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Abstract: 

Lyme disease (LD) is one of the dreadful tick-borne diseases. It is commonly caused by pathogen Borrelia 

burgdorferi and three different species of Borrelia. Number of LD cases being reported each year is 

increasing drastically in various parts of the world. Although history of LD dates back to late 1970s, LD 

diagnosis and treatment is yet a challenging task. The existing, Centers for Disease Control and Prevention 

(CDC) and Food and Drug Administration (FDA) approved serological diagnostic methods of LD diagnosis 

show low assay sensitivity. The sensitivity of the serological based LD diagnostic techniques is less than 69 

% for early or acute LD diagnosis. Therefore, there is an immense need for more sensitive diagnostic 

method.  

 

LD pathogens interact with various types of cells within the body such as neurons, muscle fibers, etc. The 

pathogens primarily disturbs the cellular pathways which causes fluctuations in the levels of metabolites, 

including the levels of amino acids. We used nuclear magnetic resonance spectroscopy (NMR) which is one 

of the promising techniques for omics studies, to detect and quantify metabolites in LD patient sera. We 

observed a strict elevation in the level of lactate and decrease in the level of glucose, choline and alanine in 

majority of acute and late LD patients sera used in this study. Statistical modeling and results suggest that 

based on the identified features acute and late LD patients can be distinguished from the healthy donors 

with sensitivity 80 % and specificity 90 - 100 %. Notably, 89 % of the CDC negative lyme samples were 

correctly classified based on the identified features. Our results suggest that metabolic profiling of LD 

patients could be a better alternate for both acute and late LD diagnosis with improved sensitivity, compared 

to expensive serological techniques. 
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1. INTRODUCTION 

1.1 Lyme disease 

In the year 1977, Dr. Alan Steree and colleagues first recorded Lyme disease (LD) as an infectious illness [1]. 

The major causative organisms of LD are Borellia burgdorferi, Borellia garinii, Borellia afzelli [1] and 

recently discovered Borellia myonii [2]. Borellia is transmitted to humans by ticks from animals such as deer, 

birds, rats, etc. Borellia is also called as spirochete because of its spiral morphology. The spirochetes measure 

10-30 μm in length and 0.18-0.25 μm in width [3]. The parasite is known to be pleomorphic as it has an ability 

to change its morphology [4]. These parasites adapt to host’s body temperature and ambient conditions like 

many other bacteria and viruses [4]. Wherever, humans are exposed to Lyme vectors the chances of acquiring 

LD is higher. Particularly, people who live in close proximity to forest areas with high deer population are 

more likely affected by LD. There are three different stages of LD namely acute LD, early disseminated LD 

and late LD [5]. Acute LD or early localized LD is the stage one LD. If LD is not diagnosed and treated at the 

early stage or initial phase of infection, then it leads the patient into severe phases. The symptoms of LD in 

patients includes headache, fatigue, fever and chills, muscle aches, joint aches, swollen lymph nodes, neck 

stiffness, nausea, vomiting, erythema migrans (EM) etc., [2,6]. EM rashes are commonly called as ‘bull's-eye’ 

rash [2,6]. EM rash can be observed in 80 % of acute LD or early localized LD patients within a period of 7 

to 14 days after the tick bite [5]. The symptoms that occur in the advanced stages include facial nerve weakness 

and paralysis (Bell's palsy), intermittent-joint pain, inflammation in the brain, heart problems and spinal cord, 

etc., [7–10]. Van Dam and colleagues, suggested that this diversity in symptoms and severity of the infection 

depends on the species of Borellia [11]. LD patients infected by Borellia burgdorferi commonly suffer from 

joint pain and arthritis associated illness, LD patients infected by Borellia garinii commonly suffer from 

neurological symptoms and Borellia afzelli infected LD patients shown skin disorders [1,11]. Studies with 

mice models propose that severity in critically ill LD patients is due to auto-immune condition where the host 

immune system functions abnormally and begin to damage the native cells of host itself [1].  

1.1.1 Global impact 

In USA, Europe, South Africa, Brazil and in parts of Asia, LD is one of the dreadful vector borne diseases. In 

US states and territories 402,502 LD cases were reported in the period 2014 - 2016 [12] and according to 

scientists from Centers for Disease Control and Prevention (CDC) more than 300,000 LD cases are reported 

each year in US alone [13]. LD endemic countries across the world are shown in Figure 1. In different parts 

of the world, different species of Borellia remain to be a common causative of LD. Borellia burgdorferi is 

common in America whereas B.garinii and B.afzelli are common in Europe and Asia [14]. Similarly, 

corresponding vectors or carriers of Borellia differ from one region to another [1]. For example Ixodes 
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scapularis and Ixodes pacificus are the major vector in USA, and Ixodes ricinus is the major vector in Europe, 

Ixodes persulcatus and Ixodes ricinus are the major vector in Asia [1]. 

   

Figure 1: Lyme disease endemic countries. Parts of the world where LD is endemic with moderate and high occurrence are shaded 

blue. [Adapted from https://bewareofthebugs.com/diseases/lyme-disease/]. In countries such as Pakistan, Thailand, parts of Asian-

Russia etc.,no documented occurrence found [http://www.cvbd.org/en/occurrence-maps/world-map/]. 

1.1.2 Lyme diagnosis and treatment 

Lyme disease patients are treated with antibiotics such as amoxicillin, doxycycline and cefuroxime axetil in 

the initial phase of infection for a period of two to three weeks [13] and treated with cetriaxone, penicillin, 

cefuroxime axetil, amoxicillin or doxycycline in disseminated stage for 10 to 30 days [13]. Modes of drug 

administration are oral and intravenous. Though these antibiotic treatments are recommended by Infectious 

Diseases Society of America (IDSA) and European Concerted Action on Lyme Borreliosis (EUCALB, 

www.eucalb.com) [15] the duration of the treatment is still debated and it is a controversial part. There are 

numbers of therapeutic agents for LD, but the real challenge lies in diagnosis. Particularly early diagnosis is 

very challenging. LD testing methods currently available are expensive. According to 2014 statistics for LD 

in United States of America 2.4 million specimens tested with an approximate cost of 492 million US dollars 

which is roughly 4,800 US dollars per sample [5]. Serological based diagnosis is the widely practiced method 

for LD diagnosis [16]. Two-tier testing Algorithm (TTTA) is one such serological based technique in which 

two set of assays performed consecutively [5]. The decision tree of TTTA is presented in Figure 2. TTTA 

involves serological assays such as Enzyme Immunoassay (EIA) and Western Blot (WB). Individuals 

suffering from LD symptoms for a period ≤ 30 days are tested for IgM and IgG and those with prolonged 
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symptoms > 30 days are tested only for IgG [5]. TTTA is Food and Drug Administration (FDA) approved 

diagnostic method. 

 

Figure 2: Schematic of Two Tier Testing Algorithm (TTTA). The schematic shows the two tier testing decision tree, patients 

with clear symptoms of LD such as EM rash are first subjected to Enzyme Immunoassay (EIA) or Immunofluorescence Assay 

(IFA). If the test results are negative then the patients are advised to consider alternate diagnosis and if the results are positive or 

equivocal then based on the count of days the patient had LD symptoms IgM or IgG western blot (WB) is done. If the results of WB 

are positive then the patients are treated with antibiotics.  

[Adapted from https://www.cdc.gov/lyme/healthcare/clinician_twotier.html] 

Various diagnostic kits based on TTTA are commercially available [16]. Although the result heterogeneity 

exists among the kits, they are used in clinical diagnosis [5]. Recently, novel approaches have been developed 

to detect 10 unique Borrellia burgdorferi antigens including previously reported OspC and FlaB. If two out 

of 10 antigens are present in the sample then the patient is considered to be LD positive [17]. Molecular 

technique namely iPCR (immuno-Polymerase chain reaction) was developed and thought to be used for LD 

diagnosis but it is not approved by Food and Drug Administration (FDA) and Centers for Disease Control and 

Prevention (CDC) [17]. In 2015, Molins and his colleagues proposed 44 lipids and lipophilic as bio signatures 

of early LD [18]. Based on these features they tried to distinguish LD patients from healthy donors and 

negative Lyme samples and made a comparison with serological assays [18].  

1. 2 Metabolism and metabolomics 

By standard definition, metabolism is the process of building up or breaking down of compounds in living 

organisms. Every single organism from unicellular to multi-cellular performs numerous biochemical reactions 

in order to survive. Organic molecules such as amino acids, nucleotides, small proteins (usually less than < 

300 kDa), fatty acids, triglycerides, signaling molecules involved in this process of metabolism are called 

metabolites. They can be found in all types of body fluids such as urine, semen, saliva, sweat, etc., [19]. The 
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metabolic profile of individuals differs from one another based on the factors such as living environment, food 

habits, genetic background and pathological stimuli [20]. The metabolic profile of a person reflects his or her 

physiological condition and so the studies about metabolites have become common in biology and medicine 

[20,21]. Metabolomics and metabonomics are the general terms used interchangeably to refer the study about 

metabolic changes in an organism [20]. The most important tools commonly used in metabolomics are liquid 

chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear 

magnetic resonance (NMR) spectroscopy [22,23]. NMR-based metabolic profiling is a sample non-destructive 

technique [19,24], but compared to LC-MS, NMR spectroscopy technique is less sensitive. Yet, NMR 

technique is suitable for biomarker identification because of its remarkable ability to probe novel metabolites 

[23]. Beckonert’s article that was published in 2007 is the most cited article for metabolomics studies [23].  

1.2.1 Biomarkers 

Diagnosis based on metabolites and molecular features dates back to 1500 BC. During this period the 

physicians from south-east Asia and Egypt used simple technique to diagnose diabetes which is considered to 

first clinical test for diabetes [25]. In modern science a biomarker is used for disease diagnosis, to study the 

effect of therapeutic agents on patients and disease prognosis [23]. A biomarker is an indicator of disease, 

physiological and biological condition of the living organism [26]. It is usually a significant feature such as 

chemicals, metabolites and proteins which are present in the body fluids of the diseased that can be easily 

acquired and tested. Gene mutations, RNA transcripts and cell counts can also be biomarkers [23]. Ability of 

a biomarker is typically evaluated by its sensitivity and specificity [23], which are given by following relation 

(1.1) and (1.2),   

                                                  Sensitivity =
Number of true positives

Number of positives
                                              (1.1) 

 

                                                  Specificity =
Number of true negatives

Number of negatives
                                                     (1.2) 

 

A cost-effective way of checking the utility of a biomarker is Receiver Operating Characteristic (ROC) curve 

analysis. In ROC curve specificity of a biomarker (in x-axis) is plotted against sensitivity (in y-axis) and from 

the area under curve (AUC) value of the generated curve, the reliability of biomarker in clinical diagnosis is 

graded. If AUC value of the ROC curve is 1 then the biomarker is considered to be excellent and if AUC is 

0.5 or less, then the biomarker is considered to be a random classifier. Such metabolite cannot be used for any 

practical purpose. A scale for assessment of biomarker based precisely on its AUC is given in Table 1 [27]. 
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Table 1. Scale for assessment of biomarker 

AUC Biomarker utility 

0.9 - 1.0 Excellent 

0.8 - 0.9 Good 

0.7 - 0.8 Fair 

0.6 - 0.7 Poor 

0.5 - 0.6 Fail 

 

Modern approach of identifying and quantification of metabolites for diagnostic purposes is currently used in 

more than 200 clinical tests. For example, clinical tests such as detecting urinary nitrate in diagnosing patients 

with bacterial infections, bilirubin to monitor the liver function and many other are based on quantification or 

semi quantification of metabolites and biomarkers [23]. Some of the considerable merits of metabolite 

biomarkers compared to protein biomarkers are non-invasive sample collection, speed and quantitative 

accuracy [27]. A list of metabolites, their respective functions and role as biomarker is presented in Table 2. 

Table 2. List of metabolites, functions and their role as biomarker [[28], HMDB] 

Metabolites Function Disease associated with metabolites and 

their role as biomarker 

α glucose Primary source of energy 

 

- 

β glucose Primary source of energy 

 

- 

Lactate Several bio-chemical process and play major 

role in brain metabolism. 

Early stage biomarker for cancer [29] 

 

Choline Precursor of acetylcholine and play essential 

role in lipid metabolism 

Biomarker for acute coronary 

syndrome [30] and cancer diagnosis [31] 

 

Creatine Helps in storage and transmission of energy 

from high energy phosphate compounds. 

Biomarker for mitochondrial disease 

[32,33], hepatocellular necrosis and renal 

disease [32] 

 

Glutamine Most abundant but non-essential amino acid. 

Studies suggest that they are essential for 

immune system, inter-organ nitrogen 

transport, precursor for neurotransmitter. 

[34] 

Cancer diagnosis [35–37] 
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Glutamate Neural communication and considered to 

play role in cognitive functions of the brain. 

 

Indicator of chronic kidney disease [35] 

 

Glycine Associated with synthesis of phospholipids, 

collagen and in energy release. 

Cancer diagnosis [38,39] 

 

Leucine One of the three Branched chain amino acids 

(BCAA) involved in muscle stress and 

energy metabolism. It stimulates insulin 

release. 

Cancer diagnosis [40–42] 

 

Valine One of the three branched chain amino acids 

(BCAA) involved in muscle, stress and 

energy metabolism. 

Cancer diagnosis and its deficiency is the 

sign of neurological defects [38,41,43] 

 

Alanine Alanine is one of precursor and also a 

regulator in glucose metabolism. It is also an 

essential amino acid for lympocyte 

reproduction. 

 

Cancer diagnosis [35,39] 

LDL Carrier of cholesterol, triglycerides and fatty 

acids. 

Cardiovascular disease [44] and 

atherosclerotic kidney disease [45] 

 

VLDL Carrier of cholesterol, triglycerides and fatty 

acids. 

Bio marker for nonalcoholic steatohepatitis 

[46] 

 

Citric acid Release of stored energy through TCA cycle 

or citric acid cycle. 

The evaluation of plasma citric acid is 

scarcely used in the diagnosis of human 

diseases. 

 

 

1.2.2 Software packages for metabolomics 

SIMCA-P, SAS, metaP-server, MeltDB, MetaboAnalyst are some of the software available for metabolomics 

data analysis and interpretation. Among those, MetaboAnalyst is commonly used by academic researchers in 

metabolomics community [47]. MetaboAnalyst is a web based freeware developed mainly for supporting 

quantitative metabolomics. It is a user friendly software, and it is one of the preferred software for univariate, 

multivariate and pathway analyses [47]. The process of analysis using MetaboAnalyst involves five following 
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steps (1) data formatting (2) data processing (3) data normalization (4) signature feature identification 

(signature feature identification and building a model in case of biomarker analysis) (5) Choosing the suitable 

algorithm [47]. In order to reduce the over fitting problems in ROC curve analysis described in section 1.2.1, 

MetaboAnalyst tool allows the user to build a model, based on own judgments of the users.  

1.3 Nuclear Magnetic Resonance spectroscopy  

1.3.1 General information 

Nuclear magnetic resonance (NMR) spectroscopy is an advanced technique that works on the principles of 

classical physics and quantum mechanics. In the year 1946, NMR spectroscopy was first developed by 

research groups at Stanford and M.I.T. in USA and the use of the proton NMR for quantitative analysis was 

first reported by Jung nickel and Forbes few years later in 1963 [48]. Since then this technique has gained its 

importance in various fields of science especially, medical science. NMR spectroscopy is similar to the well-

known magnetic resonance imaging (MRI) technique. The fundamental principle behind this staggering NMR 

technique is detection of nuclear spin states of the atoms in a molecule placed in a strong magnetic field, with 

the help of radio frequency. A simplified pictorial representation of NMR set up is shown in Figure 3.  

 

Figure 3: Simplified representation of NMR spectroscopy setup. NMR spectroscopy setup comprises strong electromagnets, 

magnetic field strength ranging from 2.35 Tesla to 21.2 Tesla, radio frequency (RF) transmitter, detector coil positioned in between 

the magnets, rotating sample holder, etc., as depicted in this figure. [Adapted from https:// 

www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/nmr/nmr1.htm]. 

This technique is commonly used to accurately determine the complex structure of organic molecules and to 

study complex protein structures. Physical phenomena involved in NMR technique are usually found to be 

complicated which actually makes it more interesting. Despite its complexity, it is one of the effective 

techniques for structural biology and metabolomics [22,49,50]. The cost of the NMR spectrometer depends 

primarily on the strength of the magnet. For instance NMR spectrometer 2.35 Tesla magnet is less expensive 

compared to the one with 21.2 Tesla. The strength of the magnet is the major factor that influences the 

sensitivity of the technique. In order to use NMR spectroscopy as an analytical tool for a study, it is very 

important to understand the physical phenomena involved in it which includes nuclear spins, magnetic 
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resonance, etc. In experimental point of view, basic understanding about ideas, such as pulsed NMR and 

mathematical tools namely the Fourier transform [51], are encouraged.  

1.3.2 Magnetic resonance 

Atomic nuclei are charged particles and so a spinning nucleus can be compared to spinning bar magnet for 

easy understanding. When a spinning nucleus is placed in a strong magnetic field, upon irradiation with 

suitable frequency the nucleus gains energy and switches to higher energy state. This process of switching or 

flipping from one energy state to another is termed as nuclear magnetic resonance [48]. In a time interval T 

the nucleus relaxes to its low energy state or stable state (usually in many microseconds). Faraday’s law of 

induction clearly states that a change in the magnetic field linked to a coil induces an electron motive force 

(emf) in it. Thus, flipping of the spin systems/nucleus placed in the strong magnetic field induces voltage in 

the surrounding detector coil. When the excitation using radio frequency is turned off, the induced voltage 

decays with respect to time which is known as free induction decay (FID). The detected voltage is amplified 

and processed. The FID signal is a very complex time domain data, it is Fourier transformed to a comparatively 

simple data/ spectra and the process is depicted in Figure 4. The energy required to switch the orientation of 

the nucleus from lower energy state to higher energy state depends on the strength of the magnetic field B0. It 

is given by equation 1.3 [48], 

                                                      ∆𝐸 =
𝛾ℎ𝐵0

2𝜋
 ,                                                                                                  (1.3) 

Where h is the Planck’s constant (6.63 × 10-34 J.s), 𝛾 is the gyromagnetic ratio which is a constant number for 

specific nuclei. The gyromagnetic ratio 𝛾 is given by equation 1.4,  

                                                             𝛾 =
2𝜋µ

ℎ𝐼
,                                                                                             (1.4)         

where µ is the magnetic moment  and I is the spin number, energy required to flip the nucleus (according to 

Niels Bohr condition, proposed in the year 1913) is given by equation 1.5, 

                                                         ∆𝐸 = ℎ𝑣.                                                                                                        (1.5) 

From (1.3) and (1.5), transition frequency 𝑣 that is required to initiate the nuclear transition can be given as 

follows 

                                                             𝑣 =
𝛾𝐵0

2𝜋
.                                                                                                        (1.6) 
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The equation (1.6) is commonly called as Larmor equation. The nuclear precession rate is given by equation 

1.7,                                                 

                                                             𝜔0 = 2𝜋𝑣,                                                                                                        (1.7) 

where 𝑣 is the transition frequency. 𝜔0 is also termed as Larmor frequency or angular Larmor frequency. 

 

Figure 4: An example of the Fourier transformation (FT) of free induction decay. FID-time domain data on left and  the Fourier 

transformed FID on right. 

1.3.3 Nuclear spin and Zeeman Effect 

Nuclear spin (I) is represented by a value which can be an integer or a half integer. The nuclei of a hydrogen 

atom 1H (Protium), naturally abundant form of hydrogen, have only one proton and it has spin ½. Nucleus 

with odd number of nucleons such as 1H, 13C isotope of carbon etc., are capable of spinning. Nucleus with 

odd number of protons, when placed in a strong magnetic field can exist in different energy states or spin 

states due to Zeeman effect which is the splitting of energy levels in the presence of a non-fluctuating magnetic 

field as depicted in Figure 5. The number of such different states, a nucleus can exist is given by, 2I+1 rule. 

For example, I of the 1H is ½ and it can exist in two different energy states as per the 2I+1 rule, which are -½ 

and +½. The nuclei with higher energy précis against the direction of the magnetic field whereas the nuclei 

with lower energy précis along the direction of the polarizing magnetic field. The transition frequency 𝑣 of 1H 

in a 14.1 T magnetic field is 600 MHz. As the strength of the magnetic field increases, the transition frequency 

required to flip the nuclei from lower energy state to higher energy state also increases, as presented in figure 

5. 
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Figure 5: Zeeman Effect. A splitting of energy levels in the presence of non-fluctuating magnetic field is depectited in this figure. 

The nucleus in lower energy state spins along the direction of the magnetic field (on a precision axis) and the nucleus in higher 

energy state spins against the direction of the magnetic field (on a precision axis). [Adapted from Thomas 1998]. 

1.3.4 Nuclear spin population distribution 

In practice, the sample to be analyzed has the number of nuclei approaching the Avogadro number and except 

for a small population of the nucleus, the magnetization of the other nuclei cancels out each other. Therefore 

the detected output is actually the net effect of a small population, which is then amplified and processed to 

obtain necessary information. In the absence of magnetic field, all nucleus précis on different axis and when 

the magnetic field is applied, the nucleus précis on parallel axes. The population distribution of the nucleus 

obeys Boltzmann distribution [48], refer to Figure 6. The distribution of the nucleus population in an 

undisturbed condition is given by 

 

                                                        
𝑁𝑢𝑝𝑝𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟
 = 𝑒−ℎ𝑣/𝑘𝑇,                                                                                         (1.8) 

 

where Nupper is the population of the nuclei in higher energy state and Nlower is the population of the nuclei in 

lower energy state, k is the Boltzmann constant, and T is the absolute temperature in Kelvin [48]. From 

equation (1.8), for protons placed in magnetic field of 18.8 T (transition frequency is 800 MHz) at thermal 

equilibrium at 298 Kelvin (room temperature) the ratio of the population of nuclei  is 0.999872 [48]. 
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Figure 6: Magnetic field strength dependence of nuclear energy levels. This figure shows the increase in detectable nuclear 

population, with respect to magnetic field strength. The energy required to flip the nucleus ∆𝐸 also increase as a function of magnetic 

field strength [Adapted from Thomas1998]. 

1.3.5 Chemical shift 

The resonance frequency of the spin system depends on the local chemical environment of nucleus as the 

electron shielding of the nucleus is influenced by surrounding atoms. This effect of local environment on spin 

system is reflected in detected signals which helps us to know the nearby nuclei and the chemical groups. 

These information can be acquired directly when the time domain data is Fourier transformed to frequency 

domain data. The frequency domain data is expressed in Hz, which is usually a more of complex number, 

making a resonance peak hard to be recognized and compared. In addition to this, the resonance frequency of 

a compound is dependent on the applied magnetic field, see equations (1.6) and (1.7) i.e. the resonance 

frequency of a nucleus will vary when measured in a different magnetic strength, making it even more hard 

to recognize and compare data measured with different NMR spectrometers. For these reasons, a magnetic 

strength independent factor, the chemical shift, usually represented as 𝛿, is used. It is more convenient to 

compare the peak positions with their respective chemical shifts expressed in 0 to 20 ppm and it given by 

equation 1.9,                                      

                                                  𝛿 =
𝑣𝑠𝑎𝑚𝑝𝑙𝑒−𝑣𝑟𝑒𝑓

𝑣𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟
× 106,                                                                                  (1.9) 

 

where 𝑣𝑟𝑒𝑓 is resonance frequency of a reference standard, 𝑣𝑠𝑎𝑚𝑝𝑙𝑒 is resonance frequency (in Hz) of the 

analyte and 𝑣𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟 is the spectrometer frequency. The principles and parameters discussed about NMR 

so far in this work, is only a pinch of whole concepts associated with NMR spectroscopy. More detailed 

information can be found in the text of Thomas L.James [48,52].  
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1.3.6 Signal to noise ratio 

Signal to noise ratio (S/N) in NMR spectra can be improved by signal averaging as a factor of √n where n is 

the number of signal averaged, according to ceteris paribus approach [48,53]. It can be done with ease by 

exciting the spin systems with RF at different time periods and detecting the FID consecutively for n number 

of times. This process is commonly addressed as pulsing which is one of the important area of NMR 

spectroscopy. NMR spectroscopists can design the pulse sequence based on the sample type and other 

requirements. These pulse sequences can also act as filters when designed accordingly. Some pulse sequences 

are capable of attenuating the signals from the nuclei of unwanted entities such as large proteins, by altering 

the spin orientation and time taken for spin lattice relaxation of those spin systems. As stated in section 1.3.2, 

when the effect of RF pulse is removed, the spin system relaxes to thermal equilibrium. The time taken by the 

spin system for longitudinal relaxation represented as T1 and for transverse relaxation represented T2, depends 

on type of the nucleus and its local magnetic environment. 

1.3.7 1D proton NMR data analysis and statistical methods 

In order to lower the complexity in NMR data processing and compound identification various tools and 

software such as Chenomx, Mesternova (Mnova), AMIX, TopSpin were developed and are commercially 

available. With the help of these software packages, peak picking and identification of the metabolites can be 

done automatically or semi-automatically, as some of these software are linked with databases such as HMDB 

(the Human Metabolome Data Base), BMRB (Biological Magnetic Resonance data Bank) etc. Since no single 

review article can be found regarding the utility and performance of the software, no software can be 

considered superior over another. However, from the opinions of the users it can inferred that each of the 

software has its own merits and demerits for example Mnova and Top spin seems to be the most commonly 

used software packages for 1D NMR data processing (Phase correction, baseline correction), whereas 

Chenomx is usually used to perform quantitative analysis on 1D NMR spectra. The processed information is 

then studied using statistical tools. Generally, the role of the statistical approaches such as Principle component 

analysis (PCA), Partial Least Square-Discriminate Analysis (PLS-DA), etc., is to reduce the complexity of a 

data making it more understandable inorder to study the relationship between the samples. Partial Least 

Square-Discriminate Analysis (PLS-DA) is a supervised classification method [27].  Both PCA and PLS-DA 

identify the variables or principle components that can be used to classify the data sets, by identifying the 

direction along which the variance is high for any given data set.  PLS-DA is preferred over PCA in 

quantitative, semi or relative quantitative analysis. The detailed explanation of this method is discussed 

elsewhere [54,55].  

1.4 Serum separation / preparation  

Serum is the body fluid separated from blood which does not contains fibrinogen or other clotting factors. One 

of the major differences between the blood serum separation and blood plasma preparation procedure is the 



13 

 

usage of anticoagulant in the process of plasma preparation [www.proimmune.com]. From 8 ml of blood, 3.2 

ml serum can be acquired. The step by step process is depicted in the Figure 7. The tube containing whole 

blood is incubated in an upright position at room temperature for 45 minutes. Then, centrifuged at 3000 rpm 

for 10 minutes. Finally, the supernatant (serum) is carefully collected at room temperature in a separate tube 

[www.proimmune.com]. Serum aliquots are stored separately at – 80 °C in cryo-vials and labeled accordingly. 

 

Figure 7: Serum separation method. The two step process of serum preparation is depicted in this figure. The orange layer in 

between the top layer and bottom most layer is their interphase that need not be disturbed while serum collection. 

[www.proimmune.com]. 

 

2. AIM OF THE STUDY 

Lyme pathogens interfere in cellular functions which results in fluctuations in the level of metabolites. These 

metabolic changes are useful information about LD patients and some of the metabolites can possibly be the 

biomarkers of LD. In this master thesis project, specific aims were 

a) To study the metabolic changes in LD patients using NMR spectroscopy. 

b) To perform biomarker analysis. 
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3. MATERIAL AND METHODS 

Human sera sample collection was approved by the Federal Institute for Drugs and Medical Devices, Germany 

(project no. 95.10-5661-7066); and Western Institutional Review Board, United States of America (USA) 

(USMA201441, WIRB® protocol #20141439). Necessary permission were acquired from all patients enrolled 

in this study. The samples were categorized into acute LD, late LD, negative Lyme based on the CDC criterion. 

Ten samples from healthy donors and ten samples from each of the other three categories, in total 40 samples 

were used in this study [Refer appendix Ⅰ for sample description].  

3.1 Sample preparation  

All serum samples were prepared by standard serum separation protocol prior to this study for other 

characterization purposes. NMR tubes of 5 mm outer diameter and 7 inches in length were purchased from 

Wilmad, model 541-PP-7, and used for all NMR measurements. TSP (3-Trimethylsilyl propionic-2, 2, 3, 3-

d4 acid sodium salt), used for spectral referencing was purchased from Acros Organics. Deuterium oxide, 

deuteration degree min. 99.9 % for NMR spectroscopy was purchased from Merck and used for buffer 

preparation and to dissolve TSP. Sodium phosphate buffer (125 mM) was prepared to maintain a constant pH 

for all the samples throughout the course of experiments. The pH of the buffer was measured using the pH 

meter and adjusted to pH 6.0, by adding 1M potassium hydroxide drop wise. Few minutes prior to 

measurement the sera were thawed and mixed well before transfering them to the NMR tube. 100 µl of serum 

was suspended in 400 µl of 125 mM sodium phosphate buffer and 3 µl of 1 % TSP solution was added to the 

mixture. The resultant mixture was subjected to measurement using 800 MHz Bruker AVANCE III HD NMR 

spectrometer, equipped with cryogenically cooled 1H, 13C, 15N triple-resonance probehead at Nanoscience 

Center, JYU. 

3.2 NMR-data acquisition parameters 

A special pulse program with T2 filtering was employed to collect 1H spectrum. The purpose of T2 filtering 

was to attenuate the signal from high molecular weight compounds mainly proteins. The T2 filter employes 

Carr-Purcell-Meiboom-Gill (CPMG) sequence that is a spin-echo sequence typically utilized for measuring 

T2 relaxation times but can be applied to attenuate the signals from proteins. The sequence of CPMG is as 

follows –RD-90°-(t-180°-t)n-ACQ, where RD is relaxation delay, 90° and 180° represents 90° RF, 180° RF 

pulses, t is the spin-echo delay, n represents the number of loops and ACQ stands for acquisition [19]. In 

addition, during the RD period a weak RF field at the frequency of water protons was applied. This actively 

suppress the water magnetization and improves the overall sensitivity as higher receiver gain can be used 

during signal detection. Some of the essential parameters employed are listed in the Table 3. Shimming was 

done for every sample to increase the accuracy, precision, and reproducibility. 
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Table 3. NMR Data acquisition parameters 

Acquisition mode: DQD 

Time domain points (TD):  65000 

Number of dummy scans : 4 

Number of scans (ns):  64 

Spectral range:  0-20 ppm 

Receiver gain:  32 

Sample temperature:  298 K 

Acquisition time  2.04 seconds 

FID resolution:  0.489064 Hz 

Filter width:  4032000 

D1 4.0 seconds 

3.3 Data processing and analysis 

1H NMR spectra of the samples were phase corrected and calibrated manually using the TopSpin 3.2 software. 

A brief table of data processing and analysis is presented appendix Ⅰ.  Exponential weighting function with 

line broadening 0.3 Hz was used for all the spectra prior to Fourier transform. Baseline correction was done 

automatically using Polynomial of Degree ABSG in TopSpin 3.2. The integral area of the reference TSP peak 

at δ 0.0 was calibrated manually for all spectra. Calibration of integral area was done by comparing the TSP 

peak in one of the sample for which integral area was calibrated to 0.01 with that of the TSP peak in all other 

samples. Integral values of metabolites were obtained with respect to calibrated TSP peaks. The relative 

integral values of 15 metabolites of interest obtained carefully from all the spectra. Mean integral values of 

these individual metabolites were then calculated and histograms are prepared using Origin Pro to study the 

metabolic differences. The integral values of the metabolites were formatted and labeled as per the 

requirements mentioned on MetaboAnalyst website [www.metaboanalyst.com]. This online software 

MetaboAnalyst, was used to compare the samples and their categories. ROC curve based model evaluation 

(Tester) tool, available in MetaboAnalyst software was used to build and test biomarker models. PLS-DA 

algorithm was used in class prediction. As over fitting is very common in this type analysis, metabolites were 

not selected based on their AUC and fold change values that were automatically generated by the online 

freeware. Instead, they were selected based on the following four criterions 1) sum spectra; 2) role of the 

metabolite and its association with LD symptoms, given in Table 2; 3) metabolite that vary in majority of the 

patient population; 4) multivariate exploratory ROC analysis tool available in MetaboAnalyst [Refer appendix 

Ⅲ]. The features were chosen to build model and biomarker analysis was performed. 
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4. RESULTS  

Sample preparation is one of the crucial parts in metabolomic study because of the diversity in the composition 

of human sera and varying ionic concentrations. Test experiments were conducted in order to standardize the 

sample preparation protocol and for instrument optimization. Human serum purchased from Sigma Aldrich 

(Male, USA-origin, AB plasma, Lot# SLBN8825V) was used for the trial experiments. Since the sera samples 

of LD patients were limited and demanding, it was necessary to estimate the minimum quantity of serum that 

can be used in this study without compromising with the instrument sensitivity. The sensitivity of the NMR 

spectroscopy technique is different from the sensitivity discussed about biomarker analysis. Test experiments 

were conducted with four different ratios of serum and buffer as mentioned in Table 4, and results are shown 

in Figures 8 and 9.  

Table 4. Buffers and serum sample ratio tested for sample volume optimization. 

Sample 

name 

Dilution 

factor 

Total sample volume 

              (500 µl) 

Scan time 

in minutes 

pH Internal 

reference 

Measurement 

temperature 

in K Buffer vol. in 

µl 

Serum vol.in 

µl 

T1 1:2 250 250 1 6.0 - 298 

T2 1:5 400 100 1 6.0 - 298 

T3 1:10 450 50 1 6.0 - 298 

T4 1:20 475 25 1 6.0 - 298 

 

                                 

Figure 8: 1H NMR spectra of human serum (δ 1-4.7). 1H NMR spectra of the human serum in four different buffer to serum 

volume ratio is show in this figure. T1, T2, T3, and T4 spectra represents the four different dilutions of human serum. Each spectra 

is placed on top of each other for comparison. (Spectra was not calibrated since no standard or reference used in these trials). 
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Figure 9: 1H NMR spectra of human serum (δ 0-1.7). These spectra were acquired in ~ 1 minute quick scan. The proton peaks 

of amino acids such as valine, isoleucine, and leucine are shaded grey. The signal to noise ratio of the spectra are low. In other 

words the spectra are noisy, because of the less number of scans and measurement time.  

By comparing the spectra shown in Figure 8 and 9, 1:5 serum buffer ratio was found to be suitable for our 

experiments. In other words 100 µl of serum sample were found to be sufficient for our study as there is lesser 

probability of losing information about the metabolites present, despite using lower sample concentration. In 

Figure 9 (scaled to show δ 0-1.7 ppm) the amino acids and small proteins peaks that were naturally present in 

lesser concentration can be seen in all four spectra. The peak intensity was near the noise level, especially in 

T2, T3, and T4 spectra due to lesser sample volume compared to T1. This was circumvented by signal 

accumulation i.e. by increasing the number of scans per FID, but S/N can be improved only to the square root 

of number of scans. For example, 100 times longer measurement increases S/N by only the factor of 10. The 

peak position misalignments were noticed even after spectral calibration, one such misalignment is shown in 

Figure 10. This is due to change in pH and it is mostly unavoidable especially in this type of samples (serum). 

The whole range (δ 0-8.35) spectrum is shown in Figure 11. The list of metabolites identified is presented in 

Table 5. 

                                       

Figure 10: 1H NMR spectra of one sample in each categories overlaid (δ 7.5- 8.35). The protons peaks of histidine can be seen 

at different chemical shifts for different samples. Amino acid histidine which is known to have nitrogen bound labile protons are 

readily influenced by slight changes in their chemical environment as manifested in figure 10. 
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Figure 11: 1D 1H NMR spectra of healthy donor. Region of water signal (δ 4.7-4.9) removed manually. The region above δ 

8.2 is not shown because no prominent peaks were noted in that region. Table 5 shows 24 metabolites and their corresponding 

chemical shifts.  

 

Table 5. Metabolites and the groups responsible for corresponding peak positions. 

Metabolite Group 
 
1H Chemical shift δ (ppm) 

 

No. 

α and β Glucose CH 

 

5.25, 4.65, 3.9, 3.87,3.72, 3.2 

 

4 

 

Unsaturated lipids 

 

CH*=CHCH2 

 

5.33 3 
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Lactate 

 

CH3 

CH 

4.12, 1.3 5 

Phenylalanine 

 

Aromatic ring CH 7.34, 7.39 2 

Tyrosine 

 

Aromatic ring CH 6.9, 7.2 11 

Histidine Aromatic ring CH 7.09 12 

Alanine 

 

β CH3 1.50 18 

Valine 

 

γ CH3 1.05 19 

Choline N+(CH3)3 3.22 9 

Creatine 

 

N (CH3) 3.05 10 

Glutamate 

 

γ CH2 2.36 13 

Glutamine 

 

γ CH2 2.46 13 

Leucine and Isoleucine 

 

δ CH3 0.85-0.9 15 

Glycine 

 

CH2 3.573 8 

Threonine 

 

CH2 4.26 6 

Serine 

 

CH2 3.97, 3.99 7 

3-Hydroxy-butyrate 

 

CH3 1.19 20 

VLDL 

 

CH3 0.9, 1.3 21 

LDL 

 

CH3 0.8, 1.2 22 

Pyruvic acid 

 

CH3 2.38 17 

Formic acid 

 

OH 8.4 1 

Citric acid 

 

CH2 2.55, 2.66 16 

 

4.1 Metabolic differences 

The samples were randomly chosen from each category and overlaid to identify the differences. The 

standalone spectra and overlaid spectra are shown in Figure 12 a and 12 b. The level of lactate (δ 4.12, 1.3) is 

found to be high in acute LD and late LD patient sample compared to healthy donor and negative Lyme as 

can be appreciated from Figure 12 a, simultaneous decrease in the level of glucose (δ 4.65) suggested that 

there can be a correlation between the levels of these metabolites.  
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Figure 12: 1H NMR spectra of one sample from each category in different layouts (δ 0.5-4.5 ppm) a) Individual spectra of one 

random sample in each of the categories b) Overlay spectra of the same samples from each category.The differences among the 

spectra can be clearly seen in overlay spectra. 

However, the difference in the level of metabolites such as glycine, creatine etc., were not consistent, even 

among the samples of same category. For this reason sum spectra were prepared. The individual spectra of all 

samples in each category except one sample in negative category were taken into account for sum spectra. All 

individual spectra in each of the categories were summed up to prepare the sum spectra shown in Figure 13 a 

and 13 b. The sum spectra showed clear differences in the levels of α glucose, β glucose, lactate, citric acid 

and choline which eventually prove their importance in biomarker analysis. No remarkable changes were 

noticed in metabolites such as formic acid, phenylalanine and tyrosine and it can be seen in Figure 13 b. For 

further investigation, the integral area of each metabolite that represents, the metabolite concentration was 

compared with the mean integral value of the respective metabolite in healthy donors. The mean integral 

values represent the concentration of the metabolites. The percentage of acute and late LD sample population 

with either increased or decreased level of metabolites compared to healthy donors is presented in Table 6. 
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Figure 13: Sum spectra of all sample in each category a) Spectra range δ 0-4.65 ppm- α glucose, β glucose peaks are shaded 

orange, lactate peaks are shaded green, citric acid peak shaded blue and choline peak shaded pink b) Spectra range δ 5-12 ppm- β 

glucose peaks are shaded orange, the amino acids phenylalanine and tyrosine peaks are shaded grey. The spectral region δ 4.7-5 

ppm that belongs to water signal is not shown.  

 In 70 % of acute LD patient sera lactate level was higher and in 80 % of acute LD patient sera α glucose, β 

glucose level was lower compared to respective metabolite levels in healthy donor samples, as presented in 

Table 6. All acute LD patients with higher level of lactate shown lower level of glucose. Choline and alanine 

level was lower in 70 % and 80 % acute LD patient sera respectively compared to respective metabolite levels 

in healthy donor samples, as presented in Table 6. The level of the metabolites such as creatine, glutamine, 

glycine, leucine, VLDL and unsaturated fatty acids were lower in 60 % to 70 % of the acute LD samples 

compared to respective metabolite levels in healthy donor samples, as presented in Table 6. Other metabolites 

namely valine, glutamate and LDL were present in higher level compared to respective metabolite levels in 

healthy donor samples, in half of the acute LD sample population and lower in the rest of the acute LD sample 

population, without showing any trend. So these metabolites were considered to be least important metabolites 

for biomarker analysis. Similarly, in late LD samples α glucose, β glucose, lactate, choline, and alanine seem 

to follow the same pattern as in the case of acute LD samples i.e. 80-90 % of the acute and late LD patient 

have decreased level of α glucose, β glucose, choline and alanine; 70-90 % of the acute and late LD patient 

have increased levels of lactate suggesting that few of these metabolic changes could be the biosignatures of 

LD patients. The level of the metabolites namely glutamine, leucine, valine, LDL and VLDL were lower 
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compared to respective metabolite levels in healthy donor samples, in 70-80 % of the late LD sample 

population, as presented in Table 6. Creatine and unsaturated fatty acids levels where higher compared to 

respective metabolite levels in healthy donor samples, in 50 % of the late LD samples. Level of glycine was 

higher compared to glycine level in healthy donors,  in 60 % late LD, in contrast with acute LD patients sera, 

as presented in Table 6. Similarly, level of citric acid and glutamate was higher in 80 % and 70 % of late LD 

patient sera respectively compared to respective metabolite levels in healthy donor samples, but this was not 

the case in acute LD samples, as presented in Table 6. Only 60 % of the acute LD sample shown lower level 

of citric acid compared to citric acid level in healthy donor samples. So glycine, glutamate and citric acid 

could be the signature feature of late LD samples and might be useful to distinguish late LD from acute LD 

samples. Notably in negative Lyme samples, compared to healthy donors the level of α glucose, β glucose, 

glutamate, glutamine, glycine, leucine, valine VLDL were lower in 67 % of the samples compared to 

respective metabolite levels in healthy donor samples, level of lactate was higher in 67 % of the sample and 

alanine level was higher in 22 % of the samples, choline was lower in 89 % as presented in Table 6. Creatine 

level was higher in 78% of the negative Lyme samples compared to respective metabolite levels in healthy 

donor samples, as presented in Table 6. We cannot draw any conclusions about the utility of the identified 

metabolites as biomarkers at this point. Yet, these information about the metabolic difference in samples were 

useful in statistical biomarker analysis. 

Histograms were prepared for fifteen metabolites with mean of the integral values of metabolities to compare 

the categories and identify the general differences. Histograms reveal the overall metabolic changes in each 

of the categories, similar to sum spectra. Histograms shown that the levels of metabolites glycine, alanine, 

LDL, VLDL, unsaturated fatty acids, α glucose, β glucose, lactate and citric acid were higher in acute LD 

patient samples compared to respective metabolites in the healthy donor samples and choline was lower 

compared to choline in the healthy donor samples [Refer appendix Ⅰ]. In late LD patient samples, there was 

no change in the level of glycine and LDL, unlike the acute LD patients but an noticeable increase in the level 

of lactate, citric acid, VLDL, unsaturated fatty acids, creatine and decrease in the levels of alanine, choline, α 

glucose and β glucose compared to the healthy donors, were also observed [Refer appendix Ⅰ]. In negative 

Lyme sample population choline, glycine and alanine level was low and citric acid, LDL, unsaturated fatty 

acids, α glucose, β glucose levels were higher and no significant changes can be noticed in VLDL and creatine 

[Refer appendix Ⅰ]. 

Table 6. Percentage of the acute LD, late LD and negative Lyme samples with elevated (high) or decreased (low) level of 

metabolites compared to healthy donors. One sample in negative Lyme category had exactly the same level of α glucose compared 

to healthy donors, but it was counted as high (*). 

Metabolites 
Acute LD Late LD Negative Lyme 

High Low High Low High Low 

α glucose 20  80  10  90 33  * 67  



23 

 

β glucose 20  80 10  90  33  67 

Lactate 70 30  90  10  67  33  

Choline 30  70 20  80  11  89  

Creatine 40  60  50  50 22  78  

Glutamine 40  60  40  60  33  67  

Glutamate 50  50  30  70  33  67  

Glycine 40  60  60  40  33  67 

Leucine 40  60  30  70 33  67  

Valine 50  50  40  60  33  67  

Alanine 20  80  20  80  22  78 

LDL 50  50  20  80  55  45  

VLDL 40  60  20  80  33  67  

Citric acid 60  40  80  20  100  - 

Unsaturated fatty acids 40  60  50  50  67  33  

  

4.2 Biomarker analysis 

PLS-DA algorithm was tested with a data set (containing integrals values of metabolities in two samples the 

belong to two different category) to check the predictive accuracy of PLS-DA and the corresponding result 

obtained from the MetaboAnalyst tool is translated in Table 7. The predictive accuracy test result of PLS-DA 

algorithm obtained from MetaboAnalyst demonstrated that 34 feature model has the highest predictive 

accuracy of 87 % [Refer appendix Ⅲ]. From now on, metabolite and ratios of metabolites will be mentioned 

as features for convenience. 

Table 7. Predictive accuracy with different features. 

Numbers of features Predictive accuracy 

PLS-DA (%) 

5 84 

10 81 

34 87 
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The features of this 34 feature model includes 15 individual metabolites and 19 metabolite ratios. These 19 

metabolites ratios were suggested automatically by the biomarker analysis tool based on their individual AUC 

values. The software also allows the user to select features for class prediction based their own theories. 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Confusion Matrix (Cross-Validation) 

 
Healthy Acute LD 

Healthy 10 2 

Acute LD 0 8 

Figure 14:  Biomarker evaluation results of healthy donors and acute LD data set a) ROC curve of 34 feature model b) Class 

prediction plot using 34 features- the classification boundary is the dashed blue line at 0.5 in x-axis. For list of all 34 features refer 

appendix Ⅳ. 

The biomarker analysis tool available in MetaboAnalyst software allows the user to compare only two sets of 

data at a time. So each category was compared against each other as a pair. ROC curve of 34 feature model of 

a healthy donor vs acute LD data sets is shown in Figure 14 a. The AUC value of ROC curve is 0.951, which 

suggests that 34 features model is an excellent model [Refer Table 1] for acute LD and healthy donor 

classification. Average of the predicated class probabilities of each sample across 100 cross-validations using 

34 feature model is shown in Figure 14 b. The matrix presented along, shows that out of 10 healthy donors 

samples all 10 healthy donor samples were correctly classified as healthy donor or true negative based on the 

34 features and out of 10 acute LD samples 8 were correctly classified as patient sample and only 2 samples 

Healthy 

Acute LD 
a b 
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were wrongly classified or grouped with healthy donor samples. From equation 1.1 and 1.2, the sensitivity of 

the 34 feature model for the acute LD and healthy donor dataset is 80 % and the specificity is 100 %. 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Confusion Matrix (Cross-Validation) 

 
Healthy Late LD 

Healthy 10 2 

Late LD 0 8 

Figure 15:  Biomarker evaluation results of healthy donor and late LD data set a) ROC curve of 34 feature model b) Class 

prediction plot using 34 feature model-the classification boundary is the dashed blue line at 0.5 in x-axis.  For the list of all 34 

features refer appendix Ⅳ. 

ROC curve and class prediction plot of 34 feature model of healthy donors and late LD data sets is shown in 

Figure 15 a and b. The AUC value of ROC curve is 0.916, which suggests that 34 features model is an excellent 

model [Refer Table 1] for the healthy donor and late LD classification. The class prediction plot in Figure 15 

b and the matrix presented along, shows that out of 10 healthy donors samples all 10 samples were correctly 

classified as healthy donor and out of 10 acute LD samples 8 were correctly classified and two samples were 

wrongly grouped with healthy donor samples. The sensitivity of the 34 feature model for the late LD and 

healthy donor dataset is 80 % and the specificity is 100 %. 

 

Healthy 
Late LD 

a b 
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Confusion Matrix (Cross-Validation) 

 Negative Acute LD 

Negative 8 1 

Acute LD 1 9 

Figure 16:  Biomarker evaluation results of negative Lyme and acute LD data set a) ROC curve of 34 feature model b) Class 

prediction plot using 34 feature model-the classification boundary is the dashed blue line at 0.5 in x-axis. For the list of all 34 

features refer appendix Ⅳ. 

The 34 feature model was tested for acute LD and negative Lyme data set. This was done to understand 

whether the identified metabolic changes are unique features of LD patients. The biomarker analysis results 

of acute LD and negative Lyme data set are presented in Figure 16. ROC curve analysis results are shown 

Figure 16 a, the AUC value of the ROC curve is 0.923. The class prediction plot in Figure 16 b and the matrix 

presented along, shows that out of 9 negative Lyme samples, 8 samples were correctly classified as negative 

Lyme samples and out of 10 acute LD samples 9 were correctly classified as acute LD samples and only 1 

sample was wrongly grouped with negative Lyme samples. The sensitivity of the 34 feature model for the 

acute LD and negative Lyme dataset is 90 % and the specificity is 89 %. 

Negative 
Acute LD 

a b 
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Confusion Matrix (Cross-Validation) 

 Negative Late LD 

Negative 8 0 

Late LD 1 10 

Figure 17:  Biomarker evaluation results of negative Lyme vs late LD a) ROC curve of 34 feature model b) Class prediction 

plot of 34 feature model-the classification boundary is the dashed blue line at 0.5 in x-axis. For list of all 34 features refer appendix 

Ⅳ. 

In a similar way, the 34 feature model was tested for late LD and negative Lyme data set. The biomarker 

analysis results of late LD and negative Lyme data set are presented in Figure 17. ROC curve analysis results 

is shown Figure 17 a, the AUC value of the ROC curve is 0.996. The class prediction plot in Figure 17 b and 

the matrix presented along, shows that out of 9 negative Lyme samples, 8 samples were correctly classified 

as negative Lyme samples based on the 34 features and out of 10 late LD samples all 10 were correctly 

classified as late LD samples. The sensitivity of the 34 feature model for the late LD and negative Lyme 

dataset is 100 % and the specificity is 89 %. From a practical point of view, detecting the levels of more than 

10 different metabolites in patients for clinical diagnosis of LD will be a difficult task and cost effectiveness 

of such as diagnostic method is a question mark. So it is appropriate to aim for less number of features, which 

can be utilized as biomarkers. For this purpose five feature models in which different choices and 

combinations of features were chosen, is tested. The predictive accuracy of five feature model is 84 %, as 

a 
b 

 

Late LD 

Negative 
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presented in Tabel 7. The AUC values and fold change of the individual features of healthy donor and acute 

LD data set are presented in Table 8. Based on the four criterions mentioned in section 3.3, lactate, β glucose, 

citric acid, choline and alanine were selected and named as model 1 for convenience. Model 1 was evaluated. 

The ROC curve was generated and presented in Figure 18 a. AUC value of ROC curve analysis of model 1 

for the healthy donor and acute LD data set is 0.868. Similarly, model 2 with features such as citric acid, 

lactate/alanine, α glucose/lactate, β glucose/lactate, β glucose/citric acid was tested and the results are 

presented in Figure 18 b. The ROC curve analysis of the model 2 (AUC 0.983), suggests that lactate/alanine, 

α glucose/lactate, β glucose/lactate, β glucose/citric acid and citric acid can be the interesting features that we 

are hunting for.  

Table 8. AUC and fold change corresponding to individual features in healthy donors and acute LD [Refer appendix Ⅳ for 

the AUC of all 34 features including the top 20 metabolite ratios] 

Features AUC Fold Change 

Lactate/Alanine 0.99 1.5436 

α glucose/Citric acid 0.9 -0.33907 

β glucose/Citric acid 0.9 -0.20773 

α glucose/Lactate 0.84 1.5436 

β glucose/Lactate 0.82 -0.07999 

α glucose 0.86 1.5436 

β glucose 0.83 1.5104 

Lactate 0.8 -1.6579 

Citric acid 0.77 -1.3877 

Choline 0.645 0.17834 

Alanine 0.62 0.13759 

Glutamine 0.6 -0.07999 

Glycine 0.59 -0.20773 

Unsaturated 0.58 0.022535 

VLDL 0.58 0.071083 

Creatine 0.56 -0.33907 

Leucine 0.54 -0.14752 

LDL 0.53 -0.21441 

Glutamate 0.5 -0.32629 

Valine 0.5 -0.11413 
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Figure 18: Biomarker evaluation results of healthy donor and acute LD data sets using five features a) ROC curve of five 

features model-Model 1 b) ROC curve of five features model-Model 2 c) Class prediction plot using model 2  

 Acute LD 
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a b 

c 

Model 1 Model 2 

Model 2 



30 

 

The AUC values and fold change of the individual features of healthy donors and late LD data set are presented 

in Table 9. Model 1 was tested and evaluated for the healthy donor and late LD dataset. The ROC curve 

analysis of model 1 for this data set is shown in Figure 19 a. The ROC curve (AUC 0.72) obtained indicates 

that the features used in model 1 may not the best choice for this classification and stresses us to move for 

different choice of features. Model 3 which includes features such as citric acid, α glucose / lactate, β glucose 

lactate, glucose/citric acid and choline/glycine was tested. The ROC curve analysis results of model 3 (AUC 

0.979) shown in Figure 19 b, indicates that based on this model 3, late LD patients can be distinguished from 

healthy donors with excellent sensitivity 80 % and specificity 100 %. 

Table 9. AUC and fold change corresponding to individual features in healthy donors and late LD samples. [Refer appendix 

Ⅳ for the AUC of all 34 features including the top 19 ratios] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features AUC Fold Change 

Choline/Glycine 0.94 -1.2798 

β glucose/Citric acid 0.89 2.9602 

α glucose/Citric acid 0.88 -0.20454 

α glucose/Lactate 0.86 -0.448 

β glucose/Lactate 0.84 0.23507 

α glucose 0.86 2.583 

β glucose 0.86 2.9602 

Lactate 0.86 -1.2798 

Citric acid 0.695 -0.27711 

Choline 0.69 0.45362 

Unsaturated 0.68 -0.448 

VLDL 0.63 0.14051 

Leucine 0.62 0.23507 

Creatine 0.6 -0.16996 

Glutamate 0.57 -0.21181 

Valine 0.57 -0.00147 

Glutamine 0.56 0.076048 

Alanine 0.55 0.10184 
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Figure 19: Biomarker evaluation results of healthy donor and late LD data sets using five features a) ROC curve of five 

features model-Model 1 b) ROC curve of five feature model-Model 3 c) Class prediction plot using model 3 
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The AUC values and fold change of the features of acute LD and negative Lyme data set are presented in 

Table 10. Model 1 and 2 were tested for acute LD and negative Lyme samples data set. The ROC curve 

analysis and class prediction results are presented in Figure 20. The ROC curve of model 1 (AUC 0.844) is 

shown in Figure 20 a. The ROC curve of model 2 (AUC 0.869) is shown in Figure 20 b. Another model, 

model 4 was built with features such as choline, valine, alanine, LDL and unsaturated fatty acids and the test, 

the ROC curve analysis result (AUC 0.836) was similar to model 1 and 2. A new model, model 5 with features 

such as unsaturated fatty acids, choline/valaine, choline/alanine, choline/LDL and unsaturated fatty 

acids/choline was tested. The ROC curve is presented in Figure 21 b. The ROC curve of model 5 (AUC 0.789) 

built shows that based on these features acute LD samples can be classified from negative Lyme. 

Table 10. AUC and fold change corresponding to individual features in acute LD and negative Lyme samples. [Refer appendix 

Ⅳ for the AUC of all 34 features including the top 19 ratios] 

Feature AUC Fold Change 

Choline/Valine 0.94 -0.12519 

Choline/Alanine 0.94 1.8015 

Choline/LDL 0.91 -0.23055 

Choline/Glycine 0.9 1.3482 

Unsaturated/Choline 0.88 -0.096599 

Unsaturated 0.77 1.8015 

LDL 0.72 1.3482 

Choline 0.71 -0.68828 

Unsaturated/Lactate 0.7 -0.61597 

Lactate/Alanine 0.66 0.65634 

Glutamine 0.65 0.70928 

Creatine 0.63 0.74165 

Glycine 0.63 0.65634 

Valine 0.63 0.74228 

VLDL 0.63 0.76789 
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Figure 20: Biomarker evaluation results of negative Lyme and acute LD data set a) ROC curve of five feature model-Model 1 

b) ROC curve of five feature model- Model 2 c) Class prediction plot using model 2  
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Figure 21: Biomarker evaluation results of negative Lyme and acute LD data sets using five features a) ROC curve of five 

features model-Model 4 b) ROC curve of five features model-Model 5 c) Class prediction plot using model 5  
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The class prediction plot of negative Lyme and acute LD data set using model 2, presented in Figure 20 c and 

the matrix presented along, shows that out of 9 negative Lyme samples, 8 samples were correctly classified 

as negative Lyme samples and out of 10 acute LD samples, 7 were correctly classified as acute LD samples. 

The class prediction plot in Figure 21 c using model 5 and the matrix presented along, shows that out of  9 

negative Lyme samples, 7 samples were correctly classified as negative Lyme samples and out of 10 acute 

LD samples, 7 were correctly classified as acute LD samples. Late Lyme and negative Lyme data set was 

tested with model 1, 3, 4 and 5. The AUC values and fold change of the individual features of late LD and 

negative Lyme data set are presented in Table 11. ROC curve analysis results of model 1 (AUC 0.762), model 

3 (AUC 0.832), model 4 (AUC 0.782) and model 3 (AUC 0.93) are presented in Figure 22 a, Figure 22 b, 

Figure 23 a and Figure 23 b. 

Table 11. AUC and fold change corresponding to individual features in late LD and negative Lyme samples. [Refer appendix 

Ⅳ for the AUC of all 34 features including the top 19 ratios] 

Features AUC Fold Change 

Choline/Leucine 1.0 -0.26352 

Choline/LDL 1.0 -0.41624 

Choline/Valine 0.97778 0.015272 

Unsaturated/Choline 0.95556 0.52059 

Choline/Glycine 0.87778 -1.2221 

Choline/Alanine 0.86667 -0.4475 

Choline 0.83333 -1.2221 

Glycine 0.72222 -0.41624 

Lactate 0.7 -0.88652 

LDL 0.68889 0.76736 

Glutamate 0.68333 -0.4475 

Unsaturated 0.61111 0.52059 

Creatine 0.61111 -0.26352 

Leucine 0.58889 0.30063 
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Figure 22: Biomarker evaluation results of negative Lyme and late LD data sets using five features a) ROC curve of five 

features model-Model 1 b) ROC curve of five features model-Model 3 c) Class prediction plot using model 3  

Late LD 

Negative 

b 

 

Confusion Matrix (Cross-Validation) 

 
Negative Late LD 

Negative 8 2 

Late LD 1 8 

 

 

Model 3 

Model 1  Model 3 

c 

a 



37 

 

 

 

 

 

 

 

 

Figure 23: Biomarker Evaluation results of negative Lyme and late LD dataset using five features a) ROC curve of five 

features model-Model 4 b) ROC curve of five features model-Model 5 c) Class prediction plot using model 5  
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The class prediction plot of negative Lyme and late LD dataset using model 3 is shown in Figure 22 c and the 

matrix presented along, shows that out of 9 negative Lyme samples, 8 samples were correctly classified as 

negative Lyme samples and out of 10 late LD samples, 8 were correctly classified as late LD samples. The 

class prediction plot in Figure 23 c using model 5 and the matrix presented along, shows that out of  9 negative 

Lyme samples, 7 samples were correctly classified as negative Lyme samples and out of 10 late LD samples, 

9 were correctly classified as late LD samples.  

An attempt was made to distinguish acute LD from late LD samples. The AUC values and fold change of the 

individual features of acute LD and late LD data set are presented in Table 12. All models, model 1, model 2, 

model 3, model 4 and model 5 were tested for acute LD and late LD dataset. The ROC analysis of all these 

models are presented in Figure 24 and 25. The results indicates that none of these model as capable of 

differentiating acute LD from late LD. Even the model 5 which worked quite well for acute LD-negative Lyme 

classification and extremely well for late LD-negative Lyme did not work well acute LD and late LD 

classification, as it can be seen in Figure 25 b. Model 5 is poor model for acute LD and late LD classification 

because the AUC value is 0.37 the least score so far.  Model 6 with features leucine, valine, alanine, glycine 

and citric acid was tested. The ROC curve of model 6 shown in Figure 26 a, (AUC 0.43) indicates that this is 

a poor model. Model 7 with features leucine/valine, leucine/alanine, glycine/citric acid, glycine and citric acid 

was tested and the ROC curve shown in Figure 26 b (AUC 0.76) seem to be a fair model.  

Table 12. Acute LD and late LD comparison and the ROC values of individual metabolites. [Refer appendix Ⅳ for the AUC 

of all 34 features including the top 19 ratios] 

Features AUC Fold Change 

Leucine/Valine 0.83 1.566 

Leucine/Alanine 0.77 0.37716 

Glycine/Citric acid 0.73 1.1805 

β glucose 0.79 1.566 

α glucose 0.69 1.1805 

Glycine 0.65 0.001311 

Unsaturated 0.6 -0.47573 

Creatine 0.6 0.15917 

Citric acid 0.58 1.0788 

Alanine 0.57 -0.03581 

Leucine 0.57 0.38529 

Glutamate 0.53 0.10914 
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Figure 24: Biomarker evaluation results of acute LD vs Late LD a) ROC curve of model 1 b) ROC curve of model 2 c) ROC 

curve of model 3 d) ROC curve of model 4 

b 

Model 3 

Model 1 Model 2 
a 

 

 

c 
Model 4 d 



40 

 

 

 

 

 

 

 

 

 

Figure 25: Biomarker Evaluation results of acute LD and late LD a) ROC curve of model 4 b) ROC curve of model 5 c) Class 

prediction plot using model 5  
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Figure 26: Biomarker Evaluation results on Acute and late comparison a) ROC curve of model 6 b) ROC curve of model 7 c) 

Class prediction plot using model 7  
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The ROC analysis results of model 2 (AUC 0.98) for acute LD and healthy donor classification and model 3 

(AUC 0.98) for late LD and healthy donor classification shows that these two models are excellent models, 

refer Table 1 for AUC value and corresponding biomarker utility gradings. The sensitivity and specificity of 

model 2 for acute LD and healthy donor data set is 80 % and 90 % respectively. The sensitivity and specificity 

of model 3 for late LD and healthy donor data set is 80 % and 100 % respectively. Model 2 was not tested for 

late LD and healthy donor data set because of the practicalities in MetaboAnalyst software. The ROC analysis 

results of model 2 (AUC 0.86) with sensitivity 70% and specificity 89 % for acute LD and negative Lyme 

classification and model 3 (AUC 0.83) for late LD and negative Lyme classification shows that these two 

models are very good models with sensitivity 80% and specificity 89 %. This difference in the effectiveness 

of these models for different data sets indicates that one or few of the features used in these models may also 

be the common features of negative Lyme samples. Model 4 and model 5 were tested for acute LD- negative 

Lyme and late LD-negative Lyme data sets. Model 5 seem to be working well for all the data sets, particularly 

for late LD and negative Lyme data set. The sensitivity of the model 5 for late LD and negative Lyme data set 

in 90 % and specificity is 80 %. The reason why model 5 worked well for late LD and negative Lyme dataset 

and not equally well for acute LD and negative Lyme dataset is not clear. One convincing reason could be, 

the large differences in the level of metabolites/features used in model 5 in acute LD and late LD samples. In 

other words, some or all of the features namely unsaturated fatty acids, choline, valaine, alanine, LDL, 

unsaturated fatty acids were largely varying in late LD samples compared to negative Lyme samples. But in 

acute LD samples the difference is not large enough compared to negative Lyme and the class prediction was 

less effective. Again this strengthens the fact that there are significant metabolic difference between acute LD 

and late LD samples. Model 1, model 2, model 3, model 4 and model 5 were all tested on acute LD and late 

LD data sets. The ROC curve analysis results show that none of the models are suitable for acute LD and late 

LD classification except model 2 for which the AUC value was 0.7 fairly high compared to all other models. 

Model 6 and model 7 were tested to distinguish acute LD from late LD. The ROC analysis result of model 6 

(AUC 0.434) was not impressive. But the ROC analysis result of model 7 (AUC 0.769) showed that it is fair 

model for distinguish acute LD from late LD samples. 

5. DISCUSSIONS 

Early Lyme diagnosis is challenging even with the serological based two tier testing method and the assay 

sensitivity of this method is less than 69 % for early LD [16]. Meta-analytic data summarizing the sensitivity 

and specificity of various two tier methods and a brief summary on the studies conducted since 1995 in North 

America on the LD diagnostic tests accuracy, can be acquired from the review article by Waddell and 

collegues [16]. As discussed in this article by Wadell and collegues, Immunetics the commercially available 

C6 B.burgdorferi ELISA™ is so far the effective diagnostic test but still the low assay sensitivity of the test 

in patients with early LD remain to the be limitation [16]. So there is an immense need for more sensitive 

early LD diagnosis technique. Lyme pathogens interacts with host cells and interfere in cellular functions 
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which results in fluctuations in the level of metabolites [56–58] and so we hypothesize that, by detecting the 

metabolic changes in patients, LD patients can be possibly identified and it is supported by our results, refer 

Figure 12 a, 12b, 13a, 13 b and Table 6. In other words LD patients can be clinical diagnosed on the basis of 

metabolites as biomarkers, similar to other diseases namely cancer, hepatocellular necrosis, etc.,[29–33] [refer 

Table 2 for some examples metabolite biomarkers], as demonstrated here.  

Using 1D proton NMR spectroscopy technique, we identified 24 metabolites in human sera as presented in 

Figure 11 and Table 5. In another metabolomic study by Gao and collegues, eighteen metabolites were 

detected using the 1D proton NMR spectroscopy technique in human hepatocellular carcinoma and liver 

cirrhosis patients [59]. Higher levels of metabolites such as pyruvate, glutamine, tyrosine, 1-methylhistidine 

and phenylalanine, etc., in human hepatocellular carcinoma and liver cirrhosis patients compared to healthy 

donors, together with lower levels of low-density lipoprotein, isoleucine, valine, creatine, choline and 

unsaturated lipids compared to healthy donors were reported [59].  Although there can be over 

4000 metabolites in human serum including lipids, it is nearly impossible to detect and identify the proton 

peaks corresponding to all of those metabolites. The major reasons for this incapability are, concentration of 

each metabolite in sera and concentration of the sera itself. The attainable S/N in 1D proton NMR spectroscopy 

is proportional to concentration of the serum. Another reason is spectral overlap, which stems from metabolites 

which have protons that resonate at nearby frequency range. Owing to finite linewidth of proton resonances 

and different amount of metabolites, this often results in broadened resonance clumps that are difficult to 

deconvolute and quantify. If we decide to overcome the sensitivity problem by increasing the concentration 

of the sera, then other essential factors such as magnetic field homogeneity, ionic concentration, etc., that 

largely influence the spectra might be disturbed.  

Though 24 metabolites were identified using online databases (BMRB, HMDB) and literatures, only 15 were 

chosen for further analysis. The metabolites were chosen mainly based on the lineshape of the respective peaks 

and spectral overlaps with neighboring peaks to avoid errors and misconceptions. The result of one sample in 

negative Lyme category [sample number D3, Refer appendix Ⅰ] was excluded from the further analysis 

because the spectrum obtained was abnormal (data not shown). The prime metabolic change compared to the 

metabolic profile of the healthy donor samples are high level of lactate in both acute LD and late LD, as shown 

Figure 12, 13 and Table 6. It is known that, in critically ill patients such as cancer patients, patients with severe 

respiratory illnesses, etc., higher lactate level in blood is usually due to hypoxemia condition (low level of 

oxygen in blood), inadequate perfusion and deficiency of enzymes responsible for lactate metabolism such as 

pyruvate dehydrogenase deficiency, glucose-6-phosphate dehydrogenase deficiency, etc., [60]. One or few of 

these mentioned reasons could be the reson for increased level of lactate in LD patients sera samples compared 

to healthy donors sera samples.  In sepsis patients, raised blood lactate level can be observed even in the 

absence of tissue hypoxia conditions [60]. Sepsis is the condition in which extreme inflammatory response to 

infection causing inflammation throughout the body and inappropriate blood clots in vital organs resulting in 
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organ failure [61,62]. Notably, the severity of the late LD also has a strong association with host inflammatory 

responses [63]. All acute and late LD samples with increased level of lactate shown lower level of glucose, 

suggesting an inverse proportionality of these two features. An elevated lactate level, together with lower or 

negligible glucose level, as presented in Figure 12 a could be important characteristics of LD patients as it one 

of the important difference among the observed. Metabolites such as phenylalanine, tyrosine did not show any 

consistent increase or decrease in LD sample population, refer Figure 13 b. Various metabolic pathways have 

to be studied to figure out the most convincing reason for the metabolic changes that are presented in Figure 

12, 13 and Table 6, such as elevated level of citric acids in 60 % and 80 % of the acute and late LD samples, 

decreased or lower level of amino acids such as alanine, glycine, leucine, creatine, choline, glutamine. Molins 

and collegues have reported the lipophilic structures as biosignatures of LD patients [18]. The characterization 

techniques such as LC-MS can be used to detect the lipidic structures and associated biomarkers in the studied 

LD samples. We aimed for other small molecule metabolities in this study. 

MetaboAnalyst software used for biomarker analysis is a user friendly software. To use this software one does 

not have to have a strong statistical background [47].  The biomarker analysis results of 34 feature models and 

some of the 5 feature models demonstrated that acute and late LD samples can be distinguished from healthy 

donor and negative Lyme samples, based on the detected metabolic features namely glucose, lactate, citric 

acid, alanine, valine, leucine, choline, glutamate, glutamine, glycine, creatine, LDL, VLDL and unsaturated 

fatty acids, refer section 4.2. The 34 feature model which employs the ratio of individual metabolites seem to 

be an excellent model [Refer Table 1 for AUC values and utility of biomarkers based on AUC] with AUC 

values between 0.9 to 1.0 as presented in Figures 14 a, 15 a, 16 a and 17 a . The sensitivity of the 34 feature 

model is greater than or equal to 80 % for both acute LD and late LD samples, from the Figures 14 a, 14 b, 15 

a, 15 b, 16 a, 16 b, 17 a and 17 b. This is comparatively greater than the sensitivity of the serological based 

methods used for acute LD diagnosis [16,64]. The specificity of the 34 feature model is 89 - 100 % for both 

acute LD and late LD as presented in Figures 14 a, 14 b, 15 a , 15 b, 16 a, 16 b, 17 a and 17 b. From the 

biomarker analysis results presented in section 4.2, identification of acute LD samples and late LD samples 

based on the metabolites is evident and it is also supported by the class-seperation plots and cross-validation 

matrices in Figures 14 b, 15 b, 16 b and 17 b. For practical reasons, simple five feature models were tested. 

The number of combinations of 34 features as a set of 5 is 278,256 and testing all of these models in the 

MetaboAnalyst will take a long time. So features were selected for testing were based on assumptions and 

different criterions, as mentioned in section 3.3.  The ROC curve analysis of five feature model results, 

indicated that model 1 is a fair model, model 2, 3 and 5 are also excellent models similar to 34 feature model, 

as presened in Figure 18 b and c, 20 b and c. Thus, the possibility of using some or all of the metabolic features 

reported in this study as potential biomarkers for early LD and late LD diagnosis is undeniable. 
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6. CONCLUSION 

Lyme disease is an endemic disease in various parts of the world and an emerging threat in some of the south 

Asian countries too. LD diagnosis is challenging because of its complexity and low assay sensitivity of the 

two tier current diagnostic methods (TTTAs). The reported work is a step towards simple and potential 

diagnosis of LD based on metabolites. 1D proton NMR spectroscopy is highly suitable sophisticated technique 

for semi-quantitative metabolomic study. With this technique whole metabolic profile of a person can be 

acquired from the body fluids. Though identification of features is challenging especially when we are looking 

for a molecular compound that have not been reported, still NMR proves to be a powerful technique. From 

the results of this metabolomic study, it is evident that acute and late LD patients can be identified based on 

their metabolic profile. The biomarker analysis using 34 features and 5 features models further suggests that 

acute LD and late LD samples can be distinguished from healthy donors and negative Lyme samples with  

sensitivity 80 % and specificity 90 – 100 %. Our future goal is to detect and identify more metabolites present 

in LD patient sera using the NMR spectroscopy and LC-MS. The studies about the use of metabolites as 

biomarkers could be a game changer in the Lyme disease diagnostics associated challenges and could draw 

an end line to the complexity and limitations in LD diagnosis. 
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APPENDIX 

I. APPENDIX 

The NMR data processing and analysis methods followed in this work is presented in this table. 

Steps Mode Functions  Softwares  

Phase correction Manual - TopSpin 3.2  

Spectra calibration Manual - TopSpin 3.2 

Baseline correction Automatic Polynomial of Degree 

ABSG 

TopSpin 3.2 

Line broadening  Automatic Exponential 

weighting function 

TopSpin 3.2 

Peak picking and 

integration 

Manual - TopSpin 3.2  

Procedures  Algorithm Softwares  

Data formating Manual - MS-Excel 

Statistical analysis Semi-automatic PLSDA MetaboAnalyst 
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I. APPENDIX 

The below table shows the list of samples and the buffer batch used. 

Serial number 

 

Sample name 

 

Category 

 

Comment 

1 A1 

Acute LD 

- NB1 

2 A2 - NB1 

3 A3 - NB1 

4 A4 - NB1 

5 A5 - NB1 

6 A6 - NB1 

7 A7 - NB1 

8 A8 - NB1 

9 A9 - NB1 

10 A10 - NB1 

    

11 B1 

Late LD 

- NB1 

12 B2 - NB1 

13 B3 - NB1 

14 B4 - NB2 

15 B5 - NB1 

16 B6 - NB2 

17 B7 - NB2 

18 B8 - NB2 

19 B9 - NB2 

20 B10 - NB2 

    

21 F1 

Healthy donors 

- NB2 

22 F2 - NB2 

23 F3 - NB2 

24 F4 - NB2 

25 F5 - NB2 

26 F6 - NB2 

27 F7 - NB2 

28 F8 - NB2 

29 F9 - NB2 

30 F10 - NB2 

    

31 D1 

Negative Lyme 

- NB3 

32 D2 - NB3 

33 

D3 -NB3(not included in 

data analysis 

34 D4 - NB3 

35 D5 - NB3 

36 D6 - NB3 

37 D7 - NB3 

38 D8 - NB3 

39 D9 - NB3 

40 D10 - NB3 

NB1, NB2, NB3- buffer batch numbers. 
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II. APPENDIX 

  

 

 

 
 

The above histograms demonstrates the metabolites difference in acute LD compared to healthy donors.  

 

 

c. 

a. b. 

d. 

e. f. 
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II. APPENDIX 

 

 
 

 

 

 
 

The above histograms demonstrates the metabolic difference in late LD patients compared to healthy donors. 

c. 

a. b. 

d. 

e. f. 
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II. APPENDIX 

  

  

 

 

 

The above histograms demonstrates the metabolic difference in negative lyme and healthy donors.  

 

c. 

a. b. 

d. 

e. f. 
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II. APPENDIX 

 
 

 
 

  

The above histograms demonstrates the difference in the levels of glutamate, glutamine, leucine and valine in 

acute LD, late LD, negative lyme compared to healthy donors.   

 

c. 

a. b. 

d. 

e. f. 
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III. APPENDIX 

 

                       

Predictive accuracy of different features using- PLS-DA. Number features and their respective predictive 

accuracy is presented in the above figure. This result will vary according to algorithm used and the latent 

variables (in case of PLS-DA). 

                                   

 

Multivariate Exploratory ROC Analysis. Result of Multivariate Exploratory ROC Analysis tool available on 

MetaboAnalyst for acute LD and healthy donors is presented above. The image shows the top 10 features 

ordered based on their average importance. The list of features are specific to the dataset. 
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IV. APPENDIX  

The below table shows the ROC values of all 34 features for healthy donor and acute LD data set. 

Features AUC Fold Change 

Lactate/Alanine 0.99 1.5436 

Lactate/Glycine 0.97 0.071083 

Lactate/VLDL 0.97 -1.6579 

Lactate/Creatine 0.96 -0.11413 

Lactate/Glutamine 0.95 0.13759 

Lactate/Valine 0.95 0.022535 

Lactate/Choline 0.94 -0.14752 

Lactate/Leucine 0.94 -1.3877 

Lactate/Glutamate 0.93 -0.21441 

α glucose/Citric acid 0.9 -0.33907 

β glucose/Citric acid 0.9 -0.20773 

Lactate/LDL 0.9 1.5104 

Unsaturated/Lactate 0.87 0.022535 

α glucose 0.86 1.5436 

α glucose/Lactate 0.84 1.5436 

β glucose 0.83 1.5104 

β glucose/Lactate 0.82 -0.07999 

Lactate 0.8 -1.6579 

α glucose/Glutamine 0.79 -1.6579 

β glucose/Glutamine 0.79 -0.32629 

α glucose/Creatine 0.78 1.5104 

α glucose/Glutamate 0.78 0.17834 

Citric acid 0.77 -1.3877 

Choline 0.645 0.17834 

Alanine 0.62 0.13759 

Glutamine 0.6 -0.07999 

Glycine 0.59 -0.20773 

Unsaturated 0.58 0.022535 

VLDL 0.58 0.071083 

Creatine 0.56 -0.33907 

Leucine 0.54 -0.14752 

LDL 0.53 -0.21441 

Glutamate 0.5 -0.32629 

Valine 0.5 -0.11413 
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IV. APPENDIX  

The below table shows the ROC values of all 34 features for healthy donor and late LD data set. 

Features AUC Fold Change 

α glucose/Glutamine 0.96 2.583 

α glucose/Glycine 0.96 -1.2798 

β glucose/Glutamine 0.96 -0.00147 

β glucose/Glycine 0.96 0.018814 

α glucose/VLDL 0.94 -0.21181 

Choline/Glycine 0.94 -1.2798 

β glucose/VLDL 0.93 2.583 

α glucose/Valine 0.92 -0.16996 

β glucose/Valine 0.92 -0.27711 

β glucose/Leucine 0.9 0.14051 

α glucose/Leucine 0.89 0.45362 

α glucose/LDL 0.89 0.076048 

β glucose/LDL 0.89 -0.448 

β glucose/Citric acid 0.89 2.9602 

α glucose/Citric acid 0.88 -0.20454 

β glucose/Glutamate 0.88 0.10184 

α glucose/Glutamate 0.87 2.9602 

α glucose 0.86 2.583 

β glucose 0.86 2.9602 

Lactate 0.86 -1.2798 

α glucose/Lactate 0.86 -0.448 

β glucose/Lactate 0.84 0.23507 

Citric acid 0.695 -0.27711 

Choline 0.69 0.45362 

Unsaturated 0.68 -0.448 

VLDL 0.63 0.14051 

Leucine 0.62 0.23507 

Creatine 0.6 -0.16996 

Glutamate 0.57 -0.21181 

Valine 0.57 -0.00147 

Glutamine 0.56 0.076048 

Alanine 0.55 0.10184 

Glycine 0.54 -0.20454 

LDL 0.5 0.018814 
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IV. APPENDIX 

The below table shows the ROC values of all 34 features for negative lyme and acute LD data set. 

Features AUC Fold Change 

Choline/Leucine 0.94 -1.8877 

Unsaturated/Choline 0.93 5.2627 

Choline/Glutamine 0.93 -2.2552 

Choline/LDL 0.93 -1.2435 

Choline/Valine 0.92 -3.1293 

Choline/Alanine 0.9 -0.7361 

Choline/VLDL 0.88 -1.8115 

Choline 0.81 -0.73959 

Choline/Glycine 0.81 -1.0377 

Unsaturated/Creatine 0.8 2.1376 

Choline/Glutamate 0.8 -3.9849 

Unsaturated/VLDL 0.78 4.0673 

Unsaturated/Lactate 0.77 5.961 

Unsaturated/Glutamine 0.77 4.307 

Unsaturated/Glycine 0.77 5.168 

Lactate/LDL 0.77 -6.4137 

Unsaturated/Valine 0.76 5.0891 

Choline/Creatine 0.76 -6.5209 

Unsaturated/Glutamate 0.75 3.149 

Lactate/Alanine 0.74 -4.4588 

Unsaturated 0.67 0.52311 

Lactate 0.66 -0.80095 

LDL 0.62 0.33594 

β glucose 0.6 1.0059 

Glutamine 0.55 -1.2361 

α glucose 0.54 0.1268 

Glutamate 0.54 -1.5318 

Creatine 0.53 -1.4068 

Glycine 0.53 -1.587 

Valine 0.53 -1.3582 

VLDL 0.53 -1.0228 

Alanine 0.52 -1.9519 

Citric acid 0.52 -1.9583 

Leucine 0.5 -1.1724 
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IV. APPENDIX 

The below table shows the ROC values of all 34 features for negative lyme and late LD data set. 

Features AUC Fold Change 

Choline/Leucine 1.0 -1.0125 

Choline/LDL 1.0 -0.90712 

Choline/Valine 0.97778 -1.0399 

Unsaturated/Choline 0.95556 1.8365 

Choline/Glutamine 0.95556 -0.82473 

Glycine/Leucine 0.91111 -4.0485 

Choline/Citric acid 0.9 -6.759 

Alpha-glucose/Choline 0.88 4.8882 

Choline/Glycine 0.87 -0.52405 

Choline/Alanine 0.86 -0.48452 

Creatine/Leucine 0.84 -0.35369 

Glutamate/Leucine 0.84 -0.8569 

Alanine/LDL 0.84 -3.4339 

Choline 0.83 -0.39873 

Choline/VLDL 0.83 -0.76079 

Glycine/LDL 0.83 -1.3487 

Glycine/Valine 0.82 -2.1915 

Leucine/Alanine 0.82 1.3313. 

Glutamate/LDL 0.81 -0.66321 

Choline/Creatine 0.8 -5.0862 

Glycine 0.72 -0.29132 

Lactate 0.7 -2.7058 

LDL 0.68 1.9866. 

Glutamate 0.68 -0.18336 

Unsaturated 0.61 1.3164 

Creatine 0.61 -0.072426 

Leucine 0.58 0.24551 

Alanine 0.57 -0.14919 

β glucose 0.56 0.7037 

VLDL 0.54 -0.56266 

α glucose 0.52 0.41867 

Valine 0.52 -0.064572 

Citric acid 0.51 0.028861 

Glutamine 0.5 -0.0020669 
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IV. APPENDIX 

The below table shows the ROC values of all 34 features for acute LD and late LD data set. 

Features AUC Fold Change 

Leucine/Valine 0.83 1.566 

β glucose 0.79 1.566 

α glucose/ β glucose 0.78 0.001311 

Leucine/Alanine 0.77 0.37716 

Unsaturated/ β glucose 0.76 1.1805 

Unsaturated/LDL 0.76 0.15699 

Unsaturated/Leucine 0.75 0.15917 

Glycine/Leucine 0.75 -0.47573 

Glycine/Citric acid 0.73 1.1805 

Unsaturated/Lactate 0.71 1.566 

α glucose 0.69 1.1805 

Unsaturated/ α glucose 0.69 -0.47573 

β glucose/Valine 0.69 0.23334 

β glucose/Alanine 0.69 0.070927 

β glucose/Glutamine 0.68 0.38529 

Unsaturated/Glutamine 0.68 0.29418 

Unsaturated/Citric acid 0.68 0.10914 

β glucose/Glycine 0.67 -0.03581 

β glucose/Glutamate 0.66 0.11474 

Unsaturated/Creatine 0.66 0.37716 

Glycine 0.65 0.001311 

β glucose/VLDL 0.65 1.0788 

Unsaturated 0.6 -0.47573 

Creatine 0.6 0.15917 

Citric acid 0.58 1.0788 

Alanine 0.57 -0.03581 

Leucine 0.57 0.38529 

Glutamate 0.53 0.10914 

Glutamine 0.52 0.15699 

Valine 0.52 0.11474 

LDL 0.52 0.23334 

VLDL 0.51 0.070927 

Lactate 0.5 0.37716 

Choline 0.5 0.29418 

 


