
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Elementary Math to Close the Digital Skills Gap

© 2018 SCITEPRESS – Science and Technology Publications, Lda.

Accepted version (Final draft)

Niemelä, Pia; Valmari, Antti

Niemelä, P., & Valmari, A. (2018). Elementary Math to Close the Digital Skills Gap.  In B. M.
McLaren, R. Reilly, S. Zvacek, & J. Uhomoibhi (Eds.), CSEDU 2018 : Proceedings of the 10th
International Conference on Computer Supported Education. Vol. 2 (pp. 154-165). SCITEPRESS
Science And Technology Publications. https://doi.org/10.5220/0006800201540165

2018



Elementary math to close the digital skills gap

Pia Niemelä1 and Antti Valmari2
1Tampere University of Technology, PO Box 527, FI-33101, Tampere, FINLAND

pia.niemela@tut.fi

2University of Jyväskylä, Jyväskylä, FINLAND
antti.valmari@jyu.fi

Keywords: K-12 computer science education, computing in math syllabus, digital skills gap, professional development of
software professionals, effectiveness of education, continuous vs. discrete math

Abstract: All-encompassing digitalization and the digital skills gap pressure the current school system to change. Ac-
cordingly, to ’digi-jump’, the Finnish National Curriculum 2014 (FNC-2014) adds programming to K-12 math.
However, we claim that the anticipated addition remains too vague and subtle. Instead, we should take into
account education recommendations set by computer science organizations, such as ACM, and define clear
learning targets for programming. Correspondingly, the whole math syllabus should be critically viewed in the
light of these changes and the feedback collected from SW professionals and educators. These findings reveal
an imbalance between supply and demand, i.e., what is over-taught versus under-taught, from the point of view
of professional requirements. Critics claim an unnecessary surplus of calculus and differential equations, i.e.,
continuous mathematics. In contrast, the emphasis should shift more towards algorithms and data structures,
flexibility in handling multiple data representations, logic; in summary – discrete mathematics.

1 INTRODUCTION

21st century society is digitizing rapidly and job de-
scriptions of current professions are changing accord-
ingly. Digitalization triggers pressure to change the
current education system. Both domestic and multi-
national governing bodies have recognized the skills
gap of computer science and the growing need for a
digitally fluent workforce. Consequently, the EU has
outlined a strategy for improving e-skills for the 21st
century to foster competitiveness, growth, and jobs.
Just-published technical reports provide guidance for
educators and politicians at the European level (Re-
decker and Punie, 2017; Bocconi et al., 2016), high-
lighting the pervasive and ubiquitous nature of digi-
talization. Digital literacy, responsible use of technol-
ogy, and civic participation are thus relevant to every-
body. In consolidation, digitally skillful workers are
more likely to keep their positions and, if displaced,
are reemployed more quickly than employees without
digital skills (Peng, 2017).

The skills gap concerns not only the number of
SW professionals but also the quality of their skills.
The STEM shortage paradox highlights the peculiar-
ity of having hard-to-fill open positions and at the

same time an excess of graduates who cannot find a
job (Harris, 2014; Smith and White, 2017). One ex-
planation is the skills mismatch, and in compliance
with this, employers point out the candidates’ inca-
pability of breaking down problems into manageable
chunks and solving them, and the gaps in technical,
data modeling, and analytical skills. Accordingly,
data base, data management, data analysis and statis-
tics skills outnumber other requested digital skills of
job advertisements in the US (Beblavỳ et al., 2016).

The discussion of the role of computer science
(CS) in education is global. A number of countries
all over the world have introduced CS into their K-12
curricula. In line with others, the FNC-2014 com-
prises algorithmic thinking and programming as parts
of the mathematics syllabus (Finnish National Board
of Education, 2014). In pursuit of consistent CS
support, the entire math syllabus should be reviewed
along with these newly introduced additions. This
study then asks:

• RQ1: What elementary math syllabus areas
should be strengthened for the anticipated CS em-
phasis?

• RQ2: Are there math syllabus areas that are cur-
rently overemphasized from this viewpoint?



First, this study reviews the discourse of CS as a sci-
entific discipline and the learning targets of mathe-
matics in anticipation of supporting CS. In the Re-
lated Work section, we list already-existing directives
and recommendations of institutions that aim at build-
ing a flexible future work force, such as ACM. There,
we focus on suggested math courses in particular. For
comparison, we check the elementary-level math and
computing syllabi of current strong performers in CS,
i.e., the UK and US. The Results and Discussion sec-
tion cross-exposes these recommendations with feed-
back from in-service software engineers by focusing
on the evaluated profitability of the curriculum topics.
To conclude, we propose hypothetical math learning
trajectories for a CS support.

2 CS&SWE VS. ICT

Most natural sciences and engineering disciplines rely
on calculus, differential equations, and linear algebra
as a mathematical foundation appropriate for continu-
ous phenomena. Systems relying on such phenomena
can be adequately tested. For instance, a bridge does
not need tests for all possible loads between zero and
a maximum value. Testing the maximum load under
typical and extreme weather conditions suffices.

In contrast, Parnas highlights the different nature
of software (Parnas, 1985). Unlike bridge load tests,
testing a piece of software with typical and extreme
values does not guarantee expected behavior with
untested values. Furthermore, software is rarely con-
cise enough to be tested inside out, and unlike math-
ematical theorems, it is not comprehensively checked
by other experts in the field. Thus, frequent errors and
failures are common (Charette, 2005).

As we will discuss later, computer scientists have
suggested topics such as logic, formal grammar, and
set theory as an appropriate mathematical basis for
mastering software and improving its quality. In addi-
tion, the importance of algorithmic thinking has been
discussed extensively. In traditional engineering de-
gree programs, classic mathematics and physics are
included early on. The rationale is to develop a suit-
able mindset, that is, a way of thinking that facilitates
a more profound learning of engineering topics. The
basis is laid already in elementary school physics and
mathematics. Similarly, professional computer sci-
ence and software development need a suitable mind-
set that should be developed before studying the bulk
of the software topics. However, because software
cannot be appropriately mastered with tools suited for
continuous phenomena, this mindset is not the same
as that of, say, an electrical engineer.

The discussion of the educational needs in Finland
suffers from a poor distinction between Information
and Communication Technology (ICT), Computer
Science (CS), and Software Engineering (SWE). For
more than a decade, the Finnish mobile phone com-
pany Nokia was very successful and its educational
needs had a remarkable impact on the Finnish ed-
ucational discourse. In addition to SW engineers,
Nokia needed expertise in the fields of hardware, ra-
dio technology, and signal processing. Therefore,
ICT and SWE were emphasized instead of CS, with
SWE largely perceived via analogy to traditional en-
gineering, less through its relation to CS. As a conse-
quence, Finnish scholars and educators have only par-
tially conceived the special character of CS and SWE
as disciplines distinct from ICT, thus requiring a dif-
ferent educational foundation, which implies changes
in the math syllabus as well.

To clarify the conceptual difference, we define the
relation of CS to SWE more closely. Parnas equates
it to the relationship between physics and electrical
engineering (Parnas, 1999, p. 21): physics belongs
to the natural sciences, which target an understand-
ing of a wide variety of phenomena; electrical engi-
neering is an engineering discipline striving to cre-
ate useful artefacts. Although electrical engineering
is based on physics, it is neither a subfield nor an ex-
tension of it. Analogously, CS is a science, and SWE
is an engineering discipline based on CS. Therefore,
CS degrees must focus on the underlying computa-
tional phenomena and the acquisition of new knowl-
edge of these, while SWE degrees concentrate on
implementing trustworthy, human-friendly software
cost-effectively.

In regard to math, the latest specifications of
ACM&IEEE explicate the similarity of required skills
both in CS and SWE (ACM&IEEE, 2013; Ardis et al.,
2014). Even if CS is more scientific as a discipline
and more deeply grounded in math, SW engineers
benefit from more theoretically-oriented CS educa-
tion and discrete math to be able to implement quality
software. Hence, the conceptual difference does not
diverge the required math and computing fundamen-
tals. Consequently, Meziane and Vadera concluded,
’There is very little difference between the SE and CS
programs currently offered in English Universities’
(Meziane and Vadera, 2004).



3 RELATED WORK

3.1 ACM recommendations

The standards developed by the Association for Com-
puting Machinery (ACM) are used as a premise in
curriculum planning in a number of Finnish univer-
sities. The CS concepts introduced in the first courses
are important either for their own sake or for further
topics. Obviously, the first fundamental concepts are
also the most evident candidates when considering to
advance some basics at the elementary school level.

3.1.1 CS Knowledge Areas of ACM

ACM promotes CS as a discipline and in compliance
prepares normative recommendations for teaching CS
at the tertiary level. ACM (ACM&IEEE, 2013) intro-
duces Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science (ACM-CS2013).
The material is divided into Knowledge Areas (KA)
and further to Knowledge Units (KU) that match with
no particular course. Instead, courses may incorpo-
rate topics from multiple KAs. Topics are divided into
Core and Elective, and the Core is further subdivided
into Tier-1 (to be fully completed) and Tier-2 (at min-
imum 80% coverage). The KAs with the most Tier1
hours are:

1. Software Development Fundamentals (43 h)

2. Discrete Systems (37 h)

3. Algorithms and Complexity (19 h)

4. Systems Fundamentals (18 h)

The natural flow of concepts is to introduce soft-
ware development fundamentals (SDF) and simulta-
neously strengthen the mathematical foundation with
Discrete Systems (DS). In descending order of allo-
cated hours, algorithms and complexity (AL) come
next, where mastering common algorithms is consid-
ered general CS knowledge. Complexity consider-
ations consist of evaluating the algorithm efficiency
based on execution time and consumed resources.
Systems Fundamentals (SF) give an insight into sys-
tem infrastructure and low-level computing by ac-
quainting students with computer architecture, main
HW resources and memory, and, e.g., sequential and
parallel execution.

From the list above, items 2 and 3 link closely
with math. According to ACM, DS comprises the fol-
lowing areas in descending order of emphasis (Tier-1
+ Tier-2 hours): Proof Techniques (11), Basic Logic
(9), Discrete Probability (8), Basics of Counting (5),
Sets, Relations, and Functions (4), and Graphs and
Trees (4). AL in turn consists of basic and advanced

KUs of Analysis, Strategies, Fundamental Data Struc-
tures, Automata, Computability, and Complexity.

In sum, algorithms and data structures are at the
center of gravity together with the programming ba-
sics of SDF.

3.1.2 The most relevant math to support CS

ACM-CS2013 highlights the tight and mutual inter-
dependence between math and CS. However, instead
of being prepared for every kind of career option,
ACM-CS2013 focuses on the common denominator.
Thus, only directly relevant requirements are speci-
fied, such as elements of set theory, logic, and dis-
crete probability comprising the KA of DS. On the
other hand, ACM-CS2013 states that “while we do not
specify such requirements, we note that undergradu-
ate CS students need enough mathematical maturity
to have the basis on which to then build CS-specific
mathematics”. It also mentions that “some programs
use calculus . . . as a method for helping develop such
mathematical maturity” (ACM&IEEE, 2013).

The recommendations make a distinction between
such mathematics that is an important requirement for
all students in the faculty and mathematics that is rel-
evant only to specific areas within CS, exemplifying
this with linear algebra that “plays a critical role in
some areas of computing such as graphics and the
analysis of graph algorithms. However, linear alge-
bra would not necessarily be a requirement for all ar-
eas of computing” (ACM&IEEE, 2013).

If it were decided to emphasize discrete math in-
cluding logic in the elementary school math curricu-
lum, then an age-appropriate and tested subset of
ACM Basic Logic could be found in the National Cur-
riculum and GCSE Mathematics of the UK. The UK
has already emphasized discrete math for a longer pe-
riod, see section 3.3. Logic is deployed frequently
in programming, not only when implementing con-
ditions in selection and iteration statements. Subse-
quently, university-level logic targets more sophisti-
cated and far-reaching knowledge than this. In conse-
quence, Basic Logic of DS introduces normal forms,
validity, inference rules, and quantification.

Although probability is linked more weakly to the
programming fundamentals than logic, it gives readi-
ness for various prominent topics, such as the analy-
sis of average-case running times, randomized algo-
rithms, cryptography, information theory, as well as
games. Its basics should cover conditional probabil-
ity, independent and dependent events, and multipli-
cation and addition rules.



3.2 SWEBOK recommendations

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) of the IEEE breaks down the
mathematical foundations into smaller knowledge ar-
eas (Bourque et al., 2014). In the review, we focus on
both Chapters 13 and 14 of the guide, i.e., Computing
and Mathematical Foundations.

Computing Foundation in Chapter 13 is included
because it comprises algorithms and data struc-
tures. Data structures have various classifications,
e.g., linear–nonlinear, homogeneous–heterogeneous,
stateful–stateless. For instance, linear structures or-
ganize items in one dimension (lists, stacks), com-
pared to the two or more hierarchies (trees, heaps) of
non-linear structures. Well-designed data structures
accelerate data storage and retrieval. The efficiency
of algorithms depends significantly on the selection
of a suitable data structure. Appropriate data struc-
tures can foster algorithm development. When the
effects are combined, performance and memory con-
sumption may range from poor to extremely efficient.

Chapter 14 highlights CS as an applied maths
topic. The foundational KAs concentrate on logic and
reasoning as the essences that a SW engineer in par-
ticular must internalize. The chapter describes math-
ematics as a tool of studying formal systems, widely
interpreted as abstractions on diverse application do-
mains. These abstractions are not restricted to num-
bers only, but include, e.g., symbols, images, and
videos.

The following subtopics constitute the founda-
tional KAs of math. Our assumption is that the order
implicates their importance. We divide these topics
into continuous (c) and discrete (d):

1. Sets, Relations, and Functions (c/d)

2. Basic Logic (d)

3. Proof Techniques (d)

4. Basics of Counting (d)

5. Graphs and Trees (d)

6. Discrete Probability (d)

7. Finite State Machines (d)

8. Grammars (d)

9. Numerical Precision, Accuracy, and Errors (c)

10. Number Theory (d)

11. Algebraic Structures (d)

One obvious observation is a notably smaller por-
tion of continuous math compared to traditional en-
gineering education. In particular, calculus, differen-
tial equations, and linear algebra are missing. Instead,

several topics target a better position of underlying
logic (2,3); and primers for data types, data structures
and algorithms (1,4,5,9,11). In addition, subtopics
of Basics of Counting (4), and Discrete Probability
(6) and Number Theory (10) scaffold a deeper un-
derstanding of probability and cryptography. Numeri-
cal Precision, Accuracy, and Errors (9) section reveals
underlying HW and memory specifics that have an ef-
fect on, e.g., the resolution of measurements and im-
possibility of expressing most real numbers precisely.

3.3 K-12 math and computing syllabi of
the UK and US

For comparison, we went through the National Cur-
riculum (UKNC) and General Certificate of Sec-
ondary Education (UKGCSE) of the UK (Department
of Education, 2014; GCSE, 2015), and the Core Cur-
riculum of US (USCC) (Core Standards Organization,
2015). The logic basics are present in the syllabi of
both, with a comprehensive subset. Yet Boolean logic
is currently included in the computing curriculum of
UKNC, not in math. However, Boolean logic would
fit well in the math syllabus as a consistent continuum
of inequalities.

Sets can illustrate nested number sets of natural
numbers (N), integers (Z), and reals (R) that match
with variable types (unsigned, int, float) in program-
ming. However, due to differences in how, e.g., reals
appear in both, we note that this juxtaposition is prone
to misconceptions. For instance, in:

i n t x =1; f l o a t y=x / 2 ;

division may produce a value of zero depending on
the used language. All the same, not every int is a
float, in contradiction of the math subset relation of
ZĂ R. In addition to primitive types, sets are the ba-
sic mathematical abstraction of containment, and are
thus relevant for programming as a cognitive tool. A
group of numbers may be introduced as a set, a vec-
tor or a matrix, and the same group operations apply.
Therefore, set theory would be useful in any mathe-
matics curriculum designed to support programming.
Currently, sets are a part of UKNC, but absent from
USCC and FNC-2014.

Linear algebra basics are included in the USCC
as matrices and basic operations; and as vectors and
transformations in UKNC, whereas they are missing
from the FNC-2014. For example, linear algebra ba-
sics could be a beneficial addition even if supported
by ACM-CS2013 only as an elective math topic, be-
cause matrices are extensively exploited in the fields
of statistics, data analysis, games, and graphics, for
instance. The need for matrices is increasing, be-



Table 1: Math Syllabi (KS=key stage, G=grade, HS=high
school. Each key stage covers several grades ranging from
two to four. The GCSE exams follow KS4.

UKNC USCC
Logic (in CS)

KS2: logical reason-
ing to explain how
simple algorithms
work
KS3: Boolean logic
(AND/OR/NOT)
and its applica-
tion in circuits and
programming

Sets
Prob

KS3: enumerate sets,
unions/intersections,
tables, grids and Venn
diagrams
KS4: data sets from
empirical distribu-
tions, identifying
clusters, peaks, gaps
and symmetry, ex-
pected frequencies
with two-way ta-
bles, tree and Venn
diagrams

G6: data sets,
identifying clus-
ters, peaks, gaps,
symmetry
G7: random sam-
pling to generate
data sets
HS: interpret-
ing differences
in shape, center
and spread of a
distribution

Vectors
Mat-
rices

KS4: (in Geometry)
translations as 2D
vectors, addition and
subtraction of vectors,
multiplication with a
scalar, diagrammatic
and column represen-
tations
GCSE: transforma-
tions & vectors

HS: addition,
subtraction, mul-
tiplication of
matrices, multi-
plication with a
scalar, identity
matrix, transfor-
mations as 2x2
matrices

cause of topicality of their application areas and be-
cause many libraries in, e.g., Python exploit them ex-
tensively. As a topic, matrices and vectors belong to-
gether, and various transformations (such as scaling,
translation, reflection and rotation) are main opera-
tions on image manipulation and animations.

Matrices are extensively exploited, e.g., in ma-
chine learning, data analysis, pattern recognition, and
game engines for 2D/3D-transformations. All sug-
gested math syllabus areas remain at the preliminary
level in UKNC and USCC and we propose the same:
in logic truth tables and Boolean logic in order to sim-
plify several simultaneous conditions; in sets, Venn
diagrams and basic operations of union, intersection
and cut with at most three sets; and in matrices, trans-

formations of translation, reflection, rotation and en-
largement and finding an inverse matrix. This new
math knowledge should be carefully bridged with the
prior knowledge with lots of visual exercises and by
starting early enough. Table 1 illustrates in which or-
der these topics are handled in the UKNC and USCC.

Thus, in lieu of the ACM DS Logic subset, a read-
ily field-tested elementary syllabus is found in GCSE
CS (GCSE, 2015). It contains the following topics:
• binary and hexadecimal notations
• binary addition and shift
• Boolean values (true, false)
• Boolean operators (AND, OR, NOT); truth tables

Sets prompt types in programming and they can be
utilized in abstracting both primitives and collections.
UKNC specifies the syllabus of sets followingly:
• sets visualized by Venn diagrams
• set operations: subset, proper subset, intersect,

and union, combinations of these
• sets represented as lists, and
• set and its complement

In addition, in the CS syllabus of the GCSE clear
learning targets for algorithms are set: at a minimum,
binary search and merge sort (GCSE, 2015).

4 Method

This study complies with the scope of curriculum the-
ory (Pinar, 2012), and its key question of what knowl-
edge is most valuable and how this knowledge is con-
structed as consistently as possible. Here, we are con-
cerned with the educational and sociological aspects
due to the aim of improved employability and filling
the digital skills gap. This study is restricted to el-
ementary math and compares the FNC-2014 to the
UKNC and USCC (Department of Education, 2014;
English Department for Education, 2013; Core Stan-
dards Organization, 2015) and to the recommenda-
tions given by the ACM and IEEE (ACM&IEEE,
2013; Bourque et al., 2014). The comparison exploits
content analysis in searching for the math syllabus an-
ticipated to be the most useful for CS students.

In addition to the comparison, the effectiveness
of the university-level SWE studies reflects back to
the curriculum design. We do not collect any new
data but reuse the data of existing studies (Lethbridge,
2000; Puhakka and Ala-Mutka, 2009; Surakka, 2007;
Kitchenham et al., 2005). The results of the previous
studies are cross-correlated to confirm their validity
in order to draw conclusions about the most profitable
math topics.



5 Results and Discussion

In this section, we first review the feedback from
the field: SW professionals evaluate the curriculum
topics according to their profitability in working life.
Having being informed of both the previous section’s
recommendations and criticisms of the current real-
ization, we summarize the necessary math syllabus
content and bridge the learning trajectories from el-
ementary to higher-education math.

5.1 Feedback from SW engineers

To evaluate the effectiveness of their education, SW
engineers have scored the profitability of a plenty of
curriculum topics (Lethbridge, 2000). An imbalance
between supply and demand was discovered and as a
remedy, the author recommends putting less emphasis
on the topics of minor importance – or teaching them
in a way that makes them more relevant to SWE stu-
dents. The study was run in year 1997 and repeated
in 1998. The differences between outcome remained
modest. In 1998, the sample size was N “ 181, and
the survey consisted of 75 topics of CS, SWE, etc.

A few years later, in 2004, Kitchenham & al.
conducted a research focusing on the curricula and
graduates of four UK universities (Kitchenham et al.,
2005). The methodology was somewhat different
and so was the obtained list of the most under-taught
topics. The findings regarding mathematics were,
however, the same. Then in 2009, a decade after
Lethbridge’s original research setup, Puhakka et al.
published an analogous study conducted in Tampere
University of Technology (Puhakka and Ala-Mutka,
2009, N “ 212). Out of the original 75 subtopics,
three were removed because of their not being com-
mon in Finnish curricula. Both sub-figures of Fig. 1
illustrate the differences between math-related per-
ceptions among SW professionals in the examined co-
horts of US and Finland. First, we observe that the re-
sults correlate surprisingly well, taking into account a
timespan and continent switch. The scientifically sig-
nificant values of R2 are 0.88 in the upper, and 0.91 in
the lower figure.

The green circles in sub-figures designate the ar-
eas considered either useful (the upper) or in need of
more emphasis (the lower) to build work-life compe-
tences of SW professionals. The lower sub-figure,
however, demonstrates the rarity of topics in need
of more emphasis. Negative values indicate a post-
graduate knowledge loss, whereas positive values a
knowledge gain, in other words, inadequate learning
of such topics in higher education.

The latter sub-figure is visually telling. Only al-

Figure 1: The comparison of usefulness and adequacy of
math education evaluated by SW professionals (Lethbridge,
2000; Puhakka and Ala-Mutka, 2009, N “ 181; N “ 212)

gorithms and data structures are in need of more
emphasis. In addition to these, the Lethbridge top-
ten consists of no other mathematical but instead
such items as negotiation, human-computer interac-
tion, and leadership.

In comparison with both previous surveys,
Surakka separates the sample into the cohorts of SW
engineers, academics (professors, lecturers) and stu-
dents, see Fig. 2. The winner is again clear: algo-
rithms and data structures, also the prominence of dis-
crete math compared with continuous math is unchal-
lenged, yet the bias has an academic flavour. Discrete
math scores highest among professors and lecturers
(3.1).

5.2 CS-supportive math for elementary

In constructing a strong basis for CS, both ACM and
SWEBOK emphasize discrete math, confirmed by the
feedback from the field. After programming basics,



Figure 2: The math areas perceptions [1(not important),
4(very important)] of Surakka’s engineers, academics, and
students contrasted with Lethbridge and Puhakka et al.;
N “ 11,19,24,181,212; respectively

ACM values discrete systems as the second most,
and algorithms, data structures, and complexity as the
third most prominent KAs, whereas the in-service SW
engineers value this area the highest. In SWEBOK,
nine out of eleven math KAs comprise discrete math.
UK, spearheading in CS, invests in discrete math al-
ready at the elementary level and in addition, provides
CS as a separate subject with more in-depth topics.

Algorithmic thinking

The referenced studies categorize algorithms and data
structures as part of the CS Core. In programming-
oriented math, data structures can be seen as an ap-
plication of set theory, e.g., sets conceptualize col-
lections. In programming, collections are of various
types: a set is an unordered collection of values, a list
an ordered collection, and a map a collection of val-
ues identified by keys, which may also be interpreted
as a representation of a mathematical function.

Denning equates algorithmic and computational
thinking (Denning, 2009), which he in turn associates
with general problem solving (Denning, 2017). When
solving a problem, it is beneficial to start by decom-
posing it to smaller solvables implemented in a code
as sub-routines, for instance. At its simplest, an algo-
rithm may then be understood as a sub-routine, a se-
quence of commands called repeatedly as many times
as desired, e.g., (CSTA, 2016). Computing is what
Wing refers to as automation of abstractions, algo-
rithms being the most prominent class of these ab-
stractions (Wing, 2008).

The gradual division between human-completed
calculation and computer-based computing has been
the watershed between the disciplines of math and
CS. In pondering the difference between the mind-
sets of mathematicians and computer scientists,
Knuth points out that computer scientists need to

be concerned about algorithms and their comput-
ing specifics, such as the notion of complexity or
economy of operations. In most programming lan-
guages, the computing process comprises a series
of sequential state changes executed assignment-by-
assignment, which is an operation absent in math.
Moreover, data structures in CS are inhomoge-
neous, which spreads the spectrum of concerns com-
pared with more convergent mathematical structures
(Knuth, 1985), excluding the data structures of ad-
vanced set theory and logic.

Algorithmic thinking has been brought within
reach of school or even pre-school children with mul-
tiple initiatives such as (Liukas, 2015). It may be
well taught even without computers, as demonstrated
by the CS-unplugged movement (Taub et al., 2012),
and algorithmic plays (Futschek and Moschitz, 2010).
Puzzles and games can be thought-provoking, thus
this approach is also exploited by a number of univer-
sities in familiarizing students with algorithms (Lam-
agna, 2015). Unplugging removes the extra cognitive
load of programming details.

Data represented and modeled in multiple ways

Multiple external representations (MERs) elucidate
the data and problem from different perspectives. For
example, a function may be represented as an expres-
sion, a curve, a map from argument set to image set, a
table with two columns, or a function machine. Flex-
ibility in moving from one representation to another
indicates a deeper understanding of the concept (Mc-
Gowen et al., 2000), which facilitates problem solv-
ing. Wilkie and Clark denote representational flexi-
bility as fluency with the order of operations; commu-
tative, associative, and distributive laws; and equiva-
lence of expressions (Wilkie and Clarke, 2015). In
programming, representational fluency is practiced,
e.g., with the syntactic diversity of operations, such
as addition: x` y, `px, yq, or p` x yq.

Fig. 3 illustrates the use of the MathCheck learn-
ing tool (Valmari and Kaarakka, 2016) in studying
the relationship between textual and tree representa-
tions. Such exercises aim at training the precedence
and left- and right-associativity rules in particular.
The exercises help students to grasp the distinction
between semantics and syntax by differentiating be-
tween associativity as a semantic notion and left- and
right-associativity as syntactic notions. Furthermore,
the example in Fig. 3 reveals that the relation opera-
tors (“ and ě, and so on) are neither left- nor right-
associative unlike arithmetic operators (`, ´, and so
on). Consequently, in x “ y ě z, the first comparison
result is not passed as an argument to the second, but
instead, a Boolean AND is performed on both. Thus,



Figure 3: A tree representation of a model relation chain,
and a failed student attempt to yield a similar tree

drawing “ as a child of ě, or vice versa, would be
misleading. Being even, the relation operators must
share the root of a tree as Fig. 3 illustrates. This also
makes it explicit that although y occurs only once,
both comparisons use it as an argument.

In problem solving, the ability to model and ab-
stract the data is crucial. USCC specifies Modeling as
one syllabus area of HS math (Core Standards Orga-
nization, 2017; Core Standards Organization, 2015).
Modeling links to a broader pedagogical idea of us-
ing open-ended problems of everyday life and it com-
bines skills from math, statistics and technology, and
’ . . . and an ability to recognize significant variables
and relationships among them. Diagrams of various
kinds, spreadsheets and other technology, and alge-
bra are powerful tools for understanding and solving
these problems.’ Although modeling, say, a banking
system for implementation as software is fundamen-
tally different from modeling a physical or statistical
problem, the need to recognize and formalize the es-
sential aspects of the problem is common to all of
them. Modeling requires ’specificational thinking’,
which is necessary for both SW engineers and their
customers in order to reach a common vision, and de-
scribe use cases and requirements pellucidly. In FNC-
2014, phenomenon-based learning approaches the an-
ticipated open-endedness in problem setting.

Logic

In CS formalization, Dijkstra described its distinc-
tiveness with a formula (Dijkstra et al., 1989): CS “
math` logic. In accordance, he called students to
learn formal math and logic to construct a well-
grounded basis for CS. UKNC points out that already

a novice programmer at the elementary level needs
simple Boolean logic, for example, the operators of
AND, OR and NOT, and combinations, see Fig. 4.
In the same context, logic gates in circuits are intro-
duced. This connection between Boolean logic and
logic gates can be used to create a link with electrical
engineering and physics.

Figure 4: Logic in UKNC

To skim other logic uses, we reviewed ACM
course descriptions. The chief applications were
proofs, correctness, combinational and sequential
logic of state machines, and in addition to these, logic
of knowledge representation and reasoning that tar-
gets translating natural language (e.g., English) sen-
tences into predicate logic statements. Such a skill
would stand out when applying specificational think-
ing, check page 7.

Sets, statistics, probability

Sets

xA’      A

U

P(A)+P(A’) = 1
n(A) = 1 (only x, in this case)

B={0,1,2,3}
A={x | x∊B, x>2 } descriptive

C={x | x∊B, x<2},D={}, D=∅

visualized by Venn listed  complemented

A⊂B 
proper subset

B⊆B 
subset

A∩B 
A intersects B

A∪B 
A union B

A∩B∩C 

       B
 A

 B
 

 A          B

 A B

 A B

         C

Figure 5: Sets in UKNC

The syllabus areas of sets, statistics and probabil-
ity are inter-related at the elementary level, justifying
a combination of these topics. Sets are missing from



FNC-2014, whereas UKNC defines a functional sub-
set visualized in Fig. 5. Sets (naı̈ve set theory) in
UKNC are a gentle kick-start for the set theory, fa-
miliarizing students with different notations, e.g., the
interchangeable use of either a list or a Venn diagram
(excluding some special cases). A number of basic
concepts are introduced, such as a set and its comple-
ment, a universe, and a subset. Set operations cover
union and intersection.

Building the knowledge base and gaining expe-
rience of these topics may be initiated, for instance,
by collecting data of concrete phenomena, such as
measuring the heights of students of a class and con-
structing a histogram of the heights of the class. Stu-
dents should be capable of reading and interpreting
these charts. For instance, the shape of the height
histogram should resemble the typical bell-shape of
a normal distribution making it timely to introduce
the concepts of mean, median, and mode in this con-
text. In addition to histograms, the alternative way of

semi-interq:
28/2=14

UQ

MED

LQ

Statistics

illustrated by e.g.
Pie              Bar          Line

characterized by 

Histogram, 
frequency polygon 

Cumulative frequency 

Box and whiskers

Strong positive
correlation

Negative
correlationMean<Mode Mode<Mean

Figure 6: Statistics in UKNC

representing this information is to construct a cumu-
lative frequency chart, in the UKNC subset visualized
in Fig. 6, the left bottom corner. Ultimately, informa-
tion could be reduced to a box-and-whiskers chart.

Venn diagrams and relative frequency charts
prompt probability issues. The relative frequency of
an event, e.g., which percentage of students are 140–
150 cm tall, provides an obvious scaffold to inves-
tigate the probability of a randomly-selected student
being 140–150 cm tall. In Venn, the bin of 140–150
cm students can represent the set A, where the com-
plement set of A represents all the students not within
this height category. In the universe of this class (or
any other), a selector will get either a student from the
set A or its complement A with 100% probability, i.e.,
PpAq`PpAq “ 1. In Finnish elementary math, prob-
ability links closely with statistics in the described
manner. In contrast, UKNC progresses further by in-

cluding the multiplication and addition rules (Fig. 7).

Figure 7: Probability in UKNC

The sun either shines or not, no other options ex-
ist. However, if the sun shines, a bird will sing more
probably. A decision tree assists in constructing the
combined probabilities correctly: the multiplication
rule applies horizontally to each branch at a time, and
the products are added vertically. In a tree, all the
probability branches of one joint must sum up to one.

In preparation for CS and related math courses
of higher-education including sets, statistics, and
probability, UKNC specifies a valid and deliberately
planned math syllabus for an elementary level that
could be emulated as such in FNC-2014.

5.3 The learning trajectories bridged
from elementary to higher-ed math

Fig. 8 divides into four horizontal layers: Elem.math,
CT, HS math, and Tert.math. Elementary school is
compulsory, the rest elective. Vertical dashed lines
represent the learning trajectories of discrete math
proposed in the previous sections. The learning tra-
jectory of algorithms and data structures is marked
with green to illustrate its prominence. Currently, el-
ementary math does not specify any other learning
targets of algorithms except the need for algorithmic
thinking. It starts with problem solving and decom-
position, which in programming implies subroutines.
Ultimately in algorithms, e.g., the simplest sort and
search algorithms were a natural learning goal. Data
structures are prompted by number sets that corre-
spond with variable types; in programming types can
be, e.g., primitives or collections, such as arrays, lists,
and vectors. Structuring data in various ways, mod-
eling and visualizing it, assists in raising the abstrac-
tion level and in problem solving. The second most
prominent trajectory is logic. Like algorithmic think-
ing, logic is included only as a requirement of



S
ta

t.
Fi

g.
6

P
ro

b.
Fi

g.
7

S
E

T
S

Fi
g.

5

L
O

G
IC

S
Fi

g.
4

A
L

G
O

R
IT

H
M

IC
T

H
IN

K
IN

G
P.

7

Fig.3

number
sense

integers spatial
imagery

problem
solving

coordinates
2D

shapesreals comparison
operators

data
collection

chartsrel.fq

µ
med.
mode

multiple representations

statistics
calc.

rnd

truth
values

logical
operators

condition

selection iteration

variable

variable

problem
decomp.

expression
equation

inequality

function

functiontype, data
structure

recur-
sion

higher-
order
func.

container

array
list

vector

Pythag.
trig.

point,line angle

transfor-
mations

graphs 3D
shapes

Turtlecomputer
graphics

animations

Algebra (A)Arithmetic (N) Geometry (G)

Abstraction

Automation

Y1-2

Y3-6

Y7-9

Statistics
Probability

testing, debugging, optimizingAnalysis

Logic(L) Creativity(C)

CT

Elem.math

HS math

Tert.math

course description
MAB5 statistics and probability

(MAB8) statistics and probability II

MAA10 probability and statistics
combinatorics

course description
MAY1 numbers,sequences
MAB4 modeling,patterns
MAB6 commercial math
MAY1 numbers,sequences
MAA8 root,log functions

(MAA11) number theory,proofs Euclidean alg.
(MAA12) algorithms in math Newtonian alg.

course description
MAB2 expression,equations

(MAB7) math.analysis

MAA2 polynomials
MAA6 derivative
MAA9 integral calculus

(MAA13) diff.equations

course description
MAB3 geometry

MAA3 geometry
MAA4 vectors
MAA5 analytic g.
MAA7 trigonometry

statistics,
prob. set theory predicate

logic
algorithms,
data structs

calculus differential
equations

Discrete Math Continuous Math

math skills for modern SW engineers

time, resources

Figure 8: Hypothetical learning trajectories bridged from the FNC-2014 elementary to higher education math

logical thinking, except optionally in programming,
where it is needed for the conditions of selection and
iteration structures. The logic subset illustrated in Fig.
4 is proposed to partly enhance Y7–9 math, physics,
and native language syllabi. To add further value
to this age range, the UKNC syllabus areas of sets
(Fig. 5), statistics and probability (Fig. 6 and 7) were
worth considering in descending order of importance.
However, due to time constraints, adding content to
the math syllabus is problematic. CS, as a separate
subject, would solve the problem. Below elementary
math, the CT layer illustrates the computing enhance-
ment and how the process divides into abstraction, au-
tomation, and analysis phases. In this layer, the math
fundamentals have their computational counterparts.
The math schedule (Y7–9) implies an appropriate in-
troduction order of corresponding CS fundamentals.

The next layer of high school (HS) math is elec-
tive. It divides into A and B math: A is the ma-

jor (ten compulsory MAA* courses, four electives),
B being the minor subject (six compulsory MAB*
courses, two electives) (Finnish National Board of
Education, 2015). Regrettably, the HS math rigidly
targets the matriculation exam, whose importance has
lately grown as a selection criteria for tertiary edu-
cation, thus extending the CT layer to cover the HS
level is not topical. In HS, algorithms are intro-
duced only in the elective courses of ’Number the-
ory and proofs’ (MAA11), and ’Algorithms in math’
(MAA12). Closest to logic is the elective MAA11
with conjunctives and truth values. In regard to the re-
maining trajectories, sets are missing from the FNC-
2014, both at the elementary and HS, whereas the sit-
uation of statistics and probability is brighter. They
start already at the elementary, and HS allocates three
courses to the topic: MAB5, MAB8, MAA10. Ter-
tiary math elucidates the required skills for modern
SWE by representing the most prominent topics only.



6 CONCLUSIONS

RQ1: Math syllabus areas to be strengthened?
According to the reviewed studies, SW engineers
need stronger algorithms and data structure skills.
In accordance, fluency with multiple representations
and modeling is considered beneficial in illustrating
and structuring data, thus improving problem solv-
ing skills. To further strengthen the theoretical basis
necessitates the inclusion/teaching of primarily logic,
and secondarily set theory, statistics, and probability.

In increasing discrete math, the UKNC math and
CS provide an exemplar to emulate in elementary ed-
ucation in Finland. USCC defines HS Modeling for
structuring data, and the area could be subset age-
appropriately for the elementary level. Modeling as-
sociates also with the use case/requirement specifica-
tions of SWE, which prompts the new term of ’speci-
ficational thinking’.

However, discrete math does not benefit only fu-
ture SW engineers, but all students in becoming gen-
erally educated and acquainted with CS. Even though
continuous and discrete math are posed as opposite, in
practice, they are deeply interconnected and comple-
ment each other. Natural sciences continue to exploit
continuous math as before, so continuous math must
keep a significant role in the curriculum. However, to
meet the challenges of digitalization, we believe that
it is appropriate to move some emphasis from contin-
uous to discrete math.

RQ2: The overemphasized math syllabus areas?
Curriculum planning is a zero-sum game. If the

volume of discrete mathematics were increased, some
areas ought to be decreased correspondingly. The pro-
posal is to move some emphasis from continuous to
discrete math already at the elementary level. For all
the intended content the current time allocation is ex-
iguous, which is why adding CS as a separate subject
is a distinct option.

Further studies

The shifting of more emphasis to discrete math must
be executed in an evidence-based manner, i.e., the
learning outcomes must be carefully evaluated in co-
operation with pedagogical experts both in elemen-
tary and higher education. To advance this approach
further, the results should speak for themselves. To
achieve the full potential of discrete math in higher-
education, traditional ’Advanced Engineering Calcu-
lus’ would need its discrete math counterparts, say,
’Programmers’ Introduction to Automata and Formal
Languages’ or ’Set Theory for Software Engineers’,
which indisputably explicate the benefits of the re-
newed math syllabus for the good of programming.

Is the time ripe for the next Lethbridge iteration to
evaluate the current topics of the SWE curriculum?

ACKNOWLEDGEMENTS

Thanks to the Academy of Finland (grant number
303694; Skills, education and the future of work) for
their financial support.

REFERENCES

ACM&IEEE (2013). Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, December 20, 2013.
Technical report.

Ardis, M., Budgen, D., Hislop, G., Offutt, J., Sebern,
M., and Visser, W. (2014). Software Engineering
2014: Curriculum Guidelines for Undergraduate De-
gree Programs in Software Engineering. Joint effort
of the ACM and the IEEE-Computer Society.

Beblavỳ, M., Fabo, B., and Lenearts, K. (2016). Demand
for Digital Skills in the US Labour Market: The IT
Skills Pyramid. CEPS Special Report No. 154/De-
cember 2016.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., En-
gelhardt, K., Kampylis, P., and Punie, Y. (2016). De-
veloping Computational Thinking: Approaches and
Orientations in K-12 Education. In EdMedia: World
Conference on Educational Media and Technology,
pages 13–18. Association for the Advancement of
Computing in Education (AACE).

Bourque, P., Fairley, R. E., et al. (2014). Guide to the soft-
ware engineering body of knowledge (SWEBOK (R)):
Version 3.0. IEEE Computer Society Press.

Charette, R. N. (2005). Why software fails. IEEE Spectrum,
42:42–49.

Core Standards Organization (2015). Mathematics Stan-
dards — Common Core State Standards Initiative.
http://www.corestandards.org/wp-content/
uploads/Math_Standards1.pdf.

Core Standards Organization (2017). High School: Mod-
eling. http://www.corestandards.org/Math/
Content/HSM/.

CSTA (2016). Computer science standards. https:
//www.csteachers.org/resource/resmgr/Docs/
Standards/2016StandardsRevision/INTERIM_
StandardsFINAL_07222.pdf.

Denning, P. J. (2009). The profession of IT Beyond com-
putational thinking. Communications of the ACM,
52(6):28–30.

Denning, P. J. (2017). Remaining trouble spots with com-
putational thinking. Communications of the ACM,
60(6):33–39.

Department of Education (2014). National Curriculum in
England. Key stages 3 and 4 framework document.

http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/Math/Content/HSM/
http://www.corestandards.org/Math/Content/HSM/
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf


Dijkstra, E. W. et al. (1989). On the cruelty of really teach-
ing computing science. Communications of the ACM,
32(12):1398–1404.

English Department for Education (2013). National Cur-
riculum in England Computing programmes of study.

Finnish National Board of Education (2014). Finnish Na-
tional Curriculum 2014.

Finnish National Board of Education (2015). National core
curriculum for general upper secondary education.
http://www.oph.fi/download/172124_lukion_
opetussuunnitelman_perusteet_2015.pdf.

Futschek, G. and Moschitz, J. (2010). Developing al-
gorithmic thinking by inventing and playing algo-
rithms. Proceedings of the 2010 Constructionist Ap-
proaches to Creative Learning, Thinking and Educa-
tion: Lessons for the 21st Century (Constructionism
2010), pages 1–10.

GCSE (2015). GCSE subject content for computer
science. https://www.gov.uk/government/
uploads/system/uploads/attachment_data/
file/397550/GCSE_subject_content_for_
computer_science.pdf.

Harris, M. (2014). The STEM shortage paradox. Physics
World, 27(10):56.

Kitchenham, B., Budgen, D., Brereton, P., and Woodall, P.
(2005). An investigation of software engineering cur-
ricula. Journal of Systems and Software, 74(3):325–
335.

Knuth, D. E. (1985). Algorithmic thinking and mathemat-
ical thinking. The American Mathematical Monthly,
92(3):170–181.

Lamagna, E. A. (2015). Algorithmic thinking unplugged.
Journal of Computing Sciences in Colleges, 30(6):45–
52.

Lethbridge, T. C. (2000). What knowledge is important to a
software professional? IEEE Computer, 33(5):44–50.

Liukas, L. (2015). Hello Ruby. A childrens’ book available
in 22 languages.

McGowen, M., DeMarois, P., and Tall, D. (2000). Using
the function machine as a cognitive root.

Meziane, F. and Vadera, S. (2004). A comparison of com-
puter science and software engineering programmes
in English universities. In 17th Conference on Soft-
ware Engineering Education and Training (CSEE&T
2004), 1-3 March 2004, Norfolk, VA, USA, pages 65–
70. IEEE Computer Society.

Parnas, D. L. (1985). Software aspects of strategic defense
systems. Commun. ACM, 28(12):1326–1335.

Parnas, D. L. (1999). Software engineering programs
are not computer science programs. IEEE Software,
16(6):19–30.

Peng, G. (2017). Do computer skills affect worker employ-
ment? An empirical study from CPS surveys. Com-
puters in Human Behavior, 74:26–34.

Pinar, W. F. (2012). What is curriculum theory? Routledge.
Puhakka, A. and Ala-Mutka, K. (2009). Survey on the

knowledge and education needs of Finnish software
professionals. Tampere University of Technology, De-
partment of Software Systems.

Redecker, C. and Punie, Y. (2017). European Frame-
work for the Digital Competence of Educators: Dig-
CompEdu. EUR - Scientific and Technical Research
Reports, The European Commission’s science and
knowledge service.

Smith, E. and White, P. (2017). A ‘great way to get on’?
The early career destinations of science, technology,
engineering and mathematics graduates. Research Pa-
pers in Education, 32(2):231–253.

Surakka, S. (2007). What subjects and skills are impor-
tant for software developers? Communications of the
ACM, 50(1):73–78.

Taub, R., Armoni, M., and Ben-Ari, M. (2012). CS un-
plugged and middle-school students’ views, attitudes,
and intentions regarding CS. ACM Transactions on
Computing Education (TOCE), 12(2):8.

Valmari, A. and Kaarakka, T. (2016). MathCheck: a tool
for checking math solutions in detail. In SEFI 2016
Annual Conference Proceedings, pages VK.1–VK.9.
European Society for Engineering Education SEFI.

Wilkie, K. J. and Clarke, D. M. (2016; 2015). Develop-
ing students’ functional thinking in algebra through
different visualisations of a growing pattern’s struc-
ture. Mathematics Education Research Journal,
28(2):223–243.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical transactions of the
royal society of London A: mathematical, physical and
engineering sciences, 366(1881):3717–3725.

http://www.oph.fi/download/172124_lukion_opetussuunnitelman_perusteet_2015.pdf
http://www.oph.fi/download/172124_lukion_opetussuunnitelman_perusteet_2015.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf

