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Abstract 19 

Neurofeedback requires a direct translation of neuronal brain activity to sensory input given to 20 
the user or subject. However, decoding certain states, e.g., mindfulness or wandering thoughts, 21 
from ongoing brain activity remains an unresolved problem.  22 

In this study, we used magnetoencephalography (MEG) to acquire brain activity during 23 
mindfulness meditation and thought-inducing tasks mimicking wandering thoughts. We used a 24 
novel real-time feature extraction to decode the mindfulness, i.e., to discriminate it from the 25 
thought-inducing tasks. The key methodological novelty of our approach is usage of MEG power 26 
spectra and functional connectivity of independent components as features underlying 27 
mindfulness states. Performance was measured as the classification accuracy on a separate 28 
session but within the same subject.  29 

We found that the spectral- and connectivity-based classification approaches allowed 30 
discriminating mindfulness and thought-inducing tasks with an accuracy around 60% compared 31 
to the 50% chance-level. Both classification approaches showed similar accuracy, although the 32 
connectivity approach slightly outperformed the spectral one in a few cases. Detailed analysis 33 
showed that the classification coefficients and the associated independent components were 34 
highly individual among subjects and a straightforward transfer of the coefficients over subjects 35 
provided near chance-level classification accuracy.  36 

Thus, discriminating between mindfulness and wandering thoughts seems to be possible, 37 
although with limited accuracy, by machine learning, especially on the subject-level. Our hope is 38 
that the developed spectral- and connectivity-based decoding methods can be utilized in real-39 
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time neurofeedback to decode mindfulness states from ongoing neuronal activity, and hence, 40 
provide a basis for improved, individualized mindfulness training. 41 

  42 

Keywords 43 

Neurofeedback, magnetoencephalography, machine learning, mindfulness  44 

 45 

Introduction 46 

A brain computer interface (BCI), an essential component for neurofeedback, allows 47 
translating patterns of neuronal activity in the brain to inputs or commands for external devices 48 
(Wolpaw J. et al., 2002). Electroencephalography- (EEG) or magnetoencephalography-based 49 
(MEG) non-invasive BCIs provide opportunities for numerous clinical, assistive and 50 
entertainment applications. However, they require robust decoding of neuronal patterns: The 51 
person who controls the BCI should learn to produce robust neuronal patterns and/or a device 52 
that implements BCI should robustly identify these patterns.  53 

Machine learning approaches have recently been successfully applied to detect some 54 
cognitive operations or mental states from underlying neuronal activity (Lemm et al., 2011; Lotte 55 
et al., 2007). Often, the classification is performed on the neuronal activity evoked by time-56 
locked presentation of a target stimulus or task (Blankertz et al., 2011), which maximizes the 57 
signal-to-noise ratio of neuronal response. However, there are plenty of applications that require 58 
detection of cognitive states from stimulus-free ongoing neuronal activity.  59 

One application where machine-learning BCI could be very useful is mindfulness 60 
meditation, which has been shown to have several positive behavioural outcomes (Tang et al., 61 
2014). During mindfulness meditation, attention is supposed to be focussed on the breath or a 62 
similar target, but in reality, it varies over the time. Thus, it would be crucial to alert the user in 63 
real-time about wandering thoughts, i.e., temporary weakening of mindfulness. Detection of 64 
wandering thoughts can be considered as an example of neurofeedback system where a desired 65 
mental state can be defined by the user but the corresponding brain signal is not known. Such a 66 
sustained-attention neurofeedback system would presumably have many other applications, for 67 
instance, in driving assistance (Schmidt et al., 2009). 68 

Several functional magnetic resonance imaging (fMRI) studies suggest that activity of 69 
default-mode network may underlie mind-wandering thoughts (Andrews-Hanna et al., 2014; 70 
Christoff et al., 2009). On the other hand, a recent study suggests that mind wandering can be 71 
represented through dynamic connectivity of the brain networks (Kucyi, 2017). Nevertheless, the 72 
indirect coupling of BOLD signal with neuronal activity and the relatively low temporal 73 
resolution of fMRI do not allow assessment of the contribution of short-lasting cognitive 74 
processes that largely constitute wandering thoughts. Several attempts have been made to find 75 
the brain correlates of wandering thoughts during sustained attention tasks with millisecond 76 
resolution using electroencephalography (EEG; (Baldwin et al., 2017; Braboszcz and Delorme, 77 
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2011). These studies have reported changes in the power at alpha frequency during mind 78 
wandering, but the neuroanatomical basis remains poorly understood because of low spatial 79 
resolution of EEG. A technically more advanced, simultaneous EEG-fMRI neurofeedback study 80 
(Ros et al., 2013) showed an increase of connectivity in default-mode network, which was 81 
positively correlated with changes in mind-wandering as well as resting state alpha rhythm. 82 
Although this study provided a link between the brain rhythms and anatomy for mind-wandering, 83 
the relationship between EEG and BOLD signal is rather indirect (Scheeringa et al., 2011). 84 
Surprisingly, there is a lack of magnetoencephalography (MEG) studies. MEG provides better 85 
temporal resolution compared to fMRI and better spatial resolution compared to EEG, which 86 
allow assessing fast neuronal processes and brain networks that are closely related to fMRI 87 
networks (Brookes et al., 2011).  88 

In this study, we designed a behavioural paradigm where the subject performed 89 
mindfulness meditation, and two different tasks mimicking wandering thoughts, in consequent 90 
blocks. In contrast to mindfulness meditation, the latter tasks supposedly induced numerous 91 
thoughts, e.g., related to positive future plans or anxious emotional scenes. We used active tasks 92 
instead of resting state as a contrast for mindfulness meditation, because variability of resting 93 
state activity seems to be too unspecific, possibly related to various preceding mental states, 94 
including mindfulness itself. We developed and applied spectral- and connectivity-based 95 
classification approaches to discriminate the behavioural states based on their underlying 96 
neuronal activity, in particular focussing on the choice of feature extraction methods.   97 

Our results show that it is possible, to some extent, to detect wandering thoughts in on-98 
going MEG measurements, and we provide a sketch of a pipeline for optimizing such detection.  99 
Furthermore, in addition to the conventional view that mindfulness meditation is characterized 100 
by changes in the power of alpha oscillations, the changes in (dynamic) functional connectivity 101 
may provide an alternative, possibly even better, description of mindfulness states. 102 

 103 

Materials and Methods 104 

Experimental design 105 

Twenty-four subjects (9 females, 27±5.5 years (mean±SD)) with moderate or no previous 106 
experience in mindfulness meditation participated in the study. Prior to the study, we performed 107 
a screening to include subjects with no history of neurological disorders, head trauma or 108 
substance abuse. All participants had normal or corrected to normal vision. Ten subjects had no 109 
previous experience, while other subjects had experience in either focused attention or open 110 
monitoring meditation practices ranged from 0.5 to 10 years. 111 

After a 2-minute resting state, participants were instructed to perform one of the tasks while 112 
undergoing MEG (Elekta Neuromag, TRIUX). The tasks were organized into 2-minute blocks 113 
with counterbalanced order and the participants performed each task four times in a single 114 
session. The session ended with a resting state 2-minutes block. We conducted two sessions per 115 
participant with a 5-minutes break between the sessions (Fig. 1). 116 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

4 
 

-------------------------------- 117 

Figure 1 about here 118 

-------------------------------- 119 

Fig. 1. Diagram of the experiment. The tasks are MF (mindfulness meditation), FP (reflection of 120 
future planning) and EP (reflection on anxiousness-inducing emotional pictures). 121 

The tasks were mindfulness meditation (MF), reflection on future planning (FP) and reflection 122 
on anxiousness-inducing emotional pictures (EP). In all tasks, subjects were instructed to sit still, 123 
fix the gaze on the crosshair, and perform a task after a short (seven seconds) visual instruction. 124 
The visual instruction was shown at the beginning and at the middle of each task (Fig. 1) to keep 125 
subjects’ attention. After each task, the subject was asked to evaluate his/her involvement in the 126 
task by answering two questions “How focussed were you on the task?” and “How did you feel 127 
during the task? (pleasantness)” using a touch pad that provided a gradual response within range 128 
from 0 to 1.  129 

For the mindfulness meditation task, the subject was instructed to focus his/her attention on the 130 
sensations of breathing and move his/her focus of attention back to the task if mind-wandering 131 
occurs. The task started with a visual instruction “Please focus on your breathing” accompanied 132 
by a picture of clouds. For the future planning and anxiety-inducing tasks, the subject 133 
individually selected 16 (out of 40) relevant pictures prior to the experiment. In the future 134 
planning task, subject was asked to perform a planning related to the picture, presumably 135 
following the ensuing chains of thought and keeping his/her mind busy. The task started with an 136 
instruction “Please make plans related to the picture” accompanied by a relevant picture. The 137 
anxiety-inducing task was similar to the future planning, but instead of neutral pictures, 138 
disturbing, scary, disgusting or other unpleasant pictures were shown to the subject. The task 139 
started with a visual instruction “Place yourself or someone close to you in this situation” 140 
accompanied by a relevant picture. For the FP and EP tasks two different pictures were presented 141 
for each 2-minute block (at the beginning and in the middle), and for the MF task, the same 142 
picture of clouds was presented twice. 143 

Analysis of behavioural data 144 

We analysed the subject’s responses for the question “How focussed were you on the task?” (see, 145 
Fig. 1) ranged from 0 to 1. The average values were the following 0.65±0.012 (mindfulness), 146 
0.70±0.010 (future planning task) and 0.66±0.013 (anxiety-inducing task) respectively. This 147 
result showed that the focus during different tasks was at a reasonable level. Additionally, we 148 
compared the responses between different tasks using the Wilcoxon rank sum test. The results 149 
showed no significant difference (p > 0.05) between the tasks, suggesting that the participants 150 
performed these tasks equally well. 151 

Data pre-processing 152 
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In the analysis, we used the 204 planar gradiometers of the MEG scanner. The Signal Space 153 
Separation (SSS) method (Taulu et al., 2004) was applied to supress the external interference and 154 
sensor artefacts.  155 

Independent component analysis 156 

To obtain neurophysiologically realistic sources of neuronal activity, we applied complex-valued 157 
independent component analysis in the frequency-domain (Fourier-ICA; (Hyvärinen et al., 158 
2010)) to MEG sensor’s time series. The time series were divided into four-second epochs with 159 
75 percent overlap and the epochs were Fourier transformed within the range of 4–24 Hz. A 160 
complex-valued ICA using 64 PCA components was applied to the epochs (from first sessions 161 
only), concatenated across subjects, which provided a group-level ICA un-mixing matrix. Note 162 
that the effective dimension of the data was reduced to approximately 64 by SSS. 163 

Component selection criteria 164 

Often, several independent components in MEG reflect physiological activity that is unrelated to 165 
neuronal activity of the brain (Jas et al., 2017). To exclude possible confounders, we applied 166 
three criteria to select independent components. First, we included only components that had a 167 
spectral peak within the range 8–16 Hz and the power of this peak was at least 50% larger than 168 
the power in theta (4–7 Hz) or high-beta (17–24 Hz) bands. Before this comparison, we 169 
equalized the spectral power over frequencies by subtracting the best fitting power-law function 170 
from the power spectra. Second, we analysed the component’s spatial maps and excluded those 171 
components that had more than three blobs (i.e., continuous areas containing 5% of largest 172 
values) in the spatial map. Third, we excluded the components if their maximum in spatial map 173 
was located in the frontal or tempo-frontal areas. As a result, 38 components (out of 64) were 174 
selected for further analysis. Generally speaking, brain sources are spatially localized and band-175 
pass, which leads to our formulation of the first two criteria, and the third criterion was included 176 
to exclude eye artifacts. 177 

Spectral features extraction  178 

The individual subjects’ spectral features were extracted in the following manner. The sensor 179 
time series were divided into four-second epochs with 75 percent overlap and the epochs were 180 
Fourier transformed within the range of 4–24 Hz. The group-level ICA un-mixing matrix was 181 
applied to these epochs, and the amplitude spectra of frequency-domain independent components 182 
were computed (Suppl. Fig. 1A). In order to increase robustness of the spectral approach, we 183 
averaged the spectral amplitudes within four frequency bands: theta (4–7 Hz), alpha (8–12 Hz), 184 
low-beta (13–16 Hz) and high-beta (17–24 Hz). The amplitude spectra averaged inside these four 185 
frequency bands were then used as features for classification. 186 

Connectivity features extraction 187 

As an alternative to the spectral features, individual connectivity features were extracted as 188 
follows. Again, the sensor time series were divided into four seconds epochs with 75 percent 189 
overlap and the epochs were Fourier transformed within the range of 4–24 Hz. The group-level 190 
ICA un-mixing matrix was applied to these epochs and inverse Fourier transform was computed 191 
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to reconstruct components’ time series. The independent component time series were filtered in 192 
four frequency bands: theta (4–7 Hz), alpha (8–12 Hz), low-beta (13–16 Hz) and high-beta (17–193 
24 Hz). In contrast to the spectral feature case, the Pearson correlation coefficients were 194 
computed for each pair of the components (Suppl. Fig. 1B), separately for each frequency band. 195 
The correlation coefficients between epochs of independent component time series were well 196 
above zero (Suppl. Fig. 2). The connectivity matrices were then vectorised and used as features 197 
for classification. 198 

Feature dimensionality reduction 199 

To further improve the robustness of classification, we reduced the dimensionality of the 200 
spectral- and connectivity-based features by applying an algorithm described by Kauppi and 201 
colleagues (Kauppi et al., 2013). The idea is to compute, for each epoch and component, the 202 
most discriminating spectral or connectivity feature, and only use that in the classification. The 203 
dimensionality of features were thus reduced as follows,  204 

��,� = � ��,�,�
�∈
�

− � ��,�,�
�∈


 

��,� =���,�,�
�

⋅ ��,�‖��.‖ 

where F denotes a tensor containing the spectral or connectivity features (whose dimensions are 205 
either: components=38 by epochs by frequency_bands=4; or: component_pairs=703 by epochs 206 
by frequency_bands=4, respectively). Here, i denotes component or connectivity pair index; T1 207 
and T2 are indices of task 1 and task 2 in the training dataset, respectively; ‖∙‖ denotes vector 208 
norm operator; ��. means the vector consisting of all the ��,� for different j. The final result is 209 

given in matrix P which contains the resulting feature vectors of the epochs, with dimensions: 210 
components=38 by epochs; or component_pairs=703 by epochs, for spectral- or connectivity-211 
based classification, respectively.  212 

Classification methods: individual vs. group classification 213 

The spectral and connectivity features with reduced dimensionality were classified using the 214 
linear Support Vector Machine (SVM) algorithm as implemented in scikit-learn (Pedregosa et 215 
al., 2011). We used two scenarios to train and test the classifiers. In the first scenario “individual 216 
classifier”, we trained the classifier using individual data from the first session and tested the 217 
classifier using data from the second session. In the second scenario “group classifier”, we 218 
trained the classifier using data from both sessions and all subjects except one “testing” subject, 219 
and tested the classifier using the testing subject’s data from the second session. The second 220 
scenario is more challenging, essentially providing information on the generalizability of the 221 
classifier across subjects (Jayaram et al., 2016; Kia et al., 2017).  222 

Real-time computation 223 

We tested the computational time for both feature extraction and classification algorithms to 224 
ensure that our approaches suit real-time applications. The algorithms implemented in Python 225 
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were launched on a Linux based laptop (Intel Core i5-3570 @ 3.40 GHz, 8.00 GB RAM). The 226 
average feature extraction time (±SD) for single epoch was 0.0118±0.0085 and 0.0385±0.0192 227 
second for the spectral and connectivity approaches, respectively. The average classification time 228 
using linear SVM was 0.0212±0.0042 and 0.1310±0.0086 seconds for the spectral and 229 
connectivity approaches respectively. Thus, the computational time was negligibly small 230 
compared to the inter-epoch interval of 0.5 second.  231 

Statistical analysis of classification accuracies 232 

To assess the statistical differences between the classification accuracies for different tasks or for 233 
different feature sets, we applied the Wilcoxon rank sum test.  234 

Statistical analysis of classification coefficients 235 

To evaluate the contribution of different spectral and connectivity features to the resulting 236 
classification accuracy, we performed a statistical analysis of the significance of the 237 
classification coefficients. The coefficients were divided by their absolute sum and averaged 238 
across subjects and then compared against zero mean using a two-sided z-test. For the spectral-239 
based approach, we reported both uncorrected (p < 0.05) and Bonferroni corrected classification 240 
coefficients, while for the connectivity-based approach, we reported only Bonferroni corrected 241 
classification coefficients, since there the problem of multiple testing was more serious.  242 

 243 

Results 244 

We applied the spectral and connectivity approaches to investigate whether and how it is 245 
possible to discriminate (decode) between mindfulness meditation (MF), future planning (FP) 246 
and reflection on anxious-inducing emotional pictures (EP) tasks. We then analysed the 247 
classification coefficients to identify neuronal correlates (spatial maps and spectral profiles) 248 
associated with the mental states during task performance. 249 

Classification accuracy 250 

We first computed the classification accuracies using spectral and connectivity approaches (Fig. 251 
2).  252 

-------------------------------- 253 

Figure 2 about here 254 

-------------------------------- 255 

Fig. 2. Spectral- and connectivity-based classification accuracies averaged across subjects for 256 
(A) individual and (B) group classifiers. MF_FP denotes mindfulness meditation vs. future 257 
planning task, MF_EP denotes mindfulness meditation vs. reflection of anxious-inducing 258 
emotional pictures task, and FP_EP denotes future planning task vs. reflection of anxious-259 
inducing emotional pictures task. Error bars represent SEM. 260 
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The spectral approach with individual classifier provided accuracies well above chance-level, 261 
0.59±0.008 (MF vs. FP), 0.61±0.007 (MF vs. EP) and 0.55±0.005 (FP vs. EP). The accuracies 262 
MF vs. FP and MF vs. EP were significantly larger (p < 0.004, individual classifier; p < 0.01, 263 
group classifier) than the accuracy FP vs. EP, suggesting that FP and EP have similar neuronal 264 
correlates. The accuracies for the group spectral-based classifier were relatively low, 0.55±0.003 265 
(MF vs. FP), 0.54±0.003 (MF vs. EP) and 0.52±0.002 (FP vs. EP), showing that the classifier 266 
had poor generalization over subjects.  267 

The connectivity approach provided slightly higher accuracies compared to the spectral 268 
approach, 0.62±0.009 (MF vs. FP), 0.62±0.009 (MF vs. EP) and 0.55±0.004 (FP vs. EP). 269 
However, the accuracies were not significantly different (p > 0.05) between the spectral and 270 
connectivity classifiers. The accuracies at the group level classifier were similar to those of the 271 
spectral approach, 0.55±0.004 (MF vs. FP), 0.54±0.002 (MF vs. EP) and 0.53±0.002 (FP vs. EP).  272 

We repeated the analysis by swapping training and testing sessions. There was no difference 273 
between accuracies for the original and swapped sessions for the individual classifier, but the 274 
difference became non-significant for the group classifier (Suppl. Fig. 3). 275 

Relationship between spectral- and connectivity-based accuracies  276 

To compare of the approaches further, we assessed the relationship (correlation) between 277 
accuracies of spectral- and connectivity-based classifiers at individual subject’s level (Fig. 3). 278 
The results showed a significant correlation between spectral- and connectivity-based accuracies 279 
only for two tasks, MF vs. FP (r = 0.53, p < 0.008) and MF vs. EP (r = 0.60, p < 0.002) for 280 
individual classifier.  281 

-------------------------------- 282 

Figure 3 about here 283 

-------------------------------- 284 

Fig. 3. Scatter plots of individual subject’s accuracies computed using spectral and connectivity 285 
approaches for the following tasks, (A) mindfulness mediation vs. reflection on future planning 286 
(MF_FP), (B) mindfulness mediation vs. reflection on anxiety-inducing emotional pictures 287 
(MF_EP) and (C) reflection on future planning vs. reflection on anxiety-inducing emotional 288 
pictures (FP_EP). 289 

For the further analysis, we considered only results of the individual classifier and two tasks 290 
(MF_FP and MF_EP).  291 

Spectral and connectivity projections 292 

We analysed the projection weights provided by the dimensionality reduction algorithm (see, 293 
Materials and Methods), to evaluate the frequency-specific differences between the tasks.  294 

The results showed that that largest difference between tasks was associated with alpha 295 
frequency (Fig. 4). For the spectral classifier, the projection weights at alpha frequency were a 296 
little larger compared to those of connectivity classifier. Surprisingly, there was a strong 297 
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variability of the projection weights for group spectral classifier for different tasks, in contrast to 298 
individual spectral and connectivity classifiers.   299 

-------------------------------- 300 

Figure 4 about here 301 

-------------------------------- 302 

Fig. 4. Group level spectral and connectivity projections. Error bars represent SEM. 303 

This result suggested that indeed, alpha frequency play an important role in discriminating 304 
mindfulness and thought-inducing tasks.  305 

Classification coefficients of the spectral approach 306 

We analysed the SVM classification coefficients of spectral classifier to evaluate the impact of 307 
different independent components and frequency bands on the accuracy. The coefficients obeyed 308 
Gaussian distribution and we picked those coefficients whose absolute values were above the 309 
chance-level corresponding to p < 0.05 (Fig. 5).  310 

-------------------------------- 311 

Figure 5 about here 312 

-------------------------------- 313 

Fig. 5. (A) Classification coefficients (absolute values) of spectral approach for the individual 314 
classifier. The significant coefficients indicated by black (p < 0.05, uncorrected) and red (p < 315 
0.05, Bonferroni corrected) arrows, respectively. (B) Spatial maps and spectral profiles of 316 
independent components associated with significant coefficients. The grey curves indicate power 317 
spectra with subtracted power-law fit. 318 

There were a few independent components (all independent components are shown in Suppl. 319 
Fig. 4A and 4B) associated with significantly larger classification coefficients. The components 320 
were associated with both thought-inducing tasks, showing a slight increase in power spectra at 321 
alpha frequency and located in the occipital (components 16, 20 and 30) or central areas 322 
(component 11). After correcting for multiple testing, only one coefficient (component 30) 323 
remained significant. Importantly, none of the significant weights was associated with 324 
components characterised by strong (very clearly peaked) alpha oscillations, although several 325 
such components were available for classification (see Suppl. Fig. 4A and 4B). 326 

These results showed that rhythmic activity in occipital areas, but apparently not exclusively in 327 
alpha frequency, makes the strongest contribution to the discrimination of mindfulness and 328 
thought-inducing tasks.  329 

To further elucidate the classification weights for individual subjects, we selected four largest 330 
coefficients and associated components. The results showed that the components associated with 331 
largest coefficients were highly individual (Suppl. Fig. 5), which make generalization of the 332 
classifier coefficients over subjects impractical. 333 
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Classification coefficients of the connectivity approach 334 

The connectivity approach provided similar classification accuracies to the spectral approach, 335 
although these approaches utilized different principles for feature extraction. Similarly to the 336 
spectral approach, the classification coefficients followed a Gaussian distribution. We applied a 337 
t-test and selected significant (p < 0.05, Bonferroni corrected) classification coefficients (Fig. 6). 338 

-------------------------------- 339 

Figure 6 about here 340 

-------------------------------- 341 

Fig. 6. (A) Significant classification coefficients representing connections (i.e., connectivity 342 
pairs), for individual classifier. (B) Node degree when considering only the significant 343 
connections shown in panel A. Degree of zero means that there are no significant connections. 344 
The significant components with node degree above one indicated by arrows. (C) Spatial maps 345 
and spectral profiles of independent components associated with component’s node degree above 346 
one.  347 

The results showed that multiple connections contribute to the classification accuracy (Fig. 6A). 348 
To identify the independent components that represented a hub (i.e., node with a high degree) 349 
and hence, more strongly influenced the classification accuracy, we analysed the node degrees of 350 
the components using only the significant connections (Fig. 6B). We selected the components 351 
with node degree above one, and further analysed them (Fig. 6C). 352 

Similarly to the spectral approach, strongest connections were associated with the occipital and 353 
temporal components, some of which demonstrated a peak at alpha frequency. Only one 354 
component (component 17) was characterized by particularly prominent alpha oscillations (see 355 
Suppl. Fig. 4A and 4B for comparison), again suggesting that alpha oscillations may not be 356 
strongly related to mindfulness states.  357 

These results demonstrated a considerable variety of spatial maps and spectral patterns, which 358 
can underlie the difference in mindfulness and thought-provoking tasks. 359 

To evaluate the contribution of high node degree components in individual subjects, we selected 360 
four components with highest node degree for each subject. The results showed that the high 361 
node degree components were highly individual (Suppl. Fig. 6), and similarly to the spectral-362 
based classification, generalization over the subjects seems impractical. 363 

All components classification 364 

As noted in the Materials and Methods section, we excluded independent components that seem 365 
to be strongly contaminated by non-brain physiological artifacts. However, it is interesting to 366 
assess the impact such components would have on the classification. To accomplish this, we 367 
selected all the 64 independent components and applied the spectral- and connectivity-based 368 
classification approaches (Fig. 7).   369 

 370 
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-------------------------------- 371 

Figure 7 about here 372 

-------------------------------- 373 

Fig. 7. Classification accuracies for (A) spectral and (B) connectivity approaches using 38 (solid 374 
bars) and 64 (dashed bars) components for individual and group classifiers. 375 

We observed no differences in the accuracy for 38 and 64 independent components for the 376 
individual spectral and connectivity classifiers, as well as for the group connectivity classifier 377 
(Fig. 7). However, there were large differences in the accuracy for the group spectral classifier in 378 
MF vs. FP (p < 0.001) and MF vs. EP (p < 0.03).  379 

To clarify the difference, we analysed the classification coefficients of the group spectral 380 
classifier (Fig. 8).  381 

-------------------------------- 382 

Figure 8 about here 383 

-------------------------------- 384 

Fig. 8. (A) The coefficients of the group spectral classifier for 64 independent components. The 385 
significant coefficients indicated by black (p < 0.05, uncorrected) and red (p < 0.05, Bonferroni 386 
corrected) arrows, respectively. (B) The spatial maps and spectral profiles associated with the 387 
significant coefficients. 388 

The results clearly showed that when artifacts were not removed, the classifier picked the 389 
components that were mainly associated with physiological artifacts such as eye-blinks 390 
(component 6 and 18), cardiac activity (component 52), instrumental noise or other physiological 391 
artifacts (20, 50, 56). On the other hand, the possibly sensory-motor component (15) may have 392 
been erroneously excluded from the main analysis. After correcting for multiple testing, three 393 
coefficients (components 18, 50 and 52) remained significant. 394 

In this case, the higher accuracy of the group spectral classifier likely to be related to the fact that 395 
the artifacts were highly consistent across subjects (Smith and Nichols, 2018), and thus provided 396 
a better basis for generalizing to new subjects. 397 

Individual and group ICA  398 

To evaluate the impact of ICA on classification accuracy, we recomputed the accuracies using 399 
spectral- and connectivity-based classifiers for individual and group ICA weights. Because the 400 
spectral profiles and spatial maps of individual independent components strongly varied across 401 
subjects, we did not apply the component selection criteria (see, Materials and Methods) and 402 
computed the classification accuracies for all 64 components (Fig. 9). There were no significant 403 
differences in the accuracies for individual and group ICA. This means that ICA spatial filters 404 
can be precomputed in advance and the classification approach can be operated in real time. 405 

 406 
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-------------------------------- 407 

Figure 9 about here 408 

-------------------------------- 409 

Fig. 9. Classification accuracies for the individual and group ICA weights using (A) spectral and 410 
(B) connectivity approaches.  411 

 412 

Discussion 413 

In this study, we developed spectral- and connectivity-based classification approaches and 414 
showed that the mental states underlying mindfulness and thought-provoking tasks can be 415 
discriminated using MEG recordings and machine learning approaches.  416 

We observed a variety of spatial and spectral patterns that contribute to discriminating 417 
mindfulness meditation, suggesting that several neuronal mechanisms may underlie mindfulness 418 
state. While the results in Fig. 4 indicate that the alpha frequency band is the most important, 419 
they also show the major contribution of other bands for classification. Moreover, our detailed 420 
analysis showed that none of the strongest classification weights was associated with 421 
components characterised by particularly strong alpha oscillations. Indeed, among many 422 
components with a noticeable peak at the alpha frequency, the components with the most 423 
pronounced peaks in alpha frequency (clearly oscillatory components) did not show any 424 
significant contribution to the discrimination. This seems to refute the conventional view on 425 
mindfulness meditation where the mindfulness state is tightly related to alpha frequency 426 
oscillations (Kerr et al., 2013). However, one caveat is that we used rather inexperienced 427 
meditators, and the situation might be different in the case of more experienced meditators.  428 

In our results, spectral and connectivity features gave similar classification accuracies, which 429 
raises the question of whether they contain the same information. This does not seem to be so 430 
based on comparisons of the most important sources in Figures 5 and 6, and so it would seem 431 
that the similar classification accuracies may be only a coincidence. However, since our 432 
connectivity measures used zero lag, some overlapping information is likely to be present.  433 

We visualized the spatial weights enabling classification between mindfulness and the tasks 434 
simulating wandering thoughts. It should be noted that the connection between these classifier 435 
weights and the neural correlates is not straight-forward. Interpretation of the weights can lead to 436 
wrong conclusions regarding the origin of neural signals of interest, since significant nonzero 437 
weights may also be associated with task-irrelevant signals (Haufe et al., 2014). However, from a 438 
neurofeedback viewpoint, the classifier weights reported here show which brain areas should be 439 
measured, e.g. in a case of building a portable EEG cap with a small number of sensors.  440 

Considering that the task-relevant frequencies and brain regions may not be simply linked to the 441 
classification weights, there have been a few attempts to clarify the neuronal basis of 442 
mindfulness meditation. Gil and colleagues (Navarro Gil et al., 2018) showed that an EEG 443 
neurofeedback that aims at increasing power at the alpha frequency, improves mindfulness 444 
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outcome, and thus, may be effective for increasing mindfulness in healthy individuals. 445 
Unfortunately, the neurofeedback signal in this study was derived by averaging a set of occipital-446 
parietal electrodes, which makes difficult to assess the location of underlying sources. Another 447 
EEG study (van Lutterveld et al., 2017) overcame such limitation by deriving the neurofeedback 448 
signal in a source space. The neurofeedback was provided based on gamma-band activity (40–57 449 
Hz) from the posterior parietal cortex. The subjects were able to volitionally control the 450 
neurofeedback signal in the direction associated with effortless awareness by practicing 451 
effortless awareness meditation. Hence, these two studies suggested that not only alpha but also 452 
other frequencies are associated with mindfulness meditation, and parietal cortex may have a key 453 
role in mindfulness.  454 

We observed relatively low classification accuracy in discriminating between future planning 455 
and reflection on anxiousness-inducing emotional pictures tasks, which suggests similarity of the 456 
rhythmic neuronal activity as captured by MEG during these tasks. Although these tasks are 457 
behaviourally quite different, and likely to be different in terms of amplitudes of the evoked 458 
responses in an affective picture paradigm (Olofsson et al., 2008), they may be similar in terms 459 
of task-nonspecific cortical processes related to attentional states. Consequently, our analysis, 460 
focusing on ongoing brain activity, may not be sensitive to this difference. 461 

The overall classification accuracy in this study was nearly sixty percent, which is relatively low 462 
for a neurofeedback system. However, accuracies for a few participants were around seventy 463 
percent or more, which may allow a significant improvement in mindfulness meditation. 464 
Moreover, this relatively low accuracy may be explained by the fact that the subjects did not 465 
have previous experience in mindfulness meditation. Possibly, the neurofeedback might work 466 
much better after subjects gain more experience. Generalization over subjects was even more 467 
difficult, presumably due to the large individual differences and the methods are more likely to 468 
work when a large amount of data can be collected from each single subject. However, it should 469 
be noted that advanced multi-task classification methods might be able to generalize better by 470 
either finding some structure in data that is invariant across subjects or finding some structure in 471 
the decision rules between different subjects (Jayaram et al., 2016; Kia et al., 2017). 472 
Furthermore, combining brain measurements with psychophysiological measurements (for 473 
instance, heart-rate variability (Nesvold et al., 2012)) and other modalities might be useful to 474 
obtain practically useful classification performance in future research. 475 
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 566 
Supplementary figure legends 567 

Suppl. Fig. 1. Schematic representation of the feature extraction in (A) spectral and (B) 568 
connectivity approaches. 569 

Suppl. Fig. 2. Distribution of the correlation coefficients for different frequency bands in 570 
connectivity approach. 571 

Suppl. Fig. 3. Classification accuracy for swapped training and testing sessions. 572 

Suppl. Fig. 4A. The spatial maps and spectral profiles of group-level independent components (1 573 
to 20). 574 

Suppl. Fig. 4B. The spatial maps and spectral profiles of group-level independent components 575 
(21 to 38). 576 

Suppl. Fig. 5. (A, B) Four largest individual classification coefficients associated with 577 
independent components for spectral classifier in (A) MF_FP and (B) MF_EP tasks. 578 
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Suppl. Fig. 6. (A, B) Four individual independent components with highest degree node for 579 
connectivity classifier in (A) MF_FP and (B) MF_EP tasks. 580 
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