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Abstract 

Independent component analysis (ICA) on group-level voxel-based morphometry 

(VBM) produces the coefficient matrix and the component matrix. The former 

contains variability among multiple subjects for further statistical analysis, and the 

latter reveals spatial maps common for all subjects. ICA algorithms converge to local 

optimization points in practice and the mostly applied stability investigation approach 

examines the stability of the extracted components. We found that the practically 

stable components do not guarantee to produce the practically stable coefficients of 

ICA decomposition for the further statistical analysis. 
 

Consequently, we proposed a novel approach including two steps: 1), the stability 

index for the coefficient matrix and the stability index for the component matrix were 

examined, respectively; 2) the two indices were multiplied to analyze the stability of 

ICA decomposition.     
 

The proposed approach was used to study the sMRI data of Type II diabetes mellitus 

group (DM) and the healthy control group (HC). Group differences in VBM were 

found in the superior temporal gyrus. Besides, it was revealed that the VBMs of the 

region of the HC group were significantly correlated with Montreal Cognitive 

Assessment (MoCA) describing the level of cognitive disorder.  

 

In contrast to the widely applied approach to investigating the stability of the 

extracted components for ICA decomposition, we proposed to examine the stability of 

ICA decomposition by fusion the stability of both coefficient matrix and the 

component matrix. Therefore, the proposed approach can examine the stability of ICA 

decomposition sufficiently.  

 

Keywords: Diabetes, Voxel-based morphometry, Independent component analysis, 

Back-projection, Montreal Cognitive Assessment, Stability, Coefficient matrix, 

Component matrix 
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1.  Introduction 

The structural Magnetic Resonance Imaging (sMRI) could reflect the real brain 

shape. Through the preproccessing, we can obtain grey matter volume (GMV). For 

the reason that grey matter is aggregation of neure, it is closely related to brain 

cognition mechanism. The traditional method of GMV processing is mainly based on 

voxel-based morphometry (VBM) (Ashburner and Friston, 2000; Kurth et al., 2015). 

An important step in VBM is to reveal group differences voxel by voxel. However, 

even with the minimum bounding box (61 × 73 × 61), the number of voxels of the 

grey matter is still more than 60,000. Due to the numerous multiple comparisons, the 

phenomenon of false-alarm easily occurs. Even though many statistic scholars have 

been devoted to solve this problem, the current processing methods of functional MRI 

dataset are very likely to result in high-level false positive (Eklund et al., 2016). 

To solve the problem of false-alarm, one method is to decrease the number of 

comparison times. Independent component analysis (ICA) is a promising approach 

that could extract dozens of features of individual regions and one feature is just 

compared once between groups. Therefore, ICA has been widely used to analyze 

GMV by using the software called GIFT (http://mialab.mrn.org/software/gift/) 

(Calhoun et al., 2006; Gupta et al., 2015; Luo et al., 2012; Segall et a;., 2012; Sui et 

al., 2012; Xu et al., 2009a, 2009b, 2012).  

For the reason that most of ICA decomposition are in terms of self-adaption 

algorithms and tend to converge to the local optimization points in practice, the results 

of different times for the same dataset decomposed by ICA with random initialization 

may change to some extent. For this problem, Himberg et al. developed a software 

called as ICASSO (Himberg et al., 2004) to evaluate the stability of the extracted 

component. This issue has been further addressed in many publications such as 

Correa et al (2007) and Ma et al. (2011). If the extracted components are stably 

separated out, the ICA decomposition is regarded as to be repeatable. Indeed, when 

ICA is applied on a matrix, both the coefficient matrix and the component matrix are 

produced. For example, with ICA on group-level VBM, the coefficient matrix 

contains the variability among different subjects and is used for the further statistical 

analysis, and the component matrix reveals the spatial maps. Due to the practically 

local optimization of ICA decomposition, the practically stable spatial maps extracted 

by ICA on VBM could not always guarantee that the extract coefficient matrix is also 

stable in practice. If the coefficient matrix is not stably extracted out, the further 

statistical analysis based on it might not be repeatable.  

Therefore, in this study, we proposed a novel approach for examining the stability 

of ICA decomposition, including two steps: 1), the stability index for the coefficient 

matrix and the stability index for the component matrix were examined, respectively; 

2) the two indices were multiplied to analyze the stability of ICA decomposition. The 

proposed approach was applied to VBM of Diabetes patients and healthy subjects to 

show its effectiveness. 

http://mialab.mrn.org/software/gift/
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2.  Method 

2.1 Data description 

In this experiment, 30 diabetic patients T2 diabetes mellitus (T2DM) and 30 

healthy subjects with matched gender and age participate in the T1 image scanning as 

the structural dataset of brain. The following are the important scanning parameters: 

TE:2.49, TR:1900ms, FOV：250*250, matrix：256*256, FA: 9 degree, thickness：1mm, 

176 slices. MoCA (Montreal Cognitive Assessment) was collected for each subject. 

Its scale describes the level of cognitive disorder, with the full score of 30. If the score 

is more than 25, the subject would be diagnosed with no cognitive disorder.  

2.2 Preprocessing and conventional VBM 

The sMRI data were preprocessed with the VBM plugin in DPABI (Yan et al., 

2016) . First of all, the T1 image of brain was segmented as grey matter, white matter 

and cerebrospinal fluid. Secondly, due to the difference of brain shapes and 

similarities of anatomy structure among subjects, spatial normalization was performed 

for further group analysis. Afterwards, the normalized grey matter was registered to 

the standard MNI template. Then, smooth was done to reduce artifacts as shown in 

Figure1 (Kurth et al., 2015). For VBM, statistical analysis is conducted for the grey 

matter volume. Group differences is examined at the voxel level, which corresponded 

to the AAL (Tzourio-Mazoyer et al., 2002) and Brodmann (Maldjian et al., 2003) 

encephalic regions. Statistical corrections is done at the voxel level. 

2.3 ICA approach 

2.3.1 Data model for ICA  

ICA is based on the linear model of unknown source signals 𝐒 and observed 

signal 𝐙. The follow equation could describe the model： 

 

𝐙 = 𝓐𝐒                                    (1) 

 

where 𝐙 ∈ ℛ𝑀×𝑁, 𝐒 ∈ ℛ𝑅×𝑁 . 𝓐 ∈ ℛ𝑀×𝑅  with the full column rank is named as 

mixing matrix. After preprocessing, the GMV dataset is extracted with grey mask. 

The GMV data of the 𝑖𝑡ℎ subject is defined as the row vector 𝐳𝑖 which is the row of 

the matrix 𝐙, and the dataset of all subjects composes the matrix 𝐙. 𝑀 refers to the 

number of subjects and 𝑁 the number of voxels. 𝐒 represents the source signals of 

ICA decomposition and 𝑅 the number of components. Figure2 describes how the 
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matrix is composed.  

The dimension of the observed signal for the matrix is the number of subjects in 

this study. It is assumed to be larger than that of the source signals, which can be 

interpreted as 𝑀 is larger than 𝑅. In this case, the model can be regarded as the 

over-determined. Therefore, the first step should be dimension reduction before data 

decomposition with ICA. After estimating the number of source components, the 

over-determined model is transformed to the determined model by dimension 

reduction matrix. 

  

𝐗 = 𝐕𝐓𝐙 = 𝐕𝐓𝓐𝐒 = 𝐀𝐒                           (2) 

 

In the above formula, 𝐀 ∈ ℛ𝑅×𝑅, 𝐀 = 𝐕𝑻𝓐, 𝐗 ∈ ℛ𝑅×𝑁, 𝐕𝐓 ∈ ℛ𝑅×𝑀 refers to 

the dimension reduction matrix. The dimension reduction matrix usually derives from 

Principal Component Analysis (PCA), and the 𝐕𝐓  consists of the first 𝑅 

eigenvectors of the covariance matrix of the data matrix 𝐙. Figure3 depicts the 

process.  

2.3.2 ICA decomposition for coefficient matrix and 

component matrix  

The ICA decomposition model is as the following: 

 

𝐘 = 𝐖𝐗                              (3) 

 

where 𝐘 = ℛ𝑅×𝑁 is the estimation of source signals 𝐒 and it is called component 

matrix in this study. The main purpose of ICA is to find unmixing matrix 𝐖 ∈ ℛR×R 

based on the independence of components. For ICA on VBM, each component (each 

row of 𝐘) represents the spatial map and the variability among different subjects exist 

in the 𝐖.  

According to different cost functions which aim to obtain the unmixing matrix, 

Hyvärinen et al. introduced five different ICA algorithms, including Non-Gaussian 

Maximize based ICA algorithm, Maximum Likelihood Estimation based ICA 

algorithm, Minimum Mutual Information based ICA algorithm, Tensor based ICA 

algorithm and Nonlinear Decorrelation and Nonlinear PCA based ICA algorithm  

(Hyvärinen et al., 2001). Beyond that fixed-point based FastICA (Hyvarinen, 1999) 

and max mutual information based InfomaxICA (Sejnowski and Bell 1995) also have 

been widely used in many fields. In this study, the InfomaxICA is used due to its 

stability advantage. The mutual information equation is listed as the following: 

 

I(𝐘, 𝐗) = H(𝐘) − H(𝐘|𝐗)                           (4) 

 

where I refers to the mutual information of components and H the entropy. 

Based on the above formula, the iterative formula was obtained as follows: 
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∆𝐖 ∝ [𝐖𝑇]−1 + (1 − 2𝐘)𝐗𝑇                          (5) 

 

For the reason that dimension reduction has been done before ICA decomposition, 

the mixing matrix cannot be obtained by the direct inverse of 𝐖. In Cong et al’s 

study, it has been pointed out that both unmixing matrix and dimension reduction 

matrix need to be considered in order to obtain coefficient matrix (Cong et al., 2014): 

 

𝐔 = 𝐕𝐁 = 𝐕𝐖−𝟏                         (6) 

 

where 𝐁 = 𝐖−𝟏 and 𝐔 ∈ ℛ𝑀×𝑅 is named as the coefficient matrix approximating 

the mixing matrix 𝓐 in (1) and each column of the 𝐔 contains the variability of 

different subjects.  

2.3.3 Remark for Equations 1 to 6 

 

In terms of Eqs (1-6), when ICA is applied on group-level VBM, two matrices are 

generated and they are the component matrix 𝐘 whose rows represent the spatial 

maps and the coefficient matrix 𝐔 who columns contain the variability among 

multiple subjects. It is necessary to analyze whether the stability of the extracted 

components also indicate the stability of coefficient matrix.  

 

2.3.4 Stability of ICA decomposition under global 

optimization 

If both Eqs. (2-3) are merger together, the global matrix 𝐂 links the extracted 

components and the sources together as the following:  

 

𝐘 = 𝐖𝐗 = 𝐖𝐀𝐒 = 𝐂𝐒,                        (7) 

where 𝐂 =  𝐖𝐀.  

 

As shown in (5), the ICA algorithm is adaptive. In theory, for global optimization, 

in each column and each row of the global matrix 𝐂, there is only one nonzero 

elements. Then, the global matrix can be decomposed as the multiplication of a 

permutation matrix 𝐏 and a diagonal matrix 𝐃 as  

 

𝐂 = 𝐏𝐃,                               (8) 

 

𝐘 = 𝐂𝐒 = 𝐏𝐃𝐒,                            (9) 
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 Subsequently, the coefficient matrix turns to be  

 

𝐔 = 𝐕𝐁 = 𝐕𝐖−𝟏 = 𝐕𝐀𝐃−𝟏𝐏−𝟏 = 𝐕𝐕𝑻𝓐𝐃−𝟏𝐏−𝟏 = 𝓐𝐃−𝟏𝐏−𝟏,       (10) 

where, 𝐖𝐀 = 𝐏𝐃, 𝐀 = 𝐕𝑻𝓐, 𝐕𝐕𝑻  is the identity matrix since 𝐕 contains the 

eigenvectors of the covariance matrix of the data matrix 𝐙, 𝐃−𝟏 is still the diagonal 

matrix and 𝐏−𝟏 is the permutation matrix.  

 Therefore, in theory, if one ICA algorithm is run multiple times with random 

initialization, the extract components are stable and the coefficient matrix is stable as 

well. Stability of extracted components indicates the stability of ICA decomposition.  

2.3.5 Stability of ICA decomposition under local 

optimization 

Since most of ICA algorithms are adaptive and they tend to converge to the local 

optimization points instead of the global optimization. This results in that the global 

matrix cannot be decomposed by a permutation matrix and a diagonal matrix. 

Subsequently,  

𝐘 = 𝐂𝐒 ≠ 𝐏𝐃𝐒,                            (11) 

𝐔 = 𝐕𝐖−𝟏 ≠ 𝓐𝐃−𝟏𝐏−𝟏.                    (12) 

 This means some of the extracted components are still mixtures of some sources. 

For estimating coefficient matrix 𝐔, the inverse of the unmixing matrix 𝐖 cannot be 

avoided. It is widely acknowledged that the inverse operation can be not stable, and 

can amplify the errors in 𝐖. Therefore, it is necessary to examine whether both the 

component matrix 𝐘 and the coefficient matrix 𝐔 are stably extracted out or not.   

For example if the number of component is R, and ICA decomposition is run K 

times with random initialization, R*K components are produced and then, those 

components can be clustered. A parameter called Iq is calculated in terms of the inner 

similarity within one cluster and dissimilarity among different clusters. This approach 

is called ICASSO (Himberg et al., 2004). Here, the Iq for the component is called 

Comp_Iq.  

For ICA decomposition, each component is associated with each coefficient 

vector. In order to obtain the stability of the coefficient matrix, the memberships of 

R*K components can be used to cluster the R*K coefficient vectors. The parameter Iq 

can also be generated for the coefficient matrix. It is called Coef_Iq in this study.  

If both the component and the corresponding coefficient vector are stably 

extracted, the ICA decomposition for the component and the coefficient vector is 

repeatable. As a result, the Iq of the ICA decomposition in this study is defined as  

 

Iq = Comp_Iq × Coef_Iq                   (13) 

 

Because the range of stability is from 0 to 1, multiplying will not change the 

range of evaluation of stability. Comp_Iq can be understood as the probability of the 

stability of the component matrix. Coef_Iq can be understood as the probability of the 
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stability of the coefficient matrix. So the multiplication can be expressed as the 

stability of the whole. 

2.3.6 Remark for Equation 13 

The range of Iq for ICA components (Himberg et al, 2004) is from 0 to 1. Iq for 

the coefficient matrix also ranges from 0 to 1. From 0 to 1, the stability increases. 

Therefore, if the two Is are multiplied, the product will be closer to 1 if both of them 

are closer to 1. Otherwise, the lower Iq will play the role of penalty in the 

multiplication to result in a lower product, indicating the lower stability of ICA 

decomposition. In other words, as long as the ICA components are not stable or the 

coefficient matrix is not stable, the ICA decomposition will not be stable, which is 

conveyed by the Eq. (13).     

2.3.7 Feature extraction for GMV by the ICA approach 

For any extracted component of ICA or its associated coefficient vector, i.e., each 

row of 𝐘 or each column of 𝐔, its polarity and variance are not determined (Cong et 

al., 2011a,b). For ICA on VMB, each row of 𝐘 represents the spatial map and each 

column of 𝐔  reveals the variability among multiple subjects. Therefore, the 

indeterminacy brings difficulty for the interpretation of GMV. In order to overcome 

the difficulty, the back-projection theory is borrowed from the application of 

functional brain imaging data (Cong et al., 2011a,b). The back-projection is shown as 

the following: 

 

𝐄𝑟 = 𝐮𝑟𝐲𝑟                            (14) 

 

where 𝑟  refers to the 𝑟𝑡ℎ  component extracted from ICA, 𝐮𝑟  is the 𝑟𝑡ℎ 

column of 𝐔 at formula (6), 𝐲𝑟 the 𝑟𝑡ℎ ICA component and is the 𝑟𝑡ℎ row of 𝐘,  

and 𝐄𝑟 the back-projection result of 𝑟𝑡ℎ component. 

The size of 𝐄𝑟 and 𝐙 are the same. Its number of rows is the number of subjects 

and its number of columns is the number of voxels. Then, 𝑬𝑟 includes all subjects’ 

data and each row of the 𝑬𝑟 represents each subject’s GMV data estimated from the 

proposed ICA approach. It should be noted that in 𝑬𝑟 the variability among different 

subjects is consistent across all voxels in terms of (14).  

Moreover, one row of 𝐙 actually represents the GMV data of one subject after 

the conventional preprocessing and probably includes many regions of interest. 

However, after the proposed ICA approach, one row of the 𝐄𝑟 only includes one 

region or very limited regions of interest for one subject. From this perspective, the 

conventional VBM data is spatially filtered by the proposed ICA approach. 

The feature extraction for GMV is in terms of 𝐄𝑟 in (14) for the ICA approach. 

An ROI can be generated from the spatial map 𝐲𝑟 after the setting of a proper 

threshold. Then, the mean value of GMV in the ROI in each row of 𝐄𝑟 defined as the 
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feature of GMV for each subject. Since the variability among different subjects is 

consistent across all voxels in 𝐄𝑟, the averaging is reasonable. Therefore, the features 

of different groups (DM and HC here) in each ROI are compared only once, which 

avoids the false-alarm caused by multiple comparisons due to multiple voxels in the 

conventional VBM method. 

2.3.8 Data processing steps 

The proposed data processing steps in this study are as the following:     

1) The grey matter was segmented from sMRI data.  

2) The grey matter was normalized to MNI space and extracted in terms of the 

grey mask.  

3) GMV was reshaped into vectors and all the vectors from multiple subjects 

were grouped together to compose the data matrix 𝐙 for ICA. In the current study, 

the size of matrix was 60 × 67541, the number of subjects was 60 and the number of 

voxels was 67541.  

4) InfomaxICA with default parameters of ICASSO was applied on the data 

matrix 𝐙 in terms of the equations from (1) to (6), and finally, new features of GMV 

were obtained according to 2.3.7.  

5) The stability of ICA decomposition was analyzed by Eq. (13).  

6) Statistical analysis was conducted to find the components that were 

significantly different in GMV between groups. After that, correlation analyses were 

performed between GMV and behavior factors (MoCA here) for each group.  

7) The component (representing the spatial map) with the significant difference in 

GMV between two groups of subjects, and meanwhile with the significant correlation 

between the feature of GMV and any of the behavior factor for any group was 

selected as the component of interest for the further investigation. 

3.  Result 

3.1 Stability of ICA decomposition using dataset of ICASSO 

software 

ICASSO provides the dataset of MEG (Himberg et al., 2004). It was used for the 

demonstration of the proposed method in this study and 20 components were 

extracted out.  

Figure 7 shows the clustering results for the component matrix and the 

coefficient matrix, as well as the stability index. The index reveals that lower stability 

of extracted components resulted in even lower stability of the coefficient vectors. 

This can make the further analysis based on the coefficient matrix is not repeatable.     
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3.2 Stability of ICA decomposition for VBM data in this 

study 

The Minimum description length (MDL) approach in the previous study (Li et al., 

2007) was used to estimate the number of extracted components from the VBM data 

in this study. The estimated number of components was 15. 

Figure 8 shows the clustering results for the component matrix and the 

coefficient matrix, as well as the stability index. The stability indices for the last two 

components and coefficient vectors were much lower than others, indicating they 

might be not repeatable if the same data processing approach was performed again. 

Therefore, the last two components and the coefficients could not be accepted for the 

further data analysis.   

 

3.2 Statistical analysis of the feature extracted by stable ICA 

decomposition for VBM data in this study 

 

 The significant differences in the features of GMV between DM and HC were 

found at superior temporal gyrus from one component (#12) shown in Figure 9. The 

stability of ICA decomposition for this component and the corresponding coefficient 

vector (i.e. feature of GMV in this study) was better than five (one third of all 15 

components) others. The results by the ICA approach keep in line with the findings 

from previous studies (Chen et al., 2012; Zhang et al., 2014). Significant correlations 

were observed in the HC group between the features of GMV and MoCA.  

4.  Discussion 

For global optimization of ICA decomposition, stability of the extracted 

components indicates the stability of the coefficient matrix. However, since ICA 

algorithms inevitably converge to the local optimization points in practice, the lower 

stability of an extracted component can result in even lower stability of the 

corresponding coefficient vector. Therefore, in this study, we proposed a novel 

approach for sufficiently examining the stability of ICA decomposition by merging 

the stability of extracted component matrix and the coefficient matrix together.   

The proposed approach was applied to find the differences in GMV between 

Type II diabetes mellitus group (DM) and the healthy control group (HC). The scores 

of MoCA were taken as behavioral factor since they can reflect the level of cognition 

ability and the GMV results of interesting were supposed to be correlated with the 
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scores of MoCA. The features of GMV by the proposed ICA approach in HC groups 

were significantly and positively correlated with the HC groups, and GMV was 

significantly reduced in DM group in contrast to HC group.  

Type 2 diabetes mellitus (T2DM) is a chronic, metabolic disease characterized by 

hyperglycemia which leads over time to serious damage to the blood vessels in brain. 

T2DM is associated with cognitive decrements and an increased risk to develop 

dementia (Mccrimmon et al., 2012; Spauwen et al., 2013). And it displays structural 

changes in the brain such as cortical atrophy. It has shown more prominent 

DM-related regional gray matter loss (Erus et al., 2015; Moran et al., 2013). 

Diabetes-related cognitive impairment is attributable to the structural changes(Kim et 

al., 2016). Since MoCA assesses a broader range of cognitive domains including 

abstraction and executive function, it may be sensitive to diagnose MCI in DM 

subjects (Alagiakrishnan et al., 2014). In this study, the GMV results by the proposed 

ICA approach match the previous findings. There are two advantages of the new 

approach as the following.  

In future study, tensor decomposition (Cong et al., 2015) can be employed in 

MRI dataset processing. The current data-driven method may not fully exploit the 

structure information of MRI dataset through reshaping data from multi-dimensions to 

vectors. Hence, tensor, which operates on high-order structure directly, may generate 

more reasonable results (Barnathan et al., 2011). Furthermore, the study is devoted to 

the structural imaging data and the proposed idea can also be applied to functional and 

psychological imaging data for different time scales (Déli et al., 2017).  
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Figure captions:  

 

Figure 1: Original sMRI data and the data after preprocessing 

Figure 2: Vectorization and matrix of GMV of multiple subjects 

Figure 3: Dimension reduction by PCA 

Figure 4: ICA decomposition model for GMV data 

Figure 5: Calculation of coefficient matrix approximating the mixing matrix 

Figure 6: Feature extraction for GMV by the ICA approach 

Figure 7: Stability of ICA decomposition using dataset of ICASSO software. Each 

black convex hull represents one cluster. The intensity of red shade shows the 

degree of similarity among components. 

Figure 8: Stability of ICA decomposition for VBM data in this study 

Figure 9: Statistical results of Component#12 at superior temporal gyrus and the 

corresponding coefficient vector, i.e., the feature of GMV. The coefficient vector 

of the DM group shows a significant correlation with the MoCA value. This 

means that the feature is associated with diabetes. 
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Figure 3 
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Figure 4  
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Figure 5  
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Figure 7 

 

(a) Clustering of the component matrix 

 

(b) Clustering of the coefficient matrix 

 

(c) Stability indices for ICA decomposition 
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Figure 8 

 

(a) Clustering of the component matrix 

 

(b) Clustering of the coefficient matrix 

 

 

(c) Stability indices for ICA decomposition 
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Figure 9 
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