))
1+ Q+2

2m+2 +
m∑

h=1

K2− 1

2m+h (δ + μ2(r0))
1+ Q

2m+h+1

+K2− 1
2m (δ + μ2(r0))

1
2− 1

2m+1 +Q+2m+1+2

2m+2 +K2− 1
2m (δ + μ2(r0))

1+ Q

2m+2 .

ò
, (6.56)

concluding the proof.

Proposition 6.57 (Caccioppoli inequality on super-level sets). Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the

unique solution of (6.17). For any q ≥ 4 there exists a positive constant C depending only on q, λ,Λ
such that for all k ∈ R, l = 1, 2, 3 and 0 < r′ < r < r0/2 one has∫

A+

l,k,r′

(δ + |∇εu
ε|2)Q−2

2 |∇εωl|2η2 dL ≤ C

∫
A+

l,k,r

(δ + |∇εu
ε|2)Q−2

2 |ωl|2|∇εη|2 dL

+ C(δ + μ(r0)
2)

Q
2 |A+

l,k,r|1−
2
q , (6.58)

where we have set ωl = (Xε
l u

ε − k)+.

Proof. As above, we study the case l = 1, since l = 2, 3 is similar. Denote by A the right hand side
of (6.58), then in view of (6.38) one only needs to show I3 ≤ A. From Lemma 6.37 one has

K ≤ (A+ I3)
1
2 .

In view of (6.44) and Corollary 6.40 one obtains

I3 ≤ C(δ + μ(r0)
2)

Q−2
4 |A+

l,k,r|
1
2

Å m∑
h=0

K2− 1

2m+h (δ + μ2(r0))
1+ Q

2m+h+2

ã 1
2

≤ C(δ + μ(r0)
2)

Q
4 |A+

l,k,r|
1
2

m∑
h=0

Å
A 1

2 + I
1
2
3

)1− 1

2m+h+1

(δ + μ2(r0))
Q

2m+h+3 , (6.59)

Next we observe that in view of Young inequality, for every h = 1, ...,m

C(δ + μ(r0)
2)

Q
4 |A+

l,k,r|
1
2 (A 1

2− 1

2m+h+2 + I
1
2− 1

2m+h+2

3 )(δ + μ2(r0))
Q

2m+h+3

≤ 1

2
I3 +

1

2
A+ C

Å
(δ + μ(r0)

2)
Q
4 |A+

l,k,r|
1
2 (δ + μ2(r0))

Q

2m+h+3

ã 2m+h+2

1+2m+h+1

≤ 1

2
I3 +

1

2
A+ C(δ + |∇εu

ε|2)Q
2 |A+

l,k,r|
1
2 (

2m+h+2

1+2m+h+1 )
(6.60)

To complete the proof of (6.58) we choose m sufficiently large so that

1− 2

q
≤ 1

2
(

2m+h+2

1 + 2m+h+1
).
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A similar argument yields the corresponding result for sub-level sets:

Corollary 6.61. Let uε ∈ W 1,Q
ε,loc(B) ∩ C∞(B) be the unique solution of (6.17). For any q ≥ 4

there exists a positive constant C depending only on q, λ,Λ such that for all k ∈ R, l = 1, 2, 3 and
0 < r′ < r < r0/2 one has∫

A−
l,k,r′

(δ + |∇εu
ε|2)Q−2

2 |∇εωl|2 dL ≤ C(r − r′)−2

∫
A−

l,k,r

(δ + |∇εu
ε|2)Q−2

2 |ωl|2 dL

+ C(δ + μ(r0)
2)

Q
2 |A−

l,k,r|1−
2
q , (6.62)

where we have set ωl = (Xε
l u

ε − k)−.

From this point on, the rest of the argument does not rely on the function uε being a solution of
the equation anymore but only on the Caccioppoli inequality above. The proof of Theorem 6.36 is
very similar to the Euclidean case as developed in [46], and [21]. It ultimately relies on the properties
of De Giorgi classes in the general setting of metric spaces, as developed in [44] and [43]. We recall
that a function f ∈ W 1,2

H (B(x0, r0) ∩ L∞(B(x0, r0) is in the De Giorgi class DG+(χ, q, γ) if there
exists constants χ, q, γ > 0 such that for every 0 < r′ < r < r0/4 < 1/2 and k ∈ R one has∫

B(x0,r′)
|∇εw|2 dL ≤ γ(r − r′)−2

∫
B(x0,r)

w2 dL+ χ|{x ∈ B(x0, r) such that w > 0}|1− 2
q , (6.63)

where ω = (f − k)+. A function f ∈ W 1,2
H (B(x0, r0) ∩ L∞(B(x0, r0) is in the De Giorgi class

DG−(χ, q, γ) if (6.63) holds for ω = (f − k)−. We set DG(χ, q, γ) = DG+(χ, q, γ) ∩DG−(χ, q, γ).
It is well known, see for instance [43] and references therein, that functions in DG satisfy a scale
invariant Harnack inequality and the following oscillation bounds: If f ∈ DG(χ, q, γ) then there
exists s = s(q, γ,Q, r0) > 0 such that

oscB(x0,r/2)f ≤ (1− 2−s)oscB(x0,r)f + χr1−
Q
q .

From the latter, the Hölder continuity follows immediately assuming q is large enough. We need to
show that (6.58) and (6.62) imply Xε

l u
ε ∈ DG(χ, q, γ). To do this we need to prove a result analogue

to [21, Proposition 4.1]:

Lemma 6.64. In the notation established above, there exists τ > 0 depending on Q, λ,Λ, r0 such that
if for at least one k = 1, 2, 3,

|
ß
x ∈ B(x, r) such that Xε

ku
ε < 1

8oscB(x,2r)|∇εu
ε|
™
| ≤ τrQ,

then

sup
B(x, r2 )

Xε
ku

ε ≥ oscB(x,2r)|∇εu
ε|

100
.

Analogously, if for at least one k = 1, 2, 3,

|
ß
x ∈ B(x, r) such that Xε

ku
ε > −1

8
oscB(x,2r)|∇εu

ε|
™
| ≤ τrQ,

then

sup
B(x, r2 )

Xε
ku

ε ≤ −oscB(x,2r)|∇εu
ε|

100
.
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This result is proved exactly as in [21, Proposition 4.1] (see also [71, Lemma 4.4]) and it yields
essentially the equivalence

(δ + μ(2r)2)
Q−2

2 ≈ (δ + |∇εu
ε|2)Q−2

2 ,

for all x ∈ B(x0, r), when |∇εu
ε| is small with respect to oscB(x,2r)|∇εu

ε|. This equivalence, together
with (6.58) and (6.62) implies Xε

l u
ε ∈ DG(χ, q, γ), thus concluding the proof of the Hölder regularity

of the gradient in Theorem 6.36.
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(1994) 135–142.

[53] G. A. Margulis, G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory space,
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(LOMI) 7 (1968) 184–222.
[69] M. Williams, Geometric and analytic quasiconformality in metric measure spaces, Proc. Amer. Math. Soc. 140 (4)

(2012) 1251–1266.
[70] C. J. Xu, Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math. 45 (1) (1992)

77–96.
[71] X. Zhong, Regularity for variational problems in the Heisenberg group, Preprint.

60


