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Abstract. Tensor decomposition has been widely employed for EEG signal 

processing in recent years. Constrained and regularized tensor decomposition 

often attains more meaningful and interpretable results. In this study, we ap-

plied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to 

ongoing EEG data under naturalistic music stimulus. Interesting temporal, spec-

tral and spatial components highly related with music features were extracted. 

We explored the ongoing EEG decomposition results and properties in a wide 

range of sparsity levels, and proposed a paradigm to select reasonable sparsity 

regularization parameters. The stability of interesting components extraction 

from fourteen subjects’ data was deeply analyzed. Our results demonstrate that 

appropriate sparsity regularization can increase the stability of interesting com-

ponents significantly and remove weak components at the same time. 

Keywords: Tensor Decomposition, Sparsity Regularization, Nonnegative Con-

straints, Ongoing EEG, Stability Analysis. 

1 Introduction 

In recent years, tensor decomposition [1] has gained more and more popularity for 

EEG data processing [2]. By time-frequency representation, multi-channel EEG data 

can be converted into a third-order (time × frequency × channel) tensor. In some EEG 

experiments, a seventh-order tensor may be generated potentially [2]. There are two 

basic tensor decomposition methods: CANDECOMP/PARAFAC decomposition and 

Tucker decomposition. But sometimes these basic decompositions on EEG data can’t 

guarantee meaningful factors. For example, the third-order EEG tensor mentioned 
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above is a nonnegative tensor essentially. The extracted temporal components should 

be energy series which are nonnegative. The spectral components should be spectra 

which are nonnegative and usually very sparse. The spatial components are topogra-

phies which are sometimes also sparse. Constrained and regularized tensor decompo-

sition can make the results meaningful and interpretable [1]. 

Nonnegativity is often achieved by constrained optimization methods. Nonnegative 

constrains can naturally give sparse results [3], but this sparsity is only a side effect 

and not controllable. 𝑙1-norm regularization is an effective and widely applied method 

to impose sparsity explicitly [4], and has been employed for sparse and nonnegative 

tensor decomposition [5-7]. But these works regarding sparse regularization in tensor 

decomposition [5-7] only tested a few groups of sparsity regularization parameters, 

and demonstrated that their model can successfully impose sparsity on factors. No 

work, as far as we know, had studied how the change of sparsity level affects the 

results of tensor decomposition and the physical meanings in real application.  

In this study, ongoing EEG tensor data under naturalistic modern tango music 

stimulus was analyzed. Sparse nonnegative CANDECOMP/PARAFAC decomposi-

tion was employed to extract groups of interesting components whose temporal com-

ponents are highly correlated with music features and whose spatial components have 

dipolar topographies. In order to reveal a clear picture of mathematical properties and 

components’ physical meanings for EEG at different sparsity level, we tested a large 

range of sparsity regularization parameters. We proposed a method to select reasona-

ble regularization parameters that can best balance the data fitting and sparsity. After 

careful analyses and comparison, we found that when sparsity regularization is im-

posed on tensor decomposition, the stability of interesting components was increased 

significantly. In our results, appropriate sparsity regularization can also remove weak 

components and weak elements on nonzero sparse components such as spectra. 

2 Sparse Nonnegative CANDECOMP/PARAFAC 

Decomposition 

2.1 Notation 

In this paper, a boldface lowercase letter, such as 𝒙, denotes a vector; a boldface up-

percase letter, such as 𝑿, denotes a matrix; and a boldface Euler script letter, such as 

𝓧, denotes a high order tensor. Operator ∘ denotes inner product of vectors, and ⟦ ⟧ 

denotes Kruskal operator. ‖∙‖𝐹  represents Frobenius norm, and ‖𝒙‖1  represents 𝑙1 -

norm of vector 𝒙. We call sparse nonnegative CANDECOMP/PARAFAC decomposi-

tion “sparse NCP” and the version without sparsity regularization “NCP” for short. 

2.2 Mathematical Model 

Given a tensor 𝓧 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁, sparse NCP is to solve the following minimization 

problem: 
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                     min
𝑨(1),⋯,𝑨(𝑁)

1

2
‖𝓧 − ⟦𝑨(1), ⋯ , 𝑨(𝑁)⟧‖

𝐹

2
+ ∑ 𝛽𝑛 ∑ ‖𝒂𝑗

(𝑛)
‖

1

𝐾
𝑗=1

𝑁
𝑛=1  (1) 

s.t. 𝑨(𝑛) ≥ 0  for 𝑛 = 1, ⋯ , 𝑁, 

where 𝑨(𝑛) ∈ ℝ𝐼𝑛×𝐾 for 𝑛 = 1, ⋯ , 𝑁, and 𝒂𝑗
(𝑛)

 represents the 𝑗th column of 𝑨(𝑛). 𝛽𝑛 

for 𝑛 = 1, ⋯ , 𝑁  are parameters of sparsity regularization items. 𝐾  is the selected 

rank-1 tensor number, and the estimated factors in Kruskal operator can be represent-

ed by sum of 𝐾 rank-1 tensors in outer product form: 

                                        ⟦𝑨(1), ⋯ , 𝑨(𝑁)⟧ = ∑ 𝒂𝑗
(1)

 ∘ ⋯ ∘ 𝒂𝑗
(𝑁)

 𝐾
𝑗=1  (2) 

2.3 Model solution 

Sparse NCP in (1) is a highly nonlinear and nonconvex model, which is non-trivial to 

solve and converge. Recently, Xu applied an efficient alternating proximal gradient 

(APG) method to solve nonnegative matrix and tensor decomposition [8]. Later, Xu 

extended APG method to solve nonnegative Tucker decomposition with 𝑙1 -norm 

sparsity regularizations [7]. Inspired by Xu’s works [7], we utilized the same updating 

method in block coordinate descend (BCD) framework to solve problem (1). 

Supposing 𝑨̂(𝑛) is an extrapolated point, 𝑮̂(𝑛) is the block-partial gradient at 𝑨̂(𝑛) 

and 𝐿(𝑛) is a Lipschitz constant, factor matrix 𝑨(𝑛) is updated by 

    𝑨(𝑛) ← argmin
𝑨(𝑛)≥0

[〈𝑮̂(𝑛), 𝑨(𝑛) − 𝑨̂(𝑛)〉 +
𝐿(𝑛) 

2
‖𝑨(𝑛) − 𝑨̂(𝑛)‖

𝐹

2
+ 𝛽𝑛 ∑ ‖𝒂𝑗

(𝑛)
‖

1

𝐾
𝑗=1 ] (3) 

which can be written in the closed form 

                                      𝑨(𝑛) ← max (0, 𝑨̂(𝑛) −
𝑮̂(𝑛)

𝐿(𝑛) 
−

𝛽𝑛𝟏𝐼𝑛×𝐾

𝐿(𝑛) 
)  (4) 

The detailed solution and convergent properties of APG can be found in [7, 8]. 

3 Materials and methods 

3.1 EEG data and music signal 

Data description. The data in this study is ongoing EEG of fourteen right-handed 

and healthy adults under continuous and naturalistic modern tango music stimulus. 

Short-time Fourier transform (STFT) was applied to the EEG data, and a third-order 

tensor of ongoing EEG was created for each subject with size of 510×146×64 on tem-

poral, spectral and spatial mode respectively. In this paper, we represent the estimated 

factors of the third-order EEG tensor as 𝑨(Temporal), 𝑨(Spectral) and 𝑨(Spatial). 

Acoustic features. Five long-term acoustic features, including two tonal features 

(Mode, Key Clarity) and three rhythmic features (Pulse Clarity, Fluctuation Centroid, 

Fluctuation Entropy), were extracted from the tango music [9]. STFT is also used for 

feature extraction and one acoustic feature temporal series contains 510 samples. 
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The detailed data collection experiment paradigm and data preprocessing proce-

dures can be found in [10, 11]. Detailed acoustic features can be found in [9]. 

3.2 Correlation Analysis 

According to previous studies [9, 10], we hypothesized that acoustic features (tonal 

and rhythmic components) could activate certain brain areas. We performed correla-

tion analyses (by Pearson’s correlation coefficient) between the time series of long-

term acoustic features and the time series of temporal components from EEG tensor 

decomposition to find stimulus-related activations. Monte Carlo method and permuta-

tion tests were employed to compute the threshold of correlation coefficient [9, 10]. In 

the results of EEG tensor decomposition, the temporal components significantly cor-

related (at level p < 0.05) with any of the five acoustic features, and their corre-

sponding spectral and spatial components are recorded for further investigations. 

3.3 Sparsity Parameter Selection 

When applying sparse NCP model to decompose EEG tensor, a key point is the selec-

tion of sparsity regularization parameters 𝛽𝑛  in model (1), which balance the data 

fitting and sparsity level. Data fitting at iteration 𝑘 is defined by 

                                             Fit𝑘 = 1 −
‖𝓧−⟦𝑨𝑘

(1)
,⋯,𝑨𝑘

(𝑁)
⟧‖

𝐹

‖𝓧‖𝐹
, (5) 

which is a measure of similarity of estimated factors to original data tensor. The spar-

sity level of estimated factor 𝑨𝑘
(𝑛)

 at iteration 𝑘 is defined by  

                                             Sparsity
𝑨𝑘

(𝑛) =
#{𝑨𝑘

(𝑛)
(𝑖,𝑗)<𝑇𝑠}

𝐼𝑛×𝐾
, (6) 

where #{∙} means the number of elements in factor 𝑨𝑘
(𝑛)

 that satisfy the assumption. 

Strictly speaking, the factor sparsity should be measured by the number of elements 

that equal to zero. But, in practice, it is better to select a small positive sparsity 

threshold 𝑇𝑠. In this study, we select 𝑇𝑠 = 1e − 6. 

In order to reveal a broad picture of data properties and results at different sparsity 

levels, we test a large range of sparsity regularization parameters of 𝛽𝑛s for sparse 

NCP. The procedures are shown in the following steps. 

Step 1. For the temporal and spatial factor, we select 𝛽temporal = 𝛽spatial = 𝑒𝝀1 

and 𝛽spectral = 𝑒𝝀2 . 𝝀1  and 𝝀2  contain 𝑁1  and 𝑁2  linearized number, then there will 

be 𝑁1 × 𝑁2 different groups of parameters combination [𝛽temporal, 𝛽spectral, 𝛽spacial].  

Step 2. Using each group of parameters, we run sparse NCP 10 times, and record 

the average nonzero components number of spectral factor, the average fitting value 

using (5), and the average sparsity level of spectral factor using (6). Because the spec-

tral components are usually very sparse, we just consider the spectral factor.  
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Step 3. Reorder all of groups of results based on spectral factor sparsity level in as-

cend order with in [0,1], and generate the ‘Fit-Sparsity’ curve which reveal the fitting 

change at different spectral sparsity value.  

Step 4. According to the ‘Fit-Sparsity’ curve, identify the maximum effective spar-

sity level based on the relative fitting change (slope) defined as 

                                     slope =
∆Fit

∆Sparsity
=

Fit(Sparsity1)−Fit(Spasity2)

Sparsity1−Sparsity2
. (7) 

When the slope at some sparsity point is very close to 0.5, the sparsity value and its 

corresponding sparsity parameters group 𝛽𝑛s are selected. We assume that the slope 

should not be less than −0.5, because after that the fitting value become poor dramat-

ically and the tensor decomposition results may be not accurate. 

3.4 Stability Analysis 

By correlation analysis introduce in section 3.3, we can find the interesting compo-

nents which are assumed to be stimulus-related activations. Tensor decomposition 

models of NCP with and without sparsity regularization are evaluated respectively. 

We evaluate the stability of these components using the following steps.  

Step 1. Run model 5 times for one subject’s EEG tensor, and record those groups 

of temporal, spectral and spatial components whose temporal courses are highly cor-

related with any of five music features. Keep those groups of components whose to-

pographies (spatial components) are dipolar as templates [10]. One group components 

of template can be represented by a rank-1 tensor of inner production of components: 

𝓣 = 𝒕(Temporal) ∘ 𝒕(Spectral) ∘ 𝒕(Spatial) 

Step 2. According to (2), after the tensor decomposition, 𝐾 rank-1 tensors in outer 

product form will be obtained. Supposing it is the 𝑟th time decomposition, the corre-

lation coefficient of the 𝑗th rank-1 tensor and the template is  

𝜌(𝑗, 𝑟) = corr (𝒂𝑗
(Temporal)

, 𝒕
(Tempral)

) × corr (𝒂𝑗
(Spectral)

, 𝒕
(Spectral)

) 

                         × corr (𝒂𝑗
(Spatial)

, 𝒕
(Spatial)

) (8) 

where corr(∙,∙) is the calculation of Pearson’s correlation coefficient, 𝑗 = 1, ⋯ , 𝐾 and 

𝜌(𝑗, 𝑟) ∈ [0,1]. Then, calculate the maximum correlation coefficient of the 𝐾 rank-1 

tensors with the template: 

                                                      𝛲(𝑟) = max
𝑗=1,⋯,𝐾

𝜌(𝑗, 𝑟) (9) 

Step 3. Run sparse NCP 100 times, and record all 𝛲(𝑟), 𝑟 = 1, ⋯ ,100. Make a 

histogram of the 100 𝛲(𝑟) values. Because 𝛲(𝑟) ∈ [0,1], the number of times within 

[0.95,1]  are recorded as stability measurement criterion for further analysis. The 

higher this criterion number is, the more stable sparse NCP performs. 

Step 4. Within the 5 times runs in Step 1 many groups of templates that have very 

similar temporal, spectral and spatial components will be found. The highest criterion 

number of these templates after 100 times test will be kept. 
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4 Experiments and Results 

4.1 Tensor Decomposition Implementation 

Factor Initialization. All the factors are initialized using normally distributed rand 

numbers as in [8]. 

Stop Criteria. We stop the iteration during tensor decomposition by criterion of 

relative residual change (fit change) according to (5), when the following condition 

between two iterations are satisfied: 

                                                    𝑇stop = |Fit𝑘 − Fit𝑘+1| < ϵ, (10) 

where, ϵ = 1e − 6 in this study. 

Model Order Selection (MOS). Before decompose each participant’s EEG tensor, 

we should determine the initial components number for model (1). A simple and con-

venient way is employed in this study. We make spatial mode unfolding of the third-

order EEG tensor yielding a 64×74460 matrix where temporal and spectral modes are 

merged. Then we perform PCA along spatial mode on this matrix and records the 

principal components number that give 99% explained variance for each subject’s 

EEG tensor. The MOS for 14 subjects’ EEG tensor are listed in Table 1. 

Table 1. Model order selection of 14 participants’ EEG tensor 

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Model Order 37 44 52 34 38 34 51 38 45 31 57 40 53 43 

4.2 Sparsity Regularization Parameters 

For the temporal and spatial factor, we select 𝛽temporal = 𝛽spatial = 𝑒𝝀1, where vector 

𝝀1 = [−𝐼𝑛𝑓, −5: 0.2: 0]  in MATLAB format; for the spectral factor, we select 

𝛽spectral = 𝑒𝝀2 , where 𝝀2 = [−𝐼𝑛𝑓, −5: 0.2: 1]. The linear ranges of 𝝀1  and 𝝀2  are 

selected by try and error method, and be changed slightly for different data. In our 

EEG data test, we found that using exponential form of a linearized vector parame-

ters, the spectral factor sparsity level are approximately uniformly distributed within 

[0,1], which helps to analyze the fitting change at different sparsity levels. Vector 𝝀1 

contains 27 numbers, and 𝝀2 contains 32 numbers, so there will be 27×32=864 groups 

of parameters. We expect to add strong sparsity parameters on spectral factor and 

weak sparsity parameters on temporal and spatial factors. All groups of parameters 

with 𝝀1 > 𝝀2 are removed, and finally, 509 groups are kept for test. 

Each of the 509 parameter groups are tested 10 times on sparse NCP, and the aver-

age nonzero components number of spectral factor, tensor fitting value, and sparsity 

level of spectral factor are recorded. Fig. 1. shows the results of subject #1’s tensor 

data after all the steps in Section 3.4. From Fig. 1. (a) we can find that, when we add 

more sparsity to spectral factor, some components become zeros which are weak sig-

nal components. Fig. 1. (b) shows the tensor decomposition fitting changes at 
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Fig. 1. Sparsity regularization parameters selection for subject #1 

Table 2. Results of sparsity regularization parameters selection 

Subject 
Identified 

Sparsity 

Nonzero 

Comps 

Fitting 

Value 
[𝑒𝝀1 , 𝑒𝝀2 , 𝑒𝝀1] [𝝀1, 𝝀2, 𝝀1] 

#1 0.85 20.4 0.6667 [0.0608,1.2214,0.0608] [-2.8,0.2,-2.8] 

#2 0.87 28.5 0.6991 [0.0123,0.3012,0.0123] [-4.4,-1.2,-4.4] 

#3 0.86 42.5 0.6726 [0.0000,2.7183,0.0000] [-Inf,1.0,-Inf] 

#4 0.84 28.7 0.7683 [0.0183,0.2466,0.0183] [-4.0,-1.4,-4.0] 

#5 0.90 18.4 0.7241 [0.0150,0.1653,0.0150] [-4.2,-1.8,-4.2] 

#6 0.86 17.4 0.8084 [0.0123,0.0907,0.0123] [-4.4,-2.4,-4.4] 

#7 0.90 31.8 0.8095 [0.0067,0.1353,0.0067] [-5.0,-2.0,-5.0] 

#8 0.89 24.5 0.6870 [0.0183,1.8221,0.0183] [-4.0,0.6,-4.0] 

#9 0.88 28.8 0.6811 [0.0334,0.3679,0.0334] [-3.4,-1.0,-3.4] 

#10 0.88 19.5 0.7435 [0.0498,0.6703,0.0498] [-3.0,-0.4,-3.0] 

#11 0.93 37.2 0.7188 [0.0498,0.4493,0.0498] [-3.0,-0.8,-3.0] 

#12 0.90 19.8 0.7110 [0.0150,1.4918,0.0150] [-4.2,0.4,-4.2] 

#13 0.92 33.4 0.6992 [0.0224,0.2466,0.0224] [-3.8,-1.4,-3.8] 

#14 0.90 20.4 0.6899 [0.0123,0.6703,0.0123] [-4.4,-0.4,-4.4] 
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different spectral factor sparsity levels. When sparsity increases, fitting value decreas-

es gradually, because some weak components are removed. But after some sparsity 

point, the fitting value drops dramatically. In order to find this point, we smooth the 

fitting curve in (b) by low-pass filter, as is shown in (c). Then, we compute the slope 

according to equation (7), as is shown in (d). Based on curve (d), the largest sparsity 

level value 0.85 before slope −0.5 is selected. Then we search in all groups of sparsi-

ty regularization parameters and find the group [𝝀1, 𝝀2, 𝝀1] = [−2.8,0.2, −2.8] can attain 

the sparsity level 0.85 best. All subjects’ results are shown in Table 2. 

4.3 Sparsity and Stability Comparison 

From Table 2 we identified the sparsity regularization parameters group 

[𝛽temporal, 𝛽spectral, 𝛽spacial] = [𝑒𝝀1 , 𝑒𝝀2 , 𝑒𝝀1]  for each subject’s tensor data, using 

which we run tensor decomposition model (1). In order to make a comparison, we 

also test the original NCP without any sparsity regularizations by setting 

[𝛽temporal, 𝛽spectral, 𝛽spacial] = [0,0,0]. 

Fig 2 shows two templates of subject #1 whose temporal components are both cor-

related with fluctuation centroid music feature series. One template has sparsity regu-

larization imposed, while another doesn’t. The histograms of stability analyses are 

also included. The template in Fig 2 (a) was selected from the 5th run of NCP and the 

14th rank-1 components, and has the highest stability measurement number (the num-

ber between [0.95,1]  on histogram) than other similar templates in the 5 runs. 
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(a) No sparsity regularization 
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(b) Sparsity regularization imposed 

Fig. 2. Fluctuation centroid templates and their stability analysis from subject #1 
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The template in Fig 2 (b) was selected from the 5th run of sparse NCP and the 23th 

rank-1 components. All of the results for 14 subjects are summarized in Table 3 with 

selected templates and stability analyses. The selected pairs of templates for compari-

son had very similar topographies and spectra, and appeared in both situations with 

and without sparsity imposed on spectral components. 

Comparing the histograms in Fig 2 (a) and (b), we found that, with sparsity regu-

larization the stabilities of selected templates components have obvious increases. 

Table 3 further demonstrated that, for most of the subjects, when sparsity regulariza-

tion is imposed on NCP for EEG data, the stability of extracting interesting compo-

nents highly correlated with some certain music features are improved significantly. 

From Fig 1 (a) we observed that when high sparsity regularization is imposed on 

spectral factor, more components of full zeros appear. This is a general phenomenon 

for all subjects according to the nonzero components number in Table 2 and initial 

model orders in Table 1. By carefully observing the spectrum in Fig 2 (b) compared 

to that in (a), we also find that small elements are suppressed when sparsity regulari-

zation is imposed. We believe adding sparsity regularization not only can remove 

weak components but also help to suppress weak information on nonzero components 

for nonnegative tensor decomposition. 

5 Conclusion 

In this study, we applied sparse nonnegative CANDECOMP/PARAFAC decomposi-

tion to ongoing EEG tensor data collected under naturalistic music stimulus. Interest-

Table 3. Stability analyses of sparsity regularization for all subjects 

Subject 
Music 

Feature 

No Sparsity Regularization With Sparsity Regularization 

Template Index Stability Template Index Stability 

#1 
PulseClarity [Run#5, Comp#14] 42% [Run#5, Comp#23] 74% 

FlucCentroid [Run#2, Comp#12] 31% [Run#3, Comp#34] 46% 

#4 FlucCentroid [Run#3, Comp#9] 86% [Run#1, Comp#24] 97% 

#7 Key [Run#1, Comp#21] 57% [Run#2, Comp#30] 63% 

#8 

Mode [Run#4, Comp#35] 29% [Run#1, Comp#33] 60% 

Mode [Run#5, Comp#3] 16% [Run#3, Comp#15] 68% 

Key [Run#2, Comp#37] 17% [Run#1, Comp#22] 57% 

#9 Mode [Run#3, Comp#37] 10% [Run#4, Comp#23] 54% 

#10 
PulseClarity [Run#4, Comp#27] 48% [Run#2, Comp#25] 49% 

Key [Run#4, Comp#1] 57% [Run#2, Comp#20] 51% 

#11 
FlucCentroid [Run#5, Comp#55] 14% [Run#3, Comp#40] 55% 

Mode [Run#3, Comp#1] 73% [Run#1, Comp#56] 48% 

#13 

FlucEntropy [Run#2, Comp#17] 29% [Run#1, Comp#34] 58% 

FlucCentroid [Run#1, Comp#5] 16% [Run#5, Comp#52] 37% 

Key [Run#3, Comp#51] 30% [Run#2, Comp#20] 72% 

Note: The stability is measured by number of maximum correlation coefficient within 
[0.95, 1] . But there are two exceptions of “#11-FlucCentroid” and “#13-FlucCentroid”, 

which are measured within [0.9, 0.95], because no significant value appear within [0.95, 1]. 
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ing temporal components correlated music features and corresponding spectral and 

spatial components are extracted. Mathematical properties and physical meanings of 

the decomposition with sparsity regularization are deeply analyzed in a large range of 

sparsity levels. We proposed a method to select reasonable sparsity regularization 

parameters based on the derivative of fitting-sparsity curve. It can be concluded from 

our results that appropriate sparsity regularization on tensor decomposition can im-

prove the stability of interesting components and suppress weak signals. 
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