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1 Introduction

Document ranking is an essential component of information retrieval systems and
web search engines. Recently, machine learning-based ranking techniques, referred
to as “learning to rank,” have given rise to an active and growing research area, both
in the information retrieval and machine learning communities [10, 15, 21, 39, 59]. A
large number of learning to rank algorithms have been proposed, which incorporate
more and more useful features, aiming to improve the performance of the ranking
algorithms [33]. In a supervised setting, they first collect a set of training data, which
includes a set of queries, each associated with a list of documents labeled by relevance
degrees; with the training dataset, they train a ranking model that can order unseen
documents according to their degree of relevance [20]. In this situation, dimension
reduction inevitably becomes an important issue [16].

Firstly, dimension reduction can enhance the accuracy for many machine learn-
ing problems, including learning to rank. With dimension reduction techniques, a
small set of more discriminative and less redundant features can be selected or gener-
ated for learning. Thus, better results could be achieved, as overfitting becomes less
likely [38]. Also, the generalization ability of machine learning models could depend
on the radius of training data points, which may decrease when the number of features
decreases [5, 16, 56, 57].

Secondly, large number of features leads to high complexity in most learning to
rank algorithms. Therefore, dimension reduction often leads to significant improve-
ments in training and prediction efficiency, while maintaining, or having a limited
negative impact on, accuracy. With accuracy being the primary metric, efficiency has
also emerged as a crucial issue for evaluating learning to rank algorithms [10, 11, 55].
Training datasets and ranking features continue to expand, so as to obtain more ac-
curate models. Furthermore, as a consequence of the dynamic character of the Web,
ranking models need to be re-learned repeatedly, and the interval between re-learning
procedures decreases sharply [33]. With dimension reduction techniques, fewer fea-
tures are used, resulting in more efficient training and prediction.

Generally, there are two types of dimension reduction algorithms: feature selec-
tion and feature extraction. The former aims to select a subset of the original features
for learning, while the latter attempts to generate a small set of new features from
the original features [5, 35, 58]. Recently, feature selection for ranking has been in-
vestigated intensively [16, 17, 26, 29, 37, 40, 60]. To the best of our knowledge, the
advantages of feature extraction have not yet been explored in learning to rank.

In this study, we address the feature extraction problem for learning to rank. In
comparison with feature selection, the feature extraction problem has a much larger
search space. For example, given n original features, feature selection selects a subset
of features of size k (where k < n) for learning. Here, for a particular value of k, the
search space of the problem contains (Z) possible solutions. The full search space that
can include any number of features (i.e., all values of & in range 1 to n), would lead to
2™ — 1 solutions. In comparison, for linear feature extraction, each extracted feature
is a linear combination of original n features. Since the coefficient associated with
each original feature can be any real number, the search space becomes infinite. The
search space of non-linear feature extraction would be even larger, as it also includes
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solutions involving non-linear combinations of features (e.g. polynomial combina-
tions). Hence, with a larger search space, feature extraction has a greater possibility
to achieve better performance than feature selection.

To address the problem of linear feature extraction for learning to rank, we pro-
pose LifeRank, a Linear feature extraction algorithm for Ranking. LifeRank regards
each dataset for training, validation or test as a matrix, referred to as an original
matrix, where each row vector represents a document with a set of features. With a
given original matrix for training X, LifeRank attempts to discover a transformation
matrix T, so that a new matrix (dataset) X’ can be generated as the product of the
original matrix and a transformation matrix, i.e., X’ = XT. Thus T projects high-
dimensional document vectors in X into lower-dimensional ones in X'. Theoretically,
there could be a very large number of possible transformation matrices, each leading
to a new generated matrix. LifeRank attempts to discover a transformation matrix to
transform the original matrix (dataset) into a low-rank one for dimension reduction,
on which learning to rank algorithms can achieve optimum results in comparison with
other dimension-reduced matrices.

Our problem formulation is similar to principal component analysis (PCA) [23],
and thus our algorithm LifeRank can be understood from the perspective of PCA.
PCA is one of the most popular dimension reduction techniques in machine learn-
ing. When PCA is performed using singular valued decomposition (SVD) [28], the
given matrix X can be approximately decomposed into three low-rank matrices X ~
PXQT. Here, ¥ is composed of the singular values of X, P and Q are composed
of the left and right singular vectors of X respectively, and PP=Q'Q=1Iis
equal to the identity matrix. Thus a new matrix X’ = PX ~ XQ. However, it should
be noted that while PCA calculates X’ as an approximation of X, in LifeRank X is
transformed to X' using a transformation matrix.

In LifeRank, we formulate the learning to rank task by using a classical pairwise
loss function. A pairwise loss function is used because such functions are funda-
mental, straightforward and intuitive for ranking. Besides, pairwise loss functions are
consistent with the assumption that the labels of documents to rank lie in a rank-
differentiable probability space [27], and they are upper bounds of measure-based
ranking errors [12]. In the generated matrix, the column vectors represent the features.
Since optimization over orthogonal features is beneficial to many machine learning
problems [48, 49], we utilize the Lagrange multipliers method [1, 4] to impose or-
thonormality constraints on the column (feature) vectors of the transformed matrix,
and then use gradient descent for optimization. With the transformation matrix T, the
training, validation and test datasets can be directly generated with matrix product.

Note that (1) LifeRank generalizes feature selection algorithms for the learning
to rank task. Feature selection can be regarded as optimizing a transformation matrix
T so that the column vectors of T meet the orthonormality constraints and each ele-
ment in T can only be either O or 1. (2) Although some deep learning-based ranking
algorithms [47] also aim to generate a set of features for ranking, our problem is com-
pletely different: we try to construct our features based on some predesigned ranking
features like term frequency (TF) and inverse document frequency (IDF), which have
been comprehensively used in conventional learning to rank algorithms like Ranking
SVM [9, 21] and RankBoost [15]. Deep learning-based algorithms, however, try to
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build features based on word-level features in a corpus that differ substantially from
conventional ranking features.

Our main contributions are as follows: (1) We address the feature extraction prob-
lem for learning to rank. Feature extraction is a category of comprehensively used
dimension reduction techniques in many machine learning problems for performance
gains in accuracy and efficiency, but to the best of our knowledge, feature extraction
and its advantages have not been explored in learning to rank yet. (2) We propose
LifeRank, a linear feature extraction algorithm that generates datasets to be utilized
by the learning to rank task. (3) We perform extensive experiments on benchmark
datasets and present the performance gains of LifeRank in comparison with the state-
of-the-art feature selection algorithms.

The remainder of the paper is organized as follows. Section 2 reviews related
work; Section 3 defines the feature extraction problem for ranking; Section 4 pro-
poses LifeRank, a gradient descent-based algorithm. Section 5 introduces our experi-
mental setup. Section 6 reports the experimental results, and Section 7 concludes the

paper.

2 Related work

We discuss three types of related work: learning to rank, feature selection for ranking,
and feature extraction for ranking.

2.1 Learning to rank for information retrieval

Learning to rank has received increased attention from both the machine learning and
information retrieval community. While there is growing interest in online learning
to rank [46] and in counterfactual learning to rank from online data [22], the bulk of
the work on learning to rank concerns offline learning to rank, where explicit human
annotations are used to label query, document pairs. Offline learning to rank is the
focus of this paper. Given its effectiveness, many algorithms have been proposed,
which mainly fall into three categories [11, 32]: pointwise, pairwise, and listwise.

Pointwise approaches, such as Pranking [14], McRank [31] and Subset Rank-
ing [13], view each document in the training dataset as a learning instance, and utilize
a classification or regression technique to predict the relevance categories or numer-
ical/ordinal relevance scores for unlabeled data. Pairwise approaches, such as Rank-
ing SVM [9, 21], RankBoost [15], RankNet [6], FRank [52], LambdaRank [7], and
BoltzRank [54], regard a pair of documents as a learning instance, and try to learn a
binary classifier that can predict the more relevant document to the given query from
each pair of documents. Then the ranked lists of documents can be aggregated based
on the pairwise preferences of the documents. Listwise approaches, such as List-
Net [10], SVM-MAP [61], NDCGBoost [53], take the entire ranked list of documents
as a learning instance, and attempt to construct a ranking model that can directly pre-
dict the full rankings of the documents. Recently, some hybrid algorithms have been
proposed, such as FocusedRank [39], MixRank [8], targeting improvements in learn-
ing accuracy, efficiency, or both. More algorithms are surveyed in [11, 32, 33].
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With the incorporation of more and more useful features for performance gains,
dimension reduction inevitably becomes an important issue in the ranking prob-
lem [16]. With effective dimension reduction techniques, not only the efficiency of
the algorithms could be improved, but also accuracy could be enhanced as a result of
using more discriminative features with less redundancy and noise. Furthermore, the
generalization of the ranking model can also be increased as a result of using fewer
features [16].

2.2 Feature selection for ranking

Recently, considerable efforts have been made on feature selection for ranking. Geng
et al [16] present GAS, one of the first attempts to incorporate the importance and
similarity of features for ranking. In particular, it evaluates the importance of features
with ranking metrics like MAP [3] and NDCG [19], and estimates the similarity be-
tween features using agreement between rankings, e.g., with Kendall 7 correlation
coefficient [24]. Then it greedily selects a subset of features with maximum total im-
portance scores and minimum total similarity scores. Metzler [34] proposes a greedy
feature selection algorithm to be used within the Markov random field model for in-
formation retrieval. The model automatically generates models that are more effective
than, or as effective as, models created by carefully selecting the features manually.
Pan et al [40] investigate a boosted regression trees-based feature selection algorithm.
It evaluates the importance of the features based on boosted trees. Then it selects fea-
tures by maximizing the discounted importance of the features, where the importance
of each feature is discounted by feature similarity. Yu et al [60] propose RankWrap-
per and RankSelect, two feature weighting and selection algorithms for learning to
rank. They utilize ranking distances of nearest data points in order to identify the key
features for ranking, demonstrating significant efficiency gains in comparison with
GAS.

Gupta and Rosso [17] present a Kullback-Leibler (KL) divergence-based diver-
gence metric, and select a subset of features for ranking based on features’ expected
divergence over the relevance classes and the importance of features. Lai et al [26]
propose a joint convex optimization formulation for minimizing ranking errors while
simultaneously conducting feature selection. This optimization formulation provides
a flexible framework in which various importance measures and similarity measures
of the features can easily be incorporated. Naini and Altingdvde [37] adopt three
greedy diversification strategies, maximal marginal relevance, MaxSum dispersion
and modern portfolio theory, to the problem of feature selection for ranking. Laporte
et al [29] propose a general framework for feature selection in learning to rank based
on support vector machine (SVM); they investigate both classical convex regulariza-
tions (such as L1 and weighted L1) and non-convex regularization terms (such as
log penalty, Minimax Concave Penalty (MCP) and Lp pseudo norm with p < 1).
Furthermore, they provided an accelerated proximal approach for solving the convex
problems and a re-weighted L1 scheme to address the non-convex regularizations.

All of these algorithms are meant to address feature selection for ranking. To the
best of our knowledge, there is no work targeting feature extraction for ranking.
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2.3 Feature extraction techniques

Feature extraction has been used extensively used in various machine learning sce-
narios for performance gains in terms of accuracy and efficiency. Given its effec-
tiveness, many approaches have been proposed, which are either linear or non-linear
algorithms.

The main linear technique for feature extraction is principal component analysis
(PCA) [23], which performs a linear mapping of high-dimensional data into a lower-
dimensional space in such a way that the variance of the data in the low-dimensional
representation is maximized. Canonical-correlation analysis (CCA) [18] is another
popular linear feature extraction algorithm, which attempts to discover linear com-
binations of the original features that have maximal correlation with each other. In
addition, several probabilistic algorithms, including probabilistic PCA [51], proba-
bilistic CCA [2] and probabilistic partial CCA [36], have been proposed, where a set
of latent variables are introduced for probabilistically interpreting these models.

Non-linear feature extraction algorithms can combine the original features to gen-
erate a set of features in a non-linear way. For example, the locally linear embed-
ding (LLE) method [44] learns the global structure of non-linear manifolds to yield
low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs.
Isomap [50] is capable of discovering the non-linear degrees of freedom that underly
complex natural observations. It can efficiently compute a globally optimal solution
and can be guaranteed to converge asymptotically to the true structure. Besides, some
kernel techniques have been proposed to transform linear feature extraction algo-
rithms into nonlinear ones. For example, kernel PCA [45] is a non-linear form of
principal component analysis (PCA), which can efficiently compute principal com-
ponents in high-dimensional feature spaces through the use of integral operator kernel
functions.

Although feature extraction techniques have been extensively investigated and
shown to demonstrate promising performance gains, to the best of our knowledge,
they have not been explored yet in the context of the ranking problem.

3 Problem statement
3.1 Learning to rank for information retrieval

Let X be a collection of documents, each represented by a vector of feature values. In
information retrieval systems, given a query g, a list of documents from X’ is returned
as search results, where the documents are ranked according to their estimated rele-
vance to q. Given a query ¢, the ground truth, i.e., relevance judgments of documents
with respect to ¢ (produced by human experts) is defined as a function rel : X — Ny,
where Nj is the set of natural numbers (including 0).

Let f : X — R be a ranking function assigning real valued relevance scores
to documents. The goodness of ranking functions can be evaluated by a measure s,
such as precision at n (P@Qn), mean average precision (MAP) [3], or normalized
discounted cumulative gain (NDCG@n) [19].
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Definition 1 (Learning to rank) Given a training dataset X and an evaluation mea-
sure s, the problem of learning to rank is to learn a ranking function f from X such
that s(f) is maximized.

3.2 Dimension reduction for ranking

In learning to rank, each dataset X can be regarded as a document matrix X, xn
with m rows (documents) and n columns (features). In particular, x; is the :-th row
of X, and x; | is a n-dimensional (column) vector that represents a document with
n features. Let g : R® — RF (k < n) be a mapping that projects an n-dimensional
vector space into a k-dimensional space. Let L(+) be the loss function for the learning
to rank task. Our problem is to discover a mapping function g such that the obtained
dataset X’ = g(X) minimizes the loss function.

Definition 2 (Dimension reduction for ranking) Let X, «,, be a document matrix
with m columns and n rows, where each column x;' is a n-dimensional vector,
representing a document with n features. Let G be the set of all possible mapping
functions, where each element g : R* — RF (k < n) is used to project an n-
dimensional vector space into a k-dimensional space. The dimension reduction for
the learning to rank task tries to discover an optimum mapping function g* € G such
that:

argmin L(g(X)), (1)

g9€g

where L(-) is the loss function for the learning to rank task. Then the new dataset can
be generated with g*(X).

In this paper, we consider linear feature extraction for learning to rank as it is the
simplest and most straightforward feature extraction technique in machine learning.
Here, each generated feature is a linear combination of the original features. It uti-
lizes a transformation matrix T to achieve the effectiveness of the mapping function,
aiming to discover an optimal matrix T such that the obtained dataset X' = XT
results in a minimal value of the loss function.

The problem can be understood from the perspective of PCA [23]. Using PCA,
the given matrix X can be approximately decomposed into three lower-rank matrices:

X~PXQT, 2

where X is composed of the singular values of X, P and Q are composed of the left
and right singular vectors of X respectively, and PP = Q' Q = I (the identity
matrix). Thus, a new matrix X’ can be generated as follows:

X' = P2 ~ XQ. 3)

The role of the transformation matrix T in LifeRank is very similar to the right singu-
lar matrix Q in PCA, where QQ maps the document vectors to another space spanned
by the columns of Q before transforming them through ¥ and going back through
P. Hence, in LifeRank we consider the orthonormality constraints of T in our opti-
mization process, i.e., T'T=1
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Definition 3 (Constrained linear feature extraction for ranking) Let X,,, ., be a
document matrix, where the transpose of each row, i.e., x; = d; is a n-dimensional
vector, representing a document with n features. Linear feature extraction for ranking
aims to optimize a transformation matrix T, « 1. by solving the following optimization
problem, so that a new document matrix X'mxk = XiuxnTrxi can be generated,
where each document vector d; can be projected into k-dimensional vector d =
TTdZ

argmin L(XT) such that T'T =1, 4)

T

where L(+) is the loss function for the learning to rank task.

Based on the optimized mapping function g, the new dataset can be generated by
taking the product of the original matrix and the transformation matrix, i.e., X' =
XT.

We have used the example of PCA to help us explain the mechanism of LifeRank.
However, it should be noted that in PCA X' is calculated as an approximation of X,
whereas in LifeRank we generate a transformed representation of the initial matrix, in
order to achieve a better ranking performance. Hence, unlike PCA, X’ as computed
in Definition 3 is not an approximation of X, but a transformation.

4 The LifeRank algorithm

Given a high-dimensional dataset X, LifeRank generates a new low-dimensional
dataset X’ in two phases. In the first phase, LifeRank first preprocesses the training
dataset & into an original matrix X. Then LifeRank optimizes the transformation ma-
trix T for X according to the loss function in Equation 4. In the second phase, Life-
Rank generates low-dimensional training, validation and test matrices with the pro-
jection of T. Then LifeRank constructs new datasets based on the low-dimensional
data matrices.

4.1 Phase I: Generation of the transformation matrix

In this study, we utilize a classic pairwise learning to rank loss function to implement
the function L(-) in Definition 3. Pairwise loss functions are chosen because apart
from being relatively simple and straightforward, they are also intuitive choices for
ranking. Besides, with the assumption that the labels of documents to rank lie in
a rank-differentiable probability space, pairwise loss functions are consistent [27]
and provide upper bounds for measure-based ranking errors like NDCG [12]. Thus,
minimizing a pairwise loss function will maximize the ranking measures [27].

First of all, the training dataset X is preprocessed into an original matrix X and
other information I'x consisting of identities of the documents and queries, relevance
labels, etc. Let D = {d;,ds,...,d,,} be the set of columns (document vectors) in
the matrix X! .., . We regard each pair of vectors (d;, d;) € D x D as an instance,
and the label y; ; € {+1, —1} indicates whether the relevance of the i-th document
is higher or lower than the j-th document, corresponding to the given query. Let
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{t1,t2,...,t;} be the column vectors of T. We try to discover a k-dimensional
vector of weights w such that:

A
arg minT’wb Z log (1 + e Yid (WTTT(di—dJ)JFb)) + §||WH2
V(di,d;),i#)

®)

Lol
suchthatt] t; =<4 ° ' 7 Vij=12.. .k
0, i#]

where the first part calculates the log loss of the ranking accuracy, the second part
is the {2 norm of the parameters for regularization, and A is the coefficient of the
regularization term for trade-off.

We optimize the constrained loss function based on the Lagrange multipliers
method [1, 4] in Equation 5. Let

Srwa A= T (1T )
V(di,d;),i#]

(6)

A k

SIwI* + S ittt + > i (1-tt),
i, =1

where A is a matrix with £ columns and k rows, and elements o; ;. Then, the opti-
mum T, w and b for minimizing £ are the exact results of Equation 5.

In Phase I, we utilize gradient descent to generate the training dataset and the
transformation matrix. Initially, we assign all 1s to the vector wg; so that all of the
generated features in the ranking model have the same initial weight. We initialize
the transformation matrix T in a random manner, following work on matrix gener-
alization problems like matrix factorization-based collaborative filtering [25]. After
initialization, the weight vector w and the factorized matrix can be updated itera-
tively with gradient descent until reaching convergence or the maximum number of
iterations with the given learning rate. The gradients of the function £ with respect to
the variables are calculated as follows:

—yi; T (di —d;)
Vwl = Z e ) +Aw
W(did;)izi LT i (W T (di=dy)+0)
J

—yijwi (di —d;)

Vi L = N
L v(d,d,)izi LT evid (WTTT (di=d;)+b)
Z(al’i + ai,l)ti — 2al,ltl7 l=1,...,k (7
il
oL _ —Yig
0b (WTTT(di~d;)+b)

V(d;dy)izj 1+ €%

oL _Jtlt;,  i#j
L—tit;, i=3j

Vij=1,....k

80(2‘7]‘
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where t;,ts,...t, are the column vectors of T. Since gradient descent generally
does not work with Lagrange multipliers, we use the basic differential multiplier
method (BDMM) [41] for optimization, where the sign inversion for o in Equation 8
makes the optimization stable. Given a learning rate 7, the update formulas of the
gradient descent method are:

w < w—nVal
t—t, —nV, L, forl=1,... )k

beb—n% (8)

oL .
ij € iyt —, fori,j=1,....k
i,]

4.2 Phase II: Generation of low-rank datasets

In LifeRank, Phase II generates all of the datasets for learning to rank, including
the training, validation and test datasets. According to Definition 3, for each origi-
nal matrix X, the generated matrix X’ can be obtained as a product of the original
dataset X and the transformation matrix T, formally X’ = XT. Then, the new
low-dimensional dataset X’ can be generated by integrating matrix X' with other
information I'x that was filtered in the preprocessing step in Phase 1.

4.3 Pseudocode

The pseudocode of LifeRank as a dimension reduction algorithm for ranking is sum-
marized in Algorithm 1. Given the number of generated features k and a set of stan-
dard learning to rank datasets, including a training dataset X', a validation dataset V
and a test dataset £, LifeRank tries to output new low-dimensional datasets X/, )’ and
&’ for training, validation and test, respectively, for the learning to rank procedure.

Algorithm 1 implements the two phases of LifeRank: (I) Lines 1-8 generate
the transformation matrix T based on the original training dataset A’; (II) Using T,
lines 9—10 generate the low-dimensional matrices for training X', validation V' and
test E'. Then, line 11 constructs the low-dimensional training, validation and test
datasets by directly integrating the low-rank matrices and their corresponding infor-
mation filtered in the preprocessing steps in lines 1 and 9.

4.4 Discussion

In this section, we reveal a connection between the feature selection for ranking prob-
lem and the linear feature extraction for ranking problem. In particular, from the
perspective of linear transformations of matrices, the feature selection for ranking
problem can be defined as in Definition 4.
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Algorithm 1: LifeRank: A Linear Feature Extraction Algorithm for Ranking

Input: A training dataset X', a validation dataset V, a test dataset £, the learning rate 7, and the
number of features k& in the set of generated document.
Output: A generated training dataset X", validation dataset V', and test dataset £’, each with k
features.
// Phase I
(X,Ix) « Preprocess(X) ;
T, w,{ai;}ij=1,.. 1, < Initialize(X, k) ;
repeat
W w—nNVwLl;
t <t —nVy Lforl=1,... k;
b b—nk:

oL T .
Qi Qg +nm,forz,] =1,...,k;

X NN N AW N

until Reach convergence or the max iteration;

// Phase II
9 (V,1y),(E,Ig) < Preprocess(V, £);
10 X'+ XT, V' «+ VT, E «+VT;
11 X', V' E" + GenerateDatasets(X', V', E', Ix,Iy,1g);

Definition 4 (Feature selection for ranking) Ler X, «, be a document matrix, where
the transpose of each row x; ' = d; is an n-dimensional vector, representing a docu-
ment with n features. Feature selection for ranking aims to optimize a transformation
matrix T, « 1 by solving the following optimization problem, so that a new document
matrix X}, ., = XyuxnTnxk can be generated, where each n-dimensional docu-
ment vector d; can be projected into a k-dimensional vector d;; = T'd,:

Vti i T: ti i = 0, 1
arg min L(g(XT)) such that 2 < s = 10,1}
T T T=1

9)
Based on the optimized mapping function g, the new low-rank matrix can be gener-

ated as a product of the original matrix and the transformation matrix, i.e., X' =
XT.

The k columns of the transformation T mentioned in Defintion 4 present the k itera-
tions of the feature selection processes. The constraints in Equation 9 guarantee that
there is only one “1” in each column of the transformation matrix T and the others
are all “0,” indicating that each feature selection process only selects one feature. The
second constraint T' T = I guarantees that the position of the unique “1” in each
column is different from other columns, which is the index of the selected feature in
that step.

Since the elements in the transformation matrix T can be any real numbers in
Definition 3 while they are only either O or 1 in Definition 4, Definition 3 generalizes
Definition 4, i.e., the problem of linear feature extraction for ranking generalizes the
problem of feature selection for ranking. Because of this, linear feature extraction
is expected to outperform or be at least as good as any feature selection technique.
The linear feature extraction is expected to use more computational resources than
feature selection, since former deals with the search space in real numbers and the
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latter with binary case. However, this computational overhead is the tradeoff for the
higher performance expected to be achieved by the extracted features, when utilized
for learning to rank.

5 Experimental setup
5.1 Research questions

We list the research questions that guide the remainder of the paper.

RQ1 What is the performance of LifeRank in generating low-dimensional datasets?
Does LifeRank outperform state-of-the-art feature selection algorithms? (See §6.1)

RQ2 Can the importance and redundancy of the features generated by LifeRank
outperform those selected by feature selection algorithms? (See §6.2)

RQ3 What is the effect of the orthonormality constraints of the transformation ma-
trix in Equation 4? Does it help enhance the performance of ranking predictions?
(See §6.3.)

5.2 Datasets

In this study, we use the MQ2007 and MQ2008 datasets from LETOR 4.0 [42] and
OHSUMED from LETOR 3.0 [43] to evaluate our algorithm. The LETOR! datasets
are commonly used benchmarks in learning to rank. LETOR 4.0 is the latest version,
which was released in July 2009. It uses the Gov2 web page collection (~25M pages)
and two query sets from the Million Query track of TREC 2007 and TREC 2008,
which are referred to as MQ2007 and MQ2008. We use both MQ2007 and MQ2008
in our experiments. In MQ2007, there are about 1700 queries and about 70,000 query-
document pairs, while MQ2008 has 800 queries and about 15,000 query-document
pairs for training, validation and testing. In both datasets, each query-document pair
has 46 features. We also use the OHSUMED dataset from LETOR 3.0, which was re-
leased in December 2008. OHSUMED is extracted from the online medical informa-
tion database MEDLINE. It contains 106 queries and about 16,000 query-document
pairs, where each query-document pair has 45 features.

In all the datasets that we use, relevance of documents with respect to queries is
judged at three levels: 2 (definitely relevant), 1 (partially relevant), and O (not rele-
vant). In our experiments, we use 5-fold cross validation. In each fold, 60% queries
are used for training, 20% for validation and and the remaining 20% for testing. The
performance numbers reported are averaged over the five folds.

5.3 Baselines

LifeRank aims to generate low-dimensional datasets for ranking. In this paper, we
utilize three baselines to evaluate the datasets generated by our algorithm:

I http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Original datasets: We firstly use the original LETOR datasets as our first baseline,
on which no selection or generation has been performed.

Datasets generated by GAS: GAS [16] incorporates importance and similarity in-
formation of the features into ranking. It greedily selects a subset of features by
maximizing the total importance scores meanwhile minimizing the total similar-
ity scores.

Datasets generated by FSMRank: FSMRank [26] trains a feature selection model
with machine learning, which can select a subset of features meanwhile minimiz-
ing the ranking errors.

We then run Linear Regression [30]-based learning to rank and RankSVM? [21]
to determine how well these datasets can address the ranking problem. The former
makes pointwise predictions on the relevance of the documents by linear regression,
which is implemented in the RankLib learning to rank toolkit.? The latter predicts
pairwise ranking relation between each pair of documents directly by support vector
machine (SVM). These are classical pointwise and pairwise learning to rank algo-
rithms, respectively, with which we can clearly demonstrate the effects of dimension
reduction.

Since LifeRank uses a linear approach for feature extraction, it is expected to
show effectiveness mainly for linear learning-to-rank methods. This is the reason
why we have chosen SVMRank and Linear Regression for experimentation.

5.4 Evaluation measures
5.4.1 Measures for ranking

We use two standard ranking accuracy metrics to evaluate the rankings generated
by learning to rank algorithms: mean average precision (MAP) [3] and normalized
discount cumulative gain (NDCG@n) [19].

Statistical significance of observed differences between the performance of two
runs is tested using a two-tailed paired t-test and is denoted using 4 (or ¥) for strong
significance for o = 0.01; or © (or V) for weak significance for o = 0.05.

5.4.2 Measures for features

We consider two metrics to evaluate the quality of the features: importance and re-
dundancy.

The importance of each feature can be evaluated by the ranking performance
when the feature is used as a ranking model to order the documents. In particular, we
use NDCG @5 for evaluation. Since for calculating these measures, for some features
larger values correspond to higher ranks while for others smaller values lead to higher
ranks, we utilize the strategy in GAS [16] for evaluation: We order the documents
twice in ascending and descending manners respectively, and take the larger score as

2 https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
3 nttps://sourceforge.net/p/lemur/wiki/RankLib/
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the importance score of the features. Then we calculate the average importance of the
features as the importance of the set of features F' = {f1, fa,..., fx}:

k
Tmp(F) = 1 3" max {eva(X, ), cva(¥, ~f1)},
=1

where the function eva(X, f;) returns the evaluation results of the ranking model f;
on the dataset X

The redundancy of features can be defined as the average similarity between each
pair of features. In practice, we regard each feature as a ranking model to order the
documents, and then calculate the similarity between each pair of features as the
average similarity of their document rankings associated to different queries. Let )
be the set of queries in the given dataset, each associated with a set of documents
for ranking. The redundancy of the features F' = {f1, f2,..., fi} is calculated as
follows:

2 1 .
Rdd(F) = W=D 3 @i 3 sim (a§q>,a§q>) ,

fi,fi€Fi>] q€eQ

where afq) is the ranking of the document associated to the query ¢ when the feature

fi is used as the ranking model to order the documents. In this paper, we take the
absolute value of Kendall’s 7 correlation coefficient [24] as the similarity metric for
rankings:
N, c N, d
7(04,05) = N, TN, (10)
where N, and N, are the numbers of the concordant pairs and discordant pairs re-
spectively between rankings o; and ;.

The range of 7 (0;,0;) is [—1, 1], where the sign indicates that the correlation
between o; and o is either positive or negative, and the absolute value indicates the
strength of the correlation. Since positive and negative values should not neutralize
and we only consider the strength of the correlations, we take the absolute value of
Kendall’s 7 as the similarity metric in the definition of redundancy.

6 Experimental results
6.1 Performance on generated datasets

Tables 1, 2 and 3 list the results obtained in our experiments on the MQ2007, MQ2008
and OHSUMED datasets, respectively. They show the NDCG@ 1-10 and MAP scores
for the RankSVM and Linear Regression learning to rank algorithms on 4 categories
of datasets: the original datasets and 3 datasets generated by dimension reduction al-
gorithms including GAS, FSMRank and our LifeRank. For each dimension reduction
algorithm, we consider k generated features, with k = 5, 10, 15, 20. The results for
the original dataset in the tables are independent of the value of k, but are repeated
nevertheless for ease of comparison. The values in bold represent the best perfor-
mance among GAS, FSMSVM and LifeRank.
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Table 1: Ranking performance on MQ2007 and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM
Performance for Original is independent of value of k (corresponds to original dataset)

Performance for RankSVM

NDCG (@

@2

@3

@4

@5 @6

@7

@8

@9

@10

MAP

k=5

Original  0.4079
GAS 0.3751
FSMSVM 0.3598*
LifeRank 0.3925

0.4007
0.3807
0.3703*
0.3925

0.4009
0.38694
0.37734
0.3975

0.4030
0.3946
0.38114
0.4009

0.4077 0.4129
0.3980 0.4068
0.3871* 0.39414
0.4062 0.4118

0.4201
04113
0.39974
0.4162

0.4275
0.4177
0.40614
0.4209

0.4336"
0.4242
0.4129*
0.4256

0.4391"
0.4290
0.41934
0.4312

0.4615"
0.4563
0.4512
0.4539

k=10

Original  0.4079
GAS 0.3897
FSMSVM 0.3919
LifeRank 0.4037

0.4007
0.38934
0.3917
0.4023

0.4009
0.39144
0.3982°
0.4089

0.4030%
0.39654
0.40274
0.4117

0.4077% 0.41294
0.4029% 0.40984
0.4079% 0.41344
0.4161 0.4215

0.42014
0.41534
0.41874
0.4264

0.4275
0.42094
0.42394
0.4312

0.4336
0.42724
0.42904
0.4370

0.4391
0.43434
0.43494
0.4423

0.4615
0.4558
0.4593
0.4634

k=15

Original  0.4079
GAS 0.3942
FSMSVM 0.3905
LifeRank 0.3972

0.4007
0.3954
0.3937%
0.4032

0.4009
0.3998
0.4005
0.4061

0.4030
0.4023
0.4060
0.4082

0.4077 0.4129
0.4063* 0.4126°
0.4106 0.4144
0.4141 0.4194

0.4201
0.4195
0.4201
0.4242

0.4275
0.4256°
0.4250°
0.4308

0.4336
0.4316*
0.43094
0.4376

0.4391
0.43724
0.43654
0.4436

0.4615
0.45934
0.45894
0.4635

k=20

Original ~ 0.4079
GAS 0.4014
FSMSVM 0.3882%
LifeRank 0.4097

0.4007
0.3967*
0.39294
0.4077

0.4009
0.4007
0.4004
0.4058

0.40304
0.4027*4
0.4060
0.4106

0.4077% 0.41294
0.40884 0.41374
0.4096 0.4138%
0.4153  0.4213

0.4201%
0.41894
0.42034
0.4265

0.4275
0.42574
0.4259
0.4311

0.4336
0.4326%
0.4310%
0.4374

0.4391
0.4394%
0.43684
0.4438

0.4615
0.46014
0.4595%
0.4640

Performance for Linear Regression

NDCG @1

@2

@3

@4

@5 @6

@7

@8

@9

@10

MAP

k=5

Original ~ 0.3750
GAS 0.3712
FSMSVM 0.3554*
LifeRank 0.3852

0.3854
0.3751
0.36344
0.3874

0.3882
0.3797%
0.36734
0.3908

0.3926
0.3851%
037414
0.3955

0.3979  0.4034
0.3894  0.3952
0.3780* 0.38724
0.3962  0.4026

0.4088
0.40114
0.39294
0.4089

0.4154
0.4071%
0.40024
0.4149

0.4208
0.4136%
0.40764
0.4213

0.4277
0.4196%
0.41454
0.4279

0.4497
0.4462
0.4489
0.4507

k=10

Original  0.3750
GAS 0.3886
FSMSVM 0.3903
LifeRank 0.3852

0.3854
0.3879
0.3951
0.3920

0.3882
0.3881
0.3936
0.3926

0.3926
0.3929
0.3950
0.3976

0.3979  0.4034
0.3980 0.4031
0.3991 0.4049
0.4026 0.4073

0.4088
0.4090
04111
0.4146

0.4154
0.4146
0.4166
0.4206

0.4208
0.4198
0.4223
0.4270

0.4277
0.4261
0.4285
0.4312

0.4497
0.4491
0.4494
0.4507

k=15

Original ~ 0.3750
GAS 0.3767
FSMSVM 0.3800
LifeRank 0.3842

0.3854
0.3849
0.3825
0.3888

0.3882
0.3913
0.3855
0.3943

0.3926
0.3954
0.38824
0.3984

0.3979  0.4034
0.4000 0.4070
0.3922* 0.3976*
0.4019 0.4091

0.4088%
0.4133
0.4035*
0.4161

0.4154
0.4191
0.40914
0.4207

0.4208%
0.4250
0.4147*%
0.4274

0.42774
0.4315
0.42154
0.4336

0.4497
0.4528
0.44414
0.4513

k=20

Original  0.3750
GAS 0.3783
FSMSVM 0.3742
LifeRank 0.3828

0.3854
0.3897
0.3867
0.3894

0.3882
0.3956
0.3916
0.3912

0.3926
0.3990
0.3937
0.3948

0.3979
0.4021
0.3970
0.4014

0.4034
0.4079
0.4011
0.4068

0.4088
0.4120
0.4062°
0.4121

0.4154
0.4178
0.4132
0.4184

0.4208
0.4255
0.4184
0.4243

0.4277
0.4313
0.42444
0.4306

0.4497
0.4521
0.4483
0.4514
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Table 2: Ranking performance on MQ2008 and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM
Performance for Original is independent of value of k (corresponds to original dataset)

Performance for RankSVM
NDCG @l @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
k=5
Original  0.3712 0.3933% 0.4238% 0.4485% 0.4672% 0.4814" 0.4875% 0.4531% 0.2234 0.2284 04714
GAS 0.3678  0.3983% 0.4213% 0.4492% 0.4665* 0.4800* 0.4862* 0.4522% 0.2207* 0.2246* 0.4714
FSMSVM 0.3780 0.4126 0.4384 0.4599 0.4761 0.4909 0.4968 0.4616 0.2284 0.2326 0.4776
LifeRank 0.3767 0.4168 0.4389 0.4606 0.4806 0.4921 0.4976 0.4627 0.2280 0.2329 0.4788
k=10
Original  0.3712 0.3933% 0.4238° 0.4485% 0.4672* 0.4814 0.4875% 0.4531*% 0.2234 0.2284% 0.4714
GAS 0.3698 0.4015% 0.4292 0.4565 0.4732 04862 0.4929 045514 0.2217* 0.2266* 0.4776
FSMSVM 0.3759 0.4157 0.4371 0.4589 0.4781 0.4925 0.4962 04617 0.2276 0.2322 0.4793
LifeRank 0.3763 0.4181 0.4384 0.4612 0.4796 0.4900 0.4972 0.4625 0.2281 0.2345 0.4792
k=15
Original ~ 0.3712  0.3933% 0.4238% 0.4485* 0.4672*% 0.4814* 0.4875% 0.4531% 0.2234* 0.2284* 0.4714*
GAS 0.3720 0.3984% 0.4320 0.4533% 0.4711% 04851 0.4902° 0.4543% 0.2223% 0.2279% 0.4742
FSMSVM 0.3788 0.4165 0.4351 0.4557 0.4761 0.4905 0.4967 0.4613 0.2265 0.2311 0.4788
LifeRank 0.3771 0.4140 0.4379 0.4622 0.4804 0.4920 0.4972 0.4633 0.2310 0.2349 0.4792
k=20
Original  0.3712  0.3933 0.4238“ 0.4485* 0.4672°% 0.4814* 0.4875* 0.4531*% 0.2234% 0.2284% 0.4714
GAS 0.3656  0.4027 04313 0.4527° 04720 0.4850 0.4921 0.4566 02254 0.2298 0.4719
FSMSVM 0.3737 0.4144 04343 0.4588 0.4757 0.4902 0.4946 0.4590 0.2249 0.2302 04754
LifeRank 0.3712 0.4045 0.4363 0.4619 0.4763 0.4903 0.4971 0.4617 0.2293 0.2338 0.4751
Performance for Linear Regression
NDCG @] @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
k=5
Original  0.3465 0.3617% 0.3961 0.4225 0.4407 0.4558% 0.4684% 0.4746% 0.4806* 0.4871% 0.45504
GAS 0.3537 036912 0.3947 0.4184 0.4390 04584 0.4692 04776 04838 0.4892 0.4630
FSMSVM 0.3541  0.3755% 0.4002 0.4191 0.4396% 0.4563% 0.4681° 0.4791% 0.4842° 0.4903% 0.4593%
LifeRank 0.3691 0.3907 0.4089 0.3955 0.4491 0.4664 0.4772 0.4864 0.4924 0.4979 0.4685
k=10
Original ~ 0.3465% 0.3617% 0.3961% 0.4225 0.4407% 0.4558% 0.4684% 0.4746* 0.4806* 0.4871* 0.4550*
GAS 0.3605 0.3804 0.3990 0.4282 0.4490 0.4628 0.4742 0.4840 0.4895 0.4942 0.4669
FSMSVM 0.3512 0.3779 04017 04213 0.4442 04601 0.4702% 0.4789% 0.4847 0.4910 0.4622
LifeRank 0.3698 0.3857 0.4085 0.3976 0.4501 0.4659 0.4791 0.4859 0.4908 0.4970 0.4686
k=15
Original ~ 0.3465 0.3617* 0.3961 0.4225 0.4407 0.4558* 0.4684 0.4746* 0.4806* 0.4871% 0.4550*
GAS 0.3652 0.3795 0.4114 0.4302 0.4497 04641 0.4757 0.4845 0.4914 0.4964 0.4686
FSMSVM 0.3631 0.3822 0.4053 0.4285 0.4527 0.4669 0.4774 0.4850 0.4901 0.4956 0.4647
LifeRank 0.3618 0.3842 0.4032 0.4296 0.4482 0.4657 0.4766 0.4852 0.4904 0.4955 0.4662
k=20
Original ~ 0.3465% 0.3617% 0.3961 0.4225 0.4407% 0.4558 0.4684 0.4746° 0.4806* 0.4871% 0.4550*
GAS 0.3588 0.3801 0.4100 0.4300 0.4486 0.4650 0.4744 0.4843 0.4906 0.4961 0.4660
FSMSVM 0.3601% 0.3803 0.4075 0.4266 0.4525 0.4668 0.4772 0.4833 0.4889 0.4945 0.4661
LifeRank 0.3712 0.3820 0.4018 0.3948 0.4495 0.4628 0.4748 0.4833 0.4897 0.4956 0.4662




Linear Feature Extraction for Ranking 17

Table 3: Ranking performance on OHSUMED and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM
Performance for Original is independent of value of k (corresponds to original dataset)

Performance for RankSVM
NDCG @l @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
k=5

Original  0.5416 0.5076 0.4775 0.4565% 0.4439% 0.4452 04433 04405 0.4338% 0.4300* 0.4345*
GAS 0.5332 04901 0.4739 0.4630% 0.4578% 0.4503“ 0.4432% 0.4398% 0.4374* 0.4340* 0.4642"
FSMSVM 0.57717 0.4889 0.4772 0.4749 0.4694% 0.4609 0.4622 0.4559 0.4529 0.4518 0.4728
LifeRank 0.5170 0.5000 0.5015 0.4950 0.4905 0.4749 0.4701 0.4628 0.4684 0.4668 0.4523

k=10

Original  0.5416 0.5076 0.4775 0.4565% 0.4439% 0.4452% 0.4433% 0.4405% 0.4338% 0.4300* 0.4345%
GAS 0.5677 0.5390 0.5088 0.4944 0.4873 0.4673 0.4652 04605 04549 0.4507% 0.4466
FSMSVM 0.5296  0.4866* 0.4794* 0.4745* 0.4636* 0.4602° 0.4558% 0.4531% 0.4484% 0.4463% 0.4459
LifeRank 0.5518 0.5373 0.5185 0.5053 0.4910 0.4811 0.4774 0.4699 0.4692 0.4663 0.4505

k=15

Original  0.5416 0.5076 0.4775 0.4565% 0.4439% 0.4452° 0.4433 0.4405% 0.4338% 0.4300* 0.4345*
GAS 0.5771 05068 0.4850 0.4713 0.4656 0.4552 0.4524 04494 0.4439% 0.4419* 044024
FSMSVM 0.5834 0.5317 0.5021 0.4856 0.4723 0.4660 0.4606 04557 04525 0.4500% 0.4452%
LifeRank 0.5769 0.5344 0.5065 0.4942 0.4835 0.4713 0.4672 0.4630 0.4632 0.4628 0.4536

k=20

Original 0.5416 0.5076 0.4775% 0.4565% 0.4439% 0.4452% 0.4433% 0.4405% 0.4338% 0.4300% 0.43454
GAS 0.5519 0.5051 0.4838% 0.4761% 0.4710*% 0.4520% 0.4473% 0.4463% 0.4401% 0.4405% 0.43874
FSMSVM 0.5173% 0.4848% 0.4816% 0.4766 0.4642% 0.4522% 0.4452% 0.4411* 0.4388% 0.4387% 0.4441*
LifeRank 0.5805 0.5416 0.5204 0.5029 0.4976 0.4834 0.4765 0.4725 0.4669 0.4656 0.4519

Performance for Linear Regression
NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
k=5

Original  0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 0.4302 0.4333
GAS 0.4762 0.4491 0.4489 0.4466 0.4378 0.4286 0.4275 0.4209 0.4201 0.4202 0.4549
FSMSVM 0.5271 0.4852 0.4686 0.4589 0.4513 0.4403 0.4342 0.4335 0.4306 0.4292 0.4655
LifeRank 0.4941 0.4736 0.4554 0.4586 0.4485 0.4459 0.4425 0.4402 0.4347 0.4341 0.4599

k=10

Original  0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 04311 04302 0.4333
GAS 0.5202 0.4883 0.4680 0.4597 0.4543 0.4460 0.4415 0.4354 0.4312 0.4275 0.4339
FSMSVM 0.5082 0.4556 0.4502 0.4395 0.4333 0.4245 0.4259 04223 0.4216 04180 0.4344
LifeRank 0.5330 0.4866 0.4680 0.4681 0.4601 0.4494 0.4436 0.4423 0.4370 0.4366 0.4358

k=15

Original  0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 04343 04311 04302 0.4333
GAS 0.5105 0.4941 04791 04654 04510 0.4412 04351 04331 04303 0.4301 04298
FSMSVM 0.4984 0.4611 0.4639 0.4567 0.4485 0.4400 0.4325 0.4321 0.4302 0.4282 0.4405
LifeRank 0.5342 0.4839 0.5001 0.4781 0.4678 0.4529 0.4437 0.4412 0.4370 0.4353 0.4399

k=20

Original  0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 04302 0.4333
GAS 0.5050 0.4943% 0.4813* 0.4706" 0.4546* 0.4497" 0.4389* 0.4367* 0.4324* 0.4299* 0.4308*
FSMSVM 0.4984 0.4706 0.4574 0.4510 0.4489 0.4416 0.4370 0.4365 0.4341 0.4315 0.4369
LifeRank 0.5264 0.5021 0.4882 0.4686 0.4571 0.4467 0.4439 0.4406 0.4359 0.4341 0.4369
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Overall, from the tables we can see that: (1) The performance of ranking algo-
rithms can be maintained or slightly improved on the datasets generated by dimension
reduction techniques. (2) The performance of the ranking algorithms on the datasets
generated by LifeRank is higher than those generated by GAS and FSMRank in most
cases. Let us now take a closer look.

6.1.1 Performance of RankSVM

For RankSVM, we can see that LifeRank clearly shows improvements over the orig-
inal datasets for all the three benchmarks (MQ2007, MQ2008 and OHSUMED) in
terms of NDCG@1-10 as well as MAP. The only exception is MQ2007 for k = 5,
where the performance of LifeRank as well as the other generated datasets does not
beat the original dataset. We can also see from the tables that LifeRank clearly out-
performs other generated datasets (GAS and FSMSVM) on NDCG@ 1-10 for all the
benchmarks and all values of k.

In terms of MAP, LifeRank outperforms the other generated datasets in most
cases. The few exceptions include the case for MQ2007, when GAS has a higher
MAP for k = 5. For MQ2008, FSMSVM attains slightly higher MAP score than
LifeRank for £ = 10 and k£ = 20, but these differences are not significant. Also,
for OHSUMED when k = 5, the MAP score attained by LifeRank is lower than
FSMSVM and GAS, but it is still an improvement over the original dataset.

6.1.2 Performance of Linear Regression

Also in the case of Linear Regression, for all three benchmarks (MQ2007, MQ2008
and OHSUMED) LifeRank clearly shows improvements over the original datasets in
terms of NDCG@1-10 as well as MAP. The only exception is MQ2007 for k = 5,
where the original dataset performs better than LifeRank as well as the other gener-
ated datasets.

On NDCG@1-10, for MQ2007 LifeRank gives the best performance for all val-
ues of k, except for £ = 20, where GAS gives the best performance. For MQ2008,
LifeRank gives the best performances for £k = 5 and £ = 10 on NDCG @ 1-10. How-
ever, for k = 15 and k = 20, there is mixed performance where all GAS, FSMSVM
and LifeRank give best performances in certain cases. For, OHSUMED, LifeRank
gives the best performance on NDCG@ 1-10 in most cases.

In terms of MAP, LifeRank gives the best performance for MQ2007 for k =
5 and k = 10, whereas for £ = 15 and £ = 20 the best performance is given
by GAS. For MQ2008, LifeRank outperforms others for all values of &, except for
k = 15 where the best performance is given by GAS. Moreover, for OHSUMED,
FSMSVM outperforms the others for £ = 5 and k = 15, while LifeRank gives the
best performance for £ = 10. In case of & = 20, there is a tie between LifeRank and
FSMSVM.
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6.1.3 Statistical Significance Overview

In Tables 1, 2 and 3, markups are provided to denote the statistical significance be-
tween LifeRank and the following baselines: original dataset, GAS and FSMSVM.
It should be noted that the original dataset is independent of the values of k, but is
repeated in the table to indicate statistical significance between it and datasets gener-
ated by LifeRank for different values of k.

It can be observed from Table 1 that for MQ2007 in the case of RankSVM, there
is strong to weak significance between LifeRank and the baselines in most cases
across the metrics, while there is no significance shown against original for £ = 15.
Moreover, for k = 5, significance is shown against original and GAS in few cases. For
Linear Regression, there is strong significance shown against FSMSVM for k = 5
and k£ = 15, though there is not much significance shown for £ = 10 and & = 20.
Also, weak significance is shown against GAS in few cases for £ = 5 and against
original for k = 15.

Table 2 for MQ2008 shows no statistically significant differences between Life-
Rank and FSMSVM for RankSVM. There is weak to strong statistical significance
for LifeRank against original dataset for most cases and against GAS mainly for
k = 5,10 and 15. For Linear Regression, LifeRank shows weak to strong statisti-
cal significance against original in most cases, GAS in no cases and FSMSVM in few
cases. Moreover, Table 3 for OHSUMED shows statistical significance for RankSVM
in many cases against the baselines, whereas there is statistical significance observed
for Liner Regression for few cases. The comparative lack of statistical significance
seen for MQ2008 and OHSUMED can most probably be attributed to the relatively
small size of these datasets.

6.2 Quality of the generated features

Table 4 lists the quality scores of the features from four datasets: the original datasets
and the three datasets generated by GAS, FSMRank and LifeRank, respectively, for
k = 10.

Table 4: Performance of the generated features.
MQ2007 MQ2008 OHSUMED
Imp Rdd Imp Rdd Imp Rdd

Original ~ 0.2671 0.4833 0.3297 0.5318 0.3763 0.5592
GAS 0.2643 0.3242 0.3235 0.3308 0.3603 0.3904
FSMRank 0.3005 0.4706 0.3723 0.5276 0.4170 0.5412
LifeRank 0.3214 0.4606 0.4095 0.5758 0.4422 0.8881

Datasets

From the table we see that: (1) GAS can significantly reduce the redundancy of the
features. The redundancy of the features selected by GAS is the lowest among the
four datasets. However, the importance of the features selected by GAS is also lowest
and even slightly lower than that of the original datasets. (2) FSMRank can improve
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the importance of the features while reducing their redundancy, but the differences
in terms redundancy are subtle. (3) LifeRank can sharply improve the importance of
the features. The importance of the features generated by LifeRank is highest among
the four datasets. Besides, the redundancy of the features can also be slightly reduced
by LifeRank for MQ2007 but deteriorated for MQ2008 and OHSUMED. Worse re-
dundancy for LifeRank in comparison with GAS and FSMSVM could be because
of the reason that, while these baselines are feature selection methods, for LifeRank
each extracted feature is a linear combination of the original features. Moreover, it
can be observed that for the larger dataset MQ2007, redundancy for LifeRank is
comparable to the baselines, and even better than FSMSVM. However, for smaller
dataset MQ2008, the redundancy is worse than the baselines. For the smallest dataset
OHSUMED, it is worse than the baselines by a greater difference.

6.3 Effect of the Orthonormality Constraints

To confirm that the orthonormality constraints used in LifeRank do indeed contribute
to performance gains, we re-generated the datasets for the benchmarks MQ2007,
MQ2008 and OHSUMED using LifeRank for £ = 10, but this time without the in-
corporation of the constraints in its algorithm in Phase I (see Algorithm 1, line 1-8).
Table 5 shows the comparison of performances of ranking algorithms, for datasets
generated by LifeRank and LifeRank without orthonormality constraints (represented
by LifeRank?). Moreover, markups are presented in the table to denote to the statis-
tical significance between LifeRank and LifeRankNO.

From the results in Table 5 we see that the datasets generated by LifeRank show
significant improvements in performance over the datasets generated by LifeRank™®
for both learning to rank algorithms, RankSVM and Linear Regression. Performance
gains can be observed on all three benchmarks and across all performance measures
(NDCG@1-10 and MAP). Hence, these results show that the usage of orthonormal-
ity constraints is beneficial in the LifeRank algorithm. Also, strong statistical signif-
icance between LifeRank and LifeRank™® can be observed for all three benchmarks
for RankSVM as well as Linear Regression, across all performance measures, except
for a small number of cases where weak or no statistical significance is seen.

7 Conclusion

In this paper, we have addressed the feature extraction problem for learning to rank,
and have proposed LifeRank, a linear feature extraction algorithm for ranking. Life-
Rank regards each dataset for ranking as a matrix, referred to as the original matrix.
We then optimize a transformation matrix by minimizing a classic pairwise learning
to rank loss function, so that we can discover the optimal one that matches the ranking
task. Then a new matrix (dataset) can be generated by the product of original matrix
and transformation matrix. Extensive experiments on benchmark datasets show the
performance gains of LifeRank in comparison with the state-of-the-art algorithms.
The performance of LifeRank has been evaluated for RankSVM and Linear Re-
gression. In future work, its benefits for other learning to rank algorithms could be
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Table 5: Effect of orthonormality constraints on datasets for £ = 10.
Statistical significance shown for LifeRank against LifeRankNO

Performance for RankSVM
NDCG @l @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
MQ2007

LifeRank 0.4037* 0.4023* 0.4089* 0.4117* 0.4161* 0.4215* 0.4264* 0.4312* 0.4370* 0.4423* 0.4634*
LifeRank™® 0.3808 03881 0.3923 0.3939 0.3996 0.4044 0.4081 0.4148 0.4198 04269 0.4528

MQ2008

LifeRank 0.3763 0.4181* 0.4384° 0.4612* 0.4796* 0.4900° 0.4972° 0.4625“ 0.2281* 0.2345* 0.4792°
LifeRank™C 0.3618 0.3987 0.4264 0.4429 04657 04807 04887 04552 02199 02236 0.4704

OHSUMED

LifeRank 0.5518 0.5373% 0.5185* 0.5053* 0.4910* 0.4811° 0.4774* 0.4699* 0.4692* 0.4663* 0.4505*
LifeRank™° 0.5703 0.4900 0.4707 04673 04595 0.4522 0.4450 0.4399 04360 04312 0.4404

Performance for Linear Regression
NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP
MQ2007

LifeRank  0.3852* 0.3920* 0.3926* 0.3976* 0.4026* 0.4073* 0.4146* 0.4206* 0.4270* 0.4312* 0.4507*
LifeRank™C 0.3584 03691 0.3729 03764 0.3816 03862 0.3918 03980 0.4034 04084 0.4338

MQ2008

LifeRank 0.3698* 0.3857* 0.4085* 0.3976* 0.4501* 0.4659* 0.4791* 0.4859* 0.4908* 0.4970* 0.4686*
LifeRank™° 0.3295 03519 0.3689 03934 04144 04337 04446 04550 0.4615 04682 0.4346

OHSUMED

LifeRank 0.5330 0.4866 0.4680° 0.4681* 0.4601* 0.4494* 0.4436* 0.4423* 0.4370* 0.4366* 0.4358*
LifeRank™© 0.4571 0.4383 04111 04014 03915 03844 03784 03710 0.3689 0.3632 0.3963

analysed. Moreover, nonlinear feature extraction techniques like some kernel tricks
could be incorporated in LifeRank to further improve its performance. Besides, we
plan to try more learning to rank loss functions like some state-of-the-art listwise loss
functions for performance gains of our algorithm. In addition, we believe it would be
interesting to establish theoretical results on dimension reduction for ranking, includ-
ing feature extraction and feature selection-based algorithms, especially concerning
retrieval performance.
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