
DEVELOPING AND TESTING SUB-BAND SPECTRAL FEATURES IN 

MUSIC GENRE AND MUSIC MOOD MACHINE LEARNING 

Fabi Prezja 

Master’s Thesis 

Music, Mind & Technology 

Department of Music, Art and Culture Studies 

7 November 2018 

University of Jyväskylä 



 

 

JYVÄSKYLÄN YLIOPISTO 

Tiedekunta – Faculty  

Humanities 

Laitos – Department  

Music, Art and Culture Studies 

Tekijä – Author  

Fabi Prezja 

Työn nimi – Title  

Developing and testing sub-band spectral features in music genre and music mood machine 

learning 

Oppiaine – Subject  

Music, Mind & Technology 

Työn laji – Level  

Master’s Thesis 

Aika – Month and year  

November 2018 

Sivumäärä – Number of pages  

114 

Tiivistelmä – Abstract  

 

In the field of artificial intelligence, supervised machine learning enables us to try to develop 
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use of these sub-band features for music genre and music mood classification tasks and 

further suggests uses in other content-based predictive tasks. 
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1 INTRODUCTION 

The music industry has drastically changed since the 1990s, a revolution brought upon from 

digital audio formats, device mobility, and computational affluence has created a need for 

automatic large-scale music organization and user-based predictions. Currently, music 

discovery and distribution is often, and at times entirely made through the world wide web, 

manually or automatically. Unlike earlier decades, a plethora of artists focus on distributing 

their music in digital formats and content provider services like Spotify, Pandora, iTunes, and 

even YouTube. 

Music information retrieval (MIR) plays a crucial role in developing applications and tools 

that meet the new and developing digital music content demands. Since the 2000s MIR 

applications began to play an essential role in music recommendation. As a result, artists 

lacking the promotional benefits of record labels became more accessible and visible via 

automatic recommendation systems. Spotify is a prominent hub of such examples; the on-

demand content service employs a plethora of MIR tasks for music big data, such as personal 

playlists auto-generation, music content recommendation, music meta-data association, and 

more. We can deduce the importance of big data for said tasks from Spotify’s purchase of the 

‘Echo Nest1‘ database. The Echo nest data consist of over 3 million indexed artists and more 

than 38 million indexed songs, currently, the most extensive music and music meta-data 

                                                           
1http://the.echonest.com/ (Retrieved 15.12.2017) 
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database in the world. The per music track information maintained by the Echo Nest is 

extensive (e.g., tempo, key, time signature, timbre, similar artists). 

The problem of automatic genre and mood classification focuses on the detection of music 

genres and music moods from the music content itself. That is without the use of expert 

annotators and listeners in the prediction stage. These applications have ever-increasing 

popularity as the need for fast and effortless digital music organization continues to grow. 

Categorizing music media according to emotional content and artistic style is essential to help 

users optimize their music exploration to other factors other than 'basic' meta-data information 

or manually crafted tags.  

Despite the development of music genre and music mood recognition systems for more than a 

decade, the two applications had a ‘slow roller-coaster’ progression regarding evaluation. The 

focal point in understanding why development has been fundamentally slow pertains the 

concepts that such systems are tasked to learn. When considering music style/genre and music 

mood there are fundamental difficulties in consistently and reliably describing genre and 

mood concepts. Moreover, even if descriptions may appear consistent, the music content itself 

may not carry the extra-musical, contextual and cultural information that may be relevant for 

description. Thus, the machine learning of said descriptions becomes problematic. As a rough 

analogy, we can say that the closer genre and mood descriptions are to the content of music, 

the less ambiguous the machine learning task of such concepts may become. 

One factor used in describing both music genres and music moods is timbre. The ASA defines 

it as ''that attribute of sensation in terms of which a listener can judge that two sounds having 

the same loudness and pitch are dissimilar''. Notwithstanding the commendable attempts in 

defining timbre negatively (what timbre is not), we do not find an analytic proposal of what 

timbre is. Thus, it becomes clear that we are considering one of the most ill-defined concepts 

in music.  Despite the ambiguity, timbre qualities have a significant role in the rapid 

recognition of music and sound identities, for example, avoiding the sound of a speeding car 

and recognizing familiar voices. Timbral features have had a considerable efficacy in music 

genre classification on numerous occasions. In music mood recognition, timbral features have 

been shown to have a supporting role amidst various feature categories, such as rhythm-based 

and tonality-based features. Only a handful attempts were made in modelling music mood 
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with timbre only features, in contrast to the general approach (a multitude of feature 

categories). The underlying design of many timbral features often uses the audio spectrum as 

the basis for feature computation. Often such timbral features are referred to as spectral 

features, as is also the case for this study’s feature sets. 

The goal of this study is to explore the performance of six timbre-based music features in 

music genre and music mood recognition. Five of the features belong to a family of sub-band 

features devised by Alluri and Toiviainen (2010). We evaluate each sub-band feature against 

one of the most common spectral features in MIR and speech recognition, the Mel-Frequency 

Cepstral Coefficients (Mermelstein, 1976). This study contains the most extensive collection 

of elliptical filterbank based sub-band features to be evaluated in music genre and music 

mood classification. In addition, the study is the first attempt in evaluating these sub-band 

features in music mood classification. We construct numerous classification models that we 

analyze and compare on par with other relevant indicators. On an exploratory basis, we also 

evaluate individual feature and model dimension importance for each classification task. 

The next chapter focuses on the essential background, literature review and state of the art 

systems in music genre and music mood classification. Chapter 3 elaborates our research 

methodology and experimental set-up, including dataset collection, classifier set-up and data-

pre-processing. Chapter 4 details our classification results with various feature selection sets 

in both music mood and music genre tasks. Chapter 5 focuses on the discussions of our 

findings along with the relevant limitations. Additionally, Appendix A enlists all 

classification models and classification accuracies obtained from our experiments. 

 
 

  



  

 

2 BACKGROUND 

2.1 Music Information Retrieval 

Music information retrieval (MIR) is an interdisciplinary science that addresses information 

retrieval tasks for music and music-related content. It has a critical role in helping to develop 

applications and tools that meet the new and developing digital music content demands. The 

principal MIR applications for music content are those of recommendation, automatic 

classification, automatic transcription, automatic generation, and signal or instrument 

separation. MIR mainly engages the disciplines of computer science, electrical engineering, 

musicology and psychology. From within each discipline, some fields are further relevant, 

namely; digital signal processing, machine learning, computational intelligence, data mining, 

human perception, psychoacoustics and music psychology. Although MIR is relatively young, 

in the past decade MIR research has been rapidly expanding the outreach and performance of 

its applications.  

2.1.1 MIREX 

 

The MIR evaluation exchange (MIREX) is a contest that began as an initiative to standardize 

and systematize MIR research. MIREX serves as a platform for the incremental development 

of MIR tasks. The principal organizer of the contest is IMIRSEL at the University of Illinois, 

USA. The contest began in 2004 and had been running for 13 consecutive years, as of 2016 

the total number of tasks evaluated amount to twenty-six. Evaluation tasks that pertain audio 
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content are numerous, for example, automatic music mood, genre and composer 

identification, music similarity and retrieval, melody extraction, singing voice separation, 

audio fingerprinting, real-time audio to score alignment and automatic drum transcription. 

2.2 Feature-Based Music Concept Machine Learning 

MIR has a key focus on automatic genre and mood recognition ever since the early periods of 

the field. The general idea behind such automatic music concept classification tasks is to 

attempt to model via machine learning, music concepts (genres, sub-genres, moods, etc.). The 

concept modeling process is often performed directly from audio examples of such concepts. 

Ideally, the chief expectation is that the final machine-learned model could generalize and 

automatically recognize the learned concepts from new music content not used during the 

machine learning stage. Music concept machine learning requires a collection of music 

examples and their related concept semantic descriptions, often referred to as ‘labels.’ Labels 

are developed and provided by human experts such that each concept (e.g., mood, genre) 

becomes semantically linked to each music example. Importantly, each music example is 

typically explained by numeric quantities referred to as ‘descriptors‘ or ‘features’ (Knees & 

Schedl, 2013; Provost & Kohavi, 1998). Features represent shared qualities between music 

audio files and enable detailed representations of musical and sonic properties that are not 

always directly evident from the files. 

2.2.1 Music Feature Abstraction Levels 

Music features get extracted from raw audio files with feature extraction algorithms typically 

handcrafted to extract features numerically and in vector form.  In MIR we find three levels of 

feature abstractions, low, mid and high. Each level is typically analogous to musical 

meaningfulness. A high-level feature stands to represent a musical concept that can be 

perceivable by humans. One example is that of the perceptually validated feature, Pulse 

Clarity (Lartillot, Eerola, Toiviainen, & Fornari, 2008). Pulse clarity numerically describes 

the perceived ‘clarity’ or ‘apparentness’ of the rhythmic pulse.  Antithetically, a low-level 

feature, is lower or closer to the signal domain, such features are rarely if ever interpretable. 

To exemplify, consider the statistical moments of a signal (Peeters, Giordano, Susini, 

Misdariis, & McAdams, 2011), although statistically informative they can be perceptually 
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perplexing. Finally, mid-level features are often a mix of low-level features that integrate 

high-level concepts attempting to be perceptually relevant (Knees & Schedl, 2013). 

2.2.2 Dataset Pre-Processing 

The notion of data pre-processing refers to the procedures performed before feature extraction 

and machine learning. Data pre-processing is a crucial step for addressing dataset faults that 

can interfere and compromise the validity of a machine learning model. 

2.2.3 Feature Pre-Processing 

The idea of feature pre-processing refers to the procedures performed to extracted features 

before machine learning. Feature pre-processing is quite common and may include, 

dimensionality reduction methods, automatic redundant feature elimination and fault 

checking. 

2.2.4 The Semantic Gap 

The ‘semantic gap’ is an expression used to describe the variance in subjective interpretations 

for a given semantic concept or connotative meaning. In music studies and MIR (Alluri, 2012; 

O. Celma, 2010; Ò. Celma, Herrera, & Serra, 2006) the semantic gap regularly occurs in the 

process of labelling music. To exemplify, consider the semantic labels ‘Rock,’ and ‘Pop-

Rock,’ numerous human listeners attributing these labels to a pool of music material might 

interpret the labels differently. The difference in interpretation will thus result in label to 

music associations that are inconsistent. This phenomenon tends to occur naturally because 

many concepts and connotations do not have absolute definitions and can vary culturally. In 

MIR, attempts to minimize the ‘gap’ often consist of majority label selection after 

independent annotations. 
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2.3 Timbre  

According to the online etymology dictionary, the term ‘timbre’ originated from old and 

modern French. In modern French it is defined as ‘quality of sound’ 2 but in old French as the 

‘sound of a bell.’2 The American National Standards Institute defined timbre as: “that 

attribute of sensation in terms of which a listener can judge that two sounds having the same 

loudness and pitch are dissimilar.” Alluri (2012) offers a broader definition as “the property 

that allows listeners to categorize and stream sound information and thereby form a mental 

representation of one’s surroundings.” In addition, timbre has been explored in terms of 

source identification (Handel, 1995; McAdams, 1993; Mcadams & Giordano, 2014) verbal 

emotion mediation (Juslin & Laukka, 2003; Laukka, Juslin, & Bresin, 2005; Scherer & 

Oshinsky, 1977) and non-verbal emotion mediation (Belin, Fillion-Bilodeau, & Gosselin, 

2008; Bradley & Lang, 2000). 

In consideration, the ANSI definition suggests that pitch is one element of timbre, it has been 

long-standing that this is not the case. To simplify and counter-act the definition, consider the 

case of a snare drum (Alluri, 2015). A snare drum may not always have a definite pitch; 

however, one could still differentiate one from another bearing the same loudness and pitch. 

Importantly, the ASA definition along with regular attempts to correct for it (Dowling & 

Harwood, 1986; Pratt & Doak, 1976) are negative definitions. Negative definitions maintain a 

degree of ambiguity since they do not detail or prescribe any specific timbral features. 

Between several definition attempts a single broadly accepted definition is difficult to 

formulate; this critical problem renders timbre one of the illest-defined concepts in music. 

2.3.1 Timbre Paradigms 

There are two paradigms of timbre, monophonic timbre, and polyphonic timbre, not to be 

confused with monophony and polyphony as in musical textures. Monophonic timbre refers 

to the timbre of individual instruments, voices or sound sources, (e.g., bassoon, guitar, viola ).  

In contrast, polyphonic timbre refers to the emergent timbre of an ensemble of monophonic 

timbres or multiple layers of polyphonic timbres (e.g., emerging timbre of a metal concert, 

symphony, soundscape of a busy street). In practice, most timbre research has been focusing 

                                                           
2 (“timbre | Origin and meaning of timbre by Online Etymology Dictionary,” 2017) (retrieved 27.5.2017. from 

http://www. etymonline.com) 
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on monophonic timbre with considerably less attention to the equally important polyphonic 

timbre (Alluri, 2012). 

2.3.2 MIR Features & Timbre Classification 

In MIR timbre related qualities are often extracted using low-level feature extraction 

algorithms. Some prominent examples are; spectral centroid (Tzanetakis & Cook, 2002), zero 

– crossing rate (Gouyon, Pachet, & Delerue, 2000) spectral flux (Barbedo & Lopes, 2007) and 

spectral-roll off (E. Scheirer & Slaney, 1997), to name a few. Despite the plethora of timbre 

associated features, only a portion of them has been perceptually corelated and validated 

(Alluri & Toiviainen, 2010; Caclin, McAdams, Smith, & Winsberg, 2005; Marozeau & de 

Cheveigné, 2007). 

Perceptual validation is essential when constructing perceptual timbre classification models, 

referred to as ‘timbre spaces.’ Timbre spaces are multidimensional models of perceptual 

timbre distances, often measured from human dissimilarity ratings of audio material 

normalized in pitch, duration, and loudness. Attack/rise time, spectral centroid and spectral 

flux, have been shown to be major psychoacoustic determinants of timbre (McAdams, 

Winsberg, Donnadieu, De Soete, & Krimphoff, 1995), this model is shown in figure 1. 

 
 

FIGURE 1. The McAdams et al., (1995) timbre space model consisted of similarity ratings between 18 

synthesized instrument timbres and ‘hybrid’ timbres of two instruments. The dashed lines indicate hybrid timbre 

links to their original constituents. Some instrument code names were:  french horn = hrn; trumpet = tpt; 

trombone = tbn; harp=hrp, Trumpar (trumpet/guitar) = tpr; oboleste(obore/celesta); vibraphone = vbs; striano 

(bowed string/piano) = sno; harpischord = hcd; english horn = ehn; bassoon = bsn; clarinet = cnt; vibrone 
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2.4 Genre and Music Genre  

As found in the Online Etymology Dictionary (2017), the term ‘genre’ was first defined in 

1770 as ‘a particular style of art.’ According to the Oxford English Dictionary (2016) ‘genre’ 

derived from French originally meaning “kind, sort, style” further stemming from the Latin 

term “Genus” as derived from the ancient Greek “Genos”. In the musical case, a music genre 

is often employed categorically and expresses a ‘style’ or ‘common group’ for a given music 

piece. In everyday life, music genres help to sort and refer to groups of music styles, eras, and 

cultural backgrounds altogether. Figure 2 highlights a portion of metal music genres, sub-

genres and other genre in accordance to mutual influence. 

 

FIGURE 2. Metal genres and sub-genre influences, adopted from Tsatsishvili (2011). 

 

Music genre is often a dynamic concept where genre membership criteria may shift in 

response to new cultural norms and mass re-interpretations. In general, there are no clear nor 

globally accepted boundaries between music genres, since the very definitions of music 

genres are ambiguous and subjectively inconsistent. The case is stronger for the derivative 

(sub-genres), or closely related genres were much cultural, structural and sonic elements may 

be shared. Necessarily, the semantic gap is readily pronounced in music genres, especially in 

new and evolving ones. Despite occasional compromises on some fundamental aesthetic 

'constants' (e.g., highly distorted electric guitars in death metal), it is problematic to even 

consider music genres in some absolute ‘Aristotelian’ terms.  
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Importantly, definition inconsistencies are further manifest in novel and creative contexts. In 

such contexts, musicians may incorporate, modify and alternate multi-genre qualities in such 

a way that to describe the style a new music genre may be required altogether. Furthermore, 

music genres may shift within the duration of a music piece and to such an extent that one 

genre term is fundamentally impossible to attribute. Ultimately, precise formalization of 

music genres is an unattainable task, yet still, most music genres remain particularly 

beneficial for navigating and differentiating our music repositories. 

2.5 Mood & Emotion 

The terms mood and emotion often have interchangeable uses in everyday life since their 

differences may often seem unclear. According to the online etymology dictionary (2017), the 

word ‘emotion’ was recorded in 1650 as a “sense of strong feeling” which was generalized in 

1808 to refer to any feeling. From the same dictionary, ‘mood’ is defined as an “emotional 

condition or frame of mind.” Furthermore, the Oxford dictionary of psychology (2017) 

defines mood as “a temporary but relatively sustained and pervasive affective state.” 

Whereas, emotion is defined as “Any short-term evaluative, affective, intentional, 

psychological state.’’ The dictionary definitions highlight an essential contrast between the 

two phenomena, that of temporality. Mood was defined as a sustained affective state, but 

emotion was defined as a temporary affective state. To date, commonly accepted definitions 

of emotions and moods remains a challenging task (Frijda, 2007; Izard, 2007; Mulligan & 

Scherer, 2012).  

Despite the definition problem, various models of emotion classification have been proposed. 

The dominant classification model paradigms are those of discrete and dimensional models. 

Discrete models are based on discrete emotion theory (P. Ekman, 1971, 1992; P. Ekman & 

Cordaro, 2011; P. E. Ekman & Davidson, 1994; Izard, Ackerman, Schoff, & Fine, 2000) 

which states that a finite set of basic emotions can be used to derive all emotions. Instead of 

individual emotional states, discrete models consist of various categories. Typical examples 

of discrete emotions are those of anger, disgust, fear, happiness, sadness, and surprise (P. 

Ekman, 1992).  
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In contrast to discrete models, dimensional models allow the mapping of emotions between 

dimensions in a ‘continuous-like’ space (Schlosberg, 1954; Wundt, 1907). The most popular 

dimensional model is Russell's (1980) circumplex model. This model maps emotions along 

two orthogonal dimensions, one-dimension is called ‘arousal’ and the other ‘valence.’ Each 

dimension has an intensity scale with a minimum and maximum value. Thayer (1990) 

proposed one of the most popular variants of Russell's model. Thayer’s multidimensional 

model maps emotions along two arousal dimensions where each dimension is also an 

intensity scale. Each intensity scale has one maximum value called ‘energetic arousal’ and the 

other called ‘tense arousal.' As described in Eerola & Vuoskoski, 2011, Thayer’s model can 

be superimposed to Russell’s model, figure 3 shows our adaptation of their figure. 

 

 

FIGURE 3. Superimposed dimensional models adopted from Eerola & Vuoskoski (2011), the dotted line stands 

for Thayer’s model and the straight line for Russell’s model. 

2.5.1 Music & Emotion 

Previous research has established that emotional reactions to music are of an uttermost 

importance for music-related activities (Eerola & Vuoskoski, 2013; Juslin & Laukka, 2004; 

Sloboda & O’Neill, 2001). The interdisciplinary field of music and emotion remains chiefly 
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focused on answering how and why music has such an impacting emotional effect, regardless 

of contextual and cultural backgrounds (Eerola & Vuoskoski, 2013). Similarly to emotion 

research, music and emotion research faces various criticisms and debates about the very 

definitions of music-induced and perceived emotions (Eerola & Vuoskoski, 2013; Juslin & 

Vastfjall, 2008). 

According to Eerola and Vuoskoski (2013), music and emotion research utilizes four 

classification models (in descending order of popularity): 1) Discrete; 2) Dimensional; 3) 

Miscellaneous; 4) Music specific. They specify, that most discrete models employ three main 

categories; happiness, sadness and anger. Dimensional models on the other hand, often 

employ Russel’s model of valence and arousal. Miscellaneous models tend to contain terms 

that attempt to fill the gap in categories not found in discrete and dimensional models. Finally, 

music-specific models share a set of common factors with dimensional models but consist of 

more than two dimensions. 

Given the two most widespread models (discrete, dimensional), Eerola and Vuoskoski (2013) 

stress out two fundamental limitations. First, discrete models were mainly used with three 

categories that reduce and quantize the variance between emotional states. Therefore, studies 

that did not employ these three categories were incompatible with most of the literature that 

did. Second, dimensional models showcased an overreliance to the circumplex model, 

although studies (Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005; Collier, 2007; Ilie 

& Thompson, 2006; Leman, Vermeulen, De Voogdt, Moelants, & Lesaffre, 2005) showed 

that valence and arousal alone are inadequate to explain the entire variance in music mediated 

emotions.  

2.5.2 Music & Emotion in MIR. 

The principal MIR music mood application is that of ‘automatic mood classification’ (AMC). 

The term ‘mood’ is used interchangeably to ‘emotion’ in MIR. In AMC, discrete emotion 

classification models are common because they directly satisfy the requirements of supervised 

machine learning. Most AMC models appear prototypically influenced by Hevner's (1936) 

model as adapted in figure 4. The model contained 66 adjectives arranged in 8 discrete 

emotion groups. Adjectives in the same group were connotatively close to each other, while 

geometrically opposite groups were emotionally antithetical. Further into this chapter we will 



Chapter 2. Background 13 

 

highlight all MIREX AMC datasets and their striking structural resemblance to Hevner’s 

model. 

 

FIGURE 4. Our adaptation of Hevner's (1936) discrete emotion model, arrows connect antithetical groups of 

adjectives (arrows not in the original design). 

2.6 Audio Signals 

In this section, we will review some basic audio signal theory concepts that are relevant to our 

study and the literature review. 

2.6.1 Periodic Signals 

A periodic signal repeats itself over a given time interval; the signal is called periodic when 

the repetition re-occurs for equal subsequent intervals. The completion of one interval refers 
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to one circle and the amount of time 𝑡 required to complete one circle is called a period. Let 𝑇 

represent a period length measured in seconds and for a continuous signal 𝑥(𝑡). Periodicity is 

formulated as: 

 𝑥(𝑡) = 𝑥(𝑡 + 𝑇) 

We can determine the frequency 𝑓 of a periodic function by keeping track of the complete 

circles that occur per second. We thus arrive at the following expression:  

𝑓 =
1

𝑇
 

Where 𝑓 is measured in Hertz but also expressed in radians 𝜔 as: 𝜔 = 2𝜋𝑓 

2.6.2 Phase  

 

For periodic signals, the phase is measured in degrees, and as an angle, it refers to a point in the range of one 

complete circle. For a period 𝑇 =
1

𝑓
 , amplitude 𝐺 and phase 𝜑 of a sinusoid, the sinusoidal function 𝑦(𝑡) for the 

phase of any given time in 𝑥(𝑡) is: 

 

𝑦(𝑡) = 𝐺 ∙ sin(2𝜋𝑓𝑡 + 𝜑) 

2.6.3 Amplitude 

In the context of audio signals, the amplitude is a comparative measurement and refers to the 

strength of the atmospheric pressure with respect to mean atmospheric pressure. There are 

several ways to measure and represent amplitude depending on the application. Commonly, 

the amplitude is measured on the decibel scale (dB). The decibel is a comparative 

measurement of intensities, where the point of comparison of a given intensity ℎ  is the 

threshold of human hearing ℎ0 given by: 

ℎ0 =
10−12𝑤𝑎𝑡𝑡𝑠

𝑚2
=
10−16𝑤𝑎𝑡𝑡𝑠

𝑐𝑚2
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The decibel is thus defined as: 

ℎ(𝑑𝐵) = 10𝑙𝑜𝑔10 [
 ℎ

 ℎ0
] 

Where 1 decibel (dB) is the equivalent to the ‘just noticeable difference’ in human auditory 

magnitude perception. 

2.6.4 Discrete Fourier Transform 

The Fourier Transform (FT) is an essential method for obtaining the frequency representation 

of a continuous infinite time duration signal (Bracewell & Bracewell, 1986). It is currently 

used for analogue system analysis and a plethora of other applications. FT has variant 

implementations according to signal type. For digital audio signals, the discrete Fourier 

Transform (DFT) implementation is often used. In MIR, the DFT is essential for 

understanding and generating spectral features. The DFT is typically implemented for 𝑁 

signal windows with the help of the Fast Fourier Transform (FFT) algorithm (Welch, 1967). 

The output of the DFT is a complex-valued frequency function referred to as the frequency 

spectrum. A conceptual spectrum analogy is that of light dispersion passing through a prism.  

Formally, the DFT 𝑋[𝑘] of a signal 𝑥[𝑛] with discrete values and finite duration 𝑁, where 

𝑥[𝑛]: 𝑛 = 0, 1, … ,𝑁 − 1. is as also of finite length such that 𝑋[𝑘]: 𝑘 = 0, 1, … ,𝑁 − 1. To 

obtain the DFT of 𝑥[𝑛] we use the following formula: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗𝑘𝜔0𝑛
𝑁−1

𝑛=𝑜

   𝑘 = 0,1, … ,𝑁 − 1 

where, 𝑗 =  √−1,  𝑒 is the natural exponent, and 𝜔0 =
2𝜋

𝑁
 . The inverse of DFT (obtaining the 

initial signal) from the spectra 𝑋[𝑘] is: 

𝑥[𝑛] =
1

𝑁
∑𝑋[𝑘]𝑒𝑗𝑘𝜔0𝑛
𝑁−1

𝑛=𝑜

   𝑛 = 0,1, … ,𝑁 − 1 
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2.7 Machine Learning 

We begin this section with an overview of the conventional machine learning methodologies 

and concepts. The body of work reviewed is relevant to our study which employs supervised 

machine learning. For this reason, we further focus on supervised learning, it’s theory, and its 

critical considerations. 

2.7.1 Background 

Arthur Samuel coined the term 'machine learning' in 1959 (Samuel, 1959); it describes a vast 

body of knowledge within the field of Artificial Intelligence. Historically, the field originated 

from approaches to statistical learning and pattern recognition. Currently, the main focus is on 

the algorithmic learning from, and the prediction of, data. Essentially a machine learning 

algorithm generates a predictive model from input data. Such models can address predictive 

needs otherwise difficult or even impossible to achieve with conventional programming. 

Some popular machine learning applications are, for example, self-driving cars, automatic 

medical diagnosis, anomaly detection and bank loan decision support. 

2.7.2 Supervised Learning  

Supervised learning, or supervised classification, is a machine learning paradigm that aims at 

inferring a functional relationship between input and output data pairs. The input data is 

typically in the form of feature vectors, and the output data is a set of labels associated with 

the input data. For each data point, the labels are assigned by a supervising human agent or 

collective. A classification algorithm attempts to learn the label (output) to data (input) 

associations with a function. The learned function ideally would be able to generalize and 

predict new labels for unknown data entries. Because each new prediction relies on the 

learning data, each prediction is data-driven, contrary to manually developed systems where 

predictions may depend on programmed expert intuitions or attempts of that sort. Popular 

supervised learning algorithms are, for example, logistic regression, neural networks and 

support vector machines (Böhning, 1992; Hagan, Demuth, & Beale, 1995; Hearst, Dumais, 

Osuna, Platt, & Scholkopf, 1998). It is important to highlight that there is no single best 

learning algorithm for all problems, the ‘no free-lunch’ theorem provides the theoretical 

foundation to justify this claim (Wolpert & Macready, 1997).  
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2.7.3 Unsupervised Learning 

Unsupervised learning focuses on discovering underlying data patterns without any supervisor 

labels. Unsupervised algorithms are mostly associated with the task of clustering, a process by 

which data structures are inferred by detecting cluster groups of potentially related data 

entries. A cluster typically consists of data instances that share similar feature values and thus 

have a relatively small distance to one another. The lack of labels in clustering methods 

implies that we cannot calculate an error or cost function. Popular unsupervised learning 

algorithms are, DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), K-Means (Jain, 2010) and 

auto-encoders (Le, 2015), to name a few. 

2.7.4 Semi-Supervised Learning 

Semi-supervised learning deals with data that are partially labelled. The learning algorithm 

usually evaluates a significant portion of unlabeled data (analogous to unsupervised learning) 

along with a small portion of labelled data (analogous to supervised learning). The labelled 

data are critical in constructing a partial model and an essential error function. The partial 

model is subsequently used to assign labels to the unlabeled portion. The combination of the 

two is used to augment the performance of a mutual learning process. In semi-supervised 

learning, multiclass and one-class supervised learning algorithms are often used. 
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2.8 Elements of Supervised Learning 

2.8.1 The Ground Truth 

In supervised learning, the term ‘ground truth’ refers to all the labels devised by an expert that 

are true for some data. In ambiguous labelling tasks, such as music genre or music emotion 

labelling, objectively true labels are impossible. The difficulty lies in the inherent ambiguity 

and the semantic gap of the labels domain. Nevertheless, expert labelling is essential in 

differentiating groups of data referred to as ‘classes’. Essentially, any operation that produces 

a partial or complete data point (input) to label (output) association is necessary for 

supervised learning. 

2.8.2 Training & Testing Sets 

In supervised learning, it is standard practice for data to be partitioned into training and 

testing sets. A training set is considered as ‘known’ data, used as learning examples with 

which the learning algorithm builds a ‘learned’ classification model. Antithetically, a testing 

set consists of examples not used for training, considered ‘unknown’. The ‘unknown’ data 

serve to evaluate the performance of the learned classification model. The two partitions 

allow to determine the extent to which a final model may generalize to other data than the 

training data. One training and testing split is not typically enough to develop adequate 

confidence in a model’s generalization capacity. The limitations of one evaluation are 

addressed with the cross-validation partitioning method detailed later in this chapter. 

2.8.3 Ground Truth Sub-Class Filtering 

Ground truth sub-class filtering is a training/testing partition rule for minimizing validity 

issues and model sub-class overfitting. Performance inflationary effects and overfitting can 

occur due to the simultaneous presence of class sub-classes in the training and testing set. In 

music genre recognition this process is often coined ‘artist and album-filtering’ (Flexer & 

Schnitzer, 2009) as it targets artist and album sub-classes. To exemplify artist-filtering, let us 

consider we are trying to model various music genres only from audio content. If for each 

genre 80% of the audio examples come from one artist, we will overemphasize our learning to 

that artist instead of the genre they are in; consequently, the outcome will be a ‘biased’ model. 
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An artist filter solves this issue by restricting an artist to either the training or the testing set, 

in this way training and testing with the same artist is avoided. Analogously, an album filter 

restricts the usage of artist albums between the training and testing set, in which case the artist 

may be present in both partitions. 

2.8.4 The Classifier Model 

To elaborate on the classifier model, we will begin with an example (Luxburg & Schölkopf, 

2011), let us consider a supervised learning problem with feature space 𝒳 and label space 𝒴. 

Let us assume we are dealing with the problem of recognising a ‘human’ and a ‘chimpanzee’ 

based on some arbitrary genetic traits. Let 𝒳 encapsulate the total data observations of genetic 

traits along multiple variables/features. Let  𝒴 represent which data observations in 𝒳 belong 

exclusively to humans and chimpanzees. In order to learn, the algorithm will be given N such 

training examples, or associated data pairs {(𝑋𝑗,𝑌𝑗,)} 𝑗=1
𝑁  , with 𝑌𝑗 ∈ {(−1,+1)} where 𝑌𝑗 =

−1 is the ‘chimpanzee’ class and 𝑌𝑗 = +1 is the ‘human’ class. The goal is to define a 

mapping 𝑓: 𝒳 →  𝒴, that would make as few mapping mistakes of 𝒳 to 𝒴 as possible. This 

mapping 𝑓: 𝒳 →  𝒴 is called the classifier model and is the output of a supervised learning 

algorithm. 

2.8.5 Model Generalization 

The essential quality of a classifier model is its capacity to generalize for new unknown data, 

therefore model generalization is critical (Luxburg & Schölkopf, 2011). To illustrate, let us 

consider an arbitrary classification problem as adapted from Von Luxburg and Schölkopf 

(2011). The problem contains a training set of N training examples  {(𝑋𝑗,𝑌𝑗,)} 𝑗=1
𝑁 , by 

employing a learning algorithm on this data we output the classifier model called 𝑓𝑗. Let us 

now assume we have no testing set and consequently, we cannot calculate the testing error or 

risk of the classifier 𝑅(𝑓𝑗). Instead, we can only count the errors (miss-classifications) made 

on the training set, called the training error or empirical risk 𝑅𝑒𝑚𝑝(𝑓). The empirical risk is 

thus defined as:  

𝑅𝑒𝑚𝑝(𝑓) ≔
1

𝑗
∑ℓ(𝑋𝑖, 𝑌𝑖, 𝑓(𝑋𝑖

𝑗

𝑖=1

)) 
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Where ℓ is a 0-1 loss function defined as: 

ℓ(𝑋, 𝑌, 𝑓(𝑋)) = {
1, 𝑓(𝑋) ≠ 𝑌
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

In the case where the empirical risk it is too large, further evaluation might not be necessary. 

A large empirical risk signifies that the classifier model performs unsatisfactorily with its own 

‘overfamiliar’ training examples, which hints that it may perform even worse with 

‘unfamiliar’ examples. In contrast, when the empirical risk is small, it is unknown how many 

mistakes the model would make for the rest of space 𝒳. The rest of space 𝒳 encapsulates 

unknown data that we do not possess. 

In order to define a model’s risk 𝑅(𝑓𝑗) with unknown data drawn from 𝒳, it is common to 

split a dataset into training and testing sets. In this respect we obtain the two stages shown in 

figure 5, the training stage and the testing stage. The training stage is where the classification 

model is built, and the testing stage is where that model is evaluated. Ultimately, a classifier 

model may have the potential to generalize when the absolute divergence |𝑅(𝑓𝑗) − 𝑅𝑒𝑚𝑝(𝑓)| 

is small.  

 

FIGURE 5. Training and testing stages in a classification pipeline. 
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2.8.6 Model Overfitting 

Overfitting occurs when a classifier model becomes overly complex and too well fitted to its 

training data. Consequently, abnormalities in the learning stage (noise and random errors) are 

emphasized in the learned model. Ultimately, overfitting will produce an extensive number of 

parameters in the learning stage. This leads to a model with minimal training error 𝑅𝑒𝑚𝑝(𝑓), 

but no-to insignificant generalization prospects, which means the divergence |𝑅(𝑓𝑗) −

 𝑅𝑒𝑚𝑝(𝑓)| is large. 

To exemplify, let us consider the exaggerated regression case in figure 6, adapted from Von 

Luxburg and Schölkopf (2011). We have recorded empirical observations 𝑛 = 5 , where 

(𝑥1,𝑦1,),… . , (𝑥𝑛,𝑦𝑛,) ∈ 𝒳 ×  𝒴 and 𝒳 =  𝒴 = ℝ. There are two fitted models to consider, 

the dashed line model  𝑓𝑑𝑎𝑠ℎ𝑒𝑑  and the straight-line model 𝑓𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 . The 𝑓𝑑𝑎𝑠ℎ𝑒𝑑  model is 

noisy and non-linear, antithetically  𝑓𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 is linear. The 𝑓𝑑𝑎𝑠ℎ𝑒𝑑 model has a training error 

= 0 while the  𝑓𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡  model has an arbitrary small training error. 

 

FIGURE 6. Two-model regression example. 

 

Let us consider the true risk of both models, 𝑅(𝑓𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) and 𝑅(𝑓𝑑𝑎𝑠ℎ𝑒𝑑), we know that it is 

not possible to access the true risk of either of them because we do not possess any testing 

data. In this case, which model should we prefer? Depending on the goal we must consider 

what constitutes as good performance, what is the state of the art for the given problem? 

Considering  𝑛 = 5, more data and domain knowledge may allow us to devise a testing set to 

evaluate our models. Ultimately, we want to avoid both overfitting and underfitting (opposite 

of overfitting), since either phenomenon will undermine our models. Ideally, once we obtain 
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testing data, we can focus on selecting the model that manifests the lowest |𝑅(𝑓𝑗) −

 𝑅𝑒𝑚𝑝(𝑓)| (overfitting indicator) and 𝑅(𝑓𝑗) (testing error). 

Addressing overfitting and underfitting issues can be especially challenging when the 

predictive task is vaguely formulated. Intuitively increasing the dimensionality of a feature 

space to better approximate the underlying function may be tempting, but this would mean 

that we also increase the chances of overfitting as more noise and random effects may be 

added to our model. In such cases feature selection or dimensionality reduction techniques 

such as Principal Component Analysis (PCA) (Wold, Esbensen, & Geladi, 1987) can help to 

avoid overfitting. Extending our approach to model selection would further increase our 

chances to select the best model. In such cases cross-validation and cross-indexing (Saari, 

2009) can be effective given that we also pay close attention to the divergence value |𝑅(𝑓𝑗) −

 𝑅𝑒𝑚𝑝(𝑓)| since it is good indicator of overfitting. 

2.8.7 Figures of Merit 

To measure the quality of model predictions, we need to employ figures of merit (FoM). 

These figures are quality metrics and are key to understanding classification performance. To 

understand the metrics, first, we need to detail the different prediction types that can occur for 

any classifier model. To exemplify, let us use the previous binary class example of ‘Humans’ 

recognition against ‘Chimpanzee’. We thus consider N data points {(𝑥𝑗,𝑦𝑗,)} 𝑗=1
𝑁  with genetic 

trait observations 𝑥𝑗 ∈  ℝ
𝑛 and corresponding ground truth labels 𝑦𝑗 ∈ {(−1,+1)}, in table 1 

we show all prediction types for this binary class problem. 

TABLE 1. Prediction types in classification. 

Prediction Type Description 

Positive (P) For 𝑥𝑗  with class 𝑦𝑗 = +1 (data of human genetic traits) 

Negative (N) For 𝑥𝑗 with class 𝑦𝑗 = −1 (data of chimpanzee genetic traits) 

True Positive 

(TP) 

Occurs when 𝑥𝑗 with class 𝑦𝑗 = +1 (human) is indeed predicted as having class  

𝑦𝑗 = +1. (human) 

True Negative 

(TN) 

Occurs when 𝑥𝑗 with class 𝑦𝑗 = −1 (chimpanzee) is indeed predicted as having 

class  𝑦𝑗 = −1 (chimpanzee) 

False Negative 

(FN) 

Occurs when 𝑥𝑗 with class 𝑦𝑗 = +1(human) is predicted as having the other class 

𝑦𝑗 = −1 (chimpanzee) 

False Positive 

(FP) 

Occurs when 𝑥𝑗 with class 𝑦𝑗 = −1 (chimpanzee) is predicted as having the other 

class  𝑦𝑗 = +1 (human) 
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2.8.8 Classification Accuracy 

Classification Accuracy (CA) is the most common figure of merit for classification tasks; it is 

the proportion of successful predictions against all predictions:  

𝐶𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
=  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

This metric helps us to access the goodness of a model with respect to its predictive power. 

Importantly, a single accuracy score by itself does not inform us on model overfitting 

potential. All MIR classification tasks feature CA as their primary figure of merit.  

2.8.9 K-Fold Cross-Validation 

K-fold cross-validation (KFCV) is a data partition method used for validating models and 

reducing overfitting (Kohavi, 1995). In practice, the entire dataset is partitioned into K folds 

and iterated K times, for each iteration, one fold is used as a testing set while the remaining 

folds are combined into one training set. To exemplify, consider the case shown in figure 7 

where 𝐾 = 4 , for that example during the first iteration the first fold is used as a testing set 

and folds; 2,3,4 are aggregated as a training set. Any evaluation metric can be used to score 

each iteration if the metric is classification accuracy (CA), then the final KFCV score is the 

average CA across iterations. A key benefit of KFCV is that, when all iterations have been 

evaluated, the entire dataset has been used both for training and testing. 

 

FIGURE 7. Four-fold cross-validation scheme. 
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2.9 MIREX 

For more than a decade, music genre and music mood classification systems have been 

competing in the MIREX contest. MIREX classification tasks are evaluated in supervised 

learning with various music datasets/sub-tasks. Participants submit their classification systems 

which are evaluated with task-specific guidelines. After evaluation, the competing systems 

get ranked according to a specified figure of merit. 

Structure 

We begin our review with the evaluation guidelines of both ‘Automatic Genre Classification’ 

(AGC) and ‘Automatic Mood Classification’ (AMC), excluding that of 2006 since no such 

tasks where evaluated. After the guideline reviews, we continue by individually analyzing 

each music genre and music mood sub-task. Each sub-task review consists of three parts; 1) 

Dataset analysis 2) Top system evolution (on a yearly basis) 3) State of the art (SoA) analysis 

4) General trends found in top performing systems. 

2.9.1 MIREX Evaluation Guidelines (2005 – 2017) 

Every year the MIREX contest publishes task evaluation guidelines with specifications for 

cross-validation, significance testing, performance metrics and tasks specific requirements 

(artist filter, hierarchical ground truths, etc.). All participating systems are evaluated with 

these guidelines and are ranked based on a performance metric, typically classification 

accuracy. Feature extraction, training and classification times are also measured for an 

independent run-time ranking. Overall, the evaluation guidelines in AGC and AMC have been 

varying throughout the runtime of the tasks but in 2009 both task guidelines became identical 

(excluding task-specific requirements). Table 2 maps the aforementioned changes for AGC 

and AMC on a yearly basis; Currently, both AGC and AMC guidelines specify 3-fold cross-

validation, classification accuracy (CA), and significance testing with Friedman’s ANOVA 

and the Tukey-Kramer HSD (honestly significant difference). 
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Guidelines: 
Task 

Specific 
Cross-Validation Significance Testing 

Figure of 

Merit 

AGC Year 
Artist 

Filter 

3 – Fold 

Cross 

Validation 

5 – Fold 

Cross 

Validation 

Friedman’s 

ANOVA 

McNemar’s 

Test 

Tukey-

Kramer 

HSD 

Classification 

Accuracy 

2005 No Yes Yes No Yes No Yes 

2007 Yes Yes No No Yes No Yes 

2008 Yes Yes No Yes Yes No Yes 

2009 Yes Yes No Yes No Yes Yes 

2010 - 2017 Yes Yes No Yes No Yes Yes 

 

TABLE 2. Evaluation guidelines for AGC. 

 

Guidelines: 
Task 

Specific 
Cross-Validation Significance Testing 

Figure of 

Merit 

AMC Year 
Artist 

Filter 

3 – Fold 

Cross 

Validation 

5 – Fold 

Cross 

Validation 

Friedman’s 

ANOVA 

McNemar’s 

Test 

Tukey-

Kramer 

HSD 

Classification 

Accuracy 

2007 - - - Yes No Yes Yes 

2008 - 2017 - Yes No Yes No Yes Yes 

 

TABLE 3.  Evaluation guidelines for AMC. 

2.9.2 MIREX AGC Review (2005 – 2017) 

Historically, automatic genre classification systems have been developed from MIDI since 

1997 by Dannenberg, from audio by Matityaho and Furst (1995) and later popularised by 

Tzanetakis and Cook (2002). For more than a decade, music genre classifications systems 

have been developing and improving the automatic recognition of music content into music 

genres. The MIREX community introduced the genre classification task in 2005 which is 

currently running for 11 years.  

AGC Sub-Tasks & Datasets 

In 2005 the first AGC sub-task had two music datasets, ‘Magnatune’ and ‘USPOP’. 

Magnatune contained 1515 whole length audio files from 9 genres with a hierarchical ground 

truth. The USPOP dataset included 1414 whole length audio files from 6 genres. USPOP was 

used for single level classification and Magnatune for hierarchical classification (dropped 

after 2005). In 2007 MIREX introduced a new sub-task/dataset called ‘mixed genre’, it 

contained 7000, 30-second excerpts equally drawn from 10 genres. In 2008  the ‘Latin genre’ 

sub-task and dataset (Silla Jr, Koerich, & Kaestner, 2008) were introduced. The new dataset 
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contained 3160 songs distributed in 9 genres and aimed at facilitating the recognition of 

popular Latin and dance Latin songs. ‘K-POP Genre’ was the latest sub-task/dataset 

introduced in 2014 by IMIRSEL and KETI. The dataset contained 1894, 30-second excerpts 

of Korean popular music unevenly allocated in 7 genres (J. H. Lee, Choi, Hu, & Downie, 

2013; Lie, 2012). Table 4 shows each sub-task and evaluation period along with relevant 

dataset properties (genre labels, audio format, etc.). 

TABLE 4. AGC sub-task and dataset properties. 

Evaluation 

Year: 
2005 2007 - 2017 2008 - 2017 2014 - 2017 

Sub-Task: Audio genre classification 

Mixed popular 

genre 

classification 

Latin genre 

classification 

K-Pop genre 

classification 

Sub-Task: Magnatune USpop Mixed Genre Latin Genre K-Pop Genre 

Genre 

Labels:  

Blues 

Classical 

Electronic 

Ethnic 

Folk 

Jazz 

Newage 

Punk 

Rock 

Electronica/Dance 

Newage 

Rap/Hip-Hop 

Reggae 

Rock 

Blues 

Classical 

Country 

Dance 

Jazz 

Metal 

Rap 

Hip Hop 

Rock and Roll 

Romantic 

Bachata 

Bolero 

Forro 

Gaucha 

Merengu 

E Pagode 

Salsa 

Sertaneja 

Tango 

Ballad 

Dance 

Folk 

Hip-Hop 

R&B 

Rock 

Trot 

 

Total 

Classes: 
9 5 10 9 7 

Audio 

Files 
1515 1414 7000 3227 1894 

Length: Unedited Unedited 30 Seconds Unknown 30 Seconds 

Format: . Mp3 . Mp3 . Wav . Mp3 . Wav 

MIREX AGC Sub-Task Review 

In the following section, we review all MIREX AGC sub-tasks in chronological order. The 

general outline of the review begins by aggregating (on a yearly basis) all top performing 

submissions, their learning algorithms and feature specifications. Each sub-task review 

concludes with an analysis of each sub-task’s state of the art along with the overall trends 

found amongst all top submissions. In 2005 we encounter a separate dataset and hierarchical 

taxonomies, we review it separately and with a slightly alternate format. The format differs in 

that we review the top three performing systems (instead of one) and treat the year in 
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isolation. In addition, the 2007 top system was unavailable and is thus excluded from our 

review. 

Audio Genre Classification Task (2005) 

In 2005 the first AGC sub-task had 15 participants, 13 of which completed the task within the 

given 24-hour run time. The top three classification accuracies for both the USPOP and the 

Magnatune datasets, where as follows: 1) 82.34% 2) 81.77% (Bergstra, Casagrande, & Eck, 

2005); 3) 78.81% (Mandel & Ellis, 2006). The first two systems are identical, and their 

learning algorithm was AdaBoost (Freund & Schapire, 1997). The third system employed 

DAG-SVM which is a special multiclass case of SVM  (Platt, Cristianini, & Shawe-Taylor, 

2000). 

The first and second system used the following features; 256 real cepstral coefficients 

(RCEPS), 64 Mel-frequency cepstral coefficients (MFCCs), 32 linear prediction coefficients, 

32 low-frequency magnitudes, 16 spectral roll-offs, one linear prediction error, and one zero 

crossing rate. Each feature was extracted with a 47-millisecond window and further 

partitioned into 13.9-second segments of which the mean and variance were taken, resulting 

in 804 feature dimensions. In contrast, the third system used 20 MFCC coefficients and the 

maximum likelihood of fitting a Gaussian distribution to those MFCCs. We see that both 

systems consisted of spectral features and that they had the MFCCs in common. 

Mixed Genre Sub-Task (2008 – 2017) 

From 2008 until 2017 the mixed genre sub-task had 148 entries. Each year, the highest 

classification accuracies were as follows (chronological order): 66.41% (Tzanetakis, 2007) in 

2008; 73.33% (Cao & Li, 2009); 73.64% (Seyerlehner, Schedl, Pohle, & Knees, 2010); 

80.07% (Hamel, 2011); 76.13% (Wu & Jang, 2012); 76.23% (Wu & Jang, 2013); 83.55% 

(Wu & Jang, 2014); 76.27% (Wu & Jang, 2015); 76.84% (J. Lee & Nam, 2017a, 2017b; J. 

Lee, Park, Kim, & Nam, 2017; J. Lee, Park, Nam, et al., 2017). Table 5 enlists the learning 

features, classification algorithms and classification accuracies of these systems. 
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TABLE 5. Yearly top systems in the mixed genre sub-task, the highest performance is highlighted in bold. 

Year Accuracy Learning Algorithm Learning Features 

2008 66.41% Support Vector Machines MFCCs, spectral centroid, roll-off, flux 

2009 73.33% Support Vector Machines 

Gaussian super vector (GSV) of:  MFCCs, 

rhythm pattern (RP). 

2010 73.64% Support Vector Machines 

Spectral pattern (SP), variance delta spectral pattern 

(VDSP), logarithmic fluctuation pattern (LFP), 

correlation pattern (CP), spectral contrast pattern (SCP); 

2011 80.07% Pooled Features Classifier Principal Mel – spectrum components (PMSC) 

2012 76.13% Support Vector Machines 

2009 Features + multi-level visual features (MLVFs), 

beat tracking local texture representations 

2013 76.23% Support Vector Machines 2012 Features + beat-level based heterogeneity features 

2014 83.55% 2 × Support Vector Machines 2012 Features 

2015 76.27% Support Vector Machines 2012 Features 

2017 76.84% Support Vector Machines 

Deep convolutional neural network generated low level 

features 

 

The state of the art was set in 2014; the top system had a dual SVM classifier set-up with 

GSV features, MLVFs, MFCCs, rhythm patterns and beat tracking local textures. The features 

were adapted to a Gaussian mixture model (GMM) derived from another GMM pre-trained 

from an external music dataset. The external dataset coined ‘Universe Background Model’ 

(UBM) contained 2000 music tracks randomly selected from the 7digital3 music database. 

The author’s GSV framework has been competing since 2009, scoring the highest in 2009, 

2012 and 2013. Although subsequent feature additions facilitated performance improvement, 

the state of the art was identical to their 2012 system, except that it had a dual SVM classifier. 

Thus, it follows that the considerable rise in performance came from implementing two SVMs 

conjoined with confidence based late fusion. Conclusively, it seems that after the addition of 

GSV features the authors turned their attention to develop their classifier set-up that 

ultimately allowed them to achieve the highest accuracy. 

                                                           

3https://github.com/7digital/python-7digital-api (Retrieved 12.10.2018) 
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Considering all entries in table 5, we see that most systems employed at least one SVM 

classifier and either partially or solely included spectral features. For most entries, the STFT 

was the primary spectrum source which highlights a common approach to spectrum 

acquisition. In addition, eight out of ten entries contained MFCCs which shows another 

regularity between the systems. Thus, we can conclude that SVM, STFT, spectral features and 

MFCCs have had the highest consistency throughout the runtime of the sub-task. 

Latin Genre Sub-Task (2008 – 2017) 

Before we enlist the top systems in the Latin genre sub-task, we note that the top systems 

reported in 2009, 2010, 2011, 2014, and 2017 were also top for the concurrent mixed genre 

sub-task.  In addition, the relevant information for the 2012 and 2015 top entries was not 

available and will be excluded from this review. 

The Latin Genre Recognition task collectively had 123 entries, each year the highest 

classification accuracy was as follows (chronological order): 65.17% (Cao & Li, 2008); 

74.66% with their mixed genre system (Cao & Li, 2009); 79.86% with their mixed genre 

system (Seyerlehner et al., 2010); 82.31% with their mixed genre system (Hamel, 2011); 

77.60% (Pikrakis, 2013); 78.64% with their mixed genre system (Wu & Jang, 2014); 69.88% 

(Lidy & Schindler, 2016); 75.86% with their mixed genre system (J. Lee, Park, Nam, et al., 

2017); Table 6 enlists the learning features, classification algorithms, concurrent sub-tasks 

and performances of these systems. 

The state of the art was set in 2011 (Hamel, 2011); the system consisted of a pooled features 

classifier and Principal Mel – Spectrum Components (PMSC) features. PMSCs were made in 

three consecutive steps; 1) DFT acquisition 2) Mel scale compression 3) PCA whitening. 

Analytically, the DFT spectrum was obtained with a window of 1024 samples and a frame 

step of 512 samples. Next, the spectral energy bands were obtained from filtering the DFT 

with 256 Mel-spaced triangular filters. Ultimately, PMSC unitary variance features were 

obtained by employing PCA whitening. Once the feature set was exported it continued to the 

pooling stage. In the pooling stage, the authors applied a set of pooling functions to the 

PMSCs. The resulting pooled features were used with a multi-layer perceptron that consisted 

of one, 2000-unit layer with sigmoid activations. The combination of the pooling stage and 

the classifier was referred to by the authors as the Pooled Features Classifier (PFC). 
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TABLE 6. Yearly top systems in the Latin genre sub-task, the highest performance is highlighted in bold. 

Year Accuracy Concurrent Top Learning Algorithm Learning Features 

2008 65.17% - 
Support Vector 

Machines 

Gaussian super vector (GSV) of: 

MFCCs 

2009 74.66% Mixed Genre 
Support Vector 

Machines 

Gaussian super vector (GSV) of: 

MFCCs, rhythm pattern (RP) 

features. 

2010 79.86% Mixed Genre  
Support Vector 

Machines 

Spectral pattern (SP), variance delta 

spectral pattern (VDSP), logarithmic 

fluctuation pattern (LFP), correlation 

pattern (CP), spectral contrast pattern 

(SCP); 

2011 82.31% Mixed Genre 

Pooled Features 

Classifier (Multi-Layer 

Perceptron Based) 

Principal Mel – spectrum components 

(PMSC) 

2013 77.60% - Deep Neural Network 

Self-similarity based rhythmic 

signatures 

2014 78.64% Mixed Genre 
2 ×  Support Vector 

Machines 

2009 Features + multi-level visual 

features (MLVFs), beat tracking local 

texture representations 

2016 69.88% - 
2 ×  Convolutional 

Neural Networks 
Mel-spaced spectrograms 

2017 75.86% Mixed Genre 
Support Vector 

Machines 

Convolutional neural network 

generated low level features 

 

Amongst the systems in table 6, five out of eight contained at least one SVM classifier where 

the reminder entailed various types of neural networks. Six out of eight systems employed or 

incorporated spectral features of which three featured MFFCs. The majority specification 

mirrored those in the mixed genre sub-task since five out of eight systems were identical in 

both tasks. The state of the art system generally drifted away from the common approaches 

except in that it employed spectral features. 

AGC K-POP Genre Sub-Tasks (2014 – 2017) 

The MIREX contest founded two K-POP genre sub-tasks in 2014, the main goal was to 

explore the extent to which western AGC systems can classify non-western material. A dual 

ground truth format was devised to explore any cross-cultural effects in AGC.  One ground 
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truth was devised by Korean annotators and the other by American annotators. We have 

found that in each task all top yearly systems were identical, except for 2014. For this reason, 

we combine both tasks (American and Korean) into one collective task review. Thus, in the 

following review, we refer to the Korean ground-truth systems as ‘KGT’ and the American 

ground-truth systems as ‘AGT’. In addition, the 2015 top system information was not 

available and will be excluded from this review. 

Since 2014 both K-POP genre sub-tasks collectively had 38 entries. On a yearly basis, the 

highest classification accuracy was as follows; (KGT) 65.58% (Seyerlehner & Schedl, 2014); 

(AGT) 63.25% with their mixed and Latin genre system (Wu & Jang, 2014); (KGT) 64.36%, 

(AGT) 62.35% with their Latin genre system (Lidy & Schindler, 2016); 67.90% (KGT), 

67.74% (AGT) with their mixed and Latin genre system (J. Lee, Park, Nam, et al., 2017). 

Table 7 shows the ground truth version, learning features, learning algorithms and 

performance of these systems. 

TABLE 7. Yearly top systems in the K-POP genre sub-task, the highest performance is 

highlighted in bold. 

Year Accuracy 
Ground 

Truth 

Concurrent 

Top  

Learning 

Algorithm  
Learning Features 

2014 65.58% KGT - 
Support Vector 

Machines 

Spectral Pattern, delta spectral 

pattern, variance delta spectral 

pattern, logarithmic fluctuation 

pattern, correlation pattern, 

spectral contrast pattern, local 

single gaussian model, George 

Tzanetakis model 

2014 63.25% AGT 
Mixed Genre,  

Latin Genre  

2 × Support Vector 

Machines 

Gaussian super vector (GSV) of: 

MFCCs, rhythm pattern (RP), 

multi-level visual features 

(MLVFs), beat tracking local 

texture representations 

2016 

64.36% 

(KGT) 

62.35% 

(AGT) 

Both Latin Genre 
2 × Convolutional 

Neural Networks  
Mel-spaced spectrograms 

2017 

67.90% 

(KGT) 

67.74% 

(AGT) 

Both 
Mixed Genre, 

Latin Genre  

Support Vector 

Machines 

Deep convolutional neural 

network 

generated low level features 
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For both tasks, the state of the art was set in 2017 (Lee, et al., 2017); the system comprised of 

an SVM classifier and two deep convolutional networks for feature generation. The neural 

networks were pre-trained separately (J. Lee & Nam, 2017b; J. Lee, Park, Kim, et al., 2017). 

One network was trained with the Million-Song-Dataset (MSD) (McFee, Bertin-Mahieux, 

Ellis, & Lanckriet, 2012) and the other with the NAVER4 dataset. The MSD had a ground 

truth devised from LastFM tags while NAVER had 107 genre classes after extensive data 

filtering. The DCNNs targeted short sample level characteristics from sample level filtered 

audio signals. Their system is a typical example of ‘feature transfer learning’ (Choi, Fazekas, 

Sandler, & Cho, 2017; Oquab, Bottou, Laptev, & Sivic, 2014; Yosinski, Clune, Bengio, & 

Lipson, 2014) where features and feature extractors are learned from one or more tasks and 

are used in other tasks. 

In line with other AGC sub-tasks, the majority of systems employed SVM classifiers with 

most feature sets either including or solely comprising of spectral features. The STFT 

continued to be the common spectrum acquisition approach. All entries, but one, were top 

performing and identical in both ground truths along with other concurrent sub-tasks. The 

consistent performance between sub-tasks and annotation ground truths (Korean, American) 

may suggest that there is less ‘sensitivity’ to ground truth cultural effects and varying music 

material.  

2.9.3 Audio Mood Classification (AMC) 

Studies in music psychology show that music emotion plays a critical role in mediating, 

expressivity and artistic intent (Juslin, Karlsson, Lindström, Friberg, & Schoonderwaldt, 

2006; Juslin & Laukka, 2004). Various studies (Cunningham, Bainbridge, & Falconer, 2006; 

Cunningham, Jones, & Jones, 2004; Vignoli, 2004) highlighting needs in seeking to organize 

and retrieve music based on its emotional content. The main aim of automatic mood 

classification systems is to facilitate and automatize this process. 

                                                           
4 http://naver.com/ (Retrieved 12.10.2018) 

http://naver.com/


Chapter 2. Background 33 

 

AMC Sub-Tasks & Datasets (2007 – 2017) 

The first MIREX AMC sub-task and dataset were introduced in 2007, coined ‘Audio Music 

Mood’ (AMM) the dataset contained 600, 30-second audio excerpts equally divided into five 

classes. The ground truth consisted of mood clusters, each employed a set of interrelated 

adjectives from the AMG mood repository (Hu & Downie, 2007). The audio to cluster 

mapping was performed by human judges from a draft audio pool. Audio that had a majority 

agreement between subjective classifications was maintained. The goal of mood clusters and 

human judges was to shrink the semantic and sociocultural mood space. Noteworthy is that 

the cluster architecture highly resembled Hevner (1936) discrete music emotion model. 

The latest AMC sub-task/dataset coined ‘K-POP Music Mood’ (K-POP MM) was developed 

under the K-POP genre paradigm. Analogously to the K-POP genre task, the task includes 

two dataset instances, each with separate ground truths. The common dataset holds 1438, 30-

second audio excerpts unevenly distributed into 5 clusters. The cluster adjectives were 

identical to the AMM dataset, but the music to cluster allocation was performed by majority 

agreement separately in each annotator group (American, Korean). The goal for K-POP 

Music Mood was to evaluate cultural effects concerning music mood classification. Table 8 

aggregates the AMM and K-POP MM sub-tasks and their dataset properties. 

TABLE 8. AMC sub-task and dataset properties. 

Evaluation Period: 2007 - 2017 2014-2017 

Sub-Task: Audio Music Mood K-POP Music Mood 

Classes (Adjectives): 

▪ Cluster 1 (passionate, rousing, confident, boisterous, rowdy) 

▪ Cluster 2 (rollicking, cheerful, fun, sweet, amiable/good natured) 

▪ Cluster 3 (literate, poignant, wistful, bittersweet, autumnal, brooding) 

▪ Cluster 4 (humorous, silly, campy, quirky, whimsical, witty, wry) 

▪ Cluster 5 (aggressive, fiery, tense/anxious, intense, volatile, visceral) 

Total Classes: 5 

Audio Files: 600 1438 

Length: 30 Seconds 30 Seconds 
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2.9.4 MIREX AMM Review (2007 – 2017) 

Before we enlist the top AMM systems, we exclude the 2011 and 2015 entries since their 

specifications were not available. Sub-task concurrent top systems were found in 2009, 2013 

and 2016.  

Since 2007 the AMM sub-task had a total of 178 entries, yearly, the highest classification 

accuracies were; 61.50% (Tzanetakis, 2007); 63.67% (Peeters, 2008); 65.67% (Cao & Li, 

2009); 64.17% (Wang, Lo, Jeng, & Wang, 2010); 67.83% (Paiva, 2012); 68.33% with their 

2013 mixed genre system (Wu & Jang, 2013); 66.33% (Panda, Rui, & Paiva, 2014); 63.33% 

with their 2016 Latin and K-POP genre system (Lidy & Schindler, 2016); 69.83% (Park, Lee, 

Nam, Park, & Ha, 2017). Table 9 enlists the learning features, learning algorithms and 

performance of these systems. 

TABLE 9. Yearly top systems in the AMM mood sub-task, the highest performance is highlighted in bold. 

Year Accuracy Concurrent top  Learning Algorithm Learning Features 

2007 61.50% - 
Support Vector 

Machines 
Spectral centroid, roll-off, flux, MFCCs 

2008 63.67% - 
Gaussian Mixture 

Model 

MFCCs, spectral flatness measure 

(SFM), spectral crest measure (SCM) 

2009 65.67% 
Mixed Genre, 

Latin Genre  

Support Vector 

Machines 

Gaussian super vector (GSV) of: 

MFCCs,  

rhythm pattern (RP) features 

2010 64.17% - 

Ensemble Classifier 

(Support Vector 

Machines/AdaBoost) 

23 Features in four groups; 1 dynamic 

(root mean square loudness), 11 spectral 

(e.g. roughness, entropy, brightness), 5 

timbre (e.g. spectral flux, MFCCS), 6 

tonal (e.g. key clarity, chroma peak, 

chroma centroid) 

2012 67.83% - 
Support Vector 

Machines 

312 Features (e.g. MFCCs, zero crossing 

rates, inharmonicity, loudness, timbral 

width, roll-off, centroid) 

2013 68.33% Mixed Genre 
Support Vector 

Machines 

2009 Features + multi-level visual 

features (MLVFs), beat tracking local 

texture representations, beat-level based 

heterogeneity features 

2014 66.33% - 
Support Vector 

Machines 

410 Features (expanded 2012 feature 

set) 

2016 63.33% 
Latin Genre, 

K-POP Genre  

2 ×  Convolutional 

Neural Networks 
Mel-spaced spectrograms 

2017 69.83% - 
Support Vector 

Machines 

Deep convolutional neural network 

generated low level features (taught with 

million song database) 
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The state of the art was established in 2017 (Park, Lee, Nam, et al., 2017; Park, Lee, Park, Ha, 

& Nam, 2017); the system consisted of one SVM classifier and deep convolutional neural 

network generated features. To extract all features, a DCNN was pre-trained with 100,000 

audio excerpts from the 'million song dataset' (MSD). The DCNN contained five 

convolutional layers leading to an output layer of 5000 ‘artists’ nodes. For each artist, fifteen 

songs made up a learning set, three a validation set and two a testing set. Raw audio excerpts 

were not involved; instead 128 band Mel-spectrograms were used. The Mel-spectrograms 

were computed from a 1024 sample dynamically compressed STFT. The DCNN architecture 

consisted of ‘ReLu’ activations followed by batch normalization. Dropout was used after the 

final convolutional layer and before the prediction layer. The Network optimization was 

performed with stochastic gradient descent and Nesterov momentum. 

Analogously to AGC tasks, seven out of nine systems consist of at least one SVM classifier. 

Eight out of nine systems include or solely consist of spectral features, seven of which further 

include MFCCs. All systems employ the STFT as their spectrum acquisition technique and 

we find ensemble and GMM classifiers in the top systems. Three systems (2009, 2013, 2016) 

have concurrent top accuracies in genre sub-tasks (Mixed, Latin, K-Pop). 

K-POP Mood Review (2014 – 2017) 

We note that all K-POP mood systems, except in 2014, were identical in both ground truths 

and with their concurrent top AGC systems. For this reason, we merge our review for both 

ground truths except for 2014. Also, the 2015 system description was unavailable and will be 

excluded. 

Since 2014 both K-POP mood tasks had a total of 44 entries, each year’s highest classification 

accuracy was as follows: 62.35% with their K-POP (AGT), mixed and Latin genre system 

(Wu & Jang, 2014); 64.23% (Xu & Gu, 2014); 60.75% (KGT), 62.98% (AGT) with their 

AMM, K-POP(AGT, KGT) and Latin genre systems (Lidy & Schindler, 2016); 65.34% 

(KGT), 65.34% (AGT) with their K-POP (AGT, KGT), mixed and Latin genre systems (Park, 

Lee, Nam, et al., 2017; Park, Lee, Park, et al., 2017). Table 10 shows the ground truth version, 

learning features, learning algorithms and performance of these systems. 
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TABLE 10. Yearly top systems in the K-POP Mood sub-task, the highest performance is highlighted in bold. 

Year Accuracy 
Ground 

Truth 
Concurrent Top Learning Algorithm Learning Features 

2014 62.35% KGT 

K-POP Genre 

(AGT), 

Mixed Genre 

Latin Genre  

 

2 × Support Vector 

Machines 

Gaussian super vector 

(GSV) of MFCCs rhythm 

pattern (RP), multi-level 

visual features (MLVFs) 

and beat tracking local 

texture representations 

2014 64.23% AGT - 
Support Vector 

Machines 

Spectral pattern (SP), 

delta spectral pattern 

(DSP), spectral contrast 

pattern (SCP), 

logarithmic fluctuation 

pattern (LFP), correlation 

pattern (CP), beat-level 

texture (BLT), beat 

spectrogram (BS) 

2016 

60.75% 

(KGT) 

62.98% 

(AGT) 

Both 

AMM 

K-POP Genre 

(AGT & KGT)  

Latin Genre 

2 × Convolutional 

Neural Networks 
Mel-spaced spectrograms 

2017 

65.34% 

(KGT) 

65.34% 

(AGT) 

Both 

K-POP Genre 

(AGT & KGT) 

Mixed Genre Latin 

Genre 

Support Vector 

Machines 

Deep convolutional 

network generated low 

level features 

 

The state of the art for both ground truths was found in 2017 (Park, Lee, Nam, et al., 2017; 

Park, Lee, Park, et al., 2017); the system used a pre-trained DCNN as a feature generator and 

an SVM classifier. The system set up was identical to the authors' entries in K-POP, ‘Mixed’ 

and ‘Latin’ genre sub-tasks. The only configuration change across ground truths was the 

DCNN learning material. The DCNN for AGT was taught with the MSD and NAVER 

datasets while the KGT system was taught with the MSD dataset. 

Although in this task a small number of systems was under review, we can observe that the 

majority followed suit to AGC and AMM. Most systems consisted of at least one SVM and 

either included or comprised of spectral features with the STFT as the common spectrum 

acquisition method. Importantly, all systems but one (2014 AGT) were top performing in 

other sub-tasks, which again suggests a minimal cross-cultural and classification domain 

restriction for these systems. 
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2.9.5 MIREX Limitations 

Reflecting on the state of MIREX evaluation, we find five significant limitations: 1) Both 

AGC and AMC do not focus on reporting any training set accuracies. The training to testing 

accuracy divergence is essential for accessing overfitting, in its absence, it is difficult to 

evaluate the participating systems critically; 2) The standard deviation cross-validation 

accuracy is absent which makes it even more challenging to access models adequately; 3) No 

model robustness testing was used, by not using any such tests (e.g., noise generation, 

irrelevant data transformation, data augmentation, etc.) it becomes considerably challenging 

to reflect on model performance in other than ‘ideal’ conditions; 4) Classification accuracy 

does not control for the quality of errors made between systems. Although systems might be 

performing well in most cases, a commercial application may lead to an end user losing 

confidence when the model makes mistakes of bad quality (‘irrational’ confusions). This 

approach could also prove useful in ranking when top performance and generalization is equal 

between several systems; 5) Unavailability of sub-task data and several top entry 

specifications limits task development prospects. 

2.9.6 Concurrent Top Systems 

So far, we focused on individual system performance in AGC and AMC, throughout our 

analysis it became clear that four systems extended beyond top individual sub-task 

performance. These systems were: 1) Cao & Li (2009) top performing in AMM, Mixed and 

Latin Genre 2) Wu & Jang (2014) top performing in K-POP Mood (AGT), Mixed and Latin 

Genre. 3) Lidy & Schindler (2016) top performing in K-POP Genre (AGT & KGT), K-POP 

Mood (AGT & KGT), AMM and Latin Genre. 4) Park, Lee, Nam, et al., (2017) and Park, 

Lee, Park, et al., (2017) top performing in all subtasks, except for AMM. The consistencies 

found in the first three (1-3) were the use of spectral features and SVM classifiers. Given 

these observations, we can consider that certain system designs can indeed perform best 

between multiple sub-tasks in both AGC and AMC. It is difficult to interpret the exact reasons 

why these systems perform well between tasks since they follow the general trends found in 

each respective task. Nevertheless, it is plausible to consider that the systems mentioned 

above are the closest to a single system approach to music concept classification, given that 

they are not overfitting (that we cannot access). 
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2.9.7 AGC Remarks 

In review of all AGC sub-tasks, we observe six principal points of interest: 1) High 

performances were achieved despite the presence of an artist filter; 2) SVMs and spectral 

features remained the ‘go to’ options for the majority of systems; 3) The majority of spectral 

features contained the MFCCs; 4) One system (J. Lee, Park, Nam, et al., 2017) performed the 

highest in every AGC sub-task; 5) Outside the majority of classifier and feature choices, the 

reminder of top systems employed neural networks either as a classifier or as a feature 

extraction method. 

2.9.8 AMC Remarks 

Between all AMC sub-tasks, we find that the AGC remarks 2, 3, 5 also apply to AMC. 

Considering this substantial similarity, we only amend the fourth point with Lidy's and  

Schindler's (2016) system that performed the best across all AMC sub-tasks. In line with the 

AGC remarks, Lidy’s and Schindler’s system demonstrated a diminished sensitivity to 

cultural and data specific effects. 

2.9.9 Closing Remarks 

Despite all the promising results, we find a relatively slow development in all sub-tasks and 

against a ‘glass ceiling’ (Pachet & Aucouturier, 2004) of classification accuracy. This is not 

surprising given the ambiguous nature of the semantic labels associated with each task. 

Another reason may also lie in the unmusicality and perceptual irrelevance of many popular 

low-level features. It is plausible to consider that transcending past the ‘glass ceiling’ might 

require a new approach in both feature design and systems evaluation. 

 

 

 

 

 

 



   

 

3 METHODOLOGY 

The outline of our methodological approach consisted of two stages, data pre-processing and 

data classification. In the pre-processing stage, we extracted and processed six Spectro–

temporal features for two music datasets. After feature extraction, we grouped the features 

into combinatorial and feature selection sub-sets, predominately manually and once with a 

feature selection algorithm. In the data classification step, each feature group was used as an 

input to three learning algorithms. Both methodological stages are summarized in figure 8; 

this scheme is also the general outline of supervised machine learning as found in the MIREX 

contest. In this chapter, we elaborate on each stage shown in figure 8. 

 

FIGURE 8. Both stages of our experimental design, each step represents one procedure with each line being the 

outcome of each procedure. 
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In our pre-processing stage, five out of six features were sub-band features (Alluri & 

Toiviainen, 2010; M. A. Hartmann, 2011) and were the focus of this study; the remainder was 

sub-band based (MFCCs) which served as a comparative baseline. All sub-band features were 

extracted with an independent temporal window size for each of their sub-bands. The window 

size is computed by an operation we call ‘Filter Dependent Windowing’. This operation, 

which we detail later in this chapter, calculated a unique window size suited to each sub-band 

frequency range. Thus, the sub-band features may be rephrased as FDW based sub-band 

features. In the last stage of feature extraction, we statistically summarized all extracted 

feature vectors with their mean and standard deviation. Once all the features were extracted 

and summarized, we proceed to the data classification stage. In the classification stage, we 

performed supervised machine learning with three learning algorithms; Support Vector 

Machines (SVM); Multinomial Logistic Regression (MLR); K – Nearest Neighbors (K-NN). 

In total, our experimental design consisted of six features, two datasets and three learning 

algorithms. We constructed a factorial design shown in table 11 to map the key experimental 

factor combinations. Furthermore, each feature was summarized with two statistics, 

effectively resulting in more combinations than the factorial design suggests. For this reason, 

further into this chapter we also map the additional feature subsets and feature selection sub-

sets. Our primary focus in this study, was to rank, explore and contrast the classification 

accuracy of our features set when selected individually, algorithmically and all together. It is 

important to point out that our primary aim was not to explore all possible feature 

combinations; instead, we only wanted to focus on essential feature subsets for the 

classification tasks. 

 

TABLE 11.  The factorial design of this study, each cell is an experimental factor. Each column item is the 

‘input’ of each column item on the right. 

Factors→ 

Levels ↓ 
Music Dataset 

Learning 

Features 
Machine Learning Algorithm 

1 
GTZAN 

(Fault Filtered) 
Sub-Band Entropy Support Vector Machines (SVM) 

2 

GTZAN 

(Fault Filtered + Artist 

Filtered) 

Sub-Band 

Skewness 

Multinomial Logistic Regression 

(MLR) 

3 PandaMood Sub-Band Kurtosis K – Nearest Neighbours (K-NN) 

4 - Sub-Band ZCR - 

5 - Sub-Band Flux - 

6 - 
MFCC 

Coefficients 
- 
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3.1 Music Databases 

We evaluated multiple feature sets between two mutually independent music datasets; these 

datasets served as the audio material which allowed us to extract learning features and 

perform machine learning. We chose two classification tasks for our evaluations, automatic 

music genre classification (AGC) and automatic music mood classification (AMC). Each task 

was associated with one dataset, AGC was evaluated with the ‘GTZAN’ (Tzanetakis & Cook, 

2002) dataset while AMC was evaluated with the ‘PandaMood’ (Panda, Malheiro, Rocha, 

Oliveira, & Paiva, 2013) dataset. The choice of these datasets was due to the corresponding 

MIREX datasets not being available. For this reason, we considered to obtain datasets that 

satisfied four factors: 1) Similarity to the MIREX dataset; 2) Public availability; 3) 

Supporting background literature; 4) Adequate dataset size. 

GTZAN Dataset – Automatic Genre Classification 

The GTZAN dataset was first introduced by Tzanetakis and Cook (2002), and it was mainly 

used for music genre classification. The dataset consists of 1000 audio files in .au format; the 

files are grouped into ten classes (blues, classical, country, disco, hip-hop, jazz, metal, reggae, 

rock). Each of the classes contains 100 music excerpts with a duration of 30 seconds each. All 

audio files are unnamed and do not carry any relevant metadata.  

The GTZAN dataset has been shown to contain audio replicas, distortions and mis-labelings 

(Sturm, 2012, 2013a, 2014b). These issues along with the lack of an artist filter can influence 

the classification procedure and effect classification performance. For this reason, we 

constructed a fault filtered version of GTZAN along and an artist filter specification. We 

specifically used the faults and artists listed by Sturm (2013b). Also, we expanded our fault 

filter in the case of multiple versions of a music piece; we kept only the first version of an 

excerpt as it appeared in each genre. Thus, the resulting fault filtered dataset contained 903 

audio files, more information is shown in table 12. From here on, we will be referring to our 

fault filtered GTZAN simply as GTZAN and use the ‘AF’ term to indicate artist filtering of 

the fault filtered data. 
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PandaMood Dataset – Automatic Mood Classification 

The ‘PandaMood’ dataset is the audio-only part of a larger multimodal dataset (Panda et al., 

2013), ‘PandaMood’ is the code name we borrow from Sturm (2014a). The dataset is devised 

similarly to the MIREX 2007 mood classification dataset. It employs 903, 30-second-long 

mp3 audio files categorized roughly alike into five classes also called ‘mood clusters’. Each 

cluster is numbered from 1 to 5 and contains the same tags as the MIREX 2007 mood dataset. 

The corresponding tags are as follows: Cluster 1) passionate, rousing, confident, boisterous, 

rowdy; Cluster 2) rollicking, cheerful, fun, sweet, amiable/good-natured; Cluster 3) literate, 

poignant, wistful, bittersweet, autumnal, brooding; Cluster 4) humorous, silly, campy, quirky, 

whimsical, witty, wry; Cluster 5) aggressive, fiery, tense/anxious, intense, volatile, visceral. 

The source of the music was the AllMusic5database where the music material was fetched by 

selecting songs that corresponded to the MIREX 2007 mood cluster tags. Professionals tagged 

the fetched music material, but access to their evaluation criteria and procedural details was 

not made public. Further dataset information is appended to table 12 below. 

TABLE 12. GTZAN & PandaMood dataset properties. 

Music Dataset→ 

Properties↓ 
GTZAN PandaMood 

Classification Task: Music Genres Music Moods 

Classes 

(Percentage of total 

files): 

• Blues (11.1%) 

• Classical (10.6%) 

• Country (10.6%) 

• Disco (10.1%) 

• Hip-Hop (9.7%) 

• Jazz (9.3%) 

• Metal (9.6%) 

• Pop (8.7%) 

• Reggae (9.3%) 

• Rock (10.9%) 

• Cluster 1: passionate, rousing, confident, 

boisterous, rowdy; (18.8%) 

• Cluster 2: rollicking, cheerful, fun, sweet, 

amiable/good natured; (18.2%) 

• Cluster 3: literate, poignant, wistful, 

bittersweet, autumnal, brooding; (23.8%) 

• Cluster 4: humorous, silly, campy, 

quirky, whimsical, witty, wry; (21.2%) 

• Cluster 5: aggressive, fiery, intense, 

tense/anxious, volatile, visceral (18.1%) 

Number of Classes: 10 5 

Length of excepts: 30 seconds 30 seconds 

Audio files count: 903 903 

                                                           
5 https://www.allmusic.com/ (Retrieved 12.10.2018) 

https://www.allmusic.com/
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3.2 Feature extraction (Pre-processing Stage) 

In this section, we elaborate on our feature extraction strategies for each feature used in our 

study. The feature extraction step was responsible for generating our learning features from 

the audio content. Each feature represented a quantitative measure of a particular spectral 

property over time. In this study, we extracted six spectro-temporal features: 1) Sub-Band 

Entropy (SB-Entropy); 2) Sub-Band Flux (SB-Flux); 3) Sub-Band Kurtosis (SB-Kurtosis); 4) 

Sub-Band Skewness (SB-Skewness); 5) Sub-Band Zero Crossing Rates (SB-ZCR); 6) Mel-

frequency Cepstral Coefficients (MFCCs). We first elaborate on the sub-band features and 

conclude by elaborating on the baseline MFCC features. We implemented the entire feature 

extraction process with the MIRtoolbox 1.6.1 (Lartillot, Toiviainen, & Eerola, 2008) in the 

MATLAB environment. Figure 9 shows the general overview of our feature extraction set up, 

including statistical summarization. 

 

FIGURE 9. The general overview of our feature extraction step. 



Chapter 3. Methodology 44 

 

3.2.1 Sub-Band Feature Generation 

In our study, five out of six features were from the family of sub-band/multiresolution 

features. The broad criteria for qualifying any feature as a sub-band feature is that feature 

computations are applied to a filter-bank decomposed signal. The main difference between a 

sub-band feature and a ‘broadband’ feature, is that the latter typically consists of only one 

feature vector computed for the entirety of the input frequency range. In contrast, a sub-band 

feature is a collection of multiple vectors computed from different segments of the input 

frequency range. The term sub-band or multiresolution stems from the operation of filter-bank 

decomposition as the frequency range is ‘partitioned’ into smaller frequency bands. 

Our procedural flow to generate the filter dependent windowing (FDW) sub-band features 

consisted of four steps:1) Filter bank-decomposition; 2) Signal window decomposition with 

FDW; 3) Spectrum extraction; 4) Feature computation. In more detail: 1) A signal enters 

filter-bank decomposition which results in a set of ten sub-band signals; 2) The new set of 

signals enters the filter dependent windowing procedure (FDW), this results in each sub-band 

signal to be windowed with a unique sub-band based window size; 3)A short-time Fourier 

transform (STFT) spectrum is computed for each window and every sub-band signal. 4)A 

feature is computed for each spectrum window of every sub-band; In our case, this procedure 

generated a spectral sub-band feature consisting of 10 sub-band feature component vectors. 

Figure 10 details the extraction pipeline specific to our study, we elaborate each operation in 

the proceeding sections. 

 

 

FIGURE 10. The FDW sub-band spectral feature generation pipeline for one audio file, each arrow indicates the 

outcome of each operation. 
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Filterbank Decomposition 

The sub-band feature extraction procedure begins by implementing filter-bank decomposition. 

This process is the fundamental building block for our feature set; it generates the necessary 

sub-bands for which we compute our spectral features. In general, filter-bank decomposition 

tries to imitate the procedure by which the ears cochlea analyses incoming vibrations in the 

frequency domain. The filter-bank design we implement is based on previous work that 

introduced and evaluated the sub-band flux feature (Alluri & Toiviainen, 2010; M. A. 

Hartmann, 2011). The two studies share a filter-bank design based on Scheirer's (1998) design 

that was used for beat extraction and tempo analysis. The main difference between the 

designs is the filter order; Scheirer's (1998) design used an order of six while proceeding 

designs used an order of two. 

In our design, we use ten non-overlapping, octave range, fourth order elliptical filters as our 

filter-bank. The design comprises of 10 filters of three types: one low pass filter, eight 

bandpass filters and one high pass filter. Each filter/sub-band covers a unique octave range of 

frequencies, the number of filters is dependent on the sampling rate, we employ a sampling 

rate of 44.1 Khrz which thus requires 10-octave size sub-bands to cover the full frequency 

range.  Figure 11 presents Alluri's and Toiviainen's (2010) filter-bank frequency response 

with a filter order of two. Table 13 highlights each sub-band frequency range and 

corresponding octave range. 

 
 

FIGURE 11. The aggregate and each sub-band filter frequency response (Alluri & Toiviainen, 2010). 
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TABLE 13. Frequency range and octave range for each sub-band filter. 

Sub-band Filter 

No 

Frequency Range 

(Hertz) 

Octave Range 

(Each note + 35 cents) 

1 0 – 50 G1  

2 50 - 100 G1 – G2 

3 100 - 200 G2 – G3 

4 200 - 400 G3 – G4 

5 400 - 800 G4 – G5 

6 800 - 1600 G5 – G6 

7 1600 - 3200 G6 – G7 

8 3200 - 6400 G7 – G8 

9 6400 - 12800 G8 – G9 

10 12800 - 22050 G9 

3.2.2 Filter Dependent Windowing 

To window our sub-band features, we developed a windowing method we refer to as ‘Filter 

Dependent Windowing’ (FDW). With this method, we pre-computed and applied unique 

window sizes for each filter in our filter-bank. The central concept is to adapt the window 

amount and size to the frequency range of each filter/sub-band. The method aims in enriching 

the statistical summaries (mean, standard deviation) by extracting adaptive sizes and thus, 

varying amounts of windows for each sub-band frequency band. Consequently, each extracted 

sub-band signal vector will be of a different length. With FDW we obtain an dynamic analogy 

between frequency range and window size (figure 13), windows are larger for the lower sub-

bands (frequency length is larger) and much smaller for the highest ones (frequency length is 

smaller). Instead of a one size fits all window size, FDW was developed to adopt the window 

size to best suit the frequency content of each filter. This process was fundamentally inspired 

by the wavelet transform (Daubechies, 1990) method. Figure 12 highlights the procedural 

pipeline of FDW.  

 

FIGURE 12. The FDW procedural pipeline, the inputs are sub-band specifications and the output are window 

size specifications. 
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To obtain the window length size of each sub-band in our filter-bank 𝑤𝑗 with 𝑗 = 1…10 we 

used the following function: 

𝑤(𝑗) =
100

𝑓(𝑐𝑗 )
 

Where 𝑤(𝑗) results in the window length specification measured in seconds and 𝑓(𝑐𝑗 ) is the 

central frequency of the 𝑗 th sub-band. One generalized form of the central frequency 

calculation we used, is the following: 

𝑓(𝑐𝑗 ) =

{
 
 

 
 √(𝑓ℎ,𝑗 𝑓𝑙,𝑗 )  ,      𝑖𝑓  

𝑓ℎ,𝑗 

𝑓𝑙,𝑗 
≥ 1.1

1

2
(𝑓ℎ,𝑗+ 𝑓𝑙,𝑗 ),       𝑖𝑓  

𝑓ℎ,𝑗 

𝑓𝑙,𝑗 
< 1.1 

 

Where 𝑓ℎ,𝑗 is the high-pass cut off frequency and 𝑓𝑙,𝑗 is the low-pass cut off frequency of the 

𝑗th sub-band. This form can be used with varying filterbank specifications, including 

ours. By implementing the FDW with our filter-bank specification, we obtained the window 

sizes show in table 14, the hop/overlap size for each window was 50%, meaning that each 

new window began from the central temporal location of the previous window. 

TABLE 14. Sub-band filter-bank components, frequency ranges, central frequencies and the corresponding 

FDW window size. 

Sub-band Filter (Index) 
Frequency Range 

(Hertz) 

Central Frequency 

(Hertz) 

FDW -Window Size 

(Seconds) 

1 0 - 50 25 4 

2 50 - 100 71 2.92 

3 100 - 200 141 4.91 

4 200 - 400 283 2.46 

5 400 - 800 566 1.23 

6 800 - 1600 1131 0.61 

7 1600 - 3200 2263 0.31 

8 3200 - 6400 4525 0.15 

9 6400 - 12800 9051 0.08 

10 12800 - 22050 16800 0.06 
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FIGURE 13. A visual analogy of the resulting FDW windows over time t for every sub-band index Q. We can 

discern that as the sub-band index increases the window length decreases. 

3.2.3 Spectrum Computation 

In our study, we compute the spectrum over N signal windows with the help of the short-time 

Fourier transform (STFT). The resulting STFT windows become the basis for which feature 

computation takes place. The STFT is one of the fundamental components of most timbre 

features because it is the input of feature computation. 

3.2.4 DFT Window Function 

In the case of finite duration signals such as ours, it is standard practice to apply a window 

function for each window before the DFT. The reason is to avoid spectral leakage, which 

introduces unwanted frequency components that did not exist in the DFT input. Spectral 

leakage occurs when the sampling of an infinite periodic signal with period N is not an integer 

multiple of the period of that signal. The DFT causes the frequency components of such a 

signal to swift which result to either discontinuities or overlaps when the signal repeats. The 

DFT window function is a function that has a non-zero value only for some interval. In our 

implementation we select the Hann discrete window, defined as: 

𝑊[𝑛] =  𝑠𝑖𝑛2 (
𝜋𝑛

𝑁 − 1
) 

Where for some timeseries 𝑋[𝑖]: 𝑖 = 0,1, … ,𝑁 − 1  , we obtain  𝐺[𝑘] = 𝑊[𝑛] ∙ 𝑋[𝑖]  in the 

time domain. 
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3.3 Sub-Band Spectral Features 

For every window and every sub-band, the STFT of each FDW window was obtained before 

each feature set was computed. This cascade of operations yields our final sub-band features. 

Sub-band flux is adopted from (Alluri & Toiviainen, 2010) which served as the foundation for 

developing the rest of the sub-band features. To the best of our knowledge SB-Entropy, SB-

ZCR, SB-Kurtosis and SB-Skewness based on Alluri's & Toiviainen's (2010) specification 

have not been introduced before. In the following section, we elaborate on the details of each 

sub-band feature computation. In the final part of this section, we also describe the baseline 

MFCC feature extraction process. 

3.3.1 Sub-Band Entropy 

The idea of entropy, and particularly information entropy has its roots in information theory 

(Shannon, 2001). It was introduced as a metric of uncertainty, information and choice that 

allows the estimation of the average minimum bits of information in a message. In physics 

and mainly statistical mechanics, entropy corresponds to the amount of ‘disorder’ in a system. 

Sub-band entropy has had varying uses mainly in automatic speech recognition and analysis 

(Egenhofer, Giudice, Moratz, & Worboys, 2011; Misra, Ikbal, Bourlard, & Hermansky, 2004; 

Toh, Togneri, & Nordholm, 2005). We find that previous specifications do not match our 

filterbank and window decomposition specifications. 

To interpret this feature in the frequency domain, we first need to transform our STFT 

spectrum into a probability mass function (PMF). When the PMF is maximally flat, the 

entropy is high, corresponding to a state of maximum uncertainty or ‘disorder’. In contrast, 

when the PMF has one sharp peak, it corresponds to a state of low uncertainty, where the 

entropy is said to be low. To convert our spectrum to a PMF 𝑝(𝑥𝑗), we divide the frequency 

constituents of the power spectrum 𝑋𝑗 by the sum of all frequency constituents of the same 

spectrum, defined as follows: 

𝑝(𝑥𝑗) =
𝑋𝑗

∑ 𝑋𝑗 
𝑁
𝑗=1
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where 𝑋𝑗 is the power of 𝑗 = 1…𝑁 frequency constituents. We repeat this procedure for each 

sub-band, necessarily resulting in 10 PMFs. For each PMF 𝑝(𝑥𝑗) we compute the Shannon 

Entropy: 

𝐻(𝑋) ≔ −∑𝑝(𝑥𝑗) ∙

𝑁

𝑗=1

𝑙𝑜𝑔2𝑝(𝑥𝑗) 

The resulting feature is the Sub-Band Entropy, consisting of 10 spectral entropy sub-band 

vectors.  

3.3.2 Sub-Band Skewness 

Spectral skewness is the third central moment of an STFT’s probability density function 

(PDF). Skewness is a measure of symmetry: when spectral skewness has a positive value, the 

distribution is positively skewed to the right containing larger values than the mean. A 

symmetrical distribution has a skewness value of zero. We obtain the coefficient of skewness 

from the following expression: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑐𝑜𝑒𝑓 =
𝐸(𝑥 − 𝜇)3

𝜎3
 

Where 𝐸(𝑥) is the expected value of 𝑥 with 𝑥 being the data observed of which 𝜇 is the mean 

and 𝜎 the standard deviation. By repeating the computation for each sub-band, the resulting 

feature is sub-band skewness, consisting of 10 spectral skewness sub-bands. In the literature 

we find two relevant applications (Seo & Lee, 2011; Yeh, Roebel, & Rodet, 2010), of which 

one (Seo & Lee, 2011) had a similar approach for GTZAN. Despite the similar approach both 

studies do not match our filterbank and window decomposition specifications. 

3.3.3 Sub-Band Kurtosis 

Spectral Kurtosis refers to the fourth central moment of an STFT’s probability density 

function (PDF). Kurtosis indicates whether a PDF is flat or peaky near its mean value, it is a 

measure of the peakedness of the distribution. As seen below, the Kurtosis coefficient is given 

by dividing the fourth cumulant by the square of the variance of the distribution: 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑐𝑜𝑒𝑓 =
𝐸(𝑥 − 𝜇)4

𝜎4
− 3 

Where 𝐸(𝑥) is the expected value of 𝑥 with 𝑥 being the data observed of which 𝜇 is the mean 

and 𝜎 the standard deviation. A normal distribution has Kurtosis = 3,  for this reason  the “ - 

3’’ constant is used to balance out the kurtosis value of the normal distribution. The kurtosis 

coefficient is obtained for each sub-band resulting in the sub-band kurtosis feature. In 

literature we find one relevant work (Seo & Lee, 2011) and two distantly relevant works 

(Sällberg, Grbić, & Claesson, 2007; Yermeche, Grbic, & Claesson, 2007). In every work, the 

entire extraction specification (filterbank, window decomposition, kurtosis implementation) 

do not match our own. 

3.3.4 Sub-Band Zero Crossing Rate 

The zero-crossing rate (ZCR) is used extensively in the fields of speech recognition and music 

information retrieval. The idea behind ZCR is to compute the average rate of sign changes for 

a signal in the time domain. Essentially, we count a crossing or sign change when the signal 

crosses to the positive or the negative range of values. For a signal window 𝑥(𝑛), we calculate 

the zero-crossing rate as follows: 

𝑍𝐶𝑅 ≜
1

2
∙  ∑|𝑠𝑖𝑔𝑛(𝑥(𝑛)) − 𝑠𝑖𝑔𝑛(𝑥(𝑛 − 1))|

𝑁

𝑛=2

 

where, 

𝑠𝑖𝑔𝑛(𝑥) = {

1, 𝑖𝑓 𝑥 > 0 
0, 𝑖𝑓 𝑥 = 0
−1, 𝑖𝑓 𝑥 < 0

 

The computation occurs for every sub-band, resulting in 10 sub-band zero crossing rates 

vectors. 
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3.3.5 Sub-Band Flux 

Sub-band flux was first introduced by Alluri and Toiviainen (2010)  and is the only 

perceptually validated feature in our study. In the past, sub-band flux has had several uses in: 

1) Timbre research (Alluri, 2012; Alluri & Toiviainen, 2009, 2010, 2012; Alluri et al., 2012; 

Eerola, Ferrer, & Alluri, 2012); 2) Music and movement research (Burger, 2013); 3) Music 

genre classification (M. A. Hartmann, 2011; M. Hartmann, Saari, Toiviainen, & Lartillot, 

2013); 4) Music and neuroscience research (Alluri, 2012; Alluri et al., 2012; Hoefle et al., 

2018). 

Sub-band flux is based on the spectral flux feature as used in a plethora of studies and 

applications. The ‘flux’ part of the feature is a measure of a signal’s temporal fluctuation, as a 

function of the distance between two successive windows. In the spectral case, instead of the 

raw signal, it is computed for the STFT spectrum resulting in spectral flux. Analogically, 

spectral flux measures the temporal fluctuation of the magnitude spectra between two 

successive windows. Bellow, we see the Euclidian distance metric used in our 

implementation: 

𝑑 = √∑(𝑥𝑡[𝑛] − 𝑥𝑡−1[𝑛])2
𝑁

𝑛=1

 

Where at times 𝑡 and 𝑡 − 1 the two windows are normalized to have the Euclidean norm: 

Σ𝑥[𝑛]2 = 1 

The computation occurs in every sub-band, resulting in the sub-band flux feature. 

3.3.6 Mel-frequency Cepstral Coefficients (MFCCs) 

The Mel-frequency-cepstral coefficients (Logan, 2000; Mermelstein, 1976)  are computed in a 

cascade of five steps shown in figure 14; These steps are: 1) Window a signal into 

overlapping windows across its temporal length; 2) The STFT of a signal is computed for 

each window; 3) Each power spectrum is filtered with mel-frequency spaced triangular filters 
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allowing for the perceptual positioning of the filters in the frequency domain; 4) The energies 

of every triangular filter are summed, and the logarithm of the energies is taken; 5) The 

discrete cosine transform (DCT) is applied to the logarithmic energies. The resulting features 

are the MFCC coefficients, typically a portion of the coefficients is maintained. In this study, 

we extracted thirteen coefficients, starting from the first coefficient (zero is discarded). Each 

input signal was decomposed into 25 millisecond windows with a 50% overlapping/hop size 

prior to the MFCC computation. 

 

FIGURE 14. The MFCC extraction pipeline, each line indicates the output of each operation. 

 

3.3.7 Feature Statistical Summarization 

The final step of our feature extraction is the statistical summarization of the features. Each 

feature consisted of ten vectors/sub-band components extracted with a different window size 

via FDW. To reduce classifier learning time and compactify each vector, we summarized each 

sub-band feature component with its mean and standard deviation values. This procedure 

produced two statistic values per sub-band feature component. 
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3.4 Feature Selection & Combinatorial Sub-Sets 

In this last section of the pre-processing stage, we generated a multitude of feature sub-sets 

which became the inputs to the classification stage. We created feature subsets in three ways, 

manually, semi-manually and algorithmically. In this section, we elaborate on each feature 

selection strategy. The entire feature selection and sub-set generation pipeline is shown in 

figure 15 at the end of the section. 

3.4.1 Manual Selection 

In the manual selection case, we devised two feature sub-sets and further generated more sub-

sets between statistical summaries; When selecting feature mean values we code-name the 

sub-set as ‘Feature sub-set (𝜇)’, when we select the standard deviation values we used the 

code-name ‘Feature sub-set (𝜎)’, when both summaries were used, we aggregated both code-

names as ‘Feature sub-set (𝜇, 𝜎)’. In tables 15 and 16 we show each manually selected feature 

sub-set, dimensionality and description. 

TABLE 15.  The ‘All Features’ sets, comprising of all features and every summary statistic sub-set. 

‘All Features’ Sets Dimensionality Description 

‘All Features (𝝁)’ 63 Only mean values of all features. 

‘All Features (𝝈)’ 63 Only standard deviation values of all features. 

‘All Features (𝝁, 𝝈)’ 126 Mean and standard deviation values of all features. 

 

TABLE 16.  The ‘individual feature’ sets, comprising of each individual feature and both summary statistics. 

‘Individual feature’ Sets Dimensionality Description 

‘SB-Entropy (𝝁, 𝝈)’ 20 
Mean and standard deviation values of 10 sub-band 

entropies. 

‘SB-Flux (𝝁, 𝝈)’ 20 
Mean and standard deviation values of 10 sub-band 

fluxes. 

‘SB-Kurtosis (𝝁, 𝝈)’ 20 
Mean and standard deviation values of 10 sub-band 

kurtosis. 

‘SB-ZCR (𝝁, 𝝈)’ 20 
Mean and standard deviation values of 10 Sub-Band 

zero crossing rates. 

‘SB-Skewness (𝝁, 𝝈)’ 20 
Mean and standard deviation values of 10 sub-band 

skewness. 

‘MFCCs (𝝁, 𝝈)’ 26 
Mean and standard deviation values of 13 MFCC 

coefficients. 
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3.4.2 Semi - Manual Selection 

In semi-manual selection, we devise the ‘Top 2’ feature sub-set from the classification 

performance ranking of the ‘individual features’ sets. This selection design deals with two 

features only, for this reason, the 𝜇1, 𝜎1 codes referred to the mean and standard deviation of 

the best performing individual feature, while 𝜇2, 𝜎2  referred to the same statistics for the 

second-best feature. Table 17 displays the composition of our ‘Top 2’ semi- manual selection 

design. 

TABLE 17. The semi-manual feature selection subsets, containing the top two performing individual features. 

Top 2 Feature Sub-Set 

Dimensionality 

(with or without 

MFCCs selected) 

Description 

‘Top 2 [Feature 1 (𝝁𝟏, 𝝈𝟏) – Feature 2(𝝁𝟐, 𝝈𝟐)]’ 46 or 40 

Mean and standard deviation 

values of the top performing 

feature with that of the second-

best feature. 

‘Top 2 [Feature 1 (𝝁𝟏) – Feature 2 ( 𝝈𝟐)]’ 23 or 20 

Mean values of the first feature 

with standard deviation values 

of the second feature. 

‘Top 2 [Feature 1 ( 𝝈𝟏) – Feature 2 (𝝁𝟐)]’ 23 or 20 

Mean values of the second 

feature with standard deviation 

values of first feature 

3.4.3 Algorithmic Feature Selection 

Algorithmic feature selection or simply ‘feature selection’ plays an important role in 

automatically ranking and selecting relevant features for a classification task. Often a portion 

of features involved in machine learning may not be informative or relevant to the 

classification task. Indeed, a high number of irrelevant features may increase the complexity 

of a model and even decrease classification and computational performance by increasing 

overfitting or imposing other unwanted effects. Feature selection algorithms help to combat 

such effects. Importantly, feature selection should not be perplexed with dimensionality 

reduction methods, both reduce the number of features for a given task, but dimensionality 

reduction methods may produce different features from the initial feature set, feature selection 

methods do not. 

There are three types of feature selection methods, filter methods, wrapper methods and 

embedded methods. Filter methods employ statistical measures to score each feature with 
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respect to the dependent variable or independently. In contrast, wrapper methods generate 

feature combinations and compare the classification accuracy results of such combinations 

directly via the classification stage. Embedded methods identify feature contributions to 

classification accuracy within and during the classification process. A popular class of 

embedded methods is regularization techniques often used to penalize classification and 

regression algorithms such that they may reduce over-reliance on specific features, this often 

may lead to reduced overfitting. 

The choice of feature selection algorithm depends heavily on the understanding of a given 

problem. There is no ‘one size fits all’ selection algorithm, often selection algorithms tend to 

produce completely different rankings for the same input features. In the absence of deep 

problem understanding it is common for multiple selection methods to be evaluated, and at 

times aggregated ranks between multiple rankings may be performed. In our study, we 

employ a filter method using the Information gain (IG) algorithm that we detailed below. The 

resulting feature sub-set was code-named ‘Information Gain Top 20’ to refer to the top 20 

features suggested by IG when inputting the ‘All Features (𝜇, 𝜎) ’ feature set. We 

implemented IG in python with the Orange3 library (Demšsar et al., 2013). 

3.4.4 Information Gain 

Information Gain (IG) is a filter method computed for each feature with respect to the class 

labels (Liu & Motoda, 1998); it relies heavily on the Shannon’s information entropy 

(Shannon, 2001). To obtain 𝐼𝐺(𝑋|𝑌) were 𝑋 and 𝑌 are random variables, let us consider the 

formula for the information entropy 𝐻 of variable 𝑋: 

𝐻(𝑋) = −∑𝑝(𝑥)

 

𝑥∈𝑋

𝑙𝑜𝑔2(𝑝(𝑥)) 

Where 𝑝(𝑥) is the marginal probability density function for 𝑋. When we introduce variable 𝑌 

and devise the values of variable 𝑋 with respect to the values of 𝑌, a relationship between 𝑋 

and 𝑌 exists only when the entropy of 𝑋 devised by 𝑌 is smaller than the initial entropy of 𝑋, 

the entropy of 𝑋 devised by 𝑌 is given by: 
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𝐻(𝑋|𝑌) = −∑𝑝(𝑦)

 

𝑦∈𝑌

∑𝑝(𝑥|𝑦)𝑙𝑜𝑔2(𝑝(𝑥|𝑦))

 

𝑥∈𝑋

 

Where  𝑝(𝑦)  is the marginal probability density function for variable 𝑌  and 𝑝(𝑥|𝑦)  is the 

conditional probability of 𝑥 given 𝑦. After the conditional entropy step, information gain is 

defined as the amount of entropy decrease in 𝑋  represented by the surplus information 

provided from 𝑌 about 𝑋, formally defined as: 

𝐼𝐺(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

Importantly, 𝐼𝐺(𝑋|𝑌) = 𝐼𝐺(𝑌|𝑋)  because information gain is symmetrical for the two 

variables (Yu & Liu, 2003). 

3.4.5 Feature Selection Overview 

To summarize, figure 15 maps the flow of our feature selection sets, along with their 

statistical summary subsets with respect to the classification stage. 

 

FIGURE 15. The flow of feature selection subsets with respect to the classification stage. 
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3.5 The Classification Stage 

In the classification stage, our learning tasks (music genre, music mood) are evaluated by 

performing supervised machine learning with three learning algorithms. The input to each 

algorithm consists of our feature selection sets. In this section, we detail each learning 

algorithm and evaluation criteria used in this study. 

3.5.1 Learning Algorithms & Evaluation 

In order to perform supervised machine learning, we employ three learning algorithms: 

Support Vector Machines (SVM), Multinomial Logistic Regression (MLR) and K-Nearest 

Neighbors (K-NN). The choice of SVM stemmed directly from the literature as the majority 

classifier of top MIREX entries. The choice of MLR and K-NN provides diversity in the 

learning approach because fundamentally all three algorithms operate and learn under 

different principles.  

Whenever each learning algorithm is trained on the data it produces a final classifier model. 

Each model is evaluated by predicting data examples excluded from the training process (the 

testing data). To train and evaluate with ‘unknown’ data from a single dataset, our data are 

split into training and testing sets as dictated by 10 - fold stratified cross-validation. Every 

classification task was implemented in Python with the Scikit-learn library (Pedregosa et al., 

2011).  

3.5.2 Stratified Cross-Validation 

In multiclass classification, often some classes have more observations than others and vice 

versa as it is the case for both our datasets. Because of this, we employed a stratified cross-

validation scheme such that we could maintain the distribution of class observations in the 

training/testing sets of each fold. In this fashion, the training sets and the testing sets will have 

a proportional number of examples from each class according to the original data to class 

distributions. This procedure lowers the probability of invalid classification results (Saari, 

2009). 
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3.5.3 Artist Filter Cross-Validation 

In the case where artist filtering is used we employ two-fold non-stratified cross-validation, 

following suit to other AF GTZAN implementations (Sturm, 2013b, 2014b). 

3.5.4 Fold Standardization and Scaling 

We retained a typical standardization procedure for each iteration in our cross-validation 

scheme. Bellow we see the z value calculation: 

𝑧 =
𝑥 −  𝜇

𝜎
 

We first began with each training set, where the mean value 𝜇  of an entire feature gets 

subtracted for each of its observations 𝑥. Subsequently, we divide the feature observations by 

that feature’s standard deviation 𝜎. The output 𝑧 is a feature with a mean, μ = 0  and standard 

deviation, σ = 1. As a final step, we apply the standardization parameters of the training set 

to the corresponding testing set and repeat the entire process for each cross-validation 

iteration. In this way, we ensure that the testing sets in each iteration are scaled appropriately 

to their corresponding training sets (Saari, 2009). 

3.5.5 Performance Metric 

In this study, we employ the average classification accuracy (CA) across folds as our figure of 

merit, we refer to the average CA, only as ‘Accuracy’. 

3.6 Classification Algorithms 

3.6.1 Support Vector Machines 

Support vector machines (Boser, Guyon, & Vapnik, 1992), is one of the most widely used 

algorithms in supervised learning. The algorithm is known for good performance, robustness, 

flexibility and computational efficiency (Baesens et al., 2003; Sören Sonnenburg, Gunnar 

Rätsch, Christin Schäfer, & Bernhard Schölkopf, 2006; Van Gestel et al., 2004). To 

understand the idea behind support vector machines, let us consider a two-class problem in 𝑛 
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dimensions. In a linear separation case, we are looking for the hyperplane with dimensionality 

𝑛 − 1 that best separates the two classes in our feature space. For a nonlinear separation case, 

we use nonlinear kernels and look for the best separating hyperplane within a transformed 

higher dimensional space. A new observation is classified with respect to its position relative 

to this hyperplane. 

In more detail (Vapnik, 2013), let us consider a set of data 𝑁 points {(𝑥𝑗,𝑦𝑗,)} 𝑗=1
𝑁  , from this 

set, our features are 𝑥𝑗 ∈  ℝ
𝑛  with the corresponding binary ground truth labels 𝑦𝑗 ∈

{(−1,+1)}, the SVM conditions that are satisfied are: 

{
 𝑤𝑇𝜙(𝑥𝑗) + 𝑏 ≥ +1,        𝑖𝑓 𝑦

𝑗
= +1 

 𝑤𝑇𝜙(𝑥𝑗) + 𝑏 ≤ −1,        𝑖𝑓 𝑦
𝑗
= −1 

 

The expression is equivalent to 𝑦
𝑗
[ 𝑤𝑇𝜙(𝑥𝑗) + 𝑏]  ≥ 1, 𝑗 = 1, … , 𝑁. Figure 15a can help to 

visualize on an adapted margin optimization problem (Martens, Baesens, & Gestel, 2009). 

 

FIGURE 15a. Adapted SVM margin optimization problem (Martens et al., 2009). 
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The nonlinear function 𝜙(𝑥𝑗) maps the input features into a higher dimensional feature space, 

and 𝑏 corresponds to the adjustable bias. As a consequence of the introduced inequalities 

another hyperplane  𝑤𝑇𝜙(𝑥𝑗) + 𝑏 = 0  separates the two classes. The objective of the 

classifier is to maximize the margin between both classes by minimizing  𝑤𝑇𝑤. 

Next, the classifier is formulated in primal weight space as: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛 [𝑤𝑇𝜙(𝑥) + 𝑏]       

Conclusively, the problem is defined as a convex optimization problem and optimized 

utilizing the Lagrangian where we obtain the following classifier from the solution: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛 [∑𝑎𝑗𝑦𝑗𝐾(𝑥𝑗 , 𝑥) + 𝑏

𝑁

𝑗=1

]     

Where 𝐾(𝑥𝑗 , 𝑥) =  𝜙(𝑥𝑗)
𝑇
𝜙(𝑥)  , which is the kernel function that satisfies the Mercer 

theorem (Mercer, 1909) and 𝑎𝑗  are the Lagrange multipliers computed from the following 

optimization problem: 

max
 
𝑎𝑗 − 

1

2
 ∑ 𝑦𝑗

𝑁

𝑗,𝑖=1

𝑦𝑖𝐾(𝑥𝑗 , 𝑥𝑖)𝑎𝑗𝑎𝑖 + ∑ 𝑎𝑗

𝑁

𝑗,𝑖=1

 

Subject to constrain: 

{
∑𝑎𝑗𝑦𝑗 = 0

𝑁

𝑗=1

0 ≤ 𝑎𝑗 ≤ 𝐶, 𝑗 = 1,… , 𝑁

 

 

With 𝐶 ∈ ℝ+, where C is an adjustable parameter and the problem becomes a Quadratic 

programming problem in 𝑎𝑗.  
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The choice of a kernel function can vary depending on the problem, bellow we find some 

popular options with 𝑇, 𝑗, 𝑑, 𝜎 being constants: 

• Linear Kernel: 𝐾(𝑥𝑗 , 𝑥) =  𝑥𝑗
𝑇𝑥 

• Polynomial Kernel: 𝐾(𝑥𝑗 , 𝑥) =  (1 + 𝑥𝑗
𝑇𝑥/𝑐)

𝑑
 

• Radial Basis Function Kernel: 𝐾(𝑥𝑗 , 𝑥) =  𝑒𝑥𝑝{−‖𝑥 − 𝑥𝑗‖
2

2
/𝜎2} 

Where 𝑇 stands for transpose, 𝑗 for index and 𝑑 determining polynomial degree. In this study 

we used the radial basis function (RBF) and it’s default hyper parameter values as set in the 

Scikit-learn library (Pedregosa et al., 2011). The values used were, 𝐶 = 1 and 𝛾 =

1

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
   referred to as ‘auto’ within the library. 

3.6.2 Logistic Regression 

Logistic regression employs the logistic function and fits the data to the logistic curve; this 

allows the model to predict a binary outcome for the fitted data (Hosmer Jr, Lemeshow, & 

Sturdivant, 2013). The term ‘logistic’ derives from the use of the logistic curve shown in 

figure 16, logistic regression belongs to the class of generalized linear models. Below, we find 

the formulation of the logistic function: 

𝑓(𝑞) =
𝑒𝑞

𝑒𝑞 + 1
=

1

1 + 𝑒−𝑞
 

Where: 

𝑞 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4… 𝛽𝑗𝑥𝑗 

Except for 𝛽0 which is a constant, 𝛽1, 𝛽2, 𝛽3…𝛽𝑗 would correspond to feature values in the 

form of regression coefficients; these are the coefficients we want to learn from our data. Due 

to a value range from 0 up to 1 for the logistic curve, the fitted data may be interpreted in 

terms of probabilities. 
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FIGURE 16. The logistic function plotted in range. 

Logistic regression requires a binary class, (i.e. The response variable must be binary). In our 

study, the response variables have more than two classes; thus, we employ the multinomial 

logistic regression (MLR) case. MLR allows for multiclass classification (Böhning, 1992; 

Krishnapuram, Carin, Figueiredo, & Hartemink, 1992), where the set-up is almost identical to 

logistic regression with the difference that our response variables are categorical and have 𝑘 

possible outcomes (classes). Consequentially 𝑞  expands to the linear prediction function 

𝑞(𝑘, 𝑖) where we predict the probability that an observation 𝑖 has the class (outcome) 𝑘, such 

that: 

𝑞(𝑘, 𝑖) = 𝛽0,𝑘 + 𝛽1,𝑘𝑥1,𝑖 + 𝛽2,𝑘𝑥2,𝑖 + 𝛽3,𝑘𝑥3,𝑖 + 𝛽4,𝑘𝑥4,𝑖… 𝛽𝑗,𝑘𝑥𝑗,𝑖 

Where 𝛽𝑗,𝑘 is our regression coefficient with the 𝑗th feature (explanatory variable) and 𝑘th 

class (outcome). To reduce overfitting effects, we also use L2 Regularization which penalizes 

a portion of the model weights if they increase substantially. 

3.6.3 K-Nearest Neighbors 

The K-nearest neighbors (K-NN) algorithm is one of the most ‘straightforward’ algorithms to 

implement, frequently used in both classification and regression problems (Dudani, 1976). It 

is a non-parametric method, meaning that it can approximate irregular decision boundaries. 

The classifier is also an ‘instance based’ learner or ‘lazy’ learner, it stores the entire training 

set in memory and only builds a model when the testing data is evaluated. K-NN is unlike 

other algorithms such as SVM, where the model is already constructed from the training data. 
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The algorithm operates under the assumption that data that are close to each other, may be 

similar. It deals with distances between data points with a given distance function 𝑑, where, 

given a new observation 𝑥𝑛𝑒𝑤 the algorithm looks at the 𝐾 instances from the training data 

with the least mutual distance from the new observation 𝑥𝑛𝑒𝑤. The algorithm assigns a class 

for 𝑥𝑛𝑒𝑤, based on the majority class of its 𝐾-neighbours, referred to as ‘majority voting’. 

Given 𝑥𝑛𝑒𝑤  the class assignment is calculated as the posterior probabilities for each K 

neighbour without assuming any probability distribution for the testing data. We use the 

algorithm with the default Scikit-learn implementation ( 𝐾 = 5 , uniform weights and 

Minkowski distance). 
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3.7 Experimental Design Flowchart 

We dedicate this final page to figure 17 which maps the flow of all operations in our 

experimental design. 

 

FIGURE 17. The flow of operations in the experimental design. 



 

 

4 RESULTS 

In this chapter, we examine the outcomes of our classification experiments. Our primary goal 

in this study was to evaluate the classification performance of the FDW sub-band features 

against the MFCCs in music genre and music mood classification tasks. Our reporting set up 

is such that it mirrors and expands that found in MIREX and other relevant works. We used 

ten-fold standardized and stratified cross-validation for both tasks, excluding GTZAN artist 

filtering which we evaluated with two-fold unstratified cross-validation. 

In Appendix A we list all the classification results from the 117 models that we evaluated. 

Due to the shire size of our experimental design this chapter’s figures focus only on the 

highest performing classifier within each task. We found that multinomial logistic regression 

performed the highest in GTZAN and support vector machines in PandaMood. We 

exclusively use box-plots that show the mean (dotted line), median (solid line) and standard 

deviation (dotted line) of the classification accuracies we obtained with cross-validation. 

We begin with the results section of each classification task separately, starting with GTZAN. 

Every task has the following feature set reporting order: 1) ‘All features’ and their statistical 

summary sets; 2) Individual feature sets; 3) Semi-manual and algorithmic feature selection 

sets. After reporting all feature selection sets for every task, we construct and analyze the ‘top 

5 models’ as a result of rank aggregation. The chapter concludes with two rankings and an 

analysis of task specific feature importance as obtained from automatic (information gain) and 

manual feature selection (individual features set) approaches. 
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4.1.1 GTZAN Results  

In figure 18 we see the classification accuracies of the ‘All Features’ sets, we observe that 

testing was consistently higher than artist filter testing. When considering each feature set, 

‘All Features  (𝜇, 𝜎) ’ had the highest average testing score (77.83%), standard deviation 

(4.57%) and artist filtered score (64.57%). Despite the high testing scores, the training to 

testing distance was 21.7% which indicates a high chance of overfitting. This finding was not 

surprising given that this feature set had the highest dimensionality. When ranking all testing 

scores in descending order, we obtain the following: 1) ‘All Features  (𝜇, 𝜎) ’; 2) ‘All 

Features (𝜇)’; 3) ‘All Features (𝜎)’. This ranking order shifts for training to testing distances 

(ascending order): 1) ‘All Features  (𝜇, 𝜎)’; 2) ‘All Features  (𝜎)’; 3) ‘All Features  (𝜇)’. 

Importantly, the testing ranks do not match the artist filter testing ranks, which were 

(descending order): 1) ‘All Features (𝜇, 𝜎)’; 2) ‘All Features (𝜎)’; 3) ‘All Features (𝜇)’. The 

ranking discrepancy between artist filtered and un-filtered models is hard to explain as it 

unclear if these inconsistencies occurred due to the varying feature sets or the artist filter 

itself. 

 

FIGURE 18. Classification accuracies of GTZAN ‘All Features’ statistical summary sets, each box plot displays 

the mean, standard deviation (dotted line) and median (solid line). 



Chapter 4. Results 68 

 

Figure 19 shows all individual feature set classification accuracies. Similarly to figure 18, we 

see that artist filtered models performed lower than the non-filtered models. Between all 

individual features, we find that ‘SB- Entropy (𝜇, 𝜎)’ had the highest average accuracy in 

testing (66.77%), artist filter testing (53.05%) and the lowest absolute training to testing 

distance (6.05%). We find outliers in the training and testing sets of SB-Kurtosis and SB-

ZCR. When ranking for testing accuracy we obtain the following (descending order): 1) SB-

Entropy (66.77%); 2) SB-Flux (63.99%); 3) SB- Kurtosis (61.81%); 4) SB-Skewness 

(59.90%); 5) MFCCs (58.57%); 6) SB-ZCR (56.00%). The testing ranks for artist filtering are 

identical to the non-filtered ranks except for ‘2) SB-Flux’ and ‘3) SB-Kurtosis’, that swap 

places. These ranking contradictions follow from our findings in figure 18 and further suggest 

a somewhat independent classifier behavior with artist filtering. In perspective, we see that 

the sub-band features, except SB-ZCR, outperformed the MFCCs both in testing accuracy and 

AF.Testing accuracy. Moreover, the sub-band features had a lower training to testing distance 

than the MFCCs, with an average of 6.61% (SB-Features) against 9.03% (MFCCs). 

 

FIGURE 19. Classification Accuracy of GTZAN Individual features, each box plot displays the mean, standard 

deviation (dotted line) and median (solid line). 
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In figure 20 we see the classification accuracies of all feature selection sets. Similarly to 

figures 18 and 19, artist filtered models underperformed against the unfiltered models. At this 

point we clearly see that artist filtering consistently decreased classification accuracy for 

GTZAN. On the feature set level we see that ‘SB- Entropy  (𝜇, 𝜎) & SB- Flux  (𝜇, 𝜎) ’ 

performed the best in testing (74.02%) and AF.testing (58.81%), along with an 11.20% in 

absolute training to testing distance. This result surprised us since we did not expect semi-

manual selection (top 2 features) to outperform automatic feature selection. Furthermore, IG 

ranked second in testing accuracy, but the remaining feature sets were outperformed with an 

average difference of only 0.45%. In contrast, SB- Entropy  (𝜇, 𝜎) & SB- Flux  (𝜇, 𝜎) 

outperformed all other feature sets with a distance larger than 8%. To encapsulate the testing 

score order the following ranking was obtained (descending order): 1) SB- Entropy (𝜇, 𝜎) & 

SB- Flux (𝜇, 𝜎); 2) Information Gain (Top 20); 3) SB-Entropy(𝜇) & SB-Flux(𝜎); 4) SB-

Entropy(𝜎) & SB-Flux(𝜇). In addition, when we consider the AF.testing ranks we obtain: 1) 

SB- Entropy  (𝜇, 𝜎)  & SB- Flux  (𝜇, 𝜎) ; 2) SB- Entropy  (𝜇)  & SB- Flux  (𝜎) ; 3) SB- 

Entropy (𝜎) & SB- Flux (𝜇); 4) Information Gain. As in figures 18 and 19 the filtered ranks 

did not match the unfiltered ranks, which further suggests some potential degree of 

independence between the two. 

 

FIGURE 20. Classification accuracy of GTZAN feature selection sets, each box plot displays the mean, standard 

deviation (dotted line) and median (solid line). 



Chapter 4. Results 70 

 

4.1.2 PandaMood Results 

In figure 21 we see the classification accuracies of the ‘All Features’ sets. We can observe 

that the ‘All Features  (𝜇, 𝜎)’ set had the highest average accuracy (42.41%), the highest 

standard deviation (5.15%), most outliers and the highest training to testing distance 

(27.79%). The high training to testing distance was strongly indicative of overfitting, which 

was further manifest in both ‘All Features (𝜇)’ and ‘All Features (𝜎)’ each with a gap larger 

than 25%. Regarding testing accuracies, the following ranking was obtained (descending 

order): 1) ‘All Features (𝜇, 𝜎)’; 2) ‘All Features (𝜎)’; 3) ‘All Features (𝜇)’. Inversely, the 

ranking for training to testing distances was (ascending order): 1) ‘All Features (𝜇)’; 2) ‘All 

Features (𝜎)’; 3) ‘All Features (𝜇, 𝜎)’. For both rankings, mean rank aggregation would be 

inconclusive as it would simply result in the same ranking position for all feature sets. 

 

FIGURE 21. Classification accuracies of PandaMood ‘All Features’ statistical summary sets, each box plot 

displays the mean, standard deviation (dotted line) and median (solid line). 
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In figure 22 we see all ‘individual feature’ set classification accuracies. We discern that SB-

Entropy (𝜇, 𝜎) had the highest average testing score (39.51%), most outliers, the fifth highest 

standard deviation (4.19%) and the second largest training to testing distance (20.65%). In 

perspective, this kind of classifier behavior is indicative of overfitting. When ranking all 

average testing scores in descending order, we obtained the following: 1) SB-

Entropy (39.51%) ; 2) MFCCs (38.65%); 3) SB-Skewness (37.52%); 4) SB-Flux (36.29%) 5) 

SB-Kurtosis (36.06%); 6) SB-ZCR (35.40%). The highest standard deviation is found in SB-

Skewness (5.41%) and the lowest in SB-Flux (2.91%). The average testing score distance 

from the last and the first rank item was only 4.11%. The ascending ranking of mean training 

to testing distances was: 1) SB-Kurtosis (12.73%); 2) SB-Skewness (14.91%) ; 3) SB-Flux 

(17.47%); 4) SB-ZCR (18.79%) ; 5) SB-Entropy (20.65%); 6) MFCCs (26.59%). The range 

between the first and last item was wider (13.86%) than the range found in testing accuracies 

(4.11%), this means that there is a wider range in overfitting indicators. 

 

FIGURE 22. PandaMood classification accuracy of individual feature sets, each box plot displays the mean, 

standard deviation (dotted line) and median (solid line). 
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In figure 23 we see the classification accuracies of semi-manual and automatic feature 

selection. We observe that SB-Entropy(𝜇, 𝜎) & MFCCs (𝜇, 𝜎) has the highest average testing 

score (42.18%), the largest training to testing distance (27.88%), and the lowest standard 

deviation (2.89%). A 27.88% training to testing distance is highly suggestive of overfitting 

effects. Outliers were found in the training and testing set of Information Gain, while the 

largest standard deviation (5.42%) was found in SB-Entropy(𝜇) & MFCCs (𝜎).  With respect 

to all average testing scores, we obtain the following ranking (in descending order): 1) SB-

Entropy(𝜇, 𝜎)  & MFCCs  (𝜇, 𝜎) ; 2) SB-Entropy(𝜇)  & MFCCs  (𝜎) ; 3) SB-Entropy(𝜎)  & 

MFCCs (𝜇); 4) Information Gain (Top 20). Interestingly, the rankings shifts for training to 

testing distances (in ascending order); 1) Information Gain (Top 20); 2) SB-Entropy(𝜇) & 

MFCCs (𝜎); 3) SB-Entropy(𝜇, 𝜎) & MFCCs (𝜇, 𝜎); 4) SB-Entropy(𝜎) & MFCCs (𝜇); To our 

surprise, we see that semi-manual selection outperformed automatic selection, yet automatic 

selection had the smallest training to testing distance. 

 

FIGURE 23. Classification accuracies of PandaMood feature selection sets, each box plot displays the mean, 

standard deviation (dotted line) and median (solid line). 
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4.1.3 Top Five Models 

To highlight the GTZAN top feature sets, we selected the top five models in AF.Testing and 

constructed an aggregate ranking between four relevant properties. Shown in table 18 are the 

top rankings in artist filtering testing accuracy, testing accuracy, training to testing distance 

and feature dimensionality. The aggregate rank was computed as the mean rank between each 

ranking. As a result, we can see that semi-manual selection was ranked first, followed by All 

features (𝜇, 𝜎), SB-Entropy(𝜇, 𝜎),  All features (𝜇) and All features (𝜎). A top five was not 

possible since All features (𝜇) and All features (𝜎) both shared the fourth aggregate rank 

position. 

TABLE 18. Independent and aggregated ranks between the top 5 GTZAN models. 

Aggregated 

Ranks 
 Feature Set 

Dimensionality 

Ranks (Value) 

AF. Testing 

Accuracy 

Ranks (CA) 

Testing 

Accuracy 

Ranks (CA) 

Training - 

Testing 

Distance 

Ranks (CA 

Distance) 

Ranking 

Average 

1st  

Top 2 [SB-

Entropy(𝜇, 𝜎) & 

SB-Flux(𝜇, 𝜎)] 
2nd (40) 3rd (58.81%) 2nd (74.02%) 2nd (11.20%) 2.25 

2nd  All Features (𝜇, 𝜎) 4th (126) 1st (64.57%) 1st (77.83%) 5th (21.17%) 2.75 

3rd  SB-Entropy (𝜇, 𝜎) 1st (20) 5th (53.05%) 5th (66.77%) 1st (6.05%) 3 

4th 
 All Features (𝜇) 3rd (63) 4th (58.26%) 3rd (73.92%) 3rd (15.33%) 3.25 

 All Features (𝜎) 3rd (63) 2nd (60.25%) 4th (73.39%) 4th (17.57%) 3.25 

 

In table 19 we see the rank aggregation paradigm of table 18 applied to the PandaMood results. We began by 

selecting the top five models in testing accuracy and aggregated their ranks with dimensionality and training to 

testing distance rankings. The aggregate rank top model was SB-Entropy(𝜇) & MFCCs (𝜎) followed by SB-

Entropy (𝜇, 𝜎) , SB-Entropy(𝜇, 𝜎) & MFCCs (𝜇, 𝜎), All Features (𝜇, 𝜎) and All Features (𝜎). We see that in 

both tables 18 and 19, semi-manual selection was aggregately ranked first and ‘All Features (𝜎)’ last. 

 

TABLE 19. Independent and aggregated ranks between the top 5 PandaMood models. 

Aggregated 

Ranks 
Feature Set 

Dimensionality 

Ranks (Value) 

Testing 

Accuracy 

Ranks (CA) 

Training - Testing 

Distance Ranks (CA 

Distance) 

Ranking 

Average 

1st  
Top 2 [SB-Entropy(𝜇) 
& MFCCs (𝜎)] 

1st (20) 4th (39.84%) 1st (19.53%) 2.00 

2nd  

SB-Entropy (𝜇, 𝜎) 1st (20) 5th (39.51%) 2nd (20.65%) 2.67 

Top 2 [SB-

Entropy(𝜇, 𝜎) & 

MFCCs (𝜇, 𝜎)] 
3rd (63) 2nd (42.18%) 3rd (25.72%) 2.67 

3rd  All Features (𝜇, 𝜎) 4th (126) 1st (42.41%) 4th (27.79%) 3.00 

4th All Features (𝜎) 2nd (40) 3rd (40.08%) 5th (27.88%) 3.33 



Chapter 4. Results 74 

 

4.1.4 Feature Importance 

In this section, we elaborate on the feature importance obtained from automatic and manual 

feature selection. We construct two tables to showcase the rankings obtained from 

information gain and semi-manual selection. In each table, we find two rankings one for 

GTZAN and one for PandaMood. In table 20 we see the rankings obtained from the 

information gain algorithm within the classification stage. The algorithm was provided with 

the All Features  (𝜇, 𝜎)  set and ranked both statistical summaries and individual feature 

components. In contrast table 21 shows the individual feature rankings obtained from our 

classification results. Both IG and the individual feature sets outputted the same 

dimensionality of selected feature components (20 dimensions), except when the MFCCs 

(𝜇, 𝜎) (26 dimensions) were selected in table 21. 

TABLE 20. The first 20 feature dimensions (per task) as selected by the information gain feature selection 

algorithm, (𝜇) standing for mean values and (𝜎) for standard deviation values. 

Information Gain Feature Rankings 

Music Genre – GTZAN Music Mood - PandaMood 

1) SB-Entropy/Octave 6 (𝜇) 1) SB-Entropy/Octave 4 (𝜇) 

2) SB-Entropy/Octave 5 (𝜇) 2) SB-Entropy/Octave 5 (𝜇) 

3) SB-Kurtosis/Octave 10 (𝜇) 3) MFCC 1 (𝜇) 

4) SB-Flux/Octave 9 (𝜎) 4) SB-Flux/Octave 8 (𝜇) 

5) SB-Skewness/Octave 10 (𝜇) 5) SB-Kurtosis/Octave 8 (𝜇) 

6) SB-Flux/Octave 9 (𝜇) 6) SB-Flux/Octave 7 (𝜇) 

7) SB-ZCR/Octave 10 (𝜎) 7) SB- Skewness /Octave 8 (𝜇) 

8) SB-Flux/Octave 10 (𝜎) 8) SB-Entropy/Octave 6 (𝜇) 

9) SB-Flux/Octave 8 (𝜇) 9) SB- Skewness /Octave 4 (𝜇) 

10) SB-Flux/Octave 1 (𝜇) 10) SB-Entropy/Octave 3 (𝜇) 

11) SB-Entropy/Octave 7 (𝜇) 11) SB-Entropy/Octave 10 (𝜇) 

12) SB-Entropy/Octave 10 (𝜎) 12) SB-Kurtosis/Octave 4 (𝜇) 

13) SB-Flux/Octave 8 (𝜎) 13) SB-Kurtosis/Octave 4 (𝜎) 

14) SB-Flux/Octave 2 (𝜇) 14) SB- Skewness /Octave 7 (𝜇) 

15) SB-ZCR/Octave 9 (𝜇) 15) SB- Skewness /Octave 2 (𝜎) 

16) SB- Skewness /Octave 10 (𝜎) 16) SB-Flux/Octave 7 (𝜎) 

17) SB-Entropy/Octave 4 (𝜇) 17) SB- Skewness /Octave 5 (𝜇) 

18) SB-Flux/Octave 10 (𝜇) 18) SB-Kurtosis/Octave 3 (𝜎) 

19) SB-Kurtosis/Octave 9 (𝜇) 19) SB-Kurtosis/Octave 1 (𝜎) 

20) MFCC 1 (𝜇) 20) SB-Kurtosis/Octave 5 (𝜇) 
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In the GTZAN ranking (table 20) we see that the top feature component was the spectral 

entropy of the sixth octave (800 – 1600 Hz) summarized with mean values. In perspective, the 

rankings show 14 (70%) mean summaries, 6 (30%) standard deviation summaries, 19 (95%) 

sub-band feature components and 1 (5%) MFCC coefficient. The distribution of components 

and coefficients in descending order was as follows:1) SB-Flux (8 components) 2) SB-

Entropy (5 components); 3) SB-Skewness (2 components); 4) SB- ZCR (2 components), 5) 

SB-Kurtosis (2 components); 6) MFCCs (1 Coefficient). We see that 68% of all sub-band 

feature components were chosen from SB-Entropy and SB-Flux. In addition, the selected 

octaves between the components were as follows (Descending order): 1) Octave 10 (7 

instances); 2) Octave 9 (4 instances); 3) Octave 8 (2 instances); 4) Octaves 7,6,5,4,2,1 (1 

instance each). We see that octave 3 was ignored and that more than 68% of the chosen 

octaves come from the mid-high end of the spectrum, above the sixth octave (800 – 1600 Hz). 

Thus, we can consider that the spectral content above 1600 Hz was more relevant to our 

algorithmic selection. In addition, we can see that the selection algorithm also showed a clear 

preference for sub-band feature components with mean summary values. 

From the PandaMood ranking (table 20), we observe that the top feature was the spectral 

entropy of the fourth octave (200 - 400 Hz) summarized with mean values. We find that the 

entire ranking comprised of 15 (75%) mean summaries, 5 (25%) standard deviation 

summaries, 19 (95%) sub-band components and 1 (5%) MFCC coefficient. Further, we find 

that the distribution of components and coefficients was as follows (Descending order): 1) 

SB-Kurtosis (6 components); 2) SB-Entropy (5 components); 3) SB-Skewness (5 

components); 4) SB- Flux (3 components); 5) MFCC (1 coefficient). We find that SB-ZCR 

was not selected and that 16 of 19 (84.21%) sub-band components were selected from SB-

Kurtosis, SB-Entropy and SB-Skewness. Furthermore, we find the following component 

octave distribution (descending order): 1) Octave 4 (4 instances); 2) Octave 5 (3 instances); 3) 

Octave 7 (3 instances); 4) Octave 8 (3 instances); Octave 3 (2 instances); Octaves 1,2,6,10 (1 

instance each). We can discern that octave 9 was ignored and that the four most reoccurring 

octaves were from the mid-low and mid-high end of the spectrum. Specifically, octaves 4 & 5 

(200 – 800 Hz) and 7 & 8 (1600 – 6400 Hz). The findings suggest that algorithmic selection 

highlighted three frequency bands, mid-low, mid, and high. In addition, we see a strong 

preference for sub-band feature components and mean value summaries. 
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Feature Importance Summary 

In summary, both task rankings in table 20 highlighted sub-band feature components and 

mean values. Sub- band entropy components consistently ranked first and second in both task 

rankings, but sub-band components and octave distributions did not match, except for SB-

Entropy/Octave 5 (2nd place in both). The MFCCs were shown to be the least important in 

GTZAN but achieved third place in PandaMood and second place in table 21 PandaMood. 

We can see a rough analogy between table 20 and table 21 where SB-Entropy (μ,σ) was found 

to perform the best in both tasks while the MFCCs performed better in PandaMood. We also 

see that SB-ZCR ranked worst in table 21 and was completely ignored for Table 20 

PandaMood. Both rankings suggest an inconsistent ordering between the two tasks, except for 

SB-Entropy that occupied the first place in both rankings and tasks. 

TABLE 21. Individual feature set rankings of classification accuracy per task. 

Individual Feature Classification Accuracy Ranks 

Music Genre – GTZAN Music Mood - PandaMood 

1) SB-Entropy (𝜇, 𝜎) 1) SB-Entropy (𝜇, 𝜎) 

2) SB-Flux (𝜇, 𝜎) 2) MFCCs (𝜇, 𝜎) 

3) SB-Kurtosis (𝜇, 𝜎) 3) SB-Skewness (𝜇, 𝜎) 

4) SB-Skewness (𝜇, 𝜎) 4) SB-Flux (𝜇, 𝜎) 

5) MFCCs (𝜇, 𝜎) 5) SB-Kurtosis (𝜇, 𝜎) 

6) SB-ZCR (𝜇, 𝜎) 6) SB-ZCR (𝜇, 𝜎) 

 



 

 

5 DISCUSSIONS 

 

The primary aim of this thesis was to investigate the efficacy of five FDW sub-band features 

and their statistical summary sub-sets in music genre and music mood classification tasks. To 

aid our evaluation, we extracted a baseline MFFC feature commonly used in such tasks. In 

our experimental design, all features were extracted for two music datasets (GTZAN, 

PandaMood) and were summarized with the mean and standard deviation statistics. The 

classification stage used three classifiers (SVM, MLR, K-NN) with four feature selection sets. 

The feature selection sets were as follows; 1) All features 2) Individual features 3) Top two 

performing individual features (semi-manual selection); 4) Algorithmically selected features 

(information gain). All feature sets used both the mean and standard deviation statistics. In 

addition, the ‘All features’ and the semi-manual sets were further expanded with additional 

statistical summary combinatorics. In this chapter, we elaborate on the implications of our 

results and focus on classification performance, classifier overfitting, feature selection, and 

feature importance. In addition, we highlight the relevant limitations of the study and provide 

suggestions for future research. 

5.1 Classification Performance & Overfitting 

In Appendix A we find that the SVM classifier performed the best within the music mood 

task, whereas MLR performed the best within the music genre task. Antithetically, the K-NN 
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algorithm underperformed in both tasks. These findings are difficult to explain, what might 

explain part of the SVM underperformance in music genre might be the lack of optimal SVM 

hyper-parameters. In contrast, the SVM prominence in the music mood task could be due to 

the default hyper-parameter values being closer to accuracy improving values in the 

PandaMood hyperparameter space. All reported accuracies show that the music genre 

accuracy profile was higher than music mood and that music mood showed a higher tendency 

to overfit. This accuracy gap is in accordance with the MIREX review in chapter 2. 

Ultimately, the decreased accuracy profile and the increased overfitting indicators may 

suggest that the modelling of music mood may be more challenging than music genre. 

Between all models, in both tasks, tables 18 and 19 showed that the ‘All Features (𝜇, 𝜎)’ set 

outperformed every other model. Although the testing accuracy was the highest, the model’s 

merit was hindered when we considering overfitting since we found the highest training to 

testing distance in GTZAN and the second highest in PandaMood. The finding was not 

surprising given that the set contained the maximum number of features and statistical 

summaries, part of which might have been redundant. Further support for redundancy came 

from tables 18 and 19 which showed that semi-manual selection was the first in aggregate 

rankings and performed similarly to ‘All Features (𝜇, 𝜎)’ but with a lower overfitting indicator 

and a fraction of the dimensionality. Thus, it is plausible to consider that the ‘All 

Features  (𝜇, 𝜎)’ set may have had increased overfitting potential mainly due to it’s high 

dimensionality. 

Classifier training error scores were absent from the compatible and relevant literature, in 

which case extensive comparisons with respect to overfitting indicators become problematic. 

In addition, the use of aggregate rankings helped us to move beyond evaluating models solely 

on their classification accuracy. Unfortunately, overreliance on classification accuracy is all 

too common in MIREX, GTZAN and PandaMood literature, effectively limiting the 

comparative scope of our findings when considering other important aspects such as 

overfitting. 

On the individual feature level, sub-band entropy performed the best as an individual feature 

and was one of the top five models aggregated in tables 18 and 19. Figure 19 showed that all 

sub-band features except SB-ZCR outperformed the MFCCs in GTZAN. In contrast, figure 
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22 showed that only SB-Entropy outperformed the MFCCs in PandaMood. In both tasks, the 

MFCCs demonstrated the highest tendency to overfit the data. Our performance ranks 

followed and expanded previous work (M. A. Hartmann, 2011) where the SB-Flux 

outperformed the MFCCs in GTZAN. Our findings suggest that SB-Entropy is suitable for 

both tasks, whereas the MFCCs could have a better supporting role in music mood 

classification. 

Between feature selection approaches (figures 20 and 23) we found that the semi-manual 

feature selection (top 2 feature sets) was able to outperform algorithmic feature selection 

(information gain). These findings were especially surprising when we consider the common 

notion and the work advocating the efficacy of automatic feature selection algorithms (Guyon 

& Elisseeff, 2003; Weston et al., 2001). Our results may be partly explained from our semi-

manual ranking approach. We can conceptualize the semi-manual selection method as 

wrapper method (Guyon & Elisseeff, 2003) with a fixed feature set specification since we 

considered only individual features with both the mean and standard deviation. In contrast, 

information gain does not consider sets but every feature dimension. Besides, the semi-

manual selection employed the classification stage to rank the merit of feature sets, whereas 

information gain by design, does not. Thus, it can be plausible to consider that the classifier-

based rankings and the fixed set approach may have played a role in the difference that was 

observed. 

Exclusively for GTZAN, we found that the GTZAN literature does not employ fault filtering 

and artist filtering, except in some works (Jeong & Lee, 2016; Kereliuk, Sturm, & Larsen, 

2015; J. Lee, Park, Kim, & Nam, 2018; Medhat, Chesmore, & Robinson, 2017; Park, Lee, 

Park, et al., 2017; Pons & Serra, 2018; Sturm, 2013b, 2014b). Given that previous studies 

showed that GTZAN faults (Sturm, 2014b) and the lack of artist filtering (Jeong & Lee, 2016; 

Kereliuk et al., 2015; Medhat et al., 2017; Sturm, 2014b) can inflate classification accuracy, 

this brings considerable doubts about the validity and comparability of non-fault, and non-

artist filtered models. 

Figures 18, 19 and 20 showed that all artist filtered models performed considerably lower 

than the non-filtered models. These findings are consistent with previous findings (Jeong & 

Lee, 2016; Kereliuk et al., 2015; Medhat et al., 2017; Sturm, 2014b). In addition, we find that 
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artist filtered models did not rank analogously to their non-filtered models, also found in 

previous works (Jeong & Lee, 2016; Medhat et al., 2017; Sturm, 2014b) strongly suggesting a 

somewhat inconsistent classifier behavior. We find that the artist filtered scores in table 18 

were in line with a portion of previous findings (Jeong & Lee, 2016; Kereliuk et al., 2015; 

Medhat et al., 2017; Pons & Serra, 2018; Sturm, 2013b, 2014) and considerably lower than 

the remainder (J. Lee & Nam, 2017b; J. Lee et al., 2018; Park, Lee, Park, et al., 2017). Direct 

comparisons are problematic because we employ only classification accuracies, an extended 

artist filtering (deleted other than first versions), and our artist to fold distribution was 

automatically generated (with Scikit-learn). Despite any comparative limitations, we find that 

all works do not report any overfitting indicators, as such, any comparisons concerning 

overfitting cannot be made. 

Exclusively for PandaMood, we found a limited amount of publications (Baniya, Hong, & 

Lee, 2015; Panda, Malheiro, & Paiva, 2018; Panda et al., 2013; Ren, Wu, & Jang, 2015) of 

which two (Baniya et al., 2015; Ren et al., 2015) allow for comparing with our results. The 

main reason for the incompatibility was that the remaining works (Panda et al., 2018, 2013) 

did not report classification accuracy, whilst all works did not report training errors. Given 

these inconsistencies in the experimental setup, it becomes difficult to ascertain a transparent 

state of evaluation for this dataset, especially in overfitting terms. Nevertheless, we find that 

‘SB-Entropy(𝜇, 𝜎) & MFCCs (𝜇, 𝜎)’ performed similarly to most models found in Ren et al., 

(2015) (except those exceeding 400 dimensions), outperforming most models in average 

accuracy, but not in standard deviation. This was not the case in comparison to the model 

found in Baniya et al., (2015). Despite this comparative scope, it is problematic to consider 

the competitiveness of  all works between themselves and to our work, that is because no 

other work reported overfitting indicators. 

5.2 Feature Importance 

In table 20 we observed that 95% of all automatically selected feature components belonged 

to sub-band features mostly summarized with the mean statistic. This finding was not 

surprising considering the substantial amount of sub-band features in the feature pool. For 

GTZAN our findings differ from previous findings (M. A. Hartmann, 2011), where standard 

deviation values have been deemed the most important. The reason behind this difference 
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may lie in the use of different feature selection methods and our lack of feature selection 

aggregate rankings. 

Concerning individual feature importance, we find that tables 18 and 19 show that SB-

Entropy ranked first in both tasks and across both feature-selection approaches (semi-manual 

and automatic). In automatic selection (table 20) we see that SB-Entropy in the 6th octave 

was most relevant for music genre as opposed to SB-Entropy in the 4th octave for music 

mood. In addition, we find that SB-Flux and SB-Entropy were the most frequently selected 

feature components for GTZAN, versus SB-Kurtosis and SB-Entropy for PandaMood. These 

findings further support the efficacy of SB-Entropy in both classification tasks. 

In table 20 we find that the frequency bands of the selected sub-band feature components 

varied between the tasks. In GTZAN the majority of sub-band components were selected 

between the 6th (800 – 1600 Hz) and 10th octave (12800 – 22050 Hz), where the 10th octave 

had the maximum recurrence rate. This finding shows a particular focus on the high and mid-

high end of the spectrum, which is challenging to explain. This finding differs from previous 

findings (M. A. Hartmann, 2011) were all octaves were relevant. In contrast, the PandaMood 

rankings focused in octaves 4 - 5 (200 – 800 Hz) and octaves 7 - 8 (1600 – 6400 Hz), where 

the 4th octave had the highest recurrence rate. The PandaMood octave focus is contradictory 

to GTZAN and suggests that different spectral regions might be more relevant to the tasks. 

5.3 Chance Levels 

A fundamental consideration for evaluating classification performance are chance levels, and 

the extend of model performance divergence from the chance level baseline. For classes with 

unevenly distributed finite data the default dummy-classifier in the Scikit-learn library 

(Pedregosa et al., 2011) allows to estimate baseline chance levels while respecting class data 

distribution. We obtain, 12.85% for GTZAN (10 classes) and 20.71% for PandaMood (5 

classes). These values are close to what is obtained when assuming uniform class distribution 

and infinite data (10% for 10 classes, 20% for 5 classes). We find that GTZAN models 

performed higher than PandaMood models with respect to the chance level base line, despite 

having a lower baseline. 
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5.4 Limitations 

In this section, we discuss the various technical and methodological limitations that can affect 

the outcome of the study. These limitations pertain to the overall evaluation approach, the 

music datasets, the feature selection rankings, the aggregate top model rankings, the feature 

extraction parameters and classifier overfitting. 

5.4.1 Statistical Summaries (Bag-of-Frames) 

Training a classifier model with feature vector statistical summaries is often called a ‘bag of 

frames’ approach. This approach is a big limitation in that it can produce identical models 

from identical randomly scrambled individual audio segments (Aucouturier, 2008). That is 

not surprising since any identical temporal sequence randomly rearranged will produce the 

same summary statistics as the original sequence. In certain problems, where temporal 

dynamics are irrelevant, this approach poses no limitation, but in the case of music, it raises 

questions about the ‘musicality’ of the trained models. One arbitrary analogy of the ‘un-

musicality’ of such models, is that a person listening to randomly rearranged music segments 

may classify them as ‘experimental’, whereas a model unaware of temporal dynamics would 

not. Therefore, it would be a positive direction for future research to intergrade temporal 

dynamics in the training process. 

5.4.2 No Validation Set 

We employed no validation set, given the relatively small size of our two datasets (in contrast 

to MIREX), a percentage of data withheld from training and testing would further raise 

questions of learning efficacy. In the case where more data would be available, a validation 

set would improve evaluation, especially for accessing testing set overfitting. Therefore, 

focusing on expanding the current datasets would help to facilitate a cross-validation design 

with validation sets. 

5.4.3 No Artist Filtering for PandaMood 

The effects of artist filtering were shown for music genre but not for the music mood tasks 

since no such filter was available. This limitation restricts the scope of analysis for 
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PandaMood since we have seen that artist filtered based systems can behave differently than 

non-filtered ones. Investigating such effects for music mood may be relevant. 

5.4.4 No Cross-Dataset Validation 

As described by Bogdanov, Porter, Herrera, and Serra (2016), the cross-evaluation of models 

built on different datasets can help in accessing generalization capabilities. No such validation 

methods were used in the current study. In an ideal paradigm, compatible data from different 

datasets could be used to cross-validate models trained with each dataset. Therefore, it is 

expected that this approach would increase the available data for evaluation and help to detect 

overfitting. 

5.4.5 GTZAN Artist Filter 

We find four limitations in the artist filter use of GTZAN: 1) Unfiltered models are difficult to 

compare to filtered ones. This is not surprising considering the differences in the allocation of 

the data between training and testing sets; 2) Only a limited amount of folds is possible in 

filtered models. Many GTZAN classes are overpopulated with small amounts of artists 

(Sturm, 2014b), because of this, creating more than two folds could undermine evaluation 

validity; 3) After applying artist filtering, data to class allocation becomes disproportionate. 

This leads to an un-stratified and uneven learning process that may need some type of 

normalization; 4) Only a limited amount of AF-GTZAN studies have been made. This is 

especially limiting when it comes to methodological and result comparisons. 

5.4.6 GTZAN Fault Filtering Limitations 

We found three critical limitations when fault filtering the GTZAN data: 1) Fault filtering 

unbalanced the data distribution between classes. This occurred because nearly 10% (97 files) 

from the original data were deleted; 2) Comparisons with non-fault filtered models become 

difficult, because GTZAN faults (replicas, distortions, etc.) have a performance inflationary 

effect (Sturm, 2014b). Thus, it becomes difficult to ascertain how non-filtered models 

perform given that their accuracy profiles could be different had the faults been deleted; 3) 

Comparisons between fault filtered studies becomes difficult if the fault filtering 

specifications are different. 
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5.4.7 Audio Window Decomposition 

In our study, we introduced and employed the FDW method as opposed to conventional 

single size windowing. It is, therefore, an open question as to how the two windowing 

methods compare with each other and between different problem domains. Future work may 

focus on using FDW in other evaluation tasks and in comparison to conventional windowing. 

5.4.8 Confusion Quality Analysis 

In tables 18 and 19 we constructed aggregate ranks from multiple rankings of interest. 

Individual ranks help to differentiate between models, but they do not include classifier 

error/confusion quality. Low error quality refers to extreme classifier confusions as opposed 

to human expert confusions, high error quality is maximal when confusions approximate 

expert ‘intuitive’ confusions. Although error/confusion quality is problematic to formalize 

and implement such an approach could help to select models that do not generate extreme 

mistakes. Ultimately, the tolerance for the quality of errors will depend on the use case. 

5.4.9 Feature Combinatorics 

In our study, we focused on one part out of all the possible combinatorics within and between 

feature sets and statistical summaries. It is unknown if other combinations could match, 

underperform or outperform our current selections. 

5.4.10 No Content Based FDW 

FDW operates irrespective of sub-band signal content, which means that window sizes are 

computed only concerning sub-band central frequencies. After a filterbank is specified the 

resulting FDW window specifications will not change. In it, of itself, this may not be 

considered a direct limitation, but it may be plausible to hypothesize a further potential 

benefit to classification from content level adaptive windowing for each filtered signal within 

each sub-band. Such an approach would necessarily produce multiple window size 

specifications for different sub-band signal contents. Given that statistical summaries can be 

extracted, the variance between window sizes would not be an issue for performing 

classification. One such approach may be the calculation of an average spectral centroid for 



Chapter 5. Discussions 85 

 

each sub-band signal (instead of central frequency), in turn the centroid value may be feed 

into FDW to produce the window size. 

5.4.11 Aggregate Rankings 

In our results section we constructed two aggregate top 5 model rankings, the aggregation 

process consisted of the average rank among many individual rankings of interest (testing 

score, dimensionality, etc.). The main limitation of this approach was that each ranking was 

considered of equal importance since the weights for each ranking could not be collected. 

Specifying fixed weights for individual rankings is problematic since the relative importance 

of each ranking of interest can heavily depend on the problem and the intended use case. 

Moreover, even in the case where particular rankings are considered, it can be difficult to 

formalize and validate such weighted rankings. 

5.4.12 Spectral Features & Music Mood Classification 

In our experiments, we employed spectral features in music mood classification, yet as seen in 

MIREX, music mood is often modelled with diverse feature groups, and not entirely with 

spectral features. Future research may focus in incorporating and evaluating our feature set 

with non-spectral features. 

5.4.13 Overfitting Indicators 

Overfitting is a critical consideration for any machine learning system, regardless of the 

problem domain. The importance of detecting and dealing with overfitting cannot be stressed 

enough. In our study, various models showed high overfitting potential, especially for the 

PandaMood dataset.  Although extensive training to testing set divergence indicates a 

tendency to overfit, it is unclear how large should this distance be, before considering the 

phenomena is severe. Also, it is empirically unclear if the critical divergence range shifts 

between different problem domains or sub-domains. The underlying phenomenon is more 

accessible to detect when a validation set is used, especially concerning the testing set. 
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5.4.14 SVM Hyper Parameter Optimization 

In our study, SVM grid-search hyperparameter optimization did not converge to acceptable 

values and thus we focused on using default values. Given enough time, a larger grid or a 

different approach altogether (Bayesian optimization [Bergstra, Komer, Eliasmith, Yamins, & 

Cox, 2015], random search [James & Bengio, 2012], etc.) the optimization process might 

have resulted in acceptable values. 

5.5 Conclusions 

In conclusion, we had seven primary outcomes in our study; Firstly, all accuracy scores 

indicated a higher performance profile for the music genre task than music mood. Secondly, 

sub-band entropy ranked first in both feature selection methods (semi-manual and automatic), 

outperformed the MFCCs and all SB-Features in both music genre and music mood tasks. In 

GTZAN each sub-band feature (except SB-ZCR) outperformed the MFCCs. Third, all sub-

band features displayed a smaller tendency to overfit than the MFCCs. Fourth, semi-manual 

selection (Top 2 features) outperformed automatic feature selection (information gain) in both 

tasks. Fifth, semi-manual selection outranked all other models when considering an average 

rank between testing accuracy, artist filter testing accuracy, dimensionality and overfitting 

indicators. Fifth, music genre artist filtered models performed lower than non-filtered models 

with feature set rankings differing between the two. Six, music genre automatic artist filter 

partitioning performed similarly to studies with manual partitioning. Seven, information gain 

feature selection focused on different spectral regions for each task, octave 10 (12800 – 22050 

Hz) was most relevant for music genre and octave 4 (200 – 400 Hz) for music mood. 

Future research could focus on the efficacy of the sub-band features, and especially the sub-

band entropy in other classification tasks where spectral features are relevant; Such tasks 

include audio tag classification, artist identification, audio and music similarity estimation, 

structural segmentation, audio fingerprinting, and speech analysis. In addition, SB-Entropy, 

SB-Skewness, SB-Kurtosis and SB-ZCR have not been perceptually validated which remains 

an open question. An additional approach for future research would be the development of the 

sub-band concept with different features, filter designs, windowing methods and filter orders. 

Such an approach might bring forth potentially novel and beneficial features. Finally, other 
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cultural contexts such as classification tasks with non-western music could further broaden 

the scope of evaluation and provide an extended perspective for the sub-band features. 

Future research on the dataset level (GTZAN, PandaMood) would greatly benefit from a 

standardized approach to evaluation. The state of evaluation is deeply inconsistent within and 

between each task. The central gap in evaluation derives from the lack of, fault checking, 

common figures of merit, reported training errors, aggregate ranks and artist filtering. These 

discrepancies halt steady development in both tasks and limit the comparative scope between 

classification systems. 
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Abbreviations 

 
Music Datasets 

AF Artist Filtering 

GTZAN George Tzanetakis 

MSD Million Song Dataset 

PandaMood Renato Panda 

 

Spectral Features 

MFCCs Mel-Frequency Cepstral Coefficients 

SB-Entropy Sub-Band Spectral Entropy  

SB-Flux Sub-Band Spectral Flux 

SB-Kurtosis Sub-Band Spectral Kurtosis 

SB-Skewness Sub-Band Spectral Skewness 

SB-ZCR Sub-Band ZCR 

 

Feature Selection 

IG [-] Information Gain Algorithm 

Top 2 [-] Semi-Manual Selection 

 

Feature Statistical Summaries 

(𝝁, 𝝈) 
Mean and standard deviation values of 

feature/features 

(𝝁) Mean values of feature/features 

(𝝈) Standard deviation values of feature/features 

 

  



Abbreviations 

 

Audio & Digital Signal Processing 

dB Decibel 

DFT Discrete Fourier Transform 

FDW Filtered Dependent Windowing 

FFT Fast Fourier Transform 

FT Fourier Transform 

GMM Gaussian Mixture Model 

GSV Gaussian Super Vector 

Hz Hertz 

Khrz Kilohertz 

MLVF Multi-Level Visual Features 

PMSC Principal Mel – Spectrum Components 

RP Rhythm Pattern 

STFT Short-Time Furrier Transform 

 

Learning Algorithms/Classifiers 

DCNN Deep Convolutional Neural Network 

K-NN K- Nearest Neighbors 

LR Logistic Regression 

MLR Multinomial Logistic Regression 

NN Neural Networks 

PFC Pooled Features Classifier 

SVM Support Vector Machines 

  



Abbreviations 

 

Machine Learning 

CA Classification Accuracy 

CV Cross-Validation 

DBSCAN 
Density-Based Spatial Clustering of Applications 

with Noise 

KFCV K-Fold Cross-Validation 

ReLu Rectified Linear Unit 

 

Music Information Retrieval 

AGC Automatic Genre Classification 

AGT American Annotator Ground Truth (K-Pop) 

AMC Automatic Mood Classification 

AMM Automatic Music Mood 

IMIRSEL 
The International Music Information Retrieval 

Systems Evaluation Laboratory   

KGT Korean Annotator Ground Truth (K-Pop) 

MIR Music Information Retrieval 

MIREX Music Information Retrieval Evaluation Exchange  

 

Other 

ANOVA Analysis of Variance  

DCT Discrete Cosine Transform 

HSD Honestly Significant Difference  

KETI Korea Electronics Technology Institute  

LOG 

 

Logarithm 

MIDI Musical Instrument Digital Interface  

PDF Probability Density Function 

PMF 

 

Probability Mass Function 

 

 



 

 

Appendix A 

All Classification Stage Accuracies 

In this appendix we provide all classification accuracies scores that resulted from our factorial 

design. In total, we trained and evaluated 117 classification models, 78 of which pertained 

music genre (GTZAN) and 39 music mood (PandaMood). The following tables are organized 

on a per task (music genre, music mood) and per feature set basis. The reporting format 

contains training, testing and artist filter testing (AF.Testing) average classification accuracies 

and standard deviations of cross-validation (CV). Highlighted in bold are the highest testing 

accuracies and the lowest training set accuracies. 

All tables report the classification results from CV, table A.1 focuses on the ‘All Features’ set, 

table A.2 on the individual feature set and table A.3 on automatic feature selection 

(information gain). Tables A.4 and A.5 focus on semi-manual selection (Top 2) with A.4 for 

GTZAN and A.5 for PandaMood. 

  



Appendix A 

 

Music Genre Classification Accuracies (GTZAN) 
Music Mood Classification 

Accuracies (PandaMood) 
 

Feature Set 

SB-Flux (𝜇, 𝜎) 

Algorithms Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 71.84%(0.45%) 61.10% (3.04%) 39.76% (3.24%) 53.76% (0.75%) 36.29%(2.91%) 

MLR 70.69%(0.40%) 63.99%(4.33%) 48.84%(5.70%) 40.42%(1.24%) 35.18%(4.34%) 

K-NN 69.72%(0.74%) 56.26%(2.93%) 36.10%(0.85%) 53.17%(0.72%) 30.03%(4.65%) 

Feature Set 

SB-Entropy (𝜇, 𝜎) 

Algorithms Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 79.59%(0.45%) 66.36%(2.72%) 48.51%(4.70%) 60.16%(0.82%) 39.51%(4.19%) 

MLR 72.82%(0.69%) 66.77%(5.20%) 53.05%(5.49%) 44.01%(1.19%) 38.82%(4.51%) 

K-NN 73.98%(0.66%) 61.13%(4.31%) 40.09%(0.27%) 53.99%(1.14%) 34.01%(5.48%) 

Feature Set 

SB-Kurtosis (𝜇, 𝜎) 

Algorithm Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 71.96%(0.70%) 59.35% (4.47%) 40.10%(5.80%) 48.79%(0.49%) 36.06%(4.34%) 

MLR 68.26%(0.67%) 61.81%(5.72%) 50.17%(5.04%) 42.96%(0.87%) 39.05%(5.92%) 

K-NN 69.03%(0.92%) 52.80% (5.39%) 35.55%(3.03%) 52.02%(0.81%) 29.55%(4.67%) 

Feature Set 

MFCCs (𝜇, 𝜎) 

Algorithms Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 80.74%(0.71%) 60.97%(5.63%) 40.20%(4.36%) 65.24%(0.67%) 38.65%(4.35%) 

MLR 67.60%(0.86%) 58.57%(4.54%) 42.97%(3.15%) 43.41%(0.84%) 34.97%(4.38%) 

K-NN 71.87%(0.51%) 56.76%(4.63%) 39.09%(2.15%) 54.34%(0.86%) 28.56%(4.40%) 

Feature Set 

SB-ZCR (𝜇, 𝜎) 

Algorithms Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 69.54%(0.83%) 54.78%(5.49%) 37.65%(2.26%) 54.19%(1.04%) 35.40%(4.74%) 

MLR 62.31%(0.85%) 56.00%(6.27%) 39.87%(5.14%) 39.53%(0.65%) 32.52%(5.20%) 

K-NN 65.55%(0.51%) 49.43%(3.20%) 32.78%(0.70%) 49.98%(0.93%) 26.33%(3.07%) 

Feature Set 

SB-Skewness (𝜇, 𝜎) 

Algorithms Training Set Testing Set AF.Testing Set Training Set Testing Set 

SVM 76.23%(0.67%) 61.45%(4.04%) 41.86%(2.48%) 52.43%(0.36%) 37.52%(5.41%) 

MLR 67.44%(0.87%) 59.90%(4.38%) 47.62%(2.05%) 43.02%(0.62%) 37.63%(5.04%) 

K-NN 69.79%(0.76%) 54.33%(5.39%) 37.99%(1.92%) 53.29%(0.58%) 31.65%(4.59%) 

 

TABLE A.2: CV average classification accuracies and standard deviations (in parentheses) of all classifiers and 

learning tasks for the ‘Individual Features’ sets. 
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Music Genre Classification Accuracies (GTZAN) 
Music Mood Classification 

Accuracies (PandaMood) 

Feature Set 

All Features (𝜇, 𝜎) 

Algorithms Training CA Testing CA AF.Testing CA Training CA Testing CA 

SVM 92.22%(0.45%) 76.64%(1.42%) 52.83%(5.71%) 70.20%(0.69%) 42.41%(5.15%) 

MLR 99.00%(0.26%) 77.83%(4.57%) 64.57%(5.72%) 64.98%(0.84%) 38.73%(4.90%) 

K-NN 80.41%(0.51%) 71.66%(4.88%) 44.41%(3.48%) 53.32%(0.91%) 32.78%(5.07%) 

Feature Set 

All Features (𝜇) 

Algorithms Training CA Testing CA AF.Testing CA Training CA Testing CA 

SVM 87.61%(0.47%) 71.86%(4.15%) 47.18%(6.48%) 62.88%(1.08%) 37.76%(3.88%) 

MLR 89.25%(0.58%) 73.92%(2.98%) 58.26%(4.94%) 50.49%(0.97%) 36.85%(5.92%) 

K-NN 77.41%(0.56%) 64.96%(4.32%) 43.19%(4.26%) 53.60%(0.88%) 31.31%(3.21%) 

Feature Set 

All Features (𝜎) 

Algorithms Training CA Testing CA AF.Testing CA Training CA Testing CA 

SVM 89.05%(0.30%) 73.16%(3.29%) 51.61%(4.93%) 65.80%(1.12%) 40.08%(3.38%) 

MLR 90.96%(0.48%) 73.39%(3.46%) 60.25%(2.06%) 52.46%(1.01%) 38.45%(3.59%) 

K-NN 78.60%(0.70%) 66.28%(4.79%) 44.52%(2.26%) 53.20%(1.16%) 31.75%(4.27%) 

 

TABLE A.1: CV average classification accuracies and standard deviations (in parentheses) of all classifiers and 

learning tasks for the ‘All Features’ sets. 

 

Music Genre Classification Accuracies (GTZAN) 
Music Mood Classification 

Accuracies (PandaMood) 

Feature Set 

Information Gain FS (Top 20) 

Algorithms Training CA Testing CA AF.Testing CA Training CA Testing CA 

SVM 73.22%(0.44%) 64.85%(3.52%) 44.52%(2.26%) 51.58%(0.65%) 38.73%(3.62%) 

MLR 72.65%(0.73%) 65.53%(5.42%) 48.51%(2.93%) 43.40%(0.67%) 37.94%(4.77%) 

K-NN 74.06%(0.80%) 63.13%(3.56%) 41.75%(3.92%) 53.11%(0.60%) 33.45%(3.10%) 

 

TABLE A.3: CV average classification accuracies and standard deviations (in parentheses) of all classifiers and 

learning tasks for the ‘Information Gain’ automatic feature selection set. 
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Music Mood Classification Accuracies (PandaMood) 

Feature Set 

Top 2 [SB-Entropy(𝜇, 𝜎)- MFCCs (𝜇, 𝜎)] 

Algorithms Training CA Testing CA 

SVM 70.06%(0.59%) 42.18%(2.89%) 

MLR 50.45%(1.06%) 39.11%(5.23%) 

K-NN 54.79%(0.96%) 32.99%(4.07%) 

Feature Set  

Top 2 [SB-Entropy(𝜇)- MFCCs (𝜎)] 

Algorithms Training CA Testing CA 

SVM 59.37%(0.96%) 39.84%(5.42%) 

MLR 44.53%(0.34%) 38.87%(2.13%) 

K-NN 52.22%(1.02%) 29.14%(4.32%) 

Feature Set  

Top 2 [SB-Entropy(𝜎)- MFCCs(𝜇)] 

Algorithms Training CA Testing CA 

SVM 66.91%(0.66%) 38.87%(4.55%) 

MLR 41.92%(0.97%) 35.30%(3.55%) 

K-NN 52.71%(1.45%) 30.10%(4.56%) 

 

TABLE A.4: CV average classification accuracies and standard deviations (in parentheses) of all classifiers for 

the ‘Top 2’ semi-manual feature selection sets in the music mood task. 

 

Music Genre Classification Accuracies (GTZAN) 

Feature Set 

Top 2 [SB-Entropy(𝜇, 𝜎)- SB-Flux(𝜇, 𝜎)] 

Algorithms Training CA Testing CA AF.Testing CA 

SVM 84.69%(0.63%) 70.34%(2.79%) 50.72%(3.82%) 

MLR 85.22%(0.56%) 74.02%(3.68%) 58.81%(4.83%) 

K-NN 77.32%(0.58%) 66.88%(4.17%) 43.74%(1.05%) 

Feature Set 

Top 2 [SB-Entropy(𝜇)- SB-Flux(𝜎)] 

Algorithms Training CA Testing CA AF.Testing CA 

SVM 78.42%(0.69%) 65.37%(3.93%) 47.07%(3.49%) 

MLR 72.34%(0.69%) 65.23%(3.65%) 53.05%(4.16%) 

K-NN 74.95%(1.05%) 62.53%(5.77%) 40.98%(0.93%) 

Feature Set 

Top 2 [SB-Entropy(𝜎)- SB-Flux(𝜇)] 

Algorithms Training CA Testing CA AF.Testing CA 

SVM 77.47%(0.62%) 65.00%(2.32%) 49.62%(4.26%) 

MLR 71.55%(0.62%) 64.93%(3.76%) 49.73%(4.15%) 

K-NN 73.61%(0.62%) 59.99%(3.66%) 40.76%(2.26%) 

 

TABLE A.5: CV average classification accuracies and standard deviations (in parentheses) of all classifiers for 

the ‘Top 2’ semi-manual feature selection sets in the music genre task.  

 



 

 

Appendix B 

Feature Extraction Code 

The MATLAB code for extracting each FDW sub-band feature will become available in 

MIRtoolbox 1.7.2 (Lartillot, Toiviainen, et al., 2008). 
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