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ABSTRACT 

Salameh, Ahmad 
Spreading Ideologies through Tweets: Examining Extreme and Moderate Mus-
lims Usage of Twitter 
Jyväskylä: University of Jyväskylä, 2018. 
Information Systems, Master’s Thesis 
Supervisors: Zhang, Yixin (Sarah) and Semenov, Alexander 

Twitter enables groups with certain agendas to organize and distribute their 
ideologies. This research compares the different practices performed by the ex-
treme and the moderate Muslims to build their networks and recruit more fol-
lowers. We carry out our research in the context of religious communication on 
Twitter. The study contains two data sets of tweets written in the Arabic lan-
guage; the first one is retrieved from certain accounts that are leaning to extrem-
ism or moderation based on the generated content by the account holders, and 
the second one is obtained through predefined keywords related to Islam,. Col-
lected tweets and retweets were analyzed through network analysis to under-
stand users’ networking behavior, and to examine whether polarization exists. 
Regression analysis showed that negative sentiment in tweets has a significant 
positive impact on the retweeting quantity, while interestingly; positive senti-
ment was not statically significant to affect retweeting. Features of hashtags, 
URLs, tweet length, and the number of followers have a positive effect on re-
tweeting, whereas the number of mentioned names has a significant negative 
effect on retweeting. Through network and centrality measures, we found that 
extreme and moderate users have higher frequency of interaction within their 
ideological group than with the ideologically-opposed users. We also suggest, 
based on our findings and related research, that extreme and moderate Mus-
lims use provocation to introduce their partisan content to ideologically-
opposed users. 

Keywords: Twitter, Arabic Tweets, Extreme, Moderate, Muslims, Information 
Diffusion, Network Analysis. 
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1 INTRODUCTION 

Today, with the help of easy access to internet, more and more people have 
shifted from connecting with other people personally towards building net-
works that allow communication through social media platforms such as Face-
book, Twitter, YouTube, etc. For example, Twitter’s average monthly active us-
ers, have grown to 328 million in the first quarter of 2017 adding more 9 million 
users to the previous quarter (Forbes, 2017). Stieglitz and Dang-Xuan (2013) 
stated that this enormous expansion in user base in social media has affected 
communication and debate in our modern society. This could be clearly seen in 
the cross-ideological discourse between different groups on such social-media 
platforms. This research will compare the usage of Twitter by two ideologically-
opposed groups; extreme Muslims and moderate ones. 

1.1 Why Social Media? 

In the past, communicating with large amount of people was much more diffi-
cult than today; it was only done by few people who had enough power of 
technical infrastructure to reach people. Nowadays, social media made it much 
easier to connect with other people from all around the world, and it has be-
come widely used among different populations and cultures. The number of 
social media users in 2017 is 2.46 billion users (Statista, 2017), which is more 
than third of the world population; 33% out of 7.5 billion (UN, 2017). Statista 
(2017) added that this number is estimated to grow in 2019 to 2.77 billion and is 
expected to be ever-increasing worldwide.  

  
Social media has expanded into being the prevalent type of media to share 

and distribute information. Stieglitz and Dang-Xuan (2013) argued that “main-
stream adoption of social media” and “widespread access to the Internet” has 
made social networks and weblogs most dominant in information dissemina-
tion. They also discussed how short-content microblogging (i.e. phrases, quick 
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comments, images, or links to videos) has been adopted by online users to share 
news, advocate for political stands, practice marketing, and follow real-time 
events. 

1.2 Why Muslims, from Arabic-speaking Countries? 

Statistics about religious population of the world are showing that Islam is now 
the fastest growing religion in the world (Huda, 2017). The recent years have 
witnessed significant concern about what is and what is not Islam; in their book 
“Framing Muslims”, (Morey and Yaqin, 2011) described how the headlines on 
front pages and television screens scream out at us every day to draw a certain 
picture about Muslims. Extreme Muslims see an opportunity to apply their rad-
ical values in extreme groups and present it to the media while approving and 
adopting many terrorist attacks, spreading fear and panic through all over the 
world. While, on the other hand, moderate Muslims try to present their case to 
the masses using different channels of media as well; that this is not the way 
Islam should be, instead, the word of God (Allah) should be spread by love and 
peace, leading many people to believe that there is a different face of Islam that 
should be considered, rather than just fight Islam and Muslims in general.  

 
Studies about Muslim’s usage of social media are usually made with gen-

eralizations of all Muslims regardless of their type and where they come from. 
This research is going to focus on Muslims from the Arabic-speaking countries 
“from the Middle East and North Africa”. The number of Muslims in the Arab 
world is more than 370 million which make up nearly a quarter “21%” of the 
total Muslim population of the world “1.8 billion” (Huda, 2017). Muslims of the 
Arab world speak Arabic as their native language which is the language used in 
the Quran; “the central religious text of Islam” (Jones, 2011), and Sunnah; the 
Islamic teachings and practices taught by the Islamic prophet Muhammad (Is-
lahi, 2011). In her article about the importance of the Arabic language in Islam, 
Huda (2017) stated that “it is the Arabic language that serves as the common 
link joining this diverse community of believers and is the unifying element 
that ensures believers share the same ideas”. 

1.3 Why Twitter? 

Alongside several other microblogging services, Twitter stands as one of the 
major social networking services by being ranked the fourth after Facebook, 
YouTube, and Instagram respectively, with 330 million monthly active users 
(Kallas, 2017). Conover et al. (2011) stated that Twitter is a prevalent social net-
working and microblogging website, in which, users have the ability to post 
140-character short messages “tweets”, allowing them to find and share matters 
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1.4 Twitter and Social Change 

Twitter and other social media platforms (i.e. Facebook, YouTube) play a major 
role alongside in social change. Oh et al. (2015) concluded that Twitter had a 
crucial part in social change that was presented in the 2011 Egypt Revolution 
and forced President Mubark to resign from his 30-year dictatorship. Twitter 
enables groups with certain agendas to organize and distribute their ideologies 
through tweets. Conover et al. (2011) investigated how Twitter facilitated the 
communication process in the network between “ideologically-opposed indi-
viduals” with different political orientations. Similarly, this study will follow 
Muslims’ usage of the social network, and compare between both types; ex-
treme Muslims (i.e. ISIS, Boko Haram, the Taliban and Al-Qaeda - all of these 
groups follow Wahhabism, an extreme conservative branch of Islam - according 
to the Global Terrorism Index, 2016), and the moderate ones (i.e. Liberal and 
Progressive Muslim Movements, according to Safi, 2003) to build their net-
works and recruit more followers. Therefore, the aim of the study is to answer 
the research question:  
 
RQ: how extreme Muslims and moderate ones are connected on Twitter and how do 
they disseminate their ideologies on the platform? 
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2 RELATED LITERATURE AND HYPOTHESES DE-
VELOPMENT 

2.1 Users Network and Information Diffusion  

In the research paper “Political Polarization on Twitter”, Conover et al. (2011) 
analyzed 250,000 tweets to examine how political Communication Networks 
are formed on Twitter. They defined how many nodes are there in their “largest 
connected component accounts”; and then only focused on these accounts for 
the rest of the analysis because of their dominance in the network. They per-
formed their analysis through different stages; they used clustering algorithms 
of the network to explore the two different communities, statistical analysis of 
tweets’ content to present that generated tweets by users of the same communi-
ty have more similar content than those generated by users from different 
communities. 
 

To examine the community structure for our network, we used the meth-
odology applied in the study of Ji et al., (2015), in which they established arti-
cles relationship and visualized the article network using an analytical and 
graphical tool, Gephi; which was described as an open source software for 
graph and network analysis. It helps data analysts to understand graphs and 
reveal hidden patterns and test their hypotheses (Gephi.org, 2017). Ji et al., 
(2015) analyzed networks using graph diameter, closeness centrality, and mod-
ule classes to test the relationships between different articles. They revealed the 
distribution of articles and how they formed aggregations in specific module 
classes. Using similar evaluation measures, we will use the network graph 
measures to identify extreme and moderate communities and provide mathe-
matical support for our hypothesis. 

 
As Conover et al. (2011) used manual annotating of users to determine 

which ideology the belong to, in our study, we conducted a questionnaire to 
label users as extreme, moderate, or neutral, based on their generated content 
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(discussed in detail in the data collection section). By focusing on extreme and 
moderate users, we could investigate their communities by using network cen-
trality measures as in Ji et al., (2015), to test how they are connected within their 
community and with the ideologically-opposed one.  
 

Based on the findings of Conover et al. (2011), we hypothesize that our 
sample users interact similarly with both; their own community and the op-
posed one. Conover et al. (2011) results showed that users retweet other users 
with similar opinions, but mention users with opposed ideologies. As retweet-
ing is the key technique for information diffusion in Twitter, and mentions have 
negative association with retweeting (Suh et al., 2010), we suggest that users 
diffuse their information in a greater rate within their community rather than 
while interacting with external community users who believe in a different ide-
ology. This is demonstrated by the following hypothesis: 
 
H1: Users’ interaction with ideologically-similar users has a higher frequency of re-
tweets and mentions than their interaction with the ideologically-opposed users. 

2.2 Tweet & User Features and Information Dissemination 

Information diffusion in social networks has attracted many researchers to in-
vestigate its powerful capacity to direct or influence behavior of others or 
course of events. Many theories about information diffusion in social networks 
have been established by information systems researchers in different fields; for 
example physical and computational sciences, and for different reasons; such as 
specifying political-communication behavior on social networks, designing ad-
vertisements for social media users (Conover et al. 2011, and Stieglitz & Dang-
Xuan, 2013), defining the crucial role of social ties for information dissemination 
that leads to forming opinions and discovering products (Susarla et al., 2012), 
and documenting the relationship between social interactions and the levels of 
similarities of users’ generated content (Zeng, & Wei 2013). 

 
A significant number of studies have concentrated on Twitter because the 

information diffusion is clearly represented on the platform through retweets, 
and it shows the different links in the social network by specifying which of 
them play major and minor roles in the information dissemination process 
(Stieglitz & Dang-Xuan, 2013). Past literature discussed the quantity and speed 
of retweeting (Yang & Counts 2010) and their relationship with virality and 
susceptibility in Information diffusion (Hoang & Lim2012). Social ties and users’ 
status and their effects on information diffusion were also taken into considera-
tion in previous research (Zeng, & Wei 2013) as well as the structural position in 
the social network (Susarla et al., 2012). 
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cess is affected by different factors from those in the phases that follow. Past 
literature concluded that product diffusion is classified between aware-early 
adopters and late adopters. The authors concluded that the effect of central 
channels comes from their structural position in the social network, and the dif-
fusion is processed through direct links in the network in this type of communi-
ty. Features such as the number of followers and followees also affect the re-
tweeting behavior. Stieglitz and Dang-Xuan (2013) added that it is likely that a 
user’s followers have similar interests so it is expected that they will retweet 
their content. This could be even more powerful when users are following a 
religious ideology such as extreme or moderate Islamic ideology. This leads us 
to form the following hypothesis: 
 
H4: Number of followers has a positive effect on retweeting. 
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3 METHODOLOGY 

3.1 Data Collection 

Two datasets were collected to test the hypotheses. From the first dataset, data 
was retrieved to test H1. Out of the second dataset, data was retrieved to test 
H2, H3, and H4.  

3.1.1 The First Dataset  

The first data set is collected from certain Twitter accounts that were classified 
as leaning to extremism or moderation based on their generated content. The 
labeled users are important to perform the network analysis as they will repre-
sent their community’s ideology, and then we will be able to perform meas-
urements on different communities to show how users are connected in the 
network (i.e. how extreme Muslims are connected within their community and 
with another community that has moderate Muslims). 
 

To identify which accounts belong to extreme groups and which accounts 
belong to moderate ones, a classification process started by selecting random 
tweets (a tweet per account, 46 in total from 46 accounts without mentioning 
the account user or what they are leaning to). The tweets were then put into a 
questionnaire to be examined by a group of people (22 persons) with Islamic 
backgrounds to vote whether the tweet is extreme, moderate, or neutral in or-
der to specify whether the holder of the account is leaning to extremism or 
moderation. If the voting was dominant (has more than 55% votes) for a certain 
category (Extreme, Moderate, Neutral), it is considered descriptive for an ac-
count, if not, the account will be discarded.  

 
Each selected account has a number of followers between 1000 and 50,000. 

This will ensure that: 
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cess token secret. Next, a Python library called “Tweepy” was used to connect 
to Twitter Streaming API and download the data. After that, a file was created 
to retrieve the data, it included the credentials from Twitter, specific keywords 
that are related to Islam, and the information we wanted to retrieve for our re-
search; Retweets, User ID, Followers’ Count, Friends’ Count, Posts’ Count, Lo-
cation, Time Stamp, Hashtags, and Media URLs. 

 
The program was run for two weeks to get a significant sample size. The 

data was stored in a text file in JSON format which makes the data easier to un-
derstand for humans, and then it was imported into Excel to present the data in 
columns and rows to simplify data measurement and analysis. 100,000 tweets 
were collected using this process over the two-week period. As not every tweet 
has been retweeted, the second dataset size was reduced from 100,000 tweets to 
53,271 tweets, each of which has generated at least one retweet. 

TABLE 1 Keywords used in Python to retrieve Twitter data 

Keywords in Arabic English translation 

المرأة قیادة  Women to drive 

المرأة حقوق  Women rights 

 نقاب Niqab (garment of clothing that covers the face) 

نطلب سعودیات   Saudi women  

المرأة عمل  Women’s right to work 

السعودیة سینیما   Cinemas in Saudi Arabia 

 یھود Jews 

 People who support Isis دواعش

 Liberalism اللیبرالیة

 Jihad, refers to armed struggle against unbelievers جھاد

 حرام haraam (taboo, forbidden) 

 وھابیة Wahhabism, fundamentalist Islamic movement  

 شیعة Shia, a branch of Islam 

 روافض Rafida, the term is used in a derogatory manner 
by Sunni Muslims who refer to Shias 
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 نواصب Nasibi, the term is used in a derogatory manner by 
Twelver Shias against Sunnis 

 طائفیة Sectarianism, form of bigotry, discrimination 

 رجم   Stoning  

 إرھاب Terrorism 

 ختان Circumcision 

 أمریكا America 

3.2 Measurements 

For the data-analysis part of the study, network evaluation measures and mul-
tiple variables were determined to find out how Muslims interact within their 
group and with outsiders, and to measure the information diffusion through 
determining retweet quantity due to sentimental speech, tweet-related features, 
and user-related features. 

3.2.1 First Dataset Measures  

3.2.1.1 Network Evaluation Measures 
 

From the second data-collection phase, two lists of accounts were selected to 
represent extreme Muslims (16 users) and moderate ones (17 users). The select-
ed users were then imported to Gephi, which has a Twitter plugin (Twitter 
Streaming Importer) as shown in Figure 7 below. Levallois and Totet (2017) 
stated that the plugin allows the user to collect tweets in real time based on the 
topic that was chosen, acquire the mentioned users in these tweets and the con-
nections between them, and visualize these connections after in Gephi or export 
the data to Excel. They added that the plugin has three main ways to collect 
tweets and user connections; the first way is by using the Words to follow tab 
which enables following one or multiple words, second is the Locations to follow 
tab that enables following the activity of one or multiple locations so any geo-
tagged tweet will be captured. For our study, we chose the Users to follow tab 
which enables following the activity of one or multiple users including tweeting, 
retweeting, and mentioning the user. Twitter users that were collected in the 
first dataset were added into the Users to follow tab to capture their activity and 
connectivity. 
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 TwtURL: measures the number of the tweet’s Universal Resource Locator 

(URLs). It was calculated using the COUNTIF and VLOOKUP functions in 
Excel to determine whether a tweet has URL(s) and counting how many, or 
not (0) and display the results in a separate column. 

 
 TwtMentd: measures the number of mentioned usernames in a tweet, e.g. 

@username. It was calculated using the COUNTIF and VLOOKUP functions 
in Excel to determine whether a tweet has mentioned usernames and count-
ing how many, or not (0) and display the results in a separate column. 

 
 Twt#: counts the number of hashtags (#) a tweet contains. It was calculated 

using the COUNTIF and VLOOKUP functions in Excel to determine wheth-
er a tweet has hashtags (#) and counting how many, or not (0) and display 
the results in a separate column. 

 
 TwtMSA: shows whether the tweet is written in Modern Standard Arabic (1), 

or not (0). It was classified manually by the author whose mother tongue is 
Arabic only for the top 100 retweets.  

 

User‐related	factors	
 

 UsrFol: shows a user’s number of followers at the time the tweet was gener-
ated. It was retrieved automatically by Python. 

 
Table 2 shows a summary of variables’ descriptive statistics. 

TABLE 2 Descriptive statistics of the dataset 

     
Variable Mean Std. Dev. Min Max 

RtwtTotal  1.008 9.862 0 1,098 

TwtSntPos 0.143 0.540 0 12 

TwtSntNeg -1.469 1.534 -13 0 

Twt# 0.281 1.038 0 22 

TwtURL 0.524 0.516 0 3 

TwtLength 98.25 42.85 1 216 

TwtMentd 0.749 1.147 0 14 

UsrFol 7,425 112,267 0 1.364e+07 
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4 HYPOTHESES TESTING 

4.1 Data Analysis 

4.1.1 First Dataset Analysis 

4.1.1.1 Network Analysis 
 

After collecting data from Twitter Streaming Importer plugin in Gephi, we ex-
amined the network graph diameter, betweenness centrality, closeness centrali-
ty, eccentricity, and module class. We used the Yifan-Hu layout to visualize the 
users’ network. In order to provide clear network visualization, the Giant Com-
ponent filter under Topology option was added; to clear out the nodes that are 
not connected to the main cluster since they tend not to contribute to the net-
work analysis. Furthermore, a sub-filter called Degree Range with the value of 2 
was added to the Giant Component filter; to filter out the nodes that have less 
than two connections; this made the network more manageable. The findings 
are discussed in the results section. 

4.1.2 Second Dataset Analysis 

4.1.2.1 Sentiment Analysis 
 

Sentiment analysis in the Arabic language is limited due to the lack resources 
about the topic, however, the research is progressing within this area and some 
researchers of the field have provided a public collection of datasets that con-
tain lexicons with already polarity-labeled (positive or negative) words, phrases, 
emojis, etc. in Modern Standard Arabic (MSA) and other Arabic dialects.  
 

ElSahar and El-Beltagy (2015) built a large Arabic multi-domain lexicon 
for sentiment analysis; data was gathered from various website reviews with a 
total of 33,000 reviews on hotels, books, movies, products, and restaurants. A 
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similar research was carried out by Aly and Atiya (2013) who classified Arabic 
sentiment polarity of over 63,000 book reviews and published their lexicon after. 
In addition, Abdulla et al. (2013) built a lexicon and made it available online; it 
consists of 2000 manually-labeled tweets (1000 positive tweets and 1000 nega-
tive ones) from users’ opinions on different topics such as politics and arts.  
They also made their lexicon available online. 
 

All lexicons were combined together in one Excel sheet which was import-
ed after into Python. Using experiments code that has been made publicly 
available for scientific purposes from ElSahar and El-Beltagy (2015), the collect-
ed tweets’ content from the second dataset was run through the combined lexi-
con to determine the sentimental polarity (polarity = positive + negative). This 
was done to each tweet that was collected during the data gathering period, 
and then the results were exported to an Excel sheet to perform further meas-
urements for sentiment analysis (i.e. regression analysis).  

4.1.2.2 Regression Analysis 
 

To test hypotheses H2, H3, and H4, which suggest that a positive relationship 
exists between sentiment, tweet and user features, and retweeting quantity, the 
following variables were used as in previous studies; Suh et al. (2010), Stieglitz 
and Dang-Xuan (2013), and Zhang and Zhang (2016) in which it was demon-
strated that these variables affect the retweet quantity: 

 RtwtTotal: total number of retweets that a retweet receives. 
 TwtSntPos: the positive sentiment of a tweet.  
 TwtSntNeg: the negative sentiment of a tweet.  
 Twt#: the number of hashtags in a tweet. 
 TwtURL: the number of URLs in a tweet. 
 TwtLength: length of a tweet message in terms of characters. 
 TwtMentd: the number of mentioned usernames in a tweet. 
 UsrFol: user’s number of followers. 

The dependent variable RtwtTotal represents count data which is nonnega-
tive and integer based, with standard deviation and variance values that are 
larger than its mean in the second dataset, thus, the negative binomial regres-
sion analysis was applied in order to handle the over dispersion of the variables 
RtwtTotal, TwtLength, and UsrFol. To deal with the over dispersion issue; Stieg-
litz and Dang-Xuan (2013) and Zhang and Zhang (2016) log-transformed the 
variables before initiating the OLS regression. Similarly, a regression model was 
designed to interpret the effect of the variables on the dependent variable 
RtwtTotal as the following: 
 
Log(RtwtTotal) = β0 + β1 * TwtSntPos + β2 * TwtSntNeg + β3 * Twt# + β4 * 
TwtURL + β5 * Log(TwtLength ) + β6 * TwtMentd + β7 Log(UsrFol) + ε. 
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Clustered robust standard errors were used in the regression analysis, be-
cause of its suitability for the data. As Zhang and Zhang (2016) stated, the clus-
tered errors take into account that observations within groups are correlated. 
They added that using a large sample may lead to a significant reduction of the 
p value and will strengthen the significance level of the results (as in Guo et al. 
2014). 

4.2 Results 

4.2.1 First Dataset Results  

4.2.1.1 Users Network Results 
 

Measuring the network diameter enabled us to determine the network’s be-
tweenness centrality, closeness centrality, and eccentricity values. Module class 
was measured after and resulted in three communities with percentages of 
55.99%, 37.26%, and 6.75%. The first community, colored in red in the generated 
graph below (Figure 10), had 11 labeled extreme users and 9 moderate ones, 
which indicates that this community contains a mixture of users with different 
ideologies interacting with each other. The second community, with green color, 
had 8 moderate users and 0 extreme ones, marking it as a moderate community. 
The third community, with blue color, had 5 extreme users, and 0 moderate 
ones, hence, it is considered an extreme community. Table 3 shows the average 
centrality measures for each community. 

 
TABLE 3 Network centrality measures of the sample’s three communities 

Centrality Measure Mixed Moderate Extreme 

Betweenness centrality 0.852 210.06 237.56 

Closeness centrality 0.039 0.282 0.349 

Eccentricity  0.09 2.42 3.14 
 
From the network centrality measures, we found that users from the ex-

treme and moderate communities have higher centrality measures than the 
mixed community. The extreme community has slightly higher values than the 
moderate community, which means that users from the extreme community 
have individuals with more significant influence on the network and more con-
nectivity between users leading to more effective information dissemination. 
Since the User Network logic represents the interaction between users including 
retweets and mentions.�We conclude that members from the extreme and mod-
erate communities have higher interaction rates of retweeting and mentioning 
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added with the value of 2 to filter out the nodes that have less than two connec-
tions which made the network more manageable ending up with 753 nodes and 
1,886 edges for the final visualization of the network. 

 
To dig deeper in the network, we used the edge network measures to ex-

amine the interaction between the extreme users and the moderate ones. The 
edges are directed from a node to another by retweets and mentions created by 
users. As more interactions are performed on the edge, it gains higher weight. 
Burns (2010) stated that the number of connections between two nodes deter-
mines the numerical weight of the network edge connecting them. He added 
that the greater weight the edge has the stronger and deeper is the relationship 
between users, and that the absence of highly weighted edges might indicate 
that the discussion is relatively free ranging and without solid and lengthy con-
versations between specific groups of users. 
 

In order to investigate and compare the strength of the relationships with-
in the extreme and the moderate groups, the network edges’ weights were ana-
lyzed for the previously-labeled extreme and moderate users. Table 4 below 
shows the edge-weight statistics of the labeled users in the network (16 extreme 
users and 17 moderate ones).  

TABLE 4 Edge network, weights statistics 

     
Users Count Ret. Ment. W. Mean W. Std. 

Dev. 
Min W. Max W. 

Extreme 401 256 145 2.28 4.16 1 57 

Moderate 1096 640 457 1.87 2.38 1 34 
 

Although the moderate users had more transactions including retweets 
and mentions (1,096) compared to the extreme ones (only 401), the extreme us-
ers had higher edge weights on average with the value of 2.28 compared to the 
value of the average weights of the moderate users with 1.87. This confirms that 
the extreme users have stronger relationships and connectivity within their 
group than the moderate users. 

 
The direction of the edges was determined in Gephi through allocating 

sources and targets of the edge. Meaning that, for example, if user A mentions 
user B, an edge from A to B is formed with user A being the source and user B 
being the target. Tables 5 and 6 below display the statistics of the sources and 
the targets transactions respectively. While the moderate users had more 
sources and targets transactions, still, their edges’ weights were lower than the 
weights of the extreme edges, indicating weaker relationships among the mod-
erate users compared to those which are formed between the extreme users. 
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TABLE 5 Edge network, sources statistics 

     
Sources Count Ret. Ment. Ret. W. Ment. W. Avg. W. 

Extreme 130 66 64 1.29 4.05 2.65 

Moderate 266 124 142 1.29 3.65 2.54 

 
TABLE 6 Edge network, targets statistics 

     
Targets Count Ret. Ment. Ret. W. Ment. W. Avg. W. 

Extreme 271 191 80 1.4 3.75 2.1 

Moderate 830 515 315 1.33 2.17 1.65 
 
 
Additionally, figures 11 and 12 present comparisons between the extreme 

and the moderate users by showing the interactions quantity identified by re-
tweets and mentions, and the weights of these transactions including sources 
and targets own average weights. 
 

 
FIGURE 11 Edge network; transactions quantity of the extreme users and the 
moderate ones, including retweets and mentions. 
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FIGURE 12 Edge-network average weights, including sources and targets of the 
extreme and moderate users. 
 

4.2.2 Second Dataset Results  

4.2.2.1 Regression Results 
 

To ensure better fitting of the regression model, clustered robust standard er-
rors were used; this made the P value more meaningful, leading the model to be 
statistically significant. Below in Table 7, are the overall data analysis results of 
the second dataset based on the regression model. 
 

TABLE 7 Regression results  

Variable Log(RtwtTotal) 

TwtSntPos -0.00694 
 (0.0245) 

TwtSntNeg 0.0799*** 
 (0.00863) 

Twt# 0.194*** 
 (0.0194) 
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TwtURL 0.144*** 
 (0.0339) 

Log(TwtLength) 0.0215*** 
 (0.000420) 

TwtMentd -0.551*** 
 (0.0134) 

Log(UsrFol) 0.00000299*** 
 (0.000000451) 

Constant -2.369*** 
 (0.0367) 

Lnalpha 2.016*** 
Constant (0.0132) 

Observations 53271 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
The variable TwtSntPos has a coefficient of -0.00694 which is not statistically 
significant. This means that for each unit increase on TwtSntPos, the expected 
Log(RtwtTotal) decreases by 0.00694, resulting in not supporting H2a . On the 
other hand, supporting H2b; negative sentiment in tweets has a significant posi-
tive impact on retweeting. We believe, as was shown in the findings of 
Baumeister et al. (2001), Rozin and Royzman (2001), and Stieglitz and Dang-
Xuan (2012 & 2013) that it is the power of negativity bias on users that leads 
them to diffuse more negative content than neutral one.  
 

Content features of hashtags and URLs had the most positive effect on re-
tweeting with coefficients of 0.194 and 0.144 respectively, supporting H3a and 
H3b. They were followed by tweet length with coefficient of 0.0215 supporting 
H3c and marginally positive effect by the number of followers supporting H4. 
The number of mentioned names had a significant negative effect on retweeting 
opposing to H3d; Suh et al. (2010) explained such findings as the following 
“URLs and hashtags correlate positively…, whereas mentions have a negative 
correlation. This makes sense given that tweets are limited in the amount of 
content they can communicate, so having one kind of content (e.g., URLs) will 
tend to be exclusive of another (e.g., mentions)”. 
 

Table 8 below shows the hypotheses testing results. 
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TABLE 8 Hypotheses testing results 

Hypothesis Result 

H1: Users’ interaction with ideologically-similar users has a higher fre-
quency of retweets and mentions than their interaction with the ideolog-
ically-opposed users. 

Supported 

H2a: Tweets with positive sentiments have a higher likelihood to be re-
tweeted comparing with tweets which are emotionally neutral. 

Not supported 

H2b: Tweets with negative sentiments have a higher likelihood to be 
retweeted comparing with tweets which are emotionally neutral. 

Supported 

H3a: Hashtags, have a positive effect on retweeting. Supported 

H3b: URLs have a positive effect on retweeting. Supported 

H3c: Tweet length has a positive effect on retweeting. Supported 

H3d: Number of mentioned names has a positive effect on retweeting. Opposite 

H4: Number of followers has a positive effect on retweeting. Supported 
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5 DISCUSSION 

In this paper, the type of interaction between extreme Muslims and Moderate 
ones was examined, and their strategies to diffuse their information were inves-
tigated. Also, the effect of emotions and other tweet features on retweeting be-
havior was tested. The study focused on Muslims from the Arab-speaking 
countries because of the lack of such studies on that significant and fast-
growing population with more than 370 million who have similar beliefs and 
speak the same language. The study contributes to research by extending litera-
ture about the Arab-Muslims’ usage of Twitter and goes deeper by categorizing 
two groups among them; one that supports extreme approaches to diffuse and 
share information, and one that believes in more moderate measures to dissem-
inate their ideology. The topic of the study was controversial because of the re-
lated sensitivity to describing a group as extreme Muslims; however, we believe 
that the study approach was performed ethically and followed the scientific 
methodology by relying on previous research and evidence to form the hypoth-
eses and demonstrate the findings. 

 
To test the hypotheses, two sets of data were collected; the first dataset 

was retrieved to examine the first hypothesis H1 and test the users’ network on 
Twitter, it was collected from certain accounts that were classified as leaning to 
extremism or moderation based on their generated content. The classification of 
the accounts was performed by 22 Arab Muslims who have voted for the gen-
erated tweet by the account holder as extreme, moderate, or neutral. It should 
be mentioned that 1 generated tweet might not be enough to determine the ac-
count holder ideological leaning, but the classification process was simplified 
for practical reasons such as that most people would not answer the question-
naire if it was very long (the questionnaire consisted of 46 relatively-long ques-
tions), and also for the reason that it is most likely that users will generate simi-
lar content that fits their ideology; as it was described in the study for finding 
extremists in online social networks by Klausen et al. (2018), in which they stat-
ed that "users that engage in some form of online extremism or harassment will 
have very similar behavioral characteristics in social networks”. We used Gephi, 



36 

 

version 0.9.2 to analyze and visualize the first dataset, identify extreme and 
moderate communities, and apply the graph measures to ultimately find that 
users - whether they are extreme or moderate - have better connectivity and 
able to diffuse their information in a higher frequency of retweets and mentions 
within their communities rather than with the ideologically opposed users. The 
extreme community however, had stronger connectivity among its users, more 
than that within the moderate community; this was determined by the network 
centrality measures and supported by the network-edge weight analysis which 
confirmed that the extreme users have more solid relationships within their 
group than the moderate users. We also believe that religiously-motivated Ar-
ab-speaking Muslims act similarly to politically motivated individuals (from 
the study by Conover et al., 2010) in their way of diffusing their partisan con-
tent to users with opposed ideologies. 

 
To test the hypotheses H2, H3, and H4, a second dataset was retrieved us-

ing Python, version 2.7.0, based on specific keywords that are related to Islam.  
100,000 Arabic tweets were collected, which then was reduced to 53,271 tweets, 
each of which has generated at least one retweet. We used a Python code to de-
tect sentiment of the retrieved tweets, the code contained a large lexicon of 
words, phrases, and emojis with already defined polarity (positive +1, negative 
-1) and worked by granting the tweet a total polarity result based on the used 
words in it. One of the limitations of the study is that the lexicons that were 
used were limited in size and domain specific. Additionally, Arabic dialects 
vary widely and have new terms added on a regular basis without following 
any rules or grammar, which makes it harder to build a highly accurate lexicon 
that contains all Arabic dialects. A point that was noticed during examining the 
tweet-related features is that the top 100 retweeted tweets of the second dataset 
showed that 86 of them were written in Modern Standard Arabic (MSA), which 
predicts the positive effect of using such language on retweeting. This might be 
because it is a closer type of language to Classical Arabic which is the language 
in the old Islamic texts and it is the literary standard language across the Arab 
world. Future research can focus on developing a tool that can detect MSA to 
measure its effect on the retweeting behavior and information dissemination. 

  
The study findings indicate that tweets that contain an overall negative 

sentiment have a significant positive impact on retweeting quantity, while in-
terestingly; positive sentiment was not statically significant to affect retweeting. 
Additionally, Hashtags, URLs, and tweet length have strong relationships with 
retweetability, and user’s number of followers seems to have an effect on re-
tweetability as well. Moreover, the number of mentioned names had a signifi-
cant negative effect on retweeting. The results regarding negative sentiments 
are similar to findings from previous research in different fields (i.e. psychology 
and organizational studies) which explored negative emotions and their effect 
on people. Stieglitz and Dang-Xuan (2013) relied on the studies of Baumeister et 
al. (2001) and Rozin and Royzman (2001) to explain the Negativity Bias phe-
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nomenon; how people tend to give more weight to negative entities. We sug-
gest that negativity bias could be one factor that could lead to such results but 
more detailed research is needed to support this claim. Stieglitz and Dang-Xuan, 
(2013) added that within a political or ideological atmosphere, people will dif-
fuse even negative emotions if it was originally generated by someone who has 
similar ideological values. We believe that we have a similar case as Muslims 
with different backgrounds tend to retweet content even if it was negative be-
cause the original tweeter was another follower of their ideology. 

 
The study contributes to existing literature in several fields such as infor-

mation diffusion, sentiment and emotions in tweets, communication on Twitter 
and users’ network. Although there is existing literature about the previously 
mentioned fields, this research offers a view on a different region, language, 
and religion; there are few studies on tweets generated in Arabic, and they are 
mostly done for political reasons such as the study by Lotan et al. (2011) and Oh 
et al. (2015) about the Tunisian and the Egyptian revolutions. Additionally, this 
study offers a view on the usage of Twitter within a religious context, which is a 
major topic for Muslims to diffuse information about on such a microblogging 
platform. The study also compares the networking behavior of two ideological-
ly-opposed groups; extreme and moderate Muslims. This is important to grasp 
because it could be used as a practical implication to determine in which way 
these groups are communicating and recruiting more people. It could also pre-
dict the tendency of a geographical region heading towards extremism or mod-
eration. Additionally, religious and political parties in the Arab world can use 
the findings to analyze what kind of speech and sentiment the crowd is more 
attracted to and where the influential users are located in the network. Arabic 
companies could also use the sentiment analysis on their products and services 
reviews on social media platforms and in creating advertisements that use emo-
tions to reach more audience.  
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6 CONCLUSION 

Nowadays, social network platforms are frequently used for information dis-
semination. This has affected people notions driving societies to change, and 
leading to form groups of members with similar ideas debating other groups 
with different beliefs on social-media platforms. This research examines the Ar-
ab-Muslims usage of Twitter, how they are connected and how do they dissem-
inate their ideologies on Twitter. Different from prior studies which focus on 
political relevant information dissemination in the English spoken world (e.g. 
Conover et al. 2011), or English tweets during the Egypt Revolution (e.g. Oh et 
al. 2015), this study examines two ideologically-opposed groups, extreme Mus-
lims and moderate ones, and analyzes Arabic tweets. We hope the findings of 
this research will provide insights regarding information dissemination in the 
Muslim world and help us understand polarization in the online Arab-Muslim 
social network communities. 
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APPENDIX 1 QUESTIONNAIRE RESPONSES 

Tweet Extreme 
Votes 

Moderate 
Votes 

Neutral 
Votes 

Decision 

وجب تطبیق الحكم الشرعي بإقرار 
 قانون لصد التبرج

20 1 1 90,9% Extreme 

عروس وعروستھ امام الملاء 
یحتضنھا بحراره ویتصور معھا في تحدي 

 واضح واستفزاز للشعب المحافظ الغیور

15 4 3 68,2% Extreme 

لماذا تزوجت/ي! لما لم تتزوج/ي! 
لماذا ترتدي ھذا الزي! الخ من الأسئلة، تنتمي 
لفئة "التدخل فیما لایعنیك"  "من حسن إسلام 

لایعنیھ"المرء تركھ ما  

0 17 5 77,3% Moderate 

إغلاق_المحلات_وقت_الصلاة_وا
 جب الأذان

16 2 4 72,7% Extreme 

لابدمن #مراجعة من یوھم #الشباب 
انھ مثقل بالذنوب حتي یعیش باقي حیاتھ في 

 #غم_وھم ویفقد #أغلي #نعم_الله

8 13 1 59,1% Moderate 

لا تتھاونوا في سماعِ الموسیقى 
مجالسكم وفي أفراحكم.. فإن والغناء في 

 عواقبھا وخیمة وآثارھا جسیمة !!

19 1 2 86,4% Extreme 

یرد على مدیر جامعة في دعوتھ 
للاختلاط في التعلیم.. فما أحوجنا الیوم إلى 

ھذه الردود العلمیة الدامغة على دعاة الاختلاط 
 المحرم.

16 4 2 72,7% Extreme 

تھمة #إزدراء_الأدیان .. ھي حكم 
جدید بالإعدام على مشروع 

 #تجدید_الخطاب_الدیني

11 8 3 Divided 

أكبر إساءة تأتي للإسلام ھي من 
تقدیس اجتھادات بعض الأشخاص وكتبھم 

 والتي تم اعتبارھا كأصلٍ في الدین

7 13 2 59,1% Moderate 

سیزید الفساد ولكن ان لقبّ الجرم 
بالتحریم وحوسب باسم الشریعة فلن یستمر 

 أبدا

8 6 8 Divided 

كل من یغضبھ إغلاق المحلات وقت 
الصلاة لا شك في قلبھ مرض سبحان الله وھل 

 یغضب من یرى شعائر الله تقام!

16 3 3 72,7% Extreme 

قد لا توجد خطب جمعة .. وقد تكون 
مجرد أمور قد طرحت معبرة عن احداث 

خاصة في زمنھم .. واحمدوا الله على أنھ لا 
أثقلوا على الناس وجعلوا ما توجد خطب والا 

 جاء فیھا دیناً مُلزمًا..

5 9 8 Divided 

تقلید الغرب في بعض الامور لیست 
ثقافة إللي حصل منظر شاذ لا یناسب عاداتنا 

وتقلیدنا ومبادئنا ك مسلمین! 
 #عریس_یحتفل_بكورنیش_جده

8 7 7 Divided 

لیس من حق المرأة ان ترتدي 
ماشاءت وتعبث بتعالیم رب العالمین فھنا 

شرع ومن لم تستحي من ربھا نطلب ان تعلم 
 الحیاء بقوة السلطان 

15 6 1 68,2% Extreme 

النواصب شكلان: نواصب علیھم 
اللعنة، ونواصب لا جزاھم الله خیر جزاء 

 المحسنین

18 1 3 81,8% Extreme 
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سعودیات_نطلب_اسقاط_الولایھ #
ھي اسقاط انظمھ وضعیھ في سائر الدوائر 

الحكومیھ ، ولیست اسقاط آباء او أھل او 
 !..شرف او لباس

1 19 2 86,4% Moderate 

ھدف #الشیعة من احیاء مقتل 
الحسین وعمل طقوس التطبیر لكي یبقوا على 
الاحقاد والكراھیة في نفوس اتباعھم ضد اھل 

وارج #الرافضةالسنة #الخ  

14 5 3 63,6% Extreme 

طبعاً الیوم یرقصون ... إذا كانت 
الدولة جادة في معالجة ھذا.. 

 #اعیدوا_ھییة_الامر_بالمعروف

18 2 2 81,8% Extreme 

وعلینا مجابھة كل أصناف التطرف 
الفكري، على مستوى الدین والعقیدة، والتمییز 

العنصري، والاختلافات الطبقیة، والعدل 
 والمساواة 

2 17 3 77,3% Moderate 

الخرافات الفقھیة والشعبیة حول 
(السحر، الجن) مدخل لارتكاب العدید من 

 الجرائم كالاحتیال والجرائم الجنسیة

3 17 2 77,3% Moderate 

ھذه نتائج التحریض على التطرف 
من مشایخ الفتنة _ 

 #معا_ضد_الارھاب_والفكر_الضال

1 16 5 72,7% Moderate 

من أقل واجباتنا لما نشوف حساب 
ینشر التطرف والألفاظ البذیئة والتشكیك 

 بأعراض الناس أن نحاربھ بالبلوك

1 17 4 77,3% Moderate 

الاسلام عن ھل عرفتي لماذا نھى 
خروج المرأة متبرجة ومتزینة حتى لا تفتن 

 الرجال ..!!

15 4 3 68,2% Extreme 

ضربة جدیدة لمفسرین وعلماء 
أحادیث التكفیر والتطرف. * عن فلان عن 

فلان أصبحت أھم من الدین بل التفاسیر 
 عالأھواء أصبحت الدین نفسھ

4 11 7 Divided 

بغض النظر عن جنسیة الشخص .. 
التطرّف لیس جنسیة سعودیة .. التطرّف یكمل 
ب عقلیة الأشخاص اللي امتلئت قلوبھم حقد و 

 كراھیھ للآخرین

1 15 6 68,2% Moderate 

من_علامات_المتطرف شخص #
 مھووس بالرّفض , یكاد أن یرفضُ حتى نفسھ

2 13 7 59,1% Moderate 

الله ماعزنا إلا بتطبیق شرع الله وسنة 
بالمعروف والنھي عن المنكر رسولة والأمر 

ولیس بنشر الرقص والغناء والاختلاط 
والانحلال وافساد المرأة ولذلك مھما طبل 

 المنافقین واللیبرالیین لھیئة الترفیھ والمنكرات

15 4 3 68,2% Extreme 

لا حظوا أن المتشددین یرون أن 
الحریة في مجملھا خاطئة، في حین أنّ 

حریة مھما كان المتحررین یرون أن الخطأ 
نوعھ!! أمّا الإنسان المتزن فیرى أن الحریة 

 حق لا یقود إلى ارتكاب الأخطاء.

2 16 4 72,7% Moderate 

اذا رحتوا كوفي ومطعم وكانوا 
مشغلین موسیقى علموھم انھ ممنوع رسمیاً 

من الدولة واذا ما وقفوھا اتصلوا على الرقم 
بلغوھم وراح یتجاوبون معاكم. لا  1909

ون سبب في استمراء ونشر الحرام تك
 والمنكرات

20 1 1 90,9% Extreme 

نشأت ظاھرة #شیوخ_الموضة الذین 
یتغیرون مثل مودیلات #السیارات وعروض 

#الأزیاء كل فترة وكل موسم تغییر جدید. ھذه 
الظاھرة تحتاج عقابا رادعا من الدولة وكذلك 

 دراسة نفسیة لھؤلاء الشیوخ

5 11 6 Divided 
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عزیزي اللیبرالي : ھناك بلدان تسمح 
بالزندقة و الفجور والسكر و العھر و الشذوذ 
و المثلیة وتستطیع أن تعیش فیھا حیاة بھیمیة 

 راقیة

16 4 2 72,7% Extreme 

اي شخص یعارض حق الغیر 
بحریاتھم الشخصیھ ھو متطرف . ابى من ابى 
وشاء من شاء . كل من یحرض على مخالفیھ 

و سما نفسھ لیبرالي .ھو متطرف ول  

1 17 4 77,3% Moderate 

سعودیات_نرفض_صك_الولایھ #
نعم نرفضھا لأنھا لم تكن حمایھ ابدا ولم تكن 
تكریم كثر ماكانت استعباد وذل وقھر واھانھ 

الكثیر یعانوا من ھذا الصك ومازلنا نعاني 
  ونتمنى اسقاطھا

2 18 2 81,8% Moderate 

یأتي(شیخ من بلیات الزمان عندما 
علم) ویؤصل الرذائل سباب،شتم،كذب،حقد... 
 #تجدید_الخطاب_الدیني #التسامح #التعایش

4 14 4 63,6% Moderate 

مشاھدبعض النساءعلى بعض 
الشواطئ وفي الحدائق تقطع نیاط 

القلوب،ذھب الخوف عندالكثیرات من الله 
والحیاء،عبایات ضیقةرفع الملابس عند 

 البحرللركبة 

17 4 1 77,3% Extreme 

الناس تصفق لھ وتشجعھ وتزغرط لھ 
لیش ما یرمونھم باي شيء علشان عیب في 

مجتمعنا ولا یتكرر مررة اخرى 
 #عریس_یحتفل_بكورنیش_جده

16 4 2 72,7% Extreme 

رسالة للبراغیث!دخلنا التاریخ بلا إلھ 
دخلنا صلى الله عليه وسلم إلا الله دخلنا التاریخ بنبي الملحمة

ر وعثمان وعلي نحن التاریخ بأبي بكر وعم
 التاریخ بصحیح البخاري ومسلم

13 3 6 59,1% Extreme 

أستودعوا الله دینكم البلد متجھ 
الى - من شاب وفتاه یرقصون بأبھا  - للھاویھ.. 

الى ذكر - وافد یرقص ویضم عروسھ في جده 
- یمشي بعروسھ كاشفھ في جده   

17 2 3 77,3% Extreme 

من حق المرأه السعودیھ: تكون حرة 
بخیاراتھا تعیش حیاتھا بالطریقھ الي ھي تبیھا 

مو على مزاج ولیھا تتساوى حقوقھا مع 
حقوق الذكور مثل تساوي العقوبات 

والضرایب الخ"على حدٍ سواء" عدم معاملتھا 
 بعنصریھ على اساس فقط الجھاز التناسلي! 

5 15 2 68,2% Moderate 

وأذنابھم من  -الكفار  اللیبرالیون،
المسلمین   - دائمًا  -یتبجحون  -المنافقین 

باستخدام ( العقل ) ، والوصیة بذلك ، ونصح 
غیرھم بتقدیمھ على ( النقل ) ؛ وعقولھم بین 

( أفخاذھم ) ، وأشرفھم نزع عقالھ ؛ فأبدل 
 عقلھ بـ ( نعالھ ) .

19 2 1 86,4% Extreme 

# دأ تجدید_الخطاب_الدیني لازم یب
 "و جادلھم بالتي ھي أحسن"أولا ب 

1 20 1 90,9% Moderate 

الیتیمات السعودیات لا یخرجن نھائیا 
من دار الایتام، في انتظار الزوج الذي لا یأتي 
عادة للزواج من فتاة لا عائلة لھا وكثیر منھن 

موظفات فلما لایسمح لھن بالاستقلال في 
 السكن ھنا یتم المرأة یجعلھا سجینة

2 15 5 68,2% Moderate 

ماذا فعل #الازھر و #شیخ_الازھر 
فى #تجدید_الخطاب_الدینى لمواجھھ 

#الفكر_المتطرف و #الارھاب ؟ 
#تفجیر_مسجد_الروضھ   #سیناء 

 #تحیا_مصر #یارب

7 11 4 Divided 

الإسلام وضع #القواعد الأساسیة #
وترك لنا إختیار الطریقة لیتناسب مع كل 

1 18 3 81,8% Moderate 
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ار زمان ومكان یاتج الدین لاترغمون الناس #
على أفكاركم أنتم وتزعمون كذباً وبھتاناً أنھا 

 أنسنة_الخطاب_الإسلامي#مشیئة الله 
إذا سقط الحجاب فمابعده أسھل ولنا 

في الدول التي سبقتنا مثال وشر مثال 
#نطالب_بمحاسبة_سیاحة_جازان 

 #سعودیات_نفخر_بولایھ_اھلنا_لنا 

15 4 3 68,2% Extreme 

حد اللواط ان یوضع في كیس ویقذف 
بھ من جبل شاھق او اي مرتفع شاھق ان 
اللواط یھز عرش الرحمن فما ھذا الجلد 

 وحكمھ موجود لم نغیر ماامرنا الله بھ

19 0 3 86,4% Extreme 

 


