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Abstract

Neurofeedback requires a direct translation of oealr brain activity to sensory input given to
the user or subject. However, decoding certairestat.g., mindfulness or wandering thoughts,
from ongoing brain activity remains an unresolveabem.

In this study, we used magnetoencephalography (MEG}acquire brain activity during
mindfulness meditation and thought-inducing tasksnicking wandering thoughts. We used a
novel real-time feature extraction to decode thedfilness, i.e., to discriminate it from the
thought-inducing tasks. The key methodological tigvaf our approach is usage of MEG power
spectra and functional connectivity of independ@amponents as features underlying
mindfulness states. Performance was measured asldbsification accuracy on a separate
session but within the same subject.

We found that the spectral- and connectivity-basddssification approaches allowed
discriminating mindfulness and thought-inducingktawith an accuracy around 60% compared
to the 50% chance-level. Both classification apphea showed similar accuracy, although the
connectivity approach slightly outperformed thecip® one in a few cases. Detailed analysis
showed that the classification coefficients and #éissociated independent components were
highly individual among subjects and a straightfamivtransfer of the coefficients over subjects
provided near chance-level classification accuracy.

Thus, discriminating between mindfulness and wandethoughts seems to be possible,
although with limited accuracy, by machine learniegpecially on the subject-level. Our hope is
that the developed spectral- and connectivity-batsszbding methods can be utilized in real-
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time neurofeedback to decode mindfulness statem fsngoing neuronal activity, and hence,
provide a basis for improved, individualized mindfss training.
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Introduction

A brain computer interface (BCIl), an essential congnt for neurofeedback, allows
translating patterns of neuronal activity in thaibrto inputs or commands for external devices
(Wolpaw J. et al., 2002). ElectroencephalograpiE®) or magnetoencephalography-based
(MEG) non-invasive BCIs provide opportunities forumerous clinical, assistive and
entertainment applications. However, they requokust decoding of neuronal patterns: The
person who controls the BCI should learn to produwimist neuronal patterns and/or a device
that implements BCI should robustly identify thesdterns.

Machine learning approaches have recently beenessitdly applied to detect some
cognitive operations or mental states from undegyieuronal activity (Lemm et al., 2011; Lotte
et al., 2007). Often, the classification is perfednon the neuronal activity evoked by time-
locked presentation of a target stimulus or taslar{Bertz et al., 2011), which maximizes the
signal-to-noise ratio of neuronal response. Howethare are plenty of applications that require
detection of cognitive states from stimulus-freg@ng neuronal activity.

One application where machine-learning BCI could gy useful is mindfulness
meditation, which has been shown to have seversitip® behavioural outcomes (Tang et al.,
2014). During mindfulness meditation, attentiorsigoposed to be focussed on the breath or a
similar target, but in reality, it varies over ttime. Thus, it would be crucial to alert the user i
real-time about wandering thoughts, i.e., tempomagakening of mindfulness. Detection of
wandering thoughts can be considered as an exavhpleurofeedback system where a desired
mental state can be defined by the user but thegmonding brain signal is not known. Such a
sustained-attention neurofeedback system woulduprakly have many other applications, for
instance, in driving assistance (Schmidt et al020

Several functional magnetic resonance imaging (fMfidies suggest that activity of
default-mode network may underlie mind-wanderingughts (Andrews-Hanna et al., 2014,
Christoff et al., 2009). On the other hand, a restady suggests that mind wandering can be
represented through dynamic connectivity of thenbnatworks (Kucyi, 2017). Nevertheless, the
indirect coupling of BOLD signal with neuronal adty and the relatively low temporal
resolution of fMRI do not allow assessment of thentdbution of short-lasting cognitive
processes that largely constitute wandering thaudgb¢veral attempts have been made to find
the brain correlates of wandering thoughts duringtaned attention tasks with millisecond
resolution using electroencephalography (EEG; (Badcet al., 2017; Braboszcz and Delorme,
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2011). These studies have reported changes in dlagerpat alpha frequency during mind
wandering, but the neuroanatomical basis remaimslypanderstood because of low spatial
resolution of EEG. A technically more advanced,dtaneous EEG-fMRI neurofeedback study
(Ros et al., 2013) showed an increase of connéctiui default-mode network, which was
positively correlated with changes in mind-wandgres well as resting state alpha rhythm.
Although this study provided a link between theitraythms and anatomy for mind-wandering,
the relationship between EEG and BOLD signal ikieatindirect (Scheeringa et al., 2011).
Surprisingly, there is a lack of magnetoencephalpigy (MEG) studies. MEG provides better
temporal resolution compared to fMRI and bettertigbaesolution compared to EEG, which
allow assessing fast neuronal processes and bewworks that are closely related to fMRI
networks (Brookes et al., 2011).

In this study, we designed a behavioural paradigheres the subject performed
mindfulness meditation, and two different tasks roking wandering thoughts, in consequent
blocks. In contrast to mindfulness meditation, thtter tasks supposedly induced numerous
thoughts, e.g., related to positive future plangarmious emotional scenes. We used active tasks
instead of resting state as a contrast for minégsnmeditation, because variability of resting
state activity seems to be too unspecific, possiblgted to various preceding mental states,
including mindfulness itself. We developed and a&gplspectral- and connectivity-based
classification approaches to discriminate the bigha&l states based on their underlying
neuronal activity, in particular focussing on thice of feature extraction methods.

Our results show that it is possible, to some dxtendetect wandering thoughts in on-
going MEG measurements, and we provide a sketehpgbeline for optimizing such detection.
Furthermore, in addition to the conventional vidwattmindfulness meditation is characterized
by changes in the power of alpha oscillations,dh&nges in (dynamic) functional connectivity
may provide an alternative, possibly even bettescdption of mindfulness states.

Materials and M ethods
Experimental design

Twenty-four subjects (9 females, 27+5.5 years (ni8&)) with moderate or no previous
experience in mindfulness meditation participatedhie study. Prior to the study, we performed
a screening to include subjects with no historynetirological disorders, head trauma or
substance abuse. All participants had normal arected to normal vision. Ten subjects had no
previous experience, while other subjects had eéspes in either focused attention or open
monitoring meditation practices ranged from 0.83@oyears.

After a 2-minute resting state, participants wenrstructed to perform one of the tasks while
undergoing MEG (Elekta Neuromag, TRIUX). The tasleye organized into 2-minute blocks

with counterbalanced order and the participantopmed each task four times in a single
session. The session ended with a resting state@es block. We conducted two sessions per
participant with a 5-minutes break between theigasgFig. 1).
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Figure 1 about here

Fig. 1. Diagram of the experiment. The tasks are(Mfdfulness meditation), FP (reflection of
future planning) and EP (reflection on anxiousnadsicing emotional pictures).

The tasks were mindfulness meditation (MF), reftecion future planning (FP) and reflection
on anxiousness-inducing emotional pictures (EPalllitasks, subjects were instructed to sit still,
fix the gaze on the crosshair, and perform a tétgk a short (seven seconds) visual instruction.
The visual instruction was shown at the beginning at the middle of each task (Fig. 1) to keep
subjects’ attention. After each task, the subjess$ wsked to evaluate his/her involvement in the
task by answering two questions “How focussed were on the task?” and “How did you feel
during the task? (pleasantness)” using a touchthmstdprovided a gradual response within range
fromOto 1.

For themindfulness meditation task, the subject was instructed to focus his/her @tieron the
sensations of breathing and move his/her focudtehton back to the task if mind-wandering
occurs. The task started with a visual instructielease focus on your breathing” accompanied
by a picture of clouds. For the future planning amakiety-inducing tasks, the subject
individually selected 16 (out of 40) relevant presi prior to the experiment. In tHeture
planning task, subject was asked to perform a planning relatedhé picture, presumably
following the ensuing chains of thought and keegirggher mind busy. The task started with an
instruction “Please make plans related to the peétaccompanied by a relevant picture. The
anxiety-inducing task was similar to the future planning, but instead refutral pictures,
disturbing, scary, disgusting or other unpleasaciupes were shown to the subject. The task
started with a visual instruction “Place yoursetf someone close to you in this situation”
accompanied by a relevant picture. For the FP &hthBks two different pictures were presented
for each 2-minute block (at the beginning and ie thiddle), and for the MF task, the same
picture of clouds was presented twice.

Analysis of behavioural data

We analysed the subject’s responses for the que$tiow focussed were you on the task?” (see,
Fig. 1) ranged from O to 1. The average values wigefollowing 0.65+£0.012 (mindfulness),
0.70£0.010 (future planning task) and 0.66+0.018xi@y-inducing task) respectively. This
result showed that the focus during different tasks at a reasonable level. Additionally, we
compared the responses between different taskg tisenWilcoxon rank sum test. The results
showed no significant difference & 0.05) between the tasks, suggesting that thicipants
performed these tasks equally well.

Data pre-processing
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In the analysis, we used the 204 planar gradiomeiethe MEG scanner. The Signal Space
Separation (SSS) method (Taulu et al., 2004) wpBeabto supress the external interference and
sensor artefacts.

Independent component analysis

To obtain neurophysiologically realistic sourcesietironal activity, we applied complex-valued
independent component analysis in the frequencyattonjFourier-ICA; (Hyvéarinen et al.,
2010)) to MEG sensor’s time series. The time sesiee divided into four-second epochs with
75 percent overlap and the epochs were Fouriesfyamed within the range of 4-24 Hz. A
complex-valued ICA using 64 PCA components wasiagpb the epochs (from first sessions
only), concatenated across subjects, which provalgdoup-level ICA un-mixing matrix. Note
that the effective dimension of the data was reducepproximately 64 by SSS.

Component selection criteria

Often, several independent components in MEG reflegsiological activity that is unrelated to
neuronal activity of the brain (Jas et al., 20114). exclude possible confounders, we applied
three criteria to select independent compondtitst, we included only components that had a
spectral peak within the range 8-16 Hz and the pafvéhis peak was at least 50% larger than
the power in theta (4—7 Hz) or high-beta (17-24 Hahds. Before this comparison, we
equalized the spectral power over frequencies byracting the best fitting power-law function
from the power spectr&econd, we analysed the component’s spatial maps andiésdlthose
components that had more than three blobs (i.etiraeus areas containing 5% of largest
values) in the spatial maphird, we excluded the components if their maximum iatispp map
was located in the frontal or tempo-frontal aress.a result, 38 components (out of 64) were
selected for further analysis. Generally speakimmgin sources are spatially localized and band-
pass, which leads to our formulation of the fivgd tcriteria, and the third criterion was included
to exclude eye artifacts.

Spectral features extraction

The individual subjects’ spectral features wereraeted in the following manner. The sensor
time series were divided into four-second epoch® Wb percent overlap and the epochs were
Fourier transformed within the range of 4-24 Hzedroup-level ICA un-mixing matrix was
applied to these epochs, and the amplitude spetfraquency-domain independent components
were computed (Suppl. Fig. 1A). In order to inceeasbustness of the spectral approach, we
averaged the spectral amplitudes within four fregyebands: theta (4-7 Hz), alpha (8-12 Hz),
low-beta (13-16 Hz) and high-beta (17-24 Hz). Tin@lgude spectra averaged inside these four
frequency bands were then used as features faifatasion.

Connectivity features extraction

As an alternative to the spectral features, indi@ldconnectivity features were extracted as
follows. Again, the sensor time series were dividae® four seconds epochs with 75 percent
overlap and the epochs were Fourier transformelirwthe range of 4-24 Hz. The group-level
ICA un-mixing matrix was applied to these epochd exverse Fourier transform was computed

5
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to reconstruct components’ time series. The indépeihcomponent time series were filtered in
four frequency bands: theta (4—7 Hz), alpha (8—-%}, ldw-beta (13—-16 Hz) and high-beta (17—
24 Hz). In contrast to the spectral feature cabe, Rearson correlation coefficients were
computed for each pair of the components (Suppl. B8), separately for each frequency band.
The correlation coefficients between epochs of petelent component time series were well
above zero (Suppl. Fig. 2). The connectivity masievere then vectorised and used as features
for classification.

Feature dimensionality reduction

To further improve the robustness of classificatiore reduced the dimensionality of the

spectral- and connectivity-based features by apglyn algorithm described by Kauppi and

colleagues (Kauppi et al., 2013). The idea is tmmate, for each epoch and component, the
most discriminating spectral or connectivity featuand only use that in the classification. The
dimensionality of features were thus reduced devd,

Vij= z Fiej— z Fit

teT1 teT2

Vij
= Fues i
j |

whereF denotes a tensor containing the spectral or coiwitgdeatures (whose dimensions are
either: components=3& epochdy frequency_bands=4; or. component_pairs=ip8pochs

by frequency_bands=4, respectively). Herdgnotes component or connectivity pair index; T1
and T2 are indices of task 1 and task 2 in theitrgidataset, respectivell]| denotes vector
norm operatory; means the vector consisting of all the for differentj. The final result is
given in matrixP which contains the resulting feature vectors efépochs, with dimensions:
components=38y epochs; or component_pairs=7)B8epochs, for spectral- or connectivity-
based classification, respectively.

Classification methods: individual vs. group classification

The spectral and connectivity features with redudedensionality were classified using the
linear Support Vector Machine (SVM) algorithm asplemented in scikit-learn (Pedregosa et
al., 2011). We used two scenarios to train andthestlassifiers. In the first scenario “individual
classifier”, we trained the classifier using indival data from the first session and tested the
classifier using data from the second session.héhdecond scenario “group classifier”, we
trained the classifier using data from both sessemd all subjects except one “testing” subject,
and tested the classifier using the testing subjetdta from the second session. The second
scenario is more challenging, essentially providimigrmation on the generalizability of the
classifier across subjects (Jayaram et al., 20i6geKal., 2017).

Real -time computation

We tested the computational time for both featwaetion and classification algorithms to
ensure that our approaches suit real-time appdicatiThe algorithms implemented in Python

6
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were launched on a Linux based laptop (Intel C6+8570 @ 3.40 GHz, 8.00 GB RAM). The
average feature extraction time (xSD) for singleatpwas 0.0118+0.0085 and 0.0385+0.0192
second for the spectral and connectivity approgakespectively. The average classification time
using linear SVM was 0.0212+0.0042 and 0.1310+00G&conds for the spectral and
connectivity approaches respectively. Thus, the prdational time was negligibly small
compared to the inter-epoch interval of 0.5 second.

Satistical analysis of classification accuracies

To assess the statistical differences betweenldissification accuracies for different tasks or for
different feature sets, we applied the Wilcoxorkranm test.

Satistical analysis of classification coefficients

To evaluate the contribution of different spectasd connectivity features to the resulting
classification accuracy, we performed a statistiealalysis of the significance of the

classification coefficients. The coefficients weatiwided by their absolute sum and averaged
across subjects and then compared against zero usesma two-sided z-test. For the spectral-
based approach, we reported both uncorre@edd.05) and Bonferroni corrected classification
coefficients, while for the connectivity-based apgrh, we reported only Bonferroni corrected
classification coefficients, since there the prablef multiple testing was more serious.

Results

We applied the spectral and connectivity approadoesvestigate whether and how it is

possible to discriminate (decode) between mind&gnmeditation (MF), future planning (FP)

and reflection on anxious-inducing emotional pietur(EP) tasks. We then analysed the
classification coefficients to identify neuronalredates (spatial maps and spectral profiles)
associated with the mental states during task pasnce.

Classification accuracy

We first computed the classification accuraciesgisipectral and connectivity approaches (Fig.
2).

Figure 2 about here

Fig. 2. Spectral- and connectivity-based clasdificaaccuracies averaged across subjects for
(A) individual and (B) group classifiers. MF_FP dé&s mindfulness meditation vs. future
planning task, MF_EP denotes mindfulness meditatisn reflection of anxious-inducing
emotional pictures task, and FP_EP denotes futlaenmg task vs. reflection of anxious-
inducing emotional pictures task. Error bars repnéSEM.
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The spectral approach with individual classifieoypded accuracies well above chance-level,
0.59+0.008 (MF vs. FP), 0.61+0.007 (MF vs. EP) &risb+0.005 (FP vs. EP). The accuracies
MF vs. FP and MF vs. EP were significantly larger<(0.004, individual classifiep < 0.01,
group classifier) than the accuracy FP vs. EP, estgygy that FP and EP have similar neuronal
correlates. The accuracies for the group spectsédh classifier were relatively low, 0.55+0.003
(MF vs. FP), 0.54+0.003 (MF vs. EP) and 0.52+0.0BR vs. EP), showing that the classifier
had poor generalization over subjects.

The connectivity approach provided slightly highaccuracies compared to the spectral
approach, 0.62+0.009 (MF vs. FP), 0.62+0.009 (MF &R) and 0.55+0.004 (FP vs. EP).
However, the accuracies were not significantlyed#ht p > 0.05) between the spectral and
connectivity classifiers. The accuracies at thaugrievel classifier were similar to those of the
spectral approach, 0.55+£0.004 (MF vs. FP), 0.54D(1F vs. EP) and 0.53+0.002 (FP vs. EP).

We repeated the analysis by swapping training astng sessions. There was no difference
between accuracies for the original and swappesiages for the individual classifier, but the
difference became non-significant for the grougsiféer (Suppl. Fig. 3).

Relationship between spectral- and connectivity-based accuracies

To compare of the approaches further, we assed$sedetationship (correlation) between
accuracies of spectral- and connectivity-basedsifless at individual subject’s level (Fig. 3).
The results showed a significant correlation betwsgectral- and connectivity-based accuracies
only for two tasks, MF vs. FR = 0.53,p < 0.008) and MF vs. ER = 0.60,p < 0.002) for
individual classifier.

Figure 3 about here

Fig. 3. Scatter plots of individual subject’s aaies computed using spectral and connectivity
approaches for the following tasks, (A) mindfulnes=sdiation vs. reflection on future planning
(MF_FP), (B) mindfulness mediation vs. reflectiananxiety-inducing emotional pictures
(MF_EP) and (C) reflection on future planning \&flection on anxiety-inducing emotional
pictures (FP_EP).

For the further analysis, we considered only rasaftthe individual classifier and two tasks
(MF_FP and MF_EP).

Spectral and connectivity projections

We analysed the projection weights provided by direensionality reduction algorithm (see,
Materials and Methods), to evaluate the frequempeeiic differences between the tasks.

The results showed that that largest differencevéen tasks was associated with alpha
frequency (Fig. 4). For the spectral classifieg projection weights at alpha frequency were a
little larger compared to those of connectivity ssifier. Surprisingly, there was a strong
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variability of the projection weights for group sp&l classifier for different tasks, in contrast t
individual spectral and connectivity classifiers.

Figure 4 about here

Fig. 4. Group level spectral and connectivity petifgns. Error bars represent SEM.

This result suggested that indeed, alpha frequplagyan important role in discriminating
mindfulness and thought-inducing tasks.

Classification coefficients of the spectral approach

We analysed the SVM classification coefficientsspéctral classifier to evaluate the impact of
different independent components and frequency$andhe accuracy. The coefficients obeyed
Gaussian distribution and we picked those coefiisievhose absolute values were above the
chance-level correspondingpc< 0.05 (Fig. 5).

Figure5 about here

Fig. 5. (A) Classification coefficients (absolutalwes) of spectral approach for the individual
classifier. The significant coefficients indicatbg black p < 0.05, uncorrected) and regd €
0.05, Bonferroni corrected) arrows, respectiveB) Spatial maps and spectral profiles of
independent components associated with significaefficients. The grey curves indicate power
spectra with subtracted power-law fit.

There were a few independent components (all intdgr® components are shown in Suppl.
Fig. 4A and 4B) associated with significantly largtassification coefficients. The components
were associated with both thought-inducing taskewéng a slight increase in power spectra at
alpha frequency and located in the occipital (congmds 16, 20 and 30) or central areas
(component 11). After correcting for multiple testj only one coefficient (component 30)

remained significant. Importantly, none of the #igant weights was associated with

components characterised by strong (very clearbked) alpha oscillations, although several
such components were available for classificatsae (Suppl. Fig. 4A and 4B).

These results showed that rhythmic activity in pital areas, but apparently not exclusively in
alpha frequency, makes the strongest contributerhe discrimination of mindfulness and
thought-inducing tasks.

To further elucidate the classification weights fiodividual subjects, we selected four largest
coefficients and associated components. The resodteed that the components associated with
largest coefficients were highly individual (Suppig. 5), which make generalization of the
classifier coefficients over subjects impractical.

9
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Classification coefficients of the connectivity approach

The connectivity approach provided similar classifion accuracies to the spectral approach,
although these approaches utilized different ppies for feature extraction. Similarly to the
spectral approach, the classification coefficigottowed a Gaussian distribution. We applied a
t-test and selected significami€ 0.05, Bonferroni corrected) classification caaéints (Fig. 6).

Figure 6 about here

Fig. 6. (A) Significant classification coefficient®presenting connections (i.e., connectivity
pairs), for individual classifier. (B) Node degreehen considering only the significant
connections shown in panel A. Degree of zero méaaisthere are no significant connections.
The significant components with node degree abmeeindicated by arrows. (C) Spatial maps
and spectral profiles of independent componeniscased with component’s node degree above
one.

The results showed that multiple connections cbute to the classification accuracy (Fig. 6A).
To identify the independent components that repitesea hub (i.e., node with a high degree)
and hence, more strongly influenced the classiboatccuracy, we analysed the node degrees of
the components using only the significant connesti(Fig. 6B). We selected the components
with node degree above one, and further analyssd {Rig. 6C).

Similarly to the spectral approach, strongest cotioes were associated with the occipital and
temporal components, some of which demonstrateceak @t alpha frequency. Only one
component (component 17) was characterized bycpéatly prominent alpha oscillations (see
Suppl. Fig. 4A and 4B for comparison), again sugggsthat alpha oscillations may not be
strongly related to mindfulness states.

These results demonstrated a considerable varfespaiial maps and spectral patterns, which
can underlie the difference in mindfulness and ¢gidyprovoking tasks.

To evaluate the contribution of high node degreamanents in individual subjects, we selected
four components with highest node degree for eadtljest. The results showed that the high
node degree components were highly individual (Supig. 6), and similarly to the spectral-
based classification, generalization over the subjeeems impractical.

All components classification

As noted in the Materials and Methods section, naueled independent components that seem
to be strongly contaminated by non-brain physialafartifacts. However, it is interesting to
assess the impact such components would have odldksification. To accomplish this, we
selected all the 64 independent components andedpfile spectral- and connectivity-based
classification approaches (Fig. 7).

10
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Figure 7 about here

Fig. 7. Classification accuracies for (A) spectat (B) connectivity approaches using 38 (solid
bars) and 64 (dashed bars) components for indivVahhgroup classifiers.

We observed no differences in the accuracy for 38 &4 independent components for the
individual spectral and connectivity classifiers, \aell as for the group connectivity classifier
(Fig. 7). However, there were large differencethimaccuracy for the group spectral classifier in
MF vs. FP p < 0.001) and MF vs. ERp K 0.03).

To clarify the difference, we analysed the clasatibn coefficients of the group spectral
classifier (Fig. 8).

Figure 8 about here

Fig. 8. (A) The coefficients of the group spectlkissifier for 64 independent components. The
significant coefficients indicated by blaci € 0.05, uncorrected) and regl € 0.05, Bonferroni
corrected) arrows, respectively. (B) The spatiapsnand spectral profiles associated with the
significant coefficients.

The results clearly showed that when artifacts wsoe removed, the classifier picked the
components that were mainly associated with phggioal artifacts such as eye-blinks

(component 6 and 18), cardiac activity (compon@) Bistrumental noise or other physiological
artifacts (20, 50, 56). On the other hand, the ipbssensory-motor component (15) may have
been erroneously excluded from the main analysiter Aorrecting for multiple testing, three

coefficients (components 18, 50 and 52) remainguifstant.

In this case, the higher accuracy of the grouptsaledassifier likely to be related to the facath
the artifacts were highly consistent across subjésmith and Nichols, 2018), and thus provided
a better basis for generalizing to new subjects.

Individual and group ICA

To evaluate the impact of ICA on classification wecy, we recomputed the accuracies using
spectral- and connectivity-based classifiers falivimual and group ICA weights. Because the
spectral profiles and spatial maps of individualdpendent components strongly varied across
subjects, we did not apply the component seleatiiteria (seeMaterials and Methods) and
computed the classification accuracies for all 6dhponents (Fig. 9). There were no significant
differences in the accuracies for individual andugr ICA. This means that ICA spatial filters
can be precomputed in advance and the classificapproach can be operated in real time.
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Figure 9 about here

Fig. 9. Classification accuracies for the individaad group ICA weights using (A) spectral and
(B) connectivity approaches.

Discussion

In this study, we developed spectral- and connggtbased classification approaches and
showed that the mental states underlying mindfelnasd thought-provoking tasks can be
discriminated using MEG recordings and machineniegrapproaches.

We observed a variety of spatial and spectral petehat contribute to discriminating

mindfulness meditation, suggesting that severatar@l mechanisms may underlie mindfulness
state. While the results in Fig. 4 indicate thag #ipha frequency band is the most important,
they also show the major contribution of other lsafat classification. Moreover, our detailed

analysis showed that none of the strongest cleaih weights was associated with
components characterised by particularly stronghalmscillations. Indeed, among many
components with a noticeable peak at the alphauéecy, the components with the most
pronounced peaks in alpha frequency (clearly @goity components) did not show any
significant contribution to the discrimination. Bhéeems to refute the conventional view on
mindfulness meditation where the mindfulness siatdightly related to alpha frequency

oscillations (Kerr et al., 2013). However, one cHves that we used rather inexperienced
meditators, and the situation might be differerthi& case of more experienced meditators.

In our results, spectral and connectivity featugase similar classification accuracies, which
raises the question of whether they contain theesaformation. This does not seem to be so
based on comparisons of the most important souncégyures 5 and 6, and so it would seem
that the similar classification accuracies may lmdy ca coincidence. However, since our
connectivity measures used zero lag, some overigppformation is likely to be present.

We visualized the spatial weights enabling clasaiion between mindfulness and the tasks
simulating wandering thoughts. It should be noteat the connection between these classifier
weights and the neural correlates is not straight+ird. Interpretation of the weights can lead to
wrong conclusions regarding the origin of neurghals of interest, since significant nonzero
weights may also be associated with task-irrelesamals (Haufe et al., 2014). However, from a
neurofeedback viewpoint, the classifier weightsoresrl here show which brain areas should be
measured, e.g. in a case of building a portable E&fBwith a small number of sensors.

Considering that the task-relevant frequenciestaad regions may not be simply linked to the
classification weights, there have been a few gitento clarify the neuronal basis of
mindfulness meditation. Gil and colleagues (Navaaib et al., 2018) showed that an EEG
neurofeedback that aims at increasing power atatpba frequency, improves mindfulness
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outcome, and thus, may be effective for increasmipdfulness in healthy individuals.
Unfortunately, the neurofeedback signal in thiglgtwas derived by averaging a set of occipital-
parietal electrodes, which makes difficult to assé location of underlying sources. Another
EEG study (van Lutterveld et al., 2017) overcamghdimitation by deriving the neurofeedback
signal in a source space. The neurofeedback wasdpbbased on gamma-band activity (40-57
Hz) from the posterior parietal cortex. The sulgewtere able to volitionally control the
neurofeedback signal in the direction associateth véffortless awareness by practicing
effortless awareness meditation. Hence, these tuthes suggested that not only alpha but also
other frequencies are associated with mindfulnesditation, and parietal cortex may have a key
role in mindfulness.

We observed relatively low classification accuraeydiscriminating between future planning
and reflection on anxiousness-inducing emotionetiupes tasks, which suggests similarity of the
rhythmic neuronal activity as captured by MEG dgrihese tasks. Although these tasks are
behaviourally quite different, and likely to be fdifent in terms of amplitudes of the evoked
responses in an affective picture paradigm (Olafsstoal., 2008), they may be similar in terms
of task-nonspecific cortical processes relatedttentional states. Consequently, our analysis,
focusing on ongoing brain activity, may not be s#@resto this difference.

The overall classification accuracy in this studgswiearly sixty percent, which is relatively low
for a neurofeedback system. However, accuracies flaw participants were around seventy
percent or more, which may allow a significant ioy@gment in mindfulness meditation.
Moreover, this relatively low accuracy may be expdd by the fact that the subjects did not
have previous experience in mindfulness meditatRwssibly, the neurofeedback might work
much better after subjects gain more experienceefaézation over subjects was even more
difficult, presumably due to the large individuafferences and the methods are more likely to
work when a large amount of data can be colleat@ah each single subject. However, it should
be noted that advanced multi-task classificationthiods might be able to generalize better by
either finding some structure in data that is iresatracross subjects or finding some structure in
the decision rules between different subjects (dayaet al., 2016; Kia et al., 2017).
Furthermore, combining brain measurements with lpgyhysiological measurements (for
instance, heart-rate variability (Nesvold et aD12)) and other modalities might be useful to
obtain practically useful classification performano future research.
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Supplementary figurelegends

Suppl. Fig. 1. Schematic representation of theufeatextraction in (A) spectral and (B)
connectivity approaches.

Suppl. Fig. 2. Distribution of the correlation cheknts for different frequency bands in
connectivity approach.

Suppl. Fig. 3. Classification accuracy for swappading and testing sessions.

Suppl. Fig. 4A. The spatial maps and spectral l@®f group-level independent components (1
to 20).

Suppl. Fig. 4B. The spatial maps and spectral j@o®f group-level independent components
(21 to 38).

Suppl. Fig. 5. (A, B) Four largest individual cldgstion coefficients associated with
independent components for spectral classifieA)dMF_FP and (B) MF_EP tasks.

15



579 Suppl. Fig. 6. (A, B) Four individual independerdngponents with highest degree node for
580 connectivity classifier in (A) MF_FP and (B) MF_Ed&%ks.
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