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Abstract 30 

Several studies estimating the effects of global environmental change on biodiversity are 31 

focused on climate change. Yet, non-climatic factors such as changes in land cover can also 32 

be of paramount importance. This may be particularly important for habitat specialists 33 

associated with human-dominated landscapes, where land cover and climate changes may 34 

be largely decoupled. Here, we tested this idea by modelling the influence of climate, 35 

landscape composition and pattern, on the predicted future (2021-2050) distributions of 36 

21 farmland bird species in the Iberian Peninsula, using boosted regression trees and 10-37 

km resolution presence/absence data. We also evaluated whether habitat specialist species 38 

were more affected by landscape factors than generalist species. Overall, this study showed 39 

that the contribution of current landscape composition and pattern to the performance of 40 

species distribution models (SDMs) was relatively low. However, SDMs built using either 41 

climate or climate plus landscape variables yielded very different predictions of future 42 

species range shifts and, hence, of the geographical patterns of change in species richness. 43 

Our results indicate that open habitat specialist species tend to expand their range, 44 

whereas habitat generalist species tend to retract under climate change scenarios. The 45 

effect of incorporating landscape factors were particularly marked on open habitat 46 

specialists of conservation concern, for which the expected expansion under climate 47 

change seems to be severely constrained by land cover change. Overall, results suggest that 48 

particular attention should be given to landscape change in addition to climate when 49 

modelling the impacts of environmental changes for both farmland specialist and generalist 50 

bird distributions. 51 

 52 
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Introduction 57 

Many studies have attempted to estimate the future effects of global environmental 58 

changes on biodiversity (e.g., Thuiller et al., 2005; Araújo et al., 2006; Garcia et al., 2011). 59 

Many of these studies examine the effect of climate change alone, leaving aside the effects 60 

of non-climatic drivers (e.g., Harfoot et al., 2014, Morelli & Tryjanowsky, 2015, Titeux et al., 61 

2016). However, the effects of climate change on biodiversity can be influenced by 62 

interactions with other components of global change (e.g., Clavero et al., 2011; Hof et al., 63 

2012, Maxwell et al., 2016), particularly with land use changes and related effects on other 64 

pressures such as water regime (e.g., Jetz et al., 2007; Rosenzweig et al., 2008; Thuiller et 65 

al., 2014a; Newbold et al., 2016). 66 

Both climate and land cover changes are considered major drivers of global biodiversity 67 

change (Sala et al., 2000; Jetz et al., 2007; de Chazal & Rounsevell, 2009). However, climate 68 

is often regarded as the most important driver at large spatial extents and coarse spatial 69 

resolutions (e.g., Thuiller et al., 2004a; Luoto et al., 2007; Triviño et al., 2011). The relative 70 

contribution of climate and land cover on future species range shift projections remain 71 

poorly explored (Pearce-Higgins and Green, 2014; but see studies from Table 1, Suppl. 72 

Mat.). Previous studies have found that land cover can be correlated with climate and that 73 

including land cover variables did not improve the accuracy of species distribution models, 74 

as expected (e.g., Seoane et al., 2003; Thuiller et al., 2004a; Triviño et al., 2011; Reino et 75 

al., 2013). Although climate and land cover are generally correlated, however, climate does 76 

not necessarily fully control land cover, which may be affected by a number of additional 77 

factors such as soil type, topography, socio-economic contexts and policies (Veldkamp & 78 

Lambin, 2001; Ribeiro et al., 2014, 2016). In addition, because climate and land cover often 79 

play key roles at different spatial scales (Pearson et al., 2004), they are likely to show 80 

different geographical patterns of change and hence may affect different regions in a 81 
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distinct way. Moreover, climate and landscape drivers may interact in their effect on 82 

species geographical range, because the two drivers may have different effects on different 83 

groups of species (Opdam & Wascher, 2004; Sohl, 2014; Jarzyna et al., 2015). 84 

Most studies modelling the consequences of changes in the structural component of 85 

landscape have ignored potentially important processes related to landscape 86 

fragmentation (e.g., Vallecillo et al., 2009; Triviño et al., 2011), although they have been 87 

shown to be determinant for some species (Jarzyna et al., 2015). This is the case, for 88 

instance, of some farmland bird specialists that were shown to be very sensitive to habitat 89 

fragmentation at several spatial scales (Reino et al., 2009, Reino et al., 2013). There is a 90 

well-established idea that generalist species tend to cope better with environmental 91 

changes than specialist species (Gilman et al., 2010, Clavel et al., 2011, Davey et al.; 2012, 92 

Lurgi et al.; 2012; Case et al., 2015). However, at the same time, some studies point to an 93 

idiosyncratic nature of species responses to climate change, making it difficult to draw 94 

generalizations (e.g., Mair et al., 2012; Moritz & Agudo, 2013; Sohl, 2014). For example, in 95 

a recent study, Princé et al. (2015) found that the relative sensitivity of farmland bird 96 

specialists and generalists to climate and land cover changes varied among the different 97 

global change scenarios that were considered (Princé et al., 2015). 98 

Here we model the relative importance of changes at the landscape level on range shifts 99 

predictions under future environmental change scenarios, aiming at bringing new insights 100 

on the interplay of three component of the environment: biosphere, atmosphere and 101 

anthroposphere. We focused on farmland birds in the Iberian Peninsula, considering both 102 

climate change and changes in land cover and landscape structure, mainly as the result of 103 

land abandonment and changes in agricultural practices, associated with three 104 

socioeconomic scenarios for the period of 2021 to 2050. We hypothesize that taking into 105 

account changes in landscape composition and structure will potentially strongly affect 106 

predictions of farmland bird geographical ranges under climate change scenarios. We also 107 
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expect that the potential impacts of landscape changes on farmland bird geographical 108 

ranges is dependent on the degree of habitat specialization (Clavel et al., 2011), namely the 109 

association to farmland landscapes. The overarching goal of this study is thus to examine 110 

the proposition that landscape changes should be accounted for when forecasting the 111 

effects of environmental changes on the distribution of species highly sensitive to 112 

landscape structure. 113 

 114 

Material and Methods 115 

Data 116 

We used distributional records for 21 Iberian farmland bird species (Table 1), obtained from 117 

the most recent breeding bird atlas from Spain (Martí & Moral, 2003) and Portugal (Equipa 118 

Atlas, 2008), reporting the occurrence of bird species in 5923 10×10 km resolution UTM 119 

cells. These are the highest-resolution bird distribution data available for Iberia. Farmland 120 

birds selected for this study include species with different degrees of habitat specialization 121 

to open habitats, because these seem to be those most at risk from ongoing changes in 122 

agricultural land cover. Some of the species are highly specialized to open grassland 123 

habitats (e.g., Calandra lark Melanocorypha calandra), whereas others can tolerate 124 

different degrees of habitat fragmentation (e.g., Little bustard Tetrax tetrax), or are often 125 

considered habitat generalists (e.g., Corn bunting Emberiza calandra). Nonetheless, most 126 

of the farmland species considered may tolerate a wide range of habitats, though we 127 

excluded species which are often associated with tree-cover habitats (e.g., red-legged 128 

partridge Alectoris rufa). For each species, the mean landscape Shannon diversity index in 129 

the occurrence cells, based on the forty-four land cover classes from CORINE (EEA, 2000), 130 

was computed and the resulting values, after rescaling between 0 and 1, were inverted. We 131 

used the resulting index, here referred to as Landscape Specialization Index (LSI), as a 132 

surrogate of habitat specialization (see Table 1). A significant negative relationship between 133 
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bird’s habitat specialization and landscape fragmentation derived from CORINE land cover 134 

maps was shown elsewhere (Devictor et al., 2008). 135 

We used three climatic variables that synthetize two factors – energy and water – that 136 

determine biological diversity distribution worldwide (Hawkins et al., 2003): average 137 

minimum temperature of the coldest month, average mean maximum temperature of the 138 

hottest month and average total annual precipitation. A fourth selected climatic variable - 139 

standard deviation of monthly means of minimum temperature – reflected seasonality of 140 

climate. The baseline climatic data was obtained from the Portuguese and Spanish 141 

meteorological agencies (IM and AEMET, respectively), interpolated to a UTM 10×10 km 142 

grid (Araújo et al., 2012). 143 

The future climate was based on the scenarios developed in the ALARM project 144 

(http://www.alarmproject.net/alarm, Assessing Large-scale Environmental Risks for 145 

biodiversity with tested Methods; Settele et al. (2005)), resampled at a 10-min resolution 146 

(~16 km at the latitude of the study). Future scenarios of climate and land cover for the 147 

period 2021-2050 were based on the three alternative storylines developed in the ALARM 148 

project: 1) “Business As Might Be Usual” (BAMBU based on the A2 scenario from the IPCC), 149 

2) “Growth Applied Strategy” (GRAS based on the A1F1 scenario from IPCC) and 3) 150 

“Sustainable European Development Goal” (SEDG based on the B1 scenario from IPCC). 151 

These scenarios covered a broad range of potential socio-economic, political, technological 152 

and geobiosphere changes, and were developed to describe alternative future pathways of 153 

key driving factors affecting biodiversity (Araújo et al., 2008; Dendoncker et al., 2006; 154 

Rounsevell et al., 2006; Spangenberg et al., 2007, 2012). The future land cover change 155 

scenarios were based on the Coordination of Information on the Environment (CORINE 156 

Land Cover; EEA, 2002, see Rounsevell et al., (2006) and Dendoncker et al., (2007) for 157 

methodology details). The forty-four land cover classes from CORINE were aggregated into 158 

six classes for these scenarios: Urban, Cropland, Permanent crops, Grassland, Forest, and 159 

http://www.alarmproject.net/alarm
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Others. We assumed that Cropland was the class encompassing the most suitable habitats 160 

for the selected Iberian farmland bird species. For both future scenarios and the baseline 161 

period, the Cropland class resulted from aggregation of the following CORINE classes: 1) 162 

Non-irrigated arable land; 2) Permanently irrigated land; 3) Rice fields; and 4) Complex 163 

cultivation patterns. The Grassland class was not considered as a relevant land cover 164 

aggregation for farmland bird species because it is overly abundant in Portugal due to a 165 

somehow arbitrary amalgamation of several land cover types (for example, the category 166 

“Land principally occupied by agriculture with significant areas of natural vegetation” was 167 

included in the Grassland category). 168 

Future climatic scenarios were downscaled to the same 10-km grid cell resolution of the 169 

baseline data. For both baseline period and future land cover scenarios, we assumed that 170 

the quantity of suitable habitat for farmland birds is strongly influenced by the percentage 171 

of the grid cells covered with the class Cropland. We computed three landscape 172 

fragmentation metrics on the distribution of croplands for each 10×10 km UTM grid cell of 173 

Iberian Peninsula, following the approach used in a previous study (Reino et al., 2013). 174 

Landscape metrics comprised three variables: mean cropland patch area, number of 175 

cropland patches, and edge density. We computed edge density, i.e. edges between 176 

patches of different classes, using the total edge length of cropland patches at each grid 177 

square. The computation of the percentage of cropland area and the three landscape 178 

metrics at each 10km grid cell were based on land cover raster themes with 100m 179 

resolution. We carried out the analyses in ArcGIS 9.3 (ESRI, 2006). 180 

Because birds’ data were restricted to the Iberian Peninsula, arguably the models may fail 181 

to capture the full range of suitable conditions of each species. This may cause truncated 182 

response curves at extreme conditions and, consequently, biased projections (Thuiller et 183 

al., 2004b). To evaluate this potential effect, we mapped the grid cells that in the future 184 

would lay outside the training conditions for each climatic variable. Only for the BAMBU 185 
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scenario and one variable (Mean Maximum Temperature), a considerable extension of the 186 

Iberian Peninsula (24,7% of the grid cells) was predicted to be outside the baseline range 187 

of values. For the remaining variables, extrapolation area represented less than 5% of the 188 

grid cells. For the GRAS and SEDGE scenarios, the extrapolation area represented, 189 

respectively, less than 2% and 1% for all climatic variables. All extrapolation areas showed 190 

warmer and drier climates. Because all species occur in North Africa we can assume that 191 

climate projections will not go beyond species tolerances. Nevertheless, this potential 192 

problem was duly considered when interpreting our modelling results, though violation of 193 

such assumption would mainly affect the high-end scenario (BAMBU). Regarding landscape 194 

structure, given the high structural heterogeneity of Iberian landscape we can assume that 195 

a sufficient broad gradient is covered in the baseline. 196 

 197 

Statistical modelling 198 

We developed boosted regression trees (BRT) (Friedman et al., 2000, Hastie et al., 2001) to 199 

estimate the relationship between the 21 Iberian farmland birds and the climatic and 200 

landscape variables for the baseline period. We then used the resulting relationships to 201 

project the potential distributions under the three future climate and land cover change 202 

scenarios for 2021-2050. BRT differs from the traditional classification and regression tree 203 

techniques that produce a single ‘best’ tree, by making use of a ‘boosting’ technique to 204 

combine large numbers of relatively simple tree models adaptively, in order to optimize 205 

predictive performance (see e.g., Elith et al., 2006; Leathwick et al., 2006, 2008 for further 206 

details). The main difference between BRT and other tree-based ensemble techniques (e.g., 207 

random forests; Prasad et al., 2006) is that trees are fitted sequentially through a stagewise 208 

process, i.e., at each step of model development, the trees from previous steps are left 209 

unchanged as the model is enlarged (Elith et al., 2008). This relative model rigidity, where 210 

the overall hierarchical structure of variable effects is maintained stable, is an important 211 
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feature for the purpose of our study, which focuses on two very different sets of variables 212 

(climate and landscape) that are expected to act hierarchically on species distributions 213 

(Pearson et al., 2004). Furthermore, BRT are recognized for their capabilities to reliably 214 

selected meaningful variables, through automatic detection of interactions and robust 215 

fitting of trends (Hastie et al., 2001). BRT has also the advantage of handling different types 216 

of variables, and coping with collinearity and non-linear relationships between predictors 217 

(Elith et al., 2008). 218 

To optimize the number of trees in each BRT model, we carried out a stepwise process 219 

based on 10-fold cross-validations using mean deviance on the validation data as a measure 220 

of predictive performance (Elith et al., 2008). Two important parameters must be defined 221 

a priori to determine the number of trees required for optimal predictions: the learning 222 

rate, which determines the contribution of each tree to the growing model, and the tree 223 

complexity that controls the number of interactions among variables (i.e., the number of 224 

splits of individual trees). We used three alternative values for both tree complexity and 225 

learning rate to account for the uncertainties introduced by the subjectivity of the 226 

previously selected parameter values. To select a range of learning rate and tree complexity 227 

values ensuring that at least 1000 trees were achieved after the stepwise process (Elith et 228 

al., 2008), we first trained the data using several alternative learning rate and tree 229 

complexity values. We finally set learning rate values to 0.002, 0.003 and 0.004 and tree 230 

complexity values to 3, 4 and 5. Discrimination power of models was assessed by computing 231 

the mean Area Under the Receiver Operational Curve (AUC; Fielding & Bell, 1997) based on 232 

10-fold cross-validations. BRT were computed with the gbm (Ridgway, 2013) and dismo 233 

(Hijmans et al., 2012) libraries in R software version 2.15.2 (R Development Core Team, 234 

2013). 235 

To assess the impact of including landscape variables in the predictions of distribution 236 

expansion/retraction of species, we fitted two different models per species for each 237 
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learning rates and tree complexity combination: a climate-only model and a 238 

climate+landscape model. For each kind of model, the probabilities of occurrence from the 239 

nine models resulting from the pairwise combination of learning rates and tree complexity 240 

values were averaged following standard committee averaging procedures in ensemble 241 

modelling (Araújo & New, 2007). The importance of each variable to the model was based 242 

on the measure of relative influence described in Friedman (2001) and averaged across the 243 

nine models. 244 

 245 

Range shifts 246 

We classified the probabilities of occurrence obtained with the BRT models into potential 247 

presence/absence maps for the baseline period and for the period of 2021-2050 under the 248 

three alternative scenarios hypothesis. The probability value that maximized the sum of 249 

sensitivity and specificity was used as the cut-off point for discriminating predicted 250 

presence and absence (Liu et al., 2005). 251 

Using the resulting maps of the potential species distributions we computed the net 252 

variation of the geographical range for both climate-only and climate+landscape models (% 253 

of variation of the predicted species prevalence relative to the baseline), between the 254 

baseline and the future scenarios. We also computed the difference of the range variation 255 

between climate-only and climate+landscape models to assess if the inclusion of landscape 256 

variables led to a weaker/stronger range retraction or weaker/stronger range expansion. 257 

We tested the correlation between the Landscape Specialization Index for each species and 258 

both the variation of the geographical range area and the difference of the range area 259 

variation between climate-only and climate+landscape models. We computed the number 260 

of winner species (i.e. species that are currently absent but predicted to be present in the 261 

future) and of loser species (i.e. species that are currently present but predicted to be 262 



11 
 

absent in the future) in each grid cell based on the differences between species 263 

presence/absence maps for the baseline and each future scenario predictions. To test 264 

differences among the three scenarios in the resulting maps, we used a modified version of 265 

the t-test to assess correlation between two spatial processes (Clifford et al., 1989) 266 

implemented in the SpatialPack R package (Osorio et al., 2012). 267 

 268 

Results 269 

Model performance 270 

The incorporation of landscape variables in the climate-based models consistently 271 

improved model’s discrimination ability, as measured with mean cross-validation AUC 272 

values (Wilcoxon signed rank test, P<0.001). However, the contribution of landscape 273 

variables did not increase substantially the discrimination ability of models, with percent 274 

(%) of improvements varying from 0.06% for Calandrella rufescens to 4.68% for Circus 275 

pygargus (Table 1). The species Landscape Specialization Index was positively correlated 276 

with AUC values of both the climate-only (Pearson r=0.49, p<0.05) and climate+landscape 277 

models (Pearson r=0.51, p<0.02). However, habitat specialization was not correlated with 278 

the percentage increase of discrimination ability (Pearson r=-0.08, p=0.74). 279 

 280 

Variable importance 281 

The climatic variables with the highest relative influence in the models were the average 282 

minimum temperature of the coldest month and the average mean maximum temperature 283 

of the warmest month (Table 2). The importance of these two variables showed no 284 

significant correlations with the species Landscape Specialization Index (mean maximum 285 

temperature, Pearson r=0.06, p-value=0.80; mean maximum temperature, Pearson r= -286 

0.16, p-value=0.48). Among the landscape variables, the mean cropland patch area 287 
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followed by the edge density were found to be the most influential for all the species, 288 

independently of their degree of specialization. 289 

 290 

Range shifts 291 

The direction of projected range shifts for 17 out of 21 farmland bird species were 292 

consistent among the three socio-economic scenarios. Among these, range expansion was 293 

predicted for 10 species and range contraction was predicted for 7 species (Table 3). 294 

Overall, the strongest influence of landscape variables in range shifts, were found for 295 

species predicted either to show stronger retraction or weaker expansion of their 296 

geographical range (Table 3). The maximum variation in the percentage of range shift 297 

change was found for Otis tarda (e.g., -158.8% for the GRAS scenario) and Pterocles alchata 298 

(e.g., 151.0% for the GRAS scenario). For the three scenarios, no significant correlations 299 

were found between the percentage of increase in the discrimination ability of models and 300 

the percentage of predicted range shift changes after considering landscape variables 301 

(Pearson’s correlation, r<1 and p>0.6 for all scenarios). 302 

When the outputs of climate+landscape models were related with the species’ degree of 303 

habitat specialization, as given by the Landscape Specialization Index (LSI), some general 304 

trends on the predicted range shifts emerged. The relationship between predicted range 305 

shifts and LSI indicates a tendency from range retractions to range expansions for increasing 306 

species’ habitat specialization (Fig. 1). This positive correlation was significant (Pearson’s 307 

correlation, p < 0.05) for all scenarios in the case of climate-only models. In the case of 308 

climate+landscape models, the correlation was significant for the GRAS scenario, whereas 309 

for the BAMBU and SEDGE scenarios the relationships were only marginally significant (Fig. 310 

1). 311 



13 
 

A significant negative relationship between LSI and the variation of range shift percent 312 

change after including landscape variables in the models (i.e. the difference between the 313 

percent change of range shift in the climate-only model and the percent change of range 314 

shift in the climate + landscape model), was found for the three scenarios (Pearson’s 315 

correlation, p < 0.05; Fig. 2). For increasing LSI values, a tendency for the percentages of 316 

change to be more negative was found, i.e., as the degree of species habitat specialization 317 

increases, climate-only models tended to be more over-optimistic in comparison to 318 

climate+landscape models. 319 

 320 

Species richness 321 

The mean number of farmland bird species per 10x10 km UTM grid cell was forecasted to 322 

be significantly higher in the future under any of the three socioeconomic scenarios than 323 

at present (Wilcoxon signed rank test, p < 0.001). However, the average absolute increase 324 

in local species richness was significantly lower using the climate+landscape model than the 325 

climate-only model under the BAMBU (0.48 species ± 3.16 SD vs. 1.43 species ± 3.74 SD), 326 

GRAS (0.20 species ± 3.34 SD vs. 1.31 species ± 3.83 SD) and SEDGE (0.59 species ± 3.21 SD 327 

vs. 1.68 species ± 3.65 SD) scenarios. There were also differences between models in the 328 

spatial pattern of absolute variation in local species richness. Generally, climate-only 329 

models tended to predict larger areas of richness increase in both central and southern 330 

Iberia, while climate+landscape models tended to predict larger areas of richness increase 331 

in Northern Iberia (Fig. 3). Consistent increases in species richness were predicted to occur 332 

irrespective of model type in central and southern Iberia. 333 

 334 

Losers and winners 335 

The geographical patterns of loser and winner species per 10 km grid square were also 336 

largely dependent on whether landscape variables were included or not in the models (Fig. 337 
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4). Significant correlations among the three climate change scenarios were found for both 338 

winners and losers maps, even after accounting for spatial autocorrelation (modified t-test, 339 

p < 0.001). Climate-only models predicted a larger area with high numbers of winner species 340 

(Fig. 4, left maps, yellow areas), mainly in the centre, southern Iberian mountain ranges and 341 

the eastern coast. Contrarily, climate+landscape models predicted a larger area showing 342 

high numbers of loser species, mainly in the southern plains (Fig. 4, right maps, blue areas). 343 

 344 

 345 

Discussion 346 

Our results confirm the hypothesis that the inclusion of landscape variables in species 347 

distribution models strongly affect range shift predictions of Iberian farmland birds, despite 348 

a generally low contribution to models’ performance. Overall, the resulting species 349 

distribution models predict that habitat specialists will tend to expand their range, whereas 350 

generalists will tend to retract under climate change scenarios. However, in many cases, 351 

the inclusion of landscape variables in the models leads to an attenuation of the projected 352 

range expansion of specialist species under scenarios of both climate and landscape 353 

changes. 354 

 355 

Impacts of landscape variables on predicted range shifts 356 

Our results are in agreement with other studies that also show a relatively small 357 

contribution of landscape related covariates in relation to climate when modelling 358 

distributions at coarse spatial resolutions (e.g., Thuiller et al., 2004a; Luoto et al., 2007; 359 

Triviño et al., 2011). These findings have supported the view that, for many species, 360 

variables such as land cover could sometimes be disregarded from predictive distribution 361 

models at wide spatial scales and coarse resolutions (Pearson et al., 2004; Thuiller et al., 362 
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2004a; Triviño et al., 2011). Furthermore, the often-found correlation between climate and 363 

land cover variables has supported this view (e.g., Thuiller et al., 2004a).  364 

 365 

Despite the small explanatory power of landscape metrics, we found that they were 366 

associated to major changes on species range shifts under global environmental change. In 367 

fact, the addition of landscape variables in the models resulted in deviations up to 150% of 368 

the range shift predictions of models using climate alone (Table 3). Landscape changes may 369 

occur at a higher pace and magnitude compared to climatic changes and consequently even 370 

small contributions to models might result in a noticeable impact on predictions.  The 371 

significant impact of land use on predictions is also partially in accordance with recent 372 

studies that predict large-scale changes in biodiversity (Thuiller et al., 2014a; Princé et al., 373 

2015, Estrada et al., 2016).  374 

 375 

Finally, despite their low contribution to models’ accuracy, the inclusion of landscape 376 

variables also extensively affected predictions of the geographical patterns of richness and 377 

of species gains and losses in relation to the climate-only based models. Joint models 378 

(climate/landscape) predicted globally more “loser species” and less “winner species” per 379 

grid-square than the climate-only models, resulting in an overall lower predicted mean 380 

richness per grid-square. In fact, it has been shown that population changes in farmland 381 

birds are often closely related to changes in the intensity of agricultural management rather 382 

than to be driven by climatic changes alone (e.g., Pearce-Higgins & Green, 2014). These may 383 

implicitly suggest that for the majority of farmland species, recent climate change could still 384 

be considered of secondary importance, when compared to changes in agricultural 385 

management, which is generally leading worldwide to the intensification of agriculture 386 

(e.g., Eglington & Pearce-Higgins, 2012). Even if climatic variables are more determinant 387 
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according to models of farmland bird distribution, their change in the recent past has been 388 

much more subtle than land use changes, which might explain the aforementioned trend. 389 

 390 

The importance of landscape variables along the habitat specialization gradient 391 

The trend found in the projected range shifts along the species’ habitat specialization 392 

gradient contrasts with the generally accepted idea that generalist species cope better with 393 

environmental changes than specialist species (e.g., Clavel et al., 2011). The latter species 394 

also appear to have a narrower thermal tolerance, for instance, when compared with more 395 

generalist species. This means that habitat change unrelated to climate change may affect 396 

species community composition (e.g., Clavero et al. 2011). Nevertheless, the general results 397 

of this study are in line with a recent study that found a tendency of generalist bird species 398 

occurring in farmlands to be often more affected by climate and land cover changes than 399 

specialist farmland birds (Princé et al., 2015). However, strict generalizations can hardly be 400 

drawn from our results, which supports the idiosyncratic nature of species responses to 401 

climate change (Moritz & Agudo, 2013). In the case of Iberian farmland birds, specialist 402 

species are most often adapted to higher temperatures, which might explain the frequent 403 

geographic range expansions predicted for these species. However, because habitat 404 

specialists are often more dependent of specific habitat conditions this may halt their 405 

expansion to other areas with suitable habitat conditions due to habitat and land cover 406 

change, for instance. 407 

A major effect of incorporating landscape variables in the models was a less optimistic 408 

future for specialist species, mainly with a lower range expansion or, in some cases, a 409 

stronger range contraction than predicted by climate-only models. A possible explanation 410 

is that, since specialist species tend to be more constrained by both landscape changes and 411 

the level of intensity of agricultural management (see Eglington & Pearce-Higgins, 2012), a 412 

decrease in landscape favourability in the new expansion areas will counteract with the 413 
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climatic favourability, resulting in an antagonistic effect between climate and landscape. 414 

This is a relevant result for conservation purposes because very often specialist species 415 

have an important conservation status and therefore it is crucial to produce more realistic 416 

predictions when accounting for the potential effects of climate change (Eglington & 417 

Pearce-Higgins, 2012).  418 

Lower expansions after including landscape variables in the models were projected for six 419 

non-passerine species (out of nine) and two passerine species. This outcome suggests that 420 

for a considerable number of species, including some of the most relevant farmland species 421 

of European conservation concern (e.g., little and great bustards and lesser kestrel), future 422 

projections based on climatic variables alone might lead to overestimating the expected 423 

expansion. Stronger contractions after accounting for landscape changes were predicted 424 

only for four species, including three non-passerine species, of which two are of European 425 

conservation concern (Black-bellied Sandgrouse and Pin-tailed Sandgrouse), and a 426 

passerine species (Corn Bunting). On the contrary, for some species, including some with a 427 

relevant conservation status, the incorporation of landscape variables reduced the 428 

possibility of a strong range contraction or lead to an increase of the predicted geographical 429 

ranges. The set of species in this group included both lark species (crested and Thekla’s 430 

larks) and two species of European conservation concern (Black-eared wheatear and 431 

Dupont’s lark). For two Iberian widespread species (skylark and Linnet), at least partially, 432 

lower impacts on species range are also expected when landscape variables are included in 433 

the models. After accounting for landscape changes, a future range increase was predicted 434 

for a few generalist and ecotone-related species. This seems to be the case of the woodlark, 435 

which is an open-habitat species associated with more fragmented farmland landscapes, 436 

but also of other farmland species like short-toed lark, which is frequent in more 437 

fragmented and convoluted landscapes (Reino et al., 2009). 438 

 439 
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 440 

Conclusions 441 

This study underpins the need to consider landscape composition and structure when 442 

modelling species range shifts under future climate scenarios. This is particularly the case 443 

for habitat specialists, which are strongly constrained by habitat availability and 444 

configuration. In addition, our models show that specialist species (many with relevant 445 

European conservation concern, Table S2) produce less optimistic predictions when 446 

landscape changes are also accounted for. The interplay between climate and landscape 447 

variables has important implications for an adequate mitigation strategy under climate 448 

change. Because farmlands are one of the most extensively modified landscapes and very 449 

dependent on management practices and regional policies, the rate, magnitude and 450 

direction of alteration is probably more decoupled from climate change than other less 451 

altered landscapes. For example, Princé et al., (2015) recently reported that including 452 

farmland cover variables could potentially compensate the negative effect of climate 453 

change on some species. This means that one needs to be aware when attributing some of 454 

the forecasted changes specifically to climate warming (Eglington & Pearce-Higgins, 2012). 455 

On the other hand, it also means there is more margin to put into practice management 456 

actions that may counteract the negative effects of climate change on bird communities. 457 

Our results confirm this idea by showing that more optimistic predictions under climate 458 

change for the future are possible when land cover changes are also taken into account. 459 

This might suggest that, by implementing right mitigation measures at the landscape level, 460 

it would be possible to produce more optimistic predictions for the future, i.e., enlarged 461 

range expansions and reduced range contractions. 462 

 463 
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Table 1 – Discrimination power as measured by the mean cross-validation 718 

AUC among the nine combinations of BRT settings, and respective 719 

standard deviation, of distribution models developed for each farmland bird 720 

species using either climate variables and both climate and landscape 721 

variables. In each case we indicate the percent variation of mean AUC for 722 

climate + landscape models in relation to climate only models. 723 

 724 

Species Climate 
Climate + 

Landscape 
% AUC variation 

Falco naumanni 0.878 (0.0005) 0.888 (0.0005) 1.16 

Circus pygargus 0.820 (0.0017) 0.859 (0.001) 4.68 

Tetrax tetrax 0.852 (0.0014) 0.882 (0.0007) 3.42 

Otis tarda 0.867 (0.0015) 0.889 (0.0011) 2.53 

Coturnix coturnix 0.774 (0.0023) 0.804 (0.0013) 3.89 

Pterocles alchata 0.933 (0.0011) 0.941 (0.0007) 0.89 

Pterocles orientalis 0.859 (0.0008) 0.884 (0.0009) 2.93 

Burhinus oedicnemus 0.852 (0.0011) 0.876 (0.0012) 2.82 

Coracias garrulus 0.846 (0.0011) 0.856 (0.001) 1.21 

Alauda arvensis 0.868 (0.0003) 0.871 (0.0004) 0.28 

Anthus campestris 0.846 (0.0006) 0.851 (0.0008) 0.60 

Lullula arborea 0.839 (0.0005) 0.851 (0.0004) 1.49 

Melanocorypha calandra 0.885 (0.0006) 0.909 (0.0004) 2.69 

Calandrella brachydactyla 0.824 (0.0005) 0.842 (0.0007) 2.11 

Calandrella rufescens 0.947 (0.0009) 0.947 (0.0007) 0.06 

Galerida cristata 0.908 (0.0006) 0.925 (0.0004) 1.86 

Galerida theklae 0.869 (0.0012) 0.877 (0.0012) 0.90 

Chersophilus duponti 0.919 (0.0009) 0.928 (0.0007) 0.87 

Oenanthe hispanica 0.856 (0.0006) 0.861 (0.0009) 0.55 

Carduelis cannabina 0.793 (0.0015) 0.801 (0.0017) 0.97 

Emberiza calandra 0.892 (0.0007) 0.913 (0.0006) 2.29 
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Table 2 – Mean importance of variables in the climate+landscape BRT model 735 

(grey intensity reflects variable importance). Crop – presence/absence of 736 

cropland; Edge - edge density; MPA - mean cropland patch area; NUMP - 737 

number of cropland patches; Prec - average total annual precipitation; Tmax 738 

- average mean maximum temperature; Tmin - average minimum 739 

temperature of the coldest month; Tmin SD - minimum temperature standard 740 

deviation. 741 

 742 

Species Crop Edge MPA NUMP Prec Tmax Tmin Tmin SD 

F. naumanni 0.01 6.07 25.99 2.11 9.42 36.63 6.95 12.83 

C. pygargus 0.02 8.96 9.51 3.20 12.55 21.66 30.92 13.19 

T. tetrax 0.00 7.29 7.64 2.25 13.03 17.18 38.40 14.22 

O. tarda 0.00 7.28 14.45 2.29 10.25 43.23 8.57 13.92 

C. coturnix 0.11 9.05 13.04 2.85 15.51 18.99 23.19 17.26 

P. alchata 0.00 7.33 22.84 2.85 12.89 28.47 7.72 17.89 

P. orientalis 0.00 8.23 21.08 2.76 10.16 36.25 8.39 13.13 

B. oedicnemus 0.01 6.68 7.22 2.71 9.87 22.31 40.24 10.97 

C. garrulus 0.00 6.58 9.76 2.06 12.82 20.12 30.43 18.24 

A. arvensis 0.05 3.47 3.85 1.87 11.79 18.48 48.09 12.39 

A. campestris 0.01 5.20 6.31 2.16 13.65 23.29 34.99 14.38 

L. arborea 0.04 4.13 11.91 2.96 13.68 24.34 24.89 18.05 

M. calandra 0.00 4.47 8.25 1.55 9.18 31.46 34.58 10.51 

C. brachydactyla 0.01 6.61 7.58 2.34 8.28 17.38 47.51 10.30 

C. rufescens 0.00 7.17 8.22 5.24 9.84 15.52 43.01 11.00 

G. cristata 0.02 4.55 6.53 1.06 7.08 8.41 64.70 7.65 

G. theklae 0.01 4.34 5.69 1.51 10.05 19.26 46.36 12.78 

C. duponti 0.00 9.64 12.21 7.45 13.41 18.58 23.26 15.45 

O. hispanica 0.01 3.73 5.64 3.23 8.68 18.94 46.28 13.49 

C. cannabina 0.05 7.99 21.67 3.11 12.69 25.17 12.00 17.32 

E. calandra 0.09 5.06 13.40 1.87 10.57 49.40 8.73 10.89 
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Table 3. Differences between the range shifts predicted by species 749 

distribution models based on climate alone and on climate + landscape for 750 

the three future ALARM storyline scenarios. Values indicate the additional 751 

percentage of change introduced when landscape variables are also 752 

considered in the models.  Symbols denote the direction of the range change 753 

of the climate/landscape and whether the model based on climate/landscape 754 

predicts stronger or lower changes than model based on climate alone.  - 755 

weaker retraction; - stronger retraction;  - weaker expansion;  - 756 

stronger expansion. 757 

 758 

Species Additional % change 

 BAMBU GRAS SEDGE 

Falco naumanni -21.2  -8.0  -33.0  

Circus pygargus -14.4  -17.7  -12.7  

Tetrax tetrax -20.6  -25.0  -21.0  

Otis tarda -132.6  -158.8  -138.7  

Coturnix coturnix -40.8  -44.8  -42.7  

Pterocles alchata -121.5  -151.0  -132.6  

Pterocles orientalis -58.1  -73.3  -74.5  

Burhinus oedicnemus -28.2  -29.7  -28.4  

Coracias garrulus 14.6  23.6  7.5  

Alauda arvensis 1.9  3.9  -0.9  

Anthus campestris -21.2  -33.7  -22.6  

Lullula arborea 37.1  44.9  40.6  

Melanocorypha calandra -9.1  -3.9  -16.5  

Calandrella 

brachydactyla 
10.7  13.4  8.0  

Calandrella rufescens -45.4  -29.5  -58.0  

Galerida cristata 7.3  1.3  12.9  

Galerida theklae 20.3  21.2  22.5  

Chersophilus duponti -0.8  2.7  1.2  

Oenanthe hispanica 10.1  9.7  19.4  

Carduelis cannabina 2.4  4.2  -1.0  

Emberiza calandra -2.2  -3.3  -4.8  
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 764 

Fig. 1 – Relationship between the species Landscape Specialization Index 765 

(LSI) in the presence cells, and the predicted species percent range variation 766 

(future) in relation to the baseline modelled range, for the climate-only (a) and 767 

the climate + landscape models (b). The Pearson correlation coefficient and 768 

the respective P-level are shown. 769 
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 776 

Fig. 2 – Relationship between the species Landscape Specialization Index 777 

(LSI) in the presence cells and the difference in the percent range shift 778 

change predicted by the climate + landscape models in relation to the 779 

climate-only models. The Pearson correlation coefficient and the respective 780 

p-level are shown. 781 
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 793 

Fig. 3 – Bivariate map of species richness percent variation per 10-km grid 794 

squares for the three future climate change scenarios. Deviations from the 795 

grayscale gradient represent larger richness variations predicted either by 796 

climate only-based models (yellow) or by climate/landscape-based models 797 

(blue). Brighter tones represent regions with a more positive richness percent 798 

variation and darker tones represent regions with a more negative richness 799 

percent variation. 800 
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 803 

Fig. 4 – Bivariate map of the number of loser (left maps) and winner (right 804 

maps) species per 10-km grid squares for the three future climate change 805 

scenarios. Deviations from the grayscale gradient represent larger number of 806 

losers or winners predicted either by climate only-based models (yellow) or 807 

by climate/landscape-based models (blue). Brighter tones represent regions 808 

with a larger number of winners or losers. 809 
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