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UNIFORM MEASURE DENSITY CONDITION AND GAME
REGULARITY FOR TUG-OF-WAR GAMES

JOONAS HEINO

ABSTRACT. We show that a uniform measure density condition implies
game regularity for all 2 < p < oo in a stochastic game called "tug-of-war
with noise’. The proof utilizes suitable choices of strategies combined
with estimates for the associated stopping times and density estimates
for the sum of independent and identically distributed random vectors.

1. INTRODUCTION

The profound connection between stochastic processes and classical linear
partial differential equations has been pivotal. For example, this connection
was made use of in [KS79) [KS80] to establish regularity result for the second
order equations in a non divergence form. Recently, a connection between
nonlinear infinity harmonic functions and tug-of-war games was discovered
in [PSSW09]. Later in [PS08|, the authors found a stochastic game related
to p-harmonic functions. They proved among other things by using a game
approach that in a game regular domain there exists a p-harmonic function
extending continuously to the boundary with the given continuous boundary
values. However, a problem asking if a regular boundary point for the p-
Laplacian is necessarily game regular was left open.

We study a modified version of a ’'tug-of-war with noise’ developed in
[MPRI2|] and also related to p-harmonic functions. First, the players choose
a step length ¢ > 0 and a starting point xg. Then, they toss a biased coin,
and if they get heads (probability «), the players play a ’tug-of-war’, that is,
they toss a fair coin and the winner of the toss can move the game position
to any point of the open ball centered at xg and of the radius e. If in the
first toss, they get tails (probability 3), the game point moves according to
the uniform distribution in the open ball centered at xy and of the radius
€. After the first move, the players play the same game from the new game
position. The game ends, when the game position exits the game domain
for the first time. In the end, Player 2 pays to Player 1 the amount given
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by the payoff function at the first point outside the domain. We consider
this version of the game because the players do not affect the direction of
the noise and hence, we can prove sharp enough estimates for the density of
the noise.

We give a stochastic proof that a uniform measure density condition im-
plies game regularity (Theorem B7)). Roughly, a boundary point y is game
regular, if Player 1 has a strategy to end the game near y with a probability
close to one whenever the game starts near y as well. A boundary point y
satisfies a measure density condition, if the Lebesgue measure of the com-
plement of the game domain in the ball centered at y is comparable to the
Lebesgue measure of the whole ball. The proof of Theorem B.7] utilizes a
stochastic density estimate for the sum of independent and identically dis-
tributed random vectors (Lemma[A4]). In addition, we use a 'cylinder walk’
framework together with a cancellation strategy for Player 1 to connect the
stochastic estimates to the setting. We omit the case p = 2, because in that
case the process is merely a random walk and the result follows from the
classical invariance principle.

Game theory has already given new insights to partial differential equa-
tions. For instance, the ideas emerging from nonlinear game theory have
led to simpler as well as completely different proofs for PDEs (see for ex-
ample [AST0] and |[LPS13]). In addition, a dynamic programming principle
related to the game also arises from discretization schemes (see for instance

[Obe05)).

We expect the techniques developed in this paper to be useful for a larger
class of partial differential equations as well. In addition, stochastic es-
timates on where the game spends time under cancellation strategies are
likely to be important for further results.

This work is organized as follows. In Section 2, we describe the prelim-
inaries needed in the paper. Then in Section 3, we show that the uniform
measure density condition implies game regularity for all 2 < p < co. For
brevity, we do not write down all the stochastic calculations needed in the
section, but the calculations are in the appendix.

2. PRELIMINARIES

First, let us start by introducing the notation. We denote the standard
Euclidian open ball by B, (z) C R",

By (z9) ={z € R": |z — x| < r}.

Lebesgue measure is denoted by |-|, and in addition, the notation C), , means
that the universal constant depends only on n and p. Throughout the paper,
we use the asymptotic notation O(e). For example, if a real-valued function
f satisfies the inequality f(e) < O(e), it means that there exists a constant
C > 0 such that |f(e)] < Ce for all € > 0 small enough.
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Let 2 < p < 00, € > 0 and dimension n > 1. Fix a bounded, non-empty
and open set 2 C R”. Next, we recall the two-player zero-sum-game called
‘tug-of-war with noise’. First, choose a starting point zg € Q) for the game,
and then, the players toss a biased coin with probabilities o and 5. The
probabilities depend on n and p by

—9 2
a=P"Z g_nt2 (2.1)
p+n p+n

The players get heads with the probability «, and in this case, they will toss
a fair coin and the winner of the toss can move the game position to any
point of the open ball B.(zp). Tossing of a fair coin and the movement after
the toss are the 'tug-of-war’ parts of the game. On the other hand, if they
get tails, the next game position will be decided by the uniform distribution
in the ball B.(zp). A random movement is the 'noise’ part of the game.
After the first move is decided, the players continue playing the same game
from the new position.

The game procedure yields a sequence of game positions xg, x1,z2,...,
where every xj, is a random variable. A history of a game up to step k is a
vector of the first k+ 1 game positions xg, ..., 2, and k coin tosses c¢q, ..., Cg,
that is,

hk = (:EOv (Cly 33‘1), E) (Ck7 ﬂj‘k))
In the above, ¢; € C := {0,1,2}, where 0 denotes that Player 1 wins, 1 that
Player 2 wins and 2 that a random movement occurs.

To prescribe boundary values, let us denote a compact boundary strip of

width e by
Fe:i={zeR"\Q: inf |z —y| <€}
yeoN)

The reason to use the boundary strip instead of just the boundary is that
Bi(z) C Q¢ := QUT, for all x € Q. After the first time the game position
is in I'¢, the players do not move it anymore. For all £ > 0, the history Ay
belongs to the space HF := zq x (C,Q.)* with H? := z5. We denote the
space of all game sequences by

H® = | J H" = 29 x (€, Q) x (C, Q) x -+ .
k>0

A strategy for Player 1 is a sequence of Borel measurable functions that
give the next game position given the history of the game. To be more
precise, a strategy for Player 1is Sy := (S1x)72, with

Sl,k : Hk — R"
for all £ > 0. For example, if Player 1 wins the (k + 1)th toss,
S1k(zo, (c1,21), - -+, (cks k) = Thp1 € Be(xy,)

for all h;, € H*. Similarly Player 2 deploys a strategy Ss.
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We denote the first hitting time to the set I'. by
Ti=7(w)=inf{k:ap el k=0,1,2,... }.
The game process is a discrete time adapted process with respect to the
filtration Fp := o(xg) and
Fi :=o(xo, (c1,21), ..., (ck, zp)) for k > 1,

so T is always a stopping time. The game ends at the random time 7, and the
payoff is F'(z;), where F' : I’ — R is a fixed, bounded and Borel measurable
payoff function. In the end, Player 2 pays the amount F(z,) to Player 1.

To establish a unique probability measure, we need to know a starting
point o and strategies S7 and So. Then, the probability measure ng 5, On
the natural product o-algebra is built by applying Kolmogorov’s extension
theorem to the family of transition densities

TS1,S2 (x07 (017 1’1), RRR) (ck7 xk)? (Cv A))

[0 [0
= 550(C)(SSl(wo,(cl,m),...,(ck,mk))(A) + 551(C)ésQ(m07(017$1)w~7(ck71k))(A)
|AN Be(xy)]

| Be(r)|

for any subset C' C C and Borel subset A C 2, as long as xp € Q. If xp & Q,
the transition probability forces xx11 = xk.

+ B62(C)

The expected payoff is

BY o (Fan)] = [ Flar)) P s,

when the game starts from zy and the players use strategies S1 and Sy. The
value of the game for Player 1 is given by

ul(zo) = supinf EY o [F(z7)]
S1 So ’
and the value of the game for Player 2 is given by

wX(zo) = infsupELY ¢ [F(z)),
So St ’

respectively. The game has a value i.e. there exists a unique value function
ue == ul = u? (see [MPRI2] and [LPS14]).

Since €2 is bounded, the game ends almost surely for any choice of strate-
gies. This is true due to the fact that for ng > 1 large enough, we have
noe > diam(f2), and almost surely there will be infinitely many blocks of
length ng consisting of solely random moves in the game.

Observe that the history hj contains all the information at the moment k,
and since the strategies are a collection of Borel measurable functions from
all possible histories, it is clear that the game process will not be a Markov
process in general.
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This version of the tug-of-war game has good symmetry properties, which
we will utilize in the proofs. Other versions of tug-of-war games have been
studied for example in [PS08] and and a continuous time game in
ABI10].

A rough outline of the connection between the version of the game consid-
ered in this paper and p-harmonic functions is the following. First, assume
that we have a p-harmonic function in an open set ' D Q with a non-
vanishing gradient. Then, the p-harmonic function is real analytic, and
Theorem 4.1 in [MPR12] states that the game with probabilities (2.1 and
with the values of the p-harmonic function on the boundary approximates
the p-harmonic function in the game domain. The proof is based on the
gradient strategy for the p-harmonic function and on the optional stopping
theorem as well as on the asymptotic expansion in [MPRI0].

The general case requires game regularity of the boundary of the game
domain. Then, it is possible to use a barrier argument to get estimates close
to the boundary. By copying the strategies and utilizing the translation
invariance of the game, the same estimates also holds in the interior of the
game domain. Finally, a variant of the classical Arzela-Ascoli’s theorem
provides a convergent subsequence. To prove that the limit is a viscosity
solution to the homogeneous p-Laplace equation, a dynamic programming
principle related to the game is applied (for more details about the principle,

see for example [LPST4]).

3. MEASURE DENSITY CONDITION IMPLIES GAME REGULARITY

We show in Theorem [B.7] that a uniform measure density condition implies
game regularity for all p > 2. To establish this, we first show in Lemma[3.3la
more attainable criterion for game regularity. Then in Theorem B.6l we use a
‘cylinder walk’ framework, introduced in [LPS13], to obtain some important
hitting probability estimates.

Definition 3.1. A point y € 9Q satisfies a measure density condition if
there is ¢ > 0 such that

Q°N B, (y)| = ¢|Br(y)]
for all r > 0.

Definition 3.2. A point y € 9 is game reqular, if for all 6 > 0 andn > 0,
there exist 09 > 0 and eg > 0 such that for all fired € < €y and for all
xo € By, (y), there is a strategy ST for Player 1 such that

Pg: g, (wr € Bs(y) N Q%) = 1 —n.

If every boundary point of ) is game regular, we say that € is game reqular.

Roughly speaking, game regularity means that whenever the game starts
near a boundary point gy, Player 1 has a strategy to end the game near y
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with a high probability. Next, we give a more attainable criterion to obtain
game regularity. We modify the idea from p. 13].

Lemma 3.3. A boundary point y € 02 is game reqular if there exists a
constant 0 > 0 such that for all 6 > 0, there are parameters ¢g > 0 and
do > 0 such that for all fixred € < €y and for all zog € Bs,(y), there is a
strategy Sy for Player 1 such that

Pg‘%sz(the game ends before exiting the ball Bs(y)) > 6.

Proof. The idea of the proof is the following. By choosing dy > 0 small
enough, we can start the game as near the point y as we want, and in order
to exit the ball Bs(y), the game sequence has to exit all the concentric
smaller balls inside Bs(y) as well. The probability to exit all the concentric
balls inside Bj(y) can be estimated above via the uniform probability 6; it
is less than (1 — 6)¥, where k is the amount of concentric balls inside Bs(y).
Thus, the probability to end the game near y is close to one, when k is big
enough.

To be more precise, let 6 > 0 and n > 0. Now, there are § > 0, 91 > 0
and 0 < dp,1 < d such that for all € < €p; and for all zg € Bs,, (y), we have
a strategy Sll for Player 1 such that

IP’E?SQ (the game ends before exiting the ball Bs(y)) > 6.

We can assume that ey < dp,1. Again similarly as above, for the constant
d0,1 — €0,1, there are €g2 > 0 and 0 < dp 2 < dg,1/2 such that for all € < €2
and for all 29 € Bj,,(y), we have a strategy S? for Player 1 such that the
probability to end the game before exiting the ball Bs, , ., (y) is at least 6.
We can do this as many times we want. Let us do this k£ € N times, where
k is such that

(1-0)"<n.
Define 8y := 0 and €y := min{ep1,..., €k}, and fix any z¢ € Bs,(y)
and € < €p. We can assume that e < min{dg,dx—1 — dok,---,00,1 — o2}

so that the game position cannot jump over many concentric balls during
one turn. Denote the first time the game sequence exits Bs,, ,—¢,, ,(y) by
7= 7%(w) for all i € {1,...,k} with §oo := & and ¢y := 0. Also, denote
the set

A; = {exits the ball Bs,, | ¢, ,(y) before the game ends}
for all i € {1,...k}.

Recall that the game ends at the random time 7. Define a strategy ST
for Player 1 such that first, Player 1 uses the strategy Sf . If 7% < 7, Player
1 starts to use the strategy Sf_l after the stopping time 7%. Similarly, if
7F=1 < 7, Player 1 starts to use the strategy Sf_2 after the stopping time
7k=1. Thus, if we have stopping times 0 < 7% < 7F=1 < ... < 71 < 7,
after every stopping time 7¢, Player 1 starts to use the strategy Si_l for all
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i€ {2,...,k} and for all game sequences w € H*. After the stopping time
71, Player 1 does not change her strategy anymore. Observe that the earlier
strategy S? does not affect the game after the first time the game sequence
exits Bs,, | ¢, ,(y) for every i € {2,...,k}. Roughly this means that for
every i € {2,...,k}, after the stopping time 7¢, Player 1 forgets everything
that has happened prior the time 7.

Let S5 be any strategy for Player 2. The strategy So can depend heavily
on the past, so it could well be that our game process does not have any
Markovian structure at any game round. However, the uniform 6 is inde-
pendent of the information available, so roughly, Player 2 cannot gain too
much from the information of the past.

By the reasoning above, we can estimate iteratively

IP’E%SQ (exits the ball Bs(y) before the game ends)

S

B B [V B[] - [

k-1
%0 o
_ESfSQ |:XA’“ES§1752 |: H Xay
=1

<(1-6)k
<n.
This implies that
Pg%,& (xr € Bs(y) N Q) > Pg%,& (the game ends before exiting Bs(y))
>1-n
i.e. we have shown the game regularity.
O

To see that the uniform measure density condition implies game regular-
ity, we need a ’cylinder walk’ framework.

Cylinder walk. Set the constants «,8 > 0 with a + 5 = 1 as before in
([Z1), and fix the cylinder size > 0. Consider the following random walk
(called the ’cylinder walk’) in a n + 1 -dimensional cylinder B,(0) x [0,7].
Suppose that we are at a point (z;,t;) € B,(0) x [0,r]. Next, we move to
the point (z;,t; — €) with probability «/2 and to the point (x;,t; + €) with
probability /2. With probability 5 we move to the point (z;41,t;), where
Zj4+1 is chosen from the ball B.(x;) according to the uniform distribution.

We have the following estimate for the probability that the cylinder walk
exits the cylinder through its bottom; the proof is in the appendix of the

paper [LPS13].

Lemma 3.4. Let us start the cylinder walk from the point (0,t) with 0 <t <
r. Then, the probability that the walk exits the cylinder through its bottom
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is at least
1-Chp(t+e€)/r
for all € > 0 small enough.

Assume that the origin 0 € R"*! at the bottom of the cylinder belongs to
the set 02 x {0} and that this boundary point satisfies the measure density
condition. The set QN B, (0) x {0} C B,(0) x [0,7r]. We are interested in the
probability that the cylinder walk exits through the bottom and in addition,
at the first time the walk hits the bottom, the process is in the complement
of the set 2. Since the origin satisfies the measure density condition, the
complement has some positive Lebesgue measure. This suggests that the
event we are interested in could have some positive probability measure.

The cylinder walk can be constructed by combining three independent
random constructions. There is a "horizontal’ random walk with the initial
position £g = = € B,(0). The point Z;; is chosen according to the uniform
distribution in the ball B(Z;) C R™ for all j > 0. Further, there is a "vertical’
random walk in the real axis with steps +€ or —e and with the initial position
to =t €)0,r[. For all j > 0, the next positions are ;41 = tj+eort; 1 =t;—e
both with probablhty . In addition, there is the increasing sequence

J
U; = Z Ber,,,
m=1

where the Ber,,:s are independent Bernoulli variables with Ber,,(w) € {0,1}
and P(Ber,, = 1) = a. Therefore, a copy of the cylinder walk is obtained
by letting for j > 0

tj =tu;, rj=Tj-u;-

Let 7, stand for the first moment ¢; exits the cylinder through its bottom
or top i.e. the first j such that t; € R\]0,r[. Also, let 7, stand for the first
moment fj exits the cylinder through its bottom or top. Here, the subindex
g refers to a ’good exit’.

We assume that the walk starts from the point (0,¢) with 0 < ¢ < r
ie. g = 0 and ty = t. First, let us study the properties of the function
79 — Ur, = 7y — Tg. The random variable 7, — 7, is the number of times a
random horizontal movement has occured at the first moment the cylinder
walk hits the bottom. The proof of the lemma below is in the appendix for

completeness.

Lemma 3.5. Let 74,74, «, 3, and r be as above. The random variable T,—T,
holds the following properties for all a > 0

P(1, — 74 > ae ') > 1~ O(e) and (3.2)

> <1-— - :
P(rg =7y 2 ac?) < 1 \/g/mm{”t}yn,, 2d‘9+0() (3.3)



UNIFORM MEASURE DENSITY CONDITION AND GAME REGULARITY 9

/B8 4+ 0.01a
Upp =24 ————.
0.99«

For any a > 0, the inequalities (3:2)) and (B3] yield
Plae™ <1, — 7y < ae?) >P(ry — 75 > ae ') —P(1, — 7y > ae?)

with the constant

2 & 52 .
> —/ e 2 ds — O(e). (34)
Var Juntigon,,

Observe that

2 o0 52
— e 2ds—1
\/ 2 Jmin{t,r—t}
—Va Ynr

as t — 0. Thus, the inequality ([3.4) points out that for the cylinder walk
started near (0,0), the random variable 7, — 7, is very likely between the
times ae ! and ae~? for any e small enough and fixed a > 0.

Next, we concentrate on the distribution of the random variable Zj. As-

sume that Z is a random vector with the uniform distribution in the ball
B:(0) C R™. The density of the random vector Z is
1
f2(x) = 757 XB.(0)(7)-
[B(0)] P

We denote the measure of the unit ball by w,, := |B1(0)|. Let kg := ko, > 2
denote the constant in Lemma [A4] and fix any k > ko. For the density
of the random variable Z;, = Zle Z;, where the random vectors Z; are
independent and distributed as Z, we use the notation f; := fo—l 7z, The

density f is a decreasing radial function. In the appendix, we have derived
in (AI5) and (A7) the following estimates: There are constants C,, > 0

and C7 > 0 such that
1 n
0) < Cn o 9
7+(0) < (\/Ee>

n«x%h)z<éﬁn<%?—w%«xw><j%>n (3.5)

for all C, €]0,C1[. By the comment after the statement of Lemma [A4] in
the appendix, we have

and

fr(CVke) > C<ﬁ>n

for some ¢ := (,, > 0, if we choose C, > 0 so small that

1/n
@<<3?> . (3.6)

Let 7, stand for the first j when |z;| reaches [r,00[. Here, the subindex b
refers to a 'bad exit’. Recall that the origin at the bottom of the cylinder
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satisfies the measure density condition. Let C),;, > 0 denote the constant in
Lemma [34] and for all § > 0, denote

Ay = Bg(O) N Q°.

Theorem 3.6. Consider the cylinder Bs;3(0) x [0,0/3] for any fived § > 0.
Then, there exist constants 0 = 0,, > 0,eg = € pps > 0 and oy =
00,n,p,s > 0 such that

P(ry <71y orty, >6/3 or xr, & Asi3) <110

for all € < ey whenever the cylinder walk starts from the point (0,t) for some
0<t<dp.

Proof. To establish the result, we use the inequality ([B4]) to estimate how
many times it is likely that a random horizontal movement has occured at the
first time the cylinder walk hits the bottom. Then, we use the estimate (B.5])
and the fact that the vertical and horizontal movements are independent to
estimate the probability that we are in the complement of the set €2 at the
first time the walk exits the cylinder through its bottom.

Let 0 < A < 1, where the exact value of A will be fixed later. Define

oA
30,

do : (3.7)

and start the cylinder walk from the point (0,¢) for some 0 < t < dy in the
cylinder Bs3(0) x [0,6/3].

Lemma [34] states that
P(r, < 7y or tr, >6/3) < 3Cn 0 (t+€) < 3Cu,0 (o +€).
Therefore, we have by (B.7)) that
P(ry <7gorty, >6/3 or wry & Asy3) < O(e) + A+ 1 — Pz, € Ag/3)-
The inequality ([B.4]) and the remark after suggest the estimate
P(xr, € Asj3) = P(Zr,—7, € As)3)
> IP’(:I:TQ_;Q € As/3 and 52l < Ty — Tg < 526_2)

9%
= > P(#r,r € Agp and 7y — 7y = k).
k=[62e—1]

Denote the index set

I:={[0% 1, [6%¢ 1 +1,..., 6% 2.
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Since the random variables 7 and 7, — 7, are independent for all k € I, we
have

> P(ir, -, € Agjs and 7, — 7 = k)
kel

=Y P(ak € Agys)P(ry — 7y = k)
kel

Let k € I and choose the constant C,, > 0 as in ([3.0). We may assume that
C. < 1/3 and k > ko, where kg > 2 is the constant in Lemma [A.4l Because
Vke < 6 and the density fy, is a decreasing radial function, we can calculate

]P’(fk S A(;/g) > ]P’(fk S BC*\/Ee(O) N QC)
> fe(CiVke)|Be, / (0) N Q°).

By using the estimate ([B.5) and the uniform measure density condition, we
obtain

fe(CuVke)|Be, 5.(0) N Q|

(&) (2 ver) () s

C.\"(0.99 .
_wnc<a> <wn _Cn(c*) )7

where the constant ¢ > 0 comes from the uniform measure density condition.
This together with the inequality (34 yield

ZP(mk € A5/3> <7'g —Tg=k

kel

C, 099 o . _
anc<a> < >IP’ 6% 1<Tg—7'g<52e 2)
)75 fio,

Define

C.\"/0.99 2 > 52
6" S — Un{Lx " — d
» T C<C’1> < Wn Cn(Cx) ) 2T /lénype s

P(ry <7y orty, >0/30r ) & Asyz) <1 —0np+ O(e) + A

so that

Denote 6 := 6,, ,/2 and thus, we have proven the claim for all € and A small
enough. O
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If Player 1 plays by canceling the moves of the other player, we obtain
Theorem B71 Observe that this strategy is not optimal for Player 1 in the
sense that Player 1 also tries to cancel the moves that might benefit her.

The cancellation strategy was introduced in the paper [LPS13] to prove
Harnack’s inequality for p-harmonic functions via tug-of-war games. In addi-
tion, the cancellation strategy can be used to prove regularity properties for
viscosity solutions of the inhomogeneous p-Laplace equation (see [Ruol6]).

Theorem 3.7. If y € 0N) satisfies the measure density condition, then it is
game reqular for p > 2.

Proof. To establish the result, our aim is to use Lemma [3.3] and therefore,
to find a uniform lower bound for the probability that the game ends before
exiting a given ball. If Player 1 plays by canceling the moves of the other
player, the lower bound 6 > 0 for the probability is obtained by using
Theorem

We can clearly assume that y = 0. Let § > 0, and consider the cylinder
Bys/3(0) x [0,6/3]. Define a constant dp as in ([B.7), and find ¢g > 0 and
A > 0 small enough such that we can apply Theorem Let x¢ € Bs,(0)
and € < €y. At every moment we can divide the game position as a sum of

vectors
x0+2vi+2vﬁ+2vg.
kel kels kels
Here, I; denotes the indices of rounds when Player 1 has moved with the
vectors v,i as her moves. Similarly, Player 2 has moved in the indices of
rounds I, with the moves v,% as his moves. The random movements have oc-
cured in the indices of rounds I3, and these random movements are denoted
by v,i’.
Let
M :=2 [@—‘ ,

€

where the factor 2 is due to the fact that the players cannot step to the
boundary of Bc(x;) for any j. Define the following strategy S} for Player 1
for the game that starts from xy. She always tries to cancel the earliest move
of Player 2 which she has not yet been able to cancel. If all the moves at
that moment are cancelled and she wins the coin toss, she moves the game

point by the vector

Zo
—€/2—.
|70l

She does this until she has won M — 1 more coin tosses than Player 2. If she
wins her Mth more coin toss, her move will be such that the game position

1S
D vl

kels
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after the move. Observe that the game, with the strategy S7, is related to
the cylinder walk, when we start the cylinder walk from the point (0, Me/2)
with Me/2 — |xo| < dp as € — 0.

Let us define three conditions for the game sequences of the game:

(A) Player 1 has won the coin toss M more times than Player 2, and at
the moment this happens, the game sequence is in the set 2°.
(B) Player 2 has won the coin toss at least % more times than Player 1.

(C) ‘E:kelgvg‘z %’
We are interested in the following event
X := {the condition (A) happens before conditions (B) and (C)},
and Theorem states that there is a constant 6 := 0,, , > 0 such that
Py s,(X) > 6.
Now, we can estimate
Pg: s,(the game ends before exiting the ball Bs(0)) > Pgr s5,(X).

Above, we also used the fact that the game sequences for which the game
has ended before Player 1 has won M more coin tosses than Player 2 are
good for our purposes. To finish the proof, we can use Lemma [3.3] and thus
the proof is complete. O

It is worth mentioning that in the case p > n, every point becomes game
regular. This is proved in [PS08], and the same also holds for the version of
the game considered in this paper. Roughly, as p increases, the probability
for the player to end the game before exiting a given ball increases.

APPENDIX A. HITTING PROBABILITIES FOR A CYLINDER WALK

Fix the cylinder size r > 0. The cylinder walk in a cylinder B,.(0) x[0,7] C
R™*! can be constructed by combining three independent random con-
structions. There is a ’'horizontal’ random walk with the initial position
Zo = « € B,(0). The point Z;4; is chosen according to the uniform distri-
bution in the ball B.(Z;) C R™ for all j > 0. Further, there is a ’vertical’
random walk in the real axis with steps 4+¢ or —e and with the initial po-
sition £y = ¢ €]0,7[. The next positions are t;11 = ¢; + € or tj;1 =1; —€
both with probability % for all 5 > 0. In addition, there is the increasing
sequence

J
U; = Z Ber,,,
m=1

where the Ber,,:s are independent Bernoulli variables with Ber,,(w) € {0,1}
and P(Ber,, = 1) = a €]0, 1[. Thus, a copy of the cylinder walk is obtained
by letting for j > 0

tj = tUj, €T = i’j—Uj-
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Let 7, stand for the first moment ¢; exits the cylinder through its bottom
or top, and let 7, stand for the first moment #; exits the cylinder through
its bottom or top.

Recall Hoeffding’s (or Azuma’s or Bernstein’s) inequality for a sum of
independent and identically distributed random variables (see for example

[KIe08| p. 198]).

Theorem A.1. LetY,, be independent and identically distributed symmetric
R™-valued random variables, m € {1,2,..., N}, that are uniformly bounded:
|Yin| < b almost surely for all m. Then,

)\2

In the theorem above, the factor 4 instead of 2 comes from the use of
Levy-Kolmogorov’s inequality (See for example ﬂm p.397])

>)\><2]P’< >)\>

We assume that z = 0 i.e. 9 =0 and y = ¢ with 0 < ¢t < r and denote
8=1-aqa.

max
1<m<N

Lemma A.2. Let 74 and 7, be as above. The random wvariables 7, and
Tg — T¢ have the following inequalities for all a > 0

P(7, > ae ') >1—O(e) and (A.8)

P(ry — 7 > ae™ ') > 1—O(e). (A.9)

Proof. The vertical movement consists of the moves +€ or —e in the real
axis. Let Y; be independent and identically distributed random variables

with Yj(w) € {—€,€} and P(Y; = €) = P(Y; = —¢) = £ for all i. Recall the
cylinder size B,(0) x [0,7]. Now,

ac)

k<ae—

(7, > ac™!) = ( max ;Y < min{t,r — t}>

=1- Y, > t,r—t
<k1<naaeuxlz min{t,r }>

Random variables Y; are bounded, |Y;| < € for all i > 1. By using Hoeffding’s
inequality i.e. Theorem [A.Tl we can deduce that

IP( ma iy > min{t,r — t}> < dexp < _ (minft,r = t})2> < 0(e).

k<ae—1 % 2a€
i=1

Consequently, we have proven the first part (A.S).
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For the second part, let us consider the event
B :={0.99a1, < 74 < 1.0la,}. (A.10)
Denote the sets
B* :={U; < 1.01aj for all j > ae~'} and
B, :={U; > 0.99aj for all j > ae'}.

Again, apply Hoeffding’s inequality with Y,,, = Ber,, —a, A =0.01laj, b =1
and N = j to get

P(U; > 1.01aj) = P(U; — aj > 0.01aj) < P(|U; — evj| > 0.01crj)

a?j
§4exp<— 2‘104>.

In a similar fashion, we can calculate

. a?j
P@Qg&%qﬂ§4wp<—2&m>.
Thus, the summing over all indices j > ae~! leads to
P((B*)¢) = P(U; > 1.01a;j for some j > ae™ ')

< Y PU; > 1.01aj)

j>ae!

and similarly,

These calculations imply
P(B. and B*) > P(B,) — P((B*)?) > 1 - O(e).
Observe that
{B, and B* and 7, > ae_l} C B,
and thus,
P(B) > P(ry > ac ') — O(e).

Since 7, > 7, always, we have {7, > ae~'} C {r; > ae~'}. Combining this
with the first result (A8 we can deduce that

P(B) > 1— O(e). (A.11)
In addition, we have by a direct calculation

BC{W~ : W}

10l ¢T89S TG99 9
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Therefore, we obtain by using the inequalities (A.8]) and (A.11)

. _ 8 —0.0lx
P(r, — 7y > ae ) > ]P’(WTg ae”

= P(7, > 1.0laa((B — 0.01a)e) ! and B)
> P(7y > 1.01aa((8 — 0.01a)e) ") — P(B)
>1—0O(e).

Thus, we have proven the second inequality (A.9]). O

Lemma A.3. Let 74,7,,t,7 and o, f > 0 such that o+ 3 =1 be as at the
beginning of the appendiz. Then, we have for all a > 0 that

52
P(r, — 7, > <1l-—-— 2 @)
(g — 7y > ae™? o /mm{” 9, 2 ds+ O(e)
with the constant
g 5+ 0.0l
P 0.99«

Proof. By using the inequality (A1) and the inclusion after it, we can
deduce

P(ry — 7y > ac~?) < P(ry — 7y > ac 2 and B) + P(B°)

- 0.99aa
(= Gy ooiage) OO

where the set B is defined as in (A10]).

We estimate the probability of the event {7, > de~?} for all d > 0. Con-
sider the following independent and identlcally distributed random variables:

Ziw) € {1,-1}, P(Z; = 1) =P(Z; = 1) = L and E[Z;]? = 1 for all i > 1.
For these random variables, we have the following equality (see for example
[KIe08| p. 351])

m N N
P<1<mma§N -—1ZZ_Z> 21@(221_1) ]P’<Z;Z, l>

for all integers N > 1 and [ > 1. Further, since E|Z;|> =1 < oo for all i > 1,
we can use the Berry-Esseen theorem to determine the speed in the central
limit theorem (see for example [Shi96) p. 63]), and thus

P<ZZ >z\/_> (gzi:z\/ﬁ>

=1

2 oo 2
> % ds — O(N~/?).
—m/le - O
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Observe that for all € > 0 small enough
[ min{t,r —t}e '] - 2min{t,r —t}

Ve

Therefore, we have

P(%gzde—2)gp< max ZZ< min{t,r —t}e~ 1)

1<m< |de=2] £

< e —
1 \/%/;mm{tr t} 2 ds+o( ) D

Lemma is now an immediate consequence of Lemmas [A.2] and [A.3]

Next, we prove a technical result (Lemma [A4] below) that we use in
Section 3 above. First, in order to keep the calculations simple, let the
dimension n be one for now. Assume that Z is distributed according to the
uniform distribution in | — €, €[ for some € > 0. Then for two independent Z;
and Zy both distributed as Z, the density of the random variable Z; + Z5
can be computed via convolution. Thus, since fz(r) = 1/(2¢)X)_ (((z), we
have

2
i) = [ fato =)ty = (52) 2~ lal)Xyzca@)

For any k£ > 1, denote the density fi := f Ezp where Z; are independent

random variables distributed as Z. Slmllarly as in the case k = 2, we can
deduce and prove by induction (see for example [Rén70l p. 197]) that for any
k>1
éztxgﬁ(—l)j(k)(x+ke—2je)k_1 if © €] — ke, ke[
fe(x) = < (k=1)!(2e)F £=j=0 J ’ ’

0, otherwise.

Unfortunately, it is hard to get quantitative estimates from it.

There have been a lot of studies on the concentration function of a sum
of independent random variables (see for example [Ess68]). However, we are
interested in the pointwise value of the function fj at the origin, and we will
estimate the value by hand for the reader in a rather accessible way.

The characteristic function of the random variable Z can be easily calcu-

lated,
1 [ sin(et)
t) = — "y = :
vz (t) 2e /_Ee * et

Let k > 2. Because of the independence,

0= (Y
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Now, we have [* |<’02f:1 2, (1) dt < o0, so we can use the well-known in-
version formula

1 > —itx
fulw) = o / et o5 g (1) .

—00

This inversion formula yields

Fr(0) = %/01 <Sin€¥>kdt+ % /oj (Sinf)>kdt.

Define
1 —cosz
h(z) = 2——
() =2
so that we have for any 0 < m < 27
: 2
sin z z
<1-h — A.12
S <1 h(m) (A.12)

for all |z| < m. This inequality is true since the function sin z/z decreases
for 0 < z <7 implying

for all 0 < z < 27. This inequality yields

22

1—cosz—h(m)5 >0

for all 0 < z < 27 so we have the inequality (AI2]), since both sides of
the inequality (A.12]) are even functions. By using the inequality (A2, a
change of variables formula and the inequality 1 — 2z < e™% for all z € R, we

have
e 1 . k 1 . k
l/ <Sln(et)> dt:i/ <SIDZ> s
T Jo €t e Jo z

1 1 2\ k
< - <1 - h(l)z—> dz
e Jo 6
1 [ 22
< — e kf]; - dz.
€ Jo

Again, via changing the variables we derive

1 /! —*kgwd 1 6 1 /°° _gd 3 1
— e 28 =T —Y— e U=
e Jo ~ e\l krh(1) 27 Jo 27h(1) Vke

Thus, we have estimated

671 : k
l/ sin(et) dt < 3 L
T Jo et 27h(1) Vke
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Because sin z < 1 for all z € R, we can estimate the second integral directly,

and hence
1 [ /sin(et)\" 1 [>®1 1
- < = - - -
T /61 ( et > = 7T€/1 2k dz = me(k —1)

Therefore, we have derived the estimate

3 1 1
27h(D) Ve | me(k—1)°

Next, we extend the argument to the higher dimensions as well. Assume
that Z is a random vector with the uniform distribution in the n-ball B(0),
n > 1. The density of the random vector Z is

1
fz(z) = mx&(o) (7).

fx(0) <

Using the same approach as in dimension one, we first need the characteristic
function of the random vector Z. Denote the measure of the unit ball by
wy, := |B1(0)] = 7/2/T'(% + 1), where the function T' is the usual gamma
function. The random variable Z is invariant under rotation i.e. the density
function is a constant on every sphere S"1(0) := {z € R" : |z| = r}
for all » > 0. Hence, by rotating the ball B.(0), we see that pz(u) =
¢z((r,0,...,0)) for all u € R™ such that |u| = r. Let r > 0, and direct
computation with a change of variables x = ey yields

¢z((r,0,...,0)) = /neimlfz(x) dz

— i ieryl dy dyn
B1(0)
1
_ 1/ 1 _yl (n— 1)/2 ETY1 dyl
1
1
_ Ynol / D72 cos(ery) dyi.
1

A spherical Bessel function of order n/2, often denoted by .J, /5(2), has
an integral representation

z ’fl/2 1 E 2 n—1
Jna(z) = <—> 7/ 1 —1t*)"2 cos(zt)dt
(see for example [Wat44]). We can use this integral formula to obtain
1
| =R costery s = (/220 + ) afer).
—1

Thus, we have derived the characteristic function

n/2 n
pat) = () T+ Dl (A13)

Wn—1

Wn
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for all u € R™. Spherical Bessel functions have a connection to our calcula-
tions in dimension n = 1, since one could show that

sin z 7T
S \/ QJ%(Z)
holds for all z € R.

It is possible to express J, /2(2) as a product of factors such that each

factor vanishes at one of the zeros of z="/2J, /2(2). Denote the zeros of the
function z_"/2Jn/2(z) by £jn/2,15 Fins2,2: Tinj2,3, - -+ With jp 0, > 0 for all
I=1,2,... and j, 21 < Jnj22 < Jnj2,3 < . Then, we have the infinite
product formula of the Bessel function

(see [Watd4l p.497-498]). The number of zeros of z‘"/zjnp(z) between the
origin and the point

Ly 1= mﬂ—i—%(n—kl)

is exactly m for all m big enough (see [Watd4l, p.495-497]). Consequently,
the infinite sum » ;2 j;/22 , converges, since

oo B o 1 2
;Jnfz,l < g ((1 —D)r+7/4(n + 1)) =

l=p

for some p big enough. Therefore, the infinite product in the formula (AT4)
is well-defined for all z € R.

Via independence we have

oy 7 W) = (pz(w)",

and the inversion formula together with the characteristic function (A.13)),
the infinite product formula (A.14]) and a change of variables z = eu yield

fe(0) = ﬁ /R (pn(w)* du

= @ fo o [T (0]
(2m)me™ . (0) T2 0

=1

" (2m)nen /]R”\BS(O) (M) (ns2(121))" d=

Now, the function

for all s > 0.

|22

jn/2,l

1—

>0
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forall [ > 1,if 0 < |z| < Jnj2,1- In addition, since 1 — z < e™ % for all z € R,

we have
v, W05
—_— 1— - dz
(2m)men © 11;[1 Inja

Bjn/2,1

n—1 .yn 0o —
< |Sl | /2 6—7’2]9 2% Jn/22,l7~n—1 dr
—(@m)rer Jo
n—1 o0 .
< ’Sl ‘ e—Tzk Z[oil .]n/zg’lrn—l dr'
—(@m)rer Jo
. . . 9 \—1/2
Hence, we can integrate with a change of variables r = (k: ] Jn /22 l) %

to obtain

—1
ST [ 6—7“2’92?21 j;/22,l7=”—1 dr
(2m)me™ Jo

B n fooo et =1 gt ( 1 >n
- n n/29n > i " |
D(§ + Dnn/220 (2 4, )" \ Vhe

Thus, there is a constant

- n [ e Pl dt
Cn = n n/29n 0o -2 \n/2 =0
L(5 + D)m/220 (3521 Gy o)
such that
ey, o (M) ()
1— - dz<c,| — ) .
(2m)nen By, 5.1 (0) 11;[1 ‘7721/271 Ve

The function J,/5(]z]) < 1 for all z € R™ (see for example [Wat44]).
Therefore, we get by a direct calculus

N (o) R G
(2m)ne R™Bj,, 5.4 (0) 2

—1li9kn/2 k
LSRG
(27T)6 jn/Z,l

. n n/2 k
_ (Jns2,1) 1 I R A
210 (% 4 1)rn/2en \ k — 2 In/2,1 2

for all £ > 2. There exists the following lower bound for the first zero j, 1

(see [IS85] and for example [EIb01])

) m+1
]v71>’U+T>U+2
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for all v > —%. Thus, if n is even, n = 2h for some h > 1, we get
['(h+ 1)2" _ hi2h

(Jn,0)" (h+2)

Similarly, if n is odd, n = 2h + 1 for some h > 0, we get

T(h+ 3)2h+1/2 (2h + 2)12//27
(Jha1/2,0)PFY2 7 4 (B4 1)!(h + 2.5)h+1/2

<1.

<1

Hence, there exists a constant ko := kg, > 2 such that

(k - 2> ((jni,1>n/2”g * 1)>k : (%)

for all k£ > ky. Denote

N n
62 — (]n/2,1) >0
T IT(B + 1)an/?

and
C, = 2max{c}, 2 }.
Thus, we have derived the estimate
i(0) < 0<i) (A.15)
ke
for all k& > k.

Let k > ko. Theorem [Ad] implies that there is a constant Cy := Cy,, > 0
big enough such that for all € > 0

k
]P’<‘ 3z
=1

By using the convolution formula, we have that

< Clx/Ee> > 0.99.

fe@) = [ foca (e — )X, 0 () dy = / o

]Rn
= / Jr—1(y) dy
Be(x)

holds for all x € R™. The function f; is a decreasing radial function. Thus,
we can deduce by using the formula (AI6) that fo is also a decreasing
radial function, and by induction fj as well. Therefore, we can denote the
density fx as a function of the radius |u| for all u € R™, and we have for any

F1(0)[ B, (0) —I—fk(C’*\/Ee)OBCl\/EE(Oﬂ _ |BC*\/E€(0)|) > 0.99.

(A.16)
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This inequality yields

f(CovEe) > 207 OB, v O

1Be, vie (O] = [Be, /e (0)]
0.99

B mm(%)n.

Now, we use the estimate (A.T5)) to obtain

0.99 C, "
fu(CVhe) 2 gy ‘“‘(owe)

(&) (S -eer)(F)

Thus, we have proven the following lemma.

\%

Lemma A.4. Let € > 0 and let Z be distributed according to the uniform
distribution in the ball B((0) C R™. For any k > 2, denote the density
of the random variable Zle Z; by fr, where the random variables Z;, i €
{1,...,k}, are independent and distributed as Z. Then fi is a decreasing
radial function, and there exist universal constants ko = ko, > 2, Cy =
Cin >0 and Cy, > 0 such that for all k > ko and C, €]0,C}[ we have

fr(Cvke) > <Ci1>" (Ow—ig — on(o*)"> (ﬁ)n (A.17)
Observe that

fr(CVke) > C<ﬁ>n

for some ¢ := (, > 0, if we choose C, > 0 so small that
0.99 \ /"
C. .
- <Wn0n>
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