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called Fourth Industrial Revolution or Industry 4.0. According to the definitions of one of its 

ideologists, it is characterized by a fusion of technologies that is blurring the lines between the 

physical, digital, and biological spheres [1]. The era of the Industry 4.0 does not bring new 

technological solutions or the evolution of the old ones; it offers a principally new vision on how the 

company should operate: manufacture products, provide services, manage assets and do business in 

general [2,3]. The main design principles of the Industry 4.0 are: interoperability of all its 

components (machines, devices, sensors, software, data, people, etc.); virtualization of the physical 

world; decentralization of control and decision-making; real-time capability; use of service-oriented 

architectures; and modularity of the systems [4]. 

The leading consulting groups report that many industrial and service-oriented sectors are 

facing strong barriers set by the new non-trivial tasks appeared in the period of transferring to the 

technologies 4.0 [5,6]. The main implementation barriers are related to coordination of actions across 

different organizational units, cybersecurity issues, data ownership when working with third-party 

providers, lack of workers' courage and necessary talents [6]. Companies fail to ensure sufficient 

digital culture and are not capable of creating a vision of the future.  

The success of the transformational processes, within the increased uncertainty and system 

resistance context, is strongly dependent on the expertise of individual employees, change agents, 

who are introducing new business models, launching smart processes, developing smart products and 

providing assistance and guidance to others. To widely deploy Industry 4.0 solutions, companies 

need quite many skillful change agents. This is especially critical for a successful decision-making. 

Wide adoption and understanding of the new decision-making models and practices require 

continuous organizational learning, experience transfer and benchmarking.  

While the routine and physically demanding jobs have become robotized almost completely, 

a creative, strategic or emergent decision-making is still a human-dominated sphere today. However, 

the rise of the Internet-of-Everything and emerging advances in AI (particularly, in Deep Learning) 

is rapidly changing such human dominance. Artificial decision-makers and problem solvers are 

capable of providing more accurate and fast decisions and they will replace many of human 

employees. Artificial agents, which are installed in various planning, production, and management 

processes, can take the initiative and responsibility of making decisions throughout the whole factory 

life-cycle and implement the Intelligence-as-a-Service paradigm for the real-time automated 

decentralized decision-making. This brings up an issue of the artificial decision makers' learning and 

benchmarking.   

Current technologies are focused mainly on the normative models emphasizing the rational 

aspects of decision-making. Though the creative cognitive capabilities of an agent's behavior are as 

important as the features of the environment, in which this behavior takes place. New models of 
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judgment and decision-making must follow the principles of cognition to augment the axioms of 

decision rationality. 

In our research, we focus on the models capable of capturing cognitive aspects of creative 

human decision-making based on personal values and preferences and their application in industrial 

cyber-physical systems. We create a mechanism of cloning humans' decision models aiming to 

approach automatic decision-making but still keeping a human in the loop (Collective-Intelligence-

as-a-Service). We aim to answer: how to digitize, evaluate, appreciate, share and reuse expert 

decision-making skills and experience; how to embed cognitive aspects of decision-making and 

problem solving into the existing schemes of the industrial operation; how to create an infrastructure 

around a digital pool of best industrial practices; how to enhance human-machine collaboration; how 

to make decisions on the basis of self-awareness.  

2. Related Work 

Creation of intelligent physical and software-based systems, which are programmed to learn and 

adapt, is among the top strategic technology trends announced in the latest analytical reports [5, 6]. 

Interaction of people, devices, content, and services, sometimes called Intelligent Digital Mesh [7], 

has evident effect on transformations across industries and fields: the virtual and physical worlds 

are becoming more intertwined due to new bridging technologies enabling advanced 

communication and interaction of diverse intelligent objects, both human beings and machines.  

New possibilities for manufacturing environment are promising. The biggest challenges 

here are continuously changing markets with growing demand for customized and complex products, 

on the one hand, and organization of the production in a competitive, competent and sustainable way, 

on the other one [8]. The solution is foreseen in the next generation of industrial automation systems 

capable of the autonomous control, forecasting and streamlined planning, smart multi-objective 

optimization, dynamic and adaptive reconfiguration of the manufacturing and logistic structures, 

customized production, cognitive behavior, advanced analytics and on-the-fly complex decision-

making. In order to meet these requirements, the automation systems are implemented as cyber-

physical systems (CPS). They integrate computing systems and physical counterparts, such as 

sensors and mechatronic components, into a network structure [9]. Communication between 

elements within a CPS and exchange data with information systems and other CPSs is performed via 

some data infrastructure, e.g., the Internet, leveraging on the Internet of Things technologies. The 

ability to interact with other CPSs and humans is a key enabler of future technologies and a paradigm 

shift towards Industry 4.0 (see Table 1) and smart factories, also called factories of the future 

[2,10,11].  
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HCPS imply that human employees have greater freedom to make their own decisions, 

become more actively engaged into creative design and planning processes as well as into the 

operational working environment and they are able to regulate their own workload. Humans, in this 

case, are the central component of the factory ecosystem. They are empowered by the comprehensive 

assistance of smart machines with multimodal, user-friendly interfaces. Romero et al. [15] emphasize 

on a human-centricity of the smart factories' deploying systems, which enhance the cooperation of 

machines with humans. Such human-automation symbiosis and appropriate human-centered 

architecture for the next generation balanced automation systems has been reported in [16]. 

Kagermann et al. [10] argue that increase of human involvement is closely related to the social 

responsibility. A variety of interaction types increases due to the emerging socio-technical interaction 

models and advanced communication technologies. Application of intelligent agent-based 

architectures, robotics and alternative interfaces between humans and the cyber-physical 

environment makes such interactions smart, cooperative and self-managed. In Schirner [14], for 

instance, it is shown how the new brain-computer interfaces (BCIs) and controlled assistive robots 

can be integrated into HCPS to restore a fundamental autonomy for people who are functionally 

disabled due to various neurological or physical reasons. All components of CPS, both 

computational and physical ones, are becoming autonomous, capable of control and response to 

different situations, self-configuring, knowledge-based, and spatially dispersed [10]. 

The technological advances allow creating smart industrial robots, which are the main 

driving force of Industry 4.0 [17]. New collaborative robots, such as the Kuka LWR [18] and the 

Universal Robot UR [19], have been deployed in factories to provide complementary skills to 

human co-workers.  

Collaborative robots (or cobots) are capable of human-robot collaboration (HRC) and work 

hand in hand with their human colleagues on the factory floor for manufacturing in real-world 

settings. The vision of collaborative robots' role has changed since early understanding of the cobot 

concept as an intrinsically passive robotic device, which provides assistance to the human operator 

by setting up virtual surfaces, which can be used to constrain and guide motion [20], to today's 

intelligent machine with cognitive and sensitive capabilities [21].  

The early cobots were highly task-oriented and very specific in their functioning. Today's 

trend is to create more universal entities to be used for a wide range of manufacturing processes. The 

robots are developed with a very small initial number of own skills and capabilities, but they are 

designed with advanced abilities to learn (from humans, the environment, other robots, etc.) and to 

access all kinds of needed decentralized data in networks or in the cloud of services, in which they 

operate. Such vision, on the one hand, enables implementation of the "Robotics-as-a-Service" 
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paradigm; on the other hand, it emphasizes the role of the hybrid collaborative environment, in which 

robots learn how to operate.  

Collective intelligence, emergent from the collaboration, competition, and cooperation of 

many natural and artificial individuals, is a valuable asset of the industry and a powerful enabler of 

smart decision-making throughout diverse organizational and manufacturing processes. It addresses 

the problem of multiple views' integration regarding some problem shared within a large group of 

individuals and provides models for the collective decision-making. Coordination of peers is quite 

complicated within such models because of the decentralized network structure. Swarm robotics is 

an approach to perform this coordination efficiently. It is built on top of the idea that the behavior of 

a large number of robots is in a way similar to the self-organized behavior of social animals grouped 

in swarms (ants, bees, birds' flocks, etc.). The principles of collective (swarm) intelligence can be 

applied to robotics [22]. Integration of smart, networked sensors and actuators into a connected 

world of robotic swarms is greatly appreciated in industry [23]. New data structures, learning models 

for processing collective behavior in open systems and swarm algorithms for revealing hidden 

behavioral patterns, which can be used for prediction and decision-making, are developed for various 

purposes such as search for an optimal solution [24]. 

Along with the robot-robot type of interaction, human-robot collaboration plays a critical 

role in safety, productivity and flexibility of the manufacturing. Research in the field of cognitive 

robots, which share space and tasks with humans, has shown the importance of the robot's human-

awareness [25]. In various industrial processes, a robot has to be equipped with an explicit reasoning 

tool focusing on the human as a potential collaborator. Alami [25] shows that it is critically 

important to make robots understand human models of behavior for successful human-robot 

collaboration and introduces a framework for human-robot interactive task achievement that is aimed 

to allow the robot not only to accomplish its tasks but also to collaborate with its human partners and 

to interpret human behaviors and intentions.  

Although the lion's share of research in this field seems to be mainly focused on a physical 

human-robot interaction, such as human-aware navigation [26] and motion, we argue that cognitive 

aspects of HRC are of the highest importance too. Robots should understand and (in some contexts) 

reflect human cognitive behavior in learning, decision-making, reasoning, etc. Essential work has 

been done in the field of human-aware decision-making and human-like behavioral modeling by 

Lemaignan et al. [27]. Sadrfaridpour et al. [28] study trust modeling issues in human-robot 

collaborative manufacturing. Along with the collaborative capabilities, modern robots should acquire 

cognitive capabilities that are inspired by the cognitive processes of the human mind [29]. The 

ambitious goal would be to build a cognitive system implementing a human-like intellectual capacity 

to full extent: beginning from the ability to generate ideas and find problems up to the recognition 
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Patented Intelligence is a digital shared copy of a person's decision system based on his or 

her values and also a set of decision-making schemes used for specific tasks. The technology name 

comprises the word patented, which is correlated with the concepts of an intellectual property 

licensing, commercialization, reuse and exploitation. The word originates from the Latin patere and 

means to stand open, i.e., public. A patent of an invention is a set of rights acquired by an inventor in 

exchange to the invention's detailed disclosure; analogically, a "patent" on a decision model is a tool 

of assigning the ownership of a digital value system to the decision maker and to make this 

assignment public.  

The technology can be applied to a variety of tasks and problem domains (see Fig.2). 

 
Figure 2. Application of the Pi-Mind technology 

Making a decision means committing oneself to a course of actions where plausible 

alternatives exist for making possible choices. Studies show that human choices of alternatives are 

remarkably dependent on the combination of rational and creative thinking [31]. They emphasize the 

role of experience, the cognitive underpinnings, frames and biases, which enable a human to rapidly 

categorize situations and make effective decisions [32,33]. The needed scope of capabilities for a 

decision-maker (also a digital one) is determined by a combination of fundamentally different 

approaches: 




















































