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Analysis and Evaluation of Adaptive RSSI-based Ranging in Outdoor Wireless Sensor
Networks

Jari Luomala∗, Ismo Hakala

University of Jyvaskyla, Kokkola University Consortium Chydenius
P.O. Box 567, FI-67701 Kokkola, Finland

Abstract

Estimating inter-node distances based on received radio signal strength (RSSI) is the foundation of RSSI-based outdoor localiza-
tion in wireless sensor networks (WSNs). However, the accuracy of RSSI-based ranging depends on environmental and weather
conditions. Therefore, it is important that RSSI-based ranging adapts to prevailing conditions to improve its range and location
accuracy. This paper analyzes and evaluates RSSI-based ranging and adaptive techniques in outdoor WSNs to improve the range
quality. The findings highlight the effects of path loss exponent (PLE) estimation error and temperature change on RSSI-based
ranging. Consequently, we analyze techniques for mitigating these detrimental effects and propose an adaptive RSSI-based ranging
algorithm in order to improve the ranging quality in changing outdoor conditions. The algorithm comprises link RSSI estima-
tion, temperature compensation, PLE estimation, and inter-node distance estimation. Furthermore, we evaluate the performance
of the proposed algorithm and compare different WSN-specific PLE estimation techniques by employing real measurement data
of 2.4 GHz IEEE 802.15.4-compliant WSN nodes. The results indicate that although ranging error can be mitigated using the
proposed adaptive techniques, the accuracy when a single PLE estimate is used is, in general, limited due to high inter-link PLE
variation.

Keywords: RSSI-based ranging, adaptive, localization, wireless sensor network, path loss exponent, temperature

1. Introduction

Location information about sensor nodes is an integral part
of most sensor data in making it meaningful and is needed for
many functions, applications, and services in wireless sensor
networks (WSNs), such as target tracking, geographic routing,
and location-based services [1–6]. Typically, only a few WSN
nodes know their locations a priori (e.g., by using the Global
Navigation Satellite System, GNSS) and are called reference
nodes (aka anchors, beacons, and landmarks). Nodes with un-
known locations usually try to locate themselves by using dis-
tance estimates to reference nodes and the reference nodes’ co-
ordinates. This kind of anchor- and range-based localization is
commonly used in WSNs.

The foundation of any range-based localization algorithm is
the estimation of physical distances between two sensor nodes
based on characteristics of the signals exchanged between the
nodes [1]. Ranging is a key factor in localization, and the loca-
tion accuracy is largely determined by the quality of the ranging
[5, 7]. Different ranging techniques (Received Signal Strength
Indicator (RSSI), Time of Arrival (ToA), Time Difference of
Arrival (TDoA), and Angle of Arrival (AoA)) are generally em-
ployed to estimate inter-node distances [1, 2, 4, 5]. RSSI-based
ranging, based on radio signal strength obtained with the help
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of a received signal strength indicator, is a tempting, low-cost
choice and is relatively easy to implement because no extra
hardware is needed. However, the method has its drawbacks;
RSSI-based ranging is highly sensitive to changes in environ-
mental and weather conditions, which may result in reduced
location accuracy.

As is well-known, the attenuation and behavior of radio sig-
nals are highly environment-specific. Therefore, using a path
loss model that does not reflect the signal attenuation correctly
in a particular propagation environment may lead to consider-
able ranging errors. Specifically, the path loss exponent (PLE)
is the single most important parameter affecting ranging ac-
curacy. Furthermore, changing weather conditions may cause
much variation in the radio signal strength of wireless sensor
nodes. Temperature variation in particular is one of the ma-
jor individual factors affecting radio signal strength in outdoor
WSNs [8–13]. Consequently, the performance of several algo-
rithms, protocols, and services that utilize signal strength will
suffer if the effects of ambient temperature are ignored. RSSI-
based ranging and localization are at the top of this list. In
addition to these causes, other factors affect RSSI-based rang-
ing. These include, for example, RF transceiver non-idealities,
antenna characteristics, and various interference sources.

These challenges require the use of robust, adaptive tech-
niques in order to achieve sufficient location accuracy and pre-
cision regardless of the prevailing conditions. Typically, a
WSN consists of low-cost, resource-constrained nodes with
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limited communication, energy, memory, and processing ca-
pacity. Therefore, the complexity of the proposed methods
should be relatively low, in terms of computation and commu-
nication. Computation should be able to be performed mostly
in a distributed fashion in the nodes, as sending data to the
sink/server for computation consumes resources and is error-
prone.

This paper aims to find means of improving the RSSI-based
ranging quality of WSN nodes in varying outdoor conditions.
Based on empirical and analytical results, we show that path
loss exponent estimation error and temperature change may
have marked detrimental effects on the ranging quality. As our
first attempt to mitigate these effects and to improve ranging
quality, we analyze link RSSI estimation, temperature compen-
sation, and PLE estimation techniques for adaptive RSSI-based
ranging. The PLE estimation techniques selected for compari-
son (averaging, least-squares estimation, optimization) are ba-
sic, low-complex techniques for this size problem, and can be
implemented in resource-constrained nodes. As a result, we
propose an adaptive RSSI-based ranging algorithm that inte-
grates these techniques with inter-node distance estimation aim-
ing to mitigate RSSI/PLE variation and PLE estimation error
and, consequently, ranging error.

In the algorithm, reference nodes compute PLEs for refer-
ence links based on temperature-compensated RSSI data once
at the beginning (e.g., based on 24 hours data), and then in-
terchange the PLEs and other relevant data. Next, reference
nodes estimate a WSN-specific PLE to be sent to nodes. To esti-
mate the distance to some other node, a node applies the WSN-
specific PLE and temperature-compensated RSSI data for the
link. We evaluate the performance of the adaptive RSSI-based
ranging algorithm and compare different WSN-specific PLE es-
timation techniques by employing real measurement data of
2.4 GHz stationary WSN nodes. Overall, the results provide
useful information for RSSI-based localization in WSNs, par-
ticularly when it is employed in varying outdoor conditions.

In summary, this study makes the following main contribu-
tions:

• We show the effects of path loss exponent estimation error
and temperature change on RSSI-based ranging.

• We analyze link RSSI estimation, temperature compensa-
tion, and PLE estimation techniques for adaptive RSSI-
based ranging.

• We propose an adaptive RSSI-based ranging algorithm to
improve the ranging quality.

• We evaluate the performance of the adaptive RSSI-based
ranging algorithm and compare different PLE estimation
techniques by employing real measurement data.

The rest of this paper is organized as follows. In Section 2,
we briefly highlight several related studies. In Section 3, we
present the application of an RSSI-based ranging technique,
and Section 4 follows with a short description of the experi-
mental measurements. Based on the results, in Section 5, we
analyze the main sources of error in RSSI-based ranging. In the

pursuit of better ranging quality, we propose an adaptive RSSI-
based ranging algorithm in Section 6. In Section 7, we evaluate
the performance of the adaptive RSSI-based ranging algorithm
using different PLE estimation techniques, followed by a short
discussion in Section 8. Finally, we conclude our work in Sec-
tion 9.

2. Related Work

The challenges of RSSI-based localization have motivated
researchers to find robust, adaptive techniques for ranging that
consider different environments and their dynamics. Many
types of methods for (adaptive) RSSI-based ranging have been
studied in the literature recently. Most of these methods try to
estimate the parameters (usually the PLE) of the ranging model
for a particular environment. In the following, we look at some
research related to ours.

In [14], the authors investigated different factors affecting
RSSI-based ranging quality in WSNs and evaluated the use
of statistical methods and artificial neural networks for RSSI-
based ranging. Some adaptive RSSI-based ranging methods
that use the log-normal shadowing model (LNSM), such as
[15] and [16], estimate or calibrate the coefficients in the model
with a technique in order to dynamically adapt to different and
changing environments. In [7], the authors instead proposed a
combined and differentiated localization (CDL) approach that
integrates local filtration techniques and ranging-quality aware
calibration to improve the ranging quality.

Much of the literature on RSSI-based ranging emphasizes the
importance of the path loss exponent for ranging quality. A con-
ventional technique is to assume that the PLE is known a priori
for the particular environment, or the PLE is computed offline
based on an extensive set of RSSI and distance measurements
before the PLE is deployed in the WSN [17]. Recently, more
sophisticated methods for estimating the PLE online have been
proposed. Some PLE estimation methods, such as [17–20], do
not require distance measurements or other nodes’ locations.
PLE estimation of those methods can be based only on RSS
measurements if the probability distribution of the inter-node
distances is known [17], geometric constraints of the WSN [17],
mean interference in the network [18], virtual outage probabili-
ties [18], neighborhood size [18], or RSS distribution [20]. Al-
though these methods do not need distance measurements in
PLE estimation, depending on the method, they make assump-
tions, such as previous knowledge of the distance distribution,
network density, node distribution, channel model/fading, RSS
distribution, or other network parameters. These assumptions
may be unrealistic and thus, non-generic in many real scenar-
ios. The disadvantage of some methods, such the one proposed
in [17], is high computational complexity making the method
unsuitable for distributed implementation. Most of the methods
also assume an omnidirectional PLE while a few estimate a di-
rectional PLE [20]. Contrary to these techniques, many of the
existing PLE estimation methods apply distance measurements
and reference nodes. Some methods estimate the PLE in the lo-
calization phase iteratively and alternately with node locations
[21, 22]. They can use, e.g., the PLE from reference nodes as
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an initial value to compute the node location [21], or even an
unknown PLE [22], which is then used to recompute the PLE.
In [23], the authors proposed a distributed, cooperative method
that minimizes the cost function of unknown nodes’ coordinates
and PLEs using the iterative gradient descent approach. The
study in [24] also applied the gradient descent technique, but
the authors mainly emphasized the importance of measurement
arrangements for accurately estimating the PLE. Instead of us-
ing a fixed PLE value, it is possible to define a value scope of
PLEs that is then used to create an RSSI-based ranging scope
to be used in localization [25].

Compared to the PLE, the body of literature on the effect of
temperature on RSSI-based ranging and localization is small.
In recent years, however, the effects of temperature on the radio
signal strength of WSN nodes have been explored and recog-
nized in several studies, such as [8–13]. Clearly, the tempera-
ture affects RSSI-based ranging and localization outdoors. Ban-
nister et al. [8] studied how temperature affects signal strength
and different services, including RSSI-based ranging and local-
ization, in WSNs. The authors showed that temperature has
a negative linear effect on the RSS which may lead even to a
150% ranging error when the RSS is applied to localization
without temperature compensation. They suggested including
temperature sensors in nodes to compensate the RSS variation
caused by temperature and to reduce ranging and localization
errors. However, we recognize that temperature compensation
is not necessary for ranging if the PLE estimation is computed
frequently. However, PLE estimation is not cost-effective as it
increases computation and communication. Moreover, temper-
ature compensation of RSSI values may be useful for purposes
other than ranging.

Another factor affecting RSSI-based ranging is the channel-
specific variation in RSSI values (due to multipath, noise, in-
terference, etc.). A potential mitigation method for high RSSI
variation is frequency diversity given that multiple channels are
employed. A multichannel approach for improving RSSI-based
ranging accuracy has been studied, for example, in [26] and
[27].

Most studies in the field of RSSI-based ranging have mainly
focused on the effect of the PLE and ignored the effect of tem-
perature or other weather variables which may change rapidly.
Furthermore, many of the existing approaches make strong
assumptions about some network parameters that need to be
known a priori, or the approaches are computationally too com-
plex requiring centralized implementation. Most are also veri-
fied based on simulations only. The adaptive RSSI-based rang-
ing algorithm we propose combines frequency diversity and
temperature compensation with online PLE estimation in aim-
ing to improve ranging quality in fluctuating outdoor condi-
tions. The algorithm is robust, adapting its operation based on
the ambient conditions and temperature, and is designed and
verified based on real measurement data. The proposed algo-
rithm is low cost in terms of computation and communication,
and can be implemented in typical resource-constrained sensor
nodes in a distributed fashion.

3. RSSI-based Ranging Model

Inter-node distances needed in range-based localization can
be computed based on signal strength measurements by using
an RSSI-based ranging technique. The central idea of exploit-
ing radio signal strength in ranging is that signal strength de-
cays as a function of the distance between the transmitter and
the receiver (RS S ∝ d−n) [1]. Several generally used path loss
models that can be applied to RSSI-based ranging differ in ac-
curacy, methods, and goals, for example.

A well-known model generally used to reflect the path loss
of a radio signal is the log-normal shadowing model (see, e.g.,
[28]). The model is used as the basis of this study. It can be
expressed in dBm as:

Pr(d) = P̄r(d) + Xσ, (1)

P̄r(d) = Pr(d0) − 10n log

(
d
d0

)
, (2)

where Pr(d) is the received power [dBm] at distance d [m]
from the transmitter, P̄r(d) is the corresponding average power
[dBm], Xσ is the zero-mean Gaussian random variable with the
variance of σ2 (N(0, σdB)), Pr(d0) is the received power [dBm]
at the reference distance d0 (usually 1 m) from the transmitter,
and n is the path loss exponent. Pr(d0) can be a predefined or
measured value, or it can be estimated by using the Friis free-
space equation as:

Pr(d0) =
PtGtGrλ

2

(4π)2d2
0L

, (3)

where Pt is the transmission power [mW], Gt and Gr are the
antenna gains [mW] of the transmitting and receiving antennas,
respectively, λ is the wavelength, and L ≥ 1 is the sum of losses
through the transmit/receive circuitry. The PLE n depends on
the specific propagation environment (usually between 2 and 4
[4]) and can be predefined, or computed offline or online by
using fixed nodes with known distances, in some cases even
without distance information (see, e.g., [17–20]).

Model (2) without the stochastic term is often referred to as
the log-distance path loss model. It can be used for RSSI-based
ranging to estimate the distance, d̂ [m] (maximum likelihood
estimate, MLE), between two neighboring nodes as follows:

d̂ = d010(Pr(d0)−P̄r(d))/10n. (4)

As can be seen, the accuracy of distance estimate d̂ depends
on the accuracy of the signal power and the PLE used. If they
are accurate, then the distance estimate is accurate. However,
in practice, some error is included in them, thus resulting in a
varying ranging error.

Ranging error ed, relative to the true distance, can be denoted
as:

ed =
∆d
d

=
d̂ − d

d
, (5)

where d̂ is the distance estimate, and d is the true distance [m].
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Figure 1: Experimental setup (not to scale).

4. Experimental Measurement

The WSN that collected the empirical measurement data
for the analysis and evaluation consisted of Atmel ZigBit
2.4 GHz wireless modules [29] with an IEEE 802.15.4-
compliant AT86RF230 radio transceiver [30]. Each node was
integrated with a Sensirion humidity and temperature sensor
(SHT75) [31] to measure the ambient temperature and rel-
ative humidity. The test equipment consisted, in total, of
five sensor nodes, one sink node, one Raspberry Pi, and one
server/database. The sensor nodes were attached to lamp posts
around the university campus, next to the parking lot, while the
other equipment was inside the university building. There was a
direct line-of-sight (LOS) propagation path between the nodes
without obstacles. However, some objects were in close prox-
imity (e.g., trees, cars, a traffic sign) which may have altered
the radio signal, for example, due to reflection, diffraction, and
scattering. The network setup is illustrated in Figure 1.

RSSI data for the links was collected, once a minute, with
two different transmit power levels, +3.0 dBm (PTX1) and
−7.2 dBm (PTX2). The radio channel (11–26) was changed ev-
ery minute. In addition, the temperature readings for each node
were measured once a minute with the SHT75 sensors. The col-
lected raw data was sent to the sink, from where the data was
forwarded via Raspberry Pi to the server/database to be further
processed and analyzed with MATLAB. The RSSI data of each
channel was averaged over 1 h. These 1 h RSSI samples col-
lected at different radio channels were used to compute the link
RSSI by using the methods described in Section 6. In addi-
tion, the temperature data was averaged over 1 h. Two-way link
RSSI was computed by averaging the link RSSI values of both
nodes. These two-way link RSSI 1 h average values were used
in the analysis and evaluation.

The experimental measurement data used in the analysis and
evaluation was collected during 1 week between July 21 and 27,

2014. Due to the summer vacation period, traffic in the park-
ing lot was sparse at that time. The total number of samples
of the RSSI and temperature data was 194543 (96.5% Packet
Reception Ratio, PRR) and 48612 (96.5% PRR), respectively.
This denotes 38909 RSSI samples and 9722 temperature sam-
ples per node, on average. The number of 1 h RSSI samples
was 53673, which denotes 10735 samples per node, 2684 sam-
ples per link, and 168 samples per each link channel, on aver-
age. The number of 1 h temperature samples was 840, which
denotes 168 samples per node, on average.

5. Sources of Error in RSSI-based Ranging

The main challenge with RSSI-based ranging is the sensi-
tivity of the radio signal strength to changes in environmental
conditions which arises as a variation in RSSI values. This vari-
ation may be caused by external factors, such as the propagation
environment, weather conditions, interference, etc. In addition,
variations in RSSI can be partly due to internal factors of the
node hardware. Variations in RSSI values further result in vari-
ations in the path loss exponent within and between the links,
and thus, errors in estimating the path loss exponent for ranging
purposes.

In this section, we analyze two of the main sources of er-
rors in RSSI-based ranging, both theoretically and based on the
empirical results when the ranging model is employed. These
sources are (i) an error in the path loss exponent estimation and
(ii) temperature change. Furthermore, several other sources of
error are identified.

5.1. Path Loss Exponent Estimation Error

The path loss exponent, which measures the rate at which the
signal strength decays with distance, is a key factor in RSSI-
based ranging and localization and depends on the particular
propagation environment [17]. Errors in the PLE estimation
may have a big impact on ranging errors. Figure 2 (a) illus-
trates theoretically how the PLE estimation error (difference
from ntrue) affects the ranging error when the log-distance path
loss model in (4) is used. As can be seen, the ranging error (5)
increases quite a bit if the estimated PLE does not reflect the
true path loss. The magnitude of the ranging error depends on
which side of the true PLE (n) the estimated PLE (n̂) resides.
As shown in Figure 2 (a), a theoretical overestimation of the
PLE results in a considerably lower ranging error than under-
estimation by an equal amount. For example, if it is assumed
that n = 2.2, using n̂ = 2.4 in ranging results in a −26.5%
(−10.6 m) ranging error for the 40 m link, while using n̂ = 2.0
results in a 44.6% (17.8 m) ranging error, respectively. A sim-
ilar effect of PLE estimation error was observed in [17] for a
WSN position estimation error. Furthermore, the PLE error has
a smaller impact on the ranging error when the inter-node dis-
tances are smaller. For example, in Figure 2 (a), n̂ = 2.0 re-
sults in a 17.5% (0.9 m) ranging error for the 5 m link but a
55.0% (44.0 m) ranging error for the 80 m link. Therefore, the
distances between the links used in ranging may have a huge
impact on ranging errors.
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Figure 2: (a) The effect of the PLE estimation error on the ranging error when the log-distance path loss model is used at distances d = {5, 10, 20, 40, 80} m. Pr(d)
was computed using n = 2.2 at the particular distance, and in estimating d̂, it was kept fixed while n was changed. (b) The PLEs of the one-way links computed at
the same 1 h time period (in July 21, 2014) at night time (1 h RSSI values averaged over 16 channels), (c) the PLE of the link 2 → 4 during 1 week in July 21–27,
2014 (hourly and daily). In each case, transmit power PTX = −7.2 dBm.

Link ∆RS S I[dB] ∆PLE Link ∆RS S I[dB] ∆PLE

1 − 2 0.36 0.03 2 − 4 1.26 0.08
1 − 3 0.50 0.03 2 − 5 0.81 0.04
1 − 4 0.39 0.02 3 − 4 1.41 0.10
1 − 5 0.09 0.00 3 − 5 0.35 0.02
2 − 3 0.47 0.03 4 − 5 0.87 0.06

Table 1: Differences in RSSI/PLE between opposite directions based on the
RSSI values averaged over the channels for the same 1 h time period (in July
21, 2014).

The propagation environment and the inter-node distance af-
fect the path loss exponent. Even inside a WSN, in a rela-
tively small area with line-of-sight conditions and links point-
ing nearly at the same angle, PLEs between different links may
vary quite a lot, as can be seen in Figure 2 (b). For the particular
links and time, using the average PLE would lead to ranging er-
rors between −48.8% (−45.95 m) and 108.6% (57.40 m) for the
links 1→ 5 and 3→ 5, respectively. Therefore, using the same
PLE for each link is challenging and may cause large ranging
errors unless the variation in the PLE between the links is miti-
gated. Additionally, the PLEs of two-way links also have differ-
ent variations between the opposite directions. In Table 1, the
differences (∆RS S I,∆PLE) between the opposite directions of
the links at the same time as in Figure 2 (b) are shown (1 h av-
eraged over the channels). As can be seen, the differences vary
quite a lot depending on the link. ∆PLE varies from 0.00 to
0.10, which is considerable in terms of the ranging error. The
differences likely derive mostly from hardware-related issues,
such as different transmit powers.

Furthermore, the PLE of a single link may have short- and
long-term variations, illustrated in Figure 2 (c). For this link,
a short-term (daily) variation in the PLE appears to be larger
than long-term (weekly) variations. Assuming that the nodes
are stationary, as in our case, a variation in the PLE is the direct
result of a variation in the RSSI (path loss). To sum up, the
PLE features spatial inter-link variations and temporal intra-
link variations, which result from variations in the RSSI/path
loss. Overall, these results indicate that mitigating the PLE es-

timation error is the main task in the pursuit of better ranging
accuracy.

5.2. Temperature Change

Previous studies [8, 12, 13], including ours, have shown that
temperature has a negative, approximately linear effect on radio
signal strength (RSSI). An increase in the temperature causes
the RSSI to fall, and vice versa, as illustrated in Figure 3 (a).
This means that the RSSI-based ranging accuracy also changes
with the temperature change if not compensated. Figures 3 (b)
and (c) illustrate theoretically how the temperature change af-
fects the RSSI-ranging error when the log-distance path loss
model in (4) is used with the empirically estimated tempera-
ture effect. In Figure 3 (b), if it is assumed that the measured
inter-node distance of the 50 m link is correct when the tem-
perature is 25◦C, a 15◦C decrease and increase in temperature
cause ranging errors of −8.1 m and +9.7 m, respectively. As
can be seen in Figure 3 (c), a change in temperature has a con-
siderable effect on the ranging error (tens of percent), and it is
emphasized with lower path loss exponents and higher temper-
atures.

There is also an apparent relation between the temperature
and the PLE. A temperature change causes an RSSI change,
which results in a PLE change. Therefore, the short-term intra-
link variation in the PLE can be mostly explained by the tem-
perature change. At a specific time, the effect of the temperature
is included in the computed path loss exponent, but it does not
apply if the temperature changes. Consequently, either temper-
ature compensation or PLE recomputation is necessary.

5.3. Other Sources of Error

The effects of the PLE estimation error and the temperature
change on the ranging error can be partly mitigated, as will be
shown. However, other factors remain that produce ranging er-
rors and that need to be mitigated by other means. These other
sources of error include RF transceiver non-idealities, antenna
characteristics, and various interference sources. In addition,
other weather conditions, such as humidity and rain/snow, in
addition to temperature, may have an effect [13]. Reduction in
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Figure 3: (a) The variation in the temperature and the RSSI (averaged over the channels) for a link (2 → 4) during 1 week (July 21–27, 2014), (b) RSSI vs.
distance when the log-distance path loss model (n = 2.2) is used at temperatures T = {10, 25, 40}◦C, (c) the effect of the temperature on the ranging error when the
log-distance path loss model is used with path loss exponents n = {1.7, 2.2, 2.7}. In each case, transmit power PTX = −7.2 dBm.

the stochastic fluctuation of the RSSI can be implemented by
averaging, as we do, or filtering out with an appropriate tech-
nique. A channel-specific variation (due to multipath, noise,
interference, etc.) could be partly mitigated by using frequency
diversity [13, 32] if multiple channels are employed. In [26], it
was shown that by averaging RSS samples collected on differ-
ent radio channels it is possible to increase RSS-based ranging
accuracy. An example of channel-specific RSSI variation of
link 2 → 4 for 1 week is shown in Table 2. The inter-link PLE
variation, shown in Table 3, is also dependent on the channel
used, but we discuss this topic further in the next section.

6. Adaptive RSSI-based Ranging

As shown in the previous section, temperature change and
path loss exponent estimation error in particular may cause a
severe deterioration in the ranging accuracy if not compensated
somehow. In the pursuit of better ranging quality, we survey
a set of methods and techniques to adapt to changing environ-
mental and weather conditions in order to mitigate these detri-
mental effects. The proposed methods can then be applied in
RSSI-based ranging with the log-distance path loss model, and
their effect on the ranging accuracy can be evaluated.

The proposed adaptive RSSI-based ranging algorithm, de-
picted as a flow chart in Figure 4, comprises (i) link RSSI es-
timation, (ii) temperature compensation, (iii) PLE estimation,
and (iv) inter-node distance estimation. The first phase of the
algorithm aims to mitigate the spatial inter-link PLE variation
by selecting the most appropriate radio channels (as for rang-
ing) for each link. It also mitigates the node-specific RSSI
variation of each two-way link. In the second phase, tem-
perature compensation is applied to RSSI values to mitigate
the temporal intra-link RSSI/PLE variation caused by temper-
ature variation. In the third phase, we try to estimate a WSN-
specific PLE based on reference links’ PLEs, computed based
on temperature-compensated RSSI data during some period (24
hours in our case). The aim is to mitigate the error between
the WSN-specific PLE applied in ranging and the true PLE for
each link. Finally, in the fourth phase, inter-node distance is es-
timated by applying the log-distance path loss model with link

RSSI estimation, temperature compensation, and PLE estima-
tion. The proposed algorithm considers spatial and temporal as-
pects of RSSI variation. The solution is modular and feasible to
implement in resource-constrained WSN nodes. In the follow-
ing subsections, we describe and analyze the different phases of
the algorithm in detail. Furthermore, we briefly discuss imple-
menting the algorithm in WSN nodes.

6.1. Link RSSI Estimation

The aim of link RSSI estimation is to mitigate the spatial
inter-link PLE variation by selecting the most appropriate radio
channels relative to the ranging for each link. By narrowing the
range of PLEs between links, we can reduce PLE estimation
error and therefore, the ranging error. If the same fixed channel
is used in ranging for all the links, the difference in the PLEs
between links would vary heavily depending on the channel,
as can be seen in Table 3 where the links’ mean PLEs based
on 1 week using fixed channels are compared. The standard
deviation σ of the links’ mean PLEs (n = 20) varies between
0.14 (ch13) and 0.32 (ch19), and the range ∆ (PLEmax−PLEmin)
from 0.50 even to as high as 1.05. This would inevitably lead
to large ranging errors.

To mitigate the channel-specific variation of each link (due
to multipath, noise, interference, etc.), we applied several al-
ternative techniques instead of a single arbitrary channel. The
techniques were (E1) the average of 16 channels RSSI, (E2) the
best RSSI (max RS S I), and (E3) the weighted mean of the best
3 RSSI (max3 RS S I) values, for each link based on 1 h values,
expressed formally as:

RS S I1h =
1

16

26∑

i=11

RS S Ii, (E1)

RS S I1h = max RS S Ii, (E2)

RS S I1h =
1

∑3
j=1 w j

3∑

j=1

w j max
3

RS S Ii, (E3)

where i = 11 . . . 26 is the radio channel, RS S Ii is its 1 h av-
erage, and w j are the weights for the max3 RS S Ii values in
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Ch 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
RSSI [dBm]

µ −71.75 −70.71 −70.02 −70.02 −74.24 −67.84 −71.40 −72.63 −71.32 −70.28 −75.46 −72.05 −68.26 −71.98 −73.47 −68.96
σ [dB] 0.75 0.70 0.47 0.51 0.90 0.75 0.82 1.01 0.57 0.66 1.07 0.84 0.85 1.09 0.74 0.83
max −70.25 −69.00 −68.67 −68.75 −72.50 −66.67 −70.00 −71.00 −70.00 −68.75 −74.00 −70.00 −66.75 −69.75 −72.00 −67.00
min −74.00 −73.00 −72.25 −71.67 −76.33 −69.50 −73.33 −75.50 −72.75 −72.33 −78.33 −74.00 −70.00 −74.75 −75.67 −71.33
∆ [dB] 3.75 4.00 3.58 2.92 3.83 2.83 3.33 4.50 2.75 3.58 4.33 4.00 3.25 5.00 3.67 4.33

Table 2: Channel-specific RSSI variation of the 1 h average values of link 2→ 4 for one week (July 21–27, 2014).

Ch 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Avg
PLE
µ 2.07 2.03 2.03 2.04 2.10 2.01 2.05 2.13 2.18 2.05 2.12 2.15 2.16 2.12 2.17 2.14 2.10
σ 0.25 0.19 0.14 0.25 0.23 0.16 0.16 0.22 0.32 0.17 0.23 0.27 0.31 0.20 0.24 0.20 0.22
max 2.64 2.38 2.28 2.64 2.53 2.36 2.26 2.66 2.87 2.37 2.54 2.77 2.70 2.54 2.58 2.44 2.54
min 1.69 1.76 1.78 1.78 1.76 1.69 1.75 1.74 1.82 1.73 1.77 1.76 1.74 1.80 1.78 1.87 1.76
∆ 0.95 0.61 0.50 0.86 0.77 0.67 0.51 0.92 1.05 0.64 0.77 1.01 0.96 0.74 0.80 0.58 0.77

Table 3: Inter-link PLE variation using a fixed channel based on all links’ (n = 20) mean PLEs for one week (July 21–27, 2014).

Technique E1 E2 E3
PLE link link link

µ 2.10 1.90 1.92
σ 0.19 0.14 0.14
max 2.43 2.13 2.16
min 1.78 1.68 1.69
∆ 0.65 0.46 0.46

Table 4: Inter-link PLE variation using adaptive link RSSI estimation based on
all links’ (n = 20) mean PLEs for one week (July 21–27, 2014).

descending order. We used the weights w = {w1,w2,w3} =

{3w3, 2w3,w3}, thus weighting the maximum value the most.
The results of these techniques are shown in Table 4, and the

comparison with the fixed channels is illustrated in Figure 5.
As can be seen, averaging the RSSI samples collected at differ-
ent radio channels (ch 11 . . . 26) for each link (E1) results in a
smaller inter-link PLE variation than using a single fixed chan-
nel, on average. An even better way is to use the maximum
RSSI value over the radio channels for each link (E2). In adap-
tive RSSI-based ranging, however, we apply the weighted mean
over the best 3 RSSI values (E3), which results in a variation of
the same size but is more robust.

Thereafter, to mitigate the node-specific variation of each
two-way link between nodes i and j, we simply average the
RSSI values of the opposite directions as follows:

RS S I1h =
RS S Ii j + RS S I ji

2
. (6)

This compensates the differences (e.g., due to receiver noise,
RF transceiver non-idealities) between the nodes. In particu-
lar, this could reduce the effect of different transmit powers on
ranging results.

6.2. Temperature Compensation

The aim of temperature compensation is to mitigate the tem-
poral intra-link RSSI/PLE variation caused by temperature vari-
ation. The effect of the temperature on RSSI can be estimated

based on outdoor or laboratory measurements and using lin-
ear regression [8, 12, 13], for example. If estimated outdoors,
RSSI and temperature data for a long-enough period are re-
quired in order that the temperature has time to change and
for the results to be statistically significant. In controlled lab-
oratory conditions, it is easier and quicker to estimate the ef-
fect, and the other potentially affecting factors can be ruled out.
The estimated temperature effect can then be compensated in
the ranging model. Temperature compensation TC [dB] and
temperature-compensated RSSI value RS S ITC at temperature
Ti [◦C] can be expressed as:

TC(Ti) = −β(Ti − T0), (7)

RS S ITC = RS S I(Ti) + TC(Ti), (8)

where β is the coefficient of the temperature effect [dB/◦C] and
T0 the reference temperature. T0 = 25◦C was chosen because it
is the operating or ambient temperature used in the test condi-
tions to define the technical parameters and specifications for
AT86RF230 [30] and the electrical characteristics for Atmel
ZigBit [29]. The effect of the temperature can be defined for
the whole network or each link separately, by using a (i) WSN-
specific β or a (ii) link-specific β. In our evaluations, a WSN-
specific β is computed based on all the one-way reference links
based on 1 week data. Use of a link-specific β requires that
the temperature sensors are integrated into each node. We use
WSN-specific β and temperatures, computed based on the av-
erages of the reference links. We apply temperature compen-
sation to the RSSI values of the reference nodes used in the
PLE estimation and to the inter-node distance estimation by
(unknown) nodes. An example of the effect of temperature
compensation on the RSSI and PLE values for a link can be
seen in Figure 6. The effect of temperature compensation on
the intra-link PLE variation for each two-way link (link RSSI
computed according to (E1)) can be seen in Table 5. As shown
in the table, temperature compensation reduces the intra-link
PLE variation for all the links.
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Link 1 − 2 1 − 3 1 − 4 1 − 5 2 − 3 2 − 4 2 − 5 3 − 4 3 − 5 4 − 5 Avg
PLE
µ 2.06 1.92 1.92 1.78 2.33 2.13 2.00 2.16 2.42 2.23 2.10
σ 0.06 0.05 0.04 0.04 0.05 0.03 0.04 0.05 0.04 0.06 0.05
µTC 2.06 1.93 1.92 1.78 2.34 2.13 2.00 2.17 2.42 2.24 2.10
σTC 0.01 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.02 0.02

Table 5: Intra-link PLE variation (of (E1)) with and without temperature compensation (TC) for one week (July 21–27, 2014).
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Figure 4: Adaptive RSSI-based ranging algorithm.

6.3. PLE Estimation

The aim of PLE estimation is to mitigate the error between
the PLE applied in ranging and the true PLE for each link. A
path loss exponent to be used in ranging is a key factor in de-
termining the magnitude of the error. It is possible to apply
either one (WSN-specific) or many (e.g., area-, node-, or link-
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on all links’ (n = 20) mean PLEs for one week (July 21–27, 2014).
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Figure 7: PLE estimation techniques.

specific) PLEs within a WSN. In this paper, we focus on the
former method only due to its simplicity and due to our small
test network.

Use of a predefined path loss exponent in RSSI-based rang-
ing most likely results in an unnecessarily high error, i.e., low
accuracy and precision. Nevertheless, the approximation of an
appropriate PLE to be used in a particular environment in or-
der to avoid large ranging errors is not a trivial task to accom-
plish. Use of a single PLE may result in large ranging errors,
especially if the true PLE is higher than the estimated PLE, as
shown previously.

A WSN-specific PLE can be estimated, e.g., by applying ref-
erence nodes and the known inter-node distances. The individ-
ual PLE ni of two-way reference link i can be computed as

ni =
P̄r(di) − Pr(d0)
−10 log(di/d0)

, (9)

where P̄r(di) is the average received power [dBm] of the link at
distance di based on the temperature-compensated RSSI mea-
surements (e.g., over 24 h in this case). We compute the PLE
only once, but it can be recomputed if necessary, e.g., on a daily
basis.

Overall, the communication complexity of estimating the
PLE is low. To estimate a WSN-specific PLE, the reference
nodes broadcast the required data (ni, wi, di, Pr(di)) to the other
reference nodes only once (or infrequently at predefined inter-
vals), and then send the computed estimate to the unknown
nodes. The amount of communication depends on the num-
ber of reference nodes used to estimate the PLE. In all of the
PLE estimation techniques, we use 3 reference nodes and links
unless otherwise stated.

Next, we analyze different techniques to estimate a WSN-
specific PLE based on reference links’ PLEs to be used in rang-
ing. They can be categorized as (i) PLE averaging, (ii) least-
squares estimation, and (iii) PLE optimization. These tech-
niques are also illustrated in Figure 7.

6.3.1. PLE Averaging
A very straightforward technique for estimating a PLE is

simply to compute the arithmetic mean PLE (1A) of the ref-
erence links i = 1..k, i.e.,

n̂ =
1
k

k∑

i=1

ni, (10)

where k is the number of reference links used for the computa-
tion (in our case, k = 3).

The ordinary arithmetic mean does not account for the un-
equal effect of over- and underestimation of the PLE on rang-
ing error, or the link distances. Therefore, we computed the
weighted arithmetic mean PLE by applying different weighting
methods as follows:

n̂ =
1
W

k∑

i=1

wini =
1

∑k
i=1 wi

k∑

i=1

wini, (11)

where wi is the weight for the PLE ni.
In the first weighting technique (1B), the PLEs are weighted

in the order of magnitude, i.e.,

wi =



min w, if ni = min n

:

max w, if ni = max n.

(11a)

Thus, the bigger PLEs contribute more to the weighted mean as
they produce smaller ranging errors. In our case, we used the
weights W = {w(min n) = w1,w(ñ) = 2w1,w(max n) = 3w1}.
However, they can be adjusted as needed.

In the second weighting technique (1C), the PLEs are
weighted based on the relative ranging error when the mean
PLE is used in ranging, i.e.,

wi =

∣∣∣d̂i − di

∣∣∣
di

, (11b)

where d̂i is the distance estimate for link i when the mean PLE
of the reference links (according to (10)) is used, and di is the
corresponding true distance. Thus, the PLE for a link whose
true distance differs the most from the distance estimate using
the mean PLE gets the biggest weight. In other words, we are
trying to reduce the biggest error the most.

The computational complexity of PLE averaging is low. The
computation required in these techniques can be easily per-
formed in resource-constrained WSN reference nodes.

6.3.2. Least-squares Estimation
In a conventional PLE estimation, a standard procedure is

to use ordinary least squares (OLS) estimation (2A) to solve
arg minn f (n), where n is the PLE that minimizes the sum of
the squared errors (residuals), i.e., vertical distances, between
each sample and the corresponding point on the fitting curve,
i.e.,

min f (n) = min
k∑

i=1

(yi − ŷi)
2, (12)
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where yi is the measured received power Pr [dBm] of the refer-
ence link i and ŷi is the corresponding Pr on the fitting curve.
Equation (12) can be expressed in matrix form as:

Ax = b,

where

Ai = −10 log

(
di

d0

)
,bi = Pr(di) − Pr(d0)

for the reference link i = 1..k. Solving the system of linear
equations Ax = b for x (e.g., by using matrix factorization such
as Cholesky or LU) gives the path loss exponent n̂ which has
the best fit to the given set of sample points.

The same problems as with the ordinary arithmetic mean
apply for least squares. The least-squares estimate minimizes
the error between the RSSI samples and the fit, which is not
equivalent to minimizing the distance errors. By applying the
weighted least-squares (WLS), it is possible to give different
weights to each sample. In that case, n̂ is the PLE that mini-
mizes the sum of the weighted squared errors as

min f (n) = min
k∑

i=1

wi(yi − ŷi)
2, (13)

where wi is the weight for the reference link i. For the LSE, we
use the same weighting techniques as for the mean PLE. In the
first weighting technique (2B), the residuals are weighted in the
order of magnitude of the corresponding PLEs, as in (11a) by
using the same weights.

In the second weighting technique (2C), the residuals are
weighted based on the relative ranging error when the least-
squares estimate PLE is used in ranging, i.e.,

wi =

∣∣∣d̂i − di

∣∣∣
di

, (13b)

where d̂i is the distance estimate for link i when the PLELS E of
the reference links, i.e., arg minn

∑k
i=1(yi − ŷi)2, is used, and di

is the corresponding true distance.
For computation, the complexity of the least-squares esti-

mation techniques is higher than that of PLE averaging. This
results mostly from solving the system of linear equations of
modest size, defined by three reference nodes at least. In this
case, however, it is fully practicable in WSN reference nodes as
long as the number of references is small. The complexity of
solving the system of linear equations is cubic of the problem
dimensions (number of reference links), i.e., the total number
of floating-point operations is O(n3). For example, if the num-
ber of reference nodes is 3 (5), the number of reference links is
3 (10), respectively. The actual implementation technique for
solving the system of linear equations depends on the perfor-
mance of the available sensor node’s microcontroller.

6.3.3. PLE Optimization
In the sum of squared error (SSE) minimization, instead of

weighting the reference node PLEs, we find the PLE between

min
i=1..k

ni and max
i=1..k

ni for k links that minimizes the overall dis-

tance estimate error (SSE) of the links used in the approxima-
tion. Specifically, we aim to solve the following optimization
problem:

arg minn̂ f (n̂) := {n̂, n ∈ S : f (n̂) = min f (n)}. (14)

In (14),

f (n) =

k∑

i=1

e2
i =

k∑

i=1

(
d̂i − di

di

)2

=

k∑

i=1


d010(Pr(d0)−P̄r(di))/10n − di

di


2

,

where n̂ is the estimated PLE that minimizes f (n), n is a PLE in
S , S ∈ [nmin, nmax] (with steps of 0.01), k is the total number of
two-way links with known distances used in the approximation,
and ei is the relative distance estimate error of a two-way link
i between the estimated distance and the true distance, d̂i and
di, respectively. In [23], the authors apply a similar idea in a
distributed fashion.

We computed the SSE minimization by using the reference
links and all the links. In SSE Minimization 1 (3A), we per-
formed the computation by using the reference links, i.e., k = 3.
As a baseline for evaluation, we also computed the SSE Mini-
mization 2 (3B), where we used all the links, i.e., k = 10. This
is only for comparison to help evaluate the performance of the
other techniques. It gives the minimum overall ranging error on
average, when a single PLE is used in the ranging for all the
links. In practice, however, it is not possible to compute a PLE
for a link with an unknown distance by using equation (9).

The computational complexity of the SSE minimization
techniques is also relatively low. In SSE Minimization 1 (3A),
computation can be performed in WSN reference nodes. The
complexity of solving the SSE minimization problem is linear
of the problem dimensions (number of reference links), i.e., the
total number of floating-point operations is O(n). Naturally,
SSE Minimization 2 (3B) cannot be implemented as unknown
link distances are not known a priori in a real scenario.

6.4. Inter-node Distance Estimation

By applying the log-distance path loss model in (4) with link
RSSI estimation, temperature compensation, and PLE estima-
tion, the distance estimate d̂ [m] between two nodes can be
computed as follows:

d̂ = d010(Pr(d0)−P̄r,TC (d̂))/10n̂, (15)

where d0 is the reference distance (1 m), Pr(d0) is the received
power at the reference distance d0, P̄r,TC(d̂) is the temperature-
compensated average received power [dBm] of the two-way
link at distance d̂ according to (8), and n̂ is the estimated
PLE according to the PLE estimation technique. In comput-
ing the Pr(d0), we used the Friis model (3) with parameters
Pt = −7.2 dBm, Gt = Gr = 5.5 dBi, f = 2442.5 MHz, and
L = 1.
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6.5. Outline for WSN Implementation

The following briefly outlines how the proposed algorithm
could be implemented in WSN nodes. Here, we assume that
nodes are similar to the one used in our experiment: (i) Nodes
are operating at 2.4 GHz band and (ii) integrated with tempera-
ture sensors (some or all). Also, (iii) the coefficient of temper-
ature effect (β) is known a priori. Overall, the aim is to reduce
computation and communication without compromising rang-
ing accuracy. Details of implementation are not in the scope of
this paper.

The proposed algorithm runs on all nodes when it is nec-
essary. The required data for the algorithm is collected by
broadcasting at different radio channels in sequence. First, all
nodes compute one-way link RSSI values by using the selected
technique, and send/receive the RSSI values to/from neighbors
for computing two-way link RSSI values. All nodes then use
the latest temperature readings from reference nodes, and β to
compute temperature compensation for link RSSI. The PLE es-
timation phase runs only on reference nodes once at the be-
ginning (e.g., based on 24 hours data). Each reference node
computes PLEs of reference links between the neighboring ref-
erence nodes, and broadcast the PLEs and other required data
to the other reference nodes. Then each reference node esti-
mates a WSN-specific PLE by using one of the techniques de-
scribed earlier. The computed WSN-specific PLE is then sent to
other nodes. Finally, when a node needs to estimate inter-node
distances, it applies the WSN-specific PLE and temperature-
compensated RSSI values in ranging.

All the PLE estimation techniques described are quite sim-
ple and can be implemented in our resource-constrained node
(Atmel ZigBit 2.4 GHz), as long as the number of reference
nodes is small. The PLE estimation phase can be repeated if
necessary, e.g., on a daily basis. Admittedly, it is also possible
to compute the WSN-specific PLE in unknown nodes instead
of reference nodes if the reference nodes send the required data
directly to the unknown nodes. This seems to be a potential
option for implementation.

7. Performance Evaluation of PLE Estimation Techniques

The adaptive RSSI-based ranging algorithm was analyzed by
using MATLAB [33]. To evaluate the performance of the adap-
tive RSSI-based ranging algorithm, we analyze and compare
the ranging errors when we use different PLE estimation tech-
niques, described in the previous section. The ranging errors
analyzed here were computed for the transmit power level PTX2.

The quality of RSSI-based ranging was evaluated by analyz-
ing the ranging accuracy and the precision. The average and
standard deviation of the ranging error can be evaluated, e.g.,
by computing the mean absolute error (MAE), mean relative
error (MRE), standard deviation of absolute error (SDAE), and
standard deviation of relative error (SDRE) as follows:

MAE =
1
n

n∑

i=1

∣∣∣d̂i − di

∣∣∣ , MRE =
1
n

n∑

i=1

∣∣∣∣∣∣
d̂i − di

di

∣∣∣∣∣∣ , (16)

Combination # Nodes Combination # Nodes
1 {1, 2, 3} 6 {1, 4, 5}
2 {1, 2, 4} 7 {2, 3, 4}
3 {1, 2, 5} 8 {2, 3, 5}
4 {1, 3, 4} 9 {2, 4, 5}
5 {1, 3, 5} 10 {3, 4, 5}

Table 6: Reference node combinations.

S DAE/S DRE =

√√
1
n

n∑

i=1

(ei − ē)2, (17)

where n is the number of 1 h samples i for a two-way link during
the measurement period (7 days), d̂i is the distance estimate, di

is the true distance, ei is the ranging error (absolute or relative)
of sample i, and ē is the average error (absolute or relative) of
the samples. The links were classified based on the inter-node
distances as short (15–30 m), medium (40–55 m), and long
(65–95 m) links. The average MAE/MRE and SDAE/SDRE
were computed for each class, and for the unknown (excluding
the reference links) and all the links. This procedure was con-
ducted for each 3-combination of the reference nodes (k = 3)
from a set of 5 nodes (n = 5), i.e., for

(
n
k

)
= 10 combina-

tions, shown in Table 6. As a result, the final MAE/MRE and
SDAE/SDRE values used in the evaluation were computed by
averaging over the mean values of these 10 combinations. First,
we analyze the results of the different averaging, LSE, and opti-
mization techniques for the PLE separately. Then, we compare
them with each other.

7.1. PLE Averaging

The results presenting the relative and absolute ranging er-
rors of the different PLE averaging techniques can be found in
Table 7. As can be seen, in this scenario, weighted mean PLE
1 (1B) is the best technique for nearly every class. Similarly,
the second best technique for every class is the weighted mean
PLE 2 (1C). This indicates that it is sensible to use the weighted
mean instead of the simple arithmetic mean (1A), preferable by
weighting the PLEs in the order of magnitude. The only excep-
tion is the MRE/MAE for long links, in which case the simple
mean produces the smallest ranging error. One possible expla-
nation for this might be that the PLEs of the long links are, in
this case, mostly smaller than those of the shorter ones. If the
bigger PLEs are emphasized more in estimating the PLE, then
the difference between the long links’ PLEs and the estimated
PLE increases more than compared to the mean PLE. Further,
the PLE error is emphasized for longer distances. With all the
techniques, the SDRE is smallest for the long links, while the
MRE/MAE is smallest for the short links.

7.2. Least-squares Estimation

The results presenting the relative and absolute ranging errors
of the different PLE least-squares estimation techniques can be
found in Table 8. As can be seen, in this scenario, weighted LSE
PLE 1 (2B) is the best technique for nearly every class. The
only exception is the MRE/MAE of the long links, in which
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PLE Estimation Technique Mean Mean Mean Mean Mean SD SD SD SD SD
Short links = 15–30 m Short Medium Long Unk. All Short Medium Long Unk. All
Medium links = 40–55 m links links links links links links links links links links
Long links = 65–95 m (4) (3) (3) (7) (10) (4) (3) (3) (7) (10)

1A) Mean PLE
Relative ranging error [×d] 0.224 0.319 0.291 0.309 0.273 0.055 0.060 0.028 0.051 0.049
Absolute ranging error [m] 5.35 15.85 23.69 15.75 14.00 1.34 2.92 2.18 2.14 2.06

1B) Weighted Mean PLE 1
Relative ranging error [×d] 0.180 0.281 0.346 0.292 0.260 0.050 0.054 0.025 0.046 0.044
Absolute ranging error [m] 4.24 13.65 27.96 15.76 14.18 1.22 2.61 1.95 1.93 1.86

1C) Weighted Mean PLE 2
Relative ranging error [×d] 0.208 0.310 0.310 0.300 0.269 0.054 0.058 0.027 0.050 0.047
Absolute ranging error [m] 4.92 15.28 25.12 15.68 14.09 1.31 2.83 2.11 2.08 2.01

Table 7: Average ranging errors of PLE averaging techniques based on all the reference nodes’ 3-combinations (10). A measurement period of one week (July
21–27, 2014).

PLE Estimation Technique Mean Mean Mean Mean Mean SD SD SD SD SD
Short links = 15–30 m Short Medium Long Unk. All Short Medium Long Unk. All
Medium links = 40–55 m links links links links links links links links links links
Long links = 65–95 m (4) (3) (3) (7) (10) (4) (3) (3) (7) (10)

2A) LSE PLE
Relative ranging error [×d] 0.252 0.346 0.273 0.327 0.286 0.058 0.063 0.030 0.053 0.051
Absolute ranging error [m] 6.03 17.25 22.25 16.22 14.26 1.40 3.06 2.28 2.24 2.16

2B) Weighted LSE PLE 1
Relative ranging error [×d] 0.198 0.296 0.330 0.303 0.267 0.052 0.056 0.026 0.048 0.045
Absolute ranging error [m] 4.68 14.47 26.69 16.02 14.22 1.26 2.71 2.03 2.00 1.92

2C) Weighted LSE PLE 2
Relative ranging error [×d] 0.215 0.317 0.308 0.306 0.273 0.055 0.059 0.028 0.050 0.048
Absolute ranging error [m] 5.09 15.64 24.93 15.90 14.21 1.32 2.86 2.14 2.10 2.03

Table 8: Average ranging errors of LSE techniques based on all the reference nodes’ 3-combinations (10). A measurement period of one week (July 21–27, 2014).

case the simple LSE PLE (2A) produces the smallest ranging
error, probably due to the same reason as explained above. The
second best technique for every class is the weighted LSE PLE
2 (2C). For the LSE technique, too, it seems that using weighted
LSE, especially LSE PLE 1 (2B), yields a smaller ranging error
than simple LSE (2A) in general. With all the techniques, the
SDRE is smallest for the long links, while the MRE/MAE is
smallest for the short links.

7.3. PLE Optimization
The results for the relative and absolute ranging errors of the

PLE optimization techniques can be found in Table 9. We com-
pare SSE Minimization 1 (3A) with SSE Minimization 2 (3B),
which is computed the same way by using all the links, not
just the reference links. As can be seen, the SSE Minimization
2 technique outperforms the SSE Minimization 1 technique,
which was presumable. However, SSE Minimization 1 is better
for long links. The ranging errors for the different length links
are in line with the previous techniques.

7.4. Comparison between Techniques
We chose the best PLE averaging (1B) and least-squares esti-

mation (2B) techniques and compared them with the SSE Min-
imization 1 (3A) and SSE Minimization 2 (3B) techniques. The

results are shown in Table 9. As can be seen, in this sce-
nario, the best technique altogether is weighted mean PLE 1
(1B) (apart from 3B). It yields the smallest ranging error for
every class except the MRE/MAE for long links, in which case
weighted LSE PLE 1 (2B) is the best. They both outperform
the SSE Minimization 1 (3A) technique in nearly every case.
Weighting the bigger PLEs more seems to result in better out-
comes in general, for the averaging and LSE methods. This
illustrates that optimizing the PLE based on the reference links
does not necessarily result in the best outcome for unknown
links, particularly if their PLEs differ considerably from those
of the reference links. The results of the techniques are actu-
ally quite close to the baseline, SSE Minimization 2 (3B). This
manifests the challenges of using a single PLE in ranging.

Although the MRE/MAE and SDRE/SDAE values averaged
over the links and combinations give a good idea of the per-
formance of the techniques in general, they do not tell any-
thing about how the error is distributed between different links
and reference node combinations. Therefore, we computed the
MRE and SDRE values for each link and reference node com-
bination separately. They are depicted in Figure 8 and Figure 9,
respectively. As can be seen, the MRE and the SDRE vary
quite heavily between the links. One link in particular (3 − 5)
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PLE Estimation Technique Mean Mean Mean Mean Mean SD SD SD SD SD
Short links = 15–30 m Short Medium Long Unk. All Short Medium Long Unk. All
Medium links = 40–55 m links links links links links links links links links links
Long links = 65–95 m (4) (3) (3) (7) (10) (4) (3) (3) (7) (10)

1B) Weighted Mean PLE 1
Relative ranging error [×d] 0.180 0.281 0.346 0.292 0.260 0.050 0.054 0.025 0.046 0.044
Absolute ranging error [m] 4.24 13.65 27.96 15.76 14.18 1.22 2.61 1.95 1.93 1.86

2B) Weighted LSE PLE 1
Relative ranging error [×d] 0.198 0.296 0.330 0.303 0.267 0.052 0.056 0.026 0.048 0.045
Absolute ranging error [m] 4.68 14.47 26.69 16.02 14.22 1.26 2.71 2.03 2.00 1.92

3A) SSE Minimization 1
Relative ranging error [×d] 0.196 0.298 0.334 0.306 0.268 0.052 0.055 0.026 0.048 0.045
Absolute ranging error [m] 4.64 14.56 27.03 16.18 14.33 1.25 2.69 2.01 1.99 1.91

3B) SSE Minimization 2
Relative ranging error [×d] 0.125 0.243 0.382 0.237 0.237 0.047 0.050 0.024 0.042 0.041
Absolute ranging error [m] 2.83 11.63 30.77 13.84 13.85 1.14 2.41 1.81 1.76 1.72

Table 9: Average ranging errors of PLE estimation techniques based on all the reference nodes’ 3-combinations (10). A measurement period of one week (July
21–27, 2014).
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Figure 8: MRE of the links vs. reference node combinations (see Table 6) using the PLE estimation technique (a) Weighted Mean PLE 1, (b) Weighted LSE PLE 1,
(c) SSE Minimization 1. A measurement period of one week (July 21–27, 2014).
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Figure 9: SDRE of the links vs. reference node combinations (see Table 6) using the PLE estimation technique (a) Weighted Mean PLE 1, (b) Weighted LSE PLE
1, (c) SSE Minimization 1. A measurement period of one week (July 21–27, 2014).

clearly has a bigger MRE than the others in most cases. Further-
more, the MRE and the SDRE vary depending on the reference
nodes. In the figures, we can clearly identify two or three bad
reference node combinations that appear as high peaks. These
are combinations 3 = {1, 2, 5}, 6 = {1, 4, 5}, and 9 = {2, 4, 5}.
The results indicate that link and reference node selection play

an important role in ranging and location accuracy. The dif-
ferences between the PLE estimation techniques, however, are
quite marginal.

In conclusion, the ranging accuracy of the analyzed PLE es-
timation techniques is reasonable, on average, but varies con-
siderably depending on the link. In any case, use of a single
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WSN-specific PLE will not result in highly accurate ranging
due to the inherent variation of PLEs between links, not even in
a small geographic area as in our case where the links are in the
same direction.

8. Discussion

Our findings demonstrate the negative effects of PLE es-
timation error and temperature change on RSSI-based rang-
ing. Clearly, there is a need for some kind of error mitiga-
tion techniques. This paper aimed to find a cost-effective so-
lution to the given problem. The proposed adaptive method
is relatively low-cost and simple, and it can be implemented
in resource-constrained sensor nodes. The algorithm integrates
link RSSI estimation, temperature compensation, and PLE es-
timation techniques with inter-node distance estimation to im-
prove the range quality.

The results of this study indicate that employing the most
appropriate channels relative to the ranging for each link re-
duces the inter-link PLE variation compared to the use of a sin-
gle fixed channel. Consequently, the ranging error is reduced.
Taking the weighted mean of the best RSSI values for each link
at a particular time seems to be a sensible choice. Choosing
the maximum RSSI also results in comparable outcomes, but it
is less robust. These findings suggest that an appropriate link-
RSSI estimation should be included as a part of RSSI-based
ranging.

Another important finding was that the positive effect of tem-
perature compensation on ranging is clear. Temperature com-
pensation reduces the temporal RSSI variation, and therefore,
the intra-link PLE variation. This also results in a smaller vari-
ation in the ranging error. If the PLE is given, or computed
infrequently, temperature compensation is necessary to rang-
ing accuracy/precision. Alternatively, temperature compensa-
tion will not be necessary if the PLE is computed every time
when a node estimates distances. However, temperature com-
pensation is cost-effective and, therefore, the preferred option.

The differences between the PLE estimation techniques were
quite marginal, although one method was slightly better than
the others. Therefore, it is not that relevant to ranging accu-
racy which technique to use. In that case, the PLE estimation
technique should be selected mainly based on its computational
complexity. In contrast, the differences in the ranging accuracy
and precision were considerable depending on which link and
reference nodes were in question.

One interesting result is that the MRE of the short links is
the smallest. That results from the fact that the PLE error has
a lower impact on the ranging error for short distances, as was
shown previously (this is emphasized even more if the errors are
presented in meters). Therefore, it might be reasonable to fa-
vor shorter links in localization instead of longer ones for find-
ing the shortest paths between unknown and reference nodes.
Furthermore, in large WSNs or those with diverse propagation
environments, it might be sensible to divide the network into
smaller areas to apply the PLE estimation. This would reduce
the amount of communication and would probably result in bet-
ter PLE estimates.

Overall, the results are promising but show the challenges
related to RSSI-based ranging. If the inter-link PLE variation
is not considerable, WSN-specific PLE estimation yields bet-
ter results. However, if there are large deviations in the PLEs
between the links, the ranging errors could be considerable. Al-
though link RSSI estimation and temperature compensation can
mitigate ranging errors to a certain extent, these techniques can-
not remove the general problem that arises when a single WSN-
specific PLE is used in ranging in the presence of high inter-link
PLE variation. Furthermore, the reference links’ PLEs used
for computing the WSN-specific PLE may differ considerably
from those of unknown links. Therefore, alternative methods
are needed. One potential and interesting approach is to esti-
mate a specific PLE for each link with some technique. How-
ever, estimating link-specific PLEs for ranging cost-effectively
requires further studies and remains as future work.

9. Conclusion

This paper set out to improve RSSI-based ranging quality in
WSNs by adapting to changing outdoor conditions. We showed
the effects of path loss exponent estimation error and tempera-
ture change on RSSI-based ranging, and how to mitigate them
using adaptive techniques. Furthermore, we evaluated the pro-
posed adaptive RSSI-based ranging algorithm with different
PLE estimation techniques. The results indicate that although
adaptive techniques could reduce the ranging error, the accu-
racy achieved when a single PLE estimate is used varies con-
siderably depending on the link and the reference nodes due to
the high inter-link PLE variation. The results of this study are
particularly useful when employing RSSI-based ranging and lo-
calization for WSNs in outdoor conditions, but they can also be
applied on a larger scale.
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