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Abstract

Tenhu Linda Cilla Emilia
On Explaining the Tension in the Hubble Parameter Observations by the wLTB
model
Master’s Thesis
Department of Physics, University of Jyväskylä, 2018,

A tension of 3.6 standard deviation has been observed between the local (distance
ladder) and global (cosmic microwave background) measurements in the expansion
rate of the universe i.e. the present-day Hubble parameter value H0. In this Master’s
Thesis, depart from the Standard Model of Cosmology, an inhomogeneous cosmolog-
ical wLTB model is introduced to explain the observed tension. The wLTB model
enables one to solve the Einstein’s field equations exactly in an inhomogeneous but
spherically symmetric case. This makes it possible to determine the current Hubble
parameter value inside an inhomogeneous area called LTB bubble. It turns out that
an underdense bubble increases the local Hubble parameter value and thus makes
the wLTB model a possible candidate that can explain the Hubble parameter ten-
sion. However, arbitrary inhomogeneities as well as observer’s arbitrary locations
inside the bubble are not allowed. In the future, the challenge is to fit the restrictions
for the inhomogeneity and the Hubble parameter observational data together.

Keywords: Inhomogeneous Cosmological Models, Hubble Parameter
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Tiivistelmä

Tenhu Linda Cilla Emilia
Hubblen parametrin mittauksissa havaitun eron selittäminen wLTB -mallin avulla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2018,

Tällä hetkellä universumin laajenemisnopeudessa eli Hubblen parametrin arvossa on
havaittu noin 3,6 standardipoikkeaman ero paikallisen (etäisyystikapuut) sekä glo-
baalin (kosminen taustasäteily) mittaustavan välillä. Tässä pro gradu -tutkielmassa
esitetään kosmologisesta standardimallista poiketen epähomogeeninen wLTB-malli,
jonka avulla kyseistä eroa voidaan selittää. wLTB-mallissa pystytään ratkaisemaan
Einsteinin kenttäyhtälöt eksaktisti epähomogeenisessa pallosymmetrisessä tapauk-
sessa, mikä mahdollistaa paikasta riippuvan Hubblen parametrin arvon määrittämi-
sen epähomogeenisen alueen, eli LTB-kuplan sisällä. Osoittautuu, että ympäristöään
harvempi kupla kasvattaa paikallista Hubblen vakion arvoa ja voi siten selittää eroa
havaintojen välillä. Mielivaltainen epähomogenia eikä mielivaltainen havainnoijan
sijainti epähomogenian sisällä ole kuitenkaan sallittu. Tulevaisuuden haasteena on
sovittaa homogeniaan kohdistuvat rajoitukset yhteen havaitun Hubblen vakion poik-
keaman kanssa.

Avainsanat: Epähomogeeniset kosmologiset mallit, Hubblen parametri
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1 Introduction

During the first half of the 20th century theorists like A. Friedmann [1] (English
translation [2]) had discovered that the universe might be expanding. After some
observational evidence many physicists including A. G. Lemaître concluded [3] (En-
glish translation [4]) that the universe we live in is expanding. Since then scientists
have been interested to determine the current value of the expansion rate of the
universe, called the Hubble parameter. In the current light, the first determinations
of the Hubble parameter using supernovae by Lemaître [3] and E. Hubble [5] were
ambitious but not very succesful exceeding the most recent values by an order of
magnitude. Later, especially closer to the end of the 20th century, the measurements
got more and more accurate and seemed to agree around the value of 70 km/s/Mpc.

After the Cosmic Microwave Background (CMB) radiation was discovered in 1960’s
[6, 7], scientists figured out that the expansion rate could also be determined in-
directly from the microwave background radiation. This gave the physics and as-
tronomy community the possibility to compare the two independently determined
values to each other.

Until the beginning of the 2010’s these two ways to determine the current Hubble
parameter value seemed to agree. Problems arose when the measurements got even
more precise revealing that the local supernova data based measurements were in-
variably giving larger values than the global CMB based measurements. The trend
of measurements over the last 17 years is illustrated in the Figure 1.1.

The tension between the Hubble parameter measurements has grown during the
last few years, becoming as large as 3.6σ. This value is calculated from the most
recent values [12] and [20] published during this year (2018) and is illustrated in the
Figure 1.2.

Since this tension has not disappeared when the precision of the equipment and
methods have increased, one has to look for other solutions, and so scientists have
suggested many different approaches to this problem. The conservative approach
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1 INTRODUCTION

Figure 1.1. The Hubble parameter measurements over recent the years. When
the measurements are getting more accurate the tension between the local (blue)
[8, 9, 10, 11, 12] and global (yellow) [13, 14, 15, 16, 17, 18, 19, 20] measurements
is clearly visible.

is that in one or both ways of measuring the Hubble parameter there occur some
unknown systematics that cause the tension [21]. On the other hand, papers like
[22] are calling for new physics. This can mean new neutrino physics [23], extended
parameter space [24] or dark energy and modified gravity models [25], just to name
a few attempts trying to alleviate the tension by the virtue of physics beyond the
Standard Model of Cosmology. Yet, no one has really succeeded in discovering a
widely accepted solution.

In this thesis a possible solution to explain the tension in the Hubble parameter
measurements is introduced. An inhomogeneous but spherically symmetric model
called wLTB model is suggested as a possible candidate that could explain the
increased local Hubble parameter values.

In this model the Cosmological Principle, the principle telling the universe to be
homogeneous and isotropic on large enough scales, is relaxed by giving up the general
homogeneity and isotropicity condition while restricting inhomogeneities to obey
spherical symmetry. This means that the model allows local spherically symmetric
inhomogeneities to exist which can affect the local Hubble parameter values. It is

2



1 INTRODUCTION

Figure 1.2. Comparison of the probability ditributions of the recent local (blue)
[12] and global (yellow) [20] measurements for the current Hubble parameter
value H0. One can notice how only the tails of the distributions are touching
yielding to a tension of 3.6σ.

assumed that a local underdensity would cause the local Hubble parameter value to
increase and thus yield the observed tension. In addition, the dark energy equation
of state parameter is not initially restricted to the value of wΛ = −1 given by the
Standard Model of Cosmology.

The importance of determining the current Hubble parameter value is clear when
one wants to calculate for example the age of the universe which is inversely pro-
portional to the present-day Hubble parameter value. Additionally, many other
cosmological quantities such as the energy density of the universe is related to the
Hubble parameter. Thus, during the era of precision cosmology, it is very important
to be able to explain the tension and later settle on a well-agreed present-day Hubble
parameter value.

In this thesis, basic properties of ΛCDM model, the Standard Model of Cosmology,
are introduced in the section 2 followed by the section 3 discussing a reformulation of
the Einstein’s field equations called ADM formulation. This procedure is required
for the section 4 where the inhomogeneous wLTB model is constructed. In the

3



1 INTRODUCTION

section 5 preliminary results for the Hubble tension problem given by the wLTB
model are introduced and a plan for upcoming statistical analysis is presented. In
the end, the conclusions and outlook are discussed in the section 6.

4



2 ΛCDM model, The Standard Model of Cosmol-
ogy

The simplest model that best agrees with cosmological observations is Big Bang
Cosmology, which describes the origin of the universe as a singularity, a high-
temperature and high-density state, following by an exponential expansion of space-
time called inflation. After inflation the universe continued expanding, although not
exponentially, and cooled down. This model can explain vast number of phenomena
observed in the universe such as the Cosmic Microwave Background and Large-Scale
Structure (LSS) formation.

The best parameterisation of the Big Bang Cosmology, according to the observa-
tions, is called ΛCDM, widely named as the Standard Model of Cosmology. The
name of the parameterisation comes from the major components forming the energy
density of the universe today. In ΛCDM the Greek letter Λ stands for the cosmo-
logical constant, the Dark Energy (DE) component, that plays the major role in the
universe’s energy density budget today, a bit less than 70 % and is thought to cause
the observed accelerating expansion of the universe [26].

The other quite dominant constituent in the current energy density of the universe
is called Cold Dark Matter (CDM). CDM is non-baryonic matter that is not vis-
ible through the photon channel. However, it is possible to observe the effects of
CDM for example from the flat galaxy rotation curves. CDM is thought to interact
with ordinary matter only by gravitational and possibly some new very weak force.
Nowadays, the ΛCDM model states that CDM makes up 26−27 % of the universe’s
energy density. The remaining energy density is created by baryonic matter, about
5 %, and radiation, about 0.5 %, like the CMB radiation. [26]

The Standard Model of Cosmology assumes that on large enough scales the universe
is spatially homogeneous and isotropic. This principle is called the Cosmological
Principle. It tells that the location of Earth is not special and therefore one would
get similar observational results in other locations in the universe, as well. In addi-
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2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

tion, the correct theory to describe gravitation is taken to be the general theory of
relativity. [26]

In this chapter the properties and results of the Standard Model of Cosmology are
discussed. Naturally, one starts from the spacetime metric and solutions for the
Einstein’s field equation.

2.1 Friedmann Equations

As is mentioned already, the Cosmological Principle states that the universe is spa-
tially homogeneous and isotropic on large enough scales. Now, to describe the four-
dimensional spacetime physically and, moreover, solve the Einstein’s field equations,
one has to formulate the spacetime metric describing the model under interest. The
assumptions of the character of the spacetime given by ΛCDM yield to a metric of
the form

ds2 = −dt2 + a2(t)dσ2, (2.1)

where a(t) is a scale factor as a function of a timelike coordinate t. The scale factor
measures the size of a three-dimensional spatial slice. The symbol dσ describes the
line element on the three-dimensional spatial hypersurfaces and can be written as

dσ2 = hij(x)dxidxj, (2.2)

where hij is the three-dimensional metric and xi are coordinates on the three-
dimensional spatial slice. [27]

In order the three-dimensional spatial metric to obey the translational and rotational
symmetry, the Cosmological Principle, the full four-dimensional line element takes
the spherically symmetric form

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)
. (2.3)

Here the symbol k describes the curvature of the spacetime. It is allowed to take the
values of either −1, 0 or 1 describing the open, flat or closed universe, respectively,

6 2.1 Friedmann Equations



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

when r is suitably normalised. The metric Eq. (2.3) ensures that the curvature
of the four-dimensional spacetime is the same everywhere (possesses translational
and rotational symmetry) at constant time and is widely called as the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric. [26]

The Einstein’s field equations have to be considered if one wants to understand the
behaviour of spacetime. Einstein himself wrote the equations into the form [28]

Gµν = κTµν , (2.4)

where the Einstein tensor Gµν can be expressed as a subtraction of the Ricci curva-
ture scalar R from Ricci curvature tensor Rµν

Gµν = Rµν −
1
2R, (2.5)

where the proportionality constant κ = 8πG. Einstein’s field equations tell how the
spacetime metric and thus the curvature of the spacetime, responds to the energy
and momentum in the spacetime, which is described by the energy-momentum tensor
Tµν [27].

In the Standard Model of Cosmology, the source for the energy and momentum is
usually taken to be a perfect fluid. The characteristics of a perfect fluid can be
described by an equation of state

pi = wiρi, (2.6)

where pi stands for pressure and ρi the energy density of the fluid component i. The
symbol wi is called the equation of state parameter and it depends on the character
of a particular fluid component. Different components of the fluid can represent
different constituents of the universe, like matter or dark energy, all described by a
unique equation of state.

As can be noticed from the above Eq. (2.6), perfect fluids do not have, a priori, any
shear stresses, heat conduction or viscosity and the only thing needed to describe
perfect fluids is the relation between pressure and energy density. In addition, perfect

2.1 Friedmann Equations 7



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

fluids can be assumed to be at rest in comoving coordinates which means that the
four velocity of a fluid component i reads

(Uµ)i = (1,0,0,0). (2.7)

Now, one can write the energy-momentum tensor for a perfect fluid

Tµν =
∑
i

[
(ρi + pi) (Uµ)i (Uν)i + pigµν

]
, (2.8)

where gµν is the four-dimensional spacetime metric. [27]

Now, all the required information at hand, one can plug the FLRW metric Eq. (2.3)
as well as the energy-momentum tensor for the perfect fluid Eq. (2.8) to the Ein-
stein’s field equations Eq. (2.4) and get the Friedmann equation

H2 =
(
a,t
a

)2
= 8πG

3
∑
i

ρi (2.9)

where the notation ,t stands for a time derivative and G the gravitational constant.
In addition, the rate of change of the scale factor a is identified as the Hubble
parameter H and the curvature is included as one of the energy density components

ρk = − 3k
8πGa2 . (2.10)

The second Friedmann equation can be derived from the spatial components of the
Einstein field equation, Eq. (2.4), as well as using the first Friedmann equation,
Eq. (2.9), to eliminate the first derivative of the scale factor. This gives

(a,t),t
a

= −4πG
3

∑
i

(ρi + 3pi) , (2.11)

which is sometimes called an acceleration equation, as well. If one differentiates
the first Friedmann equation Eq. (2.9) with respect to time and then substitutes it
to the second equation Eq. (2.11) one gets the continuity equation for the energy

8 2.1 Friedmann Equations



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

density

(ρi),t = −3H (ρi + pi) . (2.12)

2.2 The Hubble Parameter and the Expanding Universe

Georges Lemaître in 1927 [3] and then few years later Edwin Hubble [5] discovered
that the further an object is located from us in the universe, the faster it moves away
from us. This discovery has been called the Hubble law and its modern mathematical
form reads

vp = H(t)spq. (2.13)

So to say, it describes the dependence of the recessional velocity vp of an object p to
the distance spq from the observer q to the object p. The proportionality constant
is called the Hubble parameter which is a constant spatially but dynamical in time.
The Hubble law is valid only on scales where the universe is homogeneous. [26]

The expansion of the universe can be demonstrated with an analogy of an expansion
of a two-dimensional surface of a sphere of radius R(t). As is shown in the Figure 2.1
one can see the proportionality between the angle θpq and the arc spq spanned by
this angle. Mathematically this can be expressed as follows

spq = R(t)θpq. (2.14)

If the angle θpq is kept constant and the radius of the sphere is varied, the length
of the arc changes, too. This is a direct analogy to the spacetime expansion of
the universe. Additionally, one can also be interested in the rate of expansion i.e.
how fast or slow the universe is expanding or shrinking, correspondingly. The time
derivate of the Eq. (2.14) is of the form

(spq),t = [R(t)],t θpq (2.15)

and if the equation Eq. (2.14) is solved for the angle θpq and substituted to the time

2.2 The Hubble Parameter and the Expanding Universe 9



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

Figure 2.1. The properties of the arc lenght spq spanned by the angle θpq
in a two-dimensional sphere of radius R(t) can be used as an analogy when
considering an expansion of a four-dimensional spacetime.

derivative Eq. (2.15) one can write

vpq =
[R(t)],t
R(t) spq. (2.16)

In terms of the general convention, one uses normally a letter a to describe the
distance scale and thus the Hubble parameter is defined as

H(t) = a,t
a

(2.17)

and describes the rate of expansion of the universe where the symbol a(t) is usually
called the scale factor. [26]

A direct effect of the expansion of the universe is a phenomenon called cosmological
redshift. This phenomenon can be observed as stretched wavelengths of light when
photons have travelled through the expanding spacetime. More precisely, while light
travels through the universe the spacetime expands and thus causes the wavelengths
to get longer i.e. redder. This can be observed by comparing an absorption spectrum
produced locally to an absorption spectrum produced by a distant light source where
one can notice the increase in wavelength.

10 2.2 The Hubble Parameter and the Expanding Universe



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

Mathematically, redshift is defined as

z = λobs − λem

λem
, (2.18)

where λobs is the observed wavelength and λem is the emitted wavelenght at the
moment of emission. Redshift is also related to the scale factor as follows

1 + z = aobs

aem
, (2.19)

since the wavelegth is directly proportional to the scale factor. [26]

Redshift is one of the cosmological quantities that can be observed experimentally.
Thus, the majority of the other cosmological parameters have to be written in terms
of redshift or other cosmologically observable parameters. In the next section, this
issue and how the Hubble parameter can be determined from observational data are
discussed.

2.3 Hubble Parameter Measurements

When the Hubble law, the Eq. (2.13), is considered one notices that only two quanti-
ties, recessional velocity and disctance, have to be measured to get an experimental
value for the Hubble parameter. The recessional velocity can be measured accu-
rately from the redshift of the distant object in question. For small redshifts i.e.
local objects, the recessional velocity and redshift are linearly proportional

v = cz. (2.20)

For larger redshifts the relation is no longer linear and the matter-energy content of
the universe has to be taken into account.

The main source of inaccuracy in the Hubble parameter measurements is the deter-
mination of the distance. The theory of cosmic distances and measurements of the
distance to an object as well as Hubble parameter measurements from the Cosmic
Microwave Background radiation data are discussed in the following sections.

2.3 Hubble Parameter Measurements 11



2 ΛCDM MODEL, THE STANDARD MODEL OF COSMOLOGY

2.3.1 Local Measurements i.e. the Distance Ladder

Cosmic distance measurements are tricky since distance itself is not a cosmic observ-
able. Instead of distance, one is able to measure, for example, apparent magnitude
or apparent luminosity of an object. In principle, if one knows that certain objects
are radiating photons always with the same brightness one is able to compare the
apparent luminosity of a nearby object, whose absolute luminosity and distance are
known, to the apparent luminosities of similar objects further away and thus get an
estimation for the distance of those further away objects. The comparison between
the distances and luminosities can be done since, generally, the apparent luminosity
of an object is inversely proportional to the square of the distance and therefore the
more distant objects seem to be fainter.

As described above, the cosmic distances are measured in many parts by comparing
objects’ properties to each other and thus the cosmic distance measurements form a
Cosmic Distance Ladder. In the following, this process in described in more detail.

The objects used for cosmic distance measurements have to have either the same
brightness (or brightness that can be easily calibrated) or the same size so that
after the comparison one can deduce something about their distance. Naturally,
the objects have to be luminous enough that one can detect them from Earth.
In addition, they have to have a characteristic property so that astronomers can
distinguish them from all other bright objects in the universe. As a matter of fact,
there exists several such objects and, in general, they are called standard candles or
standard rulers. For example, Cepheid variable stars and Type Ia Supernovae (Ia
SNe) are the most widely used standard candles, nowadays.

The Cepheid variable stars are massive stars which are burning helium and are about
one thousand times more luminous than the Sun. The characteristic property of the
Cepheid variable stars is their periodic pulsing rate. The pulsating period differs
from about one to fifty days and is related to the brightness of the star. In general,
the more luminous Cepheids pulse at a longer period. This period-luminosity rela-
tion, first found by Leavitt [29], can be used to determine the distances to far-off
galaxies. [30]

The other example of a standard candle is the class of supernovae called Type Ia.
Generally speaking, relatively massive stars end up as supernovae in the final steps
of their stellar evolution. This means that they are exploding and spreading their

12 2.3 Hubble Parameter Measurements
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masses to the surroundings while exceeding the luminosity level of an average galaxy.
[31]

Supernovae are categorised into two classes, Type II and Type I, depending on
whether their spectra contain hydrogen or not, respectively. Further, Type I super-
novae are categorised into three classes, a, b and c, determining is there silicon in
the spectra (a) or not and how much helium it contains (b and c). [31]

In cosmic distance measurements the Type Ia supernovae are used because they are
notably more luminous than the Type II supernovae and, moreover, the Type Ia
supernovae have universally about the same mass and thus same luminosity. This
consistency in the luminosity comes from the origin of the Type Ia supernovae. A
Type Ia supernova is the final state of a white dwarf star located in a binary system
and having mass comparable to the mass of the Sun M�. These white dwarfs are
constantly gaining mass from the other party of the binary system and, eventually,
when exceeding the mass of ∼ 1.4M� they collapse and form a supernova explosion.
[31]

What makes the Type Ia supernovae highly suitable for the cosmic distance mea-
surements is the fact that white dwarfs in general are not allowed to have mass
larger than ∼ 1.4M�. This restriction comes from the Chandrasekhar limit which
corresponds to the maximum mass of a star that can be stabilised by the quantum
mechanical electron gas pressure which stems from the Pauli exclusion principle
i.e. two fermions cannot occupy the same state. When the total mass accreted by
the white dwarf in a binary system reaches the Chandrasekhar limit, it starts burn
carbon and oxygen into heavier elements. This reaction releases enough energy for
the whole system to be blown apart and form the Type Ia supernova [30]. The
Chandrasekhar limit is assumed to be nearly universal so wherever the Type Ia su-
pernovae are located, they are going through similar evolution and thus have about
the same luminosity. [27]

By now it is clear that the apparent luminosity of a distant object has to be measured
when trying to get an estimation for the distance to that object and, in the end,
to be able get an experimental result for the current Hubble parameter value. The
apparent luminosity i.e. the radiated flux density per unit area is defined as

F = L

4πr2 , (2.21)

2.3 Hubble Parameter Measurements 13
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where L is the absolute luminosity of the object in question and the radius r forms
the spherical surface through which the flux is determined i.e. the distance to the
observer.

However, several issues have to be taken into account before one can reliably calcu-
late distances from apparent luminosities. First, in order to be able to determine the
flux density one has to know the absolute luminosity of an object. This is assumed
to be possible by knowing the characteristic properties of the standard candles dis-
cussed earlier. Second, the universe is not a three-dimensional Euclidean space but
four-dimensional spacetime with curvature properties so one has to be careful what
it comes to the distance definitions. In addition, the expansion of the spacetime af-
fects the photon wavelength and emission frequency causing them to get redshifted.
[27]

To begin with, one can first consider the distance travelled by light during a time
interval t0 − t where the zero denotes the current (later) time. The scale factor has
evolved from a(t) to a(t0) and therefore the horizon distance can be written as

dH(t) = a(t0)
∫ t0

t

dt
a(t) . (2.22)

Instead of time, redshift is a cosmic observable and therefore one can perform vari-
able changes to get

dH(z) =
∫ z

0

dz
H(z) . (2.23)

To be able to write the Hubble parameter, Eq. (2.17), generally and in terms of
redshift one has to consider the energy content of the universe. As was already
mentioned, the universe can possess a certain geometry which is related to the
curvature. Because the matter-energy curves the universe one can define the density
parameter

Ω = ρ

ρc
, (2.24)

where ρc denotes the critical density meaning the energy density required to make
the universe exactly flat. So, if the total energy density of the universe ρ is larger

14 2.3 Hubble Parameter Measurements
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than the critical density the universe is positively curved. In turn, the smaller total
energy density yields a negatively curved universe.

Today, the total energy density of the universe is observed to be very close to the
critical density, corresponding to flat universe k = 0. From Eq. (2.9), it can be seen
that the critical energy density and Hubble parameter are related by

H2
0 = 8πG

3 ρc. (2.25)

Dividing the Eq. (2.9) by the Eq. (2.25) one gets the relation

H2

H2
0

=
∑
i

ρi
ρc
. (2.26)

This expression can be related to the redshift by solving the continuity equation
Eq. (2.12) yielding a relation between the energy density and scale factor

ρi ∝ a−3(1+wi). (2.27)

Since the energy density is related to the scale factor by the Eq. (2.27) and to the
critical density by the Eq. (2.24) as well as the the scale factor being related to
redshift by the Eq. (2.19) one can formulate the Eq. (2.26)

H2(z) = H2
0
∑
i

[
(Ω0)i (1 + z)3(1+wi)

]
. (2.28)

This expression can now be substituted into the horizon distance formula, the
Eq. (2.23), to get the horizon distance in terms of redshift and the current den-
sity parameter values:

dH(z) = 1
H0

∫ z

0

dz√∑
i [(Ω0)i (1 + z)3(1+wi)]

. (2.29)

The horizon distance measures the distance traveled by light on the spacetime man-
ifold between observer and the light emitter. The relation between the horizon
distance and the current Hubble parameter value H0 is clear in the Eq. (2.29) yet
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one can not use this distance measure directly in the flux density, Eq. (2.21), since
it does not measure the angular distance.

The angular distance, say dA, to an object of size s in Euclidean space is defined
before, see the Eq. (2.14) and the Figure 2.1. Similarly, in a four-dimensional space-
time, according to the FLRW metric, Eq. (2.3), the proper distance corresponding
to angular separation dθ with dt ≡ dr ≡ dφ ≡ 0 is

ds2 = a(t)2r2dθ2. (2.30)

Combining these two expressions, Eq. (2.14) and Eq. (2.30), gives for the angular
distance

dA = a(t)r. (2.31)

Now, if one considers the radial distance travelled by light one gets, setting ds ≡ 0
and dθ = dφ = 0 in the FLRW metric Eq. (2.3),

∫ t0

t

dt
a(t) =

∫ r

0

dr2
√

1− kr2
, (2.32)

where one can identify the left hand side as the horizon distance Eq. (2.22) divided
by the scale factor today. For the right hand side one can calculate analytically

∫ r

0

dr2
√

1− kr2
=


arcsin r, if k = −1

r, if k = 0

arcsinh r, if k = +1,

(2.33)

where the different cases can be noted by a symbol Sk(r) usually called generalized
sine. Now, the equation Eq. (2.32) can be formulated as

dH
a(t0) = Sk(r). (2.34)

Taking an inverse of the Eq. (2.34) gives the coordinate distance r. Substituting
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this to the angular distance formula Eq. (2.31) yields

dA(z) = 1
1 + z1

S−1
k

(
dH
a(z0)

)
, (2.35)

where the (1 + z1)−1 = a(z1) is either the redshift at the moment of emission or
absorption of photons, depending whether one observes standard candles or rulers.
[27]

Before one plugs the angular distance, Eq. (2.35), in the formula for the apparent
luminosity, Eq. (2.21), one has to consider the effects of expansion to the observed
luminosity. The expansion of spacetime stretches the wavelengths of the photons so
that their energy gets redshifted by a factor of 1+z. Additionally, when the photons
are being emitted the time interval gets redshifted which is thus affecting to their
frequency by another factor of 1 + z. Since the apparent luminosity is defined

F = number of photons observed
area · time · average energy, (2.36)

one notices that the observed luminosity gets the factor (1 + z)−2 by the effect of
the expansion of spacetime. This factor can be absorbed to the definition of the
luminosity distance yielding (standard candles: z1 = z)

dL(z) = (1 + z)S−1
k

(
dH
a(z0)

)
, (2.37)

so for the observed luminosity

F = L

4πd2
L

. (2.38)

Instead of the apparent luminosities astronomers are observing the apparent mag-
nitudes. The magnitudes are related to the observed flux densities as follows

m = −2.5 log F

F0
, (2.39)

where F0 is some reference value. Naturally, the distances of different luminous
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objects vary so the absolute magnitudes are different than the magnitudes observed
from Earth. One can thus define a distance modulus as a subtraction of the absolute
magnitude from the apparent magnitude

m−M = 5 log dL
10pc . (2.40)

The relation to the luminosity distance is clear. [31]

In the next section, the focus is turned from the local measurements to the global
ones. It turns out that the Cosmic Microwave Background radiation offers relevant
information to determine the Hubble parameter globally.

2.3.2 Measurements from the CMB

The origin of the Cosmic Microwave Background (CMB) lies in the hot past of
the universe. The early universe contained hot ionised plasma made of photons,
electrons and nuclei. The photons’ energies were larger than the ionisation energies
of atoms and thus prevented atoms from being formed. Additionally, interactions
between photons and electrons created pressure gradients in the primordial plasma
which were then opposed by the gravitational effects from inhomogeneities causing
oscillations in the density fluctuations [32].

When the universe expanded it also cooled and therefore the photons were no longer
able to stop nuclei and electrons to form atoms, allowing the recombination to
happen. Since atoms were formed the number of electrons decreased and thus the
photon electron interactions were suppressed. This yielded a phenomenon called
decoupling when the photon mean free path reached the scale of the age of the
universe, causing the universe to become transparent. [33]

Thus, the CMB photons give information about the density oscillations in plasma
which occurred just before the decoupling. On Earth one can observe this after-glow
of the early universe in every direction in the sky. The temperature of the photons,
while they have travelled through the expanding spacetime to our location, has got
redshifted from temperatures of about 3000 K to about 3 K. Indeed, when studying
the CMB more precisely one notices that no temperature is the same everywhere
but has anisotropies, in relative scale ∼ 10−5, which are due to aforementioned
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oscillation. [33]

However, it is not possible to predict a temperature value on a certain spot on
the CMB. Instead, one can construct a radiation angular power spectrum because
the expectation values of the amounts of the anisotropies on different scales can be
calculated [27]. The resulting spectrum contains acoustic peaks which are sensitive,
and hence yield information of fluctuations in the energy density of the constituents
of the universe at the time of recombination. The precise form of the peaks depend
on a number of cosmological parameters, such as baryon density, dark matter and
dark energy and the Hubble expansion rate today, which all have to be determined
simultaneously from the data. [32]

2.4 ΛCDM Input Parameters

To be complete in discussing the Standard Model of Cosmology it is appropriate
to introduce the input parameters describing the model. As was mentioned in the
beginning of this section, the Standard Model of Cosmology is a parameterisation
of the general Big Bang Cosmology. It turns out that only six parameters suffice
to construct a universe that looks statistically like the universe we are living in.
The rest of the cosmological quantities can then be derived from these half a dozen
initially determined parameters. The most recent values for the six parameters are
determined by the virtue of the Planck 2018 data [20] and are listed in the Table 2.1.

In the parameter list Table 2.1, the scalar spectrum power-law index ns describes
how density fluctuations in the primordial plasma vary with scale and thus influence
the characteristic scales of structure formation. If the scalar spectral index is exactly
one, all the variations are the same on all scales. [34]

The Thomson scattering optical depth due to reionization τ , in turn, is a measure of
the line-of-sight free electron opacity to CMB radiation. In other words, it measures
how much the primary CMB anisotropies are scattered by the reionised medium at
low redshifts. If the optical depth is zero it means there is no reionization at all.
Larger values of τ imply larger values for zreion which means the star and galaxy
formation taking place earlier. Reionization means the era after the Dark Ages
when the radiation emitted by gradually forming stars and galaxies reionize the
intergalactic gas.
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Table 2.1. The six input parameters in ΛCDM, the Standard Model of Cos-
mology. The values are from the most recent Planck 2018 data [20]. The number
after the value denotes 1σ confidence level.

Parameter defition Determined value [20]
Physical baryon density Ωbh

2 0.02237± 0.00015
Physical CDM density Ωch

2 0.1200± 0.0012
Scalar spectrum power-law index ns 0.9649± 0.0042
Reionization optical depth τ 0.0544± 0.0073
Power spectrum amplitude ln (1010As) 3.044± 0.014
Angular parameter 100θmc 1.04092± 0.00031

The amplitude As measures the amplitude of the initial power spectrum of density
perturbations and the angle θmc is a measure of the sound horizon at last scattering.
Here the sound horizon means the distance sound waves could have travelled in the
time on the primordial plasma before recombination. The angle is defined as follows

θmc = rs
dsls

(2.41)

where rs is the comoving size of the sound horizon and the dsls denotes the comoving
distance to the surface of last scattering.

In addition to the six parameters listed in the Table 2.1, ΛCDM assumes flat universe
k = 0 and the dark energy to be the cosmological constant Λ.

In this thesis these independent ΛCDM parameters are used to describe the back-
ground FLRW universe.

In the Standard Model of Cosmology it is assumed that the correct theory of gravity
is the general theory of relativity. In the next section 3 one can dive into this
theory, more precisely, the Einstein’s field equations and their reformulation. This
is required if one wants to construct the inhomogeneous wLTB model which is then
done in the section 4.
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3 On Einstein’s Field Equations and How to Solve
Them

Einstein’s field equations describe the behaviour of spacetime. John A. Wheeler
has used an instructive expression on describing the meaning of the Einstein’s field
equations [35]:

‘Spacetime tells matter how to move; matter tells spacetime
how to curve.’

As was already mentioned in the section 2.1 the Einstein equations are of the form

Gµν = Rµν −
1
2Rgµν = 8πTµν . (3.1)

The left hand side describes the geometry of spacetime and this information is
included in the Einstein tensor Gµν . On the other hand, the right hand side of the
equation contains the source of gravity i.e. the density of matter-energy Tµν . [36]

As the name is telling, the Einstein’s field equations are not just a single equation but
a set of 10 second order non-linear partial differential equations for the symmetric
metric tensor field gµν . Four of the equations are not independent because of the
Bianchi identity, ∇µGµν = 0, ’the automatic conservation of source’ [36]. Hence,
the set contains only six truly independent equations.

What is to be solved from Einstein’s field equations? One does not have absolute
position or time from which the time evolution can be determined. In general
relativity, the task is to solve for the spacetime geometry and structure itself i.e. for
the components of the metric tensor in four spacetime dimensions. An obvious issue
arises here, how one can solve for a time evolution of the metric tensor when time is
not uniquely defined. A solution for this problem will be discussed in the following
sections.
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3.1 ADM Formalism

Einstein’s field equations, Eq. (3.1), are non-linear, second order partial differential
equations of the spacetime metric. Their evolution in time is not obvious, because
the division of the spacetime manifold to space and time is not unique. Fortunately,
a formalism that is able do to this has been developed and is called ADM or 3 + 1
formalism after the developers Arnowitt, Deser and Misner, [37]. This formalism
provides a tool, called spacetime foliation where the four-dimensional spacetime is
foliated into three-dimensional spatial slices and one dimensional time, which allows
general relativistic problems to be formulated in an initial value form. Also, the
foliation allows us to visualize the general relativistic time evolution, see for example
the Figure 3.1.

Spacetime is now constructed from three-dimensional constant time slices. All the
quantities except time has to be specified on the three-dimensional spatial slices.
This means that, somehow, one has to include all the four-dimensional information
within three-dimensional quantities. Hence, new objects have to be introduced.
First, the foliation parameters determining the way spacetime is foliated can be
defined.

The basis of general relativity is a topological space called manifold. Generally,
a manifold of dimension n can be considered to look locally like n-dimensional
Euclidean space [27]. The global properties, in turn, can differ and concepts like
curvature can be included. In general relativity, when speaking about the spacetime
foliation one means that the four-dimensional manifold, the spacetime, is divided
into three-dimensional hypersurfaces. [38]

Generally speaking, a hypersurface is an (n − 1)-dimensional submanifold of the
original n-dimensional manifold. One can define an induced metric on the hypersur-
face by the virtue of the four-dimensional metric of the whole manifold and normal
vectors as follows

hµν = gµν + nµnν . (3.2)

Here gµν is the full metric of the whole manifold whereas nµ is the normal vector
to a hypersurface. The induced metric hµν projects all the information along the
normal vector field to the hypersurface and is thus a spatial quantity. [38]
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Figure 3.1. A manifold M is carved into hypersurfaces Σtn . Notice the time
flow vector field tµ which has been divided into normal and tangential compo-
nents. The normal component α is called lapse function and the tangetial one
shift vector βµ.

In the case of the general relativistic foliation, the hypersurfaces are non-intersecting,
three-dimensional spatial slices each constant at time. The foliation style of the
manifold can be determined by the foliation parameters. This can be done by
dividing the time flow vector field, say tµ, into normal and tangential parts,

tµ = αnµ + βµ, (3.3)

where α = −tµnµ describes the elapsed time between the different hypersurfaces
and is therefore called the lapse function. On the other hand, the tangential part
which obeys βµnµ = 0 can be written as

βµ = hµνt
ν , (3.4)

where βµ is called the shift vector which describes how much the spatial coordinates
are shifted between the different hypersurfaces. For visualising the foliation and all
the quantities related to it see the Figure 3.1. [39]

3.1 ADM Formalism 23



3 ON EINSTEIN’S FIELD EQUATIONS AND HOW TO SOLVE THEM

Since the four-dimensional spacetime has been carved into spatial slices all the cur-
vature quantities have to be written in terms of three-dimensional corresponding
objects. It is intuitive, though, that some information is lost when one replaces four-
dimensional objects with three-dimensional ones. In practice, the three-dimensional
Riemann tensor on the hypersurface does contain all the information about the
intrinsic curvature of the hypersurface but the information about how the hyper-
surface looks when embedded into a higher dimensional space, into the whole four-
dimensional manifold, is lost. More information about the Riemann curvature tensor
is given in the Appendix A. [38]

Fortunately, there is a way to include the lost information about the extrinsic cur-
vature of the hypersurface to the formulation. One can study a normal vector of a
hypersurface, more precisely, how the gradients of this normal vector behave when
projected on the spatial slice [38]. Since the induced metric acts as a projection ten-
sor projecting all timelike quantities to the spatial slice one can define the extrinsic
curvature tensor as follows

Kµν = −1
2Lnhµν , (3.5)

where Ln denotes differentiation along a vector field, in this case the normal vector
field nµ and is called Lie derivative. The Lie derivative compares changes of a
tensor field along a vector field. The vector field generates diffeomorphisms on the
manifold and thus allows one to compare values of the tensor field at different points
by pulling the tensor back to a point under interest. For more on Lie Derivatives, see
Appendix B. To put it in a nutshell, Eq. (3.5) tells how the intrinsic metric changes
along the normal, e.g. from slice to slice.

Now, after defining the extrinsic curvature tensor, one notices that it is related to
a time-like derivative of the spatial metric and therefore it can be considered to be
the first time derivative of the spatial metric.
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3.2 The Line Element

The general ADM line element i.e. the quantity determining the distance on a given
manifold is of the form

ds2 = −α2dt2 + hij
(
dxi + βidt

) (
dxj + βjdt

)
. (3.6)

This definition can be enlightened by the following schematic example.

The distance between two points on a manifold can be determined by calculating
the inner product

ds2 = gµνdxµdxµ. (3.7)

If the manifold is foliated into separate space and time dimensions the line element
can be written in terms of temporal and spatial distances separately dxµ = tµdt+dxi

as is illustrated in the Figure 3.2. On the other hand, one can also write the line
element in terms of the foliation parameters α and βµ by using the separation of the
time flow vector tµ, Eq. (3.3)

dxµ = αnµdt+
(
βidt+ dxi

)
δ µi . (3.8)

Now, one can write the general ADM line element by substituting the Eq. (3.8) to
the inner product Eq. (3.7) and noticing that because the normal vector nµ is totally
time-like its inner product with itself equals to −1.

Thus, the ADM line-element Eq. (3.6) can be thought to resemblance the Pythagorean
theorem in four dimensions and therefore it is intuitively clear that it gives the invari-
ant distance between two points on the manifold, as can be seen in the Figure 3.2.[38]
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Figure 3.2. Schematical origin of the ADM line element Eq. (3.6). Starting
from the inner product ds2 = gµνdxµdxµ the line-element can be constructed by
writing the dx’s in terms of the foliation parameters.

3.3 General ADM Evolution Equations

In the ADM formulation of Einstein’s field equations the dynamical variables which
are to be evolved in time are the spatial metric and the extrinsic curvature (hµν , Kµν).
These parameters describe the state of the gravitational field at a certain time. One
can then define the time evolution equations for these variables starting from the
spatial metric.

The definition of the extrinsic curvature tensor, Eq. (3.5), directly gives Lie dif-
ferentiation of the spatial metric along the normal vector field nµ. To change the
differentiation along the time flow vector field one can consider the Eq. (3.3) and
expand the normal vector field as follows

Kµν = − 1
2α (Lthµν − Lβhµν) . (3.9)

This procedure is legitimated by the linearity of Lie derivative, see the Appendix B,
Eq. (B.6). Since the spatial metric does not have any temporal components its Lie
derivative along the time flow vector reduces to a partial derivative having only
spatial values that differ from zero. Similarly, due to the spatial character of the
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shift vector the temporal components are zero and the indices can be replaced with
spatial ones

−2αKij = ∂thij − Lβhij. (3.10)

The Eq. (3.10) can be shortened by using a shorthand notation d/dt = ∂t − Lβ so
the evolution equation for the spatial metric gets its general ADM form

d
dthij = −2αKij. (3.11)

∗ ∗ ∗

The evolution equation for the extrinsic curvature tensor can also be defined. Start-
ing from the Lie derivative of the extrinsic curvature tensor along the time flow
vector field

LtKµν = αLnKµν + LβKµν , (3.12)

and applying the Ricci equation, see Appendix A, Eq. (A.11) to the first term on
the right hand side one gets the expression

LtKµν = α
(
nδnγhσµh

ρ
ν R

(4)
δργσ −

1
α
DµDνα−Kγ

νKµγ

)
+ LβKµν . (3.13)

Then, replacing the two normal vectors in the first term on the right hand side by
the Eq. (3.2) yields

LtKµν =α
(
hγδhσµh

ρ
ν R

(4)
δργσ − hσµhρν R(4)

ρσ −
1
α
DµDνα−Kγ

νKµγ

)
+ LβKµν .

(3.14)

The second term on the right hand side of the Eq. (3.14) can now be replaced by
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use of the Einstein equation of the form [27]

R(4)
µν = 8πG

(
Tµν −

1
2Tgµν

)
(3.15)

and, in addition, the first term on the right hand side of the Eq. (3.14) can be
changed by using the contracted Gauss equation, Appendix A, Eq. (A.7) as well as
the symmetry of the two indices of the extrinsic curvature tensor as well as the Ricci
tensor to get

LtKµν =α
(
Rµν +KKµν − 2Kε

νKεµ − 8πGhσµhρν
(
Tσρ −

1
2Tgσρ

)
− 1
α
DµDνα

)
+ LβKµν .

(3.16)

To simplify the evolution equation of the extrinsic curvature, the Eq. (3.16), several
shorthand notations can be created:

Sµν = hρµh
σ
νTρσ,

S = Sµµ ,

ρ = nµnνTµν .

(3.17)

Now, the Eq. (3.16) can be written as

LtKµν =α (Rµν +KKµν − 2Kε
νKεµ)− α8πG

(
Sµν −

1
2hµν (S − ρ)

)
−DµDνα + LβKµν .

(3.18)

To shorten the evolution equation even more one can use one more shorthand no-
tation

Mµν = Sµν −
1
2hµν (S − ρ) (3.19)
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to get

LtKµν = α (Rµν +KKµν − 2Kε
νKεµ − 8πGMµν)−DµDνα + LβKµν . (3.20)

Also here the Lie derivative along the time coordinate reduces to a partial derivative
and thus only spatial indices give non-trivial equations. As before, the partial and
Lie derivatives of the extrinsic curvature tensor can be combined to form just one
operator d/dt = ∂t − Lβ giving

d
dtKij = α

(
Rij +KKij − 2K l

jKli − 8πGMij

)
−DiDjα. (3.21)

The equation Eq. (3.21) can be called the evolution equation of the extrinsic curva-
ture.

3.4 General ADM Constraint Equations

When solving a general relativistic problem constraint equations are solved on an
initial spatial slice. Then they are evolved by the evolution equations to be sure
that they will be satisfied also at later times. This yields a fact that the constraint
equations do not contain any time derivatives but instead, they make sure that the
Einstein’s field equations will be solved on each slice. Thus, they provide initial
value constraints for the system.

Hamiltonian constraint equation can be derived by considering the Einstein’s field
equations Eq. (3.1)

R(4)
µν −

1
2 R(4) gµν = 8πGTµν . (3.22)

Here the numbers on the left hand side superscripts denote the dimensionality of the
quantities. The Einstein’s field equations can be multiplied by two normal vectors
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nαnβ and by a factor 2 to get

2 R(4)
µνn

µnν − R(4) gµνn
µnν = 16πGρ, (3.23)

where a shorthand notation on the first row of Eq. (3.17) was used. Then, the left
hand side of the equation Eq. (3.23) can be replaced with twice contracted Gauss
equation, Appendix A Eq. (A.8), to get

R(3) +K2 −KµνKµν = 16πGρ. (3.24)

This equation is the Hamiltonian constraint equation.

∗ ∗ ∗

The momentum constraint equation can also be derived from the Einstein’s field
equations multiplying them by the spatial metric hαµ and the normal vector nδ

hαµn
δ R

(4)
αδ −

1
2h

α
µn

δ R(4) gαδ = 8πGhαµnδTαδ. (3.25)

The second term on the right hand side is zero because of the inner product of the
spatial metric and the normal vector. Equating the Eq. (3.25) and the contracted
Codazzi equation, see Appendix A the Eq. (A.10) gives

DνK
ρ

µ −DµK = −8πGhαµnδTαδ. (3.26)

The right hand side of the equation can be simplified by writing Sµ = −hαµnδTαδ
to get the momentum constraint equation

DνK
ρ

µ −DµK = 8πGSµ. (3.27)

The two ADM constraint equations Eq. (3.24), Eq. (3.27) and the two ADM evolu-
tion equations Eq. (3.11), Eq. (3.21) are equivalent to the Einstein’s field equations.
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Thus, one can solve the Einstein’s field equations by giving sufficient initial condi-
tions, namely data considering initial hµν and Kµν , that satisfy the ADM constraint
equations. Then one can determine the state of the system at any point in spacetime
by evolving the system in terms of the ADM evolution equations.
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4 wLTB model, The Possible Solution

The standard model of cosmology, ΛCDM, assumes the cosmological principle to
apply, which means the universe to be spatially homogeneous and isotropic. By
now, various observations have shown existence of inhomogeneities such as voids
[40], galaxy filaments [41] and superclusters [42] at least up to scale of order 100
Mpc. In addition, all the observations are made from the single point, from our
location in the Solar System in Milky Way Galaxy and the Local Galaxy Group.
There is no possibility to compare the results with others gotten from completely
different locations. Hence, one does not know how much the inhomogeneities of the
universe affect the observed values of the cosmological parameters. Consequently, it
is useful to study what happens if the spatial homogeneity requirement is excluded.
Thus, in this section, the focus is on an inhomogeneous but spherically symmetric
cosmological model called Lemaitre-Tolman-Bondi (LTB) model. The LTB model
is named after its developers, Lemaître [43], Tolman [44] and Bondi [45].

The wLTB model is the simplest inhomogeneous exact solution to the Einstein’s field
equations because it possesses spherical symmetry. The inhomogeneities are radial
around the symmetry point which, in the simplest case, is the point of observation.

As is already mentioned earlier in the section 3, the dynamics of the spacetime is gov-
erned by the Einstein’s field equations each of which contains a term that describes
the energy-momentum of the spacetime. In cosmology, the energy-momentum can be
expressed as a perfect fluid and therefore the constituents of the energy-momentum,
like matter or dark energy, can be considered as different components of the result-
ing cosmic fluid. Each of these fluid components have their own equation of state,
pi = wiρi, which describes the relation of pressure and energy density.

The equation of state parameter wΛ for the dark energy component is taken to be
constant in the Standard Model of Cosmology and it is set to have a value of −1.
Departing from the ΛCDM model, the dark energy equation of state parameter
can also be allowed to vary or take another value. In this case, one can construct,
for example, an inhomogeneous model where the dark energy equation of state
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parameter has a value other than −1, i.e. the wLTB model.

4.1 ADM Equations in Spherical Symmetry

The ADM formalism can be used to construct an inhomogeneous LTB cosmology by
including spherical symmetry in the general ADM equations derived in the section 3.
Additionally, one has to formulate the equations governing the behaviour of the
source terms, the cosmic fluid, as well as include the inhomogeneity. But first,
one must specify the foliation parameters. The gauge choice determines how the
information of the the field data flows through the time slices. The way of connecting
the neighbouring time slices is related to the choice of the lapse function and thus
determines the time slicing. On the other hand, the spatial gauge choice is related
straightforwardly to the shift vector.

From now on, the foliation parameters are chosen so that the resulting coordinates
will be the synchronous coordinates i.e. the coordinate time for all comoving ob-
serves is the proper time and the time coordinate is orthogonal to the spatial coor-
dinates. This choice is called Geodesic slicing and it is the simplest choice because
it sets the shift vector to zero and lapse function to unity:

α = 1, βi = 0. (4.1)

The name of the slicing comes from that fact that normal observes are freely falling
and hence follow geodesics. [38]

For simplicity as well as for better numerical behaviour, a change of variables is
performed and therefore the three-metric components are written as

hrr → Hrr ≡
√
hrr

hθθ → Hθθ ≡
√
hθθ.

(4.2)

The general ADM line element, Eq. (3.6), derived in the section 3.2 can be trans-
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formed into a spherically symmetric form as follows

ds2 = −dt2 + hrrdr2 + hθθ
(
dθ2 + sin2 θdφ2

)
. (4.3)

It can be noticed that the foliation parameters are now specified in terms of the
Geodesic Slicing, Eq. (4.1). Furthermore, taking the condition Eq. (4.2) into account
the metric takes the form

ds2 = −dt2 +H2
rrdr2 +H2

θθ

(
dθ2 + sin2 θdφ2

)
. (4.4)

4.1.1 Evolution Equations

The corresponding spherically symmetric evolution equations for the metric compo-
nents Hii can be derived straightforwardly by remembering the general ADM form
Eq. (3.11)

Hii,t = −HiiK
i
i , (4.5)

where, for the sake of brevity, the partial derivative is written as a comma followed
by the differentiation variable in the subscript. It can be noticed that the only
independent equations are for the components Hrr and Hθθ.

∗ ∗ ∗

The evolution equations of the extrinsic curvature tensor can also be modified to
the spherically symmetric form. Starting from the general ADM form Eq. (3.21)
and again applying the Geodesic Slicing, Eq. (4.1), one gets

Kij,t = R
(3)

ij − 2K l
jKli +KKij − κMij, (4.6)

where κ = 8πG. For simplicity, one can raise one index of the extrinsic curvature
tensor which results in only two independent and non-zero components Kr

r and Kθ
θ
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due to the nature of the metric components, see the Eq. (4.4). So, the Eq. (4.6)
with mixed indices is of the form

∂t
(
hijK

i
j

)
= hij

(
R

(3) i
j − 2K liKli +KKi

j − κM i
j

)
. (4.7)

The indices can be raised by the spatial metric since the extrinsic curvature tensor is
by definition purely spatial. Then, the left hand side of the Eq. (4.7) can be expanded
and the general ADM metric evolution equation, the Eq. (3.11), substituted to get

−2KijK
i
j + hijK

i
j,t = hij

(
R

(3) i
j − 2K liKli +KKi

j − κM i
j

)
. (4.8)

Because of the symmetry of the extrinsic curvature tensor as well as the freedom of
renaming dummy indices one can write

hijK
i
j,t = hij

(
R

(3) i
j +KKi

j − κM i
j

)
. (4.9)

Now, it is clear that the only completely independent and non-zero equations are

Kr
r,t = R(3) r

r +Kr
rK

r
r + 2Kθ

θK
r
r − κM r

r

Kθ
θ,t = R

(3) θ
θ +Kθ

θK
r
r + 2Kθ

θK
θ
θ − κM θ

θ .
(4.10)

The next task is to calculate analytically the components of the three-dimensional
Ricci tensor terms in the Eq. (4.10). To do this one has to expand the Ricci tensor
by calculating the Christoffel connection coefficients related to the three-dimensional
metric hij (see the corresponding definition in four dimensions: Eq. (A.2) introduced
in the Appendix A). The non-zero Christoffel connection coefficients are

Γ(3) r
rr = Hrr,r

Hrr

, Γ(3) r
θθ = −

H2
θθ,r

2H2
rr

, Γ(3) r
φφ = − sin2 θ

H2
θθ,r

2H2
rr

,

Γ(3) θ
rθ =

H2
θθ,r

2H2
θθ

, Γ(3) θ
φφ = − sin θ cos θ,

Γ(3) φ
rφ =

H2
θθ,r

2H2
θθ

, Γ(3) φ
θφ = 1

tan θ .

(4.11)
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The Ricci tensor is once contracted Riemann curvature tensor (see the four dimen-
sional corresponding definition the Eq. (A.1))

R
(3)

ij = Γ(3) n
ij,n − Γ(3) n

in,j + Γ(3) n
nm Γ(3) m

ij + Γ(3) n
jm Γ(3) m

in. (4.12)

Substituting the non-zero connection coefficients Eq. (4.11) to the three-dimensional
Ricci tensor Eq. (4.12) one gets the non-zero Ricci tensor components

R(3)
rr = −∂r

(
H2
θθ,r

H2
θθ

)
+ Hrr,r

Hrr

H2
θθ,r

H2
θθ

− 1
2

(
H2
θθ,r

H2
θθ

)2

R
(3)

θθ = −
H2
θθ,r

2H2
θθ

+ 1− Hrr,r

Hrr

H2
θθ,r

2H2
θθ

R
(3)

φφ = sin2 θ R
(3)

θθ.

(4.13)

A shorthand notation

X = Hθθ,r

Hrr

(4.14)

can be used to write the non-trivial components of the Ricci tensor with mixed
indices

R(3) r
r = − 2X,r

HrrHθθ

R
(3) θ

θ = − X,r

HrrHθθ

+ 1−X2

H2
θθ

R
(3) φ

φ = sin2 θ R
(3) θ

θ.

(4.15)

Finally, comparing the Eq. (4.10) and Eq. (4.15) one gets the spherically symmetric
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evolution equations for the extrinsic curvature tensor with mixed indices

Kr
r,t =− 2X,r

HrrHθθ

+Kr
rK

r
r + 2Kθ

θK
r
r − κM r

r

Kθ
θ,t =− X,r

HrrHθθ

+ 1−X2

H2
θθ

+Kθ
θK

r
r + 2Kθ

θK
θ
θ − κM θ

θ .

(4.16)

4.1.2 Constraint Equations

In order to write the general ADM Hamiltonian constraint equation, the Eq. (3.24),
in spherical symmetry, one can expand it by writing out the Einstein summation
convention

R(3) r
r + 2 R

(3) θ
θ +

(
Kr

r + 2Kθ
θ

)2
− (Kr

r )
2 − 2

(
Kθ

θ

)2
= 2κρ. (4.17)

where κ = 8πG. Then, by substituting the non-vanishing Ricci tensor components
Eq. (4.15) one gets

− 2X,r

HrrHθθ

+ 1−X2

H2
θθ

+
(
Kθ

θ

)2
+ 2Kr

rK
θ
θ = κρ (4.18)

which is the Hamiltonian constraint equation in spherical symmetry.

∗ ∗ ∗

The general ADM form of the momentum constraint equation, the Eq. (3.27), can
be turned into spherical symmetry by expanding the three-dimensional covariant
derivative (see the definition in the Eq. (A.4))

Kj
i,j + ΓjjnKn

i − ΓnjiKj
n −K,i = κSi, (4.19)

38 4.1 ADM Equations in Spherical Symmetry



4 wLTB MODEL, THE POSSIBLE SOLUTION

where again κ = 8πG. Calculating the components i = r and i = θ gives

ΓrrrKr
r + ΓθθrKr

r + ΓφφrKr
r − ΓrrrKr

r − ΓθθrKθ
θ − ΓφφrK

φ
φ − 2Kθ

θ,r = κSr, (4.20)

Kθ
θ,θ + ΓφφθKθ

θ − ΓφφθK
φ
φ −Kr

r,θ − 2Kθ
θ,θ = κSθ, (4.21)

where one can substitute the connection coefficients Eq. (4.11) and divide by −2 to
get

Hθθ,r

Hθθ

(
Kθ

θ −Kr
r

)
+Kθ

θ,r = −1
2κSr (4.22)

for the r component and zero for the angular component θ. So the Eq. (4.22) is the
only non-trivial momentum constraint in spherical symmetry.

∗ ∗ ∗

It turns out, that terms like

1−X2

H2
θθ

, (4.23)

while perfectly defined when r approaches to zero, do not behave very well there
numerically. This is because the angular scale factor Hθθ is directly proportional
to the radius r, and vanishes when r gets small. To obtain smooth behaviour, the
extrinsic curvature tensor must approach unity to very high accuracy, which cannot
be treated numerically. However, there is a solution to this problem, if one defines
the radial scale function Hrr similarly as is done in [46]:

Hrr = Hθθ,r√
1 + 2E

, (4.24)

which requires a new variable E. The variable E can be considered as a curvature
function. Thus, remembering the shorthand notation Eq. (4.14) one can write the
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problematic terms as follows

1−X2

H2
θθ

= − 2E
H2
θθ

. (4.25)

Now, one expects that the curvature function E is proportional to the radius squared
near r ≈ 0 and the ratio appearing in Eq. (4.25) is numerically stable. Hence, some of
the ADM equations can be rewritten by paying attention to the numerical stability.
One can start from the metric evolution equation, which can be reformulated bu use
of the momentum constraint equation Eq. (4.22) which yields

E,t = (1 + 2E) Hθθ

Hθθ,r

κ

2Sr. (4.26)

In addition, the Hamiltonian constraint Eq. (4.18) can be re-expressed, too, which
gives

− 2X,r

HrrHθθ

− 2E
H2
θθ

+
(
Kθ

θ

)2
+ 2Kr

rK
θ
θ = κρ. (4.27)

This form of the Hamiltonian constraint is used in this thesis.

4.2 Fluid equations: the Energy-Momentum

Up to this point, the focus has been mainly on the left hand side of the Einstein’s
field equations. In this section, instead, the main issue is to develop mathematical
description for the behaviour of the right hand side of the Einstein’s field equations,
the source terms. As an example, one has to take care that the covariant conservation
of the energy momentum is guaranteed in the system.

The energy-momentum tensor that describes all sources of energy-momentum in the
universe, except gravity, has already appeared in the evolution equation of the ex-
trinsic curvature Eq. (4.16) and in the Hamiltonian constraint equations Eq. (4.27)
as well as in the momentum constraint equation Eq. (4.22) as a source. This means
that one has to solve simultaneously the ADM equations and the conservation equa-
tions related to the energy-momentum to determine the entire foliation of the space-
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time. This is because the source terms ρ , Si and Sij are different projections of the
energy-momentum tensor either onto the hypersurface or in the direction of the
normal vector and thus have direct effect on the foliation. [38]

In this model, the source of "matter"-energy (all other sources but gravity) are
described by a set of perfect fluids. In the section 2, the energy-momentum tensor
for such a system was introduced, the Eq. (2.8):

T µν =
∑
i

[(ρi + pi)uµi uνi + pig
µν ] . (4.28)

Here the time-like and unitary vector field uµi is taken to be of the form

uµi =
(
γvi ,

γvivi
Hrr

, 0, 0
)
, (4.29)

where vi expresses the proper radial velocity and γ2
vi

= 1/(1− v2
i ) is the Lorenz gamma

factor. In addition, the fluid is assumed to be multicomponental i.e the different
components being the different sources of energy-momentum. It is important to note
that the equation of state for every fluid component can be expressed individually
according to the Eq. (2.6):

pi = wiρi. (4.30)

4.2.1 Fluid Evolution Equations

The time evolution equations of the proper radial velocity vi and energy density
ρi of each individual fluid component stem from the covariant conservation of the
energy-momentum tensor ,

∇(4)
µT

µν
i = 0 (4.31)

where i denotes the different fluid components and is not related to the tensor
indices. Substituting the energy-momentum tensor, Eq. (4.28), to the conservation
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requirement yields to

(ρi + pi)
[(
∇(4)
µu

µ
i

)
uνi + uµi ∇(4)

µu
ν
i

]
+ ∇(4)

µρiu
µ
i u

µ
i + ∇(4)

µpi (u
µ
i u

µ
i + gµν) = 0.

(4.32)

For the sake of clarity, the µt components can be calculated first by expanding the
covariant derivative with the formula Eq. (A.5) introduced in the Appendix A,

(ρi + pi)
(
∂tu

t
i + Γ(4) t

ttu
t
i + Γ(4) t

tru
r
i + ∂ru

r
i + Γ(4) r

rru
r
i + 2∂θuθi + 2 Γ(4) θ

θtu
t
i

+2 Γ(4) θ
θru

r
i

)
uti

+ (∂rρi + ∂rpi)uriuti + (ρi + pi)uti
(
∂tu

t
i + Γ(4) t

ttu
t
i + Γ(4) t

tru
r
i

)
+ gtt∂tpi

+ (∂tρi + ∂tpi)utiuti + (ρi + pi)uri
(
∂ru

t
i + Γ(4) t

rtu
t
i + Γ(4) t

rru
r
i

)
= 0.

(4.33)

The non-zero connection coefficients with respect to the four dimensional metric gµν

can be determined with the formula A.2:

Γ(4) t
rr = HrrHrr,t Γ(4) t

θθ = Γ(4) t
φφ = HθθHθθ,t,

Γ(4) r
rt = Hrr,t

Hrr

, Γ(4) θ
θt = Γ(4) φ

φt = Hθθ,t

Hθθ

. (4.34)

The other relevant coefficients having the temporal index equal to zero and the
coefficients having only spatial indices reduce to the ones calculated earlier in the
Eq. (4.11). Substituting the connection coefficients Eq. (4.34), the four-velocity
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components Eq. (4.29) and the four dimensional metric components Eq. (4.4) gives

(ρi + pi) γvi
[
γvi,t +

(γvivi),r
Hrr

− γviviHrr,r

H2
rr

+ γviHrr,t

Hrr

+ γviviHrr,r

H2
rr

+2Hθθ,t

Hθθ

γvi + 2Hθθ,r

Hθθ

γvivi
Hrr

+ γvi,t

+v2
i

((γvivi),r
Hrr

− γviviHrr,r

H2
rr

+ γviHrr,t

Hrr

γviviHrr,r

H2
rr

)]

+ (ρi + pi),r
γvivi
Hrr

γvi + pi,tγvi

(
γvi −

1
γvi

)
+ ρi,tγ

2
vi

= 0.

(4.35)

Then the correspoding µr components of the conservation of the energy-momentum
tensor Eq. (4.32) can be calculated by similar procedure yielding

(ρi + pi)
γvivi
Hrr

(
γvi,t +

(γvivi),r
Hrr

− γviviHrr,r

H2
rr

+ Hrr,r

Hrr

γvivi
Hrr

+ Hrr,t

Hrr

γvi

+ 2Hθθ,t

Hθθ

γvi + 2Hθθ,r

Hθθ

γvivi
Hrr

)

+ (ρi,t + pi,t)
γ2
vi
vi

Hrr

+ (ρi,r + pi,r)
γ2
vi
v2
i

H2
rr

+ (ρi + pi)
[
γvi

(γvivi)t
Hrr

+ γvivi
Hrr

(
(γvivi)r
Hrr

+ Hrr,tγvi
Hrr

)]
+ pi,r

1
H2
rr

= 0.

(4.36)

First, one can focus on the µt components of the energy-momentum conservation
equation, the Eq. (4.35). The first term in the brackets and the third term on the
second row can be identified as the temporal component of the expansion scalar
Eq. (C.2) introduced in the Appendix C since

γvi,t = γ3
vi
vivi,t = ΘT i. (4.37)

The last four terms on the first row in the Eq. (4.35) as well as the terms on the third
row equal to the radial component of the expansion scalar Eq. (C.2) and therefore

(γvivi),r
Hrr

+ Hrr,t

Hrr

γvi =
γ3
vi
vi,r

Hrr

− γviKr
r = ΘRi. (4.38)
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The first equality in Eq. (4.38) requires also the use of the spherically symmetric
metric evolution equation, Eq. (4.5). Then, the two terms on the second row in the
Eq. (4.35) equal to the angular component of the expansion scalar, Eq. (C.2), again
with the help of the spherically symmetric metric evolution equation Eq. (4.5) and
the shorthand notation Eq. (4.14):

2Hθθ,t

Hθθ

γvi
α

+ 2Hθθ,r

Hθθ

γvivi
Hrr

= 2γvi
(
−Kθ

θvi + X

Hθθ

)
. (4.39)

Now the Eq. (4.35) can be written in terms of the expansion scalar components,

(ρi + pi) γvi
[
2ΘTi +

(
1 + v2

i

)
ΘRi + ΘAi

]
+ (ρi + pi),r

γ2
vi
vi

Hrr

+pi,t
(
γ2
vi
− 1

)
+ ρi,tγ

2
vi

= 0
(4.40)

and then further simplified by using the full expansion scalar Eq. (C.3) as well as
the acceleration scalar Eq. (C.8),

(ρi + pi) γvi (Θi + viai) + (ρi + pi),r
γ2
vi
vi

Hrr

+ pi,tγ
2
vi
v2
i + ρi,tγ

2
vi

= 0. (4.41)

Now the focus can be turned to the µr component of the energy-momentum conser-
vation equation, Eq. (4.36). After similar procedure than for the µt component and
a multiplication by Hrrvi one can write the Eq. (4.36) to a form

(ρi + pi) γvi
(
v2
i Θi + viai

)
+ (ρi + pi),t γ

2
vi
v2
i + pi,r

γ2
vi
vi

Hrr

+ ρi,r
γ2
vi
v3
i

Hrr

= 0, (4.42)

where the expansion scalar formulae Eq. (C.2), Eq. (C.3), the acceleration scalar
Eq. (C.8), the spherically symmetric metric evolution equation Eq. (4.5) and the
shorthand notation Eq. (4.14) were used, too.

The difference of the two component sets µt and µr·(Hrrvi) of the energy momentum

44 4.2 Fluid equations: the Energy-Momentum



4 wLTB MODEL, THE POSSIBLE SOLUTION

conservation equation, Eq. (4.41) and Eq. (4.42) is of the form

(ρi + pi) γviΘi

(
1− v2

i

)
+ ρ,tγ

2
vi

(
1− v2

i

)
+ ρ,r

γ2
vi
vi

Hrr

(
1− v2

i

)
= 0, (4.43)

which can then be multiplied by γvi and simplified by the convective derivative
Eq. (C.10) to yield

d
dτ ρi = −Θi (ρi + pi) . (4.44)

On the other hand, the conservation equation for the pressure can be derived from
the difference of the component sets µt the Eq. (4.41) and µr ·(Hrr/vi) (the Eq. (4.42)
divided by 1/v2

i )

(ρi + pi) γviai
(
vi −

1
vi

)
+ pi,tγ

2
vi

(
v2
i − 1

)
+ pi,r

γ2
vi
vi

Hrr

(
1− 1

v2
i

)
= 0, (4.45)

which, multiplying by γvivi and using the convective derivative Eq. (C.4), yields

d
dσpi = −ai (ρi + pi) . (4.46)

The continuity equations Eq. (4.44) and Eq. (4.46) can be then used to work even
further and define the evolution equations for the proper radial velocity vi and energy
density ρi for each fluid component.

The evolution equation of the velocity of each fluid component can now be derived by
starting from the acceleration scalar formula Eq. (C.9) and solving for the convective
derivative of the velocity

dvi
dτ = ai

γ2
vi

− vi
γvi
Kr

r . (4.47)

Next, one can solve the continuity equation of the fluid pressure Eq. (4.46) for the
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acceleration scalar ai and substitute it into the Eq. (4.47) to get

dvi
dτ = 1

γ2
vi

1
ρi + pi

dpi
dσ −

vi
γvi
Kr

r . (4.48)

Expanding the pressure derivative with the Eq. (C.4) and rearranging some terms
as well as using the definitions for the equation of state parameter, the Eq. (4.30)
and (ωi,t)ρ = pi,t/ρi gives

dvi
dτ = − vi

γvi

1
ρi (1 + ωi)

[
(ωi,t)ρ ρi + pi,r

viHrr

]
+ vi
γvi
Kr

r . (4.49)

Now, using the definition for the adiabatic sound speed,

c2
si = ∂pi

∂ρi
, (4.50)

the Eq. (4.49) transforms to

dvi
dτ = − vi

γvi

1
ρi (1 + ωi)

[
(ωi,t)ρ ρi + c2

si

(
ρi,t + ρi,r

viHrr

)]
+ vi
γvi
Kr

r . (4.51)

The continuity equation for the energy density components Eq. (4.44) and the ex-
pansion scalar Eq. (C.3) can be used to get

dρi
dτ =

[
γviK − γ2

vi

dvi
dσ −

γvivi
Hrr

2Hθθ,r

Hθθ

]
(ρi + pi) , (4.52)

which can be broken into the time and radial derivatives of the energy density ρi
according to the definition of the convective derivative Eq. (C.10). This procedure
gives

ρi,t = − vi
Hrr

ρi,r +
(
K − γvi

dvi
dσ −

vi
Hrr

2Hθθ,r

Hθθ

)
ρi (1 + ωi) . (4.53)

Now, one can substitute the above equation, the Eq. (4.53), to the equation Eq. (4.51)
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which yields a form

dvi
dτ − vic

2
si

dvi
dσ =− vi

γvi

1
ρi (1 + ωi)

(ωi,t)ρ ρi + v2
i c

2
si

γviρi (1 + ωi)Hrr

ρi,r −
vic

2
si

γvi
K

+ 2v2
i c

2
siHθθ,r

γviHrrHθθ

− c2
si

γvi (1 + ωi)
1
Hrr

ρi,r
ρi

+ vi
γvi
Kr

r.

(4.54)

This can be solved for the time derivative of the proper radial velocity by using the
definitions of the convective derivatives Eq. (C.10) and Eq. (C.4) so

vi,t =−
γ2
cvi
γvivi

γviHrrγ2
ci

vi,r −
γ2
cvi

γ2
vi

1
(1 + ωi)

[
vi (ωi,t)ρ + c2

si

γ2
vi
Hrr

ρi,r
ρi

]

+
viγ

2
cvi

γ2
vi

(
Kr

r − c2
siK

)
+

2v2
i c

2
siHθθ,rγ

2
cvi

γ2
vi
HrrHθθ

,

(4.55)

where the new gamma factors are

γ2
cvi

= 1
1− c2

siv
2
i

and γ2
ci

= 1
1− c2

si

. (4.56)

The equation for the velocity evolution, Eq. (4.55), can be simplified by few more
shorthand notations

Bi = γ2
cvi

[
vi (ωi,t)ρ + c2

si

γ2
vi
Hrr

ρi,r
ρi

]
, (4.57)

as well as the Eq. (4.14) to get

vi,t =
viγ

2
cvi

γ2
vi

(
−

γ2
vi

γ2
ci
Hrr

vi,r +Kr
r − c2

siK + 2vic2
siX

Hθθ

)
− 1
γ2
vi

(1 + ωi)
Bi. (4.58)

This equation is the time evolution equation for the proper radial velocity of the
fluid components.
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The evolution equation for the energy density of each fluid component can be de-
rived by expanding the convective derivative in the Eq. (4.53) by the Eq. (C.4) and
substituting the evolution equation of the velocity component, the Eq. (4.74) to the
time derivative of the energy density Eq. (4.53)

ρi,t ={
−γvi

[
γvivi

(
viγ

2
cvi

γ2
vi

(
−
γ2
vi
vi,r

γ2
ci
Hrr

+Kr
r − c2

siK + 2vic2
siX

Hθθ

)
− Bi

γ2
vi

(1 + ωi)

)

+ γvi
Hrr

vi,r

]
− vi
Hrr

2Hθθ,r

Hθθ

+K

}
ρi (1 + ωi)

− vi
Hrr

ρi,r.

(4.59)

Then, rearranging terms and dividing by ρi gives

ρi,t
ρi

=− viρi,r
Hrrρi

+ (1 + ωi)
{
K − γ2

cvi

(
vi,r
Hrr

+ v2
i

[
Kr

r − c2
siK

]
+ 2viX

Hθθ

)}
+ viBi,

(4.60)

which is the evolution equation of the energy density for each fluid component.

4.2.2 Explicit Formulation of the Source Terms

The last task, before the spherically symmetric set of ADM equations is complete, is
to formulate explicit spherically symmetric expressions for the source terms ρ, Si,Mij

and Tµν . This can be done in the rest frame (vi = 0) and thus the normal vector
can be written as

nµ = gµνu
ν
rf = (−1, 0, 0, 0). (4.61)

The explicit formulation can be started from the energy-momentum tensor Eq. (4.28)
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by expressing it in the mixed form

T µσ = T µνgνσ =
∑
i

[(ρi + pi)uµi uνi gνσ + pig
µνgνσ] , (4.62)

where the diagonal components are

T tt =
∑
i

[
− (ρi + pi) γ2

vi
+ pi

]
,

T rr =
∑
i

[
(ρi + pi) γ2

vi
v2
i + pi

]
,

T θθ =
∑
i

pi.

(4.63)

Only one off-diagonal component remains unzero and it is of the form

T tr = Hrr

∑
i

(ρi + pi) γ2
vi
vi. (4.64)

The energy density, Eq. (3.17) can be now written with the energy-momentum tensor
components Eq. (4.63) as follows

ρ = −T tt =
∑
i

[
(ρi + pi) γ2

vi
− pi

]
(4.65)

as can be done for the other shorthand notations in Eq. (3.17) as well

Si = T ti ,

Sij = Tij .
(4.66)

Calculation of the components reveals that only one non-zero component exists
being the radial component

Sr = Hrr

∑
i

(ρi + pi) γ2
vi
vi. (4.67)

Also, the source term Mµν defined by the Eq. (3.19) can be formulated in the rest
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frame spherically symmetric coordinates

M r
r = 1

2
(
T rr − T tt − 2T θθ

)
,

M θ
θ = −1

2
(
T rr + T tt

)
,

(4.68)

which can be expanded by use of the energy-momentum tensor components Eq. (4.63)
as follows

M r
r = 1

2
∑
i

[
ρi − pi + 2 (ρi + pi) γ2

vi
v2
i

]
M θ

θ = 1
2
∑
i

(ρi − pi) .
(4.69)

In summary, the complete set of ADM equations in spherical symmetry:

• Metric evolution equations

E,t = (1 + 2E)HrrHθθ

Hθθ,r

κ

2

[∑
i

(ρi + pi) γ2
vi
vi

]
(4.70)

• Extrinsic curvature evolution

Kr
r,t =− 2X,r

HrrHθθ

+Kr
rK

r
r + 2Kθ

θK
r
r

− κ1
2
∑
i

[
ρi − pi + 2 (ρi + pi) γ2

vi
v2
i

]
Kθ

θ,t =− X,r

HrrHθθ

+ 1−X2

H2
θθ

+Kθ
θK

r
r + 2Kθ

θK
θ
θ − κ

1
2
∑
i

(ρi − pi)

(4.71)

• Hamiltonian constraint equation

− 2X,r

HrrHθθ

− 2E
H2
θθ

−
(
Kθ

θ

)2
− 2Kr

rK
θ
θ = κ

∑
i

[
(ρi + pi) γ2

vi
− pi

]
(4.72)

50 4.2 Fluid equations: the Energy-Momentum



4 wLTB MODEL, THE POSSIBLE SOLUTION

• Momentum Constraint equation

Hθθ,r

Hθθ

(
Kθ

θ −Kr
r

)
+Kθ

θ,r = −1
2κHrr

∑
i

(ρi + pi) γ2
vi
vi (4.73)

• Fluid proper radial velocity evolution

vi,t =
viγ

2
cvi

γ2
vi

(
−

γ2
vi

γ2
ci
Hrr

vi,r +Kr
r − c2

siK + 2vic2
siX

Hθθ

)
− 1
γ2
vi

(1 + ωi)
Bi. (4.74)

• Energy density evolution

ρi,t
ρi

= (1 + ωi)
{
K − γ2

cvi

(
vi,r
Hrr

+ v2
i

[
Kr

r − c2
siK

]
+ 2viX

Hθθ

)}

+ viBi −
viρi,r
Hrrρi

(4.75)

4.3 The Inclusion of the Inhomogeneity

In order the model to have some physical meaning, the boundary and initial con-
ditions have to be specified to correspond to a particular physical problem. In this
section the relevant boundary conditions are introduced first and later the reader is
guided through the initial conditions where the initial inhomogeneity is included in
the model.

4.3.1 Boundary Conditions

The basic idea is that the wLTB model has to blend in to the standard FLRW
universe (a universe having FLRW metric Eq. (2.3)) in such a way that at a specified
boundary the wLTB model matches the standard cosmological model, hereafter
called the background universe. In this thesis, the LTB bubble boundary works as
the boundary and therefore at r = rb the LTB model has to equal the background
solution.

As is already introduced in the section 2 the FLRW metric is of the form

ds2 = −dt2 + ā2(t)dr2

1− kr2 + ā2(t)r2
(
dθ2 + sin2 θdφ2

)
(4.76)
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that is, the background universe is homogeneous and isotropic. In the Eq. (4.76)
the bar denotes background quantities. Now, when comparing the FLRW metric
Eq. (4.76) to the spherically symmetric LTB metric Eq. (4.4)

ds2 = −α2dt2 +H2
rrdr2 +H2

θθ

(
dθ2 + sin2 θdφ2

)
, (4.77)

the boundary conditions for the metric components can be read out when matching
the two metrics at the bubble boundary [46],

Hrr(t, rb) = ā(t)
1− kr2 and Hθθ(t, rb) = ā(t)rb. (4.78)

The boundary conditions for the other dynamical variable in the model, the extrinsic
curvature tensor, can be written by substituting the metric boundary conditions in
Eq. (4.78) to the metric evolution equation Eq. (4.5) which gives

Kr
r (t,rb) = Kθ

θ (t,rb) = −H̄ (4.79)

where the background Hubble parameter is identified as H̄ = ā,t
ā
.

From the above boundary conditions one can derive the boundary conditions also
for the curvature function E by solving the Eq. (4.24) for E and substituting the
boundary conditions for the metric components in Eq. (4.78). This gives

E(t,rb) = 0. (4.80)

The homogeneity and isotropicity of the background universe restric the multicom-
ponental fluid, too. Isotropic universe requires the fluid to be at rest at early times
so the proper peculiar velocity vi = 0. The fluid energy densities have to equal the
background fluid densities, as well, and since the background universe is homoge-
neous, one has

ρi(t,rb) = ρ̄i(t). (4.81)
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4.3.2 Initial conditions

Now, the values at the boundary of the wLTB model has been determined to match
the background FLRW universe but the initial conditions are yet to be specified. In
addition, no inhomogeneities have yet been included to the model. In this section
the inhomogeneity will be introduced in the formulation of the initial conditions
and the goal of the rest of this section is to express all the initial metric and fluid
energy density quantities in terms of a function which determines the geometry of
the initial inhomogeneity in the model.

To include the inhomogeneities in the model, one assumes the perturbations to be
adiabatic, that is, to perturb the energy density to induce inhomogeneities in the
spatial curvature. In this case, the perturbations can also be formulated in terms
of the effective gravitating mass since it is related to the energy density and thus
result in adiabatic perturbations.

Consistent with the synchronous gauge a simultaneous big bang is required, i.e. it
is assumed that the big bang happened everywhere at the same time, say t = 0.

The relation between the energy density and the effective gravitating mass in the
background universe can be derived from the Einstein’s field equations, Eq. (2.4),
with spherically symmetric metric Eq. (4.4) by assuming that the energy density is
formed by a perfect fluid, Eq. (2.8). Identifying the radial component of the metric
with the corresponding component in the Schwarzchild metric

grr =
(

1− 2GF̄M
r

)−1

, (4.82)

where G is the gravitational constant and F̄M is the effective gravitating mass, one
can then solve for the mass in the tt component of the Einstein’s field equations.
This gives

F̄M = 4π
3 H3

θθρ̄M , (4.83)

where ρ̄M is the energy density of the matter component. The bar denotes a back-
ground quantity in all equations. [27]
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Figure 4.1. An example of an initial inhomogeneity profile when modelling
underdensities. The figure is drawn with parameter values r0 = 0.25/4 ·100 ·0.674,
roffset = r0 and ∆r = 0.3r0 plugged in the Eq. (4.85) which is then multiplied by
the amplitude δ̃in

M = −1.1 · 10−3.

Now the initial contrast in the effective gravitating mass can be defined

δin
FM

(r) = F in
M

F in
M,bkg

− 1 = δ̂in
MgF (r), (4.84)

where δ̂in
M describes the amplitude (is just a number) and gF (r) the initial geometry

of the inhomogeneity. The initial inhomogeneity profile is chosen to be of the form

gF (r) ≡
1− tanh

(
r−r0−roffset

2∆r

)
1 + tanh

(
r0

2∆r

) , (4.85)

where the parameters r0 and roffset describe the size and ∆r determines the steepness
of the inhomogeneity of the effective gravitating mass contrast to the corresponding
background quantity. The initial inhomogeneity profile is chosen so that it describes
a local underdensity, see the Figure 4.1.
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To get the perturbations for each fluid component i, one has to first write the pertur-
bations in terms of the energy densities and then solve for the effective gravitating
mass. This has to be done since one cannot exactly divide the effective gravitating
mass into fluid components in a sensible way. So, starting from the relation between
the effective gravitating mass and the energy density for the matter component
Eq. (4.83) one notices that

∂rF
in
M = 4πr2ρin

M , (4.86)

because Hθθ is initially directly proportional to the radial component r, as seen
in Eq. (4.78). Then, solving the Eq. (4.84) for the effective gravitating mass and
differentiating with respect to the radial component r as well as using the two
expressions Eq. (4.83) and Eq. (4.86) one can formulate the initial contrast in the
energy density for the mass component as follows

δin
ρM

(r) = ρin
M

ρ̄in
M

− 1 = δ̂in
M

(
1 + r

3∂r
)
gF (r). (4.87)

Thus, the effective gravitating mass and energy density perturbations are related

δin
ρM

(r) =
(

1 + r

3∂r
)
δin
FM

(r). (4.88)

For a general fluid component i one can write the initial density perturbation am-
plitude in terms of the matter energy density perturbation amplitude as [47]

δ̂in
i = δ̂in

M (1 + wi)
5− 6c̄2

si

5− 15w̄i + 9c̄2
si

. (4.89)

The Eq. (4.89) applies only when the perturbation is on superhorizon scales and
during matter domination [47]. In practice, this is not a problem in this thesis
since the initial conditions are given well before the inhomogeneity scale enters the
horizon.

Now, the initial density contrast in energy density for a fluid component i can be
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written as

δin
ρi

(r) = δ̂in
M (1 + wi)

5− 6c̄2
si

5− 15w̄i + 9c̄2
si

(
1 + r

3∂r
)
gF (r) (4.90)

and thus the general form for the effective gravitating mass initial perturbation can
be related as

δin
Fi

(r) = δ̂in
M (1 + wi)

5− 6c̄2
si

5− 15w̄i + 9c̄2
si

gF (r). (4.91)

The initial conditions for the peculiar velocities of the fluid components can be all
set to zero,

vin
i = 0 (4.92)

because one is assuming an isotropic universe. The initial conditions for the angular
metric component can be written straightforwardly as

H in
θθ = āinr (4.93)

because of the isotropicity, as well. Remembering the redefinition for the radial
metric component Eq. (4.24), the initial conditions can be written by using the
above Eq. (4.93)

H in
rr = āin

√
1 + 2Ein

. (4.94)

Remaining components for which the initial conditions needs to be set are the cur-
vature function E as well as the extrinsic curvature tensor components Kr

r and Kθ
θ .

One can solve the radial component of the extrinsic curvature analytically from the
momentum constraint equation Eq. (4.22) (where now vin

i = 0)

(Kr
r )

in =
(
Kθ

θ

)in
+ H in

θθ

H in
θθ,r

(
Kθ

θ,r

)in
(4.95)
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from where it can be seen that it suffices to determine the initial conditions for the
angular component only. For the angular extrinsic curvature tensor component one
can formulate the initial conditions by starting from an expression for the effective
gravitating total mass given in [46]

2GF =
(
Hθθ,t

Hθθ

)2
H3
θθ − 2EHθθ (4.96)

and identifying the extrinsic curvature tensor with the metric evolution equation
Eq. (4.5). This gives

(
Kθ

θ

)2
= 2GF

H3
θθ

− 2E
H2
θθ

. (4.97)

After some rearranging one can integrate the metric evolution equation for the an-
gular component Eq. (4.5) and use the above equation Eq. (4.97) to write

tin =
∫ tin

0

Hθθ,tdt
Hθθ

√
2GF
H3
θθ
− 2E

H2
θθ

. (4.98)

Since the effective gravitating mass appears here in the integral Eq. (4.98) it is clear
why it makes sense to write the inhomogeneities directly in terms of the effective
gravitating mass and not the energy density.

Several approximations have to be made in order to be able to integrate the Eq. (4.98)
since the effective gravitating mass F and the curvature function E depend on time
as well as does the angular metric tensor component Hθθ.

Approximations can be done if one assumes the initial conditions to be given well
after inflation. This yields to a universe where separate causal patches evolve like a
corresponding FLRW universe and therefore helps the task of solving the integral in
Eq. (4.98). So, first, during the time interval t < tin the equation of state parameters
wi can be approximated to be constants. Second, if the initial conditions are given
early enough the pressure gradients can be approximated to be negligible. Here,
the early enough means that inhomogeneities are still outside the horizon. Third,
during t < tin one can set the curvature function E(t < tin, r) = Ein.

With these approximations one can formulate the total effective gravitating mass at
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any time in terms of the metric angular components and individual initial effective
gravitational masses for all the fluid components as follows

F ≈
∑
i

(
H in
θθ

Hθθ

)3

F in
i , (4.99)

where Eq. (4.83) for the relation of the effective gravitating mass and energy density
as well as the Eq. (4.75) for the evolution of the fluid energy density, on the limit
vi = 0 and Hrr ∼ Hθθ, were used.

Now, the first term on the right hand side of the Eq. (4.97) can be modified to

2GF
H3
θθ

≈ 2G
H3
θθ

∑
i

(
H in
θθ

Hθθ

)3

F ini =
∑
i

H̄2Ω̄in
i

(
1 + δin

Fi
(r)
)(H in

θθ

Hθθ

)3

, (4.100)

where the equality comes by the virtue of the following equations: the effective
gravitating mass initial contrast of Eq. (4.84), the relation between the effective
gravitating mass and energy density in Eq. (4.83), the definition of the density
parameter in Eq. (2.24), as well as the critical density in Eq. (2.25). Now, one can
write the integral in Eq. (4.98) again with the approximation of Eq. (4.100)

tin ≈
∫ tin

0

Hθθ,t

Hθθ

∑
i

H̄2Ω̄in
i

(
1 + δin

Fi
(r)
)(H in

θθ

Hθθ

)3

+ 2Ein

H2
θθ

− 1
2

dt. (4.101)

After some algebra and a variable change t→ b = Hθθ/H in
θθ one can write

H̄int
in ≈

∫ 1

0

∑
i

Ω̄in
i

(
1 + δin

Fi
(r)
)
b−3wi−1 + 2Ein(

āinH̄inr
)2


− 1

2

db. (4.102)

By definition, time integrals in a homogeneous FLRW universe are of the form

H̄int
in ≡

∫ 1

0

db.√∑
i Ω̄in

i b
−3wi−1

. (4.103)

Thus, one can relate the perturbation in the effective gravitating mass δin
Fi

(r) and
the curvature function E by subtracting the homogeneous case Eq. (4.103) from the
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inhomogeneous one Eq. (4.102). This can be easily done if one starts by expanding
the right hand side of the integrand in Eq. (4.102) to the first order

1√∑
i Ω̄in

i b
−3wi−1

1− 1
2

∑
i Ω̄in

i δ
in
Fi

(r)b−3wi−1 + 2Ein

(āinH̄inr)2∑
i Ω̄in

i b
−3wi−1

 . (4.104)

Now, subtracting the homogeneous time integral Eq. (4.103) from the inhomoge-
neous one Eq. (4.104) one gets the relation

Ein(
āinH̄inr

)2

∫ 1

0

db(∑
i Ω̄in

i b
−3wi−1

) 3
2

= −1
2
∑
i

Ω̄in
i δ

in
Fi

(r)
∫ 1

0

b−3wi−1db(∑
i Ω̄in

i b
−3wi−1

) 3
2
. (4.105)

Since on both sides the integrals remind each other one can define a shorthand
notation

Ip =
∫ 1

0

b−pdb(∑
i Ω̄in

i b
−3wi−1

) 3
2
. (4.106)

So, one can formulate the initial conditions for the curvature function as follows

Ein(
āinH̄inr

)2 = −1
2
∑
i

Ω̄in
i δ

in
Fi

(r)I3wi+1

I0
, (4.107)

which further can be written in terms of the inhomogeneity profile gF (r) according
to Eq. (4.84)

Ein(
āinH̄inr

)2 = −cEgF (r), (4.108)

where the constant cE is of the form

cE = 1
2

n∑
i

Ω̄in
i δ̂

in
i

I3wi+1

I0
. (4.109)
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The last task is to formulate the initial conditions for the extrinsic curvature tensor.
Remembering the Eq. (4.97) one can write

Kθ
θ ≈ H̄in

H in
θθ

Hθθ

 n∑
i=1

Ω̄in
i

(
1 + δin

Fi
(r)
)(H in

θθ

Hθθ

)−3wi−1

+ 2Ein(
āH̄inr

)2


1
2

, (4.110)

and expanding this to first order with small perturbations δin
Fi

(r) one gets

(
Kθ

θ

)in

H̄in
= 1 + 1

2

n∑
i=1

Ω̄in
i δ

in
Fi

(r)
(

1− I3wi+1

I0

)
, (4.111)

where the shorthand notation Eq. (4.106) was used. By using the density profile
gF (r) Eq. (4.84), one can define

cK = 1
2

n∑
i=1

Ω̄in
i δ̄

in
Fi

(
1− I3wi+1

I0

)
(4.112)

and finally write

(
Kθ

θ

)in

H̄in
= 1 + cKgF (r). (4.113)

Now all the initial conditions for the metric and extrinsic curvature tensor compo-
nents are written in terms of the density profile gF (r) which determines the character
of the initial inhomogeneity.

4.4 Dimensionless Formulation

It is useful to have the variables and equations in a dimensionless form for the
numerical implementation. In this section, the dimensionless formulation of all the
necessary parameters and equations for an LTB problem is presented. The LTB
parameters are scaled in a way that the results would be more transparent and
intuitively interpreted. Then, with the scaled parameters at hand, the necessary
equations are written in the dimensionless form.
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Considering the boundary conditions for the metric tensor components in Eq. (4.78),
one can find a way to scale them as follows

η r = Hrr

ā
and η θ = Hθθ

ār
(4.114)

where the bar again means the background quantities. Similarly, one can use the
boundary conditions Eq. (4.79) to get the dimensionless form for the extrinsic cur-
vature tensor components,

hi = −K
i
i

H̄
. (4.115)

Evidently, hi relates the radial and angular relative expansion rates to the back-
ground model. This can be seen from the definition of the extrinsic curvature tensor
in Eq. (3.5) which contains the first time derivative of the metric tensor components.

The distance from the bubble centre can also be scaled,

r̃ = H0r, (4.116)

as well as the background Hubble parameter

h̃ = H̄

H0
, (4.117)

with respect to the present-day Hubble parameter value H0. And as already stated
earlier, the radial scale function is replaced by a numerically more stable quantity
E, the curvature function. This can also be scaled,

e = E

r̃2 , (4.118)

where the Eq. (4.116) and Eq. (4.117) were used. Moreover, for the fluid densities
one naturally uses the background density as a scale

∆i = ρi
ρ̄i
. (4.119)
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In addition, the time is expressed in terms of a logarithm of the background scale
factor

y = log ā (4.120)

which then gives the partial derivative of the form

∂t = H̄∂y. (4.121)

4.4.1 Dimensionless Constraint and Evolution Equations

From the dimensionless formulation of the all the necessary LTB parameters de-
fined in the beginning of this section, one can construct dimensionless evolution and
constraint equations for the model. This can be done straightforwardly by substitut-
ing the dimensionless formulations for the parameters to the spherically symmetric
ADM equations already derived earlier.

The momentum constraint equation in the dimensionless form can be formulated
by substituting the Eqs. (4.114)–(4.116) and (4.119) to the momentum constraint
Eq. (4.73):

hr = hθ + ηθr̃

(ηθr̃),r̃

[
hθ,r̃ −

3
2χr

∑
i

Ω̄i∆i (1 + wi) γ2
vi
vi

]
, (4.122)

where also the formulae for the density parameter Eq. (2.24) and critical density
Eq. (2.25) as well as the shorthand notation

χi = āh̃η i (4.123)

were used.

The Hamiltonian constraint in the dimensionless form can be derived similarly from
the Eq. (4.72) by using the formulae in Eqs. (4.114)–(4.119), as well as Eqs. (2.24),
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(2.25) and (4.123). This procedure gives

hr = 1
hθ

(
r̃e,r̃ + 2e
Xχ rχ θ

+ e

χ2
θ

)
− 1

2hθ + 3
2hθ

∑
i

Ω̄i∆i

(
1 + wiv

2
i

)
γ2
vi
. (4.124)

∗ ∗ ∗

The metric evolution equation for the angular component in Eq. (3.11) can be writ-
ten in the dimensionless form as

ηθ,y = ηθ (hθ − 1) , (4.125)

where the Eqs. (4.114), (4.115) and (4.121) were used. For the radial part, re-
membering the redefinition in Eq. (4.24), the evolution equation of Eq. (4.70) in a
dimensionless scaled form is

e,y = 3
2
Xχ θ
r̃

∑
i

Ω̄i∆i (1 + wi) γ2
vi
vi, (4.126)

where all the above scalings Eqs. (4.114)–(4.121) were used.

With a similar procedure, one can derive the dimensionless evolution equation for
the extrinsic curvature tensor, as well. The dimensionless Hamiltonian constraint,
Eq. (4.124), can be used to solve for the radial component of the extrinsic curvature
tensor appearing in the angular equation, Eq. (4.71). Thus, the angular component
of the extrinsic curvature tensor evolution equation in the dimensionless form is

hθ,y = −3
2

[
h2
θ − hθ

(
1 +

∑
i

Ω̄iw̄i

)
+
∑
i

Ω̄i∆i

(
v2
i + wi

)
γ2
i

]
+ e

χ2
θ

. (4.127)

In addition, the second Friedmann equation, the so called accelerating Eq. (2.11),
was used to convert the time derivative to the partial derivative with respect to the
new dimensionless variable y.

The remaining equations to be put in the dimensionless form are the fluid evolution
equations. Starting from the fluid proper velocity evolution equation Eq. (4.74) the
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dimensionless form can be written as

vi,y =
viγ

2
cvi

γ2
vi

[
−

γ2
vi

γ2
ci
χ r
vi,r̃ + hmc

r + c2
sih+ 2vic2

siX

χ θr̃

]
− 1

1 + wi

1
γ2
vi

B̃i, (4.128)

where

B̃i = γcvi

(
vi(wi,y)ρ + c2

si

γ2
vi
χ r

∆i,r̃

∆i

)
, (4.129)

and h = (hr + 2hθ)/3. The symbol hmc
r denotes that the radial component of the

extrinsic curvature tensor can be analytically solved from the momentum constraint
equation, Eq. (4.122).

Then, the dimensionless evolution equation for the fluid energy density components
can be derived from the spherically symmetric ADM form Eq. (4.75). Similarly as
is done above, one gets

∆i,y =3∆i

{
1 + w̄i − (1 + wi)

[
h+ 1

3γ
2
cvi

(
vi,r̃
χ r
− v2

i {hmc
r − csih}+ 2Xvi

χ θr̃

)]}

− vi∆i,r̃

χr
+ vI∆iB̃i.

(4.130)

In addition to the scalings, Eqs. (4.114)–(4.121), introduced in this section, the
continuity equation Eq. (2.12) is used in the above formulation.

4.4.2 Dimensionless Boundary and Initial conditions

To be complete in the task of formulating the dimensionless set of the spherically
symmetric ADM equations, the initial and boundary conditions should be defined,
as well. So, starting from the boundary conditions, the dimensionless form on each
slice can be written as

ηθ(t,rb) = hθ(t,rb) = ∆i(t,rb) = 1 and e(t,rb) = vi(t,rb) = 0, (4.131)
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where the boundary conditions with dimensions, Eqs. (4.78)–(4.81), and the scalings
in Eqs. (4.114), (4.115), (4.118) and (4.119) were used. The initial conditions, in
turn, are

ηin
θ = 1, hin

θ = − (1 + cKgF (r)) ,

vin
i = 0, ∆in

i = 1 + δ̄in
i

(
1 + r̃

3∂r̃
)
gF (r),

(4.132)

where initial conditions with dimensions in Eqs. (4.87), (4.92) and (4.93) were used
as well as the scalings in Eqs. (4.81), (4.114), (4.115), (4.118) and (4.119).

The initial condition for the radial metric component e requires a little bit more
work. In the previous section 4.3.2 initial conditions for the quantity Ein/

(
āinH̄inr

)2 was
defined in Eq. (4.108). Now, if one applies the dimensionless scaling in Eq. (4.118)
one gets

ein = −cE

āin

√∑
i

Ωiā
−3(1+wi)
in

2

gF (r) (4.133)

by using the Friedman equation Eq. (2.9) and the relation between the energy density
and the scale factor Eq. (2.27). This completes the task to construct an wLTBmodel.
Results of the model are introduced in the next section .
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5 Preliminary Results and a Plan for Statistical
Analysis

Now it is time to apply the wLTB model constructed in the previous section 4 to a
real world problem. As suggested earlier, the application is the Hubble parameter
tension. So, in this section, the wLTB model with a two-component fluid is applied
to the Hubble tension problem and preliminary results are introduced. Also, a plan
for upcoming statistical analysis is suggested in order for one to get an idea how the
results could be compared to observations.

5.1 wLTB with DE and CDM Applied to Hubble Tension

The local and global measurements of the present-day Hubble parameter value H0

are in tension of about 3.6σ [12, 20]. In this section, a solution with a local under-
dense LTB bubble is studied. It is expected that a local underdensity would increase
the local present-day Hubble parameter value and thus resolve partly or fully the
observed tension. In this thesis, the numerical calculations have been performed
with a MATLAB program written by Prof. K. Kainulainen.

In the example given in this section, perfect fluid with two components, dark energy
(DE) and cold dark matter (CDM) in an LTB universe, is considered in the context
of the Hubble tension problem. The input parameter values, such as the dark
energy equation of state parameter wΛ, used in the calculation are introduced in
the Table 5.1. These values are plausible examples in the sense of looking for a best
example and possible solution.

With the DE + CDM fluid and the input parameter values introduced in the Ta-
ble 5.1, it is found that the local underdensity indeed increases the local Hubble
parameter value. This is demonstrated in the Figure 5.1. Different colours indi-
cate the values at different redshifts, the one coloured with light blue being the
present-day (z = 0) value.
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Table 5.1. The input values for the wLTB model with two-component (DE,
CDM) fluid.

Parameter Input Value Unit Reference
Background Hubble constant h̄ 0.674 - [20]
Temperature of the CMB T 2.725 K [48]
Physical CDM density parameter ΩCDM,0 0.26 - [20]
Dark energy EoS parameter wΛ −1 - -
Size of the LTB bubble rb 300h̄ Mpc/̄h -
Initial amplitude of the inhomogeneity δM −1.1 · 10−3 - -
Initial position of the bubble wall r0 0.0625 · rb Mpc/̄h -
Offset in the position roffset 0.0625 · rb Mpc/̄h -
Width of the bubble wall ∆r 0.3r0 Mpc/̄h -

Figure 5.1. In the left panel the energy density contrast for matter (CDM),
(Eq. (4.119)) is drawn as a function of the distance calculated from the bubble
centre. In the right panel the Hubble parameter is shown as a function of
the distance, as well. As can be seen, the underdense bubble increases the
local Hubble parameter value towards lower redshifts. The arrow indicates the
present-day Hubble parameter value.

It is possible to reach the observed local present-day Hubble parameter value [12]

H local
0 = 73.52 kms−1Mpc−1

with the wLTB model equipped with the input parameter values shown in the Ta-
ble 5.1. This is shown in the Figure 5.1 where the z = 0 light blue curve reaches
the desired magnitude. In the Figure 5.2 and Figure 5.3 surface plots of the energy
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Figure 5.2. The energy density contrast for matter (CDM), (Eq. (4.119)) is
plotted as a function of the distance calculated from the bubble centre as well
as redshift on a logarithmic scale. See the evolution of the initial inhomogeneity
which results in a local underdense bubble.
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Figure 5.3. The Hubble parameter as a function of distance and redshift on
a logarithmic scale. Notice the enhancement towards lower redshifts inside the
LTB bubble.
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Figure 5.4. The difference of the Hamiltonian constraint and momentum con-
straint (Eqs. (4.122) and (4.124)) plotted (semilogarithmic) as a function of
radius calculated from the bubble centre. Notice how the plots remain well
below zero at all redshifts thus indicating sufficient accuracy.

density contrast and Hubble parameter are shown where the same behaviour can be
observed. In this example the observer is located in the center of the bubble.

It can be noticed that the Hubble parameter value on redshifts z = 1 and z = 0.5 is
higher than the present-day value z = 0. This can be interpreted to be caused by
the CDM domination era which ends approximately at z ≈ 0.4 followed by the dark
energy domination.

The numerical accuracy of the calculation can be probed by studying the con-
straint equations. Figure 5.4 shows the subtraction of the momentum constraint in
Eq. (4.122) from the Hamiltonian constraint in Eq. (4.124) as a function of distance
from the bubble centre at different fixed redshifts. As can be seen, the constraint
values stay well below zero.

The difference calculated at a high redshift z = 1000 is of the order 10−7. At later
times, i.e. lower redshifts, the difference increases and gets the maximum value of
the order of about 10−3. This is still relatively small since all the terms in both of
the constraint equations are of the order 100. This indicates that the accuracy of
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the numerical calculation is sufficient.

Studying the Figure 5.4 reveals that the calculation accuracy is highly dependent on
the redshift and also decreasing as a function of the distance r calculated from the
bubble centre. This can be due to the fact that at earlier times the perturbations
are smaller and numerical errors have not had time to grow.

5.2 A Plan: Comparison of Theoretical Results to Obser-
vations

In order to get some information out from the theoretical model, one has to be able
to compare some parameter values, given by the model, to real world observations.
In reality, cosmological observables are, for example redshift and magnitude, and
thus the present-day Hubble parameter value cannot be observed directly. To solve
this problem, one can formulate all the necessary quantities in terms of the cosmic
observables. A way to begin the calculation of the luminosity distance in an LTB
universe is shown in the next section. This calculation is a crucial step when com-
paring theoretical results for example to the supernova data. Later, methods to
perform statistical analysis are introduced. This gives the reader an idea how one
can compare theoretical results to observations.

5.2.1 Distances in wLTB universe

The luminosity distances are needed when the wLTB model is compared to observa-
tions. Astronomical data, for example the data from supernovae is highly dependent
on the distance. Thus the determination of the luminosity distance in an LTB uni-
verse is presented in this section. The next derivation follows the works of [49, 50].

First, one can relate the redshift to the inhomogeneities by considering a radially
moving light ray and later relate the redshift to the energy flux of emitted light.
This way one gets an expression of the luminosity distance in wLTB model.

A radially moving light ray follows light-like world lines ds2 = 0 and dθ = dφ = 0 so
in a wLTB universe (by using the metric in Eq. (4.4) and the fact that Hrr is now
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known from the first step of the calculation) one gets

dt
du = −Hrr

dr
du, (5.1)

where u is a parametrization of the light-like geodesics and the chosen sign indicates
the direction of light, now towards the center of spherical symmetry.

The goal is to relate the time and radial coordinates to the redshift. This can be
done by considering a light ray of certain wavelength. Let λ(u) be the wavelength
of a light ray which is emitted at t(u). Since the length of the signal and the time
interval of the full emission equal in natural units one can write that the signal was
fully emitted at t(u) + λ(u).

Differentiating the tail of the signal t(u) + λ(u) with respect to the parameter u
gives

d
du (t(u) + λ(u)) = −Hrr

dr
du + dλ(u)

du . (5.2)

On the other hand, expanding Hrr(t(u) + λ(u),r(u))) to the first order in λ (if one
assumes the signal length λ(u) to be small compared to t(u)) and then plugging it
to the Eq. (5.1) yields

d
du (t(u) + λ(u)) = −dr

du [Hrr(t(u) + λ(u),r(u)) +Hrr,t(t(u),r(u))λ(u)] . (5.3)

Equating the two expressions, Eqs. (5.2) and (5.3), gives a formula to the light ray
length (in first order)

dλ
du = −dr

duHrr,t(t(u),r(u))λ(u). (5.4)

This expression can be related to the redshift by differentiating the definition of
redshift z ≡ (λ(u0)− λ(u))/λ(u) in terms of the parameter u to get

dz
du = −dλ(u)

du
λ(u0)
λ2(u) , (5.5)
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and then identifying the Eq. (5.4) and noticing that by definition λ(u0)/λ(u) = z + 1
yields

dz
du = −dr

duHrr,t(t(u),r(u))(1 + z). (5.6)

Thus the radial component depends on the redshift as follows

dr
dz = 1

Hrr,t(t,r)(1 + z) . (5.7)

For the time coordinate one gets the redshift dependence by using the Eqs. (5.1)
and (5.6):

dt
dz = − Hrr(t,r)

Hrr,t(t,r)(1 + z) . (5.8)

Angular distances corresponding to FLRW background universe as perceived by a
central observer, can be easily computed from earlier results

dA(z) = Hθθ (t(z), r(z)) , (5.9)

which approaches

1
1 + z

r(z), (5.10)

when the distance r from the bubble centre is much larger than the bubble radius.
However, obtaining luminosity distance from the geodesic motions is more compli-
cated and the calculation is not to be finished here in this thesis. It will be pursued
elsewhere [51].
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5.2.2 Chi-Squared (χ2) Analysis

After constructing a theoretical model it is good to test how compatible it is with
observed data. This can be done by including statistical analysis in the research. In
this section the Chi-Squared (χ2) analysis is introduced to give the reader an idea
how one can compare relations of different data sets. Later, the likelihood analysis
is discussed.

A χ2 analysis eases the task of comparing two data sets, say theory and observation,
to each other. The χ2 analysis allows one to determine whether the data given by a
certain model is distributed as claimed.

For the purposes of this thesis the χ2 function for a certain variable can be defined
as follows

χ2 ({xi}) =
n∑
i=1

(xi, wLTB − xi, obs.data)2

(δxi, obs.data)2 (5.11)

where xi, wLTB denotes the values given by the wLTB model and xi, obs.data experi-
mentally observed values and δxi, obs.data their error. Here the set {xi, obs.data} can be
for example data containing distance modulus (Eq. (2.40)) as a function of redshift
observed from supernovae such as the Joint Light-curve Analysis (JLA) catalogue
[52].

The χ2 function Eq. (5.11) can be minimised in order to get a best-fit parameterisa-
tion of the theoretical model such as wLTB. In other words, The χ2 analysis gives a
tool to determine which parameters are the best ones in creating the most realistic
parametrisation of the model. For instance, it is expected that the DE equation
of state parameter wΛ takes a little larger value than −1. The best-fit model can
then be plotted with observed data to demonstrate the analysis. An example of this
plotting is given in the Figure 5.5 which is from [53].

It is expected the wLTB model behaves in such a way that the deeper the bubble
i.e. the larger contrast in the initial gravitating mass, the steeper is the peak at low
redshifts, see the red plot in the Figure 5.5. The rest of the fit will most likely look
like the Einstein-de Sitter model (dashed yellow line the Figure 5.5) starting from
the top of the assumed peak. Thus, after the χ2 analysis one gets already an idea
whether the wLTB model is able to describe the real universe.
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Figure 5.5. In the top panel, the distance modulus ∆m with respect to the
empty universe for the inhomogeneous model of the paper [53] (red), for the
ΛCDM model (dashed green) and for the Einstein-de Sitter model (dashed yel-
low) together with the full Union Compilation [54] (black binned data) is shown
as a function of redshift. In the bottom panel a zoom for low redshifts is pre-
sented. This figure is reprinted from [53] with permission of the authors.

5.2.3 Likelihood Analysis

When the χ2 analysis gives the best parameter values of the model, the likelihood
analysis tells how plausible the best-fit parameterisation is compared to the observed
data. Thus, one wants to construct a likelihood distribution of the wLTB model
with the parameters having the least χ2 values. This can be done with the following
formula

L =
(∏

i

1
δxi, obs.data

√
2π

)
e
− 1

2
∑

i

(xi, wLTB−xi, obs.data)2

(δxi, obs.data)2 (5.12)
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if the errors δxi, obs.data are assumed to be Gaussian. [50]

If the parameter space contains more than two variables, one can marginalise pa-
rameters over as follows

L =
∫

dµ
∏
i

Li. (5.13)

Therefore, it is possible to create contour plots describing the 1σ, 2σ, . . . likelihoods
of particular parameters.

Performing the statistical analysis would require much computational effort and be
beyond the scope of this thesis. Thus, it is left for future studies when the plausibility
of the wLTB model can be investigated in terms of the statistical analysis presented
in this section.
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6 Conclusion

In this thesis the tension between the global and local Hubble parameter measure-
ments is discussed and an alternative model to the Standard Model of Cosmology,
the inhomogeneous but spherically symmetric wLTB model, is introduced as a pos-
sible candidate for resolving the problem.

The most recent observational results for the Hubble parameter describing the ex-
pansion rate of the universe are in tension of about 3.6σ. The local distance lad-
der method [12] gives a value of H local

0 = (73,52± 1.62) kms−1Mpc−1 while the
global value derived from the Cosmic Microwave Background radiation data [20]
is Hglobal

0 = (67,4± 0.5) kms−1Mpc−1. An illustration of these results can be seen in
the Figure 1.2 in the section 1.

In this thesis it is assumed that the tension is not caused by unknown systematic
errors in the measurements or data analysis but is a result of a local spherically sym-
metric void. Therefore, an inhomogeneous but spherically symmetric cosmological
wLTB model is constructed and used in explaining the phenomenon.

The preliminary results given by the DE + CDM wLTB model with the centred
observer predicts that a local underdense region produces higher Hubble parameter
values locally. The wLTB model is able to produce the local Hubble parameter
measurement with suitably chosen parameters, see Table 5.1. Thus the wLTB model
seems to be able to explain the current tension in the expansion rate.

However, final conclusions about the model’s compatibility and plausibility in the
light of the current observational data cannot be made yet. The statistical analysis
and thus the thorough comparison with observations has been left for future inves-
tigations. Despite of that, it can be concluded that the model seems to work well,
gives reasonable results and the accuracy suffices for current purposes.

In general, the wLTB model presented in this thesis has some challenges. First,
the model cannot have arbitrary inhomogeneities and so, in this thesis, the inho-
mogeneities are restricted to be local and spherically symmetric. This is still an
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acceptable approximation for reality, at least qualitatively. However, the Einstein’s
field equations are very complicated and typically require some symmetry assump-
tions in order to be solvable, whatsoever.

Second, our location inside the local LTB bubble is restricted. In the analysis of
light geodesics in this thesis it is assumed that our location is at the very centre of
the void. This ensures that the expansion rate does not vary in terms of direction.
In the future, a more general analysis is required by varying our location inside the
void. Though, it is probable that our location has to always be somewhere in the
vicinity of the bubble centre to avoid the directional differences in the expansion
rate.

The Hubble parameter tension is highly topical subject in the science community,
currently. Many attempts to solve the tension have been proposed but no other (at
the current knowledge) has tried to resolve the problem with wLTB model. ΛLTB
or other LTB based models such as [55],[56], [57] in addition to many others have
been proposed to alleviate the tension but none has gained general approval. Thus,
the wLTB model presented in this thesis is amongst the first models with initially
undetermined DE equation of state parameter trying to resolve the Hubble tension.
After the statistical analysis, it can be seen how significant the model will be for
the Hubble tension research and the cosmology community. The preliminary results
obtained in this thesis look encouraging.

In the future, observational experiments will give more information about the nature
of the Hubble tension. Thus, it will be important to focus on at least some of the
following topics. First, the distance ladder calibrations have to be double-checked
in order to conclude whether the Type Ia supernovae are as standard and easily
calibrated as they are estimated to be. Second, the behaviour of interstellar gas and
dust could be investigated to find out whether they affect the CMB data. Third, if
one really wants to rule out the conservative approach, the possibility of systematic
errors in the local and global measurements has to be studied. Remembering the
history of the Hubble constant measurements, checking the systematic errors may
be in order [58].

There are also other ways to determine the present-day Hubble parameter value. For
instance, one can measure gravitational-waves emitted by so called standard sirens,
which are compact binary systems inspiraling towards a merger. To work out the
distance, the waveform of the detected gravitational-waves can be studied. The
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recessional velocity of these objects can be determined from the redshift if electro-
magnetic waves have been observed simultaneously. Thus, combining the distance
measurements from the gravitational-wave data and recessional velocity from the
corresponding electromagnetic data, one can find the present-day Hubble parame-
ter value. The present-day Hubble parameter value has already been determined by
using standard sirens, although the method needs more events to reach the accuracy
of the standard candle measurements. On the whole, it will be interesting to see
how the gravitational-wave standard siren measurements affect the Hubble tension
problem. Currently the error bars [59]

HGW
0 = 70.0+12.0

−8.0 kms−1Mpc−1

are too wide for one to conclude whether they tend to support the CMB or SN Ia
regime, let alone resolve the tension.
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Appendices

A Projections of the 4D Riemann tensor to Hy-
persurfaces

When spacetime is foliated into three spatial and one temporal dimension one has
to find a way to relate four-dimensional curvature quantities living on the four-
dimensional manifold to three-dimensional spatial quantities living on the three-
dimensional hypersurfaces. This means that the four-dimensional Riemann tensor
has to be divided into spatial and temporal parts. In this section this is done by
executing different projections of the four-dimensional Riemann tensor.

On the four-dimensional manifold, the four-dimensional Riemann curvature tensor
is defined as

R(4) ρ
σµν = ∂µ Γ(4) ρ

νσ − ∂ν Γ(4) ρ
µσ + Γ(4) ρ

µλ Γ(4) λ
νσ − Γ(4) ρ

νλ Γ(4) λ
µσ, (A.1)

where the four-dimensional Christoffel connection Γ(4) σ
µν (metric-compatible and

torsion-free) is defined as

Γ(4) σ
µν = 1

2g
σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) (A.2)

in terms of the four-dimensional metric of the full manifold gµν [27]. On the hy-
persurfaces one can construct the three-dimensional connections Γ(3) σ

µν in terms
of the spatial metric hµν and get the three-dimensional Riemann tensor R(3) ρ

σµν

correspondingly [38].

To relate the curvature quantities of different dimensions one has to define a projec-
tion tensor. This can be done by raising an index of the spatial metric

hµν = δµν + nµnν . (A.3)

When applied to a tensor, this spatial projection operator i.e. the spatial met-
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ric of mixed indices works for every index separately. Therefore for example the
three-dimensional covariant derivative of an arbitrary tensor can be constructed by
projecting every index of the four-dimensional covariant derivative separately [39]

DσT
µ1...µk

ν1...νl
= h ρ

σ

k∏
j=1

h µj
αj

l∏
i=1

h βi
νi

∇(4)
ρT

α1...αk
β1...βl

, (A.4)

where the four-dimensional covariant derivative is defined in the traditional way [27]

∇(4)
σT

µ1...µk
ν1...νl

= ∂σT
µ1...µk

ν1...νl

+
k∑
i=1

(4)ΓµiσλT µ1...µi=λ...µk
ν1...νl

−
l∑

i=1

(4)ΓλσνiT
µ1...µk

ν1...νi=λ...νl .

(A.5)

Gauss Equation

The four-dimensional Riemann curvature tensor can be related to the three-dimensional
spatial metric and the three-dimensional curvature tensor as follows

R(3)
µνρσ +KµρKνσ −KµσKρν = hαµh

β
νh

γ
ρh

δ
σ R

(4)
αβγδ. (A.6)

This equation is called Gauss equation and it relates the fully spatially projected
four-dimensional Riemann tensor to the extrinsic curvature as well as to the three-
dimensional curvature tensor. [39, 38]

The Gauss equation tells that it does not matter whether one performs the differ-
entiation on the whole manifold and then projects it onto a hypersurface or do the
differentiation directly on a hypersurface.

For later convenience, one can contract the Gauss equation once by the inverse
metric gρµ to get

R(3)
νσ +KKνσ −Kρ

σKρν = hαγhβνh
δ
σ R

(4)
αβγδ. (A.7)
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The second contraction with the expansion of the spatial metric hµν = gµν + nµnν

yields

R(3) +K2 −KρνKρν = R(3) + 2nαnγ R(4)
αγ . (A.8)

Codazzi Equation

The four-dimensional Riemann curvature tensor can also be projected in a different
way. One can project three of the indices onto the hypersurface and one to the
direction of the normal vector i.e. the time direction. This projection relates the
extrinsic curvature tensor and the four-dimensional Riemann curvature in a following
way

DνKµρ −DµKνρ = hαµh
β
νh

γ
ρn

δ R
(4)

αβγδ. (A.9)

This relation is called Codazzi equation. [39, 38]

The Codazzi equation can be contracted and the spatial metric can be expanded to
get

DνK
ρ

µ −DµK = −hαµnδ R
(4)

αδ, (A.10)

where the minus sign arises from the symmetry properties of the Riemann tensor.

Ricci Equation

The last non-zero projection of the four-dimensional Riemann tensor projects two
of the indices to the direction of time and two on the hypersurface. The equation
relating this projection is called Ricci equation and it is of the form [38]

LnµKµν = nσnρhαµh
β
ν R

(4)
σαρβ −

1
α
DµDνα−Kρ

νKµρ . (A.11)
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B The Lie Derivative

Differentiation is an operation that describes how fast something is changing. An
essential point of taking derivatives is the comparison of objects whose rate of change
is under interest. In flat space, it is somewhat easy to compare for example vectors
which are located at different points to each other. One can simply move the other
vector to the same point without changing its direction or magnitude. In curved
space, on the other hand, the transportation is not so straightforward because the
result depends on the path taken.

One way to avoid this problem is to find the paths along which an object stays con-
stant. This method is called parallel transportation and is defined by a geometrical
structure called connection.

With a connection at hand one can define a covariant derivative which is constructed
from a partial derivative and a correction (the connection) to make it tensorial.
Thus, the covariant derivative depends on the connection and tells the rate of change
along the paths of parallel transportation. So, with a connection one can parallel
transport an object to a place where one wants to evaluate it in order to determine
the covariant derivative at that point.

The covariant derivative is considered as the generalization of an ordinary partial
derivative operator in flat space. Nevertheless, other derivative operations can be
defined. If one does not want to define a connection one can use Lie Derivative
to differentiate. This means that one has to move the objects by using a different
method than parallel transportation.

One can transport tensors also along diffeomorphisms on a manifold. This means
that a manifold has invertible maps φ : M → M that can be thought to be active
coordinate transformations. Because one diffeomorphism takes a point p and maps
it to a another point q on the manifold, a one parameter family of diffeomorphisms
at a point p forms a curve. [27]

Tensor is an object which takes vectors and dual vectors and produces a multilinear
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map to real numbers. Now, it is possible to use the diffeomorphisms to move tensors
along the curves of the diffeomorphisms. One can use either the map or its inverse
to move tensor forwards or backwards, respectively.

With this property of manifolds one can form a derivative operator and compare the
tensors along the flow of diffeomorphisms. From the diffeomorphism point of view
the generators are elements of a vector field. Although, normally one thinks that
the generators of vector field are the integral curves i.e. the diffeomorphisms. [27]

Now one can form the derivative operator of a tensor by transporting the tensor
along the flow of the diffeomorphisms (or vector field, depends on the point of view)
and then evaluating the tensor at the point of interest. Thus the Lie derivative is
defined

LV T µ1...µk
ν1...νl(p) = lim

t→0

[
∆tT

µ1...µk
ν1...νl(p)

t

]
, (B.1)

where V is the vector field along which the comparison of the tensor at different
points φ(p) and p is done. One should notice that the equation Eq. (B.1) can be
applied to arbitrary tensors of any rank and the corresponding result is tensor of
the same rank, as well. [38]

For later convenience, the Lie derivative of a vector can be written in a simpler
way by choosing a convenient coordinate system where the first coordinate is the
parameter for the integral curves and the other coordinates can be chosen freely.
Then, the generators of the curves can be expressed such that all the others but
the first components vanish. With these properties it is possible to force the Lie
derivative of an arbitrary vector Uµ along a vector field V µ to a commutator form
called as the Lie Bracket

LVUµ = [V, U ]µ , (B.2)

which is coordinate invariant and therefore applies to any arbitrary vectors in any
coordinate system. [27]

One can formulate a similar expression for dual vectors, as well. Considering an
arbitrary inner product of a dual vector and a vector one can take the Lie derivative
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in two ways. First, one can consider the inner product as a scalar and thus reduce the
Lie derivative to a partial derivative. Second, one can use the Leibniz rule to expand
the Lie derivative into two parts. Then, these two expressions can be equalized to
get a formulation for the Lie derivative of an arbitrary dual vector along a vector
field,

LV ωµ = V ν∂νωµ + (∂µV µ)ων , (B.3)

where the symbol ωµ is an arbitrary dual vector. This expression is independent of
coordinate system, as well. [27]

The expressions Eq. (B.2) and Eq. (B.3) can be generalized to a coordinate inde-
pendent form of the Lie derivative of an arbitrary tensor as follows

LV T µ1...µk
ν1...νl =V σ∂σT

µ1...µk
ν1...νl

−
k∑
i=1

(∂λV µi)T µ1...λ=µi...µk
ν1...νl

+
l∑

i=1
(∂νiV λ)T µ1...µk

ν1...λ=νi...νl .

(B.4)

Sometimes it is useful to break the vector field along which the Lie differentiation
will be executed to multiple parts. In this case, one has to consider what happens
to the Lie derivative. For this purpose, one can use the expression for the Lie
derivative of an arbitrary tensor, Eq. (B.4), and write the vector field along which
the differentiation is executed as V µ = αnµ + βµ which is now, for the sake of an
example, divided into normal and tangential parts

L(αn+β)T
µ1...µk

ν1...νl = (αnσ + βσ)∂σT µ1...µk
ν1...νl

−
k∑
i=1

(∂λ(αnµi + βµi))T µ1...λ=µi...µk
ν1...νl

+
l∑

i=1
(∂νi(αnλ + βλ))T µ1...µk

ν1...λ=νi...νl .

(B.5)
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Because of the linearity of partial derivatives one can write that

L(αn+β)T
µ1...µk

ν1...νl = αLn + Lβ. (B.6)
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C Kinematical Properties of the Fluid Four-Velocity
Field

Expansion Scalar

The fractional rate of change of volume expansion for a fluid can be defined as the
covariant derivative of the fluid four-velocity [60, 46]

Θi = ∇(4)
µu

µ
i , (C.1)

where the index i denotes the different fluid components. The quantity Θi is called
the expansion scalar and it can be divided into temporal, radial and angular com-
ponents Θi = ΘTi + ΘRi + ΘAi where

ΘTi = ∇(4)
tu
t
i = γ3

vi
vivi,t,

ΘRi = ∇(4)
ru

r
i =

γ3
vi
vi,r

Hrr

− γviKr
r,

ΘAi = ∇(4)
θu

θ
i + ∇(4)

φu
φ
i = 2γvi

(
−Kθ

θ + vi
X

Hθθ

)
.

(C.2)

The equations for the covariant derivative, Eq. (A.5) in the Appendix A, the con-
nection coefficients, Eqs. (4.11) and (4.34), and the evolution equation of the spher-
ically symmetric metric, Eq. (4.5), as well as the shorthand notation in Eq. (4.14)
in the section 4 were used for the latter equalities of every component in the above
Eq. (C.2). Thus, the expansion scalar can be written in the form

Θi = −γviK + γ2
vi

(
γvivivi,t + γvi

Hrr

vi,r

)
+ γvivi

Hrr

2Hθθ,r

Hθθ

. (C.3)

The second term of the Eq. (C.3) gives a motivation to define a convective derivative

95



C KINEMATICAL PROPERTIES OF THE FLUID FOUR-VELOCITY FIELD

as

d
dσ ≡ γvivi

∂

∂t
+ γvi
Hrr

∂

∂r
(C.4)

so that now, for the expansion scalar one ends up with a formula

Θi = −γviK + γ2
vi

dvi
dσ + γvivi

Hrr

2Hθθ,r

Hθθ

. (C.5)

Acceleration Scalar

The acceleration of the fluid four-velocity field is given by [60, 46]

(aµ)i = uνi ∇(4)
ν (uµ)i , (C.6)

which tells the deviation of the geodesic motion of fluid particles. One can also
define a scalar quantity

ai =
√
gµν (aµ)i (aν)i (C.7)

called acceleration scalar. By using the Eqs. (C.2) and (C.6) one can write the
acceleration scalar in the form

ai = 1
vi

ΘTi + viΘRi , (C.8)

which, in addition, can be further expanded in terms of the expansion scalar com-
ponents

ai = γ2
vi

(
γvivi,t + γvivi

Hrr

vi,r

)
− γviviKr

r . (C.9)
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The above Eq. (C.9) motivates again for a definition of another convective derivative,

d
dτ ≡ γvi

∂

∂t
+ γvivi

Hrr

∂

∂r
, (C.10)

which, then, yields

ai = γ2
vi

dvi
dτ − γviviK

r
r . (C.11)
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