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Abstract. The paper is concerned with reliable space-time IgA schemes
for parabolic initial-boundary value problems. We deduce a posteriori
error estimates and investigate their applicability to space-time IgA
approximations. Since the derivation is based on purely functional argu-
ments, the estimates do not contain mesh dependent constants and are
valid for any approximation from the admissible (energy) class. In par-
ticular, they imply estimates for discrete norms associated with sta-
bilised space-time IgA approximations. Finally, we illustrate the relia-
bility and efficiency of presented error estimates for the approximate
solutions recovered with IgA techniques on a model example.

Keywords: Error control · Functional error estimates
Stabilised space-time IgA schemes · Fully-adaptive space-time schemes

Countless usage of the time-dependent systems governed by parabolic partial 
differential equations (PDEs) in scientific and engineering applications trigger 
their active investigation in mathematical and numerical modelling. By virtue 
of the fast development of parallel computers, treating time in the evolution-
ary equations as yet another dimension in space became quite natural. The 
so-called space-time approach is not restricted with pitfalls of time-marching 
schemes. On the contrary, it becomes quite useful when efficient parallel meth-
ods and their implementation on massively parallel computers are considered 
(rather than attempt to reiterate all prior work, we refer the reader to [17], 
whose introductory section contains an extensive overview of various space-time 
techniques).

Investigation of effective adaptive refinement methods is crucial for the con-
struction of fast and efficient solvers for PDEs. In the same time, the aspect of 
scheme localisation is strongly linked with reliable and quantitatively efficient a 
posteriori error estimation tools. The latter one is expected to identify the



areas of the considered computational domain with relatively high discretiza-
tion errors and provide an automated refinement strategy in order to reach the
desired accuracy level for the current reconstruction. Local refinement tools of
IgA (e.g., T-splines, THB-splines, and LR-splines) have been combined with var-
ious a posteriori error estimation techniques, e.g., error estimates (EEs) using the
hierarchical basis [4,26], residual-based [2,9,13], and goal-oriented EEs [3,14,27].
Below, we use a different (functional) method providing fully guaranteed EEs in
the various weighted norms equivalent to the global energy norm. These esti-
mates include only global constants (independent of the mesh characteristic
h) and are valid for any approximation from the admissible functional space.
Functional EEs (so-called majorants and minorants) were introduced in [24] and
later applied to different mathematical models [18,22]. They provide guaranteed,
sharp, and fully computable upper and lower bounds of errors. This approach in
combination with IgA approximations generated by tensor-product splines was
investigated in [11] for elliptic boundary value problems (BVPs).

In this paper, we derive functional-type a posteriori EEs for time-dependent
problems in the context of the space-time IgA scheme introduced in [17]. The
latter one exploits the time-upwind test function motivated by the space-time
streamline diffusion method (see, e.g., [8,10]) and approximations provided by
IgA framework. By exploiting the universality and efficiency of the considered
EEs as well as the smoothness of the IgA approximations, we aim at the con-
struction of fully-adaptive, fast and efficient parallel space-time methods that
could tackle complicated problems inspired by industrial applications.

This work has the following structure: Sect. 1 defines the problem and dis-
cusses its solvability, whereas Sect. 2 presents the stabilised space-time IgA
scheme with its main properties. An overview of main ideas and definitions used
in the IgA framework can be found in the same section. In Sect. 3, we introduce
new functional type a posteriori EEs using the stabilised formulation of parabolic
initial BVPs (I-BVPs). Finally, Sect. 4 presents numerical results demonstrating
the efficiency of the majorants in the elliptic case.

1 Model Problem

Let Q := Q ∪ ∂Q,Q := Ω × (0, T ), denote the space-time cylinder, where Ω ⊂
Rd, d ∈ {1, 2, 3}, is a bounded Lipschitz domain with boundary ∂Ω, and (0, T )
is a given time interval, 0 < T < +∞. Here, the cylindrical surface is defined as
∂Q := Σ∪Σ0∪ΣT with Σ = ∂Ω×(0, T ), Σ0 = Ω×{0}, and ΣT = Ω×{T}. We
discuss our approach to guaranteed error control of space-time approximations
with the paradigm of the classical linear parabolic I-BVP: find u : Q → R

satisfying the system

∂tu − Δxu = f in Q, u = 0 on Σ, u = u0 on Σ0, (1)

where ∂t is the time derivative, Δx denotes the Laplace operator in space,
f ∈ L2(Q), and u0 ∈ H1

0 (Σ0) are the given source function and initial
data, respectively. Here, L2(Q) is the space of square-integrable functions over



Q quipped with the usual norm and scalar product denoted respectively by
‖ v ‖Q := ‖ v ‖L2(Q) and (v, w)Q :=

∫
Q

v(x, t)w(x, t) dxdt,∀v, w ∈ L2(Q).
By Hk(Q), k ≥ 1, we denote spaces of functions having generalised square-

summable derivatives of the order k with respect to (w.r.t.) space and time.
Next, we introduce the Sobolev spaces H1

0 (Q) :=
{
w ∈ H1(Q) : w|Σ = 0

}
,

H1
0,0

(Q) :=
{
w ∈ H1

0 (Q) : wΣT
= 0

}
, V0 := H1

0,0(Q) :=
{
w ∈ H1

0 (Q) : wΣ0 =

0
}
, and V Δx

0 := HΔx,1
0 (Q) :=

{
w ∈ H1

0 (Q) : Δxw ∈ L2(Q)
}
. Moreover, we use

auxiliary Hilbert spaces for vector-valued functions

Hdivx,0(Q) :=
{
y ∈ [L2(Q)]d : divxy ∈ L2(Q)

}
and

Hdivx,1(Q) :=
{
y ∈ Hdivx,0(Q) : ∂ty ∈ [L2(Q)]d

}

equipped with respective semi-norms ‖y‖2
Hdivx,0 := ‖divx y‖2

Q and
‖y‖2

Hdivx,1 := ‖divx y‖2
Q + ‖∂t y‖2

Q.
Further in the paper, CF stands for the constant in the Friedrichs inequality

‖w‖Q ≤ CF‖∇xw‖Q,∀w∈H1,0
0 (Q):=

{
w ∈ L2(Q): ∇xw ∈ [L2(Q)]2, w|Σ = 0

}
.

From [15, Theorem 2.1] it follows that, if f ∈ L2(Q) and u0 ∈ H1
0 (Σ0), the

problem (1) is uniquely solvable in V Δx
0 , and the solution u depends continuously

on t in the H1
0 (Ω)-norm. Moreover, according to [15, Remark 2.2], ‖∇xu(·, t) ‖2

Ω

is an absolutely continuous function of t ∈ [0, T ] for any u ∈ V Δx
0 . If u0 ∈ L2(Σ0),

then the problem has a unique solution u in the wider class H1,0
0 (Q), and it

satisfies the generalised formulation

(∇xu,∇xw)Q − (u, ∂tw)Q =: a(u,w) = l(w) := (f, w)Q + (u0, w)Σ0 (2)

for all w ∈ H1
0,0

(Q), where (u0, w)Σ0 :=
∫

Σ0
u0(x)w(x, 0)dx =

∫
Ω

u0(x)w(x, 0)dx.
According to the well-established arguments (see [15,28]), without loss of gen-
erality, we can ‘homogenise’ the problem, i.e., consider (2) with u0 = 0.

Our main goal is to derive fully computable estimates for space-time IgA
approximations of this class of problems. For this purpose, we use the functional
approach to a posteriori EE. Initially, their simplest form has been obtained for
a heat equation in [23]. Numerical properties of above-mentioned EE w.r.t. the
time-marching and space-time method are discussed in [6,20,21].

2 Stabilized Formulation of the Problem
and Its Discretization

For the convenience of the reader, we first recall the general concept of the IgA
approach, the definition of B-splines (NURBS) and their use in the geometrical
representation of the space-time cylinder Q, as well as in the construction of the
IgA trial spaces, used to approximate solutions satisfying (2).

Let p ≥ 2 denote a degree of polynomials used for the IgA approximations
and n denote the number of basis functions used to construct a B-spline curve. A
Knot-vector is a non-decreasing set of coordinates in a parameter domain, written
as Ξ = {ξ1, . . . , ξn+p+1}, ξi ∈ R, where ξ1 = 0 and ξn+p+1 = 1. The knots can be



repeated, and the multiplicity of the i-th knot is indicated by mi. Throughout the
paper, we consider only so-called open knot vectors, i.e., m1 = mn+p+1 = p + 1.
For Q̂ := (0, 1), K̂h denotes a locally quasi-uniform mesh, where each element
K̂ ∈ K̂h is constructed by the distinct neighbouring knots. The global size of K̂h

is denoted by ĥ := max
̂K∈ ̂Kh

{ĥ
̂K}, where ĥ

̂K := diam(K̂).
The univariate B-spline basis functions B̂i,p : Q̂ → R are defined by

means of Cox-de Boor recursion formula and are (p − mi)-times continu-
ously differentiable across the i-th knot with multiplicity mi. The scope of
this paper is limited to a single-patch domain. The multivariate B-splines on
Q̂ := (0, 1)d+1, d = {1, 2, 3}, is defined as a tensor-product of the univariate
ones. In multidimensional case, we define the knot-vector dependent on the
coordinate direction Ξα = {ξα

1 , . . . , ξα
nα+pα+1}, ξα

i ∈ R, where α = 1, . . . , d + 1
indicates the direction (in space or time). Furthermore, we introduce set of multi-
indices I =

{
i = (i1, . . . , id+1) : iα = 1, . . . , nα, α = 1, . . . , d + 1

}
and multi-

index p := (p1, . . . , pd+1) indicating the order of polynomials. Then, multivari-
ate B-spline basis functions are defined as B̂i,p(ξ) :=

∏d+1
α=1 B̂iα,pα

(ξα), where
ξ = (ξ1, . . . , ξd+1) ∈ Q̂. The univariate and multivariate NURBS basis func-
tions are defined in Q̂ by means of B-spine basis functions, i.e., for given p and
any i ∈ I R̂i,p : Q̂ → R is generated as R̂i,p(ξ) := wi

̂Bi,p(ξ)
W (ξ) . Here, W (ξ) is a

weighting function W (ξ) :=
∑

i∈I wi B̂i,p(ξ), where wi ∈ R+.
The physical space-time domain Q ⊂ Rd+1 is defined by the geometrical

mapping of the parametric domain Q̂ := (0, 1)d+1:

Φ : Q̂ → Q := Φ(Q̂) ⊂ Rd+1, Φ(ξ) :=
∑

i∈I
R̂i,p(ξ)Pi, (3)

where {Pi}i∈I ∈ Rd+1 are the control points. For simplicity, we assume the same
polynomial degree for all coordinate directions, i.e., pα = p for all α = 1, . . . , d+1.
By means of geometrical mapping (3), the mesh Kh discretising Q is defined as
Kh :=

{
K = Φ(K̂) : K̂ ∈ K̂h

}
. The global mesh size is denoted by

h := max
K∈Kh

{hK }, hK := ‖∇Φ‖L∞(K)ĥ ̂K . (4)

Moreover, we assume that Kh is quasi-uniform mesh, i.e., there exists a positive
constant Cu independent of h, such that hK ≤ h ≤ Cu hK .

The finite dimensional spaces on Q are constructed by a push-forward of the
NURBS basis functions Vh := span

{
φh,i := R̂i,p ◦Φ−1

}
i∈I , where the geometri-

cal mapping Φ is invertible in Q, with smooth inverse on each element K ∈ Kh

(see [1,25]). The subspace V0h := Vh ∩ V0,0(Q), where V0,0 := V0 ∩ H1
0,0(Q) is

introduced for the functions satisfying homogeneous boundary condition (BC).
In order to provide efficient discretization method, we test (1) with the time-

upwind test-function

λ w + μ ∂tw, w ∈ V ∇x∂t
0,0 := {w ∈ V Δx

0,0 : ∇x∂tw ∈ L2(Q)}, λ, μ ≥ 0. (5)



and arrive at the stabilised weak formulation for u ∈ V0, i.e.,
(
∂tu, λ w + μ ∂tw

)
Q

+
(
∇xu,∇x(λ w + μ ∂tw)

)
Q

=: as(u,w) = ls(w) := (f, λ w + μ ∂tw)Q, ∀w ∈ V ∇x∂t
0,0 . (6)

In [17], it was shown that stable discrete space-time IgA scheme corresponds to
the case, when λ = 1 and μ = δh = θh in (5) with θ > 0 and global mesh-size h
(cf. (4)) both for the fixed and moving spatial computational domains. Hence,
(6) implies the discrete stabiliaed space-time problem: find uh ∈ V0h satisfying

(∂tuh, wh + δh∂twh)Q +
(∇xuh, ∇x(wh + δh∂twh)

)
Q

=: as,h(uh, wh) = ls,h(wh) := (f, wh + δh ∂twh)Q, ∀wh ∈ V0h. (7)

The V0h-coercivity of ah(·, ·) : V0h × V0h → R w.r.t. the norm

|||wh|||2s,h := ‖∇xwh‖2
Q + δh ‖∂twh‖2

Q + ‖wh‖2
ΣT

+ δh ‖∇xwh‖2
ΣT

(8)

follows from [17, Lemma 1] or [16, Lemma 3]. Moreover, one can show a bound-
edness property of the bilinear form ah,s(·, ·) in appropriately chosen norms.
Combining these coercivity and boundedness properties of ah,s(·, ·) with the con-
sistency of the scheme (7) and approximation results for the IgA spaces implies
a corresponding a priori EE presented in Theorem1 below.

Theorem 1. Let u ∈ Hs
0(Q) := Hs(Q) ∩ H1,0

0 (Q), s ∈ N, s ≥ 2, be the exact
solution of (2) and uh ∈ V0h be the solution of (7) with some fixed parameter
θ. Then, the following a priori EE

‖u − uh‖s,h ≤ C hr−1 ‖u‖Hr(Q) (9)

holds, where r = min{s, p + 1}, C > 0 is a generic constant independent of h.

Proof: See, e.g., [17, Theorem 8]. �

3 Error Majorant

In this section, we derive error majorants for stabilised weak formulation of
parabolic I-BVPs. The functional nature of these majorants allows obtaining a
posteriori EEs for u ∈ V Δx

0,0 and any v ∈ V Δx
0,0 . The error e = u − v is measured

in terms of

|||e|||2s,νi
:= ν1 ‖∇xe‖2

Q + ν2 ‖∂te‖2
Q + ν3 ‖∇xe‖2

ΣT
+ ν4 ‖e‖2

ΣT
, (10)

where {νi}i=1,...,4 are the positive weights introduced in the derivation process.
To obtain guaranteed error bounds of |||e|||2s,νi

, we apply a method similar to
the one developed in [21,23] for parabolic I-BVPs. For the derivation process,
we consider space of smoother functions V ∇x∂t

0,0 (cf. (5)) equipped with the norm



‖w‖
V

∇x∂t
0,0

:= sup
t∈[0,T ]

‖∇xw(·, t)‖2
Q+‖w‖2

V Δx
0,0

, where ‖w‖2
V Δx
0,0

:= ‖Δxw‖2
Q+‖∂tw‖2

Q,

which is dense in V Δx
0,0 . According to [15, Remark 2.2], norms ‖·‖

V
∇x∂t
0,0

≈ ‖·‖V Δx
0,0

.

Let un be a sequence in V ∇x∂t
0,0 . We consider the corresponding stabilised

identity

as(un, w) = (fn, λ w + μ ∂tw)Q, where fn = (un)t − Δxun ∈ L2(Q). (11)

By subtracting as(vn, w), vn ∈ V ∇x∂t
0,0 , from (11), and by setting w = en =

un − vn ∈ V ∇x∂t
0,0 , we arrive at the so-called ‘error-identity’

λ ‖∇xen‖2
Q + μ ‖ ∂ten‖2

Q + 1
2 (μ ‖∇xen‖2

ΣT
+ λ‖en‖2

ΣT
)

=λ
(
(fn − ∂tvn, en)Q − (∇xvn,∇xen)Q

)

+ μ
(
(fn − ∂tvn, ∂ten)Q − (∇xvn,∇x ∂ten)Q

)
,

which is used in the derivation of the majorants of (10) in Theorems 2 and 3.

Theorem 2. For any v∈V Δx
0,0 and y∈Hdivx,0(Q), the following estimate holds:

|||e|||2s,νi
≤ M(v,y; γ, αi) := γ

{
λ
(
(1 + α1) ‖rd‖2

Q

+ (1 + 1
α1

)C2
F ‖req‖2

Q

)
+ μ

(
(1 + α2) ‖divxrd‖2

Q + (1 + 1
α2

) ‖req‖2
Q

)}
, (12)

where ν1 = (2 − 1
γ )λ, ν2 = (2 − 1

γ )μ, ν3 = μ, ν4 = λ, CF is the Friedrichs
constant, req and rd are residuals defined by relations

req(v,y) := f − ∂tv + divx y and rd(v,y) := y − ∇xv, (13)

λ, μ > 0 are weights introduced in (5), γ ∈
[
1
2 ,+∞), and αi > 0, i = 1, 2.

Proof: The detailed proof can be found in [16, Theorem 2], where we use the
‘error-identity’ and the density of space V ∇x∂t

0,0 in V Δx
0,0 to obtain (12). �

The next theorem assumes higher regularity on the approximations v and y.

Theorem 3. For any v∈V ∇x∂t
0,0 and y∈Hdivx,1(Q), we have the estimate

|||e|||2s,νi
≤ M

II
(v,y; ζ, βi, ε) := ε μ‖rd‖2

ΣT
+ ζ

(
λ
(
(1 + β1)

(
(1 + β2) ‖rd‖2

Q

+ (1 + 1
β2

)C2
F ‖req‖2

Q

)
+ (1 + 1

β1
) μ2

λ2 ‖∂trd‖2
Q

)
+ μ ‖req‖2

Q

)
, (14)

where ν1 = (2 − 1
ζ )λ, ν2 = (2 − 1

ζ )μ, ν3 = μ (1 − 1
ε ), ν4 = λ, where CF is the

Friedrichs constant, req(v, y) and rd(v, y) are residuals in (13), λ, μ > 0 are
parameters in (5), ζ ∈

[
1
2 ,+∞), ε ∈ [1,+∞), and βi > 0, i = 1, 2.



Proof: By using analogous density arguments and integral manipulations with
the ‘error-identity’, we obtain (14) (see also [16, Theorem 3]). �

Corollary 1 presents majorants for λ = 1 and μ = δh, where δh = θ h, θ > 0.

Corollary 1

(i) If v∈V Δx
0,0 and y∈Hdivx,0(Q), Theorem2 yields the estimate

|||e|||2s,νi
≤ Mδh

(v,y; γ, αi) := γ
(
(1 + α1) ‖rd‖2

Q

+ (1 + 1
α1

)C2
F ‖req‖2

Q + δh

(
(1 + α2) ‖divxrd‖2

Q + (1 + 1
α2

) ‖req‖2
Q

))
, (15)

where ν1 = (2 − 1
γ ), ν2 = (2 − 1

γ ) δh, ν3 = δh ν4 = 1.
(ii) If v ∈ V ∇x∂t

0,0 and y ∈ Hdivx,1(Q), then Theorem3 yields

|||e|||2s,νi
≤ M

II

δh
(v,y; ζ, βi, ε) := ε δh ‖rd‖2

ΣT
+ ζ

(
(1 + β1)

(
(1 + β2) ‖rd‖2

Q

+ (1 + 1
β2

)C2
F ‖req‖2

Q

)
+ (1 + 1

β1
)δ2

h ‖∂trd‖2
Q + δh ‖req‖2

Q

)
,

(16)

where ν1 = (2 − 1
ζ ), ν2 = (2 − 1

ζ ) δh, ν3 = δh, and ν4 = 4. In (i) and (ii), rd

and req are defined in (13), CF is the Friedrichs constant, δh is discretisation
parameter, γ, ζ ∈

[
1
2 ,+∞), ε ∈ [1,+∞), and βi > 0, i = 1, 2.

4 Numerical Example

In the final section of this work, we present an example demonstrating the numer-
ical behaviour of the derived majorants for the static case of the parabolic I-BVP.
In fact, the space-time approach treats the parabolic problem as yet another ellip-
tic problem in Rd+1 with strong convection in (d + 1)-th direction. Therefore,
for the simplicity of presentation, we consider the Poisson Dirichlet problem

− Δxu = f in Q := (0, 1)2 ∈ R2, u = 0 on ∂Ω. (17)

Let uh ∈ V0h, where Vh ≡ Sp,p
h :=

{
V̂h ◦ Φ−1

}
and V̂h ≡ Ŝp,p

h , be generated with
NURBS of degree p = 2. Due to the restriction on the knots-multiplicity of Ŝp,p

h ,
we have uh ∈ Cp−1. Then, uh(x) :=

∑
i∈I uh,i φh,i, where uh :=

[
uh,i

]
i∈I ∈ R|I|

is a vector of degrees of freedom (DOFs) defined by a system

Kh uh = fh, Kh :=
[
(∇xφh,i,∇xφh,j)Q

]
i,j∈I , fh :=

[
(f, φh,i)Q

]
i∈I . (18)

The majorant corresponding to (17) can be presented as

M(uh,yh) := (1 + β) ‖yh − ∇xu‖2
Q + (1 + 1

β )C2
F ‖divxyh + f‖2

Q, (19)



where β > 0 and y ∈ Hdivx,0(Q). The approximation space for yh ∈ Yh ≡
Sq,q

h :=
{
Ŷh ◦ Φ−1

}
is generated by the push-forward of Ŷh := Ŝq,q

h ⊕ Ŝq,q
h , where

ˆSq,q
h is the space of NURBS functions of degree q for each of the components

of yh = (y(1)
h , y

(2)
h )T. The best EE is obtained by optimisation of M(uh,yh)

w.r.t. yh :=
∑

i∈I y
h,i

ψh,i. Here ψh,i is the basis function of the space Yh, and

y
h

:=
[
y

h,i

]
i∈I ∈ R2|I| is a vector of DOFs of yh defined by a system

(
C2

F Divh + β Mh

)
y

h
= −C2

F zh + β gh, (20)

where

Divh :=
[
(divxψi,divxψj)Q

]2|I|
i,j=1

, zh :=
[(

f,divxψj

)
Q

]2|I|
j=1

,

Mh :=
[
(ψi,ψj)Q

]2|I|
i,j=1

, gh :=
[(

∇xv,ψj

)
Q

]2|I|
j=1

.

According to [11], the most effective results for the majorant reconstruction
(with uniform refinement) is obtained, when q is set substantially higher than p.
We assume that q = p + k, k ∈ N+. In the same time, when uh is reconstructed
on the mesh Th, we use a coarser one TKh,K ∈ N+, to recover the flux yKh.

Example 1. We consider a basic example with u = (1 − x1)x2
1 (1 − x2)x2,

f = −
(
2 (1 − 3x1) (1 − x2)x2 − 2 (1 − x1)x2

1

)
, and homogenous Dirichlet

BC. For the uniform refinement, we set p = 2, i.e., uh ∈ S2,2
h , and compare

two different settings: (a) yh ∈ Sq,q
Kh ⊕ Sq,q

Kh, q = 5, k = 3,K = 3 and (b)
yh ∈ Sq,q

Kh ⊕Sq,q
Kh, q = 9, k = 7, K = 7. The upper and lower parts of Tables 1 and

2, correspond to the cases (a) and (b), respectively. In the case (a), the time spent
on the reconstruction of yh (i.e., tas(yh) + tsol(yh)) is about 3 times higher than
the time tas(uh) + tsol(uh). However, for the case (b), the assembling time of the
systems Divh and Mh (denoted by tas(yh)) takes approximately 1/10-th of the
assembling time for Kh (tas(uh)). Moreover, solving the system (20) (tsol(yh))
takes only 1/500-th part of the time spent on solving (18) (tsol(uh)). The effi-
ciency of the obtained functional majorant is illustrated by Ieff(M) = 1.0936 (see
the fifth column of Table 1).

Table 1. Assembling and solving time for systems (18) and (20) w.r.t. the last 2
refinement steps.

DOFs(uh) DOFs(yh) tas(uh) tas(yh) tsol(uh) tsol(yh)

y ∈ S5,5 ⊕ S5,5, k = 3, K = 3

1 004 004 42 431 4.2770 10.9889 17.0640 43.3740

4 010 004 205 031 17.1461 45.0032 143.2929 328.5911

y ∈ S9,9 ⊕ S9,9, k = 7, K = 7

1 004 004 441 4.3506 0.4213 17.1396 0.0456

4 010 004 1 161 17.4620 1.7268 142.9116 0.2667



Table 2. The error, the majorant, the corresponding efficiency index, and the e.o.c.
(error order or convergence) p w.r.t. the last 2 refinement steps.

‖∇x(u − uh)‖2
Q M Ieff p

y ∈ S5,5 ⊕ S5,5, k = 3, K = 3

6.229382e−07 7.450215e−07 1.0936 2.0113

1.557344e−07 1.862552e−07 1.0936 2.0056

y ∈ S9,9 ⊕ S9,9, k = 7, K = 7

6.229382e−07 6.363897e−07 1.0107 2.0113

1.557344e − 07 1.557499e − 07 1.0000 2.0056

We now consider an adaptive refinement strategy, i.e., THB-Splines [7,12,
26] in combination with the functional EE (19). We use the so-called Dörfler’s
marking [5] with a parameter θ = 0.6. We start with the following setting:
uh ∈ S2,2

h is THB-Splines basis (with one level and 36 basis functions of degree 2),
and yh ∈ S5,5

3h ⊕S5,5
3h is THB-Splines basis (with one level and 81 basis functions

of degree 5). We execute 16 refinement steps to obtain the error illustrated in
Table 3 (where only the last two refinement steps are shown). The time spent
on the assembling, solving, and generating corresponding EEs is illustrated in
Table 4. By using 3 times courser mesh in the refinement of the basis for yh, we
have managed to spare the effort of reconstructing the optimal yh and speed
up the over-all reconstruction of the majorant. In the current configuration, we
obtain the following ratios of the times spent on reconstruction of yh and uh,
i.e., tas(uh)

tas(yh) ≈ 19 and tsol(uh)
tsol(yh) ≈ 658.

Table 3. Assembling and solving time for systems (18) and (20) w.r.t. the last 2
refinements of total 16 steps.

DOFs(uh) DOFs(yh) tas(uh) tas(yh) tsol(uh) tsol(yh)

55 005 145 12.1002 0.9302 0.6105 0.0022

107 444 132 17.7635 0.9269 1.1858 0.0018

Table 4. Error, majorant, its efficiency index, and e.o.c. w.r.t. the last 2 refinements
of total 16 steps.

‖∇x(u − uh)‖2
Q M Ieff p

3.263617e−06 3.373925e−06 1.0338 1.4511

2.187249e−06 2.202933e−06 1.0072 1.6345
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18. Mali, O., Neittaanmäki, P., Repin, S.: Accuracy Verification Methods. Computa-
tional Methods in Applied Sciences, vol. 32. Springer, Dordrecht (2014). https://
doi.org/10.1007/978-94-007-7581-7

19. Mantzaflaris, A., et al.: G+Smo (geometry plus simulation modules) v0.8.1 (2015).
http://gs.jku.at/gismo

20. Matculevich, S.: Fully reliable a posteriori error control for evolutionary problems.
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