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Abstract 

The inadequate control of sample sizes in surveys using stratified sampling and area 

estimation may occur when the overall sample size is small or auxiliary information is 

insufficiently used. Very small sample sizes are possible for some areas. The proposed 

allocation based on multi-objective optimization uses a small-area model and estimation 

method, and semi-annually collected empirical data. The assessment of its performance at the 

area and population levels is based on design-based sample simulations, and five previously 

developed allocations serve as references. The model-based estimator is more accurate than the 

design-based Horvitz-Thompson estimator and model-assisted regression estimator. Two trade-

off issues are between accuracy and bias and between the area- and population-level qualities 

of estimates. If the survey uses model-based estimation, the sampling design should incorporate 

the underlying model and the estimation method. 

Key words: Auxiliary and proxy data, model-based EBLUP, performance, multi-objective 

optimization, trade-off between areas and population. 
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1. Introduction 

Sample surveys provide estimates of the various parameters not only for the population of 

interest, but also for subpopulations, referred to as “areas” here. Stratified sampling is a 

common design, where strata and areas coincide. How are area sample sizes controlled to 

provide satisfactory area and population estimates? The small overall sample size or an 

insufficient use of auxiliary information may lead to the fact that the areas are not defined at 

the planning stage of the survey. The consequence is that the area sample sizes cannot be 

controlled. Nonresponse as one cause of randomness is beyond the scope of the study. The lack 

of control can lead to small or even to null sample sizes for some areas. They are regarded as 

small, because the area-specific samples are small enough to hinder direct estimates of adequate 

precision (Rao and Molina, 2015). Various model-assisted or model-based small-area 

estimation techniques, which are hard to implement, have been designed to solve this problem 

(Pfeffermann, 2013). The World Bank uses the software PovMap for producing business 

statistics. Burgard, Münnich, and Zimmermann (2014) have used various estimators and 

studied the performances of small-area point and accuracy estimates under different sampling 

designs. 

We estimate the area and population totals of the variable of interest under different sampling 

designs. The variable measures some quantity in business. Because the overall sample size is 

small and the population contains small areas, model-based estimation yields moderately 

accurate area estimates. The “borrowing strength” principle implies that sample information 

provides a higher estimation power for small areas. Two auxiliary variables correlated with the 

variable of interest serve as predictors. The selected model contains area-specific effects, 

because the variable of interest is likely to vary from one area to another. We shall compare the 

main estimation method, which is model-based, to the design-based Horvitz-Thompson 

estimator and to the model-assisted regression estimator, on the basis of model-free allocations. 

The model-based estimators have lower variances, but may be biased. The design-based 

estimators are design-unbiased, but their variances are large for small areas with small sample 

size. The second motivation for using these three estimators is to clarify the trade-off between 

accuracy and bias. 

Our allocation method, called “three-term Pareto method”, also uses the model and the 

estimation method as auxiliary information at the planning stage. It is based on multiobjective 

optimization, the model-based empirical best linear unbiased predictor (EBLUP) estimator for 

obtaining the area and population total estimates of the variable of interest, and the mean 

squared error estimator. We shall compare this method with five reference methods displaying 

various optimization criteria and using auxiliary information. The method called “Molefe and 

Clark”, also uses an area model. We introduce model-related allocations in section 2 and four 

model-free allocations in Section 3: “Equal,” “Costa,” “nonlinear programming,” and modified 

“box-constraint”. A fixed, small overall sample size is a common restriction. We present 

additional numerical details related to some allocations in section 4.2. 

We simulate the allocation-specific random samples from a population containing real 

register data, by using stratified simple random sampling without replacement. Because the 

variable of interest is unknown and the between-area variation of each auxiliary variable in the 

population is too small to support allocation, the allocation-specific sampling design, except for 

equal allocation, is based on previous register data, called “proxy data”. 

The relative root mean square error and the absolute relative bias measure the accuracy and 

the bias of an estimator in design-based simulations. They are sample-based approximations of 

the design mean squared error and of the design bias. The primary measure is the relative root 

mean square error, but we also compute the absolute relative bias for design-based estimates. 

The area-specific relative biases reflect the validity of the model in each area. There is a trade-
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off between the quality of area estimates and the quality of population estimate; and a second 

trade-off between accuracy and bias. 

The results support the sampling strategy, in which not only auxiliary information, but also 

the model and the estimation method should be fixed early, in the design phase of the survey. 

The proposed allocation uses all information available before choosing the allocation method, 

avoiding fixed priorities for the importance of estimation at the area and the population levels. 

2. Model-related allocations 

In the model-based estimation, the area parameter and often the population parameter estimates 

result from the statistical model and from the chosen estimator. The proposed allocation (section 

2.2) is based on the model and the estimator introduced in section 2.1 and on auxiliary 

information. Keto and Pahkinen (2010) have used this model and this estimator to describe the 

relationships between area and sample sizes, estimation results, and area characteristics. One 

reference allocation (section 2.3) is based on a different area model and on a composite 

estimator, and uses auxiliary information. These two allocations are “model-related 

allocations”. Table 1 shows the summary details of these allocations. 

2.1. Model and model-based area total estimator 

The area total estimator of the variable of interest is based on the linear mixed model (Battese, 

Harter, and Fuller, 1988): 

DdNkevβxy ddkddkdk   1,...,  ;   1,...,  ;   ,   (1) 

where dkx  is the vector of auxiliary information for unit k in area d, D is the total number of 

areas, dN  is the size (number of units) of area d,   is the vector of fixed regression para-

meters, the area-specific effects dv   are distributed as 2(0, )vN  , independently of the random 

errors dke , which are distributed as 2(0, )eN  . The first value of the vector dkx  is one, and the 

vector   contains the intercept term 
0 . Eq. (1) is applicable when unit-level values are 

available for the variables x. 

The expected value for the unit k in area d is βxyE dkdk
)( , and the total variance 

22)( evdkyV         (2) 

is decomposed into the variance 
2

v  between areas and the variance 
2

e  within areas. The 

common intra-area correlation (Meza and Lahiri, 2005) 

22

2

ev

v







      (3) 

measures the relative variation of the variable of interest between the areas. 

Before the area parameters, we estimate the model parameters and the area effects from the 

sample data. We denote 2ˆ
v  and 2ˆ

e  the estimated variance components, and ˆ
dv  the EBLUP 

area effects. The estimate ̂  of   is obtained using the generalized least-squares method. 

The EBLUP estimator for the area total dY  is the sum of dn  sampled y-values and the sum 

of predicted y-values for ( dd nN  ) non-sampled units: 
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ddd
sk

dk
sk

dk
sk

dk
sk

dkd vnNxyyyY
dddd

ˆ)(ˆˆ
Eblup,  



 ,  (4) 

where ds  and ds  denote the sampled and the non-sampled units, and the vectors dkx  and   are 

defined as in Eq. (1). The design mean squared error for the estimator in Eq. (4) 

2

Eblup,Eblup,

2

Eblup,Eblup, ))ˆ(()ˆ()ˆ()ˆ( MSE dddddd YYEYVYYEY  .  (5) 

is the sum of the variance and the squared bias. The Prasad-Rao prediction mean squared error 

estimator (Rao and Molina, 2015) for finite populations is 

2 2 2 2 2 2 2 2

,Eblup 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmse( ) ( , ) ( , ) 2 ( , ) ( , )d d v e d v e d v e d v eY g g g g            (6) 

where the terms dg1 , dg2 , dg3 , and dg4  are functions of the variance components 

2 2 2 2

1
ˆˆ ˆ ˆ( , ) ( ) (1 )d v e d d d vg N n      , 

2 2 2 * 1 1 *

2
ˆˆ ˆˆ ˆ( , ) ( ) ( ) ( ) ( )d v e d d d d d d d dg N n x x X V X x x         , 

2 2 2 2 2 2 1 3 4 2 4 2

3

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ( ) ) ( V( ) V( )

ˆ ˆ ˆ ˆ2 Cov( , ))

d v e d d d v e d e v v e

e v e v

g N n n n       

   

     


, 

2 2 2

4
ˆ ˆ ˆ( , ) ( )d v e d d eg N n    .    (7) 

The terms dg1  and dg 2  include the shrinkage factor 

2 2 2 1 1ˆ ˆ ˆ ˆ( )d v v e dn       .     (8) 

The matrix X contains the sampled values of the auxiliary variables, and the vectors dx  and 
*

dx  

contain the area-specific means for the sampled and the non-sampled x-values. The variance-

covariance matrix V = V(y) has a block diagonal form, with the blocks dV  defined as (Meza and 

Lahiri, 2005): 

(1 )
d dd n nV I J    ,      (9) 

where ρ is defined in Eq. (3), 
dnI  is the d dn n  identity matrix, and 

dnJ  is the d dn n  matrix, 

whose all entries are equal to 1. The term dg3  contains the asymptotic variances 2ˆV( )v  and 

2ˆV( )e , and the asymptotic covariance 2 2ˆ ˆCov( , )e v  . If these parameters are estimated by 

restricted maximum likelihood, the estimator in Eq. (6) is approximately unbiased (Nissinen, 

2009). The area-specific mean squared error estimates are obtained when the variance 

parameter estimates are inserted into Eq. (7). 

Nissinen (2009) states that the term dg1  contributes for 85–90% of the estimated mean 

squared error, that the proportion of dg4  is seldom over 1%, that the proportion of dg2  is 

between 4 and 6%, and that the proportion of dg3  is between 6 and 10%. We obtained similar 

percentages in our simulations. The high proportion of dg1  indicates that the variation in the 

area estimates is mostly related to the uncertainty about the area effects (Nissinen, 2009). 

The proposed allocation in Eq. (17) uses three terms of the mean squared error estimator in 

Eq. (6). The term dg2  is excluded because of its small proportion of the estimated mean squared 
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error and because it involves complex matrix operations and auxiliary variables, whose values 

depend on the sample. 

2.2. Model-based three-term Pareto method allocation using multiobjective optimization 

A sample allocation is often based on the solution of an optimization problem subject to given 

restrictions. It is related to the sample design and to the variance, mean squared error, and the 

coefficient of variation of the estimator. 

Our allocation uses the approximation of the mean squared error (amse) in Eq. (6): 

2 2 2 2 2 2

,Eblup 1 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆamse( ) ( , ) 2 ( , ) ( , )d d v e d v e d v eY g g g         

2 2ˆ ˆ( ) (1 )d d d vN n      
2 2 2 2 1 3 4 2 4 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2( ) ( ) ( ( ) ) ( V( ) V( ) 2 Cov( , ))d d d v e d e v v e e v e vN n n n                 

2ˆ( )d d eN n   . (10) 

Eq. (10) contains the fixed area sizes dN , the area sample sizes dn  to be found by 

optimization, and the unknown variance and covariance parameters. Their values are estimated 

through sample simulations drawn from the register of proxy data (section 1), together with 

auxiliary variables. The estimates of the variance and covariance parameters depend on the 

sample. The means of their sample estimates are inserted into Eq. (10). The sum of the area-

specific approximations in Eq. (10) 

 


D

d dYY
1 Eblup,Eblup )ˆ( amse)ˆ( amse     (11) 

is an approximation for the mean squared error estimator of the population total estimator 

Eblup ,Eblup1
ˆ ˆD

dd
Y Y


 . 

The design-based direct estimator ˆ
d d dY N y  (

dy  is the sample mean) is the estimator for 

the area total dY  and ˆ
d dd

Y N y  is the estimator for the population total Y.  The design 

coefficients of variation (CV) of these estimators are  

d

dd
d

Y

yN
Y

2

1

)(V
)ˆ(CV   , 

Y

yN
Y d dd

2

1

))(V(
)ˆ(CV


 .    (12) 

In the model-based estimation, the mean squared error replaces the variance, and in accordance 

with the design-based estimation, the approximate coefficient of variation (ACV) for the area 

total estimates Eblup
ˆ
d,Y  and the population total estimate EblupŶ  are: 

d

d,

d
Y

Y
Y

2

1

Eblup

Eblup,

)ˆ(amse
)ˆ(ACV  , 

Y

Y
Y

2

1

Eblup

Eblup

)ˆ(amse
)ˆ(ACV  ,    (13) 
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where dY  and Y  are obtained from the variable of interest in the proxy data. We denote this 

variable “y*”. 

This allocation should provide the optimal accuracy both on area and population levels. 

This is the reason why the optimal area sample sizes result from a multi-objective optimization, 

yielding the minimal approximate population coefficient of variation and the minimal mean of 

approximate coefficients of variation over areas. For multi-objective optimization, there may 

exist several solutions, so-called Pareto optimal solutions, where none of the objectives can be 

improved without impairing another one (Miettinen, 1999). In this case, the Pareto optimal 

solutions are such that smaller values for the approximate population coefficient of variation 

cannot be obtained without letting the mean of the approximate coefficient of variation over 

areas increase, and conversely. For two objectives, the Pareto front consisting of all optimal 

solutions is a curve in the two-dimensional objective space. Then all solutions on the Pareto 

front are candidates for the final solution, in the absence of information on preference. A multi-

objective optimization problem is solved either by approximating the whole Pareto front or by 

identifying a preferred solution from the Pareto front. In the first alternative, a set of Pareto 

optimal solutions is generated through optimization. It approximates the whole set, which can 

be infinite, of Pareto optimal solutions. In the second alternative, we take account of 

information on preference in the optimization and identify a Pareto-optimal solution as close as 

possible to this information. We develop both alternatives. The functions to be optimized are 

too complicated to yield closed-form solutions, so that nonlinear numerical optimization 

method is mandatory. The area sample sizes are the variables in the multi-objective 

optimization subject to the constraints 

1

D

dd
n n


 , 

1dn   and dn  (d = 1,…, D) are integers 

d dn N  (
dN n  is possible for the smallest areas).   (14) 

To approximate the Pareto front, we use the ε-constraint method (Miettinen, 1999), where 

one objective is minimized while the other one is converted into a constraint with a fixed upper 

bound ε. The solutions on the Pareto front are then obtained by solving the resulting single 

objective optimization problems where we use different values for the upper bound ε. If the 

resulting single objective problems are not convex, then the globally optimal solutions may be 

intractable and we resort to an appropriate single objective optimization method. If the solutions 

are only locally Pareto optimal, they are Pareto optimal in some neighborhood of the solution. 

We use the ε-constraint method also in the nonlinear programming allocation (section 3.3), 

because it corresponds to a multi-objective minimization of the overall sample size n, of the 

coefficient of variation for each area, and of the coefficient of variation for the whole 

population. This problem includes D+2 objective functions. 

Figure 1 shows an example of the approximated Pareto front, where the approximate 

population coefficient of variation is minimal under the constraints of 48 upper bounds for the 

approximate mean coefficient of variation over areas, corresponding to 48 Pareto optimal 

solutions (denoted by the star symbols). Each solution represents an allocation with 

corresponding area sample sizes. The Pareto front allows the selection of the allocation. It 

shows the trade-offs between the two objectives. 

The second alternative is to use preference information for identifying the preferred trade-

off, without computing all Pareto optimal solutions. We have used the method of global 

criterion (Miettinen, 1999). The principle is to minimize the distance to the vector whose 

components are the optimal values for each objective. First we compute the minimum of the 

approximate population coefficient of variation in Eq. (13), subject to the constraints of Eq. 
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(14). The mean approximate coefficient of variation over the areas is ignored in this 

optimization. Second, we compute the minimal mean over the areas: 

D

Y
D

d d  1 Eblup, )ˆACV(
MACV  ,    (15) 

subject to the constraints of Eq. (14), while ignoring the approximate population coefficient of 

variation. The resulting area sample sizes in these two optimizations are only by-products. 

These two minima form the ideal objective vector and are denoted  

))ˆ(min(ACVMin Ebluppop Y , 

 min(MACV)Min are  ,    (16) 

subject to constraints of Eq. (14). 

We set the initial values on the area sample sizes dn , and minimize the sum of squares 

2

are

2

popEblup )MinMACV()Min)ˆ( ACV(  YS ,   (17) 

subject to the constraints of Eq. (14). We obtain the preferred area sample sizes. The solution 

of Eq. (17) is a trade-off between the estimation efficiencies at the area and at the population 

levels. Figure 1 shows the solution obtained by using this allocation, which belongs to the 

Pareto front and is the closest to the objective vector. The dotted lines indicate the values of the 

vector constituting the objective. 

 

Figure 1: The approximated Pareto front minimizing the mean of approximate coefficients of variation 

over areas and of the approximate population coefficient of variation. The label “Optimum” denotes the 

Pareto optimal solution. 
 

The accuracy at the population level improves to the detriment of accuracy at the area level. 

The optimal allocation corresponding to the three-term Pareto method allocation has a minimal 

distance to the objective vector. We use the Excel Solver with the option “generalized reduced 
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gradient nonlinear” to provide the full Pareto optimal solutions to the single objective 

optimization problems. 

2.3. Model-assisted Molefe and Clark´s allocation 

Molefe and Clark (2015) have developed an allocation based on a composite estimator for 

estimating the area-specific means of the variable of interest. A simple random sample of dn  

units is selected from each stratum d = 1, …, D, defined by small areas and containing dN  

units. The relative size of the area d is NNP dd / . 

The estimator 

ˆ(1 )C d dr d dy y X    %      (18) 

combines a synthetic estimator 
(syn)

ˆ ˆ
d dY X , where ̂  is the coefficient in the regression Eq. 

(18) and dX  the vector of area-specific means of auxiliary variables, and a direct estimator  

)(ˆ
ddddr Xxyy   , where ̂  and dX  are the same as in the estimator in Eq. (18), and dy  

and dx  are the sample means of the variable of interest and of auxiliary variables in the area d. 

The coefficients d  minimize the design mean squared error of the estimator in Eq. (18). Under 

the conditions given by Molefe and Clark (2015), the approximate design-based mean squared 

error estimator of Eq. (18) is 

22

(syn)

2)1();~(MSE ddddd

C

dp BvYy   ,    (19) 

where (syn)dv  is the sampling variance of the synthetic estimator (syn)

ˆ
dY . The bias is 

ˆ
d U d dB X Y  , where (syn)

ˆ
dY  is used to estimate dY , with U  denoting the approximate 

design-based expectation of ̂ . 

Molefe and Clark (2015) assume a two-level linear model ξ, conditional on the values of the 

auxiliary variables x, with uncorrelated stratum random effects du  and unit residuals i : 





















2

2

)(

)(

0)()(

edi

udd

id

idii

V

uV

EuE

uxβy














 ,     (20) 

where i refers to the unit i in the stratum d. This model implies that the area-specific variance 

of the variable of interest according to Eq. (20) is 
222)( dedudiyV    and holds for all 

population units. The covariance of y-values between two units i and j ≠ i is 
2),(cov ddji yy     

for units in the same stratum and zero otherwise, where 

22

2

edud

ud
d







      (21) 
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is the intra-class correlation in the area d. Molefe and Clark (2015) assume that the areas have 

a common intra-class correlation  d  for all d. The ratio of between-area variation to the 

total variation of y is constant. 

After computing the optimal weight d  in Eq. (19), we obtain the approximate optimal 

anticipated mean squared error: 

12

)( ))1(1)(1());(~(MSEAMSE   dddoptd

C

dpd nYyE .  (22) 

The criterion F using anticipated mean squared errors of the small-area mean and the overall 

mean estimators for the model-assisted allocation has the approximative form: 

 rp

q

d

D

d

q

d YEGNNF ˆvarAMSE )(

1 
  

 










D

d ddd

q

d

D

d d

q

d nPGNnσN
1

122)(1

1

2 )1())1(1()1(  .  (23) 

The optimal area sample sizes minimize Eq. (23) subject to 
1

D

dd
n n


 , and the solution is 

consistent with Longford (2006). The weight q

dN  reflects the inferential priority for area d, with 

0 ≤ q ≤ 2 and  d

q

d

q NN )(
. The quantity G is a relative priority coefficient at the population 

level. When G is null, we focus on area-level estimation. The larger G, the less important the 

area-level estimation. The values of q and G depend on these priorities. 

When the population estimation has no priority (G = 0) and the cost of the survey are fixed, 

the minimization of Eq. (23) with respect of dn  has the unique solution  






















 





1
1

1
21

2

1
2

2
MC

D

d

q

dd

q

dd

D

d

q

dd

q

dd
d

ND

N

N

Nn
n












.   (24) 

In Eq. (23) and (24), both the intra-class correlation   and the area-specific standard 

deviation d  of the variable of interest y are unknown. We replace the intra-class correlation 

  by the adjusted homogeneity coefficient obtained from the proxy variable of interest y*: 

2

2

,
*

*

MSW
1

y

ya S
R  ,     (25)  

where MSW is the mean sum of squares of areas, provided by a one-way analysis of variance 

between the areas in the proxy population, and 2
*y

S  is the variance of y*. We replace the 

parameter d  by the standard deviation of the proxy variable y* in the area d. 

The reason for both replacements is the link between y and y*. The allocation favors large 

areas with large variances of y*: the higher the value of the constant q, the more likely the 

occurrence of negative sample sizes for small areas with small variances. Also, if the population 

estimate has a strictly positive priority G, then F in Eq. (23) must be minimized numerically; 

theoretical values of q and G are out of reach. 
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Table 1: Summary of model-based and model-assisted allocations. 

Allocation Computing sample size for area d = 1,…, D Optimality level 

Three-

term 

Pareto 

method 

Pareto

dn : sample sizes minimize the sum of squares 

2 2

Eblup pop are
ˆ(ACV( ) Min ) (MACV-Min )S Y   , based on the 

approximate coefficients of variation according to Eq. (13), at the 

area and population level. The register of proxy data is used. 

Jointly area and 

population 

Molefe 

and Clark  






















 





1
1

1
21

2

1
2

2
MC

D

d

q

dd

q

dd

D

d

q

dd

q

dd
d

ND

N

N

Nn
n












, where q 

is an adjustable constant (0 ≤ q ≤ 2),   is the common intra-area 

correlation, and d  is the area-specific standard deviation obtained 

from the proxy variable y*. 

Area 

 

3. Model-free reference allocations 

One of the model-free reference allocations, equal allocation, uses only number-based 

information. Others use both number-based and parameter-based information on the variable of 

interest, which is unknown and is replaced by a proxy variable y*. It can be the same variable 

obtained from an earlier research of the same subject. An auxiliary variable correlated with the 

variable of interest also can serve as a proxy variable if its area characteristics are available. 

Table 2 shows the summary details of these allocations introduced in sections 3.1–3.4. 

3.1. Equal allocation 

In equal allocation, the sample size is 

D

n
nd EQU  .     (26) 

The expression of this allocation in Eq. (26) includes neither the area-specific characteristics 

nor the between-area variation. It may perform well at the area level, but may lead to poor 

estimates for very large areas and for the population size. The total sample size n should be an 

integer multiple of the total number of areas D. The minimal overall sample size n = 2D allows 

the unbiased estimation of area-specific sampling variances. 

3.2. The Costa allocation 

Costa, Satorra, and Ventura (2004) introduce a convex combination  

COS (1 )d
d

N n
n k n k

N D
       (27) 
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of proportional and equal allocations, where 0 ≤ k ≤ 1. Value 0 for k yields equal allocation and 

value 1 yields proportional allocation. The equal allocation at the area level and the proportional 

allocation at the population level perform satisfactorily. The choice of k depends on the wished 

qualities of estimates at each level. The design coefficient of variation for the estimator 

ddd yNY ˆ  of the area total dY  according to Eq. (12) is 

2

1

2

,

2 ))
11

((
1

)ˆCV( dy

dd

d

d

dd S
Nn

N
Y

YC   ,   (28) 

where dN  is the size of the area d counted in statistical units,
2

,dyS  is the variance of y and dY  

the total of y on the area d, and the sample size dn  is defined according to Eq. (27). The area-

specific coefficients of variation dC  depend on the value of k, because the area-specific totals 

and variances, and the area sizes are fixed. 

The optimal value for k minimizes the difference 

DdCC dd  1,...,; ) min()max(  ,    (29) 

subject to the constraints 

10  k , 

 


D

d dd nnn
1

 ,2 .     (30) 

The idea of this solution is to obtain at least moderately accurate area estimates for the areas 

and for the population size. 

We use the area statistics of the proxy variable y* instead of the unknown variable of interest 

and Excel Solver with the option “generalized reduced gradient nonlinear”. We insert the 

optimal value of k from Eq. (29) into Eq. (27) to compute the area-specific sample sizes, 

rounded to the closest integer. 

3.3. Allocation using nonlinear programming 

The allocation for the design-based direct estimation of area-specific and population means 

(Choudhry, Rao, and Hidiroglou, 2012) uses nonlinear programming and the area-specific and 

population coefficients of variation for the variable of interest: 

1

2

1

2

1
CV( ) V( ) ,

1
CV( ) V( )

d d

d

y y
Y

y y
Y





.     (31) 

The criterion is the minimization of the overall sample size  


D

d dnn
1

, subject to the fixed 

upper limits for the coefficients of variation in Eq. (31) and dn  ≥ 2. This allocation favors areas 

with a high coefficient of variation, regardless of the area size dN . Many combinations of upper 

limits may lead to the same minimum overall sample size. This allocation is also applicable for 

the total estimators ddd yNY ˆ  and  


D

d dd yNY
1

ˆ , because )CV()ˆCV( dd yY   and 

)CV()ˆCV( yY   under stratified simple random sampling. 
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Our allocation by nonlinear programming is based on finding the upper limits, which lead to 

the fixed overall sample size n. We use the area and population statistics of the proxy variable 

y*, and Excel Solver with the option “generalized reduced gradient nonlinear”. 

3.4. Allocation using box constraints 

Tschuprow (1923) and Neyman (1934) introduced the allocation for minimizing the variance  

 


D

d dy

dd

d S
Nn

NYV
1

2

,

2 )
11

()ˆ(     (32) 

for the population total estimator  


D

d dd yNY
1

ˆ  under stratified simple random sampling. 

The minimization of Eq. (32) subject to  


D

d dnn
1

 leads to the Neyman allocation 

n
SN

SN
n

D

d dyd

dyd

d

 



1 ,

,
,     (33) 

where the area-specific standard deviations 
dyS ,

 of the variable of interest or in its absence, of 

a proxy variable, and the number of units must be available. This allocation favors large areas 

with high variation and can lead to area sample sizes dn < 2 or even to over-allocation dn >

dN . When dn < 2, the unbiased estimation of the sample variance is impossible. The box-

constraint optimal allocation avoids these difficulties, by allowing the control of the sample 

sizes or of the sampling fractions and the design weights. The allocation minimizes Eq. (32) 

subject to constraints 

d d dL n U  , d = 1,…, D 

 


D

d d nn
1

,      (34) 

where dL  is the lower limit and dU  is the upper limit for the sample size of domain d. The limits 

are adjusted according to the desired accuracies for the area total estimates, but the choices 

affect the precision of the population total estimate. The lower limit is dL = 2 and the upper limit 

dU = dN . We call this allocation “box-constraint” (BCO). We use an R program (Gabler, 

Ganninger, and Münnich, 2012) and the R software (http://www.R-project.org) to compute the 

sample sizes. 

Longford (2006) introduces inferential priorities for the areas and for the population. He uses 

those constraints for deriving sample size allocation schemes for direct, composite, and 

empirical Bayes estimators. Molefe and Clark´s (2015) reference allocation uses the allocation 

idea of Longford for a composite estimator, but Longford´s other solutions are not applicable 

here. Falorsi and Righi (2008) propose a sampling strategy for multi-variate and multi-domain 

estimation guaranteeing a pre-defined precision for the domain estimators when the overall 

sample size is small. The point is to collect the sample data by using a multi-stage sampling 

design based on a balanced sampling technique and on generalized regression. This solution 

can be extended with indirect small-area estimators, but we cannot apply it because variables 

of interest are too many. 
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Table 2: Summary of number-based and parameter-based allocations. 

Allocation  Computing sample size for area d = 1,…, D Optimality level 

Equal 
 

EQU

d

n
n

D
  

not defined 

Costa 

COS (1 )d
d

N n
n k n k

N D
    . 

The constant k is the solution of the minimization problem 

DdCC dd  1,...,; ) min()max(  , where the coefficient of 

variation )ˆ(CV dd YC   is defined in Eq. (28). 

jointly population 

and area 

Nonlinear 

programming 

NLP

dn : minimize  


D

d dnn
1

 subject to limits for coefficients 

of variation in Eq. (31) 
ddy 0CV)CV(   and 

0CV)CV( y . 

jointly population 

and area 

Box-

constraint 

BCO

dn : minimize the variance of the population total estimator 

 


D

d dy

dd

d S
Nn

NYV
1

2

,

2 )
11

()ˆ(  subject to constraints 

ddd UnL   and  


D

d d nn
1

. dL = 2 and dU = dN  here. 

 

population 

3.5. Design-based estimation methods for model-free allocations 

We apply the three estimation methods to model-free allocations. The design-based Horvitz-

Thompson method and the model-assisted generalized regression method use survey weights, 

which are the inverses of the inclusion probabilities. 

The finite population U is composed of D non-overlapping domains or areas, with dN  units 

in each, and  


D

d d NN
1

. A probability sample is drawn from U for estimating the area totals 

 
 dN

k dkd yY
1

, where dky  is the variable of interest for unit k in area d. 

The Horvitz-Thompson estimator for the area total dY  is 

,HT 1 1
ˆ d dn n dk
d dk dkk k

dk

y
Y w y

 
   ,    (35) 

where dn  is the sample size for area d, dk  is the inclusion probability of unit k in area d, and 

1
 dkdkw   is the sampling weight for the same unit. 

The model-assisted generalized regression estimator for the area total dY  is 

,GREG 1 1

ˆˆ ˆd dN n dk dk
d dkk k

dk

y y
Y y

 


   ,    (36) 

where the predicted value ddkdk vβxy ˆˆˆ   is based on Eq. (1), and dk  is the inclusion 

probability (Lehtonen, Särndal, and Veijanen, 2003). The first part of Eq. (36) is the predicted 

value for dY  when the assisting model is applied. The predicted values dkŷ  can be computed, 

because the unit-level values of the auxiliary variables x are available. The second term protects 

against model mis-specification (Lehtonen, Särndal, and Veijanen, 2003). 
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4. Application: Finnish business register 

The estimated parameters are area and population totals of the variable of interest, and the 

overall sample size n is fixed at 216 individuals. 

4.1. Business registers for sampling and allocations 

A national Finnish register of block apartments for sale constitutes the data set. This register is 

maintained by the private company Alma Mediapartners Ltd. Its customers are real estate 

agencies. They deposit all the appropriate information about the apartments in this register as 

soon as they receive an assignment from the owners. The population for sample simulations 

consists of 21,025 sampling units, which are block apartments for sale, selected from the 

register. In October 2015, they cover 18 Finnish provinces, which are treated as areas. The 

smallest area contains 160 units and the largest one contains 6,813 units. The variable of interest 

y measures the price (1,000 €) of the apartment and two auxiliary variables measure the size (in 

m2) and age (in years) of the apartment. 

All allocations except equal allocation are based on the proxy variable y*, which is the price 

of apartment in the register of April 2015. This proxy register contains 22,230 apartments for 

sale in 18 provinces, and the variables are the same as in the sample population. Table 5 in the 

Appendix contains the sizes dN  of the areas, population summary statistics for the variable of 

interest y, and statistics on the differences between y and y*. The area characteristics of these 

variables have a wide range. The differences between area sizes, area totals, and area means are 

mostly negative, in contrast to the differences in area standard deviations and coefficients of 

variation. This indicates a slight increase in the variation of the prices from April to October 

2015. 

Table 6 in the Appendix shows the population statistics for the auxiliary variables and 

correlations between the variables. The between-area variations of the auxiliary variables are 

very small (1.7% for size and 3.9% for age of total variation, according to a one-way analysis 

of variance), which means that the allocations cannot be based on the present auxiliary 

variables. The province of Uusimaa (near capital Helsinki) is a dominating area, because it 

contains the largest number of apartments (32.4% of the population) and the price level there is 

the highest among all provinces. The variable of interest has a strong positive correlation with 

the size of apartment except for one small area, and a negative correlation with the age of 

apartment except for the largest area. The auxiliary variables are not correlated to one another. 

The area-specific changes between the correlations (Table 7 in Appendix) are small, except 

between auxiliary variables for some areas. 

Considering the reported changes in the variables between the business registers in April and 

October 2015, we consider the structures of these registers to be sufficiently similar. This 

justifies our using the register of April 2015 as the population, which provides the data for 

computing the allocation-specific sample sizes. 

4.2. Allocations 

The small overall sample size (n = 216, sampling ratio 1.0%) is a key feature in our procedure. 

The proxy variable y* replaces the variable of interest in the model-free allocations using area 

parameters. The implementation of the Excel Solver with the option “nonlinear generalized 

reduced gradient” yielded a weight of 0.3528 for k used in the Costa allocation. We use the 

same Excel option for solving the area sample sizes in the nonlinear programming allocation. 

The selected limit of 19.01% for the coefficient of variation for areas and the 8.00% limit for 
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the population size lead to the overall sample size 216. The adjusted homogeneity coefficient 

of 0.1697 computed with the proxy variable y* replaces the unknown intra-class correlation in 

the Molefe and Clark allocation. The low value 0.25 for the constant q and zero for the quantity 

G in this allocation avoid the concentration of sampling units in a single area (here the province 

of Uusimaa). The three-term Pareto method allocation is based on simulations and multi-

objective optimization. We estimated the unknown variance and covariance parameters in Eq. 

(7) using the 1,500 simulated simple random samples drawn from the proxy data register, before 

running the actual allocation-specific simulations. The minimum value of 3.74% for the 

approximate population coefficient of variation and the minimum value of 22.33% for the mean 

approximate coefficient of variation over the areas result from the first optimization in Eq. (16). 

The solution of the optimization criteria in Eq. (17) yields the area sample sizes. 

The area sample sizes (Table 3) vary much between the allocations. The largest area, the 

province of Uusimaa, dominates in two allocations. For the box-constraint allocation, this area 

contributes for almost 60% of the overall sample size. Four smallest areas have sample size 2, 

which allow the computation of standard errors for the area total estimates in design-based 

estimation. The other allocations contain no very small area-specific sample sizes. The 

structures of the four other allocations have common features. The three-term Pareto method 

allocation favors the smallest areas and one larger area (the province of Kymenlaakso). It favors 

less one area (the province of North Karelia). The sample sizes for the Costa allocation are 

concordant with the area sizes. The nonlinear programming allocation favors areas with a high 

coefficient of variation, which is characteristic of this allocation. 

 
Table 3: Area sample sizes by allocation. 

    Model-related Model-free 

Area (province) Size in Three-term Molefe Equal Costa Nonlinear Box- 

  units Pareto method and Clark   programming constraint 

Uusimaa 6,813 36 55 12 33 36 125 

Pirkanmaa 2,003 13 14 12 15 11 13 

Varsinais-Suomi 1,543 11 19 12 13 18 14 

Päijät-Häme 1,166 9 14 12 12 13 8 

Central Finland 1,141 11 8 12 12 9 6 

North Ostrobothnia 1,131 9 11 12 12 9 7 

Satakunta 1,017 12 11 12 11 15 6 

Kymenlaakso 929 14 7 12 11 13 4 

Pohjois-Savo 923 10 11 12 11 13 6 

Kanta-Häme 885 11 9 12 11 10 5 

Etelä-Savo 751 10 9 12 11 10 4 

South Karelia 553 11 9 12 10 12 3 

North Karelia 549 6 10 12 10 7 4 

Lapland 544 11 9 12 10 12 3 

Ostrobothnia 421 9 7 12 9 8 2 

South Ostrobothnia 311 9 6 12 9 6 2 

Kainuu 185 15 3 12 8 8 2 

Central Ostrobothnia 160 9 4 12 8 6 2 

Total 21,025 216 216 216 216 216 216 
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4.3. Comparison of the allocations    

The results are based on design-based simulation experiments. For each allocation, we 

simulated r = 1,500 independent stratified simple random samples and estimated the area totals, 

variance parameters, mean-squared error approximations, and the allocation-specific quality 

measures (relative root mean square error and absolute relative bias), using the SAS software 

(www.sas.com/en_us/home.html) or the IBM SPSS software (www.ibm.com/analytics/data-

science/predictive-analysis/spss-statistical-software). We computed design-based Horvitz-

Thompson and model-assisted regression estimates for the model-free allocations and model-

based EBLUP estimates for every allocation. We compare the allocations, combined with 

estimators, on the basis of the accuracy and bias, which we measure with the relative root mean 

square error and absolute relative bias. We compute these quantities, in percent, as sample-

based approximations of the expressions in Eq. (5). 

The area-specific relative root mean square error and the absolute relative bias in percent are 

1

2 2
1

1 ˆ( ( ) )

RRMSE 100 

r

di di

d

d

Y Y
r

Y







, 

 




r

i
d

ddi
d

Y

YY

r 1

ˆ1
  100ARB ,    (37) 

where diŶ  is the design- or the model-based estimate of the area total dY  for the simulated 

sample i = 1,…, r.  Their means over D areas, in percent, are: 

MRRMSE = 
1

1
RRMSE

D

ddD  , 

MARB =  

D

d d
D 1

ARB
1

.     (38) 

The sum  


D

d dii YY
1

ˆˆ  is the estimate for the population total in sample i = 1,…, r. The 

relative root mean square error for the population total, in percent, is 

RRMSE(pop) = 2

1

2

1
))ˆ(

1
(

1
 100 YY

rY

r

i i  
,   (39) 

where Y is the true value of the population total, and the corresponding absolute relative bias, 

in percent, is 

ARB(pop) =  

r

i

i

Y

YY

r 1

ˆ1
  100 .    (40) 

We evaluate two measures of quality: the mean over the areas and the mean over the 

population level. Tables 8 and 9 in the Appendix show the values for these measures at the area 

and at the population levels. 

Figure 2 shows the means of area-specific relative root mean square errors and population 

relative root mean square errors for each combination of allocation and estimation method. The 

model-based estimation by EBLUP leads to more accurate area estimates than those obtained 

from the design-based estimation (Horvitz-Thompson and generalized regression), whatever 

the three estimation methods applied to whatever of the four model-free allocations. The 

population values among these allocations are the lowest for the model-assisted regression 
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estimate. The relative root mean square errors are in stark contrast between the equal and the 

box-constraint allocations. The equal allocation has the lowest mean over areas (12.3%) and 

the highest population value (12.2%) for the estimation by EBLUP. The box-constraint 

allocation performs satisfactorily at the population level, as expected (between 5.0 and 5.6%, 

depending on the estimation method), but poorly at the area level (mean between 22.3% and 

40.6%). The highest mean is obtained for the model-assisted regression estimation, in contrast 

with other model-free allocations. At the population level, the smallest value is for the Molefe 

and Clark allocation (5.1%). The allocations provided either by the three-term Pareto method, 

the Costa method, or by nonlinear programming are good trade-offs, provided the criterion is 

accurate enough at both the area and at the population levels. No allocation has an optimal 

accuracy at both levels at the same time. Figure 1 shows the trade-offs for the area and 

population levels, in the shape of the approximated Pareto front of the bi-objective optimization. 

Figure 2: Means of the area-specific relative root mean square errors and of the population relative root 

mean square errors (in percent) for design- and model-based estimates, by allocation. 

 

On Figure 3, the distributions of the area-specific relative root mean square errors for each 

allocation show the relative variation of the area total estimates and the presence of randomness 

in the simulated samples. The model-free allocations are more accurate with model-based 

estimation. Randomness is the smallest in the three-term Pareto method allocation (lowest 

median and range of values without outliers). The nonlinear programming allocation has the 

smallest area as an outlier. The means over the areas of these three allocations are close to each 

other (Figure 2), although they come from different area-specific distributions. The equal 

allocation has the lowest median, although a narrow range of variation, and a single outlier 

(23.4%) for the largest area, the province of Uusimaa. This is a difficulty inherent in this 

allocation. The area estimates in the box-constraint allocation are the least accurate, regardless 

of the estimation method. The model-assisted regression estimation is the least accurate. 

The EBLUP estimates of the four areas, where the sample size is 2 in the box-constraint 

allocation, have high relative root mean square errors, excluding the province of Ostrobothnia 

(14.4%, close to the median). The model-based estimation then can produce at least moderately 

accurate estimates for a single area, in spite of a small sample size. 
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Figure 3: Allocation-specific distributions of area-specific relative root mean square errors (in percent) 

for design- and model-based estimates. 

 

Table 9 in the Appendix shows the simulation biases for the design-based estimates. As 

expected, these estimates are almost unbiased. The area-specific biases of the Horvitz-

Thompson and of the regression estimates are under 2%, except for three areas in the box-

constraint allocation. The area-specific bias distributions for each allocation (Figure 4) 

demonstrate the similarity between accuracy and bias in the case of the estimation by EBLUP. 

As for the distributions of the relative root mean square errors, the model-based three-term 

Pareto method allocation has the narrowest range and is the only allocation with biases under 

10%. In the distribution of the equal allocation, the upper quartile is under 4%, but four outliers 

appear, including the largest area (almost 15%). The distributions of the Costa and of the 

nonlinear programming allocations are similar, ranging to over 15%. Molefe and Clark´s and 

the box-constraint allocations are the most dispersed. The contrast between the equal and the 

box-constraint allocations is similar for the biases and for the relative root mean square errors. 

The three-term Pareto method, the Costa, and the nonlinear programming allocations with 

moderately low biases on both levels are satisfactory trade-offs. The population estimate is 

almost unbiased for Molefe and Clark´s allocation (1.2%), but most of the area estimates are 

seriously biased, regardless of the sample size. Five areas have important biases for most of the 

allocations, which indicates that the model is not up the task. 
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Figure 4: Area-specific absolute relative bias distributions (in %) for model-based empirical best linear 

unbiased predictor (EBLUP) estimates, by allocation. 

 

Table 4 presents the allocation-specific means over the areas, the population values, and 

their aggregate values (sums), for the relative root mean square errors and the relative biases. 

The aggregate relative root mean square errors are the lowest for the EBLUP estimates, except 

for the equal and the box-constraints allocations. The Horvitz-Thompson estimates are less 

accurate. The model-assisted regression estimates are more accurate than the Horvitz-

Thompson ones, except for the box-constraint allocation, which is high (45.6%). The Horvitz-

Thompson and the regression estimates are almost unbiased for the model-free allocations, but 

the box-constraint allocation is an exception. For the EBLUP estimates, the three-term Pareto 

method, Molefe and Clark´s, Costa´s, and the nonlinear programming allocations have the 

smallest aggregate biases, which are close to each other; the box-constraint allocation has the 

largest aggregate bias. 

 
Table 4: Means over areas, population values, and aggregate values for quality measures (in percent), 

by allocation. Estimation methods for model-free allocations: 1=Horvitz-Thompson, 2=regression 

estimation, and 3=empirical best linear unbiased predictor. 
 

  Model-related Model-free 

  Three- Molefe Equal Costa Nonlinear Box-constraint 

  term and             programming       

  Pareto Clark 1 2 3 1 2 3 1 2 3 2 1 3 

  Relative root mean square error 

Mean over areas 13.1 15.5 19.1 14.7 12.3 19.7 17.0 13.3 20.1 17.8 13.5 40.6 30.3 22.3 

Population value 6.7 5.1 13.3 11.0 12.2 8.6 6.6 6.8 8.2 6.4 6.7 5.0 5.4 5.6 

Sum 19.8 20.6 32.4 25.7 24.4 28.3 23.6 20.0 28.4 24.2 20.1 45.6 35.7 27.9 

  Absolute relative bias 

Mean over areas 4.9 7.8 0.4 0.5 4.2 0.5 0.5 5.3 0.3 0.6 5.5 1.3 0.8 13.8 

Population value 3.4 1.2 0.3 1.0 7.3 0.4 0.4 3.0 0.2 0.8 3.2 0.3 0.2 2.2 

Sum 8.3 9.1 0.7 1.5 11.5 0.8 0.9 8.3 0.5 1.4 8.7 1.6 1.0 16.0 

  Integrated accuracy and bias 

Overall sum 28.1 29.7 33.0 27.1 35.9 29.1 24.5 28.3 28.8 25.6 28.8 47.2 36.7 43.9 
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We evaluate the allocations by integrating the aggregate values for the relative root mean 

square error and the absolute relative bias. The model-assisted regression estimates of Costa´s, 

of the nonlinear programming, and of the equal allocations have the smallest values (24.5%, 

25.6%, and 27.1%). The three-term Pareto method allocation has the second smallest value 

(28.1%), which includes a high aggregate bias. The aggregate values indicate that the model-

assisted regression estimation performs the best for the three model-free allocations, although 

not supported by the area-specific relative root mean square errors (Table 8 in Appendix). 

The box-constraint and the equal allocations are extreme, in the sense that they are strongly 

or not at all associated with the area sizes. These solutions lead to satisfactory estimates only at 

one level, either population or area. The three-term Pareto method, Costa´s, and the nonlinear 

programming allocations take both the between-area and the within-area variations into 

account. They perform well at both levels, when the model is included. The three-term Pareto 

method and Costa´s allocations do not use fixed priorities or limits for the area-level and the 

population-level estimation, unlike the nonlinear programming and Molefe and Clark´s 

allocations. 

For small areas, the model-based estimation produces area estimates of moderate accuracy, 

despite a small sample size (provinces of North Karelia and Ostrobothnia). Large sample sizes, 

however, do not guarantee high accuracy (provinces of Satakunta, Kymenlaakso, and Kainuu). 

The accuracy of the area estimates seems to be related to the area-specific means and to the 

coefficients of variation of the variables. Large deviations from the corresponding population 

statistics may bias the estimation of the area totals. The skewness of the variable of interest 

usually confuses the EBLUP estimation, as the important biases for some areas indicate. 

We examined the validity of the unit-level linear mixed model in Eq. (1) by testing the null 

hypothesis that the error terms dv  and dke  are normally distributed. We computed the 

transformed residuals β)xτ(x)yτ(y dddkdddk
 ˆˆ , where 2

1

)ˆ1(1ˆ
dd    and the factor d̂  is 

defined in Eq. (8) (Rao and Molina, 2015). Under the null hypothesis, the residuals are 

approximately identically and independently distributed as ) (0, 2

eN . We applied the test to a 

simple random sample, of n = 5,000 individuals, selected from the population. We took 2

v = 

1,570 and 2

e = 17,550. The Shapiro-Wilks test yielded a p-value of 0.00, leading us to reject 

the null hypothesis. We also computed the allocation-specific means for the variance 

parameters, and the regression coefficients and the area effects of the area total estimator in Eq. 

(4), for the simulated samples. The means for Molefe and Clark´s and the box-constraint 

allocations differ from those for the other allocations. Our model has deficiencies when its 

parameters are estimated by generalized least-squares or by restricted maximum likelihood. It 

is possible, before the estimation phase, to make the distribution of the variable of interest more 

symmetric by an algebraic transformation such as the lognormal method, but we have not done 

that. 

5. Conclusion 

We compared six allocation methods in stratified sampling, when applying model-based 

estimation and design-based estimation for obtaining area and population estimates. The fixed 

and small total sample size is a common restriction. Our three-term Pareto method allocation 

uses auxiliary information, the model, and an estimation method. Accuracy at both the area and 

at the population levels are optimized, which requires multi-objective optimization techniques. 

We chose the reference allocations on the basis of the variety of information, which the 

allocations use: model and estimator, optimization criteria, fixed limits or priorities, and 
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auxiliary information. The allocation-specific area sample sizes are various. The sample is 

concentrated on the largest area for two allocations, a situation which may lead to inaccurate 

and biased estimates for small areas. 

We computed the area sample sizes for five allocations using the previous register data, 

because the auxiliary variables are insufficient to support the allocations. The distance between 

apartment and the town center has a predictive power, but it is not available. 

We applied design- and model-based estimations and evaluated the allocations in terms of 

accuracy and bias obtained from design-based sample simulations. We confirm that, in this 

survey framework, the model-based estimates are more accurate than the design-based 

estimates. The “borrowing strength” principle may be significant in surveys where some areas 

have too small sample sizes to allow direct estimates of satisfactory quality.  The model-free 

allocations have similar performance structures at different levels, regardless of the estimation 

method. 

The studied allocations have all pros and cons, depending on the estimation level (area and 

population). Considering the aggregate values, the EBLUP estimates for the three-term Pareto 

method, the Costa, and the nonlinear programming allocations are most accurate. The 

randomness associated with the area estimates is best controlled in the three-term Pareto method 

allocation, from the viewpoint of the area-specific distributions of relative root mean square 

errors. 

The bias results for the EBLUP estimates demonstrate that the allocations have very different 

performances. The three-term Pareto method and the Costa allocations perform better, with 

respect to aggregate values and area-specific distributions. 

By considering accuracy and bias, we showed that the Costa, the nonlinear programming, 

and the equal allocations under model-assisted regression estimation perform the best, and that 

the three-term Pareto method allocation performs very close. This comes from the fact that the 

design-based estimates are almost unbiased, but that many of these estimates are inaccurate. 

The model-based estimation suffers from an important bias, leading to try methods likely to 

improve accuracy and reduce bias. The applicable software is also necessary. 

Getting a well-performing allocation is not an easy task; it is very case-specific and depends 

on the objectives of a survey and on the availability of auxiliary information. Accurate 

estimates, both at the area and at the population levels, are made obtainable by multi-objective 

optimization. The model and the estimation method have become part of the sampling design. 

The first trade-off is between the quality of the area estimates and the quality of population 

estimates. We showed the impossibility of obtaining maximum quality at both levels 

simultaneously. The fixed priorities or limits at the area and at the population levels, which 

some allocations use, do not guarantee the maximum quality. 

The second trade-off is between accuracy and bias of the estimates. Model-based estimators 

are usually more accurate than design-based estimators when the sample size is small, but 

model-based estimators may be importantly biased. The sample allocation affects accuracy and 

bias, but the increment of the area sample size does not correct the bias entirely. This trade-off 

appears commonly in the literature, but the discussion has seldom concerned the priorities of 

these measures. 
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Appendix 

Table 5: Population statistics of the variable of interest y (price) in October 2015 business register and 

the changes between y and proxy variable y* (price in April 2015 business register). 

    Variable of interest y (price)   Difference y - y* 

Area (province) Size in Total Mean Coefficient   Size in Total Mean Coefficient 

  units     of variation   units     of variation 

Uusimaa 6,813 2,067,530 303.5  0.89    -636 -236,839 -5.88 0.01 

Pirkanmaa 2,003 311,634 155.6  0.69    -118 -20,429 -0.98 0.06 

Varsinais-Suomi 1,543 248,763 161.2  0.90    -109 -14,826 1.66 0.09 

Päijät-Häme 1,166 174,104 149.3  0.72    63 3,589 -5.27 0.03 

Central Finland 1,141 153,693 134.7  0.60    -78 -11,410 -0.74 0.04 

North Ostrobothnia 1,131 180,849 159.9  0.61    -169 -35,020 -6.15 0.06 

Satakunta 1,017 111,409 109.5  0.78    55 -6,862 -13.40 0.02 

Kymenlaakso 929 91,405 98.4  0.68    93 5,866 -3.93 -0.01 

Pohjois-Savo 923 114,935 124.5  0.81    -86 -23,056 -12.24 0.11 

Kanta-Häme 885 106,110 119.9  0.62    130 7,692 -10.46 0.01 

Etelä-Savo 751 89,736 119.5  0.69    -74 -19,417 -12.82 0.08 

South Karelia 553 64,087 115.9  0.64    72 2,709 -11.71 -0.03 

North Karelia 549 96,688 176.1  0.59    -76 -19,685 -10.08 0.07 

Lapland 544 61,867 113.7  0.78    -105 -21,816 -15.22 0.12 

Ostrobothnia 421 58,584 139.2  0.56    -102 -16,411 -4.24 0.03 

South Ostrobothnia 311 41,822 134.5  0.50    -35 -9,944 -15.14 0.02 

Kainuu 185 15,791 85.4  0.62    -31 -5,439 -12.93 0.06 

Central Ostrobothnia 160 22,403 140.0  0.50    1 -1,153 -8.13 0.04 

Population 21,025 4,011,408 190.8  1.00    -1,205 -422,451 -8.66 0.13 
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Table 6: Population summary statistics of the auxiliary variables “size” (m2) and “age” (years) and 

correlations between variables in the business register in October 2015. 

  Auxiliary variable x1 (size) Auxiliary variable x2 (age) Correlations 

Area (province) Total Mean Coefficient Total Mean Coefficient Price, Price, Size, 

and size in units     of variation     of variation size age age 

Uusimaa (6,813) 481,026  70.6 0.41  227,623 33.4 0.90  0.73 0.03 -0.01 

Pirkanmaa (2,003) 130,232  65.0 0.37  59,354 29.6 0.85  0.65 -0.17 0.13 

Varsinais-Suomi (1,543) 106,871  69.3 0.41  52,196 33.8 0.66  0.57 -0.31 0.14 

Päijät-Häme (1,166) 77,040  66.1 0.36  35,962 30.8 0.73  0.58 -0.46 0.03 

Central Finland (1,141) 72,908  63.9 0.31  29,438 25.8 0.87  0.43 -0.65 0.03 

North Ostrobothnia (1,131) 73,978  65.4 0.35  20,549 18.2 1.21  0.63 -0.43 0.08 

Satakunta (1,017) 65,924  64.8 0.31  41,189 40.5 0.60  0.50 -0.16 0.06 

Kymenlaakso (929) 58,788  63.3 0.38  35,892 38.6 0.60  0.46 -0.51 0.17 

Pohjois-Savo (923) 60,985  66.1 0.40  34,057 36.9 0.52  0.54 -0.47 -0.04 

Kanta-Häme (885) 55,949  63.2 0.38  31,023 35.1 0.62  0.50 -0.52 -0.01 

Etelä-Savo (751) 46,865  62.4 0.33  25,547 34.0 0.61  0.42 -0.52 -0.01 

South Karelia (553) 34,235  61.9 0.29  18,709 33.8 0.63  0.46 -0.54 0.05 

North Karelia (549) 34,005  61.9 0.31  11,090 20.2 1.08  0.47 -0.68 0.03 

Lapland (544) 35,156  64.6 0.39  17,396 32.0 0.67  0.53 -0.57 0.03 

Ostrobothnia (421) 25,915  61.6 0.42  13,925 33.1 0.86  0.51 -0.25 0.18 

South Ostrob. (311) 20,093  64.6 0.37  7,986 25.7 0.86  0.22 -0.66 0.25 

Kainuu (185) 10,886  58.8 0.35  6,724 36.3 0.44  0.47 -0.59 -0.03 

Central Ostrob. (160) 12,013  75.1 0.54  6,463 40.4 0.65  0.58 -0.15 0.29 

Population (21,025) 1,402,870  66.7 0.39  675,123 32.1 0.81  0.59 -0.10 0.04 
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Table 7: Changes in the auxiliary variables and in correlations between October 2015 and April 2015 

(´*´denotes auxiliary variables in the proxy register April 2015). 

  Changes x1-x1
* in size Changes x2-x2

* in age Correlation changes 

Area (province) Total Mean Coefficient Total Mean Coefficient Price, Price, Size, 

and size in units     of variation     of variation size age age 

Uusimaa (6,813) -46,084 -0.16  0.01  1,726  3.08  -0.10  0.00  -0.03  -0.07  

Pirkanmaa (2,003) -6,154 0.72  -0.00  1,916  2.55  -0.08  0.04  0.07  -0.01  

Varsinais-Suomi (1,543) -4,632 1.76  0.04  -412  1.98  -0.07  -0.01  0.08  0.07  

Päijät-Häme (1,166) 2,567 -1.45  0.01  2,158  0.19  -0.02  0.02  0.07  0.04  

Central Finland (1,141) -2,566 1.98  0.03  233  1.84  -0.05  0.00  0.03  0.04  

North Ostrob. (1,131) -7,082 3.06  -0.02  2,365  4.18  -0.26  0.02  -0.03  -0.02  

Satakunta (1,017) 2,752 -0.85  -0.03  5,391  3.29  -0.11  0.04  0.11  -0.00  

Kymenlaakso (929) 6,606 0.86  -0.00  3,538  -0.06  -0.03  0.01  0.04  0.04  

Pohjois-Savo (923) -5,640 0.04  0.05  2,452  5.58  -0.20  -0.01  0.09  -0.01  

Kanta-Häme (885) 6,754 -1.94  0.02  6,091  2.03  -0.05  -0.03  0.04  0.02  

Etelä-Savo (751) -3,232 1.67  0.04  1,638  5.04  -0.18  0.05  0.01  -0.08  

South Karelia (553) 3,453 -2.09  -0.01  3,398  2.00  -0.04  -0.06  0.14  0.17  

North Karelia (549) -4,025 1.09  -0.00  888  3.88  -0.24  0.02  -0.05  -0.05  

Lapland (544) -6,000 1.21  0.04  2,294  8.71  -0.29  0.05  0.07  -0.09  

Ostrobothnia (421) -5,547 1.40  -0.00  904  8.18  -0.22  -0.04  -0.02  -0.11  

South Ostrob. (311) -1,555 2.04  0.00  1,347  6.49  -0.29  -0.04  -0.02  -0.02  

Kainuu (185) -2,189 -1.69  0.01  -252  4.05  -0.15  0.09  0.10  -0.11  

Central Ostrob. (160) 415 2.13  -0.02  902  5.41  -0.13  0.07  0.17  0.07  

Population (21,025) -72,160 0.37  0.01  36,577  3.39  -0.12  -0.00  -0.01  -0.04  
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Table 8: Relative root mean square errors (in percent) for areas and population, by allocation. Estimation 

methods for model-free allocations: 1=Horvitz-Thompson, 2=regression estimation, 3=empirical best 

linear unbiased predictor (EBLUP). 

  Model-related Model-free 

Area (province) Three- Molefe Equal Costa Nonlinear Box-constraint 

and size in units term and             programming       

  Pareto Clark 1 2 3 1 2 3 1 2 3 1 2 3 

Uusimaa (6,813) 12.6  10.0  25.4 20.9 23.4 15.5 11.8 12.9 14.9  11.3  12.9  7.9  5.5  6.2  

Pirkanmaa (2,003) 10.4  9.7  19.6 14.7 11.0 17.6 13.3 9.9 21.2  15.6  10.5  19.2  17.9  11.9  

Varsinais-Suomi (1,543) 14.2  11.8  25.8 18.1 13.8 24.7 18.0 13.2 21.5  15.8  12.4  23.9  21.3  15.6  

Päijät-Häme (1,166) 11.1  10.4  20.4 14.0 10.4 20.2 14.9 10.5 19.7  15.3  11.0  25.3  24.6  14.7  

Central Finland (1,141) 10.2  12.3  17.3 12.0 9.5 17.3 13.4 10.0 20.2  16.0  11.1  23.8  29.6  16.8  

North Ostrob. (1,131) 9.5  9.2  18.0 11.5 8.7 17.3 12.0 8.6 19.9  13.7  8.8  23.3  23.2  12.5  

Satakunta (1,017) 16.4  17.9  22.3 18.8 14.7 22.9 20.9 16.1 19.9  18.2  14.8  31.0  35.7  28.7  

Kymenlaakso (929) 15.9  23.7  19.1 14.7 13.5 20.7 18.8 17.1 18.9  18.5  16.7  32.4  55.8  38.2  

Pohjois-Savo (923) 14.5  16.2  22.5 16.9 12.9 23.8 19.3 14.0 22.7  17.7  13.9  33.8  38.5  25.4  

Kanta-Häme (885) 12.2  13.8  17.2 13.3 10.1 18.8 16.2 12.0 19.1  16.9  12.1  27.3  38.4  21.5  

Etelä-Savo (751) 12.9  14.1  18.9 15.3 11.7 20.9 18.1 13.4 21.2  18.7  13.0  34.3  40.5  20.8  

South Karelia (553) 11.5  13.2  18.2 13.2 10.5 19.6 15.9 11.8 18.1  15.5  11.6  36.3  44.3  20.5  

North Karelia (549) 11.7  11.1  17.0 10.9 9.1 18.1 13.3 10.1 21.6  16.0  11.2  29.6  28.3  16.5  

Lapland (544) 15.4  19.7  22.6 15.7 13.8 24.0 18.7 16.1 22.5  18.3  15.0  45.1  55.2  32.0  

Ostrobothnia (421) 12.4  12.5  15.8 14.1 10.6 19.1 18.1 11.6 19.3  19.3  11.8  38.0  57.2  14.4  

South Ostrob. (311) 12.3  14.9  13.6 11.7 9.4 15.8 16.4 12.0 20.3  21.4  13.4  36.6  61.5  21.5  

Kainuu (185) 16.3  32.2  17.1 15.2 16.1 21.6 24.6 21.8 21.6  26.1  22.3  43.7  80.9  39.4  

Central Ostrob. (160) 16.4  25.9  13.3 13.8 11.4 16.9 22.3 17.3 19.8  26.5  19.9  33.8  73.0  44.7  

Mean over areas 13.1  15.5  19.1 14.7 12.3 19.7 17.0 13.3 20.1  17.8  13.5  30.3  40.6  22.3  

Population value 6.7  5.1  13.3 11.0 12.2 8.6 6.6 6.8 8.2  6.4  6.7  5.4  5.0  5.6  
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Table 9: Absolute relative biases (in percent) for areas and population, by allocation. Estimation methods

for model-free allocations: 1=Horvitz-Thompson, 2=regression estimation, 3= empirical best linear

unbiased predictor (EBLUP).

  Model-related Model-free

Area (province) Three- Molefe Equal Costa Nonlinear Box-constraint

and size in units term and             programming

  Pareto Clark 1 2 3 1 2 3 1 2 3 2 1 3

Uusimaa (6,813) 7.9  5.9  0.5  1.6  14.7  0.9  0.7  7.8  0.4  1.6  8.2  1.0  0.6  3.4

Pirkanmaa (2,003) 1.9  1.1  0.3  0.4  2.4  0.5  0.2  1.4  0.1  0.0  1.7  0.2  0.4  0.3

Varsinais-Suomi (1,543) 2.2  0.5  0.3  1.1  3.5  0.1  0.9  1.7  0.2  0.1  0.9  0.2  0.1  3.8

Päijät-Häme (1,166) 0.7  1.0  0.5  0.6  1.3  0.1  0.1  0.2  0.2  0.4  0.2  0.3  0.1  4.3

Central Finland (1,141) 3.7  5.8  0.3  0.1  2.9  0.7  0.4  3.4  0.3  0.4  4.6  0.2  0.3  7.5

North Ostrob. (1,131) 0.7  1.4  0.1  0.1  1.0  0.0  0.3  1.0  0.2  0.4  1.5  0.5  0.8  1.6

Satakunta (1,017) 5.6  9.4  0.3  1.0  3.3  0.4  0.6  6.4  0.5  1.0  5.1  0.1  0.4  21.4

Kymenlaakso (929) 9.6  17.7  0.6  0.8  7.2  0.3  0.4  11.1  0.4  0.1  9.8  1.4  0.7  30.8

Pohjois-Savo (923) 3.9  6.5  0.4  0.6  2.7  0.4  0.4  4.2  0.5  0.7  4.7  0.5  1.0  15.8

Kanta-Häme (885) 4.3  6.7  0.2  0.0  2.6  0.1  0.4  4.5  0.3  0.7  4.8  0.1  0.3  12.6

Etelä-Savo (751) 4.4  5.7  0.4  0.3  2.5  0.6  1.0  4.6  0.1  0.4  4.6  3.5  0.4  12.9

South Karelia (553) 4.3  6.1  0.2  0.1  3.4  0.2  0.2  5.1  0.1  0.1  4.4  1.4  1.5  13.5

North Karelia (549) 6.8  6.5  0.3  0.1  3.6  0.3  0.3  4.7  0.2  0.5  6.1  0.2  0.4  11.8

Lapland (544) 8.5  13.2  0.4  0.6  6.8  0.7  0.5  9.7  0.2  1.0  7.8  1.0  1.0  25.3

Ostrobothnia (421) 2.3  1.7  0.1  0.2  1.9  1.3  0.6  1.5  0.7  0.0  2.2  1.4  0.8  1.7

South Ostrob. (311) 4.9  7.8  0.4  0.4  3.8  0.7  0.7  5.5  0.0  0.6  6.5  3.5  2.5  13.1

Kainuu (185) 10.0  27.1  0.8  0.2  10.7  0.6  0.0  15.5  0.9  0.2  15.6  0.9  1.5  32.5

Central Ostrob. (160) 7.0  16.9  0.5  0.0  2.0  0.3  1.3  7.8  0.2  3.0  10.2  6.6  1.7  36.9

Mean over areas 4.9  7.8  0.4  0.5  4.2  0.5  0.5  5.3  0.3  0.6  5.5  1.3  0.8  13.8

Population value 3.4  1.2  0.3  1.0  7.3  0.4  0.4  3.0  0.2  0.8  3.2  0.3  0.2  2.2

 


