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ACCESSIBLE PARTS OF BOUNDARY FOR SIMPLY

CONNECTED DOMAINS

PEKKA KOSKELA, DEBANJAN NANDI, AND ARTUR NICOLAU

Abstract. For a bounded simply connected domain Ω ⊂ R2, any
point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-
dimensional Hausdorff content of the set of points in the boundary
of Ω which can be joined to z by a John curve with a suitable John
constant depending only on α, in terms of the distance of z to ∂Ω.
In fact this set in the boundary contains the intersection ∂Ωz ∩∂Ω
of the boundary of a John sub-domain Ωz of Ω, centered at z, with
the boundary of Ω. This may be understood as a quantitative
version of a result of Makarov. This estimate is then applied to
obtain the pointwise version of a weighted Hardy inequality.

1. Introduction

Let Ω ⊂ C be a domain. We say that Ω is C-John with center z0 if
for any z ∈ Ω there exists a rectifiable curve γz joining z and z0 in Ω
such that for any point z′ in the image of γz, it holds that

CdΩ(z
′) ≥ l(γz(z

′, z)),

where dΩ(z
′) := dist(z′, ∂Ω) and l(γz(z

′, z)) is the length of the sub-
curve between z′ and z. Given A ⊂ C, we define the α-Hausdorff
content as

Hα
∞(A) := inf{

∞
∑

j=1

diam(Ej)
α : Ej ⊂ C, A ⊂ ∪

j∈N
Ej}.

Given a simply connected John domain and z ∈ Ω there is a John
subdomain Ωz with center z so that, for the ball in the intrinsic metric
(defined by taking the infimum of the lengths of rectifiable paths in the
domain joining pairs of points) of radius 2dΩ(z), we have BΩ(z, 2dΩ(z)) ⊂
Ωz; see [5], for example. This statement is quantitative in the sense that
the John constant of Ωz depends only on the John constant of Ω. It
is easy to see that this conclusion fails for general simply connected
Ω: we may not capture all of ∂BΩ(z, 2dΩ(z)) ∩ ∂Ω by ∂Ωz for a John
subdomain Ωz for a fixed John constant. The best we can hope for is
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to capture a part of ∂Ω of H1-content of the order of dΩ(z). Our main
result gives a rather optimal conclusion.

Theorem 1.1. Let Ω be a bounded, simply connected domain in the
plane. Let 0 < α < 1 be fixed. Given z ∈ Ω, there is a John subdomain
Ωz ⊂ Ω with center z and John constant depending only on α such that

Hα
∞(∂Ωz ∩ ∂Ω) ≥ c(α)dΩ(z)

α.

The motivation for Theorem 1.1 partially arises from the weighted
pointwise Hardy inequalities (see [1], [4], [5])

(1) |u(x)| ≤ CdΩ(x)
1−β

p sup
0<r<2dΩ(x)

(

−
∫

B(x,r)∩Ω
|∇u|qdqβ/p

Ω

)1/q

where u ∈ C∞
0 (Ω), 1 < q < p and −∞ < β < ∞. This inequality im-

mediately yields the usual weighted Hardy inequality (see [2],[3] for the
classical Hardy inequality and [8], [5] for higher dimensional versions
of it)

∫

Ω

|u(x)|pdΩ(x)
β−p dx ≤ C

∫

Ω

|∇u(x)|pdΩ(x)
β dx

via the boundedness of the Hardy-Littlewood maximal operator on
Lp/q. The pointwise Hardy inequalities were shown in [5] to hold for any
simply connected John domain for all 1 < p < ∞ and every β < p− 1.
This is the optimal range even for Lipschitz domains; see [8]. From
Theorem 1.1 together with Theorem 5.1 in [5] we have the following
corollary.

Corollary 1.2. Let Ω ⊂ C be simply connected. Let 1 < p < ∞.
Then, for each β < p − 1 there exist 1 < q(β, p) < p and C > 0 such
that the weighted pointwise Hardy inequality (1) holds for each x ∈ Ω.

Above, q and C are independent of Ω. The corresponding weighted
Hardy inequalities were already established in [6]. Our proof of The-
orem 1.1 is based on the following estimate for conformal maps which
we expect to be of independent interest. Let H be the upper half plane.

Theorem 1.3. Let f : H → Ω be a conformal map. Let 0 < α < 1 be
fixed. Then there exists C(α) > 0 such that the following holds.

Given z0 = x0 + iy0 ∈ H, there exists a set E = E(z0, α) ⊂ (x0 −
y0/2, x0 + y0/2) such that

(a) Hα
∞(E) ≥ yα0

C(α)

(b) 1
C(α)

|f ′(z0)| ≤ |f ′(w)| ≤ C(α)|f ′(z0)|
for any point w in the sawtooth region S(E) := {x + iy : x ∈ (x0 −

y0/2, x0 + y0/2), d(x, E) ≤ y < y0}.
Theorem 1.3 can be understood as a quantitative version of a result of

Makarov; see Theorem 5.1 of [7], see also corollary 1.4 of [11]. Our proof
of Theorem 1.3 uses Makarov’s idea of approximating Bloch functions
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by dyadic martingales. Theorem 1.1 then follows from Theorem 1.3
and Lemma 3.3 below; in fact we have that (Ωz0 , dΩz0

) is bilipschitz
equivalent to the sawtooth region in Theorem 1.3.

2. Preliminaries

Let D be the unit disk in the complex plane. A function g : D → C

is called a Bloch function if it is analytic and

‖g‖B := sup
z∈D

(1− |z|2)|g′(z)| < ∞.

This defines a seminorm. The Bloch functions form a complex Banach
space B with the norm |g(0)|+ ‖g‖B.

Given a univalent analytic function f : D → C we have that the
function log f ′ is a Bloch function by the Koebe Distortion theorem
with ‖ log f ′‖B ≤ 6. Conversely, given a function g ∈ B with ‖g‖B ≤ 2,
there exists a univalent function f : D → C such that g = log f ′, see
(Chapter 4, [10]). Given a conformal map f : H → C, it follows by a
conformal change of coordinates that

sup
z∈H

Im(z)|g′(z)| < 6

where g is the function log f ′.
Let us introduce some notation. Given a closed interval I ⊂ R we

denote by xI the center of I and zI := xI + i|I|. We denote by Q(I) the
square {x + iy : x ∈ I, y ∈ (0, |I|)}. The intrinsic metric of a domain
Ω ⊂ C is given by dΩ(x, y) := inf{l(γx,y) : γx,y is a rectifiable curve
joining x and y in Ω}. The euclidean disk with center z and radius r
is denoted by B(z, r) and BΩ(z, r) is the corresponding intrinsic ball.
We denote by diam(A), the diameter of a set A ⊂ C. We denote by
diamΩ(A) the diameter of a subset A ⊂ Ω measured with respect to
the intrinsic metric of Ω.

3. Proofs of the theorems

We first sketch the proof of Theorem 1.3. The set E constructed
below is a Cantor-type set. One considers the harmonic function u =
log |f ′|, the real part of the Bloch function log f ′, where f is the con-
formal map from Theorem 1.3. The construction involves selecting
“good” parts in the boundary near which the function u remains es-
sentially bounded and estimating the size of the “bad” parts in the
boundary where the difference from a fixed value is large and positive
or large and negative. The good parts correspond to the points in the
boundary, accessible from some interior point of Ω by a John curve.
The key observation is that it is possible to recursively choose subsets
from the bad parts of the boundary, near which the difference from the
fixed value is “up” and “down” at consecutive generations so that the
final error in the intersection is not too large. The set E consists of
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the good parts and an intersection of suitable nested sets of the bad
part. The Hausdorff content of E is shown to be large by the mass
distribution principle after defining a limit measure supported on E.

We use the following well known lemma in the proof of Theorem 1.3;
see Lemma 2.2 of [9].

Lemma 3.1. Let u be a harmonic function in the upper half plane H

such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Let I ⊂ R be an interval and let {Ij} be a collection of pairwise disjoint
dyadic subintervals of I and assume additionally that u is bounded in
Q(I)\ ∪j Q(Ij). Then we have

(2) u(zI) =
∑

j

u(zIj)
|Ij|
|I| +

1

|I|

∫

I\∪jIj

u(x)dx+O(A).

Proof. Let us write y for the imaginary part of z and fix 0 < ǫ < 1.
Green’s theorem applied to the harmonic functions u and y in the
domain Uǫ := (Q(I)\∪j(Q(Ij))) ∩ {y > ǫ} gives

∫

Uǫ

y∆u−
∫

∂Uǫ

u∆y =

∫

Uǫ

y∇u · νds−
∫

∂Uǫ

u∇y · νds

and thus

(3)

∫

∂Uǫ

u∇y · νds =
∫

∂Uǫ

y∇u · νds

where ν is the outward unit normal vector. The absolute value of
the latter integral is bounded by 10A|I| by assumption. Note that
the oscillation of u on the upper edges of Q(I) and Q(Ij) is bounded;
indeed

|u(x+ i|Ij |)− u(x′ + i|Ij |)| ≤ A|x− x′|/|Ij|
for x, x′ ∈ Ij . From (3) we have

u(zI) =
∑

|Ij |>ǫ

u(zIj)
|Ij|
|I| +

1

|I|

∫

I

u(x+ iǫ)χI\( ∪
|Ij |>ǫ

Ij)(x) dx+O(A)

because the vertical sides of ∂(Q(Ij)) do not contribute to the integral.
The estimate now follows once we let ǫ → 0, since the function u has
radial limits almost everywhere in I\ ∪j Ij. �

Lemma 3.2. Let u be a harmonic function in the upper half plane H

such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Then there is a number M0 = M0(A) such that the following holds for
any M > M0.
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Given any interval I ⊂ R, define

G(I) := {Re(z) : z ∈ Q(I), sup
0<Im(z)<|I|

|u(z)− u(zI)| ≤ M + A
√
2},

and assume that |G(I)| ≤ |I|
100

. Consider the family F(I) of maximal
dyadic subintervals Ij ⊂ I such that |u(zIj) − u(zI)| ≥ M . Then we
have

(a) |u(z) − u(zI)| ≤ M + A
√
2 for any z ∈ Q(I)\ ∪

j
Q(Ij). In

particular, |u(zIj)− u(zI)| ≤ M + A
√
2.

(b) |Ij| ≤ 2
− M

A
√
2 |I| for every Ij ∈ F(I).

(c) Consider the family F+(I) (respectively F−(I)) of intervals in
F(I) such that u(zIj)−u(zI) ≥ M (respectively u(zIj)−u(zI) ≤
−M). Then we have
(i)

∑

Ij∈F+(I)

|Ij| ≥ |I|/4

(ii)
∑

Ij∈F−(I)

|Ij| ≥ |I|/4

Proof. Given z = x + iy ∈ H such that x ∈ I (respectively Ij) and
|I|/2 < y < |I| (respectively |Ij|/2 < y < |Ij|) it follows that |u(z) −
u(zI)| ≤ A

√
2 (respectively |u(z)− u(zIj)| ≤ A

√
2) by our hypothesis.

Part (b) follows by iterating the above inequality and part (a) follows
from the maximality of the dyadic intervals.

For part (c) we write the estimate from Lemma 3.1 as

∑

j

(u(zIj)− u(zI))
|Ij|
|I| +

1

|I|

∫

I\∪
j
Ij

(u(x)− u(zI))dx = δ

where δ = δ(u,A) lies in the interval [−δA, δA], where δA is a constant
that depends only on A. We observe that I\ ∪

j
Ij ⊂ G(I). Thus the

absolute value of the integral is bounded by M+A
√
2

100
, by part (a) and

the assumption that |G(I)| ≤ |I|/100. Hence we have
∣

∣

∣

∣

∣

∣

∑

j

(u(zIj)− u(zI))
|Ij|
|I|

∣

∣

∣

∣

∣

∣

≤ M + A
√
2

100
+ |δ|.

Next we note that M ≤ |u(zIj) − u(zI)| ≤ M + A
√
2 for any j. Part

(c) then follows from this. Indeed, if

(4)
∑

Ij∈F+(I)

|Ij|
|I| ≤ 1

4
,

then we have
∑

Ij∈F−(I)

|Ij |
|I| ≥ 74

100
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and

−M + A
√
2

100
− |δ| ≤ M + A

√
2

4
+

∑

Ij∈F−(I)

(u(zIj)− u(zI))
|Ij|
|I|

from which we get

∑

Ij∈F−(I)

|Ij|
|I| ≤ 26

100
+

26A
√
2

4M
+

δA
M

.

This contradicts (4) if M > M0(A). The other inequality in part (c)
follows similarly. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let 0 < α < 1 be fixed.
We may assume without loss of generality that z0 = i. We construct

the set E as follows. Set u(z) = log(|f ′(z)|). Then u is the real part of
a Bloch function and thus satisfies the hypothesis of Lemma 3.2 with
A = 6.

Denote by I0 the interval (−1
2
, 1
2
). Consider the set Q(I(0)) and the

subset G(I(0)) as defined in Lemma 3.2. An interval I is called “good”
if |G(I)| ≥ |I|/100 and “bad” otherwise. If |G(I(0))| ≥ |I(0)|/100, then
set E = G(I(0)). Then Hα

∞(E) & 1 and the claim follows.
So we assume that the other case holds and consider the maximal

family F(I(0)) of subintervals Ij ⊂ I0 as chosen in Lemma 3.2, with
M = M(α) to be fixed later. Thus I0 is a bad interval and we may
apply Lemma 3.2. We have

|I| ≤ 2
− M

6
√

2 |I(0)| if I ∈ F+(I(0))

and
∑

I∈F+(I(0))

|I| ≥ |I(0)|/4.

The first generation G1 = G1(I
(0)) is formed by the subsets G(I) of

the good intervals I ∈ F+(I(0)) and by the bad intervals I ∈ F+(I(0)).
We write G1 = Gg

1 ∪ Gb
1 where

Gg
1(I

(0)) = {G(I) : I ∈ F+(I(0)) is good}
and

Gb
1(I

(0)) = {I ∈ F+(I(0)) : I is bad}.
We also have

∑

I∈G1

|I| ≥ |I(0)|/400.

The construction stops in the sets in the family Gg
1 of good sets. In

the sets I ∈ Gb
1 it continues as follows.
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Fix I(1) ∈ Gb
1. Since I

(1) is bad we can apply Lemma 3.2 and consider
the collection F−(I(1)) which satisfies

|I| ≤ 2
− M

6
√

2 |I(1)| if I ∈ F−(I(1))

and
∑

I∈F−(I(1))

|I| ≥ |I(1)|/400.

The first generation G1(I
(1)) of the interval I(1) ∈ Gb

1 is written Gg
1(I

(1)) =
G1(I

(1)) ∪ Gb
1(I

(1)), where

Gg
1(I

(1)) = {G(I) : I ∈ F−(I(1)) is good}
and

Gb
1(I

(1)) = {I ∈ F−(I(1)) : I is bad}.
We use the first generation as defined above, of members of the

collection Gb
1(I

(0)), to define the second generation G2(I
(0)) = Gg

2(I
(0))∪

Gb
2(I

(0)), where

Gg
2 (I

(0)) = ∪
I(1)∈Gb

1(I
(0))

Gg
1(I

(1))

and

Gb
2(I

(0)) = ∪
I(1)∈Gb

1(I
(0))

Gb
1(I

(1)).

We also have
∑

I⊂I(1)
I∈G2

|I| ≥ |I(1)|/400 for any I(1) ∈ Gb
1.

Observe that u oscillates to the right of u(zI0) in the first step of the
construction and to the left of u(zI) in the second. We have

|u(zI)− u(zI(0))| ≤ 12
√
2 for any I ∈ Gb

2.

Again the construction continues in the intervals of Gb
2(I

(0)). Since
the errors cancel but do not vanish, we use a slightly different value
of M , if needed, for choosing the maximal family F(I) for the bad
intervals I ∈ Gb

2, so that the errors do not add up. More precisely, given
I(2) ∈ Gb

2, we choose a value M ′ from the interval [M − 6
√
2,M +6

√
2]

such that u(zI(2)) +M ′ = u(zI(0)) +M .
So the construction stops after finitely many steps or continues in-

definitely providing new generations Gn. Let I(n) ∈ Gn. Either I(n) is
of the form G(Ĩ) and the construction stops in I(n) or I(n) ∈ Gb

n(I
(0))

and the construction provides new sets and intervals of Gn+1 contained
in I(n) which satisfy

|I| ≤ 2
− M

6
√

2 |I(n)| if I ⊂ I(n) , I ∈ Gn+1
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and
∑

I⊂I(n)

I∈Gn+1

|I| ≥ |I(n)|/400.

We define

E := (∪nGg
n) ∪ (∩nGb

n).

By construction for any x ∈ E and any 0 ≤ y ≤ 1 we have

| log |f ′(x+ iy)| − log |f ′(i)|| ≤ 2M + 24.

Consider the set S(E) as defined in the statement of the theorem. Since
u is a Bloch function, the previous estimate gives that

e−2M−30|f ′(i)| ≤ |f ′(w)| ≤ e2M+30|f ′(i)|
for any w ∈ S(E). Thus part (b) of the statement follows.

Part (a) of the statement follows if it is shown that

Hα
∞(E) ≥ c(α).

To prove the last estimate, it suffices by the mass distribution principle
to construct a positive measure µ with µ(E) ≥ 1 such that there exists
a constant c(α) > 0 with

µ(I) ≤ c(α)|I|α,
for any interval I ⊆ I0. The measure µ will be the limit of certain
measures µn supported in the union ( ∪

k≤n
Gg
k) ∪ Gb

n, where Gg
k are the

good parts of the previous generations.
Next we construct the measure µ. Let µ0 = dx

¬
I(0). Consider

a(I(0)) =
|I(0)|

∑

I∈G1
|I|

which satisfies a(I(0)) ≤ 400. By defining

µ1 := a(I(0))
∑

I∈G1

dx
¬
I

we have µ1(I
(0)) = 1. The measure µ2 will coincide with µ1 on Gg

1 .
On G2 the measure µ2 will be defined by redistributing the mass of µ1.
More concretely, if I(1) ∈ Gb

1 set

a(I(1)) =
µ1(I

(1))
∑

I⊂I(1)
I∈G2

|I| .

Since

a(I(1)) =
|I(1)|

∑

I⊂I(1)
I∈G2

|I|
µ1(I

(1))

|I(1)| = a(I(0))
|I(1)|

∑

I⊂I(1)
I∈G2

|I| ,
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we deduce that a(I(1)) ≤ 4002. Define

µ2 = µ1
¬ Gg

1 +
∑

I(1)∈Gb
1

a(I(1))
∑

I⊂I(1)
I∈G2

dx
¬
I.

The measures µ3, . . . , µn, . . . are defined recursively. Observe that µk(I) =
µn(I) for any k ≥ n, provided I ∈ Gn. Moreover, if I ∈ Gn we have

µn(I)

|I| ≤ 400n.

Finally set
µ = lim

n→∞
µn.

It is clear that sptµ ⊂ E and µ(E) = 1. We want to check that
µ(I) ≤ c(α)|I|α for any interval I ⊆ I0. Let J ⊂ I0 be an interval. We
may assume that there is a positive integer j such that

2
−M(j+1)

6
√

2 ≤ |J | ≤ 2
− Mj

6
√

2 .

Let Gj(J) (respectively Gg
k(J)) be the family of sets of generation Gj

(respectively Gg
k) which intersect J . Let Aj(J) be the family of sets in

∪j−1
k=0G

g
k(J) of diameters smaller than 2

− Mj

6
√

2 . Since the sets in Gj(J) ∪
Aj(J) intersect J and have diameter smaller than 2|J |, we have

Gj(J) ∪ Aj(J) ⊂ 4J.

Hence

µ(J) ≤
∑

I∈Gj(J)

µ(I) +

j−1
∑

k=0

∑

I∈Gg
k(J)

µ(I ∩ J)

≤
∑

I∈Gj(J)∪Aj (J)

µ(I) +
∑

I∈∪j−1
k=0G

g
k
(J)\Aj (J)

µ(I ∩ J)

=: A +B.

If I ∈ Gj(J) ∪Aj(J), then we have

µ(I) = µj(I) =
µj(I)

|I| |I| ≤ 400j|I|.

Hence
A ≤ 400j

∑

I⊂4J
I∈Gj(J)∪Aj(J)

|I| ≤ 4 · 400j|J |.

Since the sets in ∪j−1
k=0G

g
k(J)\Aj(J) intersect J and are contained in

intervals of length larger than |J | which are pairwise disjoint, the col-

lection ∪j−1
k=0G

g
k(J)\Aj(J) is contained in at most two intervals L1 and

L2. Now

B ≤
2
∑

i=1

µ(Li) ≤ 400j
2
∑

i=1

|Li ∩ J | ≤ 400j[J |.
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Hence µ(J) ≤ A+B ≤ 5 · 400j|J |.
Since |J | ≤ 2

− Mj

6
√

2 , we deduce that

µ(J) ≤ 5|J |1−
6
√

2 ln2(400)
M .

We choose M large enough so that 1 − 6
√
2 ln2(400)
M

> α. The theorem
follows with this value of M . �

The proof of Theorem 1.1 uses the following auxiliary result.

Lemma 3.3. Assume that a set E = E(z0, α) ⊂ R exists, for which
part (b) of Theorem 1.3 is satisfied. Then we have that f(S(E)) is a
John domain with John constant depending on α. Moreover,

Hα
∞(f(E)) ≥ c(α)|f ′(z0)|αHα

∞(E).

Proof. We may assume that E is compact. We have for f(z) ∈ f(S(E))
that

df(S(E))(f(z), ∂f(S(E))) & c(α)|f ′(z0)|dS(E)(z)

from which it follows that f(S(E)) is John, with John curves being the
images of the John curves in S(E) (which we may take to be the vertical
line segment joining the point z to the upper edge of Q(I) followed by
a horizontal line segment till zI). The constant only depends on α.

Let {Bi}i be a countable (possibly finite) collection of disks covering
f(E). We may assume that f(z0) /∈ Bi for all indices i. For each point
f(ẑ) ∈ f(E) ∩ Bi consider the John curve γẑ joining f(ẑ) to the John
center f(z0). Let f(z) ∈ γẑ be a point such that l(γẑ(f(ẑ), f(z))) =
rad(Bi) =: Ri. By the John condition we have that df(S(E))(f(z)) ≥
1

c(α)
Ri.

In the following we write S ′(E) for the set f(S(E)). Consider the
collection of intrinsic balls {BS′(E)(f(z), c(α)dS′(E)(f(z)))}f(ẑ) in the
intrinsic metric of S ′(E). The balls in this collection cover the set
f(E) ∩Bi. By the 5r-covering theorem we find pairwise disjoint balls

BS′(E)(f(z
i
j), c(α)dS′(E)(f(z

i
j))), j = 1, 2, . . .

such that {BS′(E)(f(z
i
j), 5c(α)dS′(E)(f(z

i
j)))}j covers f(E) ∩ Bi.

We have also an upper bound N(α) for the number Ni of the pairwise
disjoint intrinsic balls found above for each f(E)∩Bi, since every ball
BS′(E)(f(z

i
j), c(α)dS′(E)(f(z

i
j))) in the collection contains the euclidean

disk B(f(zij), Ri/c(α)). Let the collection of finitely many such intrinsic
balls chosen for each index i be denoted together {Bij} i∈N

1≤j≤Ni

where for

given i and 1 ≤ j ≤ Ni, Bij = BS′(E)(f(z
i
j), 5c(α)dS′(E)(f(z

i
j))). We
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have

∑

i

(diam(Bi))
α &

∑

i

Ni
∑

j=1

(diamS′(E)(Bij))
α

≥ c(α)|f ′(z0)|α
∑

i,j

(diamS(E)(f
−1(Bij)))

α

≥ c(α)|f ′(z0)|αHα
∞(E)

The lemma follows. �

Proof of Theorem 1.1. Let f be the conformal map from H to Ω. Con-
sider the set E = E(f−1(z), α) obtained using Theorem 1.3. Applying
Lemma 3.3 we have

Hα
∞(f(E)) & (e−2M |f ′(f−1(z))|)αHα

∞(E).

Theorem 1.1 now follows by combining the above estimate with part
(a) of Theorem 1.3 and observing that, by part (b), z can be joined to
∂Ω by a curve which is the bilipschitz image of a curve in H of length
comparable to Im f−1(z) joining f−1(z) to R.

�
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