
Joonas Hämäläinen

JYU DISSERTATIONS 43

Improvements and Applications of the
Elements of Prototype-Based Clustering

JYU DISSERTATIONS 43

Joonas Hämäläinen

Improvements and Applications of the
Elements of Prototype-Based Clustering

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Gamma-salissa

joulukuun 14. päivänä 2018 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Gamma hall, on December 14, 2018 at 12 o’clock noon.

JYVÄSKYLÄ 2018

Editors
Timo Männikkö
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-7621-7 (PDF)
URN:ISBN:978-951-39-7621-7
ISSN 2489-9003

Copyright © 2018, by University of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-7621-7

ABSTRACT

Hämäläinen, Joonas
Improvements and Applications of the Elements of Prototype-Based Clustering
Jyväskylä: University of Jyväskylä, 2018, 58 p.(+included articles)
(JYU Dissertations
ISSN 2489-9003; 43)
ISBN 978-951-39-7621-7 (PDF)
Finnish summary
Diss.

Clustering or cluster analysis is an essential part of data mining, machine learn-
ing, and pattern recognition. The most popularly applied clustering methods
are partitioning-based or prototype-based methods. Prototype-based clustering
methods usually have easy implementability and good scalability. These meth-
ods, such as K-means clustering, have been used for different applications in
various fields. On the other hand, prototype-based clustering methods are typ-
ically sensitive to initialization, and the selection of the number of clusters for
knowledge discovery purposes is not straightforward. In the era of big data,
in high-velocity, ever-growing datasets, which can also be erroneous, outlier in-
tensive and sparse, research has arisen focused on the development of efficient
prototype-based clustering methods for more challenging datasets. This collec-
tion of articles primarily focuses on developing prototype-based clustering for
more scalable, efficient and reliable data processing. To achieve these goals, im-
provements and modifications have been made to prototype-based clustering in
six included articles. Additionally an application of the prototype-based cluster-
ing to supervised learning in regression problems is also covered. In general,
these efforts advance the knowledge discovery process towards more reliable
data processing and big data.

Keywords: knowledge discovery, data mining, machine learning, prototype-based
clustering, big data, parallel computing, robust clustering, clustering
initialization, K-means, minimal learning machine, random projec-
tion

Author Joonas Hämäläinen
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Professor Tommi Kärkkäinen
Faculty of Information Technology
University of Jyväskylä
Finland

Professor Tuomo Rossi
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Professor Martti Juhola
Faculty of Natural Sciences
University of Tampere
Finland

Professor Ajalmar Rêgo da Rocha Neto
Department of Teleinformatics
Federal Institute of Ceará
Brazil

Opponent Professor Pasi Fränti
School of Computing
University of Eastern Finland
Finland

TIIVISTELMÄ (FINNISH ABSTRACT)

Hämäläinen, Joonas
Prototyyppipohjaisen klusteroinnin elementtien parannukset ja sovellukset
Jyväskylä: University of Jyväskylä, 2018, 58 s.(+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 43)
ISBN 978-951-39-7621-7 (PDF)

Klusterointi eli klusterianalyysi on keskeinen osa-alue tiedonlouhinnassa, kone-
oppimisessa ja hahmontunnistuksessa. Sovelluksissa käytetyimpiä ovat ositta-
vat eli prototyyppipohjaiset klusterointimenetelmät. Prototyyppipohjaiset klus-
terointimenetelmät ovat usein helposti toteutettavissa ja ne skaalautuvat hyvin.
Näitä menetelmiä, kuten K-means-klusterointia, on hyödynnetty monissa eri so-
velluksissa eri tutkimusaloilla. Toisaalta prototyyppipohjaiset klusterointimene-
telmät ovat alustukselle herkkiä eikä klustereiden lukumäärän valinta ole suo-
raviivaista. Big datan aikakaudella nopeasti kasvavat tietomassat, jotka voivat
myös olla virheellisiä, anomaliaintensiivisiä ja harvoja, ohjaavat tutkimusta te-
hokkaiden prototyyppipohjaisten klusterointimenetelmien kehittämiseen haas-
taville datajoukoille. Tämä artikkeliväitöskirja keskittyy pääasiassa kehittämään
datan prosessointia prototyyppipohjaisella klusteroinnilla skaalautuvammaksi,
tehokkaammaksi ja luotettavammaksi. Näiden tavoitteiden saavuttamiseksi kuu-
dessa väitöskirjaan kuuluvassa artikkelissa on tehty parannuksia ja modifikaa-
tioita prototyyppipohjaiseen klusterointiin. Lisäksi prototyyppipohjaisen kluste-
roinnin sovellusta ohjattuun oppimiseen regressio-ongelmissa on käsitelty yh-
dessä artikkelissa. Yleisesti väitöskirjan tulokset kehittävät tietämyksen muodos-
tamisprosessia kohti luotettavampaa datan prosessointia ja skaalautuvampaa big
datan prosessointia.

Avainsanat: tietämyksen muodostaminen, tiedonlouhinta, koneoppiminen, pro-
totyyppipohjainen klusterointi, big data, rinnakkaislaskenta, robusti
klusterointi, klusteroinnin alustaminen, K-means, minimaalinen op-
pimiskone, satunnaisprojektio

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Professor Tommi Kärkkäi-
nen for all his support, guidance and help along the way. His genuine enthusiasm
towards data mining and machine learning, scientific expertise, and heteroge-
neous pool of ideas have been priceless. I am also grateful to my supervisor Pro-
fessor Tuomo Rossi whose support and scientific expertise in parallel computing
have been valuable. It has been a pleasure to work with both of them.

For reviewing the dissertation manuscript and providing insightful com-
ments I would like to thank Professor Martti Juhola and Professor Ajalmar Rêgo
da Rocha Neto. I thank collaborators Professor João Paulo Pordeus Gomes, Dr.
Mirka Saarela and Ms. Susanne Jauhiainen for fruitful research. I would also
like to thank all my colleagues and particularly Dr. Mirko Myllykoski, Dr. Paavo
Nieminen and Dr. Pekka Wartiainen for support and many interesting discus-
sions. I would also like to thank Mr. Pertti Henttu who got me interested in data
mining and machine learning.

I am grateful for the financial support of the Faculty of Information Technol-
ogy at University of Jyväskylä and Ellen and Artturi Nyyssönen Foundation. I
would also like to thank my family members, friends and relatives for their sup-
port outside research work. Finally, I am grateful to my beloved wife Susanna
for her endless support along the way of my PhD studies, and patience for my
unusual working hours, especially at the end of the dissertation work.

GLOSSARY

AI Artificial intelligence
C-MLM Cubic equation minimal learning machine
CVI Cluster validation index
DB Davies–Bouldin
DB-SCV Distribution balanced stratified cross-validation
DOB-SCV Distribution optimally balanced stratified cross-validation
ELM Extreme learning machine
ESCS Economic, social and cultural status
KDD Knowledge discovery in databases
K-means‖ Scalable K-means++
K-NN K-nearest neighbors
KW Kruskal–Wallis
MDCS MATLAB distributed computing server
MLM Minimal learning machine
MLP Multi-layer perceptron
NN-MLM Nearest neighbor minimal learning machine
ON Opposite neighbors
PBM Pakhira–Bandyopadhyay–Maulik
PCA Principal component analysis
PCT Parallel computing toolbox
PISA Programme for international student assessment
RMSE Root-mean-squared error
RQ Research question
RS Reference points selection
RT Ray–Turi
SCV Stratified-cross validation
SK-means‖ Subset K-means‖
SOR Successive over-relaxation
SPMD Single program multiple data
SRPK-means‖ Subset random projection K-means‖
SSE Sum-of-squared error
UPGMA Unweighted pair group method with arithmetic mean
WG Wemmert–Gançarski

LIST OF FIGURES

FIGURE 1 KDD process. ... 14
FIGURE 2 Included articles related to the steps of the cluster analysis

procedure... 16
FIGURE 3 Demonstration of relative clustering error improvement as a

function of iterations for K-means clustering. 20
FIGURE 4 Illustration of robustness of K-spatialmedians clustering with

respect to K-means clustering for a synthetic dataset with noise
and missing values (10%). This figure was originally pub-
lished in [PIII]. ... 24

FIGURE 5 Demonstration of differences between the clustering-based meth-
ods [PVI] and the random selection concerning a regression
model quality (RMSE), and model complexity (number of ref-
erence points K). For a small number of reference points, it
matters how the reference points are selected. The results
shown here were computed in [PVI]. 34

FIGURE 6 Prediction surface of the MLM for a synthetic regression dataset
with (a) Random and (b) RS-maximin reference points selec-
tion methods. The ground truth output surface is shown in
(c). ... 35

FIGURE 7 Squared error surface of MLM with respect to the ground truth
for (a) Random and (b) RS-maximin reference points selection
methods. Reference point locations in the input space are in-
dicated with black bars. ... 35

LIST OF TABLES

TABLE 1 Summary of contributions. .. 42

CONTENTS

ABSTRACT
TIIVISTELMÄ (FINNISH ABSTRACT)
ACKNOWLEDGEMENTS
GLOSSARY
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 13
1.1 Background and motivation .. 13
1.2 Research questions ... 15
1.3 Structure of the work .. 16

2 CLUSTERING.. 17
2.1 Background ... 17
2.2 Prototype-based clustering .. 18

2.2.1 K-means ... 19
2.2.2 Initialization of K-means .. 20
2.2.3 K-spatialmedians... 23

2.3 Cluster validation ... 25
2.4 Big data clustering .. 25

2.4.1 Characteristics of big data .. 25
2.4.2 Scaling clustering methods for big data............................ 26
2.4.3 Clustering with random projections 26
2.4.4 Parallel clustering with MATLAB.................................... 28

3 SUPERVISED LEARNING .. 29
3.1 Cross-validation ... 29
3.2 Supervised methods ... 30
3.3 Minimal learning machine... 31

4 SUMMARY OF THE INCLUDED ARTICLES...................................... 36
4.1 [PI]: Initialization of big data clustering using distributionally

balanced folding... 36
4.2 [PII]: Scalable initialization methods for clustering large

datasets ... 37
4.3 [PIII]: Scalable robust clustering method for large and sparse data 38
4.4 [PIV]: Comparison of internal clustering validation indices for

prototype-based clustering .. 38
4.5 [PV]: Feature ranking of large, robust, and weighted clustering

result ... 39
4.6 [PVI]: Clustering-based reference points selection for the

minimal learning machine ... 40

4.7 Summary of contributions ... 41
4.8 Author’s contribution to the included articles 43

5 CONCLUSIONS AND FUTURE WORK ... 45

YHTEENVETO (FINNISH SUMMARY) ... 48

REFERENCES.. 49

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Joonas Hämäläinen and Tommi Kärkkäinen. Initialization of Big Data
Clustering using Distributionally Balanced Folding. ESANN 2016 proceed-
ings, European Symposium on Artificial Neural Networks, Computational Intel-
ligence and Machine Learning, 2016.

PII Joonas Hämäläinen, Tommi Kärkkäinen and Tuomo Rossi. Scalable initial-
ization methods for clustering large datasets. Pattern Recognition Letters (in
revision), 2018.

PIII Joonas Hämäläinen, Tommi Kärkkäinen and Tuomo Rossi. Scalable robust
clustering method for large and sparse data. ESANN 2018 proceedings, Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, 2018.

PIV Joonas Hämäläinen, Susanne Jauhiainen and Tommi Kärkkäinen. Compar-
ison of Internal Clustering Validation Indices for Prototype-Based Cluster-
ing. Algorithms, 10(3):105, 2017.

PV Mirka Saarela, Joonas Hämäläinen and Tommi Kärkkäinen. Feature Rank-
ing of Large, Robust, and Weighted Clustering Result. PAKDD 2017 pro-
ceedings, Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia
Conference, 2017.

PVI Joonas Hämäläinen, Tommi Kärkkäinen and João P. P. Gomes. Clustering-
Based Reference Points Selection for the Minimal Learning Machine.
Manuscript, 2018.

1 INTRODUCTION

The general orientation of this thesis is to refine the KDD process and machine
learning via contributions related to prototype-based clustering. These contribu-
tions advance the KDD process towards more reliable data processing and big
data. Primarily these contributions provide methods with a random nature that
are aimed for efficient and scalable data processing. In this chapter, background,
and motivation for the thesis are given in Section 1.1. Section 1.2 gives the objec-
tives of the thesis and research questions. Finally, Section 1.3 places the included
six articles in the context of cluster analysis procedure and provides a structure
for the thesis.

1.1 Background and motivation

Grouping or organizing objects into groups, in terms of how similar or dissimilar
they are, is a natural way to summarize a collection of objects. This is referred to
as clustering or cluster analysis, which is one of the essential parts of data mining
[117], pattern recognition [61] and machine learning [14]. Particularly, clustering
has a significant role in data mining [10, 107]. In data mining, clustering can
be classified under the descriptive modeling task that aims to describe the data
[57, pp. 12–15]. Other tasks of data mining, according to Hand et. al. [57, pp.
12–15], are exploratory data analysis (dimensionality reduction, visualization of
the data), predictive modeling (classification, regression), discovery of patterns
and rules (anomaly detection, association rules) and retrieval by content (finding
similar items) [57, pp. 12–15].

More generally, data mining is one of the core steps in the knowledge dis-
covery in databases (KDD) process [46] where the main aim is to extract knowl-
edge for further usage from large volumes of data that are growing rapidly. An
overview of the main steps of the KDD process is shown in Figure 1 where the
steps are selection (subset of samples and variables are selected), preprocessing
(e.g., noise removal, missing value imputation), transformation (selection or ex-

14

FIGURE 1 KDD process.

traction of features), data mining (extraction of patterns, for example with clus-
tering, regression and classification) and interpretation/evaluation (e.g., visual-
ization of the extracted patterns). The KDD process motivates the development
of efficient and scalable data mining methods for processing large volumes of
data and a further boost towards this direction is given by big data. The term
big data refers to vast volumes of heterogeneous data growing at a rapid rate.
Roughly, according to Chen et al. [24], big data can be considered as the datasets
that common IT tools or software are not able to realize, manage or process in
reasonable time. Therefore, there is an urgent need for researchers to clustering
algorithms with improved speed and scalability [107]. Currently, processor and
memory development cannot keep up with the rapid growth of data; therefore,
multiple machines approaches relying on distributed and parallel computing are
needed [107].

Clustering aims to find structure in the data that is constructed with groups,
called clusters, in which observations are similar to each other [62]. More for-
mally, it is a task that aims to find K groups for a given presentation of N objects
with a selected similarity measure so that in each group similarity is high between
objects and similarity is low between objects from different groups (dissimilarity
between groups is high) [61]. The clustering task is challenging: an ideal cluster
can be defined as compact and isolated, but in practice, it is in the eye of the be-
holder [61]. According to Xu and Wunsch [118], the clustering process contains
four main steps: 1) feature selection or extraction (dimensionality reduction), 2)
clustering algorithm design or selection, 3) cluster validation and 4) interpreta-
tion of results. In Figure 2 this process is depicted following these four steps.
Note that in this procedure workflow can also propagate backward and each step
has a significant impact on the final results, similar to the KDD process. In the
dimensionality reduction step, selecting a subset of features or transforming fea-
tures to build new features simplifies data to a reduced representation and can
improve the effectiveness of the clustering process. In the second step, a suitable
clustering algorithm for dimensionally-reduced data is selected/designed and
employed. The second step can include defining the clustering objective function
and similarity/dissimilarity measure. In cluster validation, a clustering structure
given by the selected clustering algorithm has to be evaluated. Most often, this
is conducted with cluster validation indices (CVIs), which aim to give a qual-

15

ity measure of a clustering structure. Typically, different parameter settings and
clustering algorithms are tested to obtain different clustering structures, and the
best clustering structure according to the CVI(s) is selected for interpretation to
extract knowledge.

In general, clustering algorithms can be divided into two branches, parti-
tional and hierarchical, based on cluster structure properties [118]. Partitional
clustering constructs a single-layer clustering structure whereas hierarchical gen-
erates a tree-type clustering structure with multiple layers of different groupings.
Typically, partitional clustering methods are based on representing clusters with
prototype points; therefore, partitional clustering is also referred to as prototype-
based clustering [97, 6]. Due to the quadratic time and space complexity, classical
hierarchical clustering methods are not suitable for large-scale datasets [118, 25],
although efficient techniques have been proposed [122, 26]. In general, from the
point of view of scalability partitional clustering methods are often better suited
for large-scale datasets [40]. Besides this basic division of clustering methods,
there exists a vast amount of different types of clustering approaches such as
fuzzy clustering [88], spectral clustering [89], neural network-based clustering
[74], density-based clustering [42], model-based clustering [18], and evolutionary
computing-based clustering [94, 41].

A recently proposed randomized learning machine approach for supervised
learning, the minimal learning machine (MLM) [32, 31] can be used to form
classification or regression models of data. The MLM forms a linear regression
model between input and output distance matrices which are computed con-
cerning a subset of points referred to as reference points. The MLM has com-
parable performance to many state-of-the-art supervised learning methods, easy
implementability and only one parameter that has to be optimized, the number
of reference points, during the learning procedure [85]. Lately the MLM has been
applied to human activity recognition [84], robotics [83] and cancer classification
[96].

1.2 Research questions

This thesis mainly focuses on prototype-based clustering. The most central proto-
type-based clustering methods related to this thesis are the well-known K-means
[81, 61] and a robust variant of it, K-spatialmedians [6, 70, 68, 7]. One of the main
objectives is to improve KDD via contributions to prototype-based clustering re-
garding initialization, scalability and cluster validation. In addition, this work
also covers application of prototype-based clustering in supervised learning es-
pecially in regression problems with the MLM.

The research questions of this thesis are as follows.

RQ1: What techniques are beneficial for improving prototype-based clustering
towards more efficient, scalable and reliable data processing?

16

RQ2: Can K-spatialmedians be scaled to large-scale clustering with paralleliza-
tion?

RQ3: What are beneficial clustering validation indices in the context of proto-
type based clustering?

RQ4: Can clustering-based reference points selection improve performance of
the MLM in regression tasks?

1.3 Structure of the work

The relationship of the articles to different steps of the clustering procedure [118]
is shown in Figure 2. The included articles are mainly focused on the second
step, clustering algorithm design and selection. The article [PII] is partially re-
lated to the dimensionality reduction step. The articles [PIV] and [PVI] focus on
cluster validation and interpretation of results, respectively. Moreover, the most
common themes in the articles are prototype-based clustering initialization and
scalability/big data.

FIGURE 2 Included articles related to the steps of the cluster analysis procedure.

In Chapter 2, background related to clustering and prototype-based cluster-
ing is given. This chapter focuses on important topics related to prototype-based
clustering. After a general description of prototype-based clustering, more spe-
cific descriptions and discussion of the K-means and K-spatialmedians cluster-
ing are given. Finally, topics related to cluster validation and big data clustering
are discussed. Chapter 3 gives an introduction to supervised learning, mostly in
terms of regression. The MLM is described and discussed in more detail. Chap-
ter 4 summarizes the included articles and contributions of this thesis. Finally,
Chapter 5 gives the conclusions of the thesis and the direction of future work.

2 CLUSTERING

First, this chapter gives general background to clustering in Section 2.1. In Sec-
tion 2.2, a more detailed introduction to prototype-based clustering with the most
relevant methods related to this thesis is given. In Section 2.3, cluster validation
is briefly introduced. Finally, basic concepts and techniques of big data clustering
are discussed in Section 2.4.

2.1 Background

Label information for objects is missing in clustering tasks, and clustering is usu-
ally performed in unsupervised manner. Sometimes labeling of a subset of ob-
servations is performed prior to clustering. Semi-supervised clustering refers
to utilization of this prior information, a specification of pair-wise constraints
(cannot-link and must-link) for cluster labels, in a clustering process [61]. Besides
unsupervised and semi-supervised clustering, another high-level division, how
clustering is performed, is the distinction of crisp (hard) and fuzzy (soft) cluster-
ing. In crisp clustering, each point is a member of one cluster only, in contrast
to fuzzy clustering where each point has membership function values (between
0 and 1) for the similarity for each of the K clusters [12]. In this thesis, the focus
is on unsupervised crisp clustering with similarity measures defined by individ-
ual cases of the Minkowski distance (the Euclidean, the squared Euclidean and
city-block distances).

For a given dataset, clustering can be performed in many ways, because
the best clustering structure depends on its further usage [62]. For example, the
best clustering structure in a data mining task aiming to find meaningful group-
ings for the discovery of new knowledge [100], clustering-based anomaly detec-
tion [3], clustering application to supervised learning [PVI] and data compression
with less expensive clustering method for more expensive clustering method [37]
may all be profoundly different. In the first example, the best structure for finding
a suitable grouping for the discovery of new trends or patterns can be based on

18

some numerical measure describing how compact the clusters are and how well
separated they are from other clusters. In the second example, the best clustering
result may be the one which gives the highest performance for detecting anoma-
lies which can be evaluated, for example, with a receiver operating characteristic
curve analysis [45, 51]. In the third and fourth examples, the best clustering struc-
ture may be the one which minimizes the complexity of the model without com-
promising accuracy. In big data clustering, a desired clustering structure may
even be the structure that can be constructed with the smallest computational
cost. It is, therefore, no surprise that there exists a vast and heterogeneous pool
of clustering algorithms that has been aggregated to its current form from initial
algorithms dating back to the 1950s.

Partitional and hierarchical clustering differ in their resulting clustering struc-
ture and also they are built in different ways. One of the most well-known par-
titional clustering methods is the K-means [81], which forms a grouping by it-
eratively updating cluster prototypes based on mean location estimate and the
Euclidean distance. Typically, the direction of propagation for hierarchical clus-
tering is either from the bottom up (agglomerative), with each object forming a
cluster initially, or, from the top to down (divisive), with all objects as members
of one cluster initially. Typically, hierarchical clustering uses a proximity matrix
to a form hierarchical clustering structure represented by a dendrogram or bi-
nary tree, where each leaf node represents data object, and the root represents
the whole dataset [118]. Moreover, partitional clustering can also be performed
hierarchically by iteratively using partitional clustering for each cluster [108, 115].

2.2 Prototype-based clustering

It is possible to obtain the single layer clustering structure given by partitional
clustering that uses some objective function, by simply enumerating all possible
groupings for K groups [118]. The number of different possible groupings of N
points into K clusters, already for small datasets, is vast. The number of these
groupings is given by the Stirling numbers of the second kind [39]

S =
1
K!

K

∑
i=0

(−1)K−i
(

K
i

)
iN. (1)

An approximate value for (1) can be computed with KN/K! [39]. Therefore,
using brute-force search to find optimal cluster structure is not an appropriate
approach. For example, by applying the approximative formula, the number of
different groupings for the classic iris dataset (N = 150) for K = 3 is 3150/6 ≈
6.2× 1070; which is not far from the same order of magnitude as the number of
atoms in the known universe.

In general, prototype-based clustering methods consist of two main steps
[6, 56]: 1) selection of K initial prototypes and 2) iterative refinement of the proto-
types until convergence (see Algorithm 1). In practice, the most typical approach

19

is to employ a non-deterministic method in step 1, followed by refinement with
step 2 with multiple restarts of step 1 [118]. Then the final clustering result, se-
lected out of the multiple restarts, will correspond to the clustering result with
the smallest clustering error.

Algorithm 1 General prototype-based clustering

1) Select K initial prototypes.
2) Refine prototypes until convergence.

2.1) Find the closest prototypes for N∗ points.
2.2) Recompute cluster prototypes.

Step 2 can be broken down into two sub-steps: 2.1) search of the closest
prototypes for N∗ observations and 2.2) recomputation of K cluster prototypes.
For sub-step 2.1, two main types can be distinguished, the case N∗ = N refers to
a batch version and N∗ = 1 refers to an incremental version. This thesis focuses
on the batch version of Algorithm 1.

2.2.1 K-means

The K-means method, especially the batch version, has a wide variety of appli-
cations, including vector quantization [72], anomaly detection [51], image clus-
tering [52, 90] and image segmentation [95, 91]. Due to the K-means’ effective-
ness, it is often employed for preprocessing or initialization of more expensive
algorithms [125, 37]. Moreover, K-means is identified as one of the top 10 most
influential data mining algorithms [117]. The K-means algorithm can serve as a
prototype method of partitional clustering. Hence, it is often used to demonstrate
and compare new partitional clustering ideas.

The K-means clustering originates from the optimization problem in which
the goal is to find K cluster prototypes which minimize sum-of-squared error
(SSE), a sum of the squared Euclidean distances (L2 norms) of the points to their
closest cluster prototypes. For the dataset X = {x1, x2, ..., xN}where xi ∈ RM and
for the set of cluster prototypes C = {c1, c2, ..., cK} where ck ∈ RM, the objective
function, SSE, for the K-means clustering problem is defined as

SSE(C) = ∑
x∈X

min
c∈C

‖c− x‖2. (2)

It can be proved that the best prototype for minimizing the SSE objective func-
tion within a cluster is the sample mean of the points within a cluster [97]. The
most popular heuristic to solve clustering problem (2) approximately is Lloyd’s
algorithm, which is the standard batch version of the K-means algorithm. Lloyd’s
algorithm follows the Algorithm 1 skeleton with N∗ = N and represents the sam-
ple mean of the points within a cluster as a prototype.

There also exist many variants of K-means for step 2.1 in Algorithm 1 where
N∗ can vary between 1 ≤ N∗ ≤ N which are based on, such as pruning distance
computations [38, 54, 36] or sampling [104]. Computational requirements of the

20

batch version of the K-means algorithm mainly build on the distance compu-
tations in step 2.1 [54, 55] which contain a large portion of redundant distance
computations after few iterations. Therefore, the distance pruning can speed up
the computations 30–50 times with respect to Lloyd’s algorithm without affecting
the clustering results at all [55].

A large portion of the clustering effort in K-means, in terms of clustering er-
ror, is performed in the first few iterations [15, 20]. This is demonstrated in Figure
3, which shows relative SSE improvement with respect to the previous iteration’s
SSE (SSEr = (SSEt−1 − SSEt)/SSEt−1, where t is iteration) as a function of it-
erations for the S1-S4 datasets (description of the datasets in [50]) by employing
K-means++ with K = 15. Note that SSEr is averaged over 100 clustering results.
From Figure 3, one can observe that the first iteration improves the clustering er-
ror most significantly, 30%− 40%, and for iterations 2− 4 improvement is around
5%. Overall, improvement to clustering error decreases rapidly as a function of
iterations. This characteristic was utilized in [PII] to speed up initialization of
K-means clustering.

FIGURE 3 Demonstration of relative clustering error improvement as a function of iter-
ations for K-means clustering.

2.2.2 Initialization of K-means

It is a well-known fact that the K-means is sensitive to the selection of the ini-
tial prototypes or partitions [92, 39]. A large and heterogeneous pool of initial-
ization methods proposed in frequently cited papers further confirms this issue
[49, 82, 53, 19, 5, 9]. Moreover, a September 2018 Google Scholar search for “K-
means initialization”, for the year 2017 alone, gives 11,200 results. Currently, the
most popular initialization strategy is K-means++ [5] that selects initial proto-
types iteratively based on a probability distribution using the squared Euclidean
distance that is updated after each selection. K-means++ is currently the state-

21

of-the-art method for the initialization [8], it is widely implemented in various
platforms [76] and it is an active research topic [9, 119, 8, 23, 101]. In this thesis,
the articles [PI, PII, PIII, PIV, PVI] are related to the K-means++ initialization.

It is well-known that Lloyd’s algorithm is guaranteed to converge to a lo-
cal minimum that is deterministically mapped from the initialization to the final
solution [92]. Hence, initialization strategies that explore possible good local min-
imums are essential (and possibly end up finding the global minimum), because
the number of unique local minimums can be large already for small datasets
[109]. A poor initialization may cause various undesired effects: there is a higher
probability for the final clustering of get stuck in a bad local minimum, a possi-
bility to end up clustering with empty clusters, and the convergence time of the
algorithm might be increased [39].

A good initialization strategy can reduce the need for multiple restarts, and
if a deterministic initialization approach can be used, restarting is not needed.
Concerning the final clustering result for small datasets, when it is possible to do
thousands of restarts, the choice of random-based initialization method does not
usually matter [39]. However, restarting clustering for large-scale datasets can
change the running time requirement for clustering from hours to days or weeks,
from reasonable to unreasonable. Therefore, especially for large-scale datasets,
initialization for prototype-based clustering matters. Moreover, Steinley [109]
noted that by increasing the number of clusters also number of different local
minimums also seems to increase. The formula (1) indicates that similar behavior
could be possible. Note that the different initializations can end up with the same
final solution.

One of the first proposed initialization approaches for K-means are random
methods [49, 82]. An initialization method proposed by Forgy [49] assigns all
data points randomly to K clusters. A drawback of Forgy’s initialization is that
the initial centroids computed from the initial partitions cause the centroids to lo-
cate very close to each other, which causes bad scalability with respect to K [76].
In [82], MacQueen proposed an initialization method (the second method that
is order-invariant) that selects initial prototypes at random from the data points,
which is one the most used initialization methods for the K-means. Note that this
initialization ensures that there are no empty clusters in the first iteration. Mac-
Queen’s initialization method combined with the batch K-means search phase
(Lloyd’s iterations) is often referred to as the standard K-means. MacQueen’s ini-
tialization method’s main idea is that random selection of the initial prototypes
will most often select initial points from the dense regions [39]. On the other
hand, this can cause a selection of initial prototypes that are close to each other in
the same dense cluster [PVI]. These random methods are not recommended for
the initialization, because they often have poor performance [39].

The K-means variant K-means++ [5] utilizes a better initialization technique:
it selects initial cluster prototypes so that they are better separated in space than in
McQueen’s initialization. The K-means++ initialization is depicted in Algorithm
2. After the first prototype is selected uniformly random, the rest of the proto-
types are sampled at random, one by one, by utilizing probability distribution

22

Algorithm 2 K-means++ initialization

Input: Dataset X and #clusters K.
Output: Initial prototypes C = {c1, c2, ..., cK}.

1: c1 ← select point uniformly random from X.
2: for i = 2, i = i + 1, i ≤ K
3: ci ← select point x ∈ X with probability min

k=1,...,i−1
‖ck − x‖2/SSE({c}i−1

j=1).

4: end

based on squared Euclidean distances with respect to those already selected. In
step 3, a probability that a new point is selected is equal to its contribution to SSE
divided by the SSE; therefore K-means++ is likely to select a new point from the
regions that contribute to SSE significantly, for example, from an isolated cluster.
The K-means++ initialization, more or less, balances goals from the MacQueen’s
and maximin [53] initialization methods: the initial prototypes are more likely to
be selected from the dense regions but also favor separation in a selection process.
K-means++ has proven guarantees for the final SSE with respect to the optimal
solution. In general, K-means++ improves the quality of the clustering results
and convergence rate with respect to Forgy’s and McQueen’s initialization meth-
ods. The K-means++ initialization has linear time complexity with respect to N.
It is highly desirable that initialization methods for the K-means be linear or su-
perlinear with respect to N, because K-means search is linear with respect to N
and it is tricky to justify initialization methods with higher time complexity. A
generalized form of the K-means++ initialization algorithm for Lq

p norms is de-
picted in [PIV].

A major drawback of the K-means++ initialization is that it has an inher-
ently sequential nature [9] while the K-means search can be easily parallelized.
The parallelizable version of K-means++, K-means‖ or scalable K-means++ [9],
samples points with similar fashion, but by sampling O(Tl) points in T iterations
(in practice already 5 iterations with l = 2K is sufficient [9]) that forms a weighted
sample that can be clustered with weighted K-means++ (see Algorithm 1 in [8])
to determine the K initial prototypes. This procedure, due to a much smaller
number of iterations (the weighted K-means++ procedure can be neglected, be-
cause the weighted sample is usually much smaller for large-scale datasets than
the whole dataset) compared to K − 1 iterations of the K-means++ initialization,
enables efficient parallelization. Similarly to K-means++, K-means‖ produces
provably good clustering results [8]. The computational cost for the K-means‖
initialization is larger than it is for the K-means++ initialization, but K-means‖
can be parallelized efficiently to enable solving large-scale clustering problems.
In the context of big data clustering, a K-means‖ implementation is utilized for
K-means clustering, for example, in the Spark platform1.

1 http://spark.apache.org/

23

2.2.3 K-spatialmedians

K-means aims to minimize the SSE objective function and because of this, K-
means is easily disturbed by outliers in data. Moreover, K-means is also sensitive
to missing values in the data [6]. A natural way to handle outliers is to take ad-
vantage of a more robust cluster prototype or cluster location estimate that is less
prone to be disturbed by noise/outliers than the mean cluster prototype. This
treatment allows conducting clustering without outlier detection as a preprocess-
ing step prior to clustering.

The minimization of slightly different objective function than (2) gives the
K-spatialmedians clustering problem. The objective function for K-spatialmedians
clustering is defined as

J(C) = ∑
x∈X

min
c∈C

‖c− x‖, (3)

where C = {c1, c2, ..., cK} and ck ∈ RM. Similar to K-means clustering, K-
spatialmedians clustering is also based on the general prototype-based clustering
algorithm skeleton (Algorithm 1). Both the K-means and K-spatialmedians meth-
ods use the Euclidean distance in step 2.1 so the main difference between them is
the cluster prototype update in step 2.2. The best prototype for the minimization
of a sum of the Euclidean distances, instead of the sum of the squared Euclidean
distances (as it is for K-means), of the points within a cluster can be shown to be
the spatial median [6], which is a statistically robust location estimate and rep-
resents cluster prototypes in K-spatialmedians clustering. The spatial median is
also sometimes referred to as Weber point [6]. However, referring to the spatial
median is well described, since the spatial median for one-dimensional data gives
the same result as median and it is computed by collectively taking account of all
dimensions for multidimensional data, while the sample mean and the median
location estimate is calculated from the marginal distributions.

Contrary to the sample mean, solving the spatial median requires minimiza-
tion of a non-smooth optimization (see [71]) problem that requires an iterative
method to be computed [68]. The successive over-relaxation (SOR) accelerated
iterative algorithm is an efficient method for computing the spatial median for
large-scale clustering purposes [68]. Moreover, the number of iterations of the
SOR algorithm is independent with respect to the dimension of the data [68, 6].

K-spatialmedians can also a tolerate large amount of missing data [6]. The
objective function of K-spatialmedians for data with missing values can be de-
fined by utilizing the available data strategy [99]. The available data strategy
refers to an approach which uses all existing values from the data via a set of
M dimensional projection vectors (or projection matrix) {p1, p2, ..., pN} where
(pi)j = 1 if (xi)j has a value or (pi)j = 0 if value is missing for (xi)j. The ob-
jective function (3) with missing values reads as

J(C) =
N

∑
i=1

min
c∈C

‖Diag(pi)(c− xi)‖, (4)

where Diag(pi) transforms projection vector pi into M×M diagonal matrix.

24

Figure 4 illustrates that K-spatialmedians clustering is more robust than K-
means clustering. This figure was published initially in [PIII], where a modified
S2 dataset with noise and missing values were used to compare the proposed
method (K-spatialmedians‖) and K-means‖. Note that the final prototypes for
the methods were selected out of 200 runs based on their corresponding objective
function values with available data strategy.

FIGURE 4 Illustration of robustness of K-spatialmedians clustering with respect to K-
means clustering for a synthetic dataset with noise and missing values (10%).
This figure was originally published in [PIII].

K-spatialmedians can also be employed for large-scale data clustering. How-
ever, the spatial median for cluster prototypes requires an iterative method which
forms a second iterative layer for the clustering algorithm; therefore, the scala-
bility is more restricted concerning K-means. Nevertheless, K-spatialmedians is
an appealing clustering method for large-scale data mining when datasets are
sparse and noisy [99]. The article [PIII] proposes an SOR accelerated parallel K-
spatialmedians algorithm for large-scale clustering with noise and missing val-
ues. In addition, a K-means‖-based robust initialization approach is used to ini-
tialize K-spatialmedians.

Similar to K-means clustering, the clustering quality and convergence speed
of K-spatialmedians depends on the selection of initial prototypes. Äyrämö [6]
proposed and tested initialization methods for K-spatialmedians clustering which
were based on the well-known K-means initialization methods. In [6], the main
idea of the proposed initialization methods was to replace the mean by the spa-
tial median to obtain robust initialization of K-spatialmedians. According to [6]
and [PIII], usage of robust elements in the initialization can improve the quality
of clustering results.

25

2.3 Cluster validation

One of the crucial tasks in clustering, in the context of the KDD process, is clus-
ter validation. Clustering results validation is often conducted with clustering
validation indices (CVI). A diverse set of CVIs has been developed to validate
clustering results [105, 110, 63, 123, 29, 21, 95]. CVIs can be divided into three
main groups [98]: internal, external and relative. Internal CVIs do not use prior
knowledge from data to suggest an appropriate number of clusters contrary to
external CVIs [PIV]. Internal CVIs are more suitable for clustering result valida-
tion in a practical sense because in many real-world cases data has no label infor-
mation, e.g., a knowledge discovery task aiming to find meaningful groupings
from data. This can especially occur in big data clustering problems. However,
in clustering algorithm comparisons, when the label information is available, ex-
ternal CVIs can be applied to compare the performance of the clustering algo-
rithms of how well they discover the known grouping of data. Relative CVIs
are based on comparing clustering structures in cluster validation. In the article
[PIV], a comparison of internal CVIs for different distance measures in the context
of prototype-based clustering was conducted.

Internal CVI gives suggestions for selecting the number of clusters, which
is typically given as input for partitional clustering algorithms. The suggestion
is usually based on the ratio of the two values [PIV]: intra (compactness of the
clusters) and inter (separability of the clusters). The goal is to minimize intra
value (ideal clusters are compact) and maximize inter value (ideal clusters are
isolated). Depending on how the ratio is selected, the minimum (when the ratio
is intra/inter) or maximum (when the ratio is inter/intra) ratio value defines the
internal CVI’s suggestion for selecting the number of clusters K.

2.4 Big data clustering

2.4.1 Characteristics of big data

The term “big data” is usually associated with a vast amount of data in terms
of the number of observations and variables. This massive amount of data is
referred to in big data characterization as volume, which is one of the character-
istics presented in [77] along with velocity and variety. Velocity refers to an enor-
mous flow of data that induces challenges to real-time processing. Variety refers
to heterogeneous data, data that is typically unstructured and comes in various
formats. A fourth characteristic added later, veracity, refers to erroneous and un-
certain data (described, e.g., in [33]). However, the three Vs model – volume,
velocity, and variety – forms a core characterization of big data [30, 43, 107, 24].
De Mauro et al. [30] define big data as ”the information asset characterized by
such a high volume, velocity, and variety to require specific technology and ana-
lytical methods for its transformation into value.”

26

2.4.2 Scaling clustering methods for big data

The proposed methods in the literature for big data clustering are mainly focused
on tackling the first characteristic, volume. In [25], it was reported that [80] con-
tains the most extensive clustering experiments that have been published in the
literature and it still seems to be so. Liu et al. [80] clustered about 1.5 billion data
points in 104-dimensional space with the distributed nearest neighbor method
into 50 million clusters. This clustering task took about 10 hours with 2000 cen-
tral processing units.

Shirkhorshidi et al. [107] divide big data clustering methods into single ma-
chine and multiple machine clustering techniques. Single machine techniques are
further divided into sampling-based and dimensionality reduction techniques
and multiple machine techniques are further divided into parallel clustering and
MapReduce-based clustering. A basic workflow in multiple machine clustering
techniques is to divide the dataset into smaller subsets which are distributed to
multiple machines. Each machine processes its subset of data in parallel then
local results are aggregated to get intermediate clustering results, and after iterat-
ing this procedure, the final clustering result is achieved. The main difference be-
tween parallel clustering and MapReduce based clustering is that in MapReduce-
based clustering data distribution and fault tolerance is handled automatically;
thus, parallel clustering creates more challenges for developers [107].

On the other hand, MapReduce does not support efficient iterative data pro-
cessing [28]. Crotty et al. [27] argue that popular big data frameworks such as
Hadoop and Spark are designed for massive data processing (petabytes of data),
on large clusters for large companies, such as Facebook and Google, and there-
fore do not meet the needs of typical users. Typically, large-scale data processing
is done with datasets of up to several terabytes on small clusters [27].

Besides K-means having many sequential variants it has also been widely
studied in the context of distributed and parallel computing [34, 66, 44, 124, 121,
9, 28, 93, 59]. For big data platforms such as Hadoop2, Spark 3, Flink4, and H2O5,
K-means variants are typically implemented in machine learning libraries.

2.4.3 Clustering with random projections

A shift from a low-dimensional data space to high-dimensional space causes var-
ious contradictory phenomena for distance measures [2, 113]. Many data mining
and machine learning algorithms are based on the concept of the nearest neigh-
bors with the chosen distance measure. Finding the nearest neighbors for high-
dimensional data was studied in [11] by Beyer et al. theoretically and empirically.
Beyer et al. demonstrated that with certain assumptions about underlying data
distributions, the distance to nearest neighbor approaches the distance to the far-

2 http://hadoop.apache.org/
3 http://spark.apache.org/
4 https://flink.apache.org/
5 http://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html

27

thest neighbor when dimensionality increases, and differences in the distances
between data points diminish. These results imply that in high-dimensional
space distances can become meaningless [11].

Over the years, various feature extraction methods have been combined
with clustering algorithms [17, 75, 47, 4] to handle the curse of dimensionality
[113]. Dimensionality reduction has an essential role in data mining, since real
data, in many cases, contains a large set of variables that restricts the selection
of the methods for data [13]. High-dimensional data come from images, videos
and text. Dimensionality reduction aims to transform higher-dimensional data
into appropriate lower-dimensional data representation in the way that mean-
ingful information from data is preserved [112]. Dimensionality reduction can
be divided into two main branches [16]: feature selection and feature extraction.
Feature selection aims to find a subset of meaningful variables from data, and
feature extraction aims to extract meaningful variables via projecting data into
lower dimensional space.

The main idea to use random projection in dimensionality reduction comes
from the Johnson-Lindenstrauss lemma [64], which states that random projection
approximately preserves distances when dimensionality reduction is conducted
from high-dimensional space to lower-dimensional space. The distance preser-
vation is an appealing characteristic for distance-based clustering methods. The
random projection method is combined with clustering methods in several pa-
pers [17, 47, 22, 111, 87, 102, 22, 16, 23]. Lately, from the perspective of high-
dimensional big data processing, the random projection method has raised inter-
est [107, 111, 114, 87, 102, 103], because it is computationally more efficient com-
pared to traditional methods [13] such as principal component analysis (PCA)
[65]. More precisely, the random projection method [1] is dimensionality reduc-
tion method that is based on extracting features from the data with an M × P
matrix R where elements Rij are randomly generated. For one of the following
distributions:

Rij =

{
1, with probability 1/2
−1, with probability 1/2

(5)

Rij =

⎧⎪⎨⎪⎩
√

3, with probability 1/6
0, with probability 2/3

−
√

3, with probability 1/6

(6)

the random projection reduced N × P data matrix X̃ can be computed as

X̃ =
1√
P

XR. (7)

Utilization of the distribution in (6) is referred to as sparse random projections,
which can give a threefold speedup because multiplication with

√
3 can be done

after computing XR without using floating-point arithmetic [79]. There are more
suggestions to generate R in [79].

28

2.4.4 Parallel clustering with MATLAB

Distributing a dataset horizontally (observations) or vertically (features) to multi-
ple machines’ distributed main memory, followed by parallel clustering, is a nat-
ural way to scale clustering methods for large-scale datasets that do not fit a single
machine’s main memory. In the MATLAB environment, this can be implemented
with the single program multiple data6 (SPMD) paradigm by utilizing parallel
computing toolbox7 (PCT) (see [106]). This enables scaling of clustering methods
for large-scale datasets via MATLAB distributed computing server8 (MDCS). A
basic workflow is first to develop a parallel implementation on a local desktop
computer with PCT and then scale it to a computer cluster with MDCS, which is
responsible for job scheduling. During an execution of a batch job in MDCS, one
machine runs as a client (master worker) and one or more machines run worker
processes (In MDCS, these are also referred to as labs). In the context of SPMD,
a program running (single program) on the client controls which workers per-
form spmd-block statement(s) on their local data (multiple data). The workers
can communicate with each other using MATLAB’s message passing functions,
which are based on the well-known message passing interface standard.

6 http://se.mathworks.com/help/distcomp/spmd.html
7 http://se.mathworks.com/help/distcomp/index.html
8 http://se.mathworks.com/help/mdce/index.html

3 SUPERVISED LEARNING

In supervised learning, the aim is to give a prediction for a given input based on
a set of inputs and their corresponding known output values. Contrary to unsu-
pervised learning, the supervised learning process is guided by desired output
values, and the performance of the model is determined by the training accuracy
(performance in the training set) and generalization accuracy (performance in
the unseen test set). Supervised learning tasks can be divided into two main cat-
egories, regression and classification, based on the output type, quantitative and
qualitative [58]. In this chapter, cross-validation approaches are first introduced
in Section 3.1. Supervised learning methods are described in Section 3.2. Finally,
Section 3.3 describes the minimal learning machine and concerns reference points
selection.

3.1 Cross-validation

A typical approach is to include model validation/selection for separate valida-
tion data that involves tuning parameters to optimize generalization ability of
the model. The most common approaches for validation are based on cross-
validation in which the dataset is first divided into J disjoint groups. Then the
learning algorithm is applied to J − 1 groups (training data) and validated with
one group (validation data). This procedure is repeated so that each group is once
allocated as a validation data and J − 1 times as learning data. As a result, this
procedure gives an estimate of the learning algorithm’s generalization perfor-
mance (e.g., in classification, it may be classification accuracy). Cross-validation
strategies enable full data usage in the learning process, and the repetition of the
learning and validation increases reliability. Note that repeating the entire cross-
validation with different groups/folds gives better estimates [73].

Cross-validation approaches differ in how they create the disjoint groups
of data. In the conventional cross-validation approach, k-fold cross-validation,
validation creates k approximately equal-sized subsets of data at random [73]. In

30

leave-one-out cross-validation, k-fold cross validation is performed for k = N.
In classification problems, k-fold stratified-cross validation (SCV) aims to keep a
balance of different classes between folds so that each fold has an approximately
similar distribution of classes to the entire dataset. The SCV is the most popularly
applied cross-validation method in the literature [86].

In [120], Zeng and Martinez proposed a more advanced strategy for cross-
validation, the distribution balanced stratified cross-validation (DB-SCV). The
DB-SCV extends SCV to approximately balance the class-wise distribution of
the inputs. The DB-SCV aims to keep the distribution of the input data sim-
ilar within the folds [86]. The distribution optimally balanced stratified cross-
validation (DOB-SCV) method improves DB-SCV with more careful placement
of the data points into folds. The DOB-SCV is typically employed with classifica-
tion tasks; however, it can also be used to create distributionally balanced folds
for regression tasks by treating the whole dataset as one-class [PVI]. This enables
data distribution to remain approximately similar between the folds for regres-
sion.

Moreover, DOB-SCV, as one-class case, can be utilized to create similar sub-
sets of the data for divide-and-conquer type of approaches, as is done in [PI].
Based on the DOB-SCV algorithm presentation in [67], the DOB-SCV algorithm
for the one-class case is depicted in Algorithm 3. Different from DB-SCV, in step
4, the randomly selected point is always assigned to fold F1 and ith nearest neigh-
bor is assigned to fold Fi+1.

Algorithm 3 One-class DOB-SCV

Input: Dataset X and the number of folds k.
Output: Folds F1, F2, ..., Fk.

1: while X has more than k points do

2: e1 ← select a point uniformly at random from X.
3: {e2, ..., ek} ← find k− 1 nearest neighbors of e1 from X.
4: Fi ← Fi ∪ ei for each i = {1, 2, ..., k}.
5: X ← X\{e1, ..., ek}.
6: Set rest of the points from X into different folds.

3.2 Supervised methods

K-nearest neighbors (K-NN) [116] is one of the simplest supervised methods for
classification. A given point is classified based on the K closest neighbors’ la-
bels. Typically, it is determined by majority voting, the most common class label
among the neighbors. Majority voting is usually sensitive for the selection of K;
a better voting technique is weighted voting based on distance [117]. Besides its
simplicity, K-NN is also one of the state-of-art methods in unsupervised anomaly
detection, especially in global outlier detection [51].

31

In the context of deep learning, feedforward neural networks, such as multi-
layer perceptron (MPL) neural networks, are typically employed for supervised
learning problems where internal structure of the data lies in high-dimensional
spaces, which is the case in many areas of science [78]. The MLP conducts predic-
tion for a given input by propagating the input through a hierarchical structure
of few layers where non-linear functions (activation functions) and layer connec-
tions (weights) aggregate the output. The most popular approach for the training
of feedforward neural networks is backpropagation, where the synaptic weights
are modified with gradient descent by propagating from the output layer through
the hidden layer(s) to minimize error with respect to desired outputs. In deep
neural networks, neural network architecture contains multiple layers which al-
low the formation of multiple abstraction levels of the data, thus enabling raw
data processing [78].

The extreme learning machine (ELM) [60] is a randomized feedforward
neural network. It is an efficient and straightforward supervised method for re-
gression and classification. Differently from other feedforward neural networks,
the ELM contains only single hidden layer, and the hidden layer nodes are ran-
domly initialized and fixed prior to training. Moreover, it contains only one meta-
parameter, the weights between the hidden layer and the output layer, that must
be optimized during the training.

3.3 Minimal learning machine

The minimal learning machine (MLM) was proposed in [32]. Similar to the ELM,
the MLM is a simple randomized learning machine that requires only one hy-
perparameter to be tuned. The MLM consist of two steps [31]: 1) construction
of a linear regression model between the distance matrices and 2) output esti-
mation of an input point based on the distances the reference points in the input
space and estimated distances based on the regression model in the output space.
Although MLM is based on using linear regression, it is able to form nonlinear
regression models for multidimensional outputs. The MLM training step 1 can be
broken down into two substeps [85]: 1.1) selection of the reference points and 1.2)
linear regression model fitting for the distance matrices. The actual output value
estimation based on the estimated distances in the output space can be treated
as a multilateration optimization problem, which can be solved with several ap-
proaches [31].

Let X = {x1, x2, ..., xN} input data and Y = {y1, y2, ..., yN} corresponding
output data where xi ∈ RM and yi ∈ RS. Let R = {r1, r2, ..., rK} be a subset of
points, reference points, from X so that ri ∈ RM. Similarly for the output space,
let T = {t1, t2, ..., tK} be a subset of points from Y so that ti ∈ RS. Then, the
learning step 1) of the MLM finds coefficients for the following linear regression
model [31]

Δy = DxB + E, (8)

32

where Dx is N × K input distance matrix, Δy is N × K corresponding output
distance matrix, B is K × K matrix containing regression model coefficients and
E is N × K matrix that contains regression residuals. A matrix element Dij =
‖xi − rj‖ of Dx for i = 1, ..., N and j = 1, ..., K. Correspondingly, a matrix element
Δ ij = ‖yi − tj‖ of Δy for i = 1, ..., N and j = 1, ..., K. Note that linear relation
between input and output distance matrices is assumed in the MLM. The least
squares estimate of B

B̂ =

{
(Dx

TDx)
−1Dx

TΔy with N < K,

Dx
−1Δy with N = K,

(9)

can be used in the linear regression model 8. In output estimation for new data
point x ∈ RM, distances with respect to the reference points R are first computed
as dx = ‖x − r1‖, ..., ‖x − rK‖. Then the linear regression model of the two dis-
tance matrices is used to compute estimated distances

δ̂ = dxB̂. (10)

Finally, actual output value, y, for x is given by a solution of the following objec-
tive function minimization

J(y) =
K

∑
i=1

(‖y− ti‖2 − δ̂i
2
)2. (11)

For an example, Levenberg-Marquadt [31] or the classical Newton’s method [PV]
can be employed for solving minimization of equation 11. The objective function
minimization of equation 11 is also referred to as multilateration problem [31].

The MLM can be easily adapted to classification problems by representing
output vectors with binary variables [85]. For example, output vector yi corre-
sponding to the jth class has components otherwise 0, but jth component is 1.
Classification of a new input x into one of the S classes, i.e., assigning class label
l ∈ {G1, ..., GS}, is determined by the predicted output vector y. The predicted
class label is Gs∗ , where s∗ corresponds to the largest component of y.

The nearest neighbor minimal learning machine (NN-MLM) [85] utilizes
straightforward labeling strategy. NN-MLM assigns class labels based on the
class label of the nearest reference point. The nearest reference point is deter-
mined by the predicted distances δ̂, thus avoiding the minimization of equa-
tion 11. Cubic equation minimal learning machine (C-MLM) [85] can be used
for regression problems with one-dimensional outputs. In C-MLM, an assump-
tion of one-dimensional outputs simplifies the objective function 11 so that y can
be solved analytically. This requires solving a cubic equation that always has at
least one real root when all coefficients are real.

The training phase of the MLM has time complexity order of O(NK2), which
is similar to the ELM training if K is the same as the number of hidden layer nodes
[31]. In its original formulation, computing prediction with the MLM for a given
input is slightly more expensive compared to the ELM [31]. However, the MLM

33

variants proposed in [85], NN-MLM and C-MLM, provide a faster prediction for
the classification problems and one-dimensional regression problems.

Currently, different distance measures and methods for the reference points
selection are topical directions to extend and improve the MLM. Distances in the
MLM are typically measured with the Euclidean distance. However, other dis-
tance measures can also be used [69, 96]. Dias et al. [35] proposed the reference
points selection method for the MLM classification model building based on the
opposite neighbors (ON) method. The main idea of the ON method is to exclude
a subset of points from the data that lie in class-overlapping zones. Finally, ref-
erence points are selected randomly out of the class-overlapping zones from a
subset of points. The ON method applies K-NN for building the subset of points
from the class-overlapping zones. This idea is further improved with fuzzy clus-
tering for classification tasks in [48].

In the article [PVI], it was demonstrated that clustering-based methods could
be beneficial for the MLM in regression tasks. Figures 5–7 demonstrate and illus-
trate differences of the reference points selection methods studied in [PVI] for
the MLM in non-linear regression tasks. An illustration from the results of [PVI]
for the clustering-based reference points selection methods for a non-linear re-
gression task (modification of the S1 [50] dataset) is shown in Figure 5, where
the root-mean-squared error (RMSE) for a test set is plotted as a function of the
number of reference points. The RS-maximin method has the best RMSE curve
for this dataset, and the Random method has the worst. The difference is larger
between the methods when the number of reference points is small.

Figure 7 shows the predicted output (z-axis) as a function of two-dimensional
input. The MLM was trained with the entire S1 regression dataset (see [PV] for
a description of the dataset) with K = 50, and then predictions were computed
with a two-dimensional grid. In Figure 6c, the ground truth output is shown with
respect to this grid. By comparing prediction surfaces for the Random (Figure 6a)
and RS-maximin (Figure 6b) built MLM regression models, one can observe that
randomly selected (Random) reference points create more distortions to output
surface than well-separated reference points (RS-maximin).

34

FIGURE 5 Demonstration of differences between the clustering-based methods [PVI]
and the random selection concerning a regression model quality (RMSE),
and model complexity (number of reference points K). For a small number
of reference points, it matters how the reference points are selected. The
results shown here were computed in [PVI].

35

(a) Random (b) RS-maximin

(c) Ground truth

FIGURE 6 Prediction surface of the MLM for a synthetic regression dataset with (a)
Random and (b) RS-maximin reference points selection methods. The
ground truth output surface is shown in (c).

(a) Random (b) RS-maximin

FIGURE 7 Squared error surface of MLM with respect to the ground truth for (a) Ran-
dom and (b) RS-maximin reference points selection methods. Reference
point locations in the input space are indicated with black bars.

4 SUMMARY OF THE INCLUDED ARTICLES

4.1 [PI]: Initialization of big data clustering using distributionally
balanced folding

The article [PI] was published in the proceedings of the 24th European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and Machine
Learning in 2016.

This article proposed a clustering initialization strategy for the K-means
clustering method. As already discussed in Section 2.1, the K-means clustering
method is highly sensitive for the initial selection of the prototypes. This article
proposed a method that combines ideas from two known effective initialization
strategies and an advanced sampling approach. The proposed approach is based
on using distributionally optimally balanced stratified cross-validation (DOB-
SCV) created distinct subsets of data which are clustered with the K-means++
method. Finally, the initialization strategy selects prototypes corresponding to
the smallest SSE as an initialization. Note that in practice the DOB-SCV folding
is required to be performed only once for each dataset.

The proposed method was implemented in parallel and experimented with
a real dataset that was artificially extended to mimic the volume of a big data
case. A parallel SPMD MATLAB implementation of the proposed method was
tested utilizing MDCS. For DOB-SCV, sequential MATLAB implementation was
used. Based on the experiments, the clustering quality for the proposed initial-
ization method was around the same level as for R times repeated K-means++,
when R was the same as the number of folds in the proposal. The main bene-
fits of the proposed initialization method, compared to the inherently sequential
K-means++, are that the proposed method can be easily implemented in parallel
with several parallel computation models and it scales for large-scale data.

37

4.2 [PII]: Scalable initialization methods for clustering large
datasets

The article [PII] has been submitted to Pattern Recognition Letters (in revision).
The goal of this article was to develop efficient parallel clustering initializa-

tion methods for large datasets based on K-means‖ type of divide-and-conquer
approach and dimensionality reduction. Compared to the method proposed in
[PI], the computational cost is reduced by using random subsets, approxima-
tive SSE evaluation, a limited number of subset clustering iterations and an ef-
ficient dimensionality reduction method. For the dimensionality reduction, the
random projection method was selected, because it is computationally fast, e.g.,
compared to PCA. Moreover, the computational cost for the K-means‖ initializa-
tion mainly accrues from the distance computations. Utilizing K-means‖ instead
of K-means++ for clustering subsets enables fixing the number subsets. To il-
lustrate for eight subsets, parallel implementation using 64 processing cores can
be implemented so that each subset is clustered in parallel with eight processing
cores instead of 1 processing core. Thus, the local SSE (clustering error for subset)
based selection of the initial prototypes can be used to speed up SSE computation
compared to the approach proposed in the article [PI].

In this article, two parallel K-means initialization methods (SK-means‖ and
SRPK-means‖) were proposed for large-scale datasets. Both of the proposed
methods are based on clustering subsets with K-means‖, but differ in that the
SRPK-means‖ method utilizes random projections in the initialization. The pro-
posed methods were compared to K-means++ and K-means‖. Experiments were
conducted with 15 datasets of various sizes. The seven largest datasets were
clustered with parallel implementations. Parallel MATLAB implementations of
the proposed methods and K-means‖ were implemented with SPMD blocks and
message passing functions. The parallel implementations were tested utilizing
MDCS and Taito computing cluster.

In general, both proposals achieved clearly smaller initialization clustering
errors than K-means++ and K-means‖, and the final clustering error was bet-
ter or equal compared to K-means++ and K-means‖. In addition, the proposed
methods usually required a smaller number of clustering iterations until conver-
gence in the search phase than K-means++ and K-means‖. The running time of
K-means‖ was around 60% − 80% of the running time of SK-means‖, but this
is more than compensated with faster convergence and better clustering qual-
ity. Overall, the proposals performed well in the scalability tests compared to
K-means‖. The scalability experiments for a large and high-dimensional dataset
showed that SRPK-means‖ can perform initialization up to 7–8 times faster than
K-means‖. For very high-dimensional data, the speedup was improved when K
was increases for SRPK-means‖.

According to the experimental results, SK-means‖ was better suited for
datasets with dimension less than 100 and SRPK-means‖ for datasets with di-
mension more than 100. SRPK-means was clearly faster than SK-means‖ when

38

dimension is higher than 100. Furthermore, the final clustering error statistics
also favored SRPK-means‖ compared to SK-means‖ for datasets with dimension
larger than 100. The clustering quality of the proposed methods was already
quite good after the initialization. Therefore, the proposed methods could also be
used as standalone clustering algorithms for large-scale datasets.

4.3 [PIII]: Scalable robust clustering method for large and sparse
data

The article [PIII] was published in the proceedings of the 26th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning in 2018.

Clustering datasets which are large, sparse and contain noise/outliers re-
quire specialized methods. K-spatialmedians uses available data strategy to han-
dle missing values in data. The available data strategy considers all existing val-
ues from the data without discarding anything. This approach does not make any
assumptions about the missing values for clustering. Unlike K-means that uses
mean as a location estimate for the cluster prototype, K-spatialmedians uses spa-
tial median, which is more tolerant for missing values and outliers than mean.
Employing K-spatialmedians for large-scale clustering tasks with parallel com-
puting is not trivial because the computation of the location estimate requires an
iterative method to be solved. In this article, the primary goal was to tackle the
K-spatialmedians clustering problem for large-scale data via parallel computing.

This article proposed a parallel implementation of K-spatialmedians, K-
spatialmedians‖, for datasets that are sparse, noisy and large. Secondly, a robust
initialization strategy, based on integrating K-means‖ initialization and weighted
K-spatialmedians, that can also be parallelized, was described. The empirical
comparison for a synthetic dataset with missing values and noise showed that
the proposed method outperforms the K-means‖ in terms of clustering quality.
Similar to articles [PI] and [PII], parallelization of the proposal was implemented
with MATLAB SPMD blocks and message passing functions, and it was tested
via MDCS. The scalability experiments for a large real dataset (N = 16, 334, 970,
M = 128) with missing values show that the implementation scales well. Thus,
it was demonstrated that the K-spatialmedians could be adapted to large-scale
parallel clustering purposes in a computer cluster environment.

4.4 [PIV]: Comparison of internal clustering validation indices for
prototype-based clustering

The article [PIV] was published in Algorithms journal in 2017.
In the article [PIV], the main goal was to compare clustering validation

39

indices’ enlargements of three popular Lq
p norms (the Euclidean, the squared

Euclidean and city-block) with their corresponding prototype-based clustering
methods (K-spatialmedians, K-means, K-medians). Same distance measures of
the clustering methods’ objective functions were used to compute the indices
correspondingly. For example, for the K-means clustering result, the squared Eu-
clidean distance was used to compute the indices. In addition to clustering vali-
dation index comparison, convergence properties of the prototype-based cluster-
ing methods were studied experimentally and theoretically.

Based on the extensive empirical evaluation of the internal clustering val-
idation indices for 56 synthetic datasets, on the one hand, the WG index out-
performs other indices for all three distance metrics. Therefore, the WG index
appears to be an appealing index for further study. On the other hand, the WG
index is not the best for all types of data. For the sim5D10 and sim5D2 datasets,
which have unbalanced clusters with noise, the WG index failed to suggest the
correct number of clusters, while the PBM index (with the Euclidean and city-
block distances), the KCE index (with the squared Euclidean distance) and the
WB index (with the squared Euclidean distance) all succeeded in these tasks. The
article [PIV] further confirms previous studies findings that there exists no supe-
rior internal clustering index that adapts for all types of data.

Concerning different distance measures, it was discovered that some in-
dices are better suited for specific distances. For example, the PBM index is better
suited for the Euclidean and city-block distances than for the squared Euclidean
distance. Also, the WB index seems to perform better with robust distance mea-
sures. Based on the results, the DB and RT indices are not recommended for clus-
ter validation since there exist clearly better performing CVIs with a reasonable
computational complexity with respect to prototype-based clustering. The differ-
ence to other CVIs is especially clear when the number of clusters increases. Clus-
ter indices often suggest quite a small number of clusters for high-dimensional
data. Hence, utilization of prototype-based clustering in a hierarchical fashion
is recommended for discovering clustering structures at different levels. More-
over, prototype-based clustering methods that use the batch-type update of the
prototypes have a theoretical basis for convergence as shown in [PIV], in which
Algorithm 1 decreases the clustering error in each iteration until convergence.
The most distinct difference between the clustering methods in the experiments,
in terms of convergence, was that K-medians tended to require more iterations
for convergence than K-means and K-spatialmedians when dimension increased.

4.5 [PV]: Feature ranking of large, robust, and weighted clustering
result

The article [PV] was published in the proceedings of 21st Pacific-Asia Conference
on Knowledge Discovery and Data Mining in 2017.

In this article, a general aim was to automate clustering result interpretation

40

for large and weighted clustering result which can contain a significant amount of
missing values. In [100], large-scale international student assessment data (PISA
2012 dataset) was clustered with hierarchical K-spatialmedians variant [115]. The
article [PV] continued this study by interpreting clustering result labels concern-
ing input data (data used in clustering) and additional data (data not used in
clustering) achieved in [100]. More specifically, the aim was to determine vari-
able ranking in terms of how well they explain the clustering structure.

Two approaches based on the Kruskal-Wallis H test were proposed for au-
tomating the interpretation of the student assessment data clustering result. The
first proposal utilizes the Kruskal-Wallis H test statistic with the bootstrapping
strategy (Bootstrap KW). The second proposal is an analytical formula derived
from the Kruskal-Wallis H test statistic (Analytic KW). The proposed approaches
can process real value-weighted clustering result. In addition to the PISA 2012
clustering result, the classical iris dataset was artificially modified with real value
weights, and it was used to demonstrate the proposals. Bootstrap KW was im-
plemented in parallel with Matlab PCT. Based on the experiments, both methods
were found to have a highly similar ranking of variables.

Moreover, the results are consistent concerning the analysis conducted in
[100]. Analytic KW is suitable for fast ranking of variables. The Bootstrap KW
approach takes more information into account when forming the ranking, and it
can produce confidence intervals for the ranking. The Bootstrap KW approach
uses more computing resources than the Analytic KW approach, but this can be
compensated for by parallelizing the Bootstrap KW approach vertically (with re-
spect to variables).

Variables that were used in the clustering explain the clustering structure
generally more than additional variables. However, some of the additional vari-
ables had fairly high rankings. The highest ranked variable, according to both
methods, was economic, social and cultural status (ESCS) of the students.

4.6 [PVI]: Clustering-based reference points selection for the
minimal learning machine

The MLM is based on mapping input and output distance matrices, which can
be used to built regression and classification models. The distance matrices are
formed using a subset of points, referred to as reference points. The default tech-
nique is to select these reference points at random. The goal of the article [PVI]
was to improve the MLM model by applying clustering-based reference points
selection instead of the random selection method. The focus here was to build
regression models with the MLM.

In this article, four modifications of clustering methods for reference points
selection were proposed. A joint procedure of the methods is to carry out cluster-
ing or clustering initialization in the input space to form a subset of points. Then
corresponding points are selected from the output space. Based on the empirical

41

evaluation with 13 regression datasets, the proposed methods can improve the re-
gression model RMSE values compared to random selection. This was especially
noticeable for a small/moderate number of reference points. In overall, the best
performing reference selection method was RS-maximin. This method is based
on the maximin K-means initialization method. The reference point selection
method RS-UPGMA, achieved similar RMSE values as RS-maximin. However,
the computational complexity for RS-UPGMA is O(N2) due to hierarchical clus-
tering whereas RS-maximin has linear time complexity with respect to N. Note
that these deterministic methods must be applied only once for each dataset be-
cause they construct the set of reference points incrementally. In addition, a new
initialization heuristic for Newton’s method was proposed. Newton’s method
was used to solve the multilateration optimization problem. Based on the results,
the initialization heuristic seems to be a valid approach for the initialization. The
random method selects the reference points so that they have higher probabilities
of being located near each other. It seems that selected reference points should be
well separated from each other, which is the way RS-maximin constructs a set of
reference points.

4.7 Summary of contributions

A summary of the contributions and the articles’ relationship to the research
questions (given in Section 1.2) are shown in Table 1. This thesis proposed new
parallelizable initialization methods in the articles [PI,PII]. The proposed initial-
ization methods are scalable, and they are intended for large-scale clustering pur-
poses. In the article [PII], the second proposal is an efficient method for high-
dimensional and large-scale clustering. Moreover, the initialization method for
the K-spatialmedians clustering, described in [PIII], is a promising approach for
large-scale datasets that contain noise/outliers. In the article [PVI], the maximin
K-means initialization-based proposal was the best performing reference points
selection method for the MLM, even though maximin is not a recommended
method in the literature for initializing K-means.

In addition to the parallelizable initialization methods, parallelization of the
K-spatialmedians was described in [PIII]. The proposed method was found to
achieve good clustering results and scale for large-scale data. Moreover, it can
handle both missing values with the available data strategy and noise/outliers
with a robust cluster location estimate during the clustering procedure. Article
[PIV] compared internal CVIs which were generalized for the Lp norms of the
q-th power to correspond with different prototype clustering objective functions.
Some of the indices performed quite differently with different distance measures.
Article [PV] proposed two approaches for ranking important variables that ex-
plain a given clustering structure. These approaches automate result interpreta-
tion for large and weighted clustering result. Article [PVI] proposed clustering-
based reference points selection for the MLM in the regression tasks. It was found

42

that clustering-based methods can improve MLM regression models concerning
accuracy and model complexity.

TABLE 1 Summary of contributions.

P RQ Contribution

[PI] RQ1 1) Proposed K-means++-based scalable large-scale clustering
initialization method; 2) Showed that the combination of divide-
and-conquer type of K-means++ strategy and the smallest SSE-
based selection could be beneficial for initializing the K-means
clustering; 3) The proposed method utilizes subsets created by
DOB-SCV

[PII] RQ1 1) Proposed K-means‖-based scalable large-scale clustering
initialization method; 2) Proposed K-means‖-based scalable
and efficient large-scale clustering initialization for high-
dimensional data; 3) Showed that random projections could be
beneficial for K-means‖; 4) The proposed methods reduce clus-
tering error compared to K-means‖; 5) The proposed initializa-
tion methods can be used as standalone to obtain approximate
clustering solution

[PIII] RQ1,
RQ2

1) Parallelization of K-spatialmedians for large-scale, robust
clustering; 2) Scalable, robust initialization method for K-
spatialmedians utilizes a modification of K-means‖; 3) The pro-
posed method outperforms K-means‖ in terms of clustering
quality for noisy and sparse data

[PIV] RQ1,
RQ3

1) Described internal CVIs’ enlargements for the Lq
p norms and

conducted a comparison of them; 2) Some CVIs’ performance
depended on what distance measure was used; 3) The WG in-
dex was the best performing index in the comparison; 4) The
DB and RT indices are not recommended for clustering valida-
tion; 5) Theoretical and experimental study of the convergence
properties of prototype-based clustering; 6) Described general
K-means++ initialization for the Lq

p norms

[PV] RQ1 1) Proposed parallelizable feature ranking approach for large-
scale weighted clustering result based on Kruskal-Wallis H
test and bootstrapping; 2) Proposed analytical feature rank-
ing formula for large-scale weighted clustering result based on
Kruskal-Wallis H test; 3) Showed that economic, social and cul-
tural status (ESCS) of students is the best explaining feature for
the PISA clustering result in [100]

Continued on next page

43

Table 1 – Continued from previous page

P RQ Contribution

[PVI] RQ4 1) Proposed clustering-based reference points selection meth-
ods for the MLM; 2) Clustering-based methods are valid alter-
natives for the random selection of reference points; 3) Linearly
scaling RS-maximin is the best performing method for reference
points selection; 4) Newton’s method with a new initialization
heuristic was utilized to solve the multilateration optimization
problem; 5) Demonstrated that well separated reference points
improve MLM in regression tasks

4.8 Author’s contribution to the included articles

Origins of the new methods

The proposed method in [PI] originated from Tommi Kärkkäinen as well as the
idea to utilize dimensionality reduction in [PII] otherwise, ideas regarding the
proposed methods, SK-means‖ and SRPK-means‖ in [PII] originate from the au-
thor. The idea to adapt K-spatialmedians with parallel computing for large-scale
clustering came from Tommi Kärkkäinen. The K-spatialmedians‖ algorithm in
[PIII] is given by the author. The initialization strategy of K-spatialmedians in
[PIII] originated from the author. The idea to enlarge K-means++ initialization
and the internal CVIs in [PIV] to Lq

p distances was Tommi Kärkkäinen’s. The
proposed methods in [PV] originated from Tommi Kärkkäinen. The utilization
of clustering methods and Newton’s method with new initialization heuristics
in MLM in [PVI] should be credited to Tommi Kärkkäinen. The idea to employ
UPGMA and maximin methods in reference points selection in [PVI] came from
the author.

Implementations

All parallel implementations of the methods in [PI, PII, PIII, PV] and all imple-
mentations in [PII] and [PIII] were written by the author. An SOR algorithm
parallel implementation in [PIII] was written by the author based on a sequential
implementation of the SOR made by Tommi Kärkkäinen. In [PIV], implementa-
tions were mainly written by Tommi Kärkkäinen and the author. In [PVI], the
author wrote a majority of the clustering-based reference points method imple-
mentations and made minor modifications to the MLM implementation.

44

Experimental design and carrying out experiments

The author and Tommi Kärkkäinen mainly designed the experiments in the arti-
cles [PI, PII, PIII]. The experimental design in [PIV, PV] was conducted by Tommi
Kärkkäinen. The experiments in [PVI] were designed by all authors. The au-
thor carried out the experiments in the articles [PI, PII, PIII, PV, PVI]. In [PIV],
experiments were performed by the author and Susanne Jauhiainen.

Writing the articles

In the articles [PII, PIII, PVI], the author’s contribution to writing in each article
was major. In [PI, PIV], the authors’ contributions to writing were close to equal.
In [PV] the author wrote a majority of Section 4. Moreover, the author was the
corresponding author in the articles [PI, PII, PIII, PIV, PVI].

5 CONCLUSIONS AND FUTURE WORK

This dissertation is composed of six articles, which are related to the essential
aspects of prototype-based clustering. Using the proposed modifications and im-
provements allows one to improve prototype-based clustering algorithms and,
therefore, the whole KDD process. The general goal was to advance KDD pro-
cess towards more scalable, efficient and reliable data processing via contribu-
tions to prototype-based clustering. This objective is motivated by modern de-
mands of the KDD process arising from big data and the popularity of prototype-
based clustering methods such as K-means. Articles [PI], [PII] and [PIII] improve
prototype-based clustering methods related to initialization and scalability. Clus-
tering result interpretation approaches for weighted and large-scale clustering
results in [PV] makes an effort to automate the cluster analysis chain further. The
article [PIV] gives insights into internal CVIs with different distance measures in
the context of prototype-based clustering. In the article [PVI], clustering methods
are applied to improve regression model building in the MLM.

Based on the articles [PI] and [PII], a divide-and-conquer type of strategy
combined with SSE-based selection of the initial prototypes can be beneficial for
prototype-based clustering initialization for large-scale clustering purposes. The
article [PI] is a proof of concept for this idea, and the proposed parallelizable ini-
tialization method utilizes K-means++. In [PII] the idea is further developed con-
cerning efficiency and scalability. Efficiency and scalability of the two proposed
parallelizable initialization methods, SK-means‖ and SRPK-means‖, proposed in
[PII] arise from the K-means‖ method, divide-and-conquer type of strategy, ran-
dom projections, approximative SSE evaluation and tightly limited subset clus-
tering iterations. Clustering quality for this type of strategy is equal or better
than state-of-the-art for parallel K-means initialization. Moreover, SK-means‖
and SRPK-means‖ clearly achieve better clustering results in the initialization
than K-means‖, which demonstrates that these clustering initialization methods
can be utilized as standalone to get approximate clustering results for large-scale
data.

The parallelization of K-spatialmedians in [PIII] provides an enlargement
of K-spatialmedians clustering to large-scale datasets that contain noise/outliers

46

and missing values. Moreover, the initialization method variant of K-means‖
for K-spatialmedians described in [PIII] is an appealing approach. Based on
the articles [PIII] and [PIV], it seems that it is a good practice to modify the K-
means initialization methods to correspond to the same distance measure that
the prototype-based clustering method uses. This could be understood in the
robust initialization of K-spatialmedians [PIII] that using the Euclidean distance-
based sampling in K-means‖ and then weighted K-spatialmedians aim to give
a rough estimation of the same objective function minimization than the refine-
ment phase of K-spatialmedians. In future work, combining ideas from [PII] and
available data strategy could further improve the robust initialization for the K-
spatialmedians for large-scale data.

In the article [PIV], comparison of the internal CVIs’ extensions to three
different distance measures and their corresponding prototype-based clustering
methods shows that when a clustering chain including initialization, refinement
of the initial prototypes and cluster validation (based on internal CVIs) utilizes a
fixed distance measure, some indices are better suited for different distances. In
practice, this means that selection of distance measures for internal CVIs should
be considered in the clustering procedure. Even though the WG index had an
excellent performance for many of the synthetic datasets, the results of the article
[PIV] reinforce previous studies’ observations about CVIs that no superior CVI
for all types of data exists. The proposed methods in [PV] can be utilized to de-
termine the best explaining variables of the clustering structure without manual
or visual interpretation, thus directing the clustering procedure and the KDD to-
wards more automated and efficient data processing. Moreover, based on the ar-
ticles [PIII], [PIV] and [PV], the parallelization of K-spatialmedians, the WG and
PBM indices, and the Kruskal-Wallis-based feature ranking approaches seem an
appealing, robust clustering combination for large-scale knowledge discovery.

Four clustering-based reference points selection methods proposed in the
article [PVI] improve the MLM model building, especially when the aim is to
build the regression model with a small number of reference points. This can
be the case for large datasets where the size of the model may be limited based
on computing resources. Based on the article [PVI], the recommended method
for the selection of reference points in the regression tasks is the RS-maximin
method. The RS-maximin is an efficient method for reference points selection,
it has linear time complexity with respect to N, and it finds a set of points from
data that are well separated from each other. The MLM has similar characteristics
to prototype-based clustering due to distance-based learning; therefore emerging
ideas from prototype-based clustering, e.g., for missing data handling and uti-
lization of different distance measures, could further improve the MLM.

Quality, effectiveness, and scalability of the KDD process chain are based on
multiple formulations and selections of the KDD steps, all the way starting from
target data selection and preprocessing. In general, the contributions of this the-
sis scale the KDD towards big data and make the whole chain more reliable and
efficient. In future work, the author will continue research in a project involving
structure prediction of hybrid nanoparticles via artificial intelligence (HNP-AI).

47

This project aims to develop AI-based methods and software for predicting struc-
tures of metal nanoparticles based on known structures in the literature. The pos-
sibility to adapt the MLM to this problem will be evaluated. Moreover, during
the course of this work, the author did some preliminary work related to unsu-
pervised ensemble-based anomaly detection. An application of prototype-based
clustering for unsupervised ensemble-based anomaly detection and a paralleliza-
tion of the MLM will be studied later.

48

YHTEENVETO (FINNISH SUMMARY)

Prototyyppipohjaisen klusteroinnin elementtien parannukset ja sovellukset

Tämän kuuden artikkelin väitöskirjan pääasiallisena tavoitteena on kehittää tie-
tämyksen muodostamisprosessia tehokkaammaksi, skaalautuvammaksi ja luo-
tettavammaksi parantamalla prototyyppipohjaisen klusteroinnin eri osa-alueita.
Klusterointi on yksi keskeisimmistä osa-alueista tiedonlouhinnassa, koneoppi-
misessa ja hahmontunnistuksessa. Datan jäsentäminen ryhmiin on luonnollinen
lähestymistapa tietämyksen hankintaan tai tiivistetyn rakenteen muodostami-
seen datasta. Prototyyppipohjaiseen klusterointiin perustuvat menetelmät, kuten
K-means, ovat käytetyimpiä ja sovelletuimpia klusterointimenetelmiä, koska ne
ovat yleensä helposti toteutettavissa ja vaativat usein vähemmän laskentaresurs-
seja verrattuna muun tyyppisiin klusterointimenetelmiin. Suurten datamassojen
käsittely lisää tarvetta tehokkaammille klusterointimenetelmille, jotka perustuvat
useita laskentaytimiä hyödyntävään rinnakkaislaskentaan ja hajautetun muistin
käyttöön. Tutkimuksen keskeisiä teemoja ovat klusteroinnin alustus ja skaalau-
tuvuus, klustereiden validointi sekä klusteroinnin soveltaminen ohjatussa oppi-
misessa.

Alustuksella voi olla merkittäviä vaikutuksia prototyyppipohjaisen kluste-
roinnin tulosten laatuun ja konvergoimiseen. Ensimmäiset kaksi artikkelia esit-
televät skaalautuvia alustusmenetelmiä K-means-menetelmälle. Esitetyt mene-
telmät pystytään rinnakkaistamaan helposti, ja ne skaalautuvat suurille data-
massoille. Toisessa artikkelissa esitetty satunnaisprojektio-menetelmään perustu-
va rinnakkaistuva alustusmenetelmä on tehokas ja skaalautuva menetelmä kor-
keaulotteiselle big datalle, ja sitä voidaan myös käyttää yksinään klusterointira-
kenteen muodostamiseen. K-spatialmedians soveltuu hyvin harvan ja häiriöisen
datan käsittelyyn. Kolmannessa artikkelissa esitetty K-spatialmedians-rinnakkais-
tus K-means-tyyppisellä alustuksella on laajennus K-spatialmedians-menetelmäs-
tä suurten datamassojen käsittelyyn.

Klusteroinnin validointi tehdään usein hyödyntäen validointi-indeksejä, jot-
ka mittaavat kuinka kompakteja klusterit ovat (ideaalit klusterit ovat tiiviitä) ja
kuinka hyvin klusterit ovat erillään toisistaan (ideaalit klusterit ovat isoloitu-
neet). Neljännessä artikkelissa tutkittiin sisäisiä validointi-indeksien laajennuk-
sia eri etäisyysmetriikoille prototyyppipohjaisen klusteroinnin kontekstissa. Tä-
män artikkelin perusteella osa sisäisistä validointi-indekseistä ehdottaa sopivia
klusterointirakenteita paremmin eri etäisyysmetriikoilla. Viidennessä artikkelissa
kehitettiin automaattisia klusterointituloksen tulkintamenetelmiä, jotka pystyvät
löytämään klusterointituloksen selittävimmät piirteet automaattisesti. Kuuden-
nessa artikkelissa sovelletut klusterointimenetelmät parantavat referenssipistei-
den valintaa minimaaliselle oppimiskoneelle (minimal learning machine) regres-
siotehtävissä erityisesti silloin, kun malli rakennetaan mahdollisimman pienellä
referenssipisteiden määrällä.

49

REFERENCES

[1] D. Achlioptas, “Database-friendly random projections,” in Proceedings of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. ACM, 2001, pp. 274–281.

[2] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behav-
ior of distance metrics in high dimensional space,” in Proceedings of the 8th
International Conference on Database Theory, 2001, pp. 420–434.

[3] S. Agrawal and J. Agrawal, “Survey on anomaly detection using data min-
ing techniques,” Procedia Computer Science, vol. 60, pp. 708–713, 2015.

[4] C. Alzate and J. A. Suykens, “Multiway spectral clustering with out-of-
sample extensions through weighted kernel pca,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 335–347, 2010.

[5] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035.

[6] S. Äyrämö, Knowledge Mining Using Robust Clustering. University of
Jyväskylä, 2006, vol. 63 of Jyväskylä Studies in Computing.

[7] S. Äyrämö and T. Kärkkäinen, “Introduction to partitioning-based cluster-
ing methods with a robust example,” Reports of the Department of Mathemat-
ical Information Technology. Series C, Software engineering and computational
intelligence 1/2006, 2006.

[8] O. Bachem, M. Lucic, and A. Krause, “Distributed and provably good seed-
ings for k-means in constant rounds,” in Proceedings of the 34th International
Conference on Machine Learning, 2017, pp. 292–300.

[9] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable
k-means++,” Proc. VLDB Endow., vol. 5, no. 7, pp. 622–633, 2012.

[10] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
Multidimensional Data. Springer, 2006, pp. 25–71.

[11] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ’nearest
neighbor’ meaningful?” in Proceedings of the 7th International Conference on
Database Theory, 1999, pp. 217–235.

[12] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering
algorithm,” Computers & Geosciences, vol. 10, no. 2–3, pp. 191–203, 1984.

50

[13] E. Bingham and H. Mannila, “Random projection in dimensionality reduc-
tion: applications to image and text data,” in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2001, pp. 245–250.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[15] L. Bottou and Y. Bengio, “Convergence properties of the k-means algo-
rithms,” in Advances in Neural Information Processing Systems, 1995, pp. 585–
592.

[16] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas, “Randomized
dimensionality reduction for k-means clustering,” IEEE Transactions on In-
formation Theory, vol. 61, no. 2, pp. 1045–1062, 2015.

[17] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for k-means
clustering,” in Advances in Neural Information Processing Systems, 2010, pp.
298–306.

[18] C. Bouveyron and C. Brunet-Saumard, “Model-based clustering of high-
dimensional data: A review,” Computational Statistics & Data Analysis,
vol. 71, pp. 52–78, 2014.

[19] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means clus-
tering.” in ICML, vol. 98, 1998, pp. 91–99.

[20] A. Broder, L. Garcia-Pueyo, V. Josifovski, S. Vassilvitskii, and S. Venkate-
san, “Scalable k-means by ranked retrieval,” in Proceedings of the 7th ACM
International Conference on Web Search and Data Mining. ACM, 2014, pp.
233–242.

[21] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,” Com-
munications in Statistics-Theory and Methods, vol. 3, no. 1, pp. 1–27, 1974.

[22] Â. Cardoso and A. Wichert, “Iterative random projections for high-
dimensional data clustering,” Pattern Recognition Letters, vol. 33, no. 13, pp.
1749–1755, 2012.

[23] J. Y. Chan and A. P. Leung, “Efficient k-means++ with random projection,”
in 2017 International Joint Conference on Neural Networks (IJCNN). IEEE,
2017, pp. 94–100.

[24] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks and
Applications, vol. 19, no. 2, pp. 171–209, 2014.

[25] R. Chitta, Kernel-Based Clustering of Big Data. Michigan State University,
2015.

51

[26] M. Cochez and H. Mou, “Twister tries: Approximate hierarchical agglom-
erative clustering for average distance in linear time,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. ACM,
2015, pp. 505–517.

[27] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B.
Zdonik, “Tupleware:’big’ data, big analytics, small clusters.” in CIDR, 2015.

[28] A. Crotty, A. Galakatos, and T. Kraska, “Tupleware: Distributed machine
learning on small clusters.” IEEE Data Engineering Bulletin, vol. 37, no. 3,
pp. 63–76, 2014.

[29] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2,
pp. 224–227, 1979.

[30] A. De Mauro, M. Greco, and M. Grimaldi, “A formal definition of big data
based on its essential features,” Library Review, vol. 65, no. 3, pp. 122–135,
2016.

[31] A. H. de Souza Junior, F. Corona, G. A. Barreto, Y. Miche, and A. Lendasse,
“Minimal learning machine: A novel supervised distance-based approach
for regression and classification,” Neurocomputing, vol. 164, pp. 34–44, 2015.

[32] A. H. de Souza Junior, F. Corona, Y. Miche, A. Lendasse, G. A. Barreto,
and O. Simula, “Minimal learning machine: A new distance-based method
for supervised learning,” in International Work-Conference on Artificial Neural
Networks. Springer, 2013, pp. 408–416.

[33] Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey, “Addressing big
data issues in scientific data infrastructure,” in Proceedings of the 2013 Inter-
national Conference on Collaboration Technologies and Systems, 2013, pp. 48–55.

[34] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on distributed
memory multiprocessors,” in Large-Scale Parallel Data Mining, Lecture Notes
in Artificial Intelligence, vol. 1759. Springer-Verlag, 2000, pp. 245–260.

[35] M. L. D. Dias, L. S. de Souza, A. R. da Rocha Neto, and A. H. de Souza Ju-
nior, “Opposite neighborhood: a new method to select reference points of
minimal learning machines,” in Proceedings of the 26th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning
- ESANN 2018, 2018, pp. 201–206.

[36] J. Drake and G. Hamerly, “Accelerated k-means with adaptive distance
bounds,” in 5th NIPS Workshop on Optimization for Machine Learning, 2012,
pp. 42–53.

[37] D. R. Edla and P. K. Jana, “A prototype-based modified DBSCAN for gene
clustering,” Procedia Technology, vol. 6, pp. 485–492, 2012.

52

[38] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Proceed-
ings of the 20th International Conference on Machine Learning (ICML-03), 2003,
pp. 147–153.

[39] M. Emre Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of ef-
ficient initialization methods for the k-means clustering algorithm,” Expert
Systems with Applications, 2012.

[40] M. Emre Celebi and H. A. Kingravi, “Deterministic initialization of the k-
means algorithm using hierarchical clustering,” International Journal of Pat-
tern Recognition and Artificial Intelligence, vol. 26, no. 07, 2012.

[41] A. A. Esmin, R. A. Coelho, and S. Matwin, “A review on particle swarm op-
timization algorithm and its variants to clustering high-dimensional data,”
Artificial Intelligence Review, vol. 44, no. 1, pp. 23–45, 2015.

[42] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in KDD’96
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, 1996, pp. 226–231.

[43] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou,
and A. Bouras, “A survey of clustering algorithms for big data: Taxonomy
and empirical analysis,” IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 3, pp. 267–279, 2014.

[44] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel imple-
mentation of k-means clustering on GPUs.” in PDPTA, 2008, pp. 340–345.

[45] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861–874, 2006.

[46] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI Magazine, vol. 17, no. 3, p. 37, 1996.

[47] X. Z. Fern and C. E. Brodley, “Random projection for high dimensional data
clustering: A cluster ensemble approach,” in Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03), 2003, pp. 186–193.

[48] J. A. Florêncio, M. L. Dias, A. R. da Rocha Neto, and A. H. de Souza Júnior,
“A fuzzy c-means-based approach for selecting reference points in minimal
learning machines,” in North American Fuzzy Information Processing Society
Annual Conference. Springer, 2018, pp. 398–407.

[49] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[50] P. Fränti and S. Sieranoja, “K-means properties on six clustering benchmark
datasets,” Applied Intelligence, pp. 1–17, 2018.

53

[51] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” Plos One, vol. 11,
no. 4, p. e0152173, 2016.

[52] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Bourdev, and R. Fergus, “Web
scale photo hash clustering on a single machine,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 19–27.

[53] T. F. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,” Theoretical Computer Science, vol. 38, pp. 293–306, 1985.

[54] G. Hamerly, “Making k-means even faster,” in Proceedings of the 2010 SIAM
International Conference on Data Mining. SIAM, 2010, pp. 130–140.

[55] G. Hamerly and J. Drake, “Accelerating Lloyd’s algorithm for k-means
clustering,” in Partitional Clustering Algorithms. Springer, 2015, pp. 41–78.

[56] J. Han, M. Kamber, and A. K. H. Tung, “Spatial clustering methods in data
mining: A survey,” in Geographic Data Mining and Knowledge Discovery, Re-
search Monographs in GIS, H. J. Miller and J. Han, Eds. Taylor and Francis,
2001.

[57] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. The MIT
Press, 2001.

[58] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2009.

[59] J. M. Haut, M. Paoletti, J. Plaza, and A. Plaza, “Cloud implementation of
the k-means algorithm for hyperspectral image analysis,” The Journal of Su-
percomputing, vol. 73, no. 1, pp. 514–529, 2017.

[60] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A
new learning scheme of feedforward neural networks,” in 2004 International
Joint Conference on Neural Networks (IJCNN), vol. 2. IEEE, 2004, pp. 985–990.

[61] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition
Letters, vol. 31, no. 8, pp. 651–666, 2010.

[62] A. K. Jain and R. C. Dubes, “Algorithms for clustering data,” 1988.

[63] S. Jauhiainen and T. Kärkkäinen, “A simple cluster validation index with
maximal coverage,” in Proceedings of the 25th European Symposium on Ar-
tificial Neural Networks, Computational Intelligence and Machine Learning -
ESANN 2017, 2017, pp. 293–298.

[64] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into
a hilbert space,” Contemporary Mathematics, vol. 26, no. 189–206, p. 1, 1984.

[65] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer, 2002.

54

[66] S. Kantabutra and A. L. Couch, “Parallel k-means clustering algorithm on
NOWs,” NECTEC Technical Journal, vol. 1, no. 6, pp. 243–247, 2000.

[67] T. Kärkkäinen, “On cross-validation for MLP model evaluation,” in Struc-
tural, Syntactic, and Statistical Pattern Recognition, ser. Lecture Notes in Com-
puter Science (8621). Springer-Verlag, 2014, pp. 291–300.

[68] T. Kärkkäinen and S. Äyrämö, “On computation of spatial median for ro-
bust data mining,” Evolutionary and Deterministic Methods for Design, Opti-
mization and Control with Applications to Industrial and Societal Problems, EU-
ROGEN, Munich, 2005.

[69] T. Kärkkäinen, “Extreme minimal learning machine – ridge regression with
distance-based basis,” Neurocomputing, 2018, to appear.

[70] T. Kärkkäinen and S. Äyrämö, “Robust clustering methods for incomplete
and erroneous data,” WIT Transactions on Information and Communication
Technologies, vol. 33, 2004.

[71] T. Kärkkäinen and E. Heikkola, “Robust formulations for training multi-
layer perceptrons,” Neural Computation, vol. 16, no. 4, pp. 837–862, 2004.

[72] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, “A new initialization tech-
nique for generalized Lloyd iteration,” IEEE Signal Processing Letters, vol. 1,
no. 10, pp. 144–146, 1994.

[73] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,” in Proceedings of the 14th international joint confer-
ence on Artificial intelligence, 1995, pp. 1137–1145.

[74] T. Kohonen, “Essentials of the self-organizing map,” Neural Networks,
vol. 37, pp. 52–65, 2013.

[75] T. Korenius, J. Laurikkala, and M. Juhola, “On principal component anal-
ysis, cosine and euclidean measures in information retrieval,” Information
Sciences, vol. 177, no. 22, pp. 4893–4905, 2007.

[76] H.-P. Kriegel, E. Schubert, and A. Zimek, “The (black) art of runtime evalu-
ation: Are we comparing algorithms or implementations?” Knowledge and
Information Systems, vol. 52, no. 2, pp. 341–378, 2017.

[77] D. Laney, “3D data management: Controlling data volume, velocity, and
variety,” Tech. Rep., 2001.

[78] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, p. 436, 2015.

[79] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2006, pp. 287–296.

55

[80] T. Liu, C. Rosenberg, and H. A. Rowley, “Clustering billions of images with
large scale nearest neighbor search,” in Proceedings of the IEEE Workshop on
Applications of Computer Vision (WACV). IEEE, 2007, p. 28.

[81] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Infor-
mation Theory, vol. 28, no. 2, pp. 129–137, 1982.

[82] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, no. 14. Oakland, CA, USA., 1967, pp. 281–
297.

[83] L. B. Marinho, J. S. Almeida, J. W. M. Souza, V. H. C. Albuquerque, and
P. P. Rebouças Filho, “A novel mobile robot localization approach based on
topological maps using classification with reject option in omnidirectional
images,” Expert Systems with Applications, vol. 72, pp. 1–17, 2017.

[84] L. B. Marinho, A. H. de Souza Junior, and P. P. Rebouças Filho, “A new ap-
proach to human activity recognition using machine learning techniques,”
in International Conference on Intelligent Systems Design and Applications.
Springer, 2016, pp. 529–538.

[85] D. P. P. Mesquita, J. P. P. Gomes, and A. H. Souza Junior, “Ensemble of effi-
cient minimal learning machines for classification and regression,” Neural
Processing Letters, pp. 1–16, 2017.

[86] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera, “Study on the impact of
partition-induced dataset shift on k-fold cross-validation,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 23, no. 8, pp. 1304–1312,
2012.

[87] F. Murtagh and P. Contreras, “Random projection towards the baire metric
for high dimensional clustering,” in International Symposium on Statistical
Learning and Data Sciences. Springer, 2015, pp. 424–431.

[88] J. Nayak, B. Naik, and H. Behera, “Fuzzy c-means (FCM) clustering algo-
rithm: a decade review from 2000 to 2014,” in Computational Intelligence in
Data Mining – Volume 2. Springer, 2015, pp. 133–149.

[89] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Advances in Neural Information Processing Systems, 2002,
pp. 849–856.

[90] C. Otto, D. Wang, and A. K. Jain, “Clustering millions of faces by identity,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 2,
pp. 289–303, 2018.

[91] S. H. Park, I. D. Yun, and S. U. Lee, “Color image segmentation based on
3-D clustering: morphological approach fn1,” Pattern Recognition, vol. 31,
no. 8, pp. 1061–1076, 1998.

56

[92] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical comparison of
four initialization methods for the k-means algorithm,” Pattern Recognition
Letters, vol. 20, no. 10, pp. 1027–1040, 1999.

[93] J. Qin, W. Fu, H. Gao, and W. X. Zheng, “Distributed k-means algorithm
and fuzzy c-means algorithm for sensor networks based on multiagent con-
sensus theory,” IEEE Transactions on Cybernetics, vol. 47, no. 3, pp. 772–783,
2017.

[94] S. Rana, S. Jasola, and R. Kumar, “A review on particle swarm optimization
algorithms and their applications to data clustering,” Artificial Intelligence
Review, vol. 35, no. 3, pp. 211–222, 2011.

[95] S. Ray and R. H. Turi, “Determination of number of clusters in k-means
clustering and application in colour image segmentation,” in Proceedings of
the 4th International Conference on Advances in Pattern Recognition and Digital
Techniques. Calcutta, India, 1999, pp. 137–143.

[96] P. P. Rebouças Filho, S. A. Peixoto, R. V. M. da Nóbrega, D. J. Hemanth,
A. G. Medeiros, A. K. Sangaiah, and V. H. C. de Albuquerque, “Auto-
matic histologically-closer classification of skin lesions,” Computerized Med-
ical Imaging and Graphics, 2018.

[97] C. K. Reddy and B. Vinzamuri, “A survey of partitional and hierarchi-
cal clustering algorithms,” in Data Clustering Algorithms and Applications.
Chapman and Hall/CRC, 2013, pp. 87–110.

[98] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal versus
external cluster validation indexes,” International Journal of Computers and
Communications, vol. 5, no. 1, pp. 27–34, 2011.

[99] M. Saarela, Automatic Knowledge Discovery from Sparse and Large-Scale Educa-
tional Data Case Finland. University of Jyväskylä, 2017, vol. 262 of Jyväskylä
Studies in Computing.

[100] M. Saarela and T. Kärkkäinen, “Do country stereotypes exist in educational
data? A clustering approach for large, sparse, and weighted data.” in Pro-
ceedings of the 8th International Conference on Educational Data Mining (EDM
2015), 2015, pp. 156–163.

[101] S. S. Sandhu, B. Tripathy, and S. Jagga, “Kmst+: A k-means++-based mini-
mum spanning tree algorithm,” in Smart Innovations in Communication and
Computational Sciences. Springer, 2018, pp. 113–127.

[102] J. Schneider and M. Vlachos, “Fast parameterless density-based clustering
via random projections,” in Proceedings of the 22nd ACM International Con-
ference on Information & Knowledge Management. ACM, 2013, pp. 861–866.

57

[103] M. J. Schneider and S. Gupta, “Forecasting sales of new and existing prod-
ucts using consumer reviews: A random projections approach,” Interna-
tional Journal of Forecasting, vol. 32, no. 2, pp. 243–256, 2016.

[104] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th Inter-
national Conference on World Wide Web. ACM, 2010, pp. 1177–1178.

[105] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMO-
BILE Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55,
2001.

[106] G. Sharma and J. Martin, “MATLAB: A language for parallel computing,”
International Journal of Parallel Programming, vol. 37, no. 1, pp. 3–36, 2009.

[107] A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, “Big data
clustering: a review,” in Proceedings of the International Conference on Compu-
tational Science and Its Applications. Springer, 2014, pp. 707–720.

[108] M. Steinbach, G. Karypis, V. Kumar et al., “A comparison of document clus-
tering techniques,” in KDD Workshop on Text Mining, vol. 400, no. 1. Boston,
2000, pp. 525–526.

[109] D. Steinley, “Local optima in k-means clustering: what you don’t know
may hurt you.” Psychological Methods, vol. 8, no. 3, p. 294, 2003.

[110] A. Strehl and J. Ghosh, “Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions,” Journal of Machine Learning Re-
search, vol. 3, pp. 583–617, 2002.

[111] S. Tasoulis, L. Cheng, N. Välimäki, N. J. Croucher, S. R. Harris, W. P. Han-
age, T. Roos, and J. Corander, “Random projection based clustering for pop-
ulation genomics,” in Proceedings of the 2014 IEEE International Conference on
Big Data (Big Data). IEEE, 2014, pp. 675–682.

[112] L. van der Maaten, E. Postma, and J. van den Herik, “Dimensionality reduc-
tion: a comparative review,” Journal of Machine Learning Research, vol. 10,
pp. 66–71, 2009.

[113] M. Verleysen and D. François, “The curse of dimensionality in data mining
and time series prediction,” in Proceedings of the 8th International Conference
on Artificial Neural Networks: Computational Intelligence and Bioinspired Sys-
tems, ser. IWANN’05. Springer-Verlag, 2005, pp. 758–770.

[114] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing
big data - a survey,” Proceedings of the IEEE, vol. 104, no. 1, pp. 34–57, 2016.

[115] P. Wartiainen and T. Kärkkäinen, “Hierarchical, prototype-based clustering
of multiple time series with missing values,” in Proceedings of the 23rd Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning – ESANN 2015, 2015, pp. 95–100.

58

[116] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical evalu-
ation of feature weighting methods for a class of lazy learning algorithms,”
Artificial Intelligence Review, vol. 11, no. 1-5, pp. 273–314, 1997.

[117] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLach-
lan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in data mining,”
Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[118] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions
on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[119] Y. Xu, W. Qu, Z. Li, G. Min, K. Li, and Z. Liu, “Efficient k -means++ ap-
proximation with mapreduce,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3135–3144, 2014.

[120] X. Zeng and T. R. Martinez, “Distribution-balanced stratified cross-
validation for accuracy estimation,” Journal of Experimental & Theoretical Ar-
tificial Intelligence, vol. 12, no. 1, pp. 1–12, 2000.

[121] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, “A parallel k-means clustering
algorithm with MPI,” in 2011 Fourth International Symposium on Parallel Ar-
chitectures, Algorithms and Programming. IEEE, 2011, pp. 60–64.

[122] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clus-
tering method for very large databases,” in Proceedings of the ACM SIGMOD
Conference on Management of Data, vol. 25, no. 2. ACM, 1996, pp. 103–114.

[123] Q. Zhao and P. Fränti, “Wb-index: A sum-of-squares based index for cluster
validity,” Data & Knowledge Engineering, vol. 92, pp. 77–89, 2014.

[124] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on mapre-
duce,” in Proceedings of the 1st International Conference on Cloud Computing,
ser. CloudCom ’09, 2009, pp. 674–679.

[125] C. Zhong, M. Malinen, D. Miao, and P. Fränti, “A fast minimum spanning
tree algorithm based on k-means,” Information Sciences, vol. 295, pp. 1–17,
2015.

ORIGINAL PAPERS

PI

INITIALIZATION OF BIG DATA CLUSTERING USING
DISTRIBUTIONALLY BALANCED FOLDING

by

Joonas Hämäläinen and Tommi Kärkkäinen 2016

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning

Reproduced with kind permission of ESANN.

Initialization of Big Data Clustering using
Distributionally Balanced Folding

Joonas Hämäläinen and Tommi Kärkkäinen

Department of Mathematical Information Technology
P.O. Box 35, 40014 University of Jyväskylä - Finland

Abstract. Use of distributionally balanced folding to speed up the ini-
tialization phase of K-means++ clustering method, targeting for big data
applications, is proposed and tested. The approach is first described and
then experimented, by focusing on the effects of the sampling method
when the number of folds created is varied. In the tests, quality of the
final clustering results were assessed and scalability of a distributed im-
plementation was demonstrated. The experiments support the viability of
the proposed approach.

1 Introduction

Iterative relocation clustering algorithms are known to be sensitive to the initial
placement of the prototypes. Actually the twofold aim of clustering, to divide
data into groups where observations within a group are more similar to each
other than observations in other groups [1], is approached in the well-known
algorithms, most prominently in the classical K-means++ [2, 1], by using the
two main steps: i) initial location of K separate prototypes, ii) local refinement
(search) of the initial prototypes to get the final solution. Due to variations
of step i), it is known that this kind of algorithms do not guarantee unique
clustering result or convergence to the global minimum of the clustering error
(e.g., [1, 3, 4]).

The final clustering result can be improved by using some other than the
random strategy for the initialization [5]. Chen et al. [6] argue that in the high-
dimensional space data are inherently sparse. This is due to the well-known curse
of dimensionality [7]. For example, the random samples tend to concentrate on
the corners of a hypercube and the distance between each pair of observations
becomes almost the same for a wide variety of data distributions. Chen et al.
[6] conclude that, for small data sets, the method by Bradley and Fayyad [8],
where the original data set is first splitted into smaller subsets which themselves
are clustered, yielded to the best clustering results. In general, one agrees that
the initial prototypes should be as far from each other as possible (without
being outliers) [9, 1]. Lately, the K-means++ algorithm [10], where the random
initialization is based on a density function favoring distinct prototypes, has
become the most popular variant to initialize the K-means-type of algorithms.

Sampling is the basic approach to reduce the number of observations in statis-
tics. It has a natural role in big data applications to cope with data volume,
although one of the characteristics of big data [11] is precisely the lack of stable
distribution, especially with high veracity and velocity. But the way sampling

587

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

is done matters, and this issue has mostly been considered in relation to the
well-known cross-validation, CV (see [12, 13] and articles therein). More pre-
cisely, the Distribution Optimally Balanced Stratified CV, DOB-SCV, has been
evaluated as an appropriate sampling method for large pool of datasets to ensure
good approximation of data density in the distinct folds created.

An approach where folding is applied with the K-means++ address the
special nature of a high-dimensional data by separating the observations more
clearly. This is combined with the good initialization strategies as mentioned
above: splitting of data and the distinct initial locations. According to our
knowledge, such techniques and in particular the DOB-SCV algorithm, has not
been previously suggested or tested in the big data clustering context. This is the
main goal of the paper, whose structure is as follows: In Section 2, we describe
the clustering approach and in Section 3 provide results from computational
experiments. The paper is shortly concluded in Section 4.

2 The Method

LetX be the given set of observations. In the initialization of the K-means++ al-
gorithm [10], one prototype is first selected at random from X. Then the rest

K−1 prototypes are selected fromX with probability d(x)
2
/
∑

x∈X d(x)
2
, where

d(x) is the smallest distance to a prototype that was already selected. Hence,
with high probability, one obtains a set of clearly distinct initial prototypes.

The DOB-SCV, as proposed in [12] (see [13] for the actual algorithm), was
targeted to create folds (disjoint subsets of data) for the cross-validation. Strat-
ification means that the folds are created classwise, or approximating the whole
data distribution if no labelling is available.

The basic strategy to create k folds is, interestingly, opposite to clustering:
select a random observation from class j, add it to the first fold and then add its
k−1 nearest class neighbors to different folds without replacement. This process
is then repeated until all the observations within class j are assigned to folds.
These steps are applied to all classes. As a result, in addition to the classical
stratification of approximating the class sizes, also class densities are preserved
in the folds. Our approach here is to use this approach to speed up the initial
search of distant prototypes in the K-means++ algorithm. From preliminary
tests that we have made with the available K-means implementations on the
popular Hadoop platform, we have noticed that the nondistributed initialization,
especially for the K-means++ implementations, takes most of the computing
time.

The proposed method is formalized in Algorithm 1. We let DOB-SCV to
form k distjoint folds {Xi}ki=1 from the data X. The initial selection of distinct
prototypes in K-means++ is then done in the folds where the best initial solution
by means of the overall clustering (least-squares) error is selected to initialize
the actual search (cf. [8]). Steps 1-2 in Algorithm 1 can be easily parallelized by
distributing folds to workers and using Single Program Multiple Data (SPMD)
model so that each worker processes its local fold. Communication between

588

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

workers can be done with Message Passing Interface (MPI). Same folds and
workers can also be applied in the local refinement step of the K-means algorithm
in parallel using SPMD model and MPI, see [14].

3 Experimental results

Our first goal of the experiments is to compare how the initialization method
affects to the clustering results in comparison to the whole data K-means++ ini-
tialization. Secondly, we test the scalability of the proposed approach when the
number of folds is varied, by using SPMD implementation of Algorithm 1. As
reference, we used the implementation [15] for K-means++. Matlab Distributed
Computing Toolbox SPMD and Message passing functions were used for the
parallel implementation. All the tests were performed in Matlab 8.3.0 (R2014a)
environment. For the scalability tests, we used the Taito supercluster at IT
Center for Science in Finland. Cluster resources were utilized via Matlab Dis-
tributed Computing Server (MDCS). The tests were run in the parallel partition
with Sandy Bridge nodes having two eight-core Intel E5-2670 2.6 GHz processors
with 256 GB RAM (16 GB per core).

Quality experiments were run with 5 data sets: S-sets [16] and USPS database
[17]. S-sets consist of four real-valued 2-dimensional synthetic data sets gener-
ated from 15 gaussian distributions with known centers. Each S-set consists of
5,000 vectors. The overlappings of clusters increase from S1 to S4. The USPS is
a well-known benchmark of handwritten digit dataset with 9,298 16×16 images
and labels provided. This set consists of 10 classes. The number of clusters K
was fixed for S-sets to 15 and for USPS dataset to 10. For all datasets, the
variables were min-max scaled into [−1, 1].

We ran Algorithm 1 with varying the number of the folds k between 2 −
50 for the even numbers. For each k, K-means++ run was repeated k times
and the minimum sum-of-squared-errors, SSE, was used to select as the final,
reference clustering result. Tests were repeated 10 times for the both methods
with DOB-SCV refolding in Algorithm 1. Comparison of the clustering results
for K-means++ and Algorithm 1 was performed by analysing SSE and the
pairwise prototype distances. For the latter measure, we calculated the sum of
the smallest pairwise Euclidean distances, in such a way that each prototype
was linked to the corresponding prototype only once. These were then averaged

Algorithm 1 K-means++ with folding initialization

Input: Folds {Xi}ki=1 from DOB-SCV, number of clusters K.
Output: Set of prototypes C = {cj}Kj=1.
1: For each fold Xi do K-means++ clustering initialization.
2: For each set of prototypes Ci from a fold, calculate clustering error for the

whole data.
3: Select the set of prototypes Cm with the smallest clustering error.
4: Do the K-means search starting from Cm.

589

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of folds

di
st

an
ce

 o
f p

ro
to

ty
pe

s

s1
s2
s3
s4
USPS

Fig. 1: Normalized prototype distances between Algorithm 1 and K-means++.

over 10 testruns for each k and normalized by dividing the result with the sum
of the Euclidean norms of ground truth prototypes. For the USPS dataset, the
ground truth prototypes were calculated as the class means.

In Fig. 1, the behavior of the normalized prototype distances are depicted.
In general, all the results are very close to each other. We also observe that
the prototypes become more similar between the methods when k increases.
This might be due to the increase of the accuracy for both methods, more
precisely, the number of i) the initial prototypes for Algorithm 1 and ii) the
final prototypes for K-means++.

In Fig. 2, the SSE difference is the average SSE for the K-means++ which
is subtracted from the average SSE for Algorithm 1. The SSE differences were
again normalized, this time with the SSE for the ground truth prototypes. Al-

0 5 10 15 20 25 30 35 40 45 50

−0.2

−0.1

0

0.1

0.2

0.3

0.4

number of folds

S
S

E
 d

iff
er

en
ce

s1
s2
s3
s4
USPS

Fig. 2: Normalized SSE difference between Algorithm 1 and K-means++.

590

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

5 10 15 20 25 30
0

100

200

300

400

500

number of workers

tim
e

in
 s

ec
on

ds

total time
initialization time
search time

(a)

1 10 100
0

500

1000

1500

2000

2500

filesize GB

tim
e

in
 s

ec
on

ds

initialization time
search time

(b)

Fig. 3: Initialization and search phases wall times for parallellized Algorithm 1.

gorithm 1 occasionally gives smaller errors than the repeated, full K-means++,
especially for the smaller values of k. A strong variation of the SSE difference for
the dataset S1 is most likely a consequence of higher probability to get stuck in
a local minimum. For USPS, the SSE difference is close to zero for all the values
of k, which indicates that the accuracy of Algorithm 1 is improved when the
volume of the problem is increased. This is desirable in big data applications.

For the scalability tests with the implementation as described above, the
MNIST database [18] was used. MNIST is another classical benchmark with
handwritten digits that consists of 70,000 28×28 images with labels for 10 classes.
In the first experiment, the number of workers were varied as 1, 2, 4, 8, 16 and
32. We also increased the data volume to demonstrate the behaviour: each
data fold was copied 3 times for both observation and variable direction. Hence,
the total data size was approximately 210,000×2,352. The wall clock time in
Algorithm 1 for the initialization (Steps 1-3) and for the search phase (Step 4)
was measured, again repeating the folding 10 times and averaging the wall clock
times. Note that total time for the original (full data) K-means++ is given
with one worker in Algorithm 1. As we can see from Fig. 3a, initialization time
was reduced rapidly up to 8 workers until the time in communication starts to
dominate, especially for the search phase.

In the second experiment, the number of workers was fixed to 100 and data
size was varied approximately as, again using MNIST for copying, 210,000×2,352
(1 GB), 630,000×7,056 (10 GB) and 2,030,000×22,736 (100 GB). Algorithm 1
was ran once for each data and wall times were measured similarly as in the first
experiment. Results are shown in Fig. 3b, which demonstrates that proposed
method, indeed, scales for big data.

4 Conclusions

We proposed and tested distributionally optimal folding as an initialization
method for the K-means++ clustering algorithm. The proposed initialization

591

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

method can be easily parallellized to speedup the initialization phase. Based on
the experiments, SSE can be occasionally even smaller for the proposed method
compared to the k times repeated full K-means++. Overall, especially for larger
values of k, the method provides very similar results compared to the full data
approach. In our future work, targeting at big data applications, integration of
dimension reduction to the initialization and the search phase is to be studied
to reduce the data volume in iterative relocation algorithms even further.

References

[1] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010.

[2] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[3] M. Emre Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initial-
ization methods for the k-means clustering algorithm. Expert Systems with Applications,
2012.

[4] M. Saarela and T. Kärkkäinen. Analyzing student performance using sparse data of core
bachelor courses. Journal of Educational Data Mining, 7(1):3–32, 2015.

[5] L. Bai, J. Liang, and C. Dang. An initialization method to simultaneously find initial
cluster centers and the number of clusters for clustering categorical data. Knowledge-
Based Systems, 24(6):785–795, 2011.

[6] L. Chen, L. Chen, Q. Jiang, B. Wang, and L. Shi. An initialization method for clustering
high-dimensional data. In Database Technology and Applications, 2009 First Interna-
tional Workshop on, pages 444–447. IEEE, 2009.

[7] M. Verleysen and D. François. The Curse of Dimensionality in Data Mining. Analysis,
3512:758 – 770, 2005.

[8] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In ICML,
volume 98, pages 91–99, 1998.

[9] S. S. Khan and A. Ahmad. Cluster center initialization algorithm for k-modes clustering.
Expert Systems with Applications, 2013.

[10] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

[11] B. Hammer, H. He, and T. Martinetz. Learning and modeling big data. 22th European
Symposium on Artificial Neural Networks (ESANN2014), (April):23–25, 2014.

[12] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera. Study on the impact of partition-
induced dataset shift on k-fold cross-validation. IEEE Transactions on Neural Networks
and Learning Systems, 23(8):1304–1312, 2012.

[13] T. Kärkkäinen. On cross-validation for MLP model evaluation. In Structural, Syntactic,
and Statistical Pattern Recognition, Lecture Notes in Computer Science (8621), pages
291–300. Springer-Verlag, 2014.

[14] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. LargeScale Parallel Data Mining, 1759(802):245–260, 1999.

[15] L. Sorber. k-means++ - File Exchange - MATLAB Central, 2010.

[16] P. Fränti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern
Recognition, 39(5):761–775, 2006.

[17] J. J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern
Anal. Mach. Intell., 16(5):550–554, May 1994.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

592

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

PII

SCALABLE INITIALIZATION METHODS FOR CLUSTERING
LARGE DATASETS

by

Joonas Hämäläinen, Tommi Kärkkäinen and Tuomo Rossi 2018

Pattern Recognition Letters (in revision)

1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Scalable initialization methods for clustering large datasets

Joonas Hämäläinena,∗∗, Tommi Kärkkäinena, Tuomo Rossia

aUniversity of Jyvaskyla, Faculty of Information Technology, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

ABSTRACT

In this work, two novel initialization methods for K-means clustering are proposed. Both proposals

are based on applying a divide-and-conquer approach for the K-means‖ type of an initialization strat-

egy. The second proposal also utilizes multiple lower-dimensional subspaces produced by the random

projection method for the initialization. The proposed methods are scalable and can be run in parallel,

which make them suitable for initializing large-scale problems. In the experiments, comparison of the

proposed methods to the K-means++ and K-means‖ methods is conducted using several large-scale

datasets. The experiments show that the proposed methods compare favorably to the state-of-the-art.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is one of the core techniques in pattern recogni-

tion. Its purpose is to form groups from data in a way that the

observations within one group, the cluster, are similar to each

other and dissimilar to observations in other groups.

Prototype-based clustering algorithms, such as the popular

K-means (Lloyd, 1982), are known to be sensitive to initial-

ization (Emre Celebi et al., 2012), i.e., the selection of initial

prototypes. A proper set of initial prototypes can improve the

clustering result and decrease the number of iterations needed

for the convergence of an algorithm (Hämäläinen et al., 2017).

The initialization of K-means was remarkably improved by the

work of Arthur and Vassilvitskii (2007), where they proposed

the K-means++ method. There, the initial prototypes are deter-

mined by favoring distinct prototypes, which in high probability

are not similar to the already selected ones.

A drawback of K-means++ is that the initialization phase re-

quires K inherently sequential passes over the data, since the

selection of a new initial prototype depends on the previously

selected prototypes. Bahmani et al. (2012) proposed a parallel

initialization method called K-means‖. The K-means‖ speeds

up initialization by sampling each point independently and by

updating sampling probabilities less frequently. Independent

sampling of the points enables parallelization of the initializa-

tion, thus providing a speedup over K-means++. However, for

∗∗Corresponding author

e-mail: joonas.k.hamalainen@jyu.fi (Joonas Hämäläinen)

example MapReduce based implementation of K-means‖ needs

multiple MapReduce jobs for the initialization. The MapRe-

duce K-means++ method by Xu et al. (2014) tries to address

this issue, as it uses one MapReduce job to select K initial

prototypes, which speeds up the initialization compared to K-

means‖. Suggestions of parallelizing the search phase of K-

means have been given in several papers (see, e.g., (Dhillon and

Modha, 1999; Zhao et al., 2009)). On a single machine, dis-

tance pruning approaches can be utilized to speed up K-means

without affecting the clustering results (Elkan, 2003; Hamerly,

2010).

Dimension reduction has had an important role in making

clustering algorithms more efficient. Over the years, various di-

mension reduction methods have been applied to decrease the

dimension of data in order to speed up clustering algorithms

(Boutsidis et al., 2010; Fern and Brodley, 2003; Alzate and

Suykens, 2010; Napoleon and Pavalakodi, 2011). The key idea

for improved efficiency is to solve an approximate solution to

the clustering problem in a lower dimensional space. Dimen-

sion reduction methods are usually divided into two categories:

feature selection methods and feature extraction methods (Liu

and Motoda, 1998). Feature selection methods aim to select a

subset of the most relevant variables from the original variables.

Correspondingly, feature extraction methods aim to transform

the original dataset into a lower dimensional space while trying

to preserve the characteristics of the original data.

A particular dimensional reduction approach for processing

large datasets is the random projection (RP) method (Achliop-

tas, 2003). Projecting data from the original space to a lower

2

dimensional space while preserving the distances is the main

characteristic of the RP method. This makes RP very appealing

in clustering, whose core concept is similarity. Moreover, clas-

sical dimension reduction methods such as the principal compo-

nent analysis (PCA) (Jolliffe, 2002) become expensive to com-

pute for high-dimensional spaces whereas RP remains compu-

tationally efficient (Bingham and Mannila, 2001).

Fern and Brodley (2003) proposed an ensemble clustering

method based on RP. They showed empirically that aggregation

of clustering results from multiple lower dimensional spaces

produced by RP leads to better clustering results compared to a

single clustering in lower dimensional space produced by PCA

or RP. Other combinations of K-means and RP have been stud-

ied in several papers (Cohen et al., 2014; Boutsidis et al., 2010,

2015; Cardoso and Wichert, 2012). RP for K-means++ was

analyzed in Chan and Leung (2017).

In general, the typical K-means clustering procedure is to use

non-deterministic initialization, such as K-means++, followed

by the Lloyd’s iterations with multiple restarts. Prototypes

corresponding to the smallest sum-of-squared clustering error

are selected as the final clustering result. In Hämäläinen and

Kärkkäinen (2016), such a multistart strategy was carried out

during the initialization phase, thus reducing the need to repeat

the whole clustering algorithm. More precisely, they proposed

and tested a parallel method based on K-means++ clustering of

subsets produced by the distribution optimally balanced strat-

ified cross-validation (DOB-SCV) algorithm (Moreno-Torres

et al., 2012). Here, such an approach is developed further

with the help of K-means‖ and RP. More precisely, we run K-

means‖ method in the low-dimensional subsets, which are cre-

ated by RP. In contrast to the previous work (Hämäläinen and

Kärkkäinen, 2016), the new methods also restrict the number of

Lloyd’s iterations in the subsets. Hence, the proposed initializa-

tion method reduces the volume of data with sampling, subsam-

pling, and dimensional reduction, and then solves the K-means

clustering problem in a coarse fashion. Moreover, from the per-

spective of parallel computing, using a parallelizable cluster-

ing method in the subset clustering allows fixing the number of

subsets and treating each subset locally in parallel, hence im-

proving the scalability. To this end, the purpose of this article is

to propose two new algorithms for clustering initialization and

compare them experimentally with K-means++ and K-means‖
using several large-scale datasets.

2. Background

In this section, we introduce the basic composition of the

existing algorithms.

2.1. K-means clustering problem and the basic algorithms
Let X = {x1, x2, ..., xN} be a dataset such that xi ∈ R

M ∀1 ≤
i ≤ N, and let C = {c1, c2, ..., cK} be a set of prototypes, where

each prototype also belongs to R
M . The goal of the K-means

clustering algorithm is to find a partition of X into K disjoint

subsets, by minimizing the sum-of-squared error (SSE) defined

as

SSE(C) =
∑
x∈X

min
c∈C

‖c − x‖2. (1)

Algorithm 1: K-means‖
Input: Dataset X, #clusters K, and over-sampling factor l.
Output: Set of prototypes C = {c1, c2, ..., cK}.

1: C ← select point c1 uniformly random from X.

2: ψ← compute S S E(C).

3: for O(log(ψ)) times do
4: C′ ← sample each point x ∈ X independently with

probability l · d(x)2/S S E(C).

5: C ← C ∪ C′
6: For each x in C attach a weight defined as the number of

points in X closer to x than any other point in C.

7: Do a weighted clustering of C into K clusters.

An approximate solution to the minimization problem with (1)

is typically computed by utilizing the Lloyd’s K-means algo-

rithm (Lloyd, 1982). Its popularity is based on simplicity and

scalability. Notice that because of the min-operator, the cost

function in (1) is mathematically nonsmooth, i.e., nondifferen-

tiable (Kärkkäinen and Heikkola, 2004). However, it is easy to

show that after the initialization, the K-means type of iterative

relocation algorithm converges in finite many steps, because the

value of SSE is decreased in each iteration (Hämäläinen et al.,

2017).

Prototype-based clustering algorithms, like K-means, are ini-

tialized before the prototype relocation (search) phase. The

classical initialization algorithm, readily proposed in Mac-

Queen (1967), is to randomly generate the initial set of pro-

totypes. A slight refinement of this strategy is to select, instead

of random points (from appropriate value ranges), random in-

dices and use the corresponding observations in data as initial-

ization (Forgy, 1965). Because of this choice, there cannot be

empty clusters in the first iteration. Bradley and Fayyad (1998)

proposed an initialization method where J randomly selected

subsets of the data are first clustered with K-means. Next, it

forms a superset of the J ×K prototypes obtained from the sub-

set clustering. Finally, the initial prototypes are achieved as the

result of K-means clustering of the superset.

Arthur and Vassilvitskii (2007) introduced the K-means++

algorithm, which improves the initialization of K-means clus-

tering. The algorithm selects first prototype at random, and then

the remaining K − 1 prototypes are sampled using probabili-

ties based on the squared distances to the already selected set,

thus favoring distant prototypes. The generalized form of such

an algorithm with different lp-distance functions and the corre-

sponding cluster location estimates was depicted in Hämäläinen

et al. (2017).

The parallelized K-means++ method, called K-means‖, was

proposed by Bahmani et al. (2012) (see Algorithm 1). In the

algorithm, one samples points from X in a slightly different

fashion compared to K-means++. More precisely, the sampling

probabilities are multiplied with the over-sampling factor l and

the sampling is done independently for each data point. The

initial SSE for the first sampled point ψ determines the number

of sampling iterations. K-means‖ runs O(log(ψ)) sampling it-

erations. For each iteration, the expected number of points is l.
Hence, after O(log(ψ)) iterations, the expected number of points

3

Algorithm 2: SK-means‖
Input: Subsets {X1,X2, ...,XS } , #clusters K, and #Lloyd’s

iterations Tinit.

Output: Set of prototypes C = {c1, c2, ..., cK}.
1: Ci ← for each subset Xi run K-means‖.
2: Ci ← for each subset Xi run Tinit Lloyd’s iterations

initialized with Ci.

3: Compute local SSE for each Ci in Xi.

4: C ← select prototypes corresponding to smallest local

SSE.

added to C is O(l log(ψ)). Finally, weights representing the ac-

cumulation of data around the sampled points are set and the re-

sult of the weighted clustering then provides the K initial proto-

types. K-means++ can be used to cluster the weighted data (see

Algorithm 1 in Bachem et al. (2017)). Selecting r = 5 instead

of O(log(ψ)) rounds and setting the over-sampling factor to 2K
were demonstrated to be sufficient in Bahmani et al. (2012).

Recently, Bachem et al. (2017) proved theoretically that small

r instead of O(log(ψ)) iterations is sufficient in K-means‖. A

modifcation of K-means‖ for initializing robust clustering was

described and tested in (Hämäläinen et al., 2018).

2.2. Random projection

The background for RP (Achlioptas, 2003) comes from

the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,

1984). The lemma states that points in a high dimensional

space can be projected to a lower dimension space while ap-

proximately preserving the distances of the points, when the

projection is done with a matrix whose elements are randomly

generated. Hence, for an N × M dataset X, let R ∈ M × P be

a random matrix. Then, the random projected data matrix X̃ is

given by X̃ = 1√
P

XR. The random matrix R consists of inde-

pendent random elements (ri j) which can be drawn from one

of the following probability distributions (Achlioptas, 2003):

ri j = +1 with probability 1/2, or −1 with probability 1/2; or

ri j = +1 with probability 1/6, 0 with probability 2/3, or −1

with probability 1/6.

3. Reduced K-means‖ type initialization

Next we introduce the novel initialization algorithms for K-

means.

3.1. SK-means‖
The first new initialization method for K-means clustering,

Subset K-means‖ (SK-means‖), is described in Algorithm 2.

The method is based on S randomly sampled non-disjoint sub-

sets {X1,X2, ...,XS } from X of approximately equal size, such

as X = ∪S
i=1

Xi. First, K-means‖ is applied in each subset, which

gives the corresponding set of initial prototypes Ci. Next, each

initial prototype set Ci in Xi is refined with Tinit Lloyd’s itera-

tions. Tinit is assumed to be significantly smaller than the num-

ber of Lloyd’s iterations needed for convergence. Then, SSE

is computed locally for each Ci in Xi. Differently from the

Algorithm 3: SRPK-means‖
Input: Subsets {X1,X2, ...,XS } , #clusters K, #Lloyd’s

iterations Tinit, and random projection dimension P.

Output: Set of prototypes C = {c1, c2, ..., cK}.
1: Ri ← for each subset Xi generate M × P random matrix.

2: X̃i ← for each subset Xi compute 1√
P

XiRi

3: C̃i ← for each X̃i run K-means‖.
4: Ii ← for each X̃i run Tinit Lloyd’s iterations initialized with

C̃i.

5: For each partitioning Ii compute prototypes Ci in original

space Xi.

6: Compute local SSE for each Ci in Xi.

7: C ← select prototypes corresponding to smallest local

SSE.

earlier work (Hämäläinen and Kärkkäinen, 2016), this locally

computed SSE is now used as the selection criteria for the ini-

tial prototypes instead of the global SSE. Computation of SSE

for Xi in Step 3 is obviously much faster than to compute it for

the whole X. However, a drawback is that if the subsets are too

small to characterize the whole data, the selection of the initial

prototypes might fail. Therefore, S should be selected such that

the subsets are sufficiently large.

The convergence rate of K-means is fast and the most sig-

nificant improvements in the clustering error are achieved dur-

ing the first few iterations (Bottou and Bengio, 1995; Broder

et al., 2014). Therefore, for the initialization purposes, Tinit

can restricted, e.g., to 5 iterations. Moreover, since the number

of Lloyd’s iterations needed for convergence might vary sig-

nificantly (e.g., Hämäläinen et al. (2017)), a restriction on the

number of Lloyd’s iterations helps in synchronization, when a

parallel implementation of the SK-means‖ method is used.

The computational complexity of K-means‖ is of the order

O(rlNM), where r is the number of initialization rounds. There-

fore, SK-means‖ also has the complexity of the order O(rlNM)

in Step 1. In addition, SK-means‖ runs Tinit Lloyd’s iterations

with the complexity of O(TinitKNM), and computes local SSE

with the complexity of O(KNM). Hence, the total complexity

of SK-means‖ is of the order O(rlNM + TinitKNM).

3.2. SRPK-means‖
The second novel proposal, Subset Random Projection K-

means‖ (SRPK-means‖), adds RPs to SK-means‖. Since SK-

means‖ mainly uses time in computing distances in Steps 1 and

2, it is reasonable to speed up the distance computation with RP.

The RP based method is presented in Algorithm 3. Generally,

SRPK-means‖ computes a set of candidate initial prototypes in

a lower dimensional space and then evaluates these in the orig-

inal space. Similarly to Algorithm 2, the best set of prototypes

based on the local SSE are selected.

The proposal first computes a unique random matrix for each

subset Xi. Then, the P dimensional random projected subset X̃i

is computed in the each subset Xi. Steps 3–4 are otherwise the

same as the Steps 1–2 in Algorithm 2, but these steps are ap-

plied for the lower dimensional subsets {X̃1, X̃2, ..., X̃S }. Next,

the labels Ii for partitioning each subset are used to compute

4

Ci in the original space Xi. Finally, the local SSEs are com-

puted and the best set of prototypes are returned as the initial

prototypes. Note that the last two steps in Algorithm 3 are

the same as Steps 3–4 in Algorithm 2. SRPK-means‖ com-

putes projected data matrices, which require a complexity of

O(PNM) (naive multiplication) (Boutsidis et al., 2010). Ex-

ecution of K-means‖ in the lower dimensional space requires

O(rlNP), and Tinit Lloyd’s iterations requires O(TinitKNP) op-

erations. Step 6 requires O(KNM) operations, since it com-

putes the local SSEs in the original space, so that the to-

tal computational complexity of the SRPK-means‖ method is

O(PNM+ rlNP+TinitKNP+KNM). Typically, applications of

RP are based on the assumption P << M. Thus, when the di-

mension of data M is increased, the contribution of the second

and the third term of the total computational complexity start to

diminish. Moreover, when both M and K are large compared

to P, the last term dominates the overall computational com-

plexity. Therefore, in terms of running time, SRPK-means‖ is

especially suited for clustering large-scale data with very high

dimensionality into a large number of clusters.

Fern and Brodley (2003) noted that clustering with RP pro-

duces highly unstable and diverse clustering results. However,

this can be exploited in clustering to find different candidate

structures of data, which then can be combined into a single

result (Fern and Brodley, 2003). The proposed initialization

method in this paper uses a similar idea as it tries to find struc-

tures from multiple lower dimensional spaces that minimize the

local SSE. In addition, selecting a result that gives the smallest

local SSE excludes the bad structures, which could be caused

by inappropriate Ri or Ci.

4. Parallel implementation of proposed algorithms

Bahmani et al. (2012) implemented K-means‖ with the

MapReduce programming model. It can also be implemented

by the Single Program Multiple Data (SPMD) programming

model with message passing. Then all the steps of the paral-

lelized Algorithms 1, 2, and 3 are executed inside an SPMD

block. Next, a parallel implementation of K-means‖ as depicted

in Algorithm 1 is briefly described, by using Matlab Parallel

Computing Toolbox (PCT), SPMD blocks, and message pass-

ing functions (see Sharma and Martin (2009) for a detailed de-

scription about PCT). First, data X is split into Q subsets of

approximately equal size and then the subsets are distributed to

Q workers. Step 1 picks a random point from a random worker

and broadcasts this point to all other workers. In Step 2, each

worker calculates distances and SSE for its local data. Next,

points are aggregated by calling gplus-function, after which the

aggregation distributes this sum to other workers. In Steps 4–5,

each worker samples points from its local data, the next points

are aggregated to C′ by calling gop-function, and then C′ is

broadcasted to all workers. Again, distances and SSE are cal-

culated similarly as in Step 2. Each worker in Step 6 assigns

weights based on its local data, after which the weights are ag-

gregated with gop-function. Finally, Step 7 is computed se-

quentially.

Similarly to the parallel K-means‖ implementation, a paral-

lel implementation of Algorithm 2 with SMPD and message

passing is described next. First, each subset Xi from S subsets

is split into J approximately equal size subsets and then these

subsets are distributed to J × S workers, e.g., subset Xi is dis-

tributed to workers (i−1)J+1, ..., (i−1)J+J. In Steps 1–3, each

subset of workers runs steps for subset Xi in parallel similarly

as described in the previous paragraph. For parallel Lloyd’s it-

erations, a similar strategy as proposed in Dhillon and Modha

(1999) can be used in Step 2. Steps 1–3 require calling modi-

fied gop-function and gplus-function for the subset of workers;

these functions were modified to support this requirement. Fi-

nally, prototypes corresponding to the smallest local SSE from

the subset i′ allocated workers (i′ − 1)J + 1, ..., (i′ − 1)J + J are

returned as the initialization.

The parallel SRPK-means‖ in Algorithm 3 can be imple-

mented in a highly similar fashion to the parallel SK-means‖.
More precisely, in Step 1, each worker (i − 1)J + 1, where

i ∈ {1, 2, ..., S }, generates the random matrix Ri and broadcasts

it to workers (i− 1)J + 1, ..., (i− 1)J + J. In Step 2, each worker

computes random projected data for its local data. Steps 3–4 are

otherwise computed similarly to the parallel SK-means‖ Steps

1–2, except these steps are executed for the projected subsets.

In Step 5, the prototypes are computed in the original space in

parallel. Finally, Steps 6–7 are the same as Steps 3–4 in Algo-

rithm 2.

5. Empirical evaluation of proposed algorithms

In this section, empirical comparison between K-means++,

K-means‖, SK-means‖, and SRPK-means‖ is presented by us-

ing 13 real and two synthetic datasets. Parallel implementa-

tions of the proposed methods and K-means‖ were applied to

the seven largest datasets and serial implementations were used

with the eight smallest datasets. K-means++ was used only

for the eight smallest datasets. The performance of the meth-

ods was evaluated by analyzing SSE, the number of iterations

needed for convergence, and the running time.

5.1. Experimental setup

Table 1: Characteristics of datasets

Dataset N M K
HAR 7 352 561 6

ISO 7 797 617 26

LET 20 000 16 26

GFE 27 936 300 36

MNI 70 000 784 10

BIR 100 000 2 100

BSM 583 250 77 50*

FCT 581 012 54 7

SVH 630 420 3 072 100*

RCV 781 265 1 000 350

USC 2 458 285 68 100*

KDD 4 898 431 41 100*

M8M 8 100 000 784 265

TIN 15 860 403 384 100*

OXB 16 334 970 128 100*

Basic information about the datasets is shown in Table

1. For the serial experiments, we used the following eight

5

datasets: Human Activity Recognition Using Smartphones1

(HAR), ISOLET1 (ISO), Letter Recognition1 (LET), Gram-

matical Facial Expressions1 (GFE), MNIST2 (MNI), Birch33

(BIR), Buzz in Social Media1 (BSM), and Covertype1 (COV).

For the parallel experiments, we chose seven large high-

dimensional datasets: Street View House Numbers4 (SVH),

RCV1v2 collection of documents5 (RCV), US Census Data

19901 (USC), KDD Cup 1999 Data1 (KDD), MNIST8M 5

(M8M), Tiny Images6 (TIN), and Oxford Buildings7 (OXB).

The BIR dataset (Fränti and Sieranoja, 2018) was selected

to test SK-means‖ for low dimensional data. With the OXB

dataset, we utilized transformed dataset with 128-dimensional

SIFT descriptors extracted from the original dataset. For the

TIN dataset, we sampled a 20 percent subset from the Gist

binary file (tinygist80million.bin), where 79302017 im-

ages are characterized with 384 dimensional Gist descriptors.

The highest dimensional dataset was SVH, where we combined

the training, testing, and validation subsets into a single dataset.

We excluded the attack type feature (class label) from the KDD

dataset. We used the Twitter data for the BSM dataset and the

training dataset for the HAR dataset in the experiments. For the

RCV dataset, we used the full industries test set (350 categories)

and selected 1000 out 47236 features with the same procedure

as in (De Vries and Geva, 2009). For the M8M and the RCV

datasets, we used the scaled datasets given in5, all other datasets

were min-max scaled into [−1, 1].

For the experiments, each dataset was randomly divided into

8 subsets, which were roughly of equal size. The experiments

were run in Matlab R2014a environment. The parallel al-

gorithms were implemented with Matlab Parallel Computing

Toolbox with the SPMD blocks and message passing functions

as discussed in Section 4. The parallel experiments were run in

a Taito computer cluster utilizing Sandy Bridge nodes with 16

cores and 256 GB memory. A parallel pool of 32 workers was

used in the experiments; therefore, 4 workers were allocated for

each subset.

For all datasets we used the following settings: i) for K-

means‖: l = 2K and r = 5; ii) for SK-means‖ and SRPK-

means‖: Tinit = 5 and S = 8; iii) and for SRPK-means‖:
P ∈ {5, 10, 20, 40} and R with ri j = ±1. After initialization,

the Lloyd’s algorithm was executed until the number of new

assignments between the consecutive iterations was below or

equal to the threshold. For the five largest datasets (SVH, RCV,

OXB, M8M and TIN) we set this threshold to 1% of N and oth-

erwise to zero. In the parallel experiments, runs were repeated

10 times for each setting. In the serial experiments, runs were

repeated 100 times for each setting. Values for the number of

clusters, K, are given in the last column of Table 1. Since the

MNIST8M dataset is constructed artificially from the original

MNIST dataset, we set K for MNIST8M based on the optimal

1http://archive.ics.uci.edu/ml/index.php
2http://yann.lecun.com/exdb/mnist/
3http://cs.joensuu.fi/sipu/datasets/
4http://ufldl.stanford.edu/housenumbers/
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
6http://horatio.cs.nyu.edu/mit/tiny/data/
7http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

value for MNIST used by Gallego et al. (2018). Otherwise,

the selection is either based on the known number of classes or

fixed arbitrarily (indicated with * in Table 1).

The clustering result quality between the methods was com-

pared by using SSE. The SSE values were computed with for-

mula (1) for the whole data. Finally, statistical comparison

between the methods was performed with the nonparametric

Kruskal-Wallis test (Kruskal and Wallis, 1952; Saarela et al.,

2017), since in most of the cases the clustering errors were not

normally distributed. The significance level was set to 0.05.

5.2. Results

In this section, the results are shown and analyzed by consid-

ering separately the accuracy (Section 5.2.1), efficiency (Sec-

tion 5.2.2), and scalability (Section 5.2.3) of the algorithms.

5.2.1. Clustering accuracy
SSE values after the initialization (initial SSE) and after

the Lloyd’s iterations (final SSE) for K-means++ (K++), K-

means‖ (K‖), SK-means‖ (SK‖), and SRPK-means‖ (SRPK‖)
methods are summarized in Table 4, where ∗∗ in the first col-

umn refers to a statistically significant difference between the

methods for the final SSE. For the initial SSE, we did not in-

clude any results from the statistical testing because of differ-

ences in variances. In addition, + indicates that the method has

statistically significantly better SSE compared to K-means++,

∗ indicates that the method has statistically significantly better

SSE compared to K-means‖, †P′ indicates that the method has

statistically significantly better SSE compared to SRPK-means‖
when P = P′, and ‡ indicates that the method has statistically

significantly better SSE compared to SK-means‖. The coeffi-

cient under the name of the data in the first column is the data-

specific multiplier which scales the SSE to the true level. More-

over, note that the assumption of equal variances underlying

the Kruskal-Wallis test, for the final SSE, is satisfied only for

SVH, RCV, USC, KDD, OXB, and M8M, based on the Brown-

Forsythe test. The assumption of equal variances for the final

SSE is not satisfied for HAR, ISO, LET, GFE, MNI, BIR, BSM,

FCT, and TIN, based on the Brown-Forsythe test.

Clearly, SK-means‖ and SRPK-means‖ outperform K-

means‖ and K-means++, in terms of the initial SSE. SRPK-

means‖ with P = 40 reaches almost the same initialization SSE

level as SK-means‖. For the six largest datasets, SRPK-means‖
with P = 20 always had smaller max-value of SSE after ini-

tialization than the min-value of K-means‖. K-means++ has

about two times larger initial SSE than SK-means‖ and SRPK-

means‖ (P = 40). Overall, in terms of the final clustering error,

SRPK-means‖ achieved better final SSE than K-means‖ and K-

means++ with only few exceptions. SK-means‖ gives better

final SSE than the baseline methods when M < 100. Other-

wise, the final SSE for SK-means‖ is better or equal compared

to the baseline methods. One can notice that the final SSE is

highly similar for K-means++ and K-means‖, statistical testing

indicates that there is no difference. Note that in Table 4 the

min-values of all methods for the final SSE are equal for small

number of clusters (K < 11). This is probably due to the fact

that the smaller number of possible partitions (Äyrämö, 2006)

6

Table 2: Running time for the initialization

K‖ SK‖ SRPK‖
data M p = 5 p = 40

KDD 41 5.0 8.7 7.9 10.2

USC 68 3.0 5.0 3.9 5.6

OXB 128 26.0 39.1 23.7 27.4

TIN 384 52.1 65.8 24.9 28.5

M8M 784 98.5 145.4 32.2 37.9

RCV 1000 14.1 20.6 4.8 5.6

SVH 3,072 13.7 17.3 3.4 3.3

implies a smaller number of local minima compared to higher

values of K.

One can note from Table 4 that the proposed approaches

are especially better than K-means‖ for the datasets where the

variability of the obtained clustering results (median absolute

deviation/mad-values in Table 4) is high for K-means‖. The

highest mad-values for K-means‖ are for the BSM and FCT

datasets. This indicates that, when the obtained clustering re-

sults for K-means‖ are highly different from each other, an eval-

uation of the initial prototypes prior to the K-means refinement

is beneficial, in the way it is conducted with the proposed meth-

ods. For the proposed methods, the oversampling factor l could

probably be tuned to lower values with smaller effect to the

clustering quality compared to K-means‖, which would speed

up the initialization phase.

5.2.2. Initialization running time and convergence
Running time for the initialization (median of 10 runs) for

the parallel experiments is shown in Table 2. Running time

for the initialization taken by K-means‖ is around 60% − 80%

of the running time of SK-means‖. SRPK-means‖ runs clearly

faster than SK-means‖ for datasets with dimensionality more

than 100, and for the four highest dimensional datasets, SRPK-

means‖ runs clearly faster than K-means‖. Note that differences

are small between P = 5 and P = 40 for SRPK-means‖.
The median number of Lloyd’s iterations needed for conver-

gence after the initialization phase are summarized in Table 3,

where statistically significant differences are denoted similarly

as in Table 4. The assumption of equal variances was satisfied

for all datasets except for FCT. In general, SK-means‖ seems to

a require smaller number of Lloyd’s iterations than K-means++

and K-means‖, which directly translates to faster running time

of the K-means search. Based on the statistical testing, SRPK-

means‖ is better than or equal compared to the baseline methods

in terms of the number of iterations. Therefore, SRPK-means‖
can also speed up the search phase of the K-means clustering

method. Increasing the RP dimension from 5 to 40 further im-

proved the speed of convergence for SRPK-means‖. Out of the

parameter values used in the experiments, selecting P = 40

gives the best trade off between the running time and the cluster-

ing error for SRPK-means‖. Furthermore, note that there is no

statistical difference between K-means++ and K-means‖ with

respect to the number of Lloyd’s iterations.

5.2.3. Scalability
We conducted scalability tests for TIN and SVH to show how

running time varies as a function of #processing elements (Mat-

Table 3: #iterations

K++ K‖ SK‖ SRPK‖
data p = 5 p = 10 p = 20 p = 40

HAR∗∗ 28.5 34 18+∗†5 26∗ 21+∗ 20+∗ 21.5+∗

ISO∗∗ 32 32 27+∗†5,10 36 33 31 28†5

LET∗∗ 82 78 65+∗†5 75.5 72.5 - -

GFE∗∗ 60 58.5 50.5+ 55.5 54 51 52

MNI 80 82 64 83.5 82 74.5 75.5

BIR∗∗ 97 84 88+ - - - -

BSM∗∗ 36 33.5 28+ 31.5 30.5 25.5+∗†5 31+

FCT∗∗ 14.5 8 1+∗†5−20 6+ 6+∗†5−20 4+∗†5 3+∗†5,10

SVH∗∗ - 32.5 28.5†5 35 32 30 27†5

RCV∗∗ - 20 19 20.5 20 17∗†5 17∗†5,10

USC - 81 86 93.5 83.5 77 98.5

KDD - 82 72 96.5 78 69 70

M8M∗∗ - 31 24∗†5−20 33 31.5 30 28.5†5

TIN∗∗ - 37.5 33∗†5−20 40 38.5 39 35.5

OXB∗∗ - 27.5 22∗†5−40 28.5 28 27.5 28.5

lab workers) and to demonstrate the benefits of using SRPK-

means‖ for a very high-dimensional dataset (SVH) when K is

increased. We concentrated on the running time of the initial-

ization and the corresponding SSE, which are the main focus of

the work. We performed scalability experiments in two parts:

1) Tests with TIN: #processing elements was varied from 8 to

64 and K = 100 was fixed; 2) Tests with SVH: The number of

clusters was varied as K ∈ {100, 200, 400, 800} and #processing

elements was fixed to 32. Otherwise, we used the same param-

eter settings as in the previous experiments.

Median running time and SSE curves out of 10 runs are

shown in Figure 1. Results for the experiment 1 are shown

in Figure 1a. In terms of Amdahl’s law, K-means‖ and SK-

means‖ perform equally well: running time is nearly halved

when #processing elements is doubled from 8 to 16 and from

16 to 32. In this perspective, performance of SRPK-means‖ is

slightly worse than K-means‖ and SK-means‖. The results for

the experiment 2 are shown in Figure 1b–1c. Clearly, for very

high-dimensional data, SRPK-means‖ runs much faster com-

pared to K-means‖ and SK-means‖. As analyzed in Section

3.2, the speedup for SRPK-means‖ is increased when K is in-

creased. A similar observation was made between K-means++

and RPK-means++ in Chan and Leung (2017). Furthermore,

when K = 800, the speedup for SRPK-means‖ with respect to

K-means‖ is 7–8, and with respect to SK-means‖ speedup is

9–10. Moreover, according to Figure 1c, SRPK-means‖ (when

P = 40) and SK-means‖ sustain their accuracy when K is in-

creased in a frame of K-means‖.

6. Conclusion

In this paper, we proposed two parallel initialization meth-

ods for large-scale K-means clustering. The methods are based

on divide-and-conquer type of K-means‖ approach and ran-

dom projections. The proposed initialization methods are scal-

able and fairly easy to implement with different parallel pro-

gramming models. Sequential implementations of the proposed

methods could also be beneficial for clustering initialization if

K-means‖ is replaced with K-means++.

7

The experimental results for 15 datasets showed that the pro-

posed methods improve clustering error and the speed of con-

vergence compared to state-of-the-art performance. Experi-

ments with SRPK-means‖ method demonstrate that utilization

of RP and K-means‖ is beneficial for clustering large-scale high

dimensional datasets. In particular, SRPK-means‖ is an appeal-

ing approach as a standalone algorithm for clustering very high-

dimensional large-scale datasets.

In future work, it would interesting test to a RP based local

SSE selection for SRPK-means‖, which uses the same RP ma-

trix in each subset for the initial prototype selection. In this

case, utilization of sparse RP variants (Li et al., 2006) or the

mailman algorithm (Boutsidis et al., 2010) for the matrix multi-

plication could be beneficial, particularly in applications where

K is close to P. Furthermore, integrating the proposed methods

into the robust K-means‖ (Hämäläinen et al., 2018) would be

beneficial for clustering noisy data, because the final clustering

error can have a large variance in these cases.

Acknowledgments

The work of TK has been supported by the Academy of Fin-

land from the projects 311877 (Demo) and 315550 (HNP-AI).

References

Achlioptas, D., 2003. Database-friendly random projections: Johnson-

lindenstrauss with binary coins. Journal of Computer and System Sciences

66, 671 – 687. Special Issue on {PODS} 2001.

Alzate, C., Suykens, J.A., 2010. Multiway spectral clustering with out-of-

sample extensions through weighted kernel pca. IEEE transactions on pat-

tern analysis and machine intelligence 32, 335–347.

Arthur, D., Vassilvitskii, S., 2007. k-means++: The advantages of careful seed-

ing, in: Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms, Society for Industrial and Applied Mathematics. pp.

1027–1035.

Äyrämö, S., 2006. Knowledge Mining Using Robust Clustering. volume 63 of

Jyväskylä Studies in Computing. University of Jyväskylä.

Bachem, O., Lucic, M., Krause, A., 2017. Distributed and provably good seed-

ings for k-means in constant rounds, in: International Conference on Ma-

chine Learning, pp. 292–300.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S., 2012.

Scalable k-means++. Proc. VLDB Endow. 5, 622–633. doi:10.14778/

2180912.2180915.

Bingham, E., Mannila, H., 2001. Random projection in dimensionality re-

duction: Applications to image and text data, in: Proceedings of the Sev-

enth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ACM. pp. 245–250.

Bottou, L., Bengio, Y., 1995. Convergence properties of the k-means algo-

rithms, in: Advances in neural information processing systems, pp. 585–

592.

Boutsidis, C., Zouzias, A., Drineas, P., 2010. Random projections for k-means

clustering. CoRR .

Boutsidis, C., Zouzias, A., Mahoney, M.W., Drineas, P., 2015. Randomized

Dimensionality Reduction for k -Means Clustering. Information Theory,

IEEE Transactions on 61, 1045–1062.

Bradley, P.S., Fayyad, U.M., 1998. Refining initial points for k-means cluster-

ing., in: ICML, pp. 91–99.

Broder, A., Garcia-Pueyo, L., Josifovski, V., Vassilvitskii, S., Venkatesan, S.,

2014. Scalable k-means by ranked retrieval, in: Proceedings of the 7th ACM

international conference on Web search and data mining, ACM. pp. 233–

242.

Cardoso, Â., Wichert, A., 2012. Iterative random projections for high-

dimensional data clustering. Pattern Recognition Letters 33, 1749 – 1755.

Chan, J.Y., Leung, A.P., 2017. Efficient k-means++with random projection, in:

Neural Networks (IJCNN), 2017 International Joint Conference on, IEEE.

pp. 94–100.

Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M., 2014. Dimensionality

reduction for k-means clustering and low rank approximation. CoRR .

De Vries, C.M., Geva, S., 2009. K-tree: large scale document clustering, in:

Proceedings of the 32nd international ACM SIGIR conference on Research

and development in information retrieval, ACM. pp. 718–719.

Dhillon, I.S., Modha, D.S., 1999. A data-clustering algorithm on distributed

memory multiprocessors. LargeScale Parallel Data Mining 1759, 245–260.

Elkan, C., 2003. Using the triangle inequality to accelerate k-means, in: Pro-

ceedings of the 20th International Conference on Machine Learning (ICML-

03), pp. 147–153.

Emre Celebi, M., Kingravi, H.A., Vela, P.A., 2012. A comparative study of

efficient initialization methods for the k-means clustering algorithm. Expert

Systems with Applications .

Fern, X., Brodley, C., 2003. Random projection for high dimensional data

clustering: A cluster ensemble approach, in: Proceedings of the 20th Inter-

national Conference on Machine Learning, pp. 186–193.

Forgy, E.W., 1965. Cluster analysis of multivariate data: Efficiency vs. inter-

pretability of classifications. Biometrics 21, 768–769.

Fränti, P., Sieranoja, S., 2018. K-means properties on six clustering benchmark

datasets. Applied Intelligence , 1–17.

Gallego, A.J., Calvo-Zaragoza, J., Valero-Mas, J.J., Rico-Juan, J.R., 2018.

Clustering-based k-nearest neighbor classification for large-scale data with

neural codes representation. Pattern Recognition 74, 531–543.

Hämäläinen, J., Jauhiainen, S., Kärkkäinen, T., 2017. Comparison of internal

clustering validation indices for prototype-based clustering. Algorithms 10,

105.

Hämäläinen, J., Kärkkäinen, T., 2016. Initialization of big data clustering using

distributionally balanced folding, in: Proceedings of the European Sympo-

sium on Artificial Neural Networks, Computational Intelligence and Ma-

chine Learning - ESANN 2016, pp. 587–592.

Hämäläinen, J., Kärkkäinen, T., Rossi, T., 2018. Scalable robust clustering

method for large and sparse data, in: Proceedings of the European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Ma-

chine Learning - ESANN 2018, pp. 449–454.

Hamerly, G., 2010. Making k-means even faster, in: Proceedings of the 2010

SIAM international conference on data mining, SIAM. pp. 130–140.

Johnson, W.B., Lindenstrauss, J., 1984. Extensions of lipschitz mappings into

a hilbert space. Contemporary mathematics 26, 1.

Jolliffe, I.T., 2002. Principal Component Analysis. 2nd ed.. Springer.

Kärkkäinen, T., Heikkola, E., 2004. Robust formulations for training multilayer

perceptrons. Neural Computation 16, 837–862.

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance

analysis. Journal of the American statistical Association 47, 583–621.

Li, P., Hastie, T.J., Church, K.W., 2006. Very sparse random projections, in:

Proceedings of the 12th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, ACM. pp. 287–296.

Liu, H., Motoda, H., 1998. Feature Selection for Knowledge Discovery and

Data Mining. Kluwer Academic Publishers, Norwell, MA, USA.

Lloyd, S., 1982. Least squares quantization in PCM. IEEE Transactions on

Information Theory 28, 129–137. doi:10.1109/TIT.1982.1056489.

MacQueen, J., 1967. Some methods for classification and analysis of multi-

variate observations, in: Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, Oakland, CA, USA.. pp. 281–297.

Moreno-Torres, J.G., Sáez, J.A., Herrera, F., 2012. Study on the impact of

partition-induced dataset shift on k-fold cross-validation. IEEE Transactions

on Neural Networks and Learning Systems 23, 1304–1312.

Napoleon, D., Pavalakodi, S., 2011. A new method for dimensionality reduc-

tion using k-means clustering algorithm for high dimensional data set. In-

ternational Journal of Computer Applications 13, 41–46.

Saarela, M., Hämäläinen, J., Kärkkäinen, T., 2017. Feature ranking of large,

robust, and weighted clustering result, in: Proceedings of 21st Pacific Asia

Conference on Knowledge Discovery and Data Mining - PAKDD 2017, pp.

96–109.

Sharma, G., Martin, J., 2009. Matlab: A language for parallel computing.

International Journal of Parallel Programming 37, 3–36.

Xu, Y., Qu, W., Li, Z., Min, G., Li, K., Liu, Z., 2014. Efficient k -means++ ap-

proximation with mapreduce. IEEE Transactions on Parallel and Distributed

Systems 25, 3135–3144.

Zhao, W., Ma, H., He, Q., 2009. Parallel k-means clustering based on mapre-

duce, in: Proceedings of the 1st International Conference on Cloud Com-

puting, pp. 674–679.

8

10 20 30 40 50 600

100

200

300

#processing elements

tim
e

[s
]

(a)

100 200 300 400 500 600 700 8000

20

40

60

80

100

K

tim
e

[s
]

(b)

100 200 300 400 500 600 700 8000.9

1

1.1

1.2

1.3

1.4x 108

K

S
S

E

K−means||
Subset−Kmeans||
Subset RPK−means|| p=5
Subset RPK−means|| p=40

(c)

Fig. 1: Scalability with respect to #processing elements and the number of clusters K.

Table 4: Clustering accuracy using SSE

Initialization Final

K++ K‖ SK‖ SRPK‖ K++ K‖ SK‖ SRPK‖
data stats p = 5 p = 10 p = 20 p = 40 p = 5 p = 10 p = 20 p = 40

HAR∗∗ median 2.9267 1.7504 1.4082 1.4878 1.4523 1.4371 1.4222 1.3803 1.3803 1.3707∗ 1.3707+∗ 1.3707+∗ 1.3707∗ 1.3707+∗
105 mad 0.3839 0.2063 0.0519 0.0640 0.0554 0.0672 0.0631 0.0247 0.0269 0.0059 0.0109 0.0088 0.0074 0.0095

max 5.6183 4.0399 1.9232 1.7310 1.6624 1.6734 1.7074 1.5442 1.5442 1.4094 1.4126 1.4126 1.4094 1.4144

min 2.4219 1.5181 1.3841 1.4016 1.3860 1.3882 1.3900 1.3707 1.3707 1.3707 1.3707 1.3707 1.3707 1.3707
ISO∗∗ median 10.1969 6.0737 5.2497 6.2368 5.8513 5.5509 5.4086 4.7846 4.7777 4.7679 4.7590+∗ 4.7650+ 4.7555+∗‡ 4.7590+∗
105 mad 0.2874 0.2073 0.1475 0.1510 0.1360 0.1582 0.1493 0.0281 0.0285 0.0215 0.0301 0.0338 0.0236 0.0320

max 11.1637 7.2736 6.0510 6.7378 6.2192 6.1989 5.8519 4.8955 4.9124 4.8565 4.8428 4.8506 4.8176 4.8601

min 9.3376 5.6181 4.9746 5.8912 5.5547 5.2810 5.0959 4.7175 4.7168 4.7178 4.7109 4.7166 4.7156 4.7106
LET∗∗ median 2.6293 1.6243 1.3071 1.6730 1.5067 - - 1.1017 1.1003 1.0975+∗ 1.0989 1.0986 - -

104 mad 0.1548 0.1208 0.0603 0.0844 0.0795 - - 0.0060 0.0052 0.0040 0.0071 0.0059 - -

max 3.8036 2.1248 1.5182 1.9576 1.7570 - - 1.1187 1.1192 1.1126 1.1267 1.1171 - -

min 2.1253 1.3782 1.1751 1.5141 1.3597 - - 1.0884 1.0864 1.0871 1.0883 1.0891 - -

GFE∗∗ median 3.9497 2.5022 2.1087 2.4164 2.2760 2.1977 2.1448 1.8621 1.8585 1.8469+∗ 1.8386+∗ 1.8389+∗ 1.8411+∗ 1.8438+∗
105 mad 0.2145 0.1072 0.0600 0.0716 0.0882 0.0727 0.0704 0.0183 0.0140 0.0109 0.0131 0.0124 0.0129 0.0140

max 4.9085 3.0283 2.3899 2.6221 2.7836 2.4177 2.3769 1.9594 1.9105 1.8839 1.8845 1.8678 1.8846 1.9009

min 3.5318 2.2229 1.9762 2.2831 2.1540 2.0387 2.0012 1.8274 1.8175 1.8187 1.8173 1.8179 1.8165 1.8170

MNI∗∗ median 2.3625 1.4722 1.1424 1.2918 1.2601 1.2194 1.1917 1.1013 1.0980 1.0979+ 1.0979+ 1.0979+ 1.0980+ 1.0979+
107 mad 0.1047 0.0819 0.0246 0.0282 0.0274 0.0308 0.0315 0.0025 0.0027 0.0018 0.0027 0.0020 0.0021 0.0022

max 2.9160 1.8498 1.2373 1.4228 1.3197 1.2963 1.2722 1.1076 1.1111 1.1069 1.1108 1.1045 1.1070 1.1052

min 2.1211 1.2972 1.1068 1.2464 1.2027 1.1445 1.1355 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977
BIR∗∗ median 5.4011 3.0420 2.4033 - - - - 1.8137 1.8151 1.7739+∗ - - - -

102 mad 0.5161 0.3804 0.2313 - - - - 0.0423 0.0440 0.0231 - - - -

max 7.3151 5.8659 3.4308 - - - - 2.0110 2.0894 1.8452 - - - -

min 4.1618 2.2741 1.9868 - - - - 1.7347 1.7188 1.7074 - - - -

BSM∗∗ median 2.0774 1.2901 1.1001 1.5480 1.2238 1.1195 1.1129 1.1430†5 1.1933 1.0775+∗†5,10 1.2228 1.1215∗†5 1.0833+∗†5,10 1.0681+∗†5,10

105 mad 0.4395 0.1890 0.1797 0.3356 0.3064 0.2126 0.2255 0.0688 0.0769 0.0419 0.1190 0.0849 0.0561 0.0437

max 10.3542 3.6431 6.5058 4.1810 3.6241 2.4254 2.2779 1.4277 1.4808 1.2475 1.5491 1.3860 1.2429 1.1740
min 1.5767 1.0420 0.9558 1.1611 0.9912 0.9443 0.9843 0.9633 1.0344 0.9516 0.9999 0.9160 0.9392 0.9570

FCT∗∗ median 4.2565 2.2745 1.9369 2.2606 2.1251 2.0149 1.9744 1.9665 2.0096 1.9215+∗†5−20 1.9796 1.9645∗ 1.9408+∗†5 1.9359+∗†5,10

106 mad 0.3461 0.1561 0.0341 0.0898 0.0651 0.0625 0.0435 0.0727 0.0793 0.0299 0.0544 0.0559 0.0536 0.0440

max 6.0590 2.7642 2.0613 2.4897 2.3442 2.2716 2.0842 2.3120 2.3666 1.9887 2.1125 2.1264 2.1105 2.0273

min 3.5876 1.9638 1.8645 2.0662 2.0013 1.8657 1.8652 1.8644 1.8644 1.8644 1.8644 1.8644 1.8644 1.8644
SVH median - 1.3559 1.0855 1.1820 1.1464 1.1155 1.0992 - 1.0703 1.0704 1.0704 1.0705 1.0706 1.0708

108 mad - 0.0636 0.0014 0.0185 0.0149 0.0075 0.0042 - 0.0003 0.0004 0.0005 0.0005 0.0003 0.0003
max - 1.5968 1.0889 1.2279 1.1765 1.1290 1.1083 - 1.0711 1.0720 1.0711 1.0717 1.0714 1.0712

min - 1.3027 1.0836 1.1639 1.1246 1.1082 1.0922 - 1.0696 1.0698 1.0698 1.0700 1.0703 1.0703

RCV∗∗ median - 2.5506 2.1405 2.5897 2.4864 2.3575 2.2313 - 2.0876 2.0913 2.0780 2.0757∗‡ 2.0702∗‡†5 2.0715∗‡†5

105 mad - 0.0233 0.0022 0.0138 0.0041 0.0045 0.0040 - 0.0027 0.0018 0.0019 0.0014 0.0026 0.0022

max - 2.5886 2.1427 2.5979 2.4945 2.3652 2.2363 - 2.0922 2.0951 2.0823 2.0778 2.0767 2.0755
min - 2.4849 2.1345 2.5647 2.4830 2.3523 2.2228 - 2.0812 2.0863 2.0764 2.0737 2.0688 2.0674

USC∗∗ median - 1.7014 1.1936 1.5530 1.3218 1.2284 1.1989 - 1.1903 1.1779 1.1736∗ 1.1688∗ 1.1718∗ 1.1709∗
107 mad - 0.0394 0.0036 0.0338 0.0217 0.0079 0.0037 - 0.0070 0.0057 0.0072 0.0091 0.0091 0.0049

max - 1.7671 1.2016 1.6178 1.3542 1.2415 1.2038 - 1.2020 1.1908 1.1803 1.1841 1.1869 1.1829

min - 1.6110 1.1877 1.4957 1.2799 1.2191 1.1934 - 1.1781 1.1712 1.1595 1.1566 1.1602 1.1667

KDD∗∗ median - 30.5335 2.5466 3.1781 2.6651 2.5817 2.5162 - 2.5218 2.4726 2.4853 2.4582∗ 2.4755 2.4529∗
105 mad - 7.3666 0.0337 0.1019 0.0483 0.0562 0.0440 - 0.0372 0.0419 0.0698 0.0413 0.0464 0.0316

max - 58.0452 2.5962 3.3024 2.7083 2.6275 2.6367 - 2.6288 2.5432 2.6241 2.5223 2.5640 2.5406

min - 22.2667 2.4803 2.9935 2.5447 2.4483 2.4878 - 2.4614 2.4084 2.3961 2.3927 2.4032 2.4330

M8M∗∗ median - 2.6631 2.2390 2.9313 2.6415 2.4185 2.3153 - 2.2159 2.2154 2.2139∗ 2.2139∗ 2.2141∗ 2.2139∗
108 mad - 0.0164 0.0009 0.0286 0.0150 0.0071 0.0041 - 0.0012 0.0008 0.0010 0.0009 0.0005 0.0009

max - 2.6959 2.2412 2.9835 2.6690 2.4299 2.3176 - 2.2203 2.2165 2.2162 2.2155 2.2145 2.2157

min - 2.6391 2.2376 2.8782 2.6192 2.4091 2.3043 - 2.2143 2.2131 2.2128 2.2126 2.2131 2.2132

TIN median - 10.7568 8.8782 9.7335 9.4194 9.2042 9.0595 - 8.8060 8.8065 8.8058 8.8075 8.8073 8.8073

107 mad - 0.1498 0.0057 0.1054 0.0879 0.0338 0.0139 - 0.0012 0.0014 0.0016 0.0018 0.0016 0.0030

max - 11.1649 8.8812 9.9343 9.5627 9.2543 9.0841 - 8.8091 8.8077 8.8091 8.8106 8.8093 8.8108

min - 10.4721 8.8623 9.5824 9.3339 9.1431 9.0474 - 8.8031 8.8029 8.8042 8.8047 8.8044 8.8024
OXB∗∗ median - 1.7678 1.5375 1.6432 1.6249 1.6014 1.5829 - 1.5267 1.5268 1.5254∗‡ 1.5256∗‡ 1.5255∗‡ 1.5255∗‡

108 mad - 0.0181 0.0004 0.0055 0.0058 0.0028 0.0017 - 0.0006 0.0002 0.0003 0.0005 0.0005 0.0004

max - 1.8224 1.5384 1.6575 1.6315 1.6082 1.5850 - 1.5286 1.5271 1.5258 1.5266 1.5262 1.5261

min - 1.7506 1.5367 1.6393 1.6162 1.5995 1.5797 - 1.5258 1.5259 1.5251 1.5250 1.5250 1.5250

PIII

SCALABLE ROBUST CLUSTERING METHOD FOR LARGE
AND SPARSE DATA

by

Joonas Hämäläinen, Tommi Kärkkäinen and Tuomo Rossi 2018

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning

Reproduced with kind permission of ESANN.

Scalable robust clustering method for large and
sparse data

Joonas Hämäläinen, Tommi Kärkkäinen∗ and Tuomo Rossi

University of Jyvaskyla, Faculty of Information Technology,
P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Abstract. Datasets for unsupervised clustering can be large and sparse,
with significant portion of missing values. We present here a scalable ver-
sion of a robust clustering method with the available data strategy. More
precisely, a general algorithm is described and the accuracy and scalability
of a distributed implementation of the algorithm is tested. The obtained
results allow us to conclude the viability of the proposed approach.

1 Introduction

Clustering is one of the core techniques in unsupervised learning. Based on a
similarity measure (e.g., Euclidean distance), its purpose is to partition a given
data into groups, clusters, where members belonging to one cluster are similar
to each other and dissimilar to other clusters. Classically, clustering is divided
into two main categories, partitional and hierarchical, although a large variety
of different approaches have been suggested [1, 2].

Since the real-world clustering problems are becoming larger and larger, ap-
plying sequential clustering algorithms to these problems becomes impractical.
Over the years, a lot of research related to the parallellizing of the well-known
K-means algorithm with various parallel computation models has been carried
out [3, 4, 5]. K-means‖ [6] is parallelizable version of the K-means++ [7]. Con-
trary to K-means++, imposed by the inherently sequential nature, K-means‖ is
scalalable and it can be easily implemented in parallel with multiple parallel pro-
gramming models. As shown by [6], proper initialization of a parallel algorithm
plays an important role both in accuracy and scalability.

K-spatialmedians is prototype-based clustering method which applies avail-
able data strategy and spatial median as cluster prototype [8]. The available data
strategy refers to an approach, where all distance computations are projected to
the available values. This ensures that no assumptions on the unknown distri-
bution of the missing values (MVs) is being made during clustering. Robustness
and accuracy of the approach for tens of percents of MVs was extensively tested
in [9]. However, differently to the use of the mean as in K-means, one needs
to apply an iterative method to compute the cluster prototype. Hence, scala-
bility of the parallel implementation is not self-evident. Therefore, the purpose
in this article is twofold: i) to compare clustering results between K-means and
K-spatialmedians, ii) to consider scalability of a parallel implementation of K-
spatialmedians

∗The work of TK has been supported by the Academy of Finland from the projects 311877
(Demo) and 315550 (HNP-AI)

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

449

2 Parallel K-spatialmedians‖
Let X = {x1, ...,xN} denote a dataset in M dimensional space and let P =
{p1, ...,pN} be a N ×M projection matrix where

(pi)j =

{
1, if (xi)j exists,

0, otherwise.
(1)

The clustering error function that is, after an initialization, locally minimized
by the K-spatialmedians algorithm reads as [10, 11]

J ({mk}Kk=1) =

N∑
i=1

min
k=1,...,K

‖Diag (pi) (xi −mk)‖2, (2)

where Diag (pi) creates a diagonal matrix using a vector pi. The result of the
minimization is the set of prototypes {mk}Kk=1, with the cluster memberships
Ck = {i : ‖Diag (pi) (xi −mk)‖2 ≤ ‖Diag (pi) (xi −mk′)‖2 for 1 ≤ k �= k′ ≤
K}. Multiplication with pi in (2) realizes the projection of the distance compu-
tation to only the available values of individual observations. As the definition
(2) suggests, the iterative relocation of cluster prototypes simply means that one
needs to solve the minimization problem iterative in each cluster. For this pur-
pose, successive over-relaxation (SOR) of the well-known Weiszfeld algorithm
for a candidate solution can be used [8, 9].

Let us assume that the data is partitioned into Q disjoint subsets: X =
{X1, ...,XQ} such as X = ∪Q

i=1Xi. Then the cluster memberships are spread
to data partitions such as Ck = {Ck1, ...,CkQ}. Moreover, we denote Ckq =
Ck ∩ {i : xi ∈ Xq}, where q = 1, ..., Q. Hence, in the SOR algorithm from the
current step t into t+1, the candidate prototype vk (see [9], p. 138) for the kth
cluster can be solved with

vk = (
∑
i∈Ck

αt
i Diag(pi))

−1
∑
i∈Ck

αt
i Diag(pi)xi

= (

Q∑
q=1

∑
i∈Ckq

αt
i Diag(pi))

−1

Q∑
q=1

∑
i∈Ckq

αt
i Diag(pi)xi,

where αt
i = 1/

√‖Diag(pi)(ut
k − xi)‖22 + ε, where ε is a small positive constant.

If we define At
qk =

∑
i∈Ckq

αt
i Diag(pi) and bt

qk =
∑

i∈Ckq
αt
i Diag(pi)xi, we get

vk = (

Q∑
q=1

At
qk)

−1

Q∑
q=1

bt
qk. (3)

Finally, the prototype uk is updated as follows

ut+1
k = ut

k + ω(vk − ut
k), (4)

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

450

Algorithm 1: K-spatialmedians‖
Input: Data partitions X = {X1, ...,XQ}, projection matrix partitions P = {P1, ...,PQ},

the number of clusters K, the maximum number of SOR iterations tmax, the
threshold for convergence of SOR εtol.

Output: Final prototypes {mk}Kk=1.

1: Initialize {mk}Kk=1 with parallel K-spatialmedians‖0 for the complete rows in X.
(master and slaves)

2: Broadcast {mk}Kk=1 to all Q slave processes. (master)
3: Assign local cluster memberships Ckq for k = 1, ...,K. (slaves)
4: Set t = 0 and ut

k = mk for k = 1, ...,K. (master)
5: Compute At

qk and bt
qk for k = 1, ..., K. (slaves)

6: Compute the global sums
∑Q

q=1 A
t
qk and

∑Q
q=1 b

t
qk by parallel reduction for the

master process for k = 1, ..., K. (slaves)
7: Compute vk with Eq. 3 for k = 1, ...,K. (master)
8: Compute ut+1

k with Eq. 4 for k = 1, ...,K. (master)

9: Set t = t+ 1 and if t < tmax and median
k=1,...,K

‖ut
k − ut−1

k ‖∞ > εtol, then repeat steps

5-8. (master)
10: Set mk = ut

k for k = 1, ...,K. (master)
11: Repeat steps 2-10 until convergence.

where ω ∈ [0, 2] determines the stepsize along the direction of (vk−ut
k). For the

consecutive SOR iterations t and t+1, the stopping criterion for the kth cluster
is defined as ‖ut+1

k − ut
k‖∞ ≤ εtol.

The proposed parallel method K-spatialmedians‖ is described in Algorithm
1. The distribution is based on single program multiple data (SPMD) model.
The approach assumes that X and P are approximately equally distributed to
Q processing elements. The proposed method first applies modified K-means‖
for the initialization (referred as K-spatialmedians‖0). The first modification
to K-means‖ is that we use the Euclidean distance instead of the squared
Euclidean distance during the whole initialization procedure and we apply K-
spatialmedians instead of K-means to cluster the sampled points with weights.
The second modification deals with the MV handling, where, because we need
to have complete prototypes after the initialization, K-spatialmedians‖0 is run
only for the complete observations in X. In the steps 4-9, the spatial medians
are computed in parallel based on the SOR algorithm. The serial version of the
SOR algorithm is depicted in [9]. Note that the parallellized SOR algorithm
differs from the serial one in the stopping criterion. In the parallel version, the
number of SOR iterations required for convergence is the same for each cluster,
since the stopping criterion is based on the median of {‖ut+1

k − ut
k‖∞}Kk=1.

3 Experiments and results

The accuracy of K-spatialmedians‖ was compared with K-means‖ for a synthetic
dataset. The scalability properties of the parallel K-spatialmedians‖ implemen-
tation were experimented with a large real dataset.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

451

3.1 Experimental setup

All experiments were performed in the MATLAB R2017b environment. The
scalability experiments were performed using a cluster equipped with eight In-
tel Xeon CPU E7-8837 with each having 128 GB memory and 8 cores. We
implemented the parallel K-spatialmedians‖ with SPMD paradigm by utilizing
MATLAB’s parallel computing toolbox (PCT).

We realized the accuracy experiments with a synthetic S21 dataset. S2 is a
two-dimensional dataset with 5000 observations. In order to assess robustness
of K-spatialmedians‖, we disturbed original S2 with outliers and missing values.
First, we replaced 250 observations with uniformly random observations, where
both values were generated from two times larger range than the original S2.
Then, we generated the MVs by randomly selecting elements from data and
replacing them with MVs. Moreover, we ensured that we did not replace an
observation’s both elements with MVs.

For the scalability experiments we selected the Oxford buildings (OXB)
dataset2. The experiments were run with additional dataset, which consists
of 16,334,970 SIFT descriptors extracted from the original dataset with dimen-
sionality 128. Moreover, this dataset was modified by replacing 10 percent of
randomly chosen elements with MVs attached to N/2 randomly selected obser-
vations. The scalability related to the speedup was examined with a random 20
percent sample of OXB dataset with MVs. The scalability of with respect to the
data size was tested with varying a random sample size from 20 to 100 percents.

All datasets were min-max scaled to the range [−1, 1]. For K-means‖, we
run the initialization for the full rows of X and in the K-means search phase we
used the available data strategy. For K-means‖ and K-spatialmedians‖0, we set
l = 2 ∗K and r = 5, based on the experiments in [6]. For K-spatialmedians‖,
we set εtol = 10−3, ω = 1.5, and tmax = 100. For S2 we set the number
of clusters to K = 15. For S2, the clustering iterations were ran until there
were no new cluster assignments with respect to the previous iteration, and
we repeated these runs 200 times. Since K-means‖ and K-spatialmedians‖ aim
to minimize different cost functions, to get fair comparison, all the reported
clustering errors were computed with respect to the ground truth prototypes.
For each prototype, we computed Euclidean distance to the closest ground truth
prototype and summed these distances. Furthermore, each of the ground truth
prototypes and the prototypes archieved from the experiments contributes to the
clustering error only once. In the experiments related to the speedup and the
data size we set K = 10. To analyze the scalability with respect to the number
of clusters, we varied K between 10 and 160, and this was conducted with 32
processing elements (MATLAB workers). We varied the number of processing
elements between 1 and 32 to test the speedup. In the scalability experiments,
clustering was performed once with 20 iterations for each setting.

1http://cs.uef.fi/sipu/datasets/
2http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

452

(a) 0% MVs (b) 10% MVs (c) 30% MVs

Fig. 1: Error distributions for S2 with varying level of MVs.

3.2 Clustering quality

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
S2 with noise
K-spatialmedians|| prototypes
K-means|| prototypes

Fig. 2: The best final prototypes out
of 200 runs for S2 with 10% MVs.

K-spatialmedians‖ and K-means‖ er-
ror distributions for S2 with 0%, 10%
and 30% MVs are shown in Figure 1.
Clearly, K-spatialmedians‖ finds bet-
ter clustering results than K-means‖.
Based on visual inspection of the best
resulting prototypes (selection based on
Eq. 2), K-spatialmedians‖ is able to
find an optimal clustering result for
0% and 10% MVs. For 30% MVs,
K-spatialmedians‖misplaces one proto-
type incorrectly. Similarly, based on vi-
sual inspection of the best resulting pro-
rotypes (selection based on SSE with
the available data strategy), K-means‖
misplaces six prototypes for 0%, 10%
and 30% MVs. These best resulting
prototypes for S2 with 10% MVs are shown in Figure 2, where they are plotted
in a frame of the original S2 data points with noise.

3.3 Scalability

The scalability results for K-spatialmedians‖ are shown in Figure 3. The exe-
cution time increases linearly with respect to the data size, similarly as for the
original K-spatialmedians. Moreover, we observed that time taken by the ini-
tialization is negligible with respect to total running time (about 1% of the total
running time). As a function of the number of processing elements, the parallel
implementation scales well. Speedup is nearly linear from 1 to 16 processing
elements. As a function of the number of clusters, the execution time increases
linearly after K = 20. The nonlinear behaviour in the beging of the curve is due
to a moderate increase of SOR iterations. The total number of SOR iterations
for K = 10 is 106, for K = 20 130, and for K = 40 127. Finally, we also
assessed Gustafson’s law with 32 processing elements, and we observed 60% of
the theoretical speedup.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

453

20 40 60 80 1000

500

1000

1500

N [%]

Ti
m

e
in

 s
ec

on
ds

(a) Data size

1 2 4 8 16 32

5

10

15

20

Number of processing elements

sp
ee

du
p

(b) Speedup

50 100 1501000

1200

1400

1600

Number of clusters K

Ti
m

e
in

 s
ec

on
ds

(c) Number of clusters

Fig. 3: Scalability of K-spatialmedians‖ for OXB dataset with 10% MVs.

4 Conclusions

In this paper, we proposed K-spatialmedians‖, which is a parallel version of K-
spatialmedians for large and sparse data. Moreover, K-spatialmedians‖ utilizes
an initialization strategy based on K-means‖. Based on the experiments on the
synthetic dataset with noise and missing values, K-spatialmedians‖ outperforms
K-means‖ in terms of clustering quality. Based on the experiments, the proposed
algorithm scales well with respect to the size of data, the speedup and the number
of clusters. In the future work, we plan to study the proposal in more detail in
terms of the initialization.

References

[1] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and applications.
CRC press, 2013.

[2] Vahan Petrosyan and Alexandre Proutiere. Viral initialization for spectral clustering. In
Proceedings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning - ESANN 2017, pages 293–298, 2017.

[3] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. LargeScale Parallel Data Mining, 1759(802):245–260, 1999.

[4] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on mapre-
duce. In Proceedings of the 1st International Conference on Cloud Computing, CloudCom
’09, pages 674–679, 2009.

[5] Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H Campbell. A parallel implemen-
tation of k-means clustering on GPUs. In Pdpta, volume 13, pages 212–312, 2008.

[6] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassil-
vitskii. Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, 2012.

[7] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[8] T Kärkkäinen and S Äyrämö. On computation of spatial median for robust data min-
ing. Evolutionary and Deterministic Methods for Design, Optimization and Control with
Applications to Industrial and Societal Problems, EUROGEN, Munich, 2005.

[9] Sami Äyrämö. Knowledge mining using robust clustering. University of Jyväskylä, 2006.

[10] Sami Äyrämö and Tommi Kärkkäinen. Introduction to partitioning-based clustering
methods with a robust example. Reports of the Department of Mathematical Information
Technology. Series C, Software engineering and computational intelligence 1/2006, 2006.

[11] Joonas Hämäläinen, Susanne Jauhiainen, and Tommi Kärkkäinen. Comparison of internal
clustering validation indices for prototype-based clustering. Algorithms, 10(3):105, 2017.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

454

PIV

COMPARISON OF INTERNAL CLUSTERING VALIDATION
INDICES FOR PROTOTYPE-BASED CLUSTERING

by

Joonas Hämäläinen, Susanne Jauhiainen and Tommi Kärkkäinen 2017

Algorithms, 10(3):105

Reproduced with kind permission of MDPI.

algorithms

Article

Comparison of Internal Clustering Validation Indices
for Prototype-Based Clustering

Joonas Hämäläinen *,†, Susanne Jauhiainen † and Tommi Kärkkäinen †

Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland;
susanne.m.jauhiainen@student.jyu.fi (S.J.); tommi.karkkainen@jyu.fi (T.K.)
* Correspondence: joonas.k.hamalainen@jyu.fi
† These authors contributed equally to this work.

Received: 13 July 2017; Accepted: 1 September 2017; Published: 6 September 2017

Abstract: Clustering is an unsupervised machine learning and pattern recognition method. In general,
in addition to revealing hidden groups of similar observations and clusters, their number needs to
be determined. Internal clustering validation indices estimate this number without any external
information. The purpose of this article is to evaluate, empirically, characteristics of a representative
set of internal clustering validation indices with many datasets. The prototype-based clustering
framework includes multiple, classical and robust, statistical estimates of cluster location so that the
overall setting of the paper is novel. General observations on the quality of validation indices and on
the behavior of different variants of clustering algorithms will be given.

Keywords: prototype-based clustering; clustering validation index; robust statistics

1. Introduction

Clustering aims to partition a given dataset (a set of observations) into groups (clusters) that are
separated from other groups in a twofold manner: observations within a cluster are similar to each other
and dissimilar to observations in other clusters [1]. Diverse sets of clustering approaches have been
developed over the years, e.g., density-based, probabilistic, grid-based, and spectral clustering [2].
However, the two most common groups of crisp (here, we do not consider fuzzy clustering [3])
clustering algorithms are partitional and hierarchical clustering [4]. Hierarchical clustering constructs
a tree structure from data to present layers of clustering results, but because of the pairwise distance
matrix requirement, the basic form of the method is not scalable to a large volume of data [5]. Moreover,
many clustering algorithms, including hierarchical clustering, can produce clusters of arbitrary shapes
in the data space, which might be difficult to interpret for knowledge discovery [6].

The two aims of clustering for K groups in data are approached in the partitional algorithms,
most prominently in the classical K-means [4,7], by using two main phases: initial generation of K
prototypes and local refinement of the initial prototypes. The initial prototypes should be separated
from each other [4,8]. Lately, the K-means++ algorithm [9], where the random initialization is
based on a density function favoring distinct prototypes, has become the most popular variant to
initialize the K-means-type of an algorithm. Because the prototype refinement acts locally, we need
a globalization strategy to explore the search space. This can be accomplished with repeated restarts
through initial prototype regeneration [10] or by using evolutionary approaches with a population of
different candidate solutions [11].

One can utilize different error (score) functions in partitional clustering algorithms [12]. Mean
is the statistical estimate of the cluster prototype in K-means and the clustering error is measured
with the least-squares residual. This implies the assumption of spherically symmetric, normally
distributed data with Gaussian noise. These conditions are relaxed when the cluster prototype is
replaced, e.g., with a robust location estimate [13–15]. The two simplest robust estimates of location

Algorithms 2017, 10, 105; doi:10.3390/a10030105 www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 105 2 of 14

are median and spatial median, whose underlying spherically symmetric distributions are uniform
and Laplace distributions, respectively. If the type of data is discrete, for instance, an integer variable
with uniform quantization error [16], then the Gaussian assumption is not valid. Median, given by
the middle value of the ordered univariate sample (unique only for odd numbers of points [17]), can,
like the mean, be estimated from the marginal distribution being inherently univariate. The spatial
median, on the other hand, is truly a multivariate, orthogonally equivariant location estimate [18].
These location estimates and their intrinsic properties are illustrated and more thoroughly discussed
in [17,19]. The median and spatial median have many attractive statistical properties, especially
since their so-called breakdown point is 0.5, i.e., they can handle up to 50% of contaminated and
erroneous data.

In a typical unsupervised scenario, one does not possess any prior knowledge of the number
of clusters K. Finding the best possible representation of data with K groups is difficult because the
number of all possible groupings is the sum of Stirling numbers of the second kind [19]. Defining
validation measures for clustering results has been, therefore, a challenging problem that different
approaches have tried to overcome [20–25]. The quality of a clustering result can be measured with
a Clustering Validation Index (CVI). The aim of a CVI is to estimate the most appropriate K based
on the compactness and separation of the clusters. Validation indices can be divided into three
categories [26]: internal, external, and relative. An external validation index uses prior knowledge,
an internal index is based on information from the data only, and in a relative CVI, multiple clustering
results are compared. A comprehensive review of clustering validation techniques up to 2001 was
provided in [27]. There exists also alternative approaches for determining the number of clusters,
e.g., by measuring the stability of the clustering method [28] or using multiobjective evolutionary
approaches [11,29].

In this paper, we continue the previous work reported in [30] by focusing on a comparison of
the seven best internal CVIs, as identified in [30] and augmented by [22]. The earlier comparisons,
typically reported when suggesting novel CVIs, only include K-means as the partitional clustering
algorithm [22,30–36]. Here, this treatment is generalized by using multiple statistical estimates as a
cluster prototype and to define the clustering error, under the currently most common initialization
strategy as proposed in [9] (which is also generalized). Note that prototype-based clustering can also
be conducted with an incremental fashion [37–39]. However, here were restrict ourselves on the batch
versions of the algorithms, which can be guaranteed to converge in a finite number of iterations (see
Section 2.1). The definitions of the considered validation indices are also extended and empirically
compared with K-means, K-medians, and K-spatialmedians (using spatial median as a prototype
estimate) clustering results for a large pool of benchmark datasets. According to our knowledge,
there exists no previous work that compares CVIs with multiple different distance metrics. Our aim is
to sample the main characteristics of the indices considered and to identify what indices most reliably
refer to ground truth values of the benchmark datasets. Note that by their construction, all CVIs
considered here can also be used to suggest the number of clusters in hierarchical clustering.

The structure of the article is as follows. After this introductory section, we describe generalized
prototype-based clustering, discuss its convergence, and also present the generalized versions of
cluster initialization and indices in Section 2. Our experimental setup is described in Section 3, and the
results are given and discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Methods

In this section, we introduce and analyze all the necessary formulations for clustering and cluster
validation indices.

2.1. General Prototype-Based Clustering and Its Convergence

As described above, prototype-based partitional clustering algorithms comprise two main phases.
First, they start with an initial partition of the data, and second, the quality of this partition is

Algorithms 2017, 10, 105 3 of 14

improved by a local search algorithm during the search phase. The initial partition can be obtained
based on many different principles [4,8], but a common strategy is to use distinct prototypes [9].
Most typically, the globalization of the whole algorithm is based on random initialization with several
regenerations [10]. Then, the best solution with the smallest clustering error is chosen as the final result.
The iterative relocation algorithm skeleton for prototype-based partitional clustering is presented
in Algorithm 1 [12,16].

Algorithm 1: Prototype-based partitional clustering algorithm.
Input: Dataset and the number of clusters K.
Output: Partition of dataset into K disjoint groups.
Select K points as the initial prototypes;
repeat

1. Assign individual observation to the closest prototype;
2. Recompute the prototype with the assigned observations;

until the partition does not change;

As stated in [17] (see also [19]), the different location estimates for a cluster prototype arise from
different lp-norms to the q-th power as the distance measure and the corresponding clustering error
function; mean refers to ‖ · ‖2

2 (p = q = 2), median is characterized by ‖ · ‖1
1 (p = q = 1), and the

spatial median is given by ‖ · ‖1
2 (p = 2, q = 1). Hence, generally the repetition of Steps 1 and 2 from

the search phase of Algorithm 1 locally minimize the following clustering error criterion:

J ({bk}) =
K

∑
k=1

∑
xi∈Ck

‖xi − bk‖q
p. (1)

Here {bk}, k = 1, . . . , K denote the prototype vectors to be determined and {xi}N
i=1, xi ∈ R

n refers
to the given set of n-dimensional observations. The interpretation of (1) is that each observation xi is
assigned to cluster k with the closest prototype on the lp-norm:

Ck = {1 ≤ k ≤ K | ‖xi − bk‖p ≤ ‖xi − bk′ ‖p ∀k �= k′}.

Hence, as noted in [40], another more compact way of formalizing the clustering error criterion
reads as

J ({bk}) =
N

∑
i=1

min
k=1,...,K

‖xi − bk‖q
p, (2)

which more clearly shows the nonsmoothness of the clustering problem, because the min-operator is
not classically differentiable (see [17] and references therein). This observation gives rise to a different
set of clustering algorithms that are based on nonsmooth optimization solvers [41].

However, despite the nonsmoothness of the error function, it can be shown that the search phase
of Algorithm 1 decreases the clustering error, ensuring local convergence of the algorithm in finite
many steps. We formalize this in the next proposition. The proof here is a slight modification and
simplification of the more general treatment in [19], Theorem 5.3.1, along the lines of the convergence
analyses in different problem domains, as given in [42–44].

Proposition 1. The repeated Steps 1 and 2 of Algorithm 1 decrease the clustering error function (2).
This guarantees convergence of the algorithm in finite many steps.

Proof. Let us denote by superscript t the current iterates of the prototypes {bt
k} with the initial

candidates for t = 0. If assignments to clusters and to the closest cluster prototypes do not change,

Algorithms 2017, 10, 105 4 of 14

we are done, so let us assume that the repeated step 1 in Algorithm 1 has identified at least one
1 ≤ j ≤ N such that, for xj ∈ Ct

k, there exists a better prototype candidate:

‖xj − bt
k‖p > ‖xj − bt

k′ ‖p for some k′ �= k. (3)

Then, a direct computation, using monotonicity of the function ‖ · ‖q for q = {1, 2} and reflecting
the change in the assignments, gives

J ({bt
k}) =

K

∑
k=1

∑
xi∈Ct

k

‖xi − bt
k‖q

p =
K

∑
k=1

⎛⎜⎜⎜⎝ ∑
xi∈Ct

k
i �=j

‖xi − bt
k‖q

p + ‖xj − bt
k‖q

p

⎞⎟⎟⎟⎠

>
K

∑
k=1

⎛⎜⎜⎜⎝ ∑
xi∈Ct

k
i �=j

‖xi − bt
k‖q

p + ‖xj − bt
k′ ‖q

p

⎞⎟⎟⎟⎠ =
K

∑
k=1

∑
xi∈Ct+1

k

‖xi − bt
k‖q

p (4)

≥
K

∑
k=1

∑
xi∈Ct+1

k

‖xi − bt+1
k ‖q

p = J ({bt+1
k }).

Here, the last inequality follows from the repeated Step 2 of Algorithm 1 and from the
optimization-based definitions of mean/median/spatial median as minimizers of the lq

p-norm [17]
over a dataset:

∑
xi∈Ct+1

k

‖xi − bt+1
k ‖q

p = min
b∈Rn ∑

xi∈Ct+1
k

‖xi − b‖q
p ≤ ∑

xi∈Ct+1
k

‖xi − bt
k‖q

p for all k. (5)

Because (4) and (5) are valid for any reallocated index j satisfying (3), we conclude that the
clustering error strictly decreases when a reallocation for a set of observations occurs in Algorithm 1.

To this end, because there exists only a finite number of possible sets Ct
k, we must have Ct+1

k = Ct
k

after a finite number of steps t 	→ t + 1. This ends the proof.

The K-means++ initialization method utilizes squared Euclidean distance-based probabilities
to sample initial prototypes from the data points. In Algorithm 2, this initialization strategy is
generalized for varying lp-norms to the q-th power. Note that Algorithm 2 is the same as the K-means++
initialization algorithm when p = q = 2. In order to be successful, one needs to assume in Algorithm 2
that the dataset {xi}N

i=1 has at least K distinct data points, which is a natural and reasonable assumption.
In Step 2, the probability for each point xi to be selected as the next initial prototype is proportional
to the distance to the closest already selected prototype divided by the value of the clustering error
Function (2) for the already selected prototypes. Clearly, in each iteration, the most distant points
(with respect to the previously selected initial prototypes) have the highest probability of being selected.

Algorithm 2: General K-means++-type initialization.

Input: Dataset {xi}N
i=1 and the number of clusters K.

Output: Initial prototypes {bk}K
k=1.

1. Select b1 = xi uniformly randomly, i = 1, . . . , N;
for k = 2, k = k + 1, k ≤ K do

2. Select bk = xi with probability
minj=1,...,k−1 ‖xi − bj‖q

p

J ({bj}k−1
j=1)

, i = 1, . . . , N;

end

Algorithms 2017, 10, 105 5 of 14

2.2. Cluster Validation Indices

From now on, for a given number of clusters K, we denote, by {ck} and {Ck}, k = 1, . . . , K, the
best prototypes and divisions obtained after a fixed number of repeated applications of Algorithm 1.
When K = 1, we denote the prototype, i.e., the mean, median, or spatial median, of the whole data
with m. Moreover, we let JK denote the corresponding clustering error over the whole data and
J k

K = ∑xi∈Ck
‖xi − ck‖q

p to refer to the corresponding final within-cluster errors.
Cluster validation considers the quality of the result of a clustering algorithm, attempting to find

the partition that best fits the nature of the data. The number of clusters, given as a parameter for
many clustering algorithms (such as the ones presented in Section 2.1), should be decided based on
the natural structure of the data. Like the best clustering solution, the number of clusters is also not
always clear and many ’right’ answers can exist (see, e.g., [19], Figure 5). The number can also depend
on the resolution, i.e., whether the within- and between- cluster separabilities are considered globally
or locally. Here, we focus on the CVIs based on the internal criteria.

The validation indices measure how well the general goal of clustering—high similarity within
clusters and high separability between clusters—is achieved. These are considered with measures of
within-cluster (Intra) and between-cluster (Inter) separability, for which lower and higher values are
better, respectively. Normally, a division between Intra and Inter is made and the optimal value is at
the minimum or maximum, based on the order of the division.

In Table 1, the best internal validation indices (as determined for the K-means-type of clustering
in [30], augmented with [22]) are introduced in a general fashion for the lq

p-norm setting. All except
one of the indices have been modified in such a way that the optimal number of clusters can be found
at the minimal value. Only the Wemmert–Gançarski index, which has a unique pattern of the general
formula, is given in the original form, where the maximum value indicates the optimal number of
clusters. In Table 1, if the formula that combines Intra and Inter depends on the generated clusters,
then this is indicated with the corresponding parameters.

Table 1. Internal cluster validation indices.

Name Notation Intra Inter Formula

KCE [30] KCE K ×JK Intra

WB-index [22] WB K ×JK
K
∑

k=1
nk‖ck − m‖q

p
Intra
Inter

Calinski–Harabasz [24] CH (K − 1)×JK (N − K)× K
∑

k=1
nk‖ck − m‖q

p
Intra
Inter

Davies–Bouldin [23] DB
1
nk

J k
K +

1
nk′

J k′
K ‖ck − ck′ ‖q

p
1
K

K
∑

k=1
max
k �=k′

Intra(k,k′)
Inter(k,k′)

Pakhira, Bandyopadhyay, and Maulik [45] PBM K ×JK max
k �=k′

(‖ck − ck′ ‖q
p)×J1

(Intra
Inter

)2

Ray–Turi [25] RT
1
N

×JK min
k �=k′

‖ck − ck′ ‖q
p

Intra
Inter

Wemmert– Gançarski ([46]) WG ‖xi − ck‖q
p min

k �=k′
‖xi − ck′ ‖q

p
1
N

K
∑

k=1
max

(
0, nk − ∑

i∈Ik

Intra(i)
Inter(i)

)

As can be seen from the formulas of the indices, there are a lot of similarities in how different
indices measure the within- and between-cluster separability. For example, the clustering error
straightforwardly measures the similarity within clusters and, therefore, almost all of the indices
include it in their measure of Intra . In case of between-cluster separability, it is common to measure,
for instance, the distance between cluster prototypes or between cluster prototypes and the whole data
prototype. The rationale behind the index structures and their more detailed descriptions can be found
in the original articles.

Algorithms 2017, 10, 105 6 of 14

2.3. On Computational Complexity

The computational complexity of the prototype-based clustering is O(RTKNn), where T is the
number of iterations needed for convergence and R is the chosen number of repetitions of joint
Algorithms 1 and 2. As the clustering itself is quite time-consuming, especially with large datasets, it is
only natural to also consider the complexity of the indices to avoid excessively complex computations.
Here, the KCE index has an advantage in not requiring any extra calculation after the clustering
solution has been obtained. For the indices that go through the prototypes once, here the WB and CH
that measure the prototype distances to the whole data prototype, the complexity is O(Kn). Indices that
measure the distances between all the prototypes, such as DB, PBM, and RT, have complexity O(K2n).

In our tests, WG is the index with the highest complexity, O(KNn), going through the whole
data, comparing points and the prototypes. A commonly used and generally well performing
index, Silhouette (see, e.g., [30,33]), goes through the whole data twice when calculating its values
and therefore its complexity is O(N2n). With large datasets of at least hundreds of thousands of
observations, this might be even more complex than the clustering task itself, with the chosen values
of R and K and the observed value of T (see Figure A1) in Section 4. If computationally more involved
indices would be used, also application of more complex clustering algorithms should be considered.
Therefore, Silhouette was excluded from our tests.

2.4. About Earlier Validation Index Comparisons

There has been a lot of research on cluster validation, including comparisons of different validation
indices and clustering algorithms. Often when a new index is proposed, the work also includes a set
of comparisons that conclude that the new index is the best one. In [34], eight common CVIs were
compared and with 5% additional noise, different densities, and skewed distributions, most indices
were able to find the correct number of clusters. However, only three of them were able to recognize
close subclusters. In their tests, S_Dbw was the only CVI that suggested the correct number of clusters
for all datasets. In our previous tests in [30], the S_Dbw also recognized the close subclusters in
Sim5D2, but it did not perform that well in general.

Often no single CVI has a clear advantage in every context, but each is best suited to a certain
kind of data. This was also the conclusion in [33], where 30 different indices with 720 synthetic
and 20 real datasets were compared. However, a group of about 10 indices were found to be the
most recommendable, including Silhouette, Davies–Bouldin * and Calinski–Harabasz at the top. Also,
in the earlier extensive comparison [47], where 30 indices were compared, the authors suggested
that if different datasets were used for testing, the order of the indices would change but the best
ones—including Calinski–Harabasz, Duda–Hart, and the C-index—would still perform well.

3. Experimental Setup

Next, we test the indices in Table 1 with different distance measures, i.e., with different
prototype-based clustering algorithms. The index values are calculated with the distance corresponding
to the clustering method used, i.e., city-block with the K-medians, squared Euclidean with the K-means,
and Euclidean with the K-spatialmedians. All datasets were scaled to the range of [−1, 1]. All the
tests were run on MATLAB (R2014a), where a reference implementation on both the validation indices
and the general clustering Algorithm 1 with the initialization given in Algorithm 2 were prepared.
The impact of the necessary amount of repetitions of Algorithms 1 and 2 was tested with multiple
datasets (S -sets, Dim-sets, A1, Unbalance), comparing the clustering error and the cluster assignments.
With 100 repetitions, the minimum clustering error and the corresponding cluster assignments were
stabilized and an appropriate clustering result was found. This result with the minimum clustering
error was used for computing the CVI value.

To test the indices, we used the basic benchmark datasets described in detail in [48], with the
two other synthetic datasets http://users.jyu.fi/~jookriha/CVI/Data/ as given in [30] (see Figure 1).

Algorithms 2017, 10, 105 7 of 14

These benchmark sets are synthetic datasets, suggested for use when testing any algorithm dealing
with clustering spherical or Gaussian data. Here, we restrict ourselves to the benchmarks with at
most 20 clusters, because the interpretation and knowledge discovery from the clustering results with
a large number of prototypes might become tedious [6,49]. Therefore, the number of clusters was also
tested with K = 2 − 25.

Sim5D2 PCA of Sim5D10

Figure 1. Scatter plots of Sim5 datasets.

In addition, we use six real datasets that include Steel Plates, Ionosphere, and Satimage (Train)
from the UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets.html Iris and
Arrhythmia from MATLAB’s sample datasets, https://se.mathworks.com/help/stats/_bq9uxn4.html,
and the USPS dataset. https://www.otexts.org/1577 A summary of all these datasets can be seen
in Table 2. For these real datasets, even if there are class labels provided, we do not compare the
clustering results with the class information because of the completely unsupervised scenario with
the internal validation indices. Moreover, the classes need not correspond to the clusters determined
by the prototype-based clustering algorithm, since the probability density functions of the classes are
not necessarily spherically symmetric. For these datasets, we therefore only study and compare the
stability of the suggestions on the numbers of clusters for different indices.

Table 2. Description of datasets.

Data Size Dimensions Clusters Description

S 5000 2 15 Varying overlap
G2 2048 1–1024 2 Varying overlap and dimensionality

DIM 1024 32–1024 16 Varying dimensionality
A 3000–7500 2 20–50 Varying number of clusters

Unbalance 6500 2 8 Both dense and sparse clusters
Birch 100,000 2 1–100 Varying structure
Sim5 2970 2–10 5 Small subclusters close to bigger ones

Data Size Dimensions Classes Description

Iris 150 4 3 Three species of iris
Arrhythmia 452 279 13 Different types of cardiac arrhythmia
Steel Plates 1941 27 7 Steel plates faults
Ionosphere 351 34 2 Radar returns from the ionosphere

USPS 9298 256 10 Numeric data from scanned handwritten digits
Satimage (Train) 6435 36 6 Satellite images

Finally, our datasets include the following: A1, with 20 spherical clusters and some overlap;
the S -sets, including four datasets with 15 Gaussian clusters, and cluster overlap increasing gradually
from S1 to S4 ; Dim-sets, including six datasets with 16 well-separated clusters in high-dimensional
space and dimensions varying from 32 to 1024; a subset of Birch2, including 19 datasets

Algorithms 2017, 10, 105 8 of 14

with 2–20 clusters with their centroids on a sine curve; Unbalance, with eight clusters in two separate
groups, the one having three dense and small clusters and the other five more sparse and bigger clusters;
and a subset of G2, with 20 datasets—the lowest and highest overlap in ten different dimensions from
1 to 1024. Finally, together with the six real datasets, we had altogether 62 datasets in our tests.

4. Results

In this section, we provide the results of the clustering validation index tests with K-medians,
K-means, and K-spatialmedians clustering. Results for the synthetic datasets are combined in Table A1,
where each cell includes the results for all three methods with ‘cb’ referring to the city-block distance
(p = q = 1), ‘se’ to the squared Euclidean distance (p = q = 2), and ‘ec’ to the Euclidean distance
(p = 2, q = 1). In addition, the convergence properties of the clustering algorithms are compared for
varying K values.

4.1. CVIs for Synthetic Datasets

For the Dim-sets, results were equal (and correct) in all dimensions from 32 to 1024 and for the
G2 -sets results were equal (and correct) from dimension eight upwards. Therefore, these have been
excluded from Table A1. Correct suggestions for the number of clusters are marked in bold.

The most challenging synthetic datasets seem to be Unbalance, Sim5D2, and Sim5D10. Only a few
indices were able to recognize the correct number and no single index managed to solve both the
Unbalance and the Sim sets.

As concluded in the previous studies (see Section 2.4), different indices seem to work better with
different kinds of datasets. However, there are also a lot of differences in the general performances of
the tested CVIs. The overall success rates for the CVIs, i.e., for how many of the datasets (%) it gave
correct suggestions, can be seen in Table 3, listed separately for each distance measure.

Table 3. Right suggestions for the 56 synthetic datasets (number of right suggestions/number
of datasets).

Index City-Block Squared Euclidean Euclidean

KCE 85.7% 87.5% 85.7%
WB 87.5% 80.4% 87.5%
CH 58.9% 85.7% 57.1%
DB 60.7% 60.7% 62.5%

PBM 87.5% 64.3% 89.3%
RT 60.7% 58.9% 64.3%

WG 94.6% 96.4% 92.9%

In conclusion, the WG index outperforms all the other indices in all three distance measures
and clustering approaches. WB and KCE also perform very well in general. For some indices,
the performances vary between different distances; for example, CH works very well with the
squared Euclidean distance, while PBM clearly works better with city-block and Euclidean distances.
As a whole, the recommendation for the use of indices is as follows: for the original K-means, WG, KCE,
and CH are the three best indices, and for the robust variants with K-medians and K-spatialmedians,
WG, PBM, and WB have the highest success rate.

4.2. CVIs for Real Datasets

As mentioned, here we only observe and compare the stability of the clustering results. The results
are combined in Table 4. With real datasets, a typical behavior of the internal validation indices is
the suggestion of only a small number of clusters. This is especially true for KCE and CH, even if we
know that there are observations from multiple classes, with the class boundaries having unknown

Algorithms 2017, 10, 105 9 of 14

forms and shapes. Different from the other indices, the results of DB seem to deviate a lot, with high
variability over the datasets. The same can happen for RT, with squared Euclidean distance.

Table 4. Internal CVIs results for real datasets.

cb, se, ec KCE WB CH DB PBM RT WG

Iris 2, 3, 2 2, 3, 2 2, 3, 2 2, 2, 2 3, 22, 3 2, 2, 2 2, 2, 2
Arrhythmia 2, 2, 2 2, 5, 2 2, 2, 2 25, 24, 17 2, 14, 2 2, 25, 3 2, 25, 25

Steel 2, 2, 2 3, 5, 2 2, 2, 2 7, 3, 7 3, 7, 2 2, 2, 3 3, 2, 3
Ionosphere 2, 2, 2 2, 2, 2 2, 2, 2 11, 23, 2 3, 20, 3 4, 4, 4 4, 2, 2

USPS 2, 2, 2 2, 4, 2 2, 2, 2 2, 18, 11 2, 4, 4 2, 12, 7 2, 2, 7
Satimage (Train) 2, 3, 2 3, 6, 2 2, 3, 2 3, 3, 3 3, 6, 3 3, 3, 3 3, 3, 3

Based on the observed behavior, the most stable, and therefore the recommended indices, seem to
be WB, PBM, and WG. However, when the data is of higher dimension without a Gaussian structure,
the curse-of-dimensionality [50] might be the reason for the basic suggestions of a low number of
clusters. Therefore, to obtain more fine-tuned clustering results and validation index evaluations,
it might be necessary to use the prototype-based clustering in a hierarchical manner, as suggested
in [16,51]. For example, many indices suggested three clusters for the Sim5 datasets, but after a further
partitioning of the data, new index values could be calculated for those three clusters separately,
and the correct division into five clusters altogether could be revealed.

4.3. Convergence

For each repetition, the number of iterations needed for convergence, T, was saved. Median values
of T for synthetic datasets were: 19 for K-medians, 19 for K-means, and 21 for K-spatialmedians.
K-spatialmedians requires slightly more iterations than K-means and K-medians. In practice, the effect
of the total running time between T = 19 and T = 21 is negligible. For real datasets, median values
of T are again similar: 15 for K-medians, 17 for K-means, and 16 for K-spatialmedians. K-means
performs slightly worse than the robust K-medians and K-spatialmedians for real datasets. It is known
that K-means is sensitive to noise, which could explain these results. Overall, based on the median
values of T, there seems to be no practical difference between the convergence of K-medians, K-means,
and K-spatialmedians.

We plotted and analyzed the median of T as a function of K for each dataset separately in order to
compare the convergence characteristics of K-means, K-medians, and K-spatialmedians. The most
relevant plots are shown in Figure A1. Even though the median values of T are close to each other in
general, there are some interesting differences with multiple datasets.

From Figure A1, we can observe that the robust location estimates, median and spatial median,
clearly converge faster than the mean for the S4 dataset, which has highly overlapping clusters.
For the USPS dataset, K-medians seems to converge slightly faster than K-means. In the figure,
plots for datasets b2-sub-5, b2-sub-10, b2-sub-15, and b2-sub-20 show that K-means converges
faster than K-medians and K-spatialmedians when K is smaller than the number of clusters in the
dataset. This might be because the mean location estimate is more sensitive to movement towards
the center of multiple combined clusters than the robust location estimates since outlying points
within a cluster affect it more than the robust location estimates. The plots of datasets G2-2-10 and
G2-64-10 demonstrate how the curse-of-dimensionality greatly affects K-medians when compared to
K-means and K-spatialmedians. K-medians converge faster than K-means and K-spatialmedians in
the 2-dimensional case; however, from the 64-dimensional case onward the reverse is observed.

5. Conclusions

Tests for a representative set of previously qualified internal clustering validation indices with
many datasets, for the most common prototype-based clustering framework with multiple statistical

Algorithms 2017, 10, 105 10 of 14

estimates of cluster location, were reported here. This study further confirmed the conclusions in the
previous index comparisons that no single CVI dominates in each context, and some indices are better
suited to different kinds of data. Therefore, it is recommended to utilize multiple indices when doing
cluster analysis. However, in our tests with the synthetic datasets, the WG index outperformed other
indices in all distance measures used, also showing stable behavior with real datasets. It found the
correct number of clusters for all datasets, except the Sim5 with different sized clusters and overlap.
Due to this high performance, the WG index would be worth studying more in the future. In addition,
PBM was an index with a high and stable performance, along with WB for robust clustering and
KCE and CH for K-means. The correct number of clusters in the Sim5 datas was only found with
WB and KCE for K-means and PBM with robust estimates. Based on these tests, DB and RT are not
recommended. In general, the indices seem to perform worse with higher cluster overlap and some of
them (CH, DB, RT) fail more often when the number of clusters grows.

Here, we also extended previous index comparisons using K-means clustering, with robust
K-medians and K-spatialmedians clusterings. Just like the indices, the different distance measures also
seem to work differently with different datasets and, in addition, some indices seem to work better with
different distances. For instance, for the synthetic datasets, the PBM index clearly works better with
city-block and Euclidean distances. Therefore, the usage of robust K-medians and K-spatialmedians
could bring added value when trying to find the optimal number of clusters present in the data.

In addition, the convergence properties of the clustering algorithms were compared. Based on the
experiments, the number of iterations needed for convergence varies for different datasets between the
methods, e.g., K-means requires more iterations than the robust clustering methods for noisy datasets,
while K-medians is most affected by an increase in dimensionality. Moreover, K-means++-type
initialization strategy seems to work well with city-block and Euclidean distance.

Moreover, as many indices often suggest quite low numbers of clusters, due to clusters being
seemingly close to each other, when observed globally in a high-dimensional space, the hierarchical
application of a partitional prototype-based clustering algorithm is recommended, in order to improve
recognition of possible clusters at different resolution levels.

Acknowledgments: The authors would like to thank the editor and reviewers for their insightful suggestions,
which improved the paper.

Author Contributions: Tommi Kärkkäinen conceived and designed this research; Joonas Hämäläinen and
Susanne Jauhiainen performed the experiments; Joonas Hämäläinen, Susanne Jauhiainen, and Tommi Kärkkäinen
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Internal CVIs results for synthetic datasets.

cb, se, ec KCE WB CH DB PBM RT WG

Unbalance 5, 20, 5 5, 20, 5 5, 20, 5 8, 8, 8 5, 25, 5 8, 2, 8 8, 8, 8
a1 2, 20, 2 2, 20, 2 2, 20, 2 20, 19, 16 6, 24, 6 2, 18, 17 20, 20, 20

Sim5D10 3, 5, 3 3, 5, 3 3, 3, 3 3, 3, 3 5, 10, 5 3, 3, 3 3, 3, 3
Sim5D2 3, 5, 3 3, 5, 3 3, 3, 3 3, 3, 3 5, 16, 5 3, 3, 3 3, 3, 3

S1 2, 15, 2 15, 15, 15 2, 15, 2 15, 15, 15 15, 15, 15 15, 15, 15 15, 15, 15
S2 2, 15, 2 2, 15, 3 2, 15, 2 15, 15, 15 15, 15, 15 15, 15, 15 15, 15, 15
S3 2,15, 2 2, 15, 2 2, 15, 2 7, 13, 15 4, 15, 4 4, 4, 15 15, 15, 15
S4 2, 15, 2 2, 15, 3 2, 15, 2 17, 17, 15 5, 23, 5 17, 13, 15 16, 15, 16

DIM032 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16
...

...
...

...
...

...
...

...
DIM1024 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16

Algorithms 2017, 10, 105 11 of 14

Table A1. Cont.

cb, se, ec KCE WB CH DB PBM RT WG

b2-sub-2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 20, 2 2, 2, 2 2, 2, 2
b2-sub-3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3
b2-sub-4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4
b2-sub-5 5, 5, 5 5, 5, 5 5, 5, 2 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5
b2-sub-6 6, 6, 6 6, 6, 6 2, 6 ,2 5, 6, 5 6, 6, 6 5, 6, 6 6, 6, 6
b2-sub-7 7, 7, 7 7, 7, 7 2, 7, 2 5, 6, 6 7, 14, 7 2, 2, 2 7, 7, 7
b2-sub-8 8, 8, 8 8, 8, 8 2, 8, 2 6, 6, 7 8 ,17, 8 2, 2, 2 8, 8, 8
b2-sub-9 9, 19, 9 9, 19, 9 2, 9, 2 6, 7, 8 9, 21, 9 2, 7, 7 9, 9, 9
b2-sub-10 10, 21, 10 10, 21, 10 2, 21, 2 8, 8, 9 10, 25, 10 8, 8, 8 10, 10, 10
b2-sub-11 11, 23, 11 11, 23, 11 2, 23, 3 9, 9, 10 11, 24, 11 9, 9, 8 11, 11, 11
b2-sub-12 12, 25, 12 12, 25, 12 2, 25, 3 10, 10, 11 12, 25, 12 10, 10, 9 12, 12, 12
b2-sub-13 13, 13, 13 13, 24, 13 2, 13, 2 11, 11, 12 13, 24, 13 11, 11, 11 13, 13, 13
b2-sub-14 14, 14, 14 14, 14, 14 2, 14, 2 12, 12, 13 14, 14, 14 12, 12, 12 14, 14, 14
b2-sub-15 15, 15, 15 15, 15, 15 2, 15, 2 13, 13, 14 15, 15, 15 13, 13, 13 15, 15, 15
b2-sub-16 16, 16, 16 16, 16, 16 2, 16, 2 14, 14, 15 16, 16, 16 14, 14, 14 16, 16, 16
b2-sub-17 17, 17, 17 17, 17, 17 2, 17, 2 15, 15, 16 17, 17, 17 15, 2, 2 17, 17, 17
b2-sub-18 18, 18, 18 18, 18, 18 2, 18, 2 15, 15, 16 18, 18, 18 2, 2, 2 18, 18, 18
b2-sub-19 19, 19, 19 19, 19, 19 2, 19, 2 16, 16, 17 19, 19, 19 2, 2, 2 19, 19, 19
b2-sub-20 20, 20, 20 20, 20, 20 2, 20, 2 2, 2, 2 20, 21, 20 2, 2, 2 20, 20, 2
G2-1-10 2, 25, 2 2, 25, 2 2, 25, 2 2, 2, 2 25, 25, 25 2, 2, 2 2, 2, 2
G2-1-100 2, 25, 2 2, 25, 2 2, 25, 2 22, 25, 22 21, 25, 21 3, 3, 3 2, 2, 2
G2-2-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 20, 2 2, 2, 2 2, 2, 2
G2-2-100 2, 2, 2 2, 22, 2 2, 2, 2 21, 19, 25 8, 23, 2 10, 7, 7 2, 2, 2
G2-4-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

G2-4-100 2, 2, 2 2, 3, 2 2, 2, 2 2, 17, 23 2, 6, 2 2, 16, 16 2, 2, 2
G2-8-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
G2-8-100 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

...
...

...
...

...
...

...
...

G2-1024-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
G2-1024-100 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

1 5 10 15 20 250

5

10

15

20

25

30

35

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

S4

1 5 10 15 20 250

10

20

30

40

50

60

70

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

USPS

1 5 10 15 20 250

5

10

15

20

25

30

35

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

b2-sub-5

1 5 10 15 20 250

10

20

30

40

50

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

b2-sub-10

Figure A1. Cont.

Algorithms 2017, 10, 105 12 of 14

1 5 10 15 20 250

10

20

30

40

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

b2-sub-15

1 5 10 15 20 250

10

20

30

40

50

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

b2-sub-20

1 5 10 15 20 250

5

10

15

20

25

30

K

Ite
ra

tio
ns

K−medians
K−means
K−spatialmedians

G2-2-10

1 5 10 15 20 250

10

20

30

40

50

K
Ite

ra
tio

ns

K−medians
K−means
K−spatialmedians

G2-64-10

Figure A1. Median of the number of iterations needed for convergence with varying K.

References

1. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323.
2. Aggarwal, C.C.; Reddy, C.K. Data Clustering: Algorithms and Applications; CRC Press: New York, NY, USA,

2013.
3. Xie, X.L.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13,

841–847.
4. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666.
5. Zaki, M.J.; Meira, W., Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge

University Press: New York, NY, USA, 2014.
6. Saarela, M.; Hämäläinen, J.; Kärkkäinen, T. Feature Ranking of Large, Robust, and Weighted Clustering

Result. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Jeju, Korea,
23–26 May 2017; pp. 96–109.

7. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137.
8. Khan, S.S.; Ahmad, A. Cluster center initialization algorithm for K-modes clustering. Expert Syst. Appl.

2013, 40, 7444–7456.
9. Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the 18th Annual

ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035.
10. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678.
11. Hruschka, E.R.; Campello, R.J.; Freitas, A.A.; de Carvalho, A.C.P.L.F. A survey of evolutionary algorithms

for clustering. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2009, 39, 133–155.
12. Han, J.; Kamber, M.; Tung, A. Spatial Clustering Methods in Data Mining: A Survey. In Geographic Data

Mining and Knowledge Discovery; Miller, H., Han, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001.
13. Huber, P.J. Robust Statistics; John Wiley & Sons Inc.: New York, NY, USA, 1981.
14. Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons Inc.:

New York, NY, USA, 1987; p. 329.
15. Hettmansperger, T.P.; McKean, J.W. Robust Nonparametric Statistical Methods; Edward Arnold: London, UK,

1998; p. 467.
16. Saarela, M.; Kärkkäinen, T. Analysing Student Performance using Sparse Data of Core Bachelor Courses.

J. Educ. Data Min. 2015, 7, 3–32.

Algorithms 2017, 10, 105 13 of 14

17. Kärkkäinen, T.; Heikkola, E. Robust Formulations for Training Multilayer Perceptrons. Neural Comput.
2004, 16, 837–862.

18. Croux, C.; Dehon, C.; Yadine, A. The k-step spatial sign covariance matrix. Adv. Data Anal. Classif. 2010, 4,
137–150.

19. Äyrämö, S. Knowledge Mining Using Robust Clustering. Ph.D. Thesis, Jyväskylä Studies in Computing 63,
University of Jyväskylä, Jyväskylä, Finland, 2006.

20. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev.
2001, 5, 3–55.

21. Strehl, A.; Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions.
J. Mach. Learn. Res. 2002, 3, 583–617.

22. Zhao, Q.; Fränti, P. WB-index: A sum-of-squares based index for cluster validity. Data Knowl. Eng. 2014, 92,
77–89.

23. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell.
1979, PAMI-1, 224–227.

24. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 1974, 3, 1–27.
25. Ray, S.; Turi, R.H. Determination of number of clusters in k-means clustering and application in colour

image segmentation. In Proceedings of the 4th International Conference on Advances in Pattern Recognition
and Digital Techniques, Calcutta, India, 27–29 December 1999; pp. 137–143.

26. Rendón, E.; Abundez, I.; Arizmendi, A.; Quiroz, E.M. Internal versus external cluster validation indexes.
Int. J. Comput. Commun. 2011, 5, 27–34.

27. Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques. J. Intell. Inf. Syst. 2001, 17,
107–145.

28. Kuncheva, L.I.; Vetrov, D.P. Evaluation of stability of k-means cluster ensembles with respect to random
initialization. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1798–1808.

29. Handl, J.; Knowles, J. An evolutionary approach to multiobjective clustering. IEEE Trans. Evolut. Comput.
2007, 11, 56–76.

30. Jauhiainen, S.; Kärkkäinen, T. A Simple Cluster Validation Index with Maximal Coverage. In Proceedings of
the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESAINN 2017), Bruges, Belgium, 26–28 April 2017; pp. 293–298.

31. Kim, M.; Ramakrishna, R. New indices for cluster validity assessment. Pattern Recognit. Lett. 2005, 26,
2353–2363.

32. Maulik, U.; Bandyopadhyay, S. Performance evaluation of some clustering algorithms and validity indices.
IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1650–1654.

33. Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster
validity indices. Pattern Recognit. 2013, 46, 243–256.

34. Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of internal clustering validation measures.
In Proceedings of the 2010 IEEE 10th International Conference on.Data Mining (ICDM), Sydney, Australia,
13–17 December 2010; pp. 911–916.

35. Agrawal, K.; Garg, S.; Patel, P. Performance measures for densed and arbitrary shaped clusters. Int. J.
Comput. Sci. Commun. 2015, 6, 338–350.

36. Halkidi, M.; Vazirgiannis, M. Clustering validity assessment: Finding the optimal partitioning of a data
set. In Proceedings of the IEEE International Conference on Data Mining (ICDM 2001), San Jose, CA, USA,
29 November–2 December 2001; pp. 187–194.

37. Lughofer, E. A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 2012, 3, 135–151.
38. Lughofer, E.; Sayed-Mouchaweh, M. Autonomous data stream clustering implementing split-and-merge

concepts—Towards a plug-and-play approach. Inf. Sci. 2015, 304, 54–79.
39. Ordonez, C. Clustering binary data streams with K-means. In Proceedings of the 8th ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, CA, USA, 13 June 2003;
pp. 12–19.

40. Bagirov, A.M.; Yearwood, J. A new nonsmooth optimization algorithm for minimum sum-of-squares
clustering problems. Eur. J. Oper. Res. 2006, 170, 578–596.

41. Karmitsa, N.; Bagirov, A.; Taheri, S. MSSC Clustering of Large Data using the Limited Memory Bundle Method;
Discussion Paper; University of Turku: Turku, Finland, 2016.

Algorithms 2017, 10, 105 14 of 14

42. Kärkkäinen, T.; Majava, K. Nonmonotone and monotone active-set methods for image restoration, Part 1:
Convergence analysis. J. Optim. Theory Appl. 2000, 106, 61–80.

43. Kärkkäinen, T.; Kunisch, K.; Tarvainen, P. Augmented Lagrangian Active Set Methods for Obstacle Problems.
J. Optim. Theory Appl. 2003, 119, 499–533.

44. Kärkkäinen, T.; Kunisch, K.; Majava, K. Denoising of smooth images using L1-fitting. Computing 2005, 74,
353–376.

45. Pakhira, M.K.; Bandyopadhyay, S.; Maulik, U. Validity index for crisp and fuzzy clusters. Pattern Recognit.
2004, 37, 487–501.

46. Desgraupes, B. “ClusterCrit: Clustering Indices”. R Package Version 1.2.3., 2013. Available online:
https://cran.r-project.org/web/packages/clusterCrit/ (accessed on 6 September 2017).

47. Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data
set. Psychometrika 1985, 50, 159–179.

48. Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Algorithms 2017, submitted.
49. Saarela, M.; Kärkkäinen, T. Do country stereotypes exist in educational data? A clustering approach for

large, sparse, and weighted data. In Proceedings of the 8th International Conference on Educational Data
Mining (EDM 2015), Madrid, Spain, 26–29 June 2015; pp. 156–163.

50. Verleysen, M.; François, D. The Curse of Dimensionality in Data Mining and Time Series Prediction.
In Proceedings of the International Work-Conference on Artificial Neural Networks (IWANN), Cadiz, Spain,
14–16 June 2005; Volume 5, pp. 758–770.

51. Wartiainen, P.; Kärkkäinen, T. Hierarchical, prototype-based clustering of multiple time series with missing
values. In Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2015), Bruges, Belgium, 22–24 April 2015; pp. 95–100.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PV

FEATURE RANKING OF LARGE, ROBUST, AND WEIGHTED

CLUSTERING RESULT

by

Mirka Saarela, Joonas Hämäläinen and Tommi Kärkkäinen 2017

PAKDD 2017 proceedings, Advances in Knowledge Discovery and Data Mining:
21st Pacific-Asia Conference

Reproduced with kind permission of Springer International Publishing.

Feature Ranking of Large, Robust, and Weighted
Clustering Result

Mirka Saarela, Joonas Hämäläinen, and Tommi Kärkkäinen

mirka.saarela,joonas.k.hamalainen,tommi.karkkainen@jyu.fi

Department of Mathematical Information Technology, P.O. Box 35 (Agora), FI-40014

University of Jyväskylä, Finland

Abstract. A clustering result needs to be interpreted and evaluated for knowl-

edge discovery. When clustered data represents a sample from a population with

known sample-to-population alignment weights, both the clustering and the eval-

uation techniques need to take this into account. The purpose of this article is

to advance the automatic knowledge discovery from a robust clustering result

on the population level. For this purpose, we derive a novel ranking method by

generalizing the computation of the Kruskal-Wallis H test statistic from sample

to population level with two different approaches. Application of these enlarge-

ments to both the input variables used in clustering and to metadata provides

automatic determination of variable ranking that can be used to explain and dis-

tinguish the groups of population. The ranking method is illustrated with an open

data and then, applied to advance the educational knowledge discovery from large

scale international student assessment data, whose robust clustering into disjoint

groups on three different levels of abstraction was performed in [19].

Keywords: Population analysis; Kruskal-Wallis test; Robust Clustering; Educational

Knowledge Discovery

1 Introduction

Various large-scale educational assessments, like the Programme for International Stu-

dent Assessment (PISA), regularly collect large amount of data characterizing world-

wide student populations to assess and compare arrangements and policies between

different educational systems [16]. Although data originating from these assessments

are of high quality and publicly available, there is surprisingly little research activity

on the secondary analysis. This is due to the technical complexities within the dif-

ferent representations and transformations of data and the lack of methods that allow

advanced analysis of these large datasets [18]. One example of the complication of an-

alyzing PISA datasets are the weights. Through complex sampling designs only certain

students of the studied population are selected for the assessment and weights are used

to indicate the number of students in the population that a sampled student represents.

This means that these weights must be taken into account in all steps of the knowledge

discovery to analyze the population instead of the collected sample (e.g., [20, 14]).

The purpose of this paper is to advance the educational knowledge discovery from

a robust, weighted clustering result. There exists various clustering methods and ap-

proaches, like e.g. density-based, probabilistic, grid-based, and spectral clustering [2],

together with their comparisons and evaluations (e.g., [6]). Although hierarchical meth-

ods allow summarization and exploration of a given dataset through the visual dendro-

gram, the basic form of the technique is not scalable to large number of observations

because of the pairwise distance matrix requirement [25]. Moreover, it is not clear how

to take into account the weights in hierarchical clustering as presented, e.g., in PISA

datasets. On the other hand, in [3] a robust (cf. [24]) prototype-based clustering algo-

rithm was developed that can handle large datasets with high and unknown sparsity

patterns (i.e., tens of percents of missing values). This paper continues the efforts of

[19], where the weighted enlargement of the above-mentioned algorithm was applied

to create prototypes for the PISA 2012 dataset on three different levels of abstraction,

with different numbers of clusters of the student population. The dynamic numbers of

clusters were based on the use of multiple cluster indices (e.g., [13]) suggesting the

number of clusters, again taking into account the weights (see [19] for details).

One main advantage of crisp, prototype-based clustering result is the guarantee of

globally separable subsets of data. The data division is completely determined by the

disjoint labels, typically integers from 1 to K for K clusters, encoding the clustering

result. This means that, in order to make an interpretation of the result, one can con-

sider and compare data distributions of both the actual variables used in clustering as

well as relevant metadata. Note that the use of a hierarchical clustering method with

locally greedy aggregation could produce clusters of arbitrary shape in the data space,

which could then be difficult or even impossible to interpret because of the overlapping

variable distributions.

The results in [19] were obtained with a robust clustering method with (available

data) spatial median as the cluster prototype, which is characterized by the Laplace

density distribution. A feature selection approach for the robust EM-algorithm with

Laplace mixture models was suggested in [5]. There the feature selection, similarly

to the construction of classifiers [11], referred to ranking the given input features to

select the most important ones for the clustering result. Here, our purpose is, similarly

to the techniques proposed in [23, 4], to assess the importance of variables with a given

labeling. For this purpose, we apply the same method as in [5] where it was suggested

that the feature ranking can be realized by Kruskal-Wallis (KW) statistical test. More

precisely, the estimate of importance of a random variable with clustering provided

labeling is supplied by the H statistics of the KW test [15], without need to compute

the p-values and perform the actual statistical testing. To omit the hypothesis testing

relaxes both the requirements of the KW test concerning the equal variances [15] and

selection of appropriate distribution for the test statistics [21]. Moreover, because KW

is a univariate method, it is easy to restrict the computation of the test statistic to the

available values of a variable. This means utilizability with an arbitrary sparsity pattern.

Hence, one needs to generalize the KW H into the population level by using the

weights. This is a difficult problem in statistics because of the reliance of KW on data

ranking. After an extensive search for relevant literature and knowledge we were able

to identify one related work generalizing KW [1], but not solving the problem at hand.

The only article that was identified as fully relevant was [22], which suggested a very

natural generalization of KW for integer weights: create univariate data to compute the

KW test statistic, where each observation is copied as many times as the integer weight

suggests. Clearly, we then precisely test the target population and not the sample. The

purpose of this paper is to propose an approximate extension of this approach to real-

valued weights, by utilizing the classical bootstrapping [8], and to compare this to an

analytically derived novel heuristic formula. Both of these approaches are tested and

evaluated with two different existing clustering results from [19], when ranking both

actual input variables and selected set of metadata variables.

2 On PISA data

The collected data of each PISA assessment, which since 2000 is conducted every three

years, can be downloaded from the website1 of the Organisation of Economical and

Cultural Development (OECD). To select a reliable sample of the population, which in

PISA are all 15-year-old students within the participating countries, the OECD applies a

two-stage sampling design: First, schools attended by 15-year-old students are assigned

to mutually exclusive groups based on explicit strata and schools from these groups

are selected with probabilities proportional to their size. Then, students within those

school are selected randomly with equal probability. The weight wi assigned to each

participating student i consists of the school base weight, the within-school base weight,

and five adjustment factors, especially the one which compensates the non-participation

of a sampled student [17]. Students that are sampled for the PISA test are asked to show

their proficiencies in a cognitive test and answer a background questionnaire, which

gathers information about demographics, activities, and attitudes of the students.

Table 1 details all PISA 2012 variables used in this study. The left-hand side of the

table shows all the variables that in [19] were clustered on a population-level. The ESCS
combines all information of the PISA background questionnaire that relate to the stu-

dents’ economic, social and cultural situation. The next five variables on the left-hand

side of Table 1 are generally associated with the students’ success in the PISA cognitive

test, and the remaining nine variables relate directly to the students’ mathematics per-

formance, which was the main assessment area in PISA 2012. All of these 15 variables

are so-called PISA scale indices that summarize many of the original questions in the

students’ background questionnaires by employing the Rasch model [17]. Since only a

subset of all test item are allocated to each student (this is called rotated design), around

one third of the values for these 15 variables are missing.

On the right-hand side of Table 1, the meta-variables to be used in this study are

listed. The first eight variables of general interest are all PISA scale indices that were

computed to summarize the information obtained from the ICT questionnaire, which

assessed the students’ computing availability and familiarity as well as their attitudes

towards computers. The next and last set of variables in Table 1 are the plausible values

(PVs) for each assessment domain (mathematics, reading, and science). PISA does not

provide individual test performance scores. Instead, to reliably assess the proficiencies

1 https://www.oecd.org/pisa/pisaproducts/

of populations, five PVs for each assessment domain are estimated with Bayesian statis-

tics and reported for each student. Note that we have allocated only one line in the table

per assessment domain for the three sets of PVs but there are five single PVs vectors

per assessment domain, i.e., 15 PVs altogether, that are used in the analysis.

Table 1. PISA variables used in this study with the original variables (i.e., the data that was used

for clustering) on the left-hand side and metadata (i.e., additional PISA variables used to explain

the clustering result) on the right-hand side.

PISA data used for clustering PISA metadata
variable ID variable ID
economic, social and cultural status ESCS ICT availability at home ICTHOME
sense of belonging BELONG ICT availability at school ICTSCH
attitude towards school: learning outcome ATSCHL ICT entertainment use ENTUSE
attitude towards school: learning activities ATTLNACT ICT use at home for school-related tasks HOMSCH
perseverance PERSEV use of ICT at school USESCH
openness to problem solving OPENPS use of ICT in math lessons USEMATH
self-responsibility for failing in math FAILMAT positive attitudes towards computers ICTATTPOS
interest in mathematics INTMAT positive attitudes towards computers ICTATTPOS
instrumental motivation to learn math INSTMOT plausible values 1-5 in mathematics PVMATH
self-efficacy in mathematics MATHEFF plausible values 1-5 in reading PVREADING
anxiety towards mathematics ANXMAT plausible values 1-5 in science PVSCIENCE
self-concept in math SCMAT
behaviour in math MATBEH
intentions to use math MATINTFC
subjective norms in math SUBNORM

The PVs are random draws from the Bayesian posterior distribution of a student’s

ability. In PISA, the prior distribution is a population model that is estimated with a

latent regression model. This latent regression computes the average proficiencies of

examinee subgroups given evidence about the distribution and associations of collateral

variables in the data. In PISA 2012, these collateral variables included to the latent

regression model were all available student-level information besides their performance

in the cognitive test [17, page 157]. That means, in particular, that also all variables

listed in Table 1 except the 15 PVs themselves have been used to estimate the PVs, and

therefore, the PVs cannot be seen totally independent of them. The likelihood of the

success in test is a Rasch model, where the probability of success is a logistic function

of the latent ability and some parameters (e.g. difficulties) of the test items. The obtained

posterior distribution of a student’s ability is specific for each student, since each student

has different values of background variables and test results.

To sum up, student proficiencies in PISA are not directly observed. The PVs are

estimates for group performance and only a selection of likely proficiencies for students

that attained each score. Moreover, for the study at hand, it is important to note that all

background information (i.e., all data that were clustered and all metadata except the

PVs themselves) have been used in the latent regression model which contributes to the

posterior distribution from which the PVs are drawn from.

3 Methods and formulations

Let {xi}N
i=1 be a given, multidimensional dataset, where N observations xi ∈ R

n are

given. Assume further that a given set of positive, real-valued weights {wi}N
i=1 is also

given. Moreover, assume that there is a set of missing values in {xi} with unknown

sparsity pattern. To identify this pattern, define the projection vectors pi, i = 1, . . . ,N,
that capture the existing variable values:

(pi) j =

{
1, if (xi) j exists,

0,otherwise.
(1)

3.1 Robust, prototype-based clustering method for weighted sparse data

Let us briefly recapitulate the clustering method and the overall approach that was used

hierarchically in [19], to produce three levels of disjoint clusters of PISA 2012 popula-

tion with 2, 8, and 53 clusters, respectively.

The spatial median clustering algorithm, k-SpatMeds, proceeds similarly to any

prototype-based method: first, an initial set of complete (i.e., no missing values) pro-

totypes is created and second, these are refined by iteratively linking observations to

the closest prototype whose value is then recomputed. The algorithm stops when there

are no more changes in the linking. Mathematically, the score function that is locally

minimized via the search procedure reads as follows:

Jw =
K

∑
j=1

n j

∑
i=1

wi‖Diag{pi}(xi− c j)‖2. (2)

Here, Diag transforms a vector into a diagonal matrix. The latter sum is computed over

the subset of data attached to the jth cluster. One observes from (2) that to take into

account the first-order alignment of the sample data with the corresponding population

is straightforward. Moreover, projection of the Euclidean distance between the observa-

tion and the prototype to available values creates an implicit (secondary) weighting that

favors more complete observations over the sparser ones in cluster creation. Algorith-

mically, one still needs to check that the iterative refinement of the prototypes does not

introduce missing values to them, because the resulting set of cluster prototypes {ci}K
i=1

should be complete to allow proper interpretation. The robustness of this algorithm as

thoroughly described and tested in [3], refers to the tolerance of both missing values

and noisy data. To this end, one can apply the k-SpatMeds algorithm hierarchically to

refine a set of disjoint clusters further.

3.2 Construction of test statistic for Kruskal-Wallis with weights

Next we describe two different approaches to estimate the test statistic H of the KW

rank-test with real-valued weights. Because the KW test is univariate, we can restrict

ourselves to univariate random variable.

Integer approximation with bootstrapping Let {xi, li}N
i=1 be the pairs of a univariate

observation xi ∈R and its cluster-indicating label li ∈N, where 1≤ li ≤ K for K denot-

ing the number of clusters/groups. Let nk = |Ck|= {i ∈N | li = k} determine the size of

cluster Ck. The original formula for the KW H is given by [15]

H =
12

N(N +1)

K

∑
k=1

s2
k

nk
−3(N +1), (3)

where ri denotes the rank of observation xi in global sorting and sk = ∑i∈Ck
ri the sum

of ranks in cluster Ck. When there are equal values (ties) in data, one can compute the

mean rank of equal observations and share this value among the ties.

As described, wi ∈ R measures the amount of population that the ith observation

represents. If all wi’s are integers, then in [22] it was proposed how to modify the basic

KW test: rank a derived dataset representing the whole population, where each (avail-

able) observation is copied as many times as the weight suggests. This approach is re-

ferred from now on as Integerweighted-KW, IW-KW. Note that when such an enlarged

data are ranked we end up with multiple ties whose mean ranks are then shared. In the

following, we describe a novel approach how to approximate this integer-weighted KW

using a bootstrapping technique.

Let w denote an arbitrary, real-valued weight. The proposed technique is, firstly,

based on approximating w up to an accuracy of the first decimal place. This can be

simply done as follows: determine the two integers wl = �w� and wh = �w� that provide

lower and upper bound of w as integers. Let then d = [10 ∗ (w−wl)] be the rounded

integer that encapsulates the decimal place 1 of w. Vector v of ten integers, which is

created by repeating wl 10−d times and wh d times, provides an integer-approximating

set of real-valued w in such a way that the mean of v is exactly the same as w up to

the first decimal. For instance, for w = 8.647, wl = 8,wh = 9, and d = 6. And, for v =[
8 8 8 8 9 9 9 9 9 9

]
, we have mean{v} = 8.6. Similarly, in order to create an integer-

approximation of w being accurate to the second decimal place, it is enough to just

redefine d = [100∗(w−wl)]. Proceeding with the example just given, the integer vector

of size 100 with 65 nines and 35 eights would yield to mean{v}= 8.65. For the general

procedure, the result of the just proposed integer approximation of all weights is stored

in the matrix W∈N
N×D, where D is 10 when approximating the first decimal place and

100 for the second decimal place, correspondingly.

Next we suggest to use the classical bootstrapping [8] to create a set of KW test

statistics based on the IW-KW and W . Hence, we create a random sample of indices

{1, . . . ,N} with replacement, and for the resulting unique set of indices Ĩ, for the avail-

able values of {xi}i∈Ĩ , we apply IW-KW. When this is repeated D times for all the

integer columns of W , we obtain D different samples of the bootstrap estimate of the

KW H. To this end, similarly as with the derivation of W , we then simply take the mean

of the D-vector to produce the final approximation of H for the real-valued weights.

Analytic formula Let r̄ denote the global mean rank (equal to 1+N
2) and r̄k the mean

rank of the observations in cluster Ck. An equivalent form of the original formula (3)

for the KW test statistic H, as given in [9], reads as

H = (N−1)
∑K

k=1 nk(r̄k− r̄)2

∑N
i=1(ri− r̄)2

. (4)

From this form, it is easy to derive an interpretation of the KW test statistic. With clus-

terwise r̄k and global r̄ mean ranks, the dividend presents sum of clusterwise variances

multiplied by the size of the cluster whereas the divisor computes the global variance of

ranks. Hence, when the weights represent the number of samples in the population, it

is straightforward to derive an analogous formula to (4) in the population level. Hence,

let r̄w =
∑N

i=1 wiri

∑N
i=1 wi

be the weighted average rank and (r̄w)k the weighted average rank of

cluster Ck. Then, we define

Hw =
∑K

k=1(∑i∈Ck
wi)((r̄w)k− r̄w)

2

∑N
i=1 wi(ri− r̄w)2

. (5)

Note that we have omitted the multiplier (N−1) from (4), which would be generalized

into (∑i wi−1) to represent the whole population. With PISA 2012 weights, which align

the half a million students sample to the 24 million population, this means we do not

include multiplication of Hw by over 24 million. Because the final ranking of variables,

as suggested in [5], is based on sorting the H values of the variables in descending order,

this omission does not change the result.

4 Evaluation

Implementation We computed the KW rank-test H test statistics for real-value weighted

data with two approaches, as described in Section 3. The bootstrapping with the IW-KW

was tested with two different W s. We will refer to the bootstrapping based method as

Bootstrap KW. Further, Bootstrap KW with D = 10 refers to the one decimal place ap-

proximation of real-valued weights. Similarly, the two decimal place approximation is

referred as Bootstrap KW with D = 100. In addition, the KW test statistics were com-

puted directly from formula (5). In the following, this is shortly referred as Analytic

KW. The two clustering results that are used in the experiments corresponded to 8 (La-
bels 1) and 53 (Labels 2) clusters from [19] in the second and third levels of refinement,

respectively. The first result in [19] with the two clusters is excluded here, since the KW

rank-test exactly generalizes the MannWhitney U-test for the two groups.

To speed up the computations, we implemented a parallel version of Bootstrap KW

with Matlab PCT, SPMD blocks and message passing functions. The tests were run in

Matlab 8.5.0 environment by using a cluster of 8 nodes. Each node consists of Intel

Xeon CPU E7-8837 with 8 cores and 128 GB RAM. Each worker in the distributed

computations corresponds to one of the 64 cores. Since Bootstrap KW computes the

KW H values independently for each variable in a loop, those loop iterations can be

easily parallelized with SPMD blocks. First, each worker reads one column of variable

values from the data matrix and the corresponding sparsity indicator (1). Next, each

worker computes the KW H values by utilizing its local data. Finally, results are aggre-

gated and rankings for the variables based on the H values are formed. The number of

workers is equal to the number of variables in all parallel runs.

The five individual PVs for mathematics, reading, and science, as given in Table 1,

were first treated as independent variables, such that five H values were computed for

them. The final value of the test statistic was then taken as the mean of these according

to the recommended way of analysis in [17].

Results To generally test the proposed approaches, we first used the Iris data from UCI

machine-learning repository. For this, we created random integer weights in the range

5–25 and newly generated the data for each run. The KW H values for Analytic KW and

Bootstrap KW D = 100 approaches gave the same variable ranking results in eight out

of ten runs. After adding 5% zero-mean uniformly distributed noise to make weights

real-values, we obtained the same ranking order for the different approaches in nine out

of ten runs. Moreover, similarly as in [7], features 4 and 3 were always selected as the

important ones while features 1 and 2 were always last in the list. When we used the

same data for each run the ranking order was always the same.

Table 2 summarizes all ranking for the combined (originally clustered and meta)

PISA data. In the table, the last column rank of rankings indicates for each variable the

total rank, i.e. the rank of the sum of rankings of all methods on both labeling levels.

Table 2. Rankings for full (original and metadata) variables for the different analysis approaches

for both PISA clustering results.

Labels 1 Labels 2
Bootstrap KW Bootstrap KW rank of

Variable Analytic KW D = 10 D = 100 Analytic KW D = 10 D = 100 rankings

ESCS 3 1 1 1 1 1 1

BELONG 11 13 13 9 13 13 12

ATSCHL 7 6 6 7 7 7 6

ATTLNACT 4 3 3 4 2 2 3

PERSEV 15 15 15 15 16 16 15

OPENPS 12 11 11 11 11 11 11

FAILMAT 20 18 18 17 18 18 19

INTMAT 1 2 2 3 3 3 2

INSTMOT 5 5 5 5 6 6 5

MATHEFF 9 9 9 10 12 12 9

ANXMAT 6 7 7 6 8 8 7

SCMAT 2 4 4 2 4 4 4

MATHBEH 14 14 14 12 9 9 13

MATINTFC 8 8 8 8 5 5 8

SUBNORM 13 10 10 13 10 10 10

ICTHOME 10 19 19 14 19 19 17

ICTSCH 25 24 24 25 25 25 25

ENTUSE 24 22 22 24 22 22 22

HOMSCH 22 21 21 23 21 21 21

USESCH 16 26 26 18 26 26 23

USEMATH 26 23 23 26 23 23 24

ICTATTPOS 21 20 20 21 20 20 20

ICTATTNEG 23 25 25 22 24 24 26

PVMATH 17 12 12 16 14 14 14

PVREADING 19 17 17 20 17 17 18

PVSCIENCE 18 16 16 19 15 15 16

(a) Analytic KS for Labels 1 (b) Analytic KS for Labels 2

(c) Bootstrap KS for Labels 1 (d) Bootstrap KS for Labels 2

Fig. 1. KW H values for two clustering results for the combined (originally clustered and meta)

PISA data determined with the analytic and the two bootstrap KW approaches.

KW H values for both clustering results are shown in Figure 1. As can be seen from

Table 2, variable rankings between the analytic and the bootstrapped results are highly

similar with the exception that variable USESCH had a ranking difference 10 for Labels

1 and ranking difference 8 for Labels 2. In addition, variable ICTHOME had ranking

difference 9 for Labels 1 and ranking difference 5 for Labels 2.

The Kendall’s tau distance (see [10]) provides a way to compute distance between

two ranking lists with an equal set of variables. The Kendall’s tau distance is equal to

the bubble sort algorithm steps to convert one list to the same order as the other one.

If m is the number of elements in the list, then the maximum value for the Kendall’s

tau distance is m(m− 1)/2 which is typically used to normalize this distance metric.

Thus, the Kendall’s tau distance is limited to an interval [0,1], where value 0 refers to

the identical lists and value 1 to the case where one list is the reverse of the other list.

The Kendall’s tau distances between the Analytic KW and Bootstrap KW with D =

100 were 0.1015 for Labels 1 and 0.1138 for Labels 2. This concludes that, overall, the

rankings are highly similar as measured by the Kendall’s tau distance.

Bootstrap KW with D = 10 and Bootstrap KW with D = 100 gave identical rank-

ings for the variables. Experimentally, it seems that approximation of the real-valued

weights using just the first decimal place (D = 10) is accurate enough. However, for

a few variables slight differences can be noticed from the Figures 1c and 1d. We also

computed speedups for the distributed Bootstrap KW. We measured running time for

the first variable computations by using a serial implementation of the Bootstrap KW,

and multiplied this with the total number of variables to get an estimate for the serial

implementation running time. Further, we measured running time for the corresponding

parallel implementation. Thus, parallel Bootstrap KW with D = 100 gives 34× speedup

compared to sequential code for Labels 1 and 35 × speedup for Labels 2. Correspond-

ingly, parallel Bootstrap KW with D = 10 gives 28 × speedup for Labels 1 and 33 ×
speedup for Labels 2. In practice, this means that using the distributed version enables

one to carry out the whole cluster analysis chain in realtime.

As expected, we see from Table 2 and Figure 1 that the actually clustered variables

generally contribute more to the clustering result than the metadata variables. However,

this first observation does not hold for all variables: The metadata PVs in mathematics

were more important than the level of self-responsibility for failing in mathematics

(see row FAILMAT in Table 2), which was clustered. Generally, the PVs are the most

important variables from the metavariables. This ranking result makes sense because the

clustered variables are, as explained in Section 2, part of the posterior model from which

the PVs were sampled. Moreover, most of the clustered variables are directly associated

with the students’ mathematics proficiencies. Hence, the PVs in mathematics should be

important variables when explaining the clustering result and, thus, these observations

support the validity of our results.

As can be seen in Table 2, the students’ ESCS is the most important variable de-

termining the different clusters. This was already assumed in [19] where the most dis-

tinguishing country clusters were those that showed different stages of development.

Moreover, the students’ ESCS is the single variable in the whole PISA data, which

accounts for most of the variance in performance [16]. Therefore, it is reasonable to

assume that the variable that explains the mathematics proficiency the most, is also the

most important when variables associated with the mathematics performance, are clus-

tered. The students’ ESCS takes not only the highest parental education and occupation

into account but also the students’ home possessions. Therefore, the ICTHOME, which

summarizes the home possessions in the ICT area, is partly associated with the stu-

dents’ ESCS [17, page 132]. Hence, it seems reasonable that ICTHOME is next to the

PVs one of the most important variables from the metadata (see Table 2).

To sum up, weighted enlargements with all approaches proposed in Section 3 suc-

cessfully enabled ranking of input and metadata. Triangulation for both actual input

and metadata by using two clustering results of a PISA dataset and two different algo-

rithms/formulae showed very similar results for all methodological approaches and also

for the two clustering results that were analyzed. Hence, it seems that the interpretation

is not an artifact of the method used to analyze the data or only a result of the particular

sample, but reflects genuine and overarching aspects of the data [12].

5 Discussion and conclusions

Large scale educational assessment data provide interesting and high quality resources

for educational knowledge discovery. Although the data from these assessments are

made available to the public a scarce pool of research outcomes exist that make use of

those rich datasets because of the technical difficulties in them. Only one study [19] was

identified, in which the whole PISA 2012 contextual data were clustered by taking the

complexities of these data (especially the sparsity and the weights) into account. How-

ever, the work in [19] lacked a clear frame how to assess the importance of individual

variables to interpret the clustering results.

In this study, we proposed weighted enlargements of the KW H test with different

approaches, which as an independent statistical problem is not trivial. All approaches

successfully enabled ranking of input and metadata. In particular, when applied to the

two clustering results in [19], all approaches supported the finding that the students’

ESCS is the most important variable determining the clusters—a fact that was also hy-

pothesized in [19] but could not be statistically shown in there. Moreover, also the

ranking of the other variables seem to support the interpretations made in [19].

The y-scales of Figures 1c and 1d illustrate the very large size of the KW test statis-

tic(s) H for a large population, which in our case is characterized by over 24 million

students worldwide. Hence, even if the nonparametric KW test can be used for testing

large samples [9], the actual hypothesis testing seems practically useless. We tested the

computation of the p-values for the original sample, for both clustering results and for

all data and metadata variables, and found in each case that the p-value was equal to

zero up to six decimal places. Hence, the hypothesis test itself does not provide any

useful information for educational knowledge discovery.

Based on the high similarity of the results of the different ranking approaches, we

suggest the direct KW formula with weights to be used for quick evaluation of signifi-

cance of a variable on the population level. If the weighted estimates are used to derive,

e.g., confidence intervals for the test statistics and the resulting rankings, the bootstrap-

based approach should be used. This approach is also better aligned to the existing

literature [8, 5, 22]. To this end, we conclude that the proposed approach supports quan-

tified educational knowledge discovery from PISA and similar large-scale educational

datasets.

Acknowledgments

The authors would like to thank PhD Salme Kärkkäinen for her kind and valuable sug-

gestion to use bootstrapping.

References

1. Acar, E.F., Sun, L.: A Generalized Kruskal–Wallis Test Incorporating Group Uncertainty

with Application to Genetic Association Studies. Biometrics 69(2), 427–435 (2013)

2. Aggarwal, C.C., Reddy, C.K.: Data clustering: algorithms and applications. CRC Press

(2013)

3. Äyrämö, S.: Knowledge Mining Using Robust Clustering, Jyväskylä Studies in Computing,

vol. 63. University of Jyväskylä (2006)

4. Ceccarelli, M., Maratea, A.: Assessing Clustering Reliability and Features Informativeness

by Random Permutations. In: Knowledge-Based Intelligent Information and Engineering

Systems: 11th International Conference, XVII Italian Workshop on Neural Networks, Pro-

ceedings. pp. 878–885. Springer (2007)

5. Cord, A., Ambroise, C., Cocquerez, J.P.: Feature selection in robust clustering based on

Laplace mixture. Pattern Recognition Letters 27(6), 627–635 (2006)

6. Crabtree, D., Andreae, P., Gao, X.: QC4 - A Clustering Evaluation Method. In: Advances

in Knowledge Discovery and Data Mining: 11th Pacific-Asia Conference, Proceedings. pp.

59–70. Springer (2007)

7. Dash, M., Liu, H.: Feature selection for clustering. In: Advances in Knowledge Discovery

and Data Mining: 4th Pacific-Asia Conference, Proceedings. pp. 110–121. Springer (2000)

8. Efron, B.: Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics 7, 1–26

(1979)

9. Elamir, E.A.: Kruskal-Wallis Test: A Graphical Way. International Journal of Statistics and

Applications 5(3), 113–119 (2015)

10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing Top K Lists. In: Proceedings of the Four-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 28–36. Society for In-

dustrial and Applied Mathematics (2003)

11. Fung, P.C.G., Morstatter, F., Liu, H.: Feature Selection Strategy in Text Classification. In:

Advances in Knowledge Discovery and Data Mining: 15th Pacific-Asia Conference, Pro-

ceedings. pp. 26–37. Springer (2011)

12. Gifi, A.: Nonlinear multivariate analysis. Wiley (1991)

13. Kim, Y., Lee, S.: A Clustering Validity Assessment Index. In: Pacific-Asia Conference on

Knowledge Discovery and Data Mining. pp. 602–608. Springer (2003)

14. Koskela, A.: Exploring the differences of Finnish students in PISA 2003 and 2012 using

educational data mining. Jyväskylä Studies in Computing, University of Jyväskylä (2016)

15. Kruskal, W., Wallis, W.: Use of Ranks in One-Criterion Variance Analysis. Journal of the

American statistical Association 47(260), 583–621 (1952)

16. OECD: PISA 2012 Results: Excellence Through Equity: Giving Every Student the Chance

to Succeed (Volume II). PISA, OECD Publishing (2013)

17. OECD: PISA 2012 Technical Report. OECD Publishing (2014)

18. Rutkowski, L., Rutkowski, D.: Getting It ”Better”: The Importance of Improving Back-

ground Questionnaires in International Large-Scale Assessment. Journal of Curriculum

Studies 42(3), 411–430 (2010)

19. Saarela, M., Kärkkäinen, T.: Do Country Stereotypes Exist in PISA? A Clustering Approach

for Large, Sparse, and Weighted Data. In: Proceedings of the 8th International Conference

on Educational Data Mining. pp. 156–163 (2015)

20. Saarela, M., Kärkkäinen, T.: Weighted Clustering of Sparse Educational Data. In: Proceed-

ings of the European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. pp. 337–342 (2015)

21. Spurrier, J.D.: On the null distribution of the Kruskal–Wallis statistic. Nonparametric Statis-

tics 15(6), 685–691 (2003)

22. Tölgyesi, C., Bátori, Z., Erdős, L.: Using statistical tests on relative ecological indicator

values to compare vegetation units–Different approaches and weighting methods. Ecological

Indicators 36, 441–446 (2014)

23. Verde, R., Lechevallier, Y., Chavent, M.: Symbolic clustering interpretation and visualiza-

tion. The Electronic Journal of Symbolic Data Analysis 1(1) (2003)

24. Yang, H., Zhao, D., Cao, L., Sun, F.: A Precise and Robust Clustering Approach Using Ho-

mophilic Degrees of Graph Kernel. In: Advances in Knowledge Discovery and Data Mining:

20th Pacific-Asia Conference, Proceedings. pp. 257–270. Springer (2016)

25. Zaki, M.J., Meira Jr., W.: Data Mining and Analysis: Fundamental Concepts and Algorithms.

Cambridge University Press (2014)

PVI

CLUSTERING-BASED REFERENCE POINTS SELECTION FOR

THE MINIMAL LEARNING MACHINE

by

Joonas Hämäläinen, Tommi Kärkkäinen and João P. P. Gomes 2018

Manuscript

Clustering-based reference points selection for
the minimal learning machine

Joonas Hämäläinen1, Tommi Kärkkäinen1, João P. P. Gomes2

1University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35, FI-40014
University of Jyvaskyla, Finland

2Federal University of Cearà - UFC, Department of Computer Science, Fortaleza-CE,
Brazil

Abstract

Randomized learning machines are scalable and increasingly popular
supervised methods, which may suffer from a lack generalization abil-
ity and stability due to the machines’ random nature. Of such tech-
niques, the minimal learning machine (MLM) is based on learning the
mapping between input and output distance matrices, where distances
are calculated for a subset of points called reference points. In the ba-
sic formulation, the reference points are selected randomly. Such a
strategy coincides with classical suggestions to initialize unsupervised
clustering. Thus, in this paper, we assess several clustering-based
methods for selecting reference points to improve the performance
of the MLM in regression tasks. We also propose and test an effi-
cient method for solving the multilateration problem related to MLMs.
Based on an extensive empirical evaluation, we conclude that the pro-
posed methods provide scalable and useful extensions of the origi-
nal MLM. In particular, for a small number of reference points, the
clustering-based methods outperform the random selection method.

1 Introduction

Minimal learning machine (MLM, [1]) is a supervised learning algorithm
based on linear mapping between input and output distance matrices. In the
original formulation, the MLM’s distance matrices comprise the distances

1

between all the training set points and a subset of randomly selected train-
ing points, named reference points. According to this definition, the MLM
can be classified as a learning algorithm that has a nonlinear approximation
capability based on a random projection of the input points. Other examples
of popular randomized learning machines include extreme learning machine
(ELM, [2]) and random vector functional link (RVFL, [3]).

Interest in randomization-based methods has been increasing because
such methods usually require only a few hyperparameters to be tuned and
are based on non-iterative training procedures [4]. Moreover, such meth-
ods have reported remarkable performances in various applications, such as
predicting software defects [5], forecasting electricity loads [6], and classi-
fying images [7]. Despite the recent success, due to the random learning
machines’ random nature, they may suffer from the non-optimal generation
of some parameters [8, 9], which, in turn, can have a negative impact on
the method’s generalization capability and stability. The randomness of the
MLM can discard potentially useful data that could be important for the in-
duction process. This effect is even more likely to happen when the number
of reference points is small [1].

Another issue that affects generalization in the MLM is the number of
reference points, as empirically shown in [1]. The more points the MLM uses,
the more complex the model becomes. Thus, concerning the generalization
performance of the MLM, two issues are relevant: i) the number of reference
points, K, and ii) how to choose a specific combination of samples among(
N
K

)
possible ones from the training set. Therefore, finding a relatively small

set of suitable reference points while attaining high accuracy rates is highly
desirable.

Clustering is an essential task in data mining and machine learning. It
aims to group data points into clusters, so that the observations in a cluster
are similar to each other and dissimilar to the data in other clusters, with a
given similarity measure, such as the Euclidean distance. Over many decades
[10], a large pool of different clustering algorithms have been developed based
on, e.g., tree structures (hierarchical) [11], squared error [12], density [13],
and neural networks [14]. However, the classical and most common division
is to classify clustering algorithms simply into hierarchical and partitional
categories [15]. Typically, in hierarchical clustering, a tree structure of the
clusters from one cluster (divisive) or from all points (agglomerative) is con-
structed. In contrast, a partitional clustering algorithm divides the dataset
into a single-layered clustering structure. Some partitional clustering algo-

2

rithms, such as the well-known K-means, are sensitive to the initialization
[16, 17], the selection of the initial points or the initial partition. The se-
lection of the initial points for partional clustering and partitional clustering
analysis as a whole have similar aspects in the problem that they try to solve
as the reference points selection for the MLM.

During the last few years, many studies have been carried out to improve
and augment the basic form of the MLM, related to missing values [18, 19],
outliers [20], ensemble learning [21], speeding up the computations [21, 22],
combining the MLM and the ELM [23], the reject option in classification
[24], and co-training [25]. Moreover, the MLM has shown its potential in
applications and related classifier comparisons, such as in mobile robot local-
ization [26, 27]. Recently, a new suggestion to select reference points for the
MLM was given in [28], where an opposite neighborhood-based approach was
proposed. The method is based on finding reference points around the class
boundaries with a strategy that any point from a subset of points from the
class boundary area is prohibited from being selected as a reference point.

This work tackles the problem of selecting reference points in the MLM
by proposing several clustering-based methods. The basic hypothesis is that
a set of well-spread reference points in the data space will improve the per-
formance of the MLM compared to random selection of the reference points.
As said, this is also the purpose of the proper selection of the initial cluster
centroids [16, 17]. We exclude the reference points selection method proposed
in [28] from the experiments because the opposite neighborhood method is
designed for classification tasks, whereas we focus on regression tasks. We
validate the contributions of this paper through experiments with 13 re-
gression datasets. Based on the experimental results, we can conclude that
the proposed methods are valid alternatives to the original random selection
method because they can build a more accurate model when a small number
of selected reference points are used. The remainder of the paper is orga-
nized as follows. Section 2 presents the formulation of the MLM. In Section
3, the proposed methods for selecting reference points are described. Sec-
tion 4 gives experimental results for the proposed methods and the baseline.
Finally, Section 5 provides conclusions.

3

2 Minimal learning machine

The MLM is a distance-based machine learning method with a random-
ized kernel. The basic algorithm [1, 29] is composed of two main steps: i)
regression estimation using a distance-based kernel and ii) distance-based
interpolation of the new output. For clarity, we describe these two steps in
the following. For this purpose, let X = {xi}Ni=1 be a set of training inputs,
where xi ∈ R

n, and Y = {yi}Ni=1 the set of the corresponding outputs, for
yi ∈ R

m, respectively. Moreover, we define the set of (input) reference points
R = {rk}Kk=1 as a non-empty subset of X , R ⊆ X , and let T = {tk}Kk=1 refer
to the outputs of the corresponding reference inputs, i.e., rk �→ tk.

Next, we define two distance matrices Dx ∈ R
N×K and Dy ∈ R

N×K using
the Euclidean distance ‖ · ‖ as follows:

Dx =
[
‖xi − rk‖

]
i = 1, . . . , N, k = 1, . . . , K; (1)

Dy =
[
‖yi − tk‖

]
i = 1, . . . , N, k = 1, . . . , K. (2)

The key idea for the first step of the MLM is the assumption of a regression
model between the distance matrices: Dy = g(Dx)+E, where E denotes the
residuals/error in this transformation. Assuming that the unknown regres-
sion model g is of the linear form B ∈ R

K×K allows one to estimate it, by
using the well-known ordinary-least-squares formulation, as follows

B =
(
DT

xDx

)−1
DT

xDy. (3)

To assure unique solvability of (3), DT
xDx should be replaced withDT

xDx+εI
for ε > 0 and I ∈ R

K×K denoting the identify matrix. The linear mapping
B is the result of the first step of the MLM.

For the second step, let x̃ be a new input vector whose output needs to
be estimated. Thus, based on the distance regression model from the first
step, we seek for the corresponding output ỹ that satisfies

‖ỹ − tk‖ ≈ δk ∀k = 1, . . . , K, (4)

where
δ =

[
‖x̃− rk‖

]K
k=1

B.

The solution to the multilateration problem (4) can also be obtained using
the least-squares formulation by letting

ỹ∗ = argminJ (ỹ), where J (ỹ) =
K∑
k=1

(
‖ỹ − tk‖2 − δ2k

)2
. (5)

4

As stated in [1], there exist many possible solvers for (5). However, be-
cause of the quadratic (actually quartic) form of the problem, the most ef-
ficient local solver is provided by the classical Newton’s method with an

iteration step l �→ l + 1 as follows: ỹl+1 = ỹl −
[
∇2J (ỹl)

]−1 ∇J (ỹl) (e.g.,
[30] and articles therein). More precisely, it is straightforward to calculate the
derivative and Hessian of (5) in a matrix-vector form. The most important
facet for the efficiency of Newton’s method is then the initial guess, which
should be accurate enough to assure quadratic convergence which is obtained
only locally. We suggest a simple initialization, based on considering (4) and
(5) in a completely componentwise form

K∑
k=1

m∑
i=1

(
ỹ0 − tk

)2
i
≈

K∑
k=1

δ2k =
K∑
k=1

m∑
i=1

1

m
δ2k,

which yields

ỹ0
i =

1

K

K∑
k=1

(
tk ±

δk√
m

)
i

.

In practice, all sign combinations for all components of ỹ0 should be tested,
and the candidate with the smallest value of the cost function in (5) selected.
For safeguarding, because of the heuristic initialization strategy, we apply a
general nonlinear programming solver if Newton’s method fails.

3 Clustering-based selection of reference points

In the following, we propose four clustering-based methods for the reference
point selection problem, two nondeterministic and two deterministic meth-
ods. All the methods are based on a common strategy, where the reference
point selection is performed in the input space only, and then simply the
corresponding points (indices) are selected as the output references. There-
fore, in the following, we focus on the input space processing only when we
describe the proposed methods.

Today, the K-means++ initialization method [17] is the most popular
method for K-means initialization. The first method that we propose is to
use the K-means++ initialization with the Euclidean distance to select the
reference points. See [31] for a depiction of the algorithm. From now on, we
refer to this approach as reference points selection with K-means++ (RS-K-
means++).

5

The second proposed method first runs the K-means++ initialization
with the Euclidean distance and then refines the initial prototypes with
Lloyd’s algorithm [12] until convergence. Finally, the observation closest to
each final prototype (medoid) is picked as the reference point. These closest
points then establish the set of selected reference points. From now on, this
method is referred to as the RS-K-medoids++. The RS-K-medoids++ and
RS-K-means++ methods are nondeterministic, because of the random sam-
pling of the initial prototypes based on the Euclidean distance constructed
probability distribution (see [31] and articles therein).

Unweighted pair group method with arithmetic mean (UPGMA) [11] is
an agglomerative clustering algorithm, which starts clustering from the initial
state in which each point forms one cluster. Then, in each step, two clusters
that have the smallest average distance between the cluster members are
joined together. The third proposed method utilizes the UPGMA first, then
computes the mean prototypes for each cluster, and finally, again selects
the point closest to the prototype as a reference point. Similarly to the
RS-K-medoids++ method, these closest points construct the set of selected
reference points. We refer to this method as the RS-UPGMA method.

The fourth proposed method is based on the maximin clustering initial-
ization algorithm [32]. The original method starts with a random initial point
and then picks each new point similarly as in the K-means++ method. How-
ever, differently from the K-means++ method, a point that has the largest
distance to the closest already selected point is chosen as a new point. Our
modification of the maximin first selects the point closest to the data mean
as the first point, conceiving the whole algorithm as completely determinis-
tic. This proposal is referred to as the RS-maximin method. The latter two
proposed methods, the RS-UPGMA and the RS-maximin, are deterministic.

The proposed methods are straightforward and easy to implement. More-
over, the MLM has only one hyper-parameter, the number of reference points
K, to be selected. The proposed methods keep this unchanged because the
only parameter that is needed for the proposed methods is the number of ref-
erence points. A summary of the methods is shown in Table 1, where the time
complexities are also presented with respect to the number of observations
N . The RS-K-means++, RS-K-medoids++, and RS-maximin methods have
a linear time complexity. The optimal time complexity for the UPGMA is
quadratic [33]. Therefore, the RS-UPGMA method has quadratic complexity
because the post-processing after UPGMA clustering has a linear time com-
plexity. Because the MLM training phase has a time complexity of O(K2N)

6

[1], the reference points selection method with a linear computational cost
(with respect to N) and the ability to build an accurate model with a small
K is highly desirable.

Table 1: Summary of the proposed methods.

Method Based on Deterministic Type Complexity
RS-K-means++ K-means++ initialization No Partitional O(N)
RS-K-medoids++ K-means++ initialization and No Partitional O(N)

K-medoids clustering
RS-UPGMA Aggloremerative clustering Yes Hierarchical O(N2)
RS-maximin Maximin clustering initialization Yes Partitional O(N)

4 Experiments and results

4.1 Experimental setup

We selected 11 real datasets and two synthetic datasets (S1,BNK) to evaluate
the reference point selection methods. The selected datasets are summarized
in Table 2. All datasets have one-dimensional output values. The S1 dataset
was modified for a regression task. We randomly selected 1000 observations
from the S1 dataset, scaled the values to the range of [0, 1], and then the
output values f(x1, x2) were computed with a function sin(2∗π∗x1)+sin(2∗
π ∗ x2). The original S1 dataset is available at (http://cs.uef.fi/sipu/
datasets/). The rest of the datasets are available at (http://www.dcc.fc.
up.pt/~ltorgo/Regression/DataSets.html).

For rigorous comparison of the behavior of different reference points se-
lection algorithms, we combine two basic and well-known methods in model
selection and assessment: division into train-validation-test sets and cross-
validation (see, e.g., [34], Chapter 7). More precisely, we use the 3-DOB-SCV
[35] approach to divide each dataset into a training set and a test set. There-
fore, the test set is forced to approximately follow the same distribution as
the training set, thus making the comparison more reliable for the case where
the concept drift is not considered. Moreover, we archive three training sets
and three test sets for each dataset, that have 2/3 and 1/3 of the number
of points, respectively. In training, we used the 10-DOB-SCV approach to
select the optimal number of reference points. Thus, 18/30 of the number of
points were used to train the model, and 2/30 of the number of points were

7

Table 2: Characteristics of the datasets.

Dataset # Observations # Features
Auto Price (AP) 159 15
Servo (SRV) 167 4
Breast Cancer (BC) 194 32
Computer Hardware (CHA) 209 6
Boston Housing (BH) 506 13
Stocks (STC) 950 9
S1 (S1) 1000 2
Bank (BNK) 4499 8
Ailerons (ALR) 7129 5
Computer Activity (CA) 8192 12
Elevators (ELV) 9517 6
California Housing (CH) 20640 8
Census (CNS) 22784 8

used to compute the validation error. Therefore, we have a two-level division
of the datasets.

The quality of the models was evaluated using root mean square error
(RMSE). In addition to validation error computation, test error was com-
puted for all 10-DOB-SCV training sets, resulting in 10 test RMSEs for each
training set and 30 test RMSEs for the whole dataset. In training, the num-
ber of reference points K was varied in a range of 1% to 100% of the training
data points. The step size was set to 1%. We used Newton’s method with
the proposed heuristic initialization strategy, as described in Section 2, for
solving the multilateration problem in (5). Furthermore, we ran the exper-
iments with the bias εI and without it (see Section 2). However, because
there was no clear benefit of computing B with the bias, for clarity, only
the results without the bias are included. We scaled all training datasets to
a range of [0, 1], and corresponding training dataset variable-wise minimum
and maximum values were used to scale the test datasets as well. All the
experiments were conducted in the MATLAB environment.

8

4.2 Performance of Newton’s method for the multilateration
problem

The proposed initialization strategy for Newton’s method performed well.
Safeguarding was needed only in a few rare cases, which occurred for the
AP, SRV, STC, BNK, CH, and CNS datasets. The highest average fold-wise
failure rate was only 0.7%, which was observed for the SRV dataset with the
RS-maximin method. Otherwise, the failure rate was less than 0.1%. All
the reference points selection methods induced the failures. Overall, there
were no differences between the reference points methods for the convergence
speed of Newton’s method. Typically, Newton’s method converged after 2–
4 iterations. Thus, the suggested approach for the multilateration problem
provided a solver of linear complexity to realize the second phase of the MLM.

4.3 Results for optimal K

In Table 3, the median test RMSE and the best number of reference points
K/N(%) are shown. The optimal number of reference points was selected
based on the smallest mean validation RMSE. The symbol ∗∗ means that
there is a statistically significant difference between test RMSEs based on
the Kruskal-Wallis H test with a significance level of 0.05. Symbols ∗, †, ‡,
§, and ‖ denote that a method has a statistically significantly smaller RMSE
in pairwise comparison to the random, RS-K-means++, RS-K-medoids++,
RS-UPGMA, and RS-maximin methods, respectively. In the pairwise com-
parisons, the significance level was also set to 0.05. The Kruskal-Wallis H
test assumes equal variances for groups. Therefore, we tested the equality of
the variances with the Brown-Forsythe test. Based on the Brown-Forsythe
test, the variances related to the optimal K results are not equal for the BC
dataset. Otherwise, they are equal. The best median test RMSE and the
set of the smallest number of reference points (related to the mean value)
are bolded for each dataset. Note that in Table 3 there are three optimal
K values for each method because we used the 3-DOV-SCV approach in the
experiments. Rounded Kruskal-Wallis scores are shown inside the brackets,
and the best scores are bolded. The dataset-wise ranking of the methods is
calculated from the raw Kruskal-Wallis scores. Based on these rankings, the
total ranking of the methods is shown in the bottom of Table 3.

As shown in Table 3, the RS-K-medoids, RS-UPGMA, and RS-maximin
methods performed equally well in the total ranking of the methods. The

9

random and RS-K-means++ methods performed equally well in the total
ranking of the methods. Based on the Kruskal-Wallis test, in general, there
are no differences between the methods, and in terms of the best K, there is
no clear difference between the methods. However, the best K varied from
2 to 100 among the datasets. We noticed from the fold-wise validation and
test RMSE graphs that for most of the cases the best K corresponding to
the smallest mean validation RMSE was not related to the best test RMSE.
Moreover, the best K selection based on the smallest mean validation RMSE
is dubious for some of the datasets, as in this way the complexity of the
model is not taken into account. For example, for a large dataset, if increas-
ing K/N(%) from 50 to 100 leads to only marginal improvement in the mean
validation RMSE, then the model with a higher K and smaller mean valida-
tion RMSE is selected. For future work, there is still room for improvement
in this direction.

4.4 Results for fixed K

In Tables 4–7, the test RMSEs are presented similarly as in Table 3, but with
a fixed number of reference points. The variances in the error distributions
are not equal for the SRV(K/N(%) = 5, 10, 20), CHA(K/N(%) = 5, 10, 20,
STC(K/N(%) = 5, 10, 20, 40), and S1 (K/N(%) = 5, 10, 20, 40) datasets,
based on the Brown-Forsythe test of group variances. Therefore, the results
given by the Kruskal-Wallis test are questionable for these cases; however,
the ordering of the methods can be compared.

As expected, based on the total ranking, all the proposed methods have
better RMSE than the random method when the number of reference points
is small (K/N(%) = 5, 10, Tables 4 and 5), where the RS-maximin method
has the best RMSE. The RS-K-means++ and RS-K-medoids++ methods
have very similar RMSEs for K/N(%) = 5, 10. Thus, refinement of the ref-
erence points with K-means does not seem to be beneficial for the small K.
In contrast to K/N(%) = 20, 40, accuracy is improved with K-means refine-
ment. For K/N(%) = 20, 40, the RS-UPGMA is the best based on the total
ranking. Therefore, running the whole clustering (not only initialization)
seems to work better for higher K values.

Based on Tables 4–7, the performance of the random is the worst and that
of the RS- maximin method is the best. A drawback of the RS-K-medoids++,
RS-UPGMA, and RS-maximin method is that if the data contains anoma-
lies, these methods are likely to select the anomalies as reference points.

10

This is probably why the random method outperforms the RS-UPGMA and
RS-maximin methods for the CH dataset. The CH dataset is known to
contain some large anomalies. Therefore, we combined a simple anomaly
detection method (k-nearest neighbors) with the RS-UPGMA and tested it
with the CH dataset. It was observed that anomaly detection improved the
test error for the RS-UPGMA (K/N(%) = 5, 10, 20, 40). Similar observa-
tions can also be drawn from the results for the S1 dataset. S1 was the
cleanest dataset in the experiments: All input points were mapped to the
output points with a sine-based function without any distortions. Based on
Tables 4–7, the RS-UPGMA and RS-maximin methods have the largest er-
ror difference compared to the random method for the S1 dataset than for
any other dataset. Therefore, a robust variant of the MLM combined with
the RS-UPGMA or RS-maximin method, should be considered for regression
tasks with anomalies.

4.5 Case S1: comparison of methods

To demonstrate the differences between the five methods, we ran only the
reference point selection methods for S1 for 100 reference points (10%) and
plotted the selected reference points (marked as blue pentagrams) which
are shown in Figure 1. From Figure 1, one can notice that the proposed
methods cover the data space better than the random method. Notably, the
difference between the random and RS-maximin method is clear. The RS-
maximin method selects a set of reference points that are sparsely spread to
the input space with approximately evenly spaced. Contrary to the random
approach, the selected reference points accumulate near the cluster centers
and are near each other.

In Figure 2, the smallest 500 pairwise Euclidean distances for the selected
100 reference points for S1 are plotted in ascending order. The selected 100
reference points for each method are the same as in Figure 1. Figure 2 also
illustrates the differences between the reference point methods. We see that,
overall, the random is the worst method and RS-maximin the best method
for identifying separate and input space well covered sets of reference points.

5 Conclusion

In this paper, we proposed four clustering-based methods for selecting the
reference points for the MLM. We focused on experimenting with the pro-

11

posed methods against the random approach in regression tasks with 13
datasets. An extensive experimental evaluation of the methods showed that
the clustering-based methods can improve the performance of the MLM. A
good set of reference points for the MLM covers the data space well. When
an optimal number of reference points is desired, the RS-K-medoids++, RS-
UPGMA, and RS-maximin methods are valid choices. With respect to the
accuracy for fixed K, the RS-maximin method is the best choice for low K
values (K/N(%) = 5, 10). For higher K values (K/N(%) = 20, 40) the RS-
UPGMA is the best choice. However, the RS-maximin method is the most
efficient proposed method, because the computational cost with respect to N
is linear compared to the RS-UPGMA which has a quadratic time complexity
with respect to N . For higher K values, this method has almost as good ac-
curacy as the RS-UPGMA. Together with a linearly scaling Newton’s method
for the second step of the MLM, we obtain, as a whole, a computationally
very efficient approach.

Although the maximin method is not recommended to be used for the
K-means initialization based on the extensive study in [16], according to
the present study, this method is valid for selecting the reference points in
the MLM. This reflects that reference point selection has a slightly different
aim than K-means initialization. For example, based on the experiments,
the maximin method selects extreme points that are very valuable points,
if they are not anomalies, for constructing the MLM model. In contrast, in
terms of K-means initialization, these points are far from the cluster centers.
Thus, these points are not optimal initial points. Furthermore, the proposed
methods are less robust for outliers than the random approach. Therefore, in-
tegrating outlier detection into reference points selection or utilizing a robust
approach for input and output distance matrix mapping should be considered
for distorted datasets. In future work, it would be interesting to adapt and
evaluate the proposed methods for classification tasks as well and to analyze
how methods are affected if the number of reference points is different for
the input and output space.

Acknowledgements

The work of TK has been supported by the Academy of Finland from the
projects 311877 (Demo) and 315550 (HNP-AI).

12

References

[1] A. H. de Souza Junior, F. Corona, G. A. Barreto, Y. Miche, and
A. Lendasse, “Minimal Learning Machine: A novel supervised distance-
based approach for regression and classification,” Neurocomputing, vol.
164, pp. 34–44, Sep 21 2015.

[2] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: A new
learning scheme of feedforward neural networks,” in 2004 IEEE Inter-
national Joint Conference on Neural Networks, Vols 1-4, Proceedings,
ser. IEEE International Joint Conference on Neural Networks (IJCNN),
2004, pp. 985–990.

[3] C. Chen, “A rapid supervised learning neural network for function inter-
polation and approximation,” IEEE Transactions on Neural Networks,
vol. 7, no. 5, pp. 1220–1230, SEP 1996.

[4] Y. Ren, P. Suganthan, N. Srikanth, and G. Amaratunga, “Random vec-
tor functional link network for short-term electricity load demand fore-
casting,” Information Sciences, vol. 367368, pp. 1078 – 1093, 2016.

[5] D. P. Mesquita, L. S. Rocha, J. P. P. Gomes, and A. R. R. Neto, “Clas-
sification with reject option for software defect prediction,” Applied Soft
Computing, vol. 49, pp. 1085 – 1093, 2016.

[6] K. Lang, M. Zhang, and Y. Yuan, “Improved neural networks with
random weights for short-term load forecasting,” PLOS ONE, vol. 10,
no. 12, pp. 1–14, 12 2015.

[7] W. Li, K. Chen, and D. Wang, “Industrial image classification using a
randomized neural-net ensemble and feedback mechanism,” Neurocom-
puting, vol. 173, Part 3, pp. 708 – 714, 2016.

[8] G. Feng, Z. Qian, and X. Zhang, “Evolutionary selection extreme learn-
ing machine optimization for regression,” Soft Computing, vol. 16, no.
9, SI, pp. 1485–1491, SEP 2012.

[9] X. Xue, M. Yao, Z. Wu, and J. Yang, “Genetic ensemble of extreme
learning machine,” Neurocomputing, vol. 129, no. SI, pp. 175–184, APR
2014.

13

[10] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651 – 666, 2010, award winning papers
from the 19th International Conference on Pattern Recognition (ICPR).

[11] R. R. Sokal, “A statistical method for evaluating systematic relation-
ship,” University of Kansas science bulletin, vol. 28, pp. 1409–1438,
1958.

[12] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[13] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algo-
rithm for discovering clusters in large spatial databases with noise.” in
Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[14] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.
1-3, pp. 1–6, 1998.

[15] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans-
actions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[16] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study
of efficient initialization methods for the k-means clustering algorithm,”
Expert systems with applications, vol. 40, no. 1, pp. 200–210, 2013.

[17] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms. Society for Industrial and Applied Math-
ematics, 2007, pp. 1027–1035.

[18] D. P. P. Mesquita, J. P. P. Gomes, and A. H. de Souza Junior, “A
minimal learning machine for datasets with missing values,” in 22nd
International Conference on Neural Information Processing - ICONIP
2015, 2015, pp. 565–572.

[19] D. P. Mesquita, J. P. P. Gomes, A. H. de Souza Junior, and J. S. Nobre,
“Euclidean distance estimation in incomplete datasets,” Neurocomput-
ing, vol. 248, pp. 11–18, 2017.

14

[20] J. P. P. Gomes, D. P. M. A. L. Freire, A. H. de Souza Junior, and
T. Kärkkäinen, “A robust minimal learning machine based on the m-
estimator,” in Proceedings of the European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning -
ESANN 2017, 2017, pp. 383–388.

[21] D. P. Mesquita, J. P. P. Gomes, and A. H. de Souza Junior, “Ensemble
of efficient minimal learning machines for classification and regression,”
Neural Processing Letters, vol. 46, no. 3, pp. 751–766, 2017.

[22] L. B. Marinho, A. H. de Souza Junior, and P. P. Rebouças Filho, “A new
approach to human activity recognition using machine learning tech-
niques,” in International Conference on Intelligent Systems Design and
Applications. Springer, 2016, pp. 529–538.

[23] T. Kärkkäinen, “Extreme minimal learning machine,” in 26th European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning - ESANN 2018, 2018, pp. 237–242.

[24] A. C. de Oliveira, J. P. P. Gomes, A. R. R. Neto, and A. H. de Souza Ju-
nior, “Efficient minimal learning machines with reject option,” in 2016
5th Brazilian Conference on Intelligent Systems (BRACIS), 2016, pp.
397–402.

[25] W. L. Caldas, J. P. P. Gomes, and D. P. Mesquita, “Fast Co-MLM:
An efficient semi-supervised Co-training method based on the minimal
learning machine,” New Generation Computing, vol. 36, no. 1, pp. 41–
58, 2018.

[26] L. B. Marinho, J. S. Almeida, J. W. M. Souza, V. H. C. Albuquerque,
and P. P. Rebouças Filho, “A novel mobile robot localization approach
based on topological maps using classification with reject option in om-
nidirectional images,” Expert Systems with Applications, vol. 72, pp.
1–17, 2017.

[27] L. B. Marinho, P. P. Rebouças Filho, J. S. Almeida, J. W. M. Souza,
A. H. de Souza Junior, and V. H. C. de Albuquerque, “A novel mobile
robot localization approach based on classification with rejection option
using computer vision,” Computers & Electrical Engineering, vol. 68,
pp. 26–43, 2018.

15

[28] M. L. D. Dias, L. S. de Souza, A. R. da Rocha Neto, and A. H.
de Souza Junior, “Opposite neighborhood: a new method to select refer-
ence points of minimal learning machines,” in 26th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning - ESANN 2018, 2018, pp. 201–206.

[29] A. H. de Souza Junior, F. Corona, Y. Miche, A. Lendasse, G. A. Bar-
reto, and O. Simula, “Minimal learning machine: A new distance-based
method for supervised learning,” in International Work-Conference on
Artificial Neural Networks. Springer, 2013, pp. 408–416.

[30] C. T. Kelley, Solving nonlinear equations with Newton’s method. Siam,
2003, vol. 1.

[31] J. Hämäläinen, S. Jauhiainen, and T. Kärkkäinen, “Comparison of in-
ternal clustering validation indices for prototype-based clustering,” Al-
gorithms, vol. 10, no. 3, p. 105, 2017.

[32] T. F. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,” Theoretical Computer Science, vol. 38, pp. 293–306, 1985.

[33] I. Gronau and S. Moran, “Optimal implementations of upgma and other
common clustering algorithms,” Information Processing Letters, vol.
104, no. 6, pp. 205–210, 2007.

[34] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, 2001, vol. 2.

[35] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera, “Study on the im-
pact of partition-induced dataset shift on k-fold cross-validation,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23, no. 8,
pp. 1304–1312, 2012.

16

Appendix A Figures

Random RS-K-means++

RS-K-medoids RS-UPGMA

RS-maximin

Figure 1: The 100 reference points selected for the S1 dataset.

17

Figure 2: The smallest 500 pairwise Euclidean distances for the 100 refer-
ence points selected for the S1 dataset in ascending order. Clustering-based
methods select a set of reference points that are more separeted from each
other compared to the random approach.

18

Appendix B Tables

Table 3: RMSE for optimal K

Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin
Dataset RMSE K/N(%) RMSE K/N(%) RMSE K/N(%) RMSE K/N(%) RMSE K/N(%)
AP 0.0630 94, 93, 90 0.0645 66, 59, 69 0.0614 63, 79, 68 0.0613 93, 93, 63 0.0691 93,36,53

(69) (77) (70) (71) (90)
SRV 0.0929 75,92,70 0.0913 67, 90, 88 0.0922 69, 95, 88 0.0921 78, 100, 82 0.0878 92, 97, 100

(80) (76) (76) (76) (70)
BC 0.2684 19, 17, 9 0.2685 11,9,8 0.2726 7, 11, 31 0.2682 8, 15, 14 0.2686 7, 15, 9

(68) (71) (92) (76) (71)
CHA∗∗ 0.0438 84, 52, 79 0.0502 18, 6, 24 0.0392 25, 22, 32 0.0397† 8,16,20 0.0433 37, 29, 44

(78) (96) (70) (62) (73)
BH 0.0734 97,62,88 0.0703 96, 80, 98 0.0699 98, 99, 95 0.0699 98, 99, 95 0.0699 99, 99, 96

(93) (74) (71) (70) (70)
STC 0.0226 96, 100, 100 0.0226 87,91,98 0.0225 94, 94, 100 0.0225 94, 100, 98 0.0225 95, 100, 99

(76) (83) (72) (74) (73)
S1 0.0050 100, 100, 97 0.0050 93, 99, 89 0.0050 89,94,84 0.0050 95, 99, 92 0.0050 95, 99, 82

(75) (76) (75) (76) (76)
BNK 0.0439 91, 92, 90 0.0439 97, 77, 65 0.0438 84, 86, 78 0.0438 98, 44, 100 0.0439 100,37,100

(78) (77) (75) (73) (75)
ALR∗∗ 0.0420 15, 13, 9 0.0420 6, 11, 10 0.0420§ 9, 10, 15 0.0423 6, 7, 12 0.0422 4,8,4

(65) (70) (61) (93) (89)
CA 0.0290 84, 88, 78 0.0288 54,79,64 0.0288 46, 79, 78 0.0289 100, 76, 60 0.0289 72, 96, 64

(80) (72) (73) (76) (75)
ELV 0.0554 3, 3, 2 0.0554 2,2,2 0.0555 4, 2, 3 0.0553 3, 2, 3 0.0554 2, 2, 4

(74) (73) (84) (70) (77)
CH 0.1141 56,45,66 0.1138 75, 69, 52 0.1138 87, 72, 67 0.1138 100, 100, 99 0.1138 100, 97, 88

(82) (76) (78) (69) (73)
CNS 0.0605 18, 31, 16 0.0605 12, 18, 18 0.0603 10, 23, 18 0.0598 5,15,16 0.0601 9, 19, 13

(82) (81) (78) (71) (66)

Rank 5(47) 4(45) 1(34) 1(34) 3(35)

Table 4: RMSE for K/N(%) = 5

Dataset Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin
AP∗∗ 0.1046(89) 0.1034(88) 0.1052(83) 0.0912(64) 0.0819(53)∗†‡

SRV∗∗ 0.1873(61)‖ 0.1904(64)‖ 0.1968(81) 0.1942(73) 0.2035(100)
BC 0.2747(78) 0.2759(76) 0.2772(81) 0.2729(80) 0.2684(61)

CHA∗∗ 0.0710(101) 0.0621(81) 0.0558(65)∗ 0.0558(56)∗ 0.0600(74)
BH∗∗ 0.1096(67) 0.1089(68) 0.1182(91) 0.1128(86) 0.1072(64)

STC∗∗ 0.0497(123) 0.0457(82)∗ 0.0443(49)∗† 0.0437(45)∗†‖ 0.0456(79)∗

S1∗∗ 0.0310(120) 0.0288(97) 0.0279(86)∗ 0.0238(52)∗†‡ 0.0199(21)∗†‡§

BNK∗∗ 0.0496(91) 0.0499(84) 0.0510(101) 0.0465(53)∗†‡ 0.0465(50)∗†‡

ALR 0.0420(68) 0.0422(67) 0.0422(73) 0.0423(86) 0.0423(83)
CA∗∗ 0.0336(104) 0.0318(75) 0.0314(67)∗ 0.0319(77) 0.0310(55)∗

ELV 0.0553(78) 0.0553(81) 0.0552(74) 0.0552(74) 0.0553(71)

CH∗∗ 0.1196(44)‡§‖ 0.1204(58)§‖ 0.1214(76) 0.1224(101) 0.1227(98)
CNS 0.0616(91) 0.0614(80) 0.0611(79) 0.0605(67) 0.0605(60)∗

Rank 5(47) 3(41) 4(43) 2(37) 1(27)

19

Table 5: RMSE for K/N(%) = 10

Dataset Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin
AP∗∗ 0.0878(91) 0.0902(85) 0.0848(76) 0.0806(66) 0.0739(60)∗

SRV∗∗ 0.1499(71)§ 0.1457(68)§ 0.1499(74)§ 0.1589(108) 0.1454(56)§

BC 0.2683(81) 0.2692(80) 0.2691(81) 0.2676(80) 0.2632(55)

CHA∗∗ 0.0656(106) 0.0509(79) 0.0487(70)∗ 0.0409(41)∗†‖ 0.0521(82)
BH 0.0979(67) 0.1012(72) 0.1040(85) 0.1018(82) 0.1025(71)

STC∗∗ 0.0390(124) 0.0367(95) 0.0351(65)∗ 0.0342(41)∗† 0.0352(52)∗†

S1∗∗ 0.0206(126) 0.0139(90)∗ 0.0131(80)∗ 0.0111(60)∗ 0.0077(22)∗†‡§

BNK∗∗ 0.0474(100) 0.0463(84) 0.0465(90) 0.0448(53)∗†‡ 0.0448(50)∗†‡

ALR∗∗ 0.0419(61)‖ 0.0420(66) 0.0420(64)‖ 0.0424(90) 0.0425(97)
CA∗∗ 0.0316(106) 0.0303(77) 0.0300(67)∗ 0.0302(70)∗ 0.0299(59)∗

ELV 0.0555(81) 0.0555(79) 0.0555(81) 0.0554(69) 0.0553(67)

CH∗∗ 0.1173(44)§‖ 0.1179(58)§‖ 0.1189(74) 0.1209(102) 0.1207(100)
CNS 0.0611(90) 0.0605(80) 0.0605(79) 0.0598(64) 0.0601(64)

Rank 5(51) 3(42) 3(42) 2(35) 1(25)

Table 6: RMSE for K/N(%) = 20

Dataset Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin
AP 0.0840(90) 0.0795(82) 0.0799(78) 0.0742(62) 0.0730(65)
SRV 0.1180(69) 0.1186(70) 0.1147(65) 0.1223(84) 0.1221(89)
BC 0.2663(73) 0.2686(78) 0.2685(78) 0.2687(74) 0.2679(75)

CHA∗∗ 0.0545(102) 0.0438(79) 0.0454(71)∗ 0.0376(46)∗†‖ 0.0478(79)
BH∗∗ 0.0900(87) 0.0885(83) 0.0868(75) 0.0844(53)∗ 0.0881(79)
STC∗∗ 0.0319(131) 0.0301(105) 0.0289(73)∗† 0.0280(39)∗†‡ 0.0276(30)∗†‡

S1∗∗ 0.0112(130) 0.0084(91)∗ 0.0081(80)∗ 0.0068(48)∗†‡ 0.0056(29)∗†‡

BNK∗∗ 0.0452(99) 0.0451(90) 0.0448(86) 0.0442(55)∗†‡ 0.0440(48)∗†‡

ALR∗∗ 0.0421(57)§‖ 0.0423(67) 0.0423(65) 0.0426(93) 0.0427(96)
CA∗∗ 0.0304(103) 0.0297(76) 0.0293(69)∗ 0.0293(64)∗ 0.0293(66)∗

ELV 0.0561(82) 0.0561(84) 0.0561(83) 0.0558(67) 0.0557(62)

CH∗∗ 0.1156(42)§‖ 0.1161(62)§‖ 0.1165(67)§‖ 0.1191(100) 0.1192(101)
CNS 0.0606(86) 0.0603(76) 0.0602(75) 0.0599(68) 0.0603(72)

Rank 4(48) 5(49) 3(36) 1(27) 2(35)

20

Table 7: RMSE for K/N(%) = 40

Dataset Random RS-K-means++ RS-K-medoids++ RS-UPGMA RS-maximin
AP∗∗ 0.0740(88) 0.0728(84) 0.0685(76) 0.0658(55)∗ 0.0691(74)
SRV 0.0967(69) 0.1014(78) 0.1000(75) 0.0997(72) 0.1038(83)
BC 0.2713(79) 0.2700(76) 0.2728(82) 0.2694(67) 0.2709(74)

CHA∗∗ 0.0499(101) 0.0427(72) 0.0390(65)∗ 0.0395(69)∗ 0.0414(70)∗

BH∗∗ 0.0793(88) 0.0808(92) 0.0795(83) 0.0747(55)∗† 0.0762(60)∗†

STC∗∗ 0.0269(131) 0.0257(98)∗ 0.0252(73)∗ 0.0245(37)∗†‡ 0.0244(40)∗†‡

S1∗∗ 0.0071(121) 0.0057(77)∗ 0.0060(75)∗ 0.0054(54)∗ 0.0052(50)∗

BNK∗∗ 0.0445(94) 0.0442(79) 0.0441(75) 0.0441(73) 0.0439(57)∗

ALR 0.0426(60) 0.0429(75) 0.0430(79) 0.0429(86) 0.0428(78)
CA∗∗ 0.0294(98) 0.0289(71) 0.0289(71) 0.0289(68) 0.0289(70)
ELV 0.0572(80) 0.0570(80) 0.0570(79) 0.0569(70) 0.0569(68)

CH∗∗ 0.1144(54)§‖ 0.1144(60)§‖ 0.1146(63)§‖ 0.1168(101) 0.1166(100)
CNS 0.0606(80) 0.0604(70) 0.0602(70) 0.0606(79) 0.0607(78)

Rank 5(51) 4(46) 3(38) 1(29) 2(31)

21

	Improvements and Applications of the Elements of Prototype-Based Clustering
	ABSTRACT
	TIIVISTELMÄ (FINNISH ABSTRACT)
	ACKNOWLEDGEMENTS
	GLOSSARY
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Background and motivation
	1.2 Research questions
	1.3 Structure of the work

	2 CLUSTERING
	2.1 Background
	2.2 Prototype-based clustering
	2.3 Cluster validation
	2.4 Big data clustering

	3 SUPERVISED LEARNING
	3.1 Cross-validation
	3.2 Supervised methods
	3.3 Minimal learning machine

	4 SUMMARY OF THE INCLUDED ARTICLES
	4.1 [PI]: Initialization of big data clustering using distributionally balanced folding
	4.2 [PII]: Scalable initialization methods for clustering large datasets
	4.3 [PIII]: Scalable robust clustering method for large and sparse data
	4.4 [PIV]: Comparison of internal clustering validation indices for prototype-based clustering
	4.5 [PV]: Feature ranking of large, robust, and weighted clustering result
	4.6 [PVI]: Clustering-based reference points selection for the minimal learning machine
	4.7 Summary of contributions
	4.8 Author’s contribution to the included articles

	5 CONCLUSIONS AND FUTURE WORK
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	INITIALIZATION OF BIG DATA CLUSTERING USING DISTRIBUTIONALLY BALANCED FOLDING
	SCALABLE INITIALIZATION METHODS FOR CLUSTERING LARGE DATASETS
	SCALABLE ROBUST CLUSTERING METHOD FOR LARGE AND SPARSE DATA
	COMPARISON OF INTERNAL CLUSTERING VALIDATION INDICES FOR PROTOTYPE-BASED CLUSTERING
	FEATURE RANKING OF LARGE, ROBUST, AND WEIGHTED CLUSTERING RESULT
	CLUSTERING-BASED REFERENCE POINTS SELECTION FOR THE MINIMAL LEARNING MACHINE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

