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ABSTRACT

Zhou-Kangas, Yue
Interactive Methods for Multiobjective Robust Optimization
Jyväskylä: University of Jyväskylä, 2018, 78 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 16)
ISBN 978-951-39-7549-4 (PDF)
Finnish summary
Diss.

Practical optimization problems usually have multiple objectives, and they also
involve uncertainty from different sources. Various robustness concepts have
been proposed to handle multiple objectives and the involved uncertainty simul-
taneously. However, the practical applicability of the proposed concepts in deci-
sion making has not been widely studied in the literature. Developing solution
methods to support a decision maker to find a most preferred robust solution is
an even more rarely studied topic. Thus, we focus on two goals in this thesis in-
cluding 1) analyzing the practical applicability of different robustness concepts in
decision making and 2) developing interactive methods for supporting decision
makers to find most preferred robust solutions under different types of uncer-
tainty.

We first consider decision uncertainty (i.e., the optimized solutions cannot
be guaranteed with exact implementations). We propose a robustness measure
to quantify the effects of uncertainty in the objective function values of solutions.
We incorporate the robustness measure to an interactive method, where the solu-
tions are presented to the decision maker with enhanced visualization.

We then consider parameter uncertainty (i.e., the parameters in the objective
functions involve uncertainty). We first utilize the concept of set-based minmax
robustness and develop a two-stage interactive method to support the decision
maker to find a most preferred set-based minmax robust Pareto optimal solution.
Since set-based minmax robust Pareto optimal solutions are difficult to compute,
we propose an evolutionary multiobjective optimization method to approximate
a set of them.

We then analyze different robustness concepts and verify that lightly robust
Pareto optimal solutions are good trade-offs between robustness and objective
function values. For supporting a decision maker to find a most preferred lightly
robust Pareto optimal solution, we propose an interactive method. The results of
this thesis extend the applicability of robustness concepts in decision making to
practical problems. In addition, the proposed methods bring decision support in
multiobjective robust optimization into practice.

Keywords: Robustness, multiobjective optimization, uncertainty, interactive meth-
ods, decision-making
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1 INTRODUCTION

Many optimization problems in practice have multiple objectives and involve un-
certainty from different sources. These two issues complicate the process of find-
ing solutions to the problems. Conventional multiobjective optimization meth-
ods often ignore uncertainty and consider multiple objectives simultaneously.
However, it is also important to handle the uncertainty involved. For example,
when designing a product, finding deterministic solutions can result in products
with unexpected and undesired degradation in quality if the designed products
can only be guaranteed to be produced with some tolerance interval. Also, when
the input data of the problem is not known exactly or there are uncertain future
developments, deterministic solutions can be rendered invalid.

Practitioners and researchers aim at finding solutions that are sufficiently
immune to uncertainty involved while handling multiple objectives simultane-
ously. When the implementation of solutions cannot be guaranteed exactly, de-
cision uncertainty is considered. It refers to the type of uncertainty which is re-
flected in the decision variables of the optimization problems. For example, de-
cision uncertainty with multiple objectives is considered in [27] in designing an
electromagnetic non-contact flow measurement device. In the device, the mag-
netic direction (a decision variable) cannot be implemented with the desired ac-
curacy because the magnet direction can only be guaranteed with some tolerance
interval. Considering only deterministic solutions can cause inaccurate measure-
ments given by the devices.

When there is data that is unknown exactly, e.g., due to imprecise measure-
ments or uncertain future developments, the uncertainty is usually reflected in
parameters in the objective functions or constraints. For example, in the wood
cutting problem considered in [45], the quality of wood can only be determined
during the cutting process. Thus, the quality of the wood is treated as an uncer-
tain parameter in the objective functions when generating a cutting plan. Without
considering this uncertainty, implementing a cutting plan can result in e.g., using
lower quality wood for higher quality orders. Other practical problems with pa-
rameter uncertainty include e.g., finding the shortest path in public transporta-
tions [52, 66], and optimizing investment portfolios [29, 39].
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As mentioned before, conventional multiobjective optimization methods
often ignore uncertainty and consider multiple conflicting objectives simultane-
ously to find a set of Pareto optimal solutions or support finding the most pre-
ferred Pareto optimal solution (see e.g., [18, 56, 70, 74]). Each solution corre-
sponds to an objective vector which consists of the objective function values of
the solution. We say that a solution is Pareto optimal if we cannot improve the
corresponding value of an objective without impairing at least one of the others.
We call the set of objective vectors corresponding to the Pareto optimal solutions
the Pareto front. Usually, only one final solution is selected for implementation,
and it is found by utilizing the preferences of a decision maker. A decision maker
is a person who has expert knowledge in the problem domain. In this thesis, we
assume that there is only one decision maker in each problem.

One can categorize multiobjective optimization methods into four classes
for the decision maker to find a most preferred solution [42, 56]: no-preference
methods, a priori methods, a posteriori methods, and interactive methods. When
the decision maker does not have specific preferences about the final solution, we
can find a neutral compromise solution (i.e., a solution corresponds to an objec-
tive vector somewhere in the “middle” of the Pareto front). In a priori methods,
we first ask the decision maker to specify her or his preferences and find a solu-
tion which satisfies the preferences as well as possible. In a posteriori methods,
we first calculate a (representative) set of Pareto optimal solutions and then the
decision maker is expected to choose a final solution based on her or his prefer-
ences.

In interactive methods, we allow the decision maker to direct the solution
process towards the most preferred solutions by iteratively specifying prefer-
ences. Different interactive methods have been successfully applied to support
decision makers to find a most preferred solution for different types of problems
(see e.g., [16, 56] for descriptions of different interactive methods and some ap-
plications). They provide the decision maker opportunities to learn about the
problem and the feasible objective vectors. In addition, they also allow the de-
cision maker to learn about her or his own preferences and how attainable they
are.

As mentioned before, with uncertainty involved, Pareto optimal solutions
can be rendered with unexpected and undesired degradations in their objective
function values. Thus, considering uncertainty is as important as considering
multiple objectives. The effects of uncertainty on the solutions can be studied
via sensitivity analysis (see e.g., [69]) after the solutions have been found. There
are also different approaches in the literature to consider objectives to be opti-
mized and uncertainty simultaneously. The stochastic approach (see e.g., [13])
utilizes data to estimate a distribution of the involved uncertainty. The estimated
distribution is utilized in reformulating the original objectives to e.g., consider
the mean and variance of the objective function values. The reformulated objec-
tives are then optimized. The fuzzy approach (see e.g., [46]) relies on a decision
maker’s expertise to judge the memberships of solutions under uncertainty. Ro-
bust optimization approaches (see e.g., [8, 10, 44, 79]) consider the possible re-
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alizations of uncertainty simultaneously and find solutions that are good with
respect to them. In this thesis, we concentrate on robust optimization approaches
and do not make any assumptions of sufficient data to estimate distributions nor
rely on the expert judgment of a decision maker to build fuzzy membership func-
tions.

The field of single-objective robust optimization (see e.g., [8, 10, 73]) has
been studied since 1970s. The field of multiobjective robust optimization has
only gained research attentions in recent years with a focus on the developments
of robustness concepts to define Pareto optimal solutions under uncertainty (see
summaries of the concepts in [44, 79]). It is hard to find discussions on the practi-
cal applicability of multiobjective robustness concepts in decision making. Also,
very little attention has been paid to solution methods for supporting a decision
maker to find a most preferred robust Pareto optimal solution.

However, as mentioned before, usually only one final solution is chosen to
be implemented based on the decision maker’s preferences. Thus, only defining
and computing a set of robust Pareto optimal solutions is not enough for solving
multiobjective optimization problems under uncertainty. We need to support the
decision maker to find the final solution based on her or his preferences. Due
to different possible realizations of uncertainty (which we call scenarios), the ob-
jective function values vary in different scenarios. A Pareto optimal solution in
a scenario can be very bad in other scenarios. Since the existence of solutions
which are good in every scenario can be rare, we need to help the decision maker
to understand robustness (i.e., consequences of uncertainty) and at the same time
to consider the preferences in objective function values. In addition, we also need
to support the decision maker to understand and consider her or his preferences
in the trade-off between robustness and objective function values (i.e., the quality
of solutions).

In this thesis, we consider multiobjective robustness focusing on the practi-
cal applicability in decision making. We consider different robustness measures
and analyze the minmax robust solutions [26, 29, 53], lightly robust solutions [44],
and compare them with deterministic solutions. Minmax robustness optimizes in
the worst case with respect to uncertainty. Light robustness finds the best solu-
tions in the worst case under the condition that the degradation of their nominal
objective function values are tolerable. The nominal case or scenario describes
the most likely or undisturbed realization of uncertain parameters or variables.
For finding deterministic solutions, we first identify a nominal case or scenario.
Then, we solve the problem in the nominal case as a deterministic multiobjective
optimization problem.

We also develop solution methods for supporting a decision maker to find a
most preferred robust Pareto optimal solution. As mentioned before, interactive
methods have many advantages, e.g., they enable the decision maker to learn
about the problem, the feasible objective vectors, and her or his own preferences.
Thus, the methods we develop in this thesis are interactive methods. We concen-
trate on decision uncertainty and parameter uncertainty in objective functions.
The type of problems where uncertainty is reflected in the parameters in the con-
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straints is not within the scope of this thesis since they can be handled in the same
way as in single-objective optimization problems (as mentioned in [79]).

Supporting the decision maker to find a most preferred robust Pareto op-
timal solution is very challenging. The challenge comes from the simultaneous
consideration of multiple objectives and uncertainty with the supports for the
decision maker in the solution process. In this thesis, we tackle this challenge by
considering the following four aspects:

1. As is usually the case, robustness and the objective function values corre-
sponding to the solutions, which we call quality of the solutions, are con-
flicting with each other. It is desirable for the decision maker to quantify
how much more “robust” the solutions can become by sacrificing some
quality.

2. Robustness can have different meanings in different disciplines (for some
examples, see [2, 41]). In addition, “robustness" does not have a natural
meaning or unit, a clear definition of robustness with a practical meaning
should be communicated to the decision maker so that (s)he knows what is
to be expected and how to interpret the provided information.

3. During the solution process, the decision maker should be supported in
terms of grasping a total balance not only on the multiple conflicting objec-
tives but also on robustness.

4. During the interactive solution process, the decision maker should not be
exposed to a too heavy cognitive load. The information shown to the deci-
sion maker and the information requested from the decision maker should
be carefully considered.

With the collection of five papers [PI, PII, PIII, PIV, PV], we address the four
aspects introduced above and develop interactive methods to support decision
makers to find a most preferred robust Pareto optimal solutions. Paper [PI] con-
centrates on decision uncertainty and proposes a robustness measure to quantify
the effects of decision uncertainty on solutions. We visualize the solutions to help
the decision maker to understand the behaviors of solutions under decision un-
certainty. An interactive method with the new robustness measure incorporated
is also proposed to support the decision maker to find a most preferred solution.
As a result, the decision maker is supported in being aware of and able to accept
the behaviors of the solutions when the solutions cannot be implemented exactly.

Paper [PII] focuses on parameter uncertainty. In the paper, we propose the
MuRO-NIMBUS method to support the decision maker to find the most preferred
robust Pareto optimal solution. In MuRO-NIMBUS, we employ the concept of
set-based minmax robustness [26] and introduce a robust version of an achieve-
ment scalarizing function [81] approach to find a set of set-based minmax robust
Pareto optimal solutions. We then interact with the decision maker and visualize
the solutions. With the two-stage process, the decision maker can be supported
to find a most preferred set-based minmax robust Pareto optimal solution based
on their objective function values in the nominal case. The final solution satisfies
the decision maker’s preferences best and it is at the same time valid even when
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the worst case happens.
In the literature, clear instructions on how to compute minmax robust Pareto

optimal solutions are not always given. We can solve the robust version of the
scalarized subproblem in MuRO-NIMBUS by e.g., approximation. For finding
a set of set-based minmax robust Pareto optimal solutions, we need to solve
multiple subproblems. In order to ease the computation, we develop a simple
indicator-based evolutionary algorithm for set-based minmax robustness (SIBEA-
R) in Paper [PIII] to approximate a set of set-based minmax robust solutions. The
approximated set of solutions can then be used in MuRO-NIMNBUS when inter-
acting with the decision maker.

As mentioned before, one of the goals of the thesis is to analyze the practical
applicability of different robustness concepts in decision making. The conserva-
tiveness of minmax robustness has been recognized in single-objective cases (e.g.,
in [12]). By conservativeness, we mean that the objective function values of min-
max robust solutions can be very bad in other scenarios even though they are
the best in the worst case. In order to facilitate the development of supporting
a decision maker to find a less conservative solution (than minmax robust solu-
tions), we analyze the relationships of three different kinds of robust solutions
and prove that lightly robust solutions are good trade-offs between robustness
and quality in Paper [PIV]. Based on our findings in the analysis, we also pro-
pose two strategies to support decision making.

After the finding that lightly robust solutions are good trade-offs between
robustness and quality, we develop an interactive method LiRoMo in Paper [PV]
to support the decision maker to find a most preferred lightly robust Pareto opti-
mal solution. In this method, we propose a reformulation of the scalarized lightly
robust subproblem under some assumptions to efficiently calculate lightly robust
Pareto optimal solutions. We also visually support the decision maker to under-
stand how much objective function values are sacrificed to gain robustness in a
solution and how much a nominal solution lacks of robustness.

The rest of the thesis is organized as follows. In Chapter 2, we present back-
ground information and basic notations and definitions related to multiobjective
optimization. In Chapter 3, we introduce notations related to multiobjective opti-
mization problems under uncertainty, review the related literature of multiobjec-
tive robust optimization and describe the fundamental robustness concepts rele-
vant for this thesis. We summarize the proposed interactive method for solving
multiobjective optimization problems under decision uncertainty in Chapter 4
followed by the summary of the MuRO-NIMBUS in Chapter 5. The analysis of
the relationships between three different kinds of robust solutions is summarized
in Chapter 6 together with the two proposed decision support strategies. The
LiRoMo method is presented in Chapter 7. After summarizing the research done
for this thesis, some discussions on related issues are presented in Chapter 8. The
author’s own contribution is described in Chapter 9 followed by the conclusions
and future research directions in Chapter 10.



2 MULTIOBJECTIVE OPTIMIZATION

2.1 Multiobjective Optimization Problems

We consider multiobjective optimization problems in the following form:

minimize f (x) = ( f1(x), ..., fk(x))T

subject to x ∈ X.
(1)

In the formulation of (1), fi(x), i = 1, ..., k are called objective functions, which
are the components of the k-dimensional objective vector f (x). The decision vec-
tors x consist of the decision variables (x1, ..., xn)T which belong to a feasible set
X ⊆ Rn. In some of the included papers (e.g., in [PIV]), we use X to represent the
feasible set. The corresponding set in the objective space mapped by the objective
functions Z = f (X) is called the feasible objective set. We refer to the objective
function values, i.e., the objective vector, of a solution as the outcome or the qual-
ity of the solution. When we compare two feasible solutions, we use the concept
of dominance which is defined as follows:

Definition 1. Let x1, x2 ∈ X, x1 dominates x2 if fi(x1) ≤ fi(x2) for all i = 1, ..., k and
fj(x1) < f j(x2) in at least one index j.

For (1), there usually exists a set of mathematically equally good Pareto op-
timal solutions defined as follows:

Definition 2. A feasible solution x∗ ∈ X is Pareto optimal, if there does not exist x ∈ X
and x �= x∗ such that fi(x) ≤ fi(x∗), i = 1, ..., k and for at least one index j, it holds
that fj(x) < f j(x∗).

The set of Pareto optimal solutions is called the Pareto optimal set. We say
that an objective vector is Pareto optimal if its corresponding decision vector is
Pareto optimal. The set of Pareto optimal objective vectors is called the Pareto
front.

We can also define Pareto optimal solutions with the help a non-negative
ordering cone Rk≥ = {y ∈ Rk : yi ≥ 0 for all i = 1, ..., k}. We say that a feasible
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solution x∗ ∈ X is Pareto optimal if there does not exist x ∈ X and x �= x∗, such
that f (x) ∈ f (x∗)− Rk≥. In the literature, Pareto optimal solutions are also called
efficient solutions. In the papers included in this thesis, we use both terms as
synonyms.

For decision making, it is often useful for the decision maker to know the
ranges of the Pareto front. The information of the ranges can be provided by
the ideal objective vector zideal and the nadir objective vector znad. The ideal ob-
jective vector consists of the individual minima of the objective functions. The
nadir objective vector provides the upper bounds on the values of the objectives
in the Pareto front. It can be approximated by for example a so-called payoff table
[56, 74]. The approximation can over or under estimate the nadir objective vec-
tor. Other methods to compute the nadir objective vector have been presented in
e.g., [23]. For computational reasons, we also have the utopian objective vector
zuto = (zideal

1 − a, ..., zideal
k − a)T, where a > 0 is a small scalar. For simplicity,

we assume that the objective functions are to be minimized in the formulation.
Objective functions to be maximized can be easily converted to be minimized by
multiplying by −1.

In order to solve a multiobjective optimization problem (1), a common tech-
nique is scalarization. Scalarization means to transform a multiobjective opti-
mization problem to a single objective optimization subproblem such that its op-
timal solution is a Pareto optimal solution to (1). For solving the scalarized sub-
problem, a proper single-objective optimization method should be used. Achieve-
ment scalarizing function (see e.g., [80, 81]) is one of the widely used scalarizing
function and it has different variants. Their characteristics are summarized in
[80]:

Definition 3. Let us consider x1, x2 ∈ Rn,

(i) A function g is strictly increasing, if x1
i < x2

i for all i = 1, ..., n implies g(x1) <
g(x2).

(ii) A function g is strongly increasing, if x1
i ≤ x2

i for all i = 1, ..., n and x1
j < x2

j

imply g(x1) ≤ g(x2).

Based on the definition, a strongly increasing achievement scalarizing func-
tion is also a strictly achievement scalarizing function. We utilize the following
subproblem based on a variant of an achievement scalarizing function:

minimize maxi [wi( fi(x)− z̄i)] + ρ
k

∑
i=1

wi( fi(x)− z̄i)

subject to x ∈ X,
(2)

where ρ is a small scalar. The trade-off, which is bounded by ρ and 1/ρ, represents
the ratio of change in the objective function values when one of the objective
increases while some others decrease. The solutions found by solving (2) are
also called properly Pareto optimal solutions (see, e.g., [81]). For simplicity, we
call them Pareto optimal solutions. The reference point is represented by z̄. The
component z̄i is the aspiration level which represents the desired value of the
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objective function fi given by the decision maker. The positive weight vector w
sets a direction with which the reference point is projected onto the Pareto front.

Subproblem (2) can also be reformulated to a differentiable from (assuming
that the objective functions are differentiable):

minimize α + ρ
k

∑
i=1

wi( fi(x)− z̄i)

subject to wi( fi(x)− z̄i) ≤ α for all i = 1, ..., k
x ∈ X,

(3)

where the auxiliary scalar variable α is used for the transformation from the min-
max form (2).

The achievement scalarizing function has many advantages. As discussed
in the literature (e.g., [16, 56, 81]), an optimal solution of (2) is a Pareto optimal
solution for (1) and any Pareto optimal solution with trade-offs bounded by ρ and
1/ρ can be found by changing z̄. The reference point can be feasible or infeasible
and the problem can be convex or nonconvex.

2.2 Interactive Multiobjective Optimization Methods

As mentioned before, interactive methods allow the decision maker to direct
the solution process to find a most preferred Pareto optimal solution. Figure 1
presents the basic steps of a typical interactive method. It starts with presenting
an initial solution to the decision maker (marked as DM in the figure). We call the
presented solution which the decision maker is expected to consider the current
solution xc. The decision maker can study the current solution and consider if
(s)he is satisfied. If the decision maker is satisfied, (s)he takes the current solution
as the final solution and we terminate the solution process. If the decision maker
is not satisfied, (s)he can express preferences to get a more desirable solution.
Typically, preferences are incorporated into a scalarization function to calculate
a new solution which satisfies the preferences as well as possible. This process
continues until the decision maker finds a most preferred solution.

According to [16], based on the type of preference information the decision
maker is expected to provide, interactive methods can be categorized into refer-
ence point based methods (see e.g., [51, 82]), classification based methods (see
e.g., [58, 60, 70]) and trade-off based methods (see e.g., [18, 31]). In this thesis,
the LiRoMo method proposed in [PV] is a reference point based method and the
methods proposed in [PI, PII] are extensions of the NIMBUS method [58, 60],
which is a classification based method.

In reference point based methods, the decision maker specifies her or his
preferences as aspiration levels, which are the components of a reference point.
The aspiration levels are the desired values of the objective functions. A Pareto
optimal solution is found by solving a subproblem based on an achievement
scalarizing function (e.g., (2) or (3)) by projecting the reference point with the
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FIGURE 1 Basic steps of an interactive method

projection direction w onto the Pareto front. After having been shown a solution,
the decision maker can consider whether it is satisfactory or not. If not, (s)he can
provide a new reference point. Based on the new reference point, a new Pareto
optimal solution can be found by solving the subproblem. The solution process
continues until the decision maker finds a most preferred Pareto optimal solution.

NIMBUS has different versions depending on the scalarized subproblems
used (see e.g., [58, 59]). In NIMBUS, the decision maker is expected to classify
the objectives. The classification indicates what kind of solution would be more
preferred than the current one. The objectives can be classified into up to five
different classes including:

I< for those to be improved,
I≤ for those to be improved until some desired aspiration level z̄i,
I= for those that are satisfactory at their current level,
I≥ for those that may be impaired till a bound εi, and
I♦ for those that are temporarily allowed to change freely.

If aspiration levels or bounds are used, the decision maker is expected to provide
them. The aspiration levels should be better than the current objective function
values and the bounds should be higher than the current objective function val-
ues. If the classification is feasible, i.e., the decision maker allows at least one of
the objectives to be impaired to improve some other objectives, a scalarized sub-
problem is solved to find a new Pareto optimal solution reflecting the preferences.

In [PI, PII], we utilize a subproblem from synchronous NIMBUS [60]:

minimize max
i∈I<
j∈I≤

[wi( fi(x)− zideal
i ), wj( f j(x)− z̄j)] + ρ

k

∑
i=1

wi fi(x)

subject to x ∈ X
fi(x) ≤ fi(xc) for all i ∈ I< ∪ I≤ ∪ I=,
fi(x) ≤ εi for all i ∈ I≥,

(4)
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where I<, I=, I≥, I≤, and I♦ represent the corresponding classes of objectives and
xc is the current solution. The synchronous NIMBUS method can find up to four
solutions which satisfies the decision maker’s preferences best in each iteration.
In this thesis, we consider only one solution found by solving (4).

2.3 Evolutionary Multiobjective Optimization Methods

In addition to using scalarization techniques to find Pareto optimal solutions, we
can also use evolutionary multiobjective optimization methods to approximate
a set of Pareto optimal solutions. Figure 2 illustrates the basic steps of a typical
evolutionary multiobjective optimization (EMO) method.

As illustrated in the figure, the method starts with a random initial popula-
tion which consists of a set of solutions called individuals. We call the initial pop-
ulation the first generation. Then the individuals are evaluated to determine their
objective function values. Based on the objective function values, environmental
selection process chooses the “better” (e.g., in the sense of dominance) individ-
uals with a larger probability to fill an intermediate mating pool. Based on the
individuals in the mating pool, new individuals which are called offspring are
generated by variation operators such as crossover and mutation. In the elitism
step, the offspring are combined with their parents to guarantee that good indi-
viduals are taken to the next generation. The “better” individuals in the com-
bined population are selected to form a new generation of population. The solu-
tion process continues until a termination criterion is met. As in the figure, the
termination criterion is usually the maximum number of generations. After the
termination, the final population is the output. For more details on evolutionary
multiobjective optimization methods see e.g., [16, 20, 21].

The final population obtained by applying an evolutionary multiobjective
optimization method is a set of non-dominated solutions. There is no guaran-
tee in general that they are Pareto optimal solutions. In some literature, non-
dominated solutions and Pareto optimal solutions are used as synonyms. In this
thesis, they carry different meanings. We refer to the solutions obtained by meth-
ods which have theoretical proofs (e.g., by solving subproblem (2) ) as Pareto
optimal solutions. We refer to the final population given by an evolutionary mul-
tiobjective optimization method as non-dominated solutions. In addition, a set
of individuals in a generation which do not dominate each other is also called
non-dominated solutions.

The simple indicator-based evolutionary algorithm (SIBEA) [87] is an exam-
ple of evolutionary algorithms. We introduce SIBEA here because we propose a
variant of it for finding non-dominated set-based minmax robust solutions in this
thesis. The SIBEA method access the domination count of individuals (i,.e., the
number of other individuals a individual dominates). Based on the domination
count, the individuals are ranked with non-dominated sorting. Non-dominated
sorting is a procedure for ranking the individuals into different fronts. The rank is
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FIGURE 2 Basic steps of an EMO method

combined with an indicator function to assign fitness of the individual, which de-
scribes how good the individual is. Based on the rank and the indicator function,
SIBEA selects “better” individuals into the next generation.

The hypervolume indicator (see e.g., [88, 90]) can be used in the SIBEA
method as the indicator function. It is based on the volumes of the hypercubes
formulated by the individuals and a reference point. Note that the reference point
here is not the same as the reference point in (2). The reference point here can be
formed by e.g., the worst values of each objective function in each generation.
The formal definition of hypervolume indicator is as follows:

Definition 4. The hypervolume indicator of a set of non-dominated objective vectors A
is defined via the attainment function αA(z) of objective vectors z as

IH(A) =
∫

z
αA(z)dz.

The SIBEA method takes the population size NP, the number of generations
NG, and an indicator function (e.g., the hypervolume indicator) as inputs and
produces a set of non-dominated solutions A as the output. The basic steps of the
SIBEA method are as follows:

Step 1 (Initialization) Generate an initial population P and set the genera-
tion counter m = 1.
Step 2 (Mating) Generate an offspring population Q using crossover and
mutation and set P = P ∪ Q.
Step 3 (Environmental selection) Rank the population P using
non-dominated sorting and identify different fronts Fi, i = 1, 2, .... Set a new
population P′ = ∅. Then do the following:

(a) Set a counter i = 1 and set P′ = P′ ∪ Fi as long as |P′| ≤ NP and set
i = i + 1, where |P′| is the cardinality of P′.
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(b) If |P′| = NP, set P = P′ and go to step 4. Otherwise determine the set
of individuals P” in P′ with the worst rank.

(c) For each individual in P”, determine the loss of the hypervolume IH( f (P”))−
IH( f (P” \ {x})) if the individual x is removed from P”.

(d) Remove the individual with the smallest loss until |P′| = NP and set
P = P′.

Step 4 (Termination) If m ≥ NG, terminate and set P = A. Otherwise set
m = m + 1 and go to Step 2.



3 MULTIOBJECTIVE OPTIMIZATION UNDER

UNCERTAINTY

3.1 Multiobjective Optimization Problems under Uncertainty

The multiobjective optimization problem presented in (1) is a deterministic for-
mulation. When uncertainty is taken into account, the formulation of the prob-
lems changes. In this thesis, decision uncertainty and parameter uncertainty in
the objective functions are considered. For decision uncertainty, we consider the
following formulation:

minimize f (x + Δx) = ( f1(x + Δx), ..., fk(x + Δx))T

subject to x + Δx ∈ X for all Δx ∈ U ,
(5)

where Δx represent the unknown possible perturbation of the decision vectors
and U is a hyperbox in the neighborhood of a nominal solution xb, i.e., a com-
puted deterministic solution without any perturbation. This solution can also be
called the base solution. For solving problem (5), we consider all possible val-
ues of Δx and find nominal solutions with respect to both its nominal objective
function values f (xb) and the perturbed objective function values f (xb + Δx).

For parameter uncertainty, we consider the following formulation:

(
minimize f (x, ξ) = ( f1(x, ξ), ..., fk(x, ξ))T

subject to x ∈ X

)
ξ∈U

, (6)

where ξ is a vector consisting of the uncertain parameters and U represents the
uncertainty set where the uncertain parameters stem from. Each particular real-
ization of ξ ∈ U is called a scenario and it corresponds to a deterministic mul-
tiobjective optimization problem. In this setting, problem (6) can be interpreted
as a collection of deterministic multiobjective optimization problems. We refer to
the set of objective vectors as the outcome set of a solution x for all ξ ∈ U , which
is denoted by fU (x) = { f (x, ξ) : ξ ∈ U}.
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As mentioned before, in robust optimization approaches, the uncertain pa-
rameters are assumed to stem from an uncertainty set U . In the literature, dif-
ferent uncertainty sets are considered. In this thesis, we consider interval uncer-
tainty and polyhedral uncertainty. Interval uncertainty is defined as follows:

U = {ξ j ∈ [ξ j, ξ j] for j = 1, ..., m}

where ξ j is the lower bound of the j-th uncertain parameter ξ j and ξ j is its upper
bound. In this setting, there are m uncertain parameters. We assume that the
nominal values of the uncertain parameters are in the interval ξ̂ j ∈ [ξ j, ξ j] for all

j = 1, ..., m. Polyhedral uncertainty is defined by a set of m scenarios ξ1, ..., ξm as
the extreme points of the convex hull:

U = conv{ξ1, ..., ξm}.

3.2 Robustness in Multiobjective Optimization

In the literature, different ways of handling uncertainty have been proposed to
find solutions for (5) and (6). In order to consider uncertainty and multiple ob-
jectives simultaneously, there are two main types of approaches proposed. The
first type is to use a robustness measure to quantify the changes of objective func-
tion values of the solutions due to uncertainty. The measures are usually used
to quantify how “robust” a solution is. The second type is to alter the definition
of Pareto optimality for concepts of robust Pareto optimality. We can search for
robust Pareto optimal solutions by utilizing these concepts. Robustness concepts
usually do not quantify how “robust” a solution is. In this section, we discuss the
existing methods and approaches in the literature.

3.2.1 Robustness Measures

The definitions of robustness measures are usually based on the neighborhood
of a nominal solution. Among the robustness measures, there are two different
ways to quantify the robustness of the nominal solutions. One is to quantify the
changes of the objective function values due to perturbations of solutions. The
other is to quantify how much a solution can change with respect to a predefined
tolerance in the objective function values.

In [22], a robustness measure is defined to compare the objective function
values of a nominal solution and the average objective function values of sampled
solutions in its neighborhood. In [30], the average difference between the objec-
tive function values of a nominal solution and those of the sampled solutions in
the neighborhood is used to measure the robustness of the nominal solution. In
[68], the robustness of a nominal solution is the largest difference between the
worst and the best objective function values in the neighborhood.
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Another common way is to study the mean and variance of the objective
function values corresponding to the sampled solutions in the neighborhood as
proposed in e.g., [3, 72]. For simulation-based optimization problems, represen-
tative models of the mean and variance of the objective function values can be
built with surrogate models as in e.g., [55, 76]. Note that these research are not
stochastic approaches since the computation of mean and variance is based on
samples, not probability distributions.

In addition, there are also approaches which combine the stochastic ap-
proach and robustness measures e.g., in [37, 48]. In these approaches, when
there is enought data to estimate probability distributions of uncertain param-
eters, the uncertain parameters are transformed to stochastic variables. When it
is not possible to estimate the probability distribution, the objective functions in
the neighborhood of nominal solutions are used to quantify the robustness.

As mentioned before, the robustness of a nominal solution can also be quan-
tified by measuring how much the solution can change based on some predefined
tolerance on the objective function values. In [36, 54], the maximum change of
the nominal solution such that the objective function values are within tolerable
values is used to quantify robustness. In [6], the percentage of solutions in the
neighborhood whose objective function values are within the tolerance is used
to quantify the robustness of a nominal solution. Alternatively, the stability of
nominal Pareto optimal solutions are also studied (e.g., in [32, 85]). This line of
research studies the conditions under which a nominal Pareto optimal solution
remain Pareto optimal when objective functions change.

In order to consider robustness and the objective function values simulta-
neously, the robustness measures can be incorporated in difference ways. They
can be used to replace the original objective function values (in e.g., [22, 55, 76])
or combined together with the original objective functions (in e.g., [3, 30, 72]).
They can alternatively be used as additional constraints in the problem formula-
tion (in e.g., [22, 54]). They can also be used to compare a set of solutions in an
evolutionary multiobjective optimization method as in [6, 68].

From the decision maker’s point of view, the existing measures are difficult
to understand. The decision maker can only rely on the intuition if the value of a
measure is the smaller the better or the bigger the better. The robustness measure
proposed in [PI] is based on the comparison of the objective function values of
the nominal solution and those of the perturbed solutions in its neighborhood.
The comparison is linked with the ideal and nadir objective function values to
provide understandable information for the decision maker on how uncertainty
affects the objective function values of the nominal solution. For simultaneously
consideration of robustness and nominal objective function values, we use the
robustness measure as an additional objective to introduce trade-off.

3.2.2 Robustness Concepts

In addition to the robustness measures, the definition of Pareto optimality has
been altered for defining robust Pareto optimality. The most widely studied ro-
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bustness concepts belong to the family of minmax robustness. The idea of min-
max robustness is to optimize in the worst case. Point-based minmax robustness
[29, 53] uses the worst value of each objective function as the worst case. Set-
based minmax robustness, which was originally proposed in [26] and generalized
in [43], treats the worst case with respect to multiple objectives, which result in
a set of worst case scenarios. Set-based dominance from set-valued optimization
[49] is used to refine the dominance relationships of two feasible solutions based
on their outcome sets.

Hull-based minmax robustness [15] forms a convex hull with the set of
worst case scenarios of each solution and compares the convex hulls with the
help of an ordering cone. When the problem is objective-wise uncertain (i.e., the
uncertain parameters in the objectives do not relate to each other, see [26] for
a formal definition), point-based minmax robustness, set-based minmax robust-
ness, and hull-based robustness coincide with each other. The concept of minmax
robustness has been applied in a wood cutting problem [45], and a portfolio op-
timization problem [29].

In the literature, it is not always clear how to compute minmax robust Pareto
optimal solutions. For set-based minmax robust solutions, the authors of [26]
proposed weighted-sum and epsilon-constraint approaches. Reformulations for
efficient computation of point-based minmax robust solutions are proposed in
[29, 33, 53] under assumptions on the characteristics of the problems. The idea of
comparing the set of outcomes of each solution is also utilized in [4, 50], where the
uncertainty set consists of a set of discrete scenarios. The comparison of the sets
is embedded in an evolutionary algorithm to compute a set of non-dominated
solutions. The SIBEA-R method proposed in [PIII] takes this kind of approach in
an evolutionary algorithm.

As mentioned before, the conservativeness of minmax robustness is recog-
nized in the literature. There have been also attempts to extend the idea of finding
trade-offs between robustness and quality of solutions in single-objective robust
optimization [7, 9, 12, 28, 35, 71]. Recently, similar line of research has been done
in multiobjective settings. In [44, 52], the concept of light robustness [28, 71] is
extended to multiobjective optimization problem under uncertainty. Light ro-
bustness aims at optimizing in worst case among those solutions whose nominal
objective function values are tolerable. The concept of light robustness is applied
in a shortest path problem [52], where the solution method is for combinatorial
problems with uncertain parameters in one of the objectives in bi-objective opti-
mization problems.

Other less-conservative multiobjective robustness concepts include for ex-
ample the extensions of considering cardinality-constrained uncertainty based
on [11, 12] into multiobjective settings. In [38, 39], the extension is for portfolio
optimization problems with uncertain data. The idea of this kind of considera-
tion is based on the thinking that not all uncertain parameters attain their worst
case at the same time. This concept is to consider only a predefined maximum
number of uncertain parameters for the worst case. The solution method pro-
posed in [38, 39] is for linear problems with uncertain parameters stemming from
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an interval. In [66, 67], the consideration of this kind of uncertainty is extended to
multiobjective combinatorial optimization problems. The authors also proposed
two solution approaches with applications to shortest path problems under un-
certainty for hazardous material transportation.

Another kind of concept is to optimize in the worst case but search for solu-
tions whose objective function values in a specific scenario is as “near” as possible
to a Pareto optimal objective vector in that scenario. Regret robustness takes this
kind of approach. The idea is to find a minmax robust solution such that it devi-
ates the least when compared to a Pareto optimal solution in a specific scenario.
Different variations of multiobjective regret robustness have been proposed for
different specific application problems in [63, 83]. In [83], regret robustness from
single-objective optimization has been applied to scalarized subproblems. In [63],
regret robustness is defined for multiple objectives in binary optimization prob-
lems.

In addition, there are also other concepts of multiobjective robustness. The
concept of highly robust Pareto optimality is originally proposed in [14] for mul-
tiobjective linear optimization problems with interval uncertainty. The idea is to
find solutions which are Pareto optimal in all possible scenarios. This concept is
generalized to other types of uncertainty sets in [52] and to general multiobjective
optimization problems in [44]. Recently, the conditions of the existence of highly
robust Pareto optimal solutions in multiobjective convex optimization problems
are presented in [34]. In addition, the characteristics and properties of highly
robust Pareto optimal solutions in multiobjective linear optimization problems
are studied in [25]. The authors also derived the lower and upper bounds of the
highly robust Pareto optimal solutions in this class of problems. As can be ob-
served in the literature which studies the conditions of existence of highly robust
Pareto optimal solutions, it can be the case that highly robust Pareto optimal so-
lutions do not exist for some problems. Even though this kind of solutions can be
desirable for the decision maker, we do not consider supporting a decision maker
to find a highly robust Pareto optimal solution in this thesis due to the existence
issue.

Flimsly robust Pareto optimality aims at finding solutions which are Pareto
optimal for one of the possible scenarios. It is originally proposed in [14] for
multiobjective linear optimization problems and is generalized in [44]. Finding
flimsly robust Pareto optimal solutions is equivalent to solving a deterministic
multiobjective optimization problem under any possible scenario. Conventional
interactive multiobjective optimization methods can support a decision maker to
find a most preferred flimsly robust Pareto optimal solution.

3.2.3 Decision Support in Multiobjective Robust Optimization

As mentioned before, it is not always clear how to compute robust Pareto opti-
mal solutions. The consideration of supporting a decision maker to find a most
preferred robust solution is even rarer. Different possible scenarios are all con-
sidered at the same time in an interactive method in [61]. The decision maker
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is expected to select which possible scenarios to concentrate on in each iteration.
The outcome of the solution in each scenario is presented to the decision maker.
The main disadvantage in this approach is that the decision maker is forced to
consider multiple scenarios simultaneously and this can be cognitively demand-
ing.

In [39], the augmented weighted Chebyshev approach [75] is used to sup-
port the decision maker in finding a most preferred robust solution under car-
dinality uncertainty. The main disadvantage of this approach is that different
solutions are computed based on different weights in the augmented weighted
Chebyshev function. The decision maker is expected to judge if a solution is de-
sirable or not. The rejected solutions are not recoverable. Also supporting the
decision maker by effectively presenting the solutions for example with visual-
ization is not considered in the paper.

In addition to proposing a robustness measure for decision uncertainty men-
tioned earlier, this thesis considers minmax robustness to optimize in the worst
case and light robustness to seek for trade-off between robustness and quality.
In addition, we also consider the solutions in the nominal scenario. We provide
some solution methods for computing the robust Pareto optimal solutions for
practical problems. We also analyze the relationships between different kinds
of robust solutions aiming at gaining insights into utilizing different robustness
concepts in decision making. More importantly, we consider how to support the
decision maker to make informed decisions and balance between robustness and
quality during the interactive solutions processes.

3.3 Fundamental Robustness Concepts for This Thesis

In this section, we summarize the robustness concepts considered in this thesis in-
cluding set-based minmax robustness, point-based minmax robustness, and light
robustness.

3.3.1 Set-based Minmax Robustness

Definition 5. A solution x∗ ∈ X is set-based minmax robust Pareto optimal, if there
does not exist x ∈ X and x �= x∗ such that fU (x) ⊆ fU (x∗)− Rk≥, where fU (x) is the
outcome set of x as defined earlier.

We denote the set of set-based minmax robust Pareto optimal solutions by
Xrpo. For computing set-based minmax robust Pareto optimal solutions for (6),
we compare the suprema of the outcome sets (of the feasible solutions) by solving
the following problem:

minimize sup
ξ∈U

f (x) = ( f1(x, ξ), ..., fk(x, ξ))T

subject to x ∈ X.
(7)
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FIGURE 3 Example of set-based minmax robustness

Example 1. Given a set of feasible solutions X = {x1, x2, x3} and an uncertainty set
U , we define the objective functions to be minimized f : X × U �→ R2. The outcome
sets of the three feasible solutions are plotted in Figure 3 as bolded lines and a curve.
The thin lines with same style as the corresponding outcome sets mark the borders of the
outcome sets: fU (x1) − R2≥ (solid curve and lines), fU (x2) − R2≥ (dotted lines), and
fU (x3) − R2≥ (dashed lines). Solution x1 is set-based minmax robust Pareto optimal
because fU (x1) − R2≥ does not contain fU (x2) nor fU (x3). Using the same way of
observation, we can see that solutions x2 and x3 are also set-based minmax robust Pareto
optimal.

The definition of set-based minmax robustness is based on the set-based
order (see e.g., [49]). In this thesis, we also utilize set-based orders in our compar-
ison of different sets of solutions in [PIV] and comparing different outcome sets
in [PIII]:

Definition 6. Given two sets Y1, Y2 ∈ Rk , we have the following set-based orders:

(i)

Y1 ≺upp Y2 if for all y ∈ Y2 there exists y′ ∈ Y1 with y′i ≤ yi for all i = 1, ..., k

(ii)

Y1 ≺low Y2 if for all y ∈ Y1 there exists y′ ∈ Y2 with yi ≤ y′i for all i = 1, ..., k.

With the help of a nonnegative ordering cone Rk≥, we can write Y1 ≺upp Y2
equivalently as

Y1 ≺upp Y2 if Y2 ⊆ Y1 + Rk≥
which is known as the upper set less order. We can also write Y1 ≺low Y2 equiva-
lently as

Y1 ≺low Y2 if Y1 ⊆ Y2 − Rk≥
which is known as the lower set less order.
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FIGURE 4 Example of point-based minmax robustness

3.3.2 Point-based Minmax Robustness

For point-based minmax robustness, we optimize the suprema of each objective
function in the following form to transform (6) to a deterministic multiobjective
optimization problem:

minimize f wc(x) = (sup
ξ∈U

f1(x, ξ), ..., sup
ξ∈U

fk(x, ξ))T

subject to x ∈ X.
(8)

In this thesis, we assume the existence of the individual maxima of each objective
function with a fixed x ∈ X. This means that we consider max

ξ∈U
fi(x, ξ) for i =

1, ..., k. We name the objective functions as f wc to indicate that this is what we
mean by point-based worst case.

Definition 7. A solution x∗ ∈ X is point-based minmax robust Pareto optimal, if there
does not exist x ∈ X and x �= x∗ such that max

ξ∈U
fi(x, ξ) ≤ max

ξ∈U
fi(x∗, ξ) for all i =

1, ..., k and for at least one objective j it holds that max
ξ∈U

f j(x, ξ) < max
ξ∈U

f j(x∗, ξ).

We denote the set of point-based minmax robust Pareto optimal solutions
by Xwc. As analyzed in [15], point-based minmax robustness coincides with set-
based minmax robustness and hull-based minmax robustness if (6) is an objective-
wise uncertain problem.

Example 2. Given the same set of feasible solutions, uncertainty set, and objective func-
tions as in Example 1, we plot the outcome sets of the feasible solutions: fU (x1) (solid
curve), fU (x2) (dotted line), and fU (x3) (dashed line) in Figure 4. The gray lines helps
us to find the individual maxima of both objective functions in each outcome set. The
points which are formed by the individual maxima are marked by the squares. Solution
x1 is point-based minmax robust Pareto optimal, because the corresponding square is not
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dominated by the squares corresponding to x2 and x3. Using the same method of obser-
vation, we can see that solution x3 is also point-based minmax robust Pareto optimal.
But, solution x2 is not because its corresponding square is dominated by the square which
corresponds to x1.

In both (7) and (8), we optimize in the worst case. The two concepts differ
from each other in the representations of the worst case. In order to identify the
worst case objective function values of a fixed feasible solution x, we need to
solve the following multiobjective problem with the objectives to be maximized:

maximize ( f1(x, ξ), ..., fk(x, ξ))T

subject to ξ ∈ U .
(9)

Since (9) is a multiobjective optimization problem, there usually does not
exist a single worst case scenario. Instead, there is a set of worst case scenarios
which consist of the Pareto optimal solutions of (9). As analyzed in [26], if (6) is
an objective-wise uncertain problem, there is a single worst case scenario.

For the decision maker to understand the ranges of possible outcomes in
the worst case, we can utilize the worst case ideal objective vector and the worst
case nadir objective vector. The worst case ideal objective vector is formed by
the optimal value of each objective function in the worst case and the worst case
nadir objective vector can be approximated by the payoff table.

3.3.3 Nominal Solutions and Light Robustness

As mentioned before, the objective function values of the minmax robust Pareto
optimal solutions can be bad under other scenarios. Light robustness is a concept
developed based on the idea of controlling the trade-off between the robustness
and the degradation in objective function values.

In light robustness, we assume the existence of a nominal scenario ξ̂ which
describes the most typical behavior of the uncertain parameters. For finding the
Pareto optimal solutions in the nominal scenario, we solve the following problem:

minimize f nom(x) = ( f1(x, ξ̂), ..., fk(x, ξ̂))T

subject to x ∈ X.
(10)

In the formulation, we named the objective functions f nom to help us to refer to
the problem under nominal scenario more conveniently.

Definition 8. We call the solutions of (10) the nominal Pareto optimal solutions.

The set of nominal Pareto optimal solutions is denoted by Xnom. For a so-
lution x ∈ X, we define its nominal quality and its nominal outcome as f nom(x).
For finding lightly robust Pareto optimal solutions, we optimize in the worst case
with an acceptable degradation on the objective function values when compared
to a nominal Pareto optimal solution in the nominal scenario. We couple light ro-
bustness with point-based minmax robustness in this thesis. For finding lightly
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FIGURE 5 Example of light robustness

robust Pareto optimal solutions, we solve the following problem (under the as-
sumption that individual maximum of each objective exists for a fixed x ∈ X):

minimize (max
ξ∈U

f1(x, ξ), ..., max
ξ∈U

fk(x, ξ))T

subject to x ∈ X
fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi for all i = 1, ..., k,

(11)

where x̂ is a nominal Pareto optimal solution and the k-dimensional vector ε rep-
resents the tolerable degradations on the objective function values in the nominal
scenario. We call the constraints fi(x, ξ̂) ≤ fi(x̂, ξ̂) + ε for all i = 1, ..., k the lightly
robust constraints.

Definition 9. The solutions of (11) are lightly robust Pareto optimal solutions.

We denote the set of lightly robust Pareto optimal solutions by Xlight.

Example 3. Given the same set of feasible solutions, uncertainty set, and objective func-
tions as in Example 1, we plot the outcome sets of the three solutions: fU (x1) (solid
curve), fU (x2) (dotted line), and fU (x3) (dashed line). The nominal outcomes of the
three solutions are marked by the circles. The nominal Pareto optimal solution identified
for finding lightly robust Pareto optimal solutions is f nom(x2). The blue lines mark the
borders of the lightly robust constraints with the corner as f nom(x2)+ ε. The point-based
worst case outcome of x3 (marked by the small gray square) is inside the blue lines, thus
feasible for problem (11). Since it is the only feasible solution, it is the lightly robust
Pareto optimal solution.



4 SOLVING MULTIOBJECTIVE OPTIMIZATION

PROBLEMS UNDER DECISION UNCERTAINTY

WITH AN INTERACTIVE METHOD

4.1 Motivation

We start the research by studying supporting a decision maker under decision
uncertainty. On the one hand, it is merely because decision uncertainty is one
type of uncertainty considered in this thesis. On the other hand, it can be easier
for the decision maker to access information related to decision uncertainty. As
mentioned before, decision uncertainty reflects the case that the implementation
of solutions involves some errors, so it usually comes from, e.g., machines used
in production. The decision maker can get such kind of information from, e.g.,
documentation of production machines.

As mentioned in Chapter 3, a common way of handling decision uncer-
tainty is to study the neighborhood of nominal solutions and use a robustness
measure to quantify the effects of uncertainty on the objective function values.
Alternatively, some of the concepts on robust Pareto optimality, e.g., minmax ro-
bust Pareto optimality, can also be applied. Based on the source of decision un-
certainty described earlier, it is more desirable for the decision maker to consider
solutions based on the nominal quality and deviation from the nominal quality
than consider e.g., the behaviors of solutions in the worst case. With this line
of consideration, the decision maker can be supported to find solutions which
are with good objective function values and at the same time with satisfactory
deviation.

Based on the consideration described above, Paper [PI] follows the approach
of using a robustness measure to quantify the effects of uncertainty in the neigh-
borhood of the nominal solutions. The goal is not to develop an entirely new
interactive method. Instead, the aim is to augment existing methods to be able
to support a decision maker to find a final solution for (5). We augment the syn-
chronous NIMBUS method [60] as an example. The same principle can be applied



34

in, for example, the reference point method [81].
For supporting a decision maker, we summarize desired properties of a ro-

bustness measure as:

1. The numerical value should reflect the effects of decision uncertainty on the
objective function values. This numerical value should be informative to
the decision maker to indicate how “robust” a solution is.

2. Having seen the numerical value, the decision maker should be able to for-
mulate and specify her or his preferences conveniently.

We studied the existing robustness measures in the literature with respect to the
desired properties and identified three measures D-G [22], G-C [30], and WCSR
[54]. The three measures are the closest to the desired properties. The measures
D-G and G-C study how the objective function values change in the neighbor-
hood of a nominal solution. The smaller the change is, the more “robust” the
nominal solution is. The measure WCSR quantifies the maximum perturbations
the nominal solution can have such that the objective function values are within
a pre-specified tolerance.

In the three measures, the decision maker can only rely on one’s intuition
on the numerical values which somehow represent the robustness of a solution.
With the numerical values, the decision maker cannot get any information of how
the involved uncertainty affects the objective function values. In addition, the nu-
merical measures do not have any unit. For example, it is hard for the decision
maker to understand how much better value 0.1 is compared to 0.2. All these is-
sues bring challenges to the decision maker in formulating her or his preferences
for a more desirable solution.

4.2 Proposed Robustness Measure

Inspired by the literature, we propose a new robustness measure. Our robustness
measure provides concrete information in terms of how decision uncertainty af-
fects the objective function values of a nominal solution. The new robustness
measure is based on the ranges of the objective function values in the neighbor-
hood. The ranges can be represented by the worst objective function values and
the best objective function values in the neighborhood of a nominal solution. For
an objective function fi, its range in the neighborhood of the nominal solution xb

is formulated as follows:

ri(xb) = max
Δx∈U

fi(xb + Δx)− min
Δx∈U

fi(xb + Δx),

where Δx represents the possible perturbations of the nominal solution xb and
U represent the neighborhood. In this way, we utilize the unit of the objective
function values in quantifying robustness. Naturally, ri(xb) is defined for each
objective function. We can use the formulation directly as k additional objectives
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to introduce trade-offs between nominal quality and robustness. However, us-
ing the formulation directly means that we expect the decision maker to consider
2× k objective functions. In order to minimize the additional cognitive load intro-
duced when considering robustness, we formulate a single robustness measure
based on ri(xb) and use it as an additional objective:

R(xb) = max
i

[
ri(xb)

znad
i − zuto

i

]
, i = 1, ..., k.

With R(xb), we provide information of the normalized maximum change of the
objective function values for the decision maker. This value is the maximum per-
centage of changes in the objective function values in the neighborhood when
compared to the utopian and nadir values of the objectives. Together with znad

and zuto, the decision maker can understand the magnitude of changes in the ob-
jective function values. In addition, we provide the nominal objective function
values. Combining the measured robustness and the nominal objective function
values of a solution, the decision maker can concretely understand how uncer-
tainty affects the objective function values.

4.3 Proposed Interactive method

As mentioned earlier, we incorporate R(xb) to the problem formulations as an
additional objective. We build an interactive method for supporting a decision
maker to find a most preferred solution concerning both the nominal objective
function values and the change of objective function values due to decision un-
certainty. The idea is that by having robustness as an additional objective, the
decision maker can balance between robustness and other objective function val-
ues. As mentioned before, we augment the synchronous NIMBUS method to
build the proposed approach. The synchronous NIMBUS method is briefly de-
scribed in Chapter 2. We will discuss the changes made next.

In interactive solution processes of problems, we calculate a current solution
in each iteration based on the decision maker’s preferences. Then, we present it to
the decision maker. When we present the current solution to the decision maker,
we visualize the following information:

1. The nominal ideal and nadir values of each objective function.
2. The nominal objective function values of the current solution.
3. The value of R(xb) in the corresponding objective, which we call the active

objective.
4. The value of ri(xb) of each objective.

We augment the IND-NIMBUS [64] visualization as shown with an example in
Figure 6. In the figure, there are two objective functions to be minimized. The
white bars represent the ranges, that is, the nominal ideal (z∗i ) and nadir (znad

i ) ob-
jective function values while the filled blue bars represent the nominal objective
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FIGURE 6 Visualization with robustness information

function values. The nominal objective function values are marked at the ending
of the blue bars by zc

i . The values of ri(xb) are illustrated with the gray bars (which
we call shadows) representing the upper and lower bounds of the changes of the
objective function values due to the perturbations of xb in the neighborhood U .
The shadow of the active objective is highlighted with a frame in red and the
value of robustness measure is illustrated on the highlighted shadow.

When a decision maker is shown a visualized solution as in Figure 6, (s)he
can consider what kind of changes are needed to obtain a more desirable solu-
tion. The decision maker is expected to classify the original objective functions as
in the NIMBUS method. As for the robustness measure, we provide the opportu-
nity for the decision maker to choose a more comfortable way of specifying her
or his preferences either by classifying it or by providing a desired value for it.
When the decision maker has a preference on what kind of changes (e.g., increase
or decrease) the robustness measure should have, (s)he can classify the robust-
ness measure. In this case, we solve (4) to find a new solution. When the decision
maker has a concrete desired value for the robustness measure, (s)he can choose
to specify an aspiration level. In this case, we convert the aspiration level to a
classification depending on the comparison of the aspiration level and the cur-
rent value of the robustness measure. The details on the conversion are described
in Paper [PI]. After the conversion, we combine the classification of the original
objectives and the converted class of the robustness measure and solve (4) to find
a new solution for the decision maker. The solution process continues until the
decision maker finds a most preferred solution. The general steps of the inter-
active method are presented in Figure 7. In the figure, the changes made to the
original NIMBUS method discussed above are highlighted with red dashed lines
and decision maker is abbreviated as DM.

In order to demonstrate the ability of the proposed method in supporting
a decision maker to find a most preferred solution regarding the nominal qual-
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(4)

FIGURE 7 Flowchart of the interactive approach

ity and robustness, we solved two different types of example problems in Paper
[PI]. We first solved a river pollution management problem which is originally
presented in [62]. In the problem, we assumed that the decision variables which
represent the amount of biochemical matters to be removed from the water in
two water treatment plants cannot be realized exactly. Then we formulated a
multiobjective version of a procurement contract selection problem with pricing
optimization for process networks and solved the problem for an example pro-
cess network. The decision variables which represent the amount of raw material
consumed in each processing plant were considered to be uncertain.

The solution processes of both problems involved real decision makers.
Both of the solution processes demonstrated the advantages of the proposed ap-
proach. The decision makers were able to understand the effects of decision un-
certainty based on the value of the robustness measure and the related informa-
tion on the changes of each objective function. The decision makers were also
able to consider the nominal objective function values and the robustness of the
solutions at the same time. With the interactive solution processes, the decision
makers eventually learned how the objective function values and the values of
the robustness measure affected each other. Thus, this interactive method ful-
filled our goal to better support a decision maker to make informed decisions
when decision uncertainty is involved in a multiobjective optimization problem.

It is important to note that it is hard to verify if the solution we find in the
proposed interactive method is Pareto optimal or not to the original problem.
According to the discussion in [78], this depends on how the robustness mea-
sure conflicts with the original objective functions. As mentioned in [12], usually,
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some sacrifices on the nominal objective function values are required to gain ro-
bustness. Thus, losing the Pareto optimality of a solution could be the price that
the decision maker is willing to pay in order to gain robustness.



5 FINDING ROBUST SOLUTIONS UNDER

PARAMETER UNCERTAINTY WITH AN

INTERACTIVE METHOD

5.1 Motivation

Paper [PI] addresses the issue of supporting a decision maker to find a most pre-
ferred solution under decision uncertainty. The other type of uncertainty consid-
ered in this thesis is parameter uncertainty in the objective functions. This kind
of uncertainty is usually due to imprecise data or uncertain future development.
As mentioned before, it can be more challenging for the decision maker to access
information on the uncertainty set. As an expert in the problem domain, the deci-
sion maker can utilize her or his experiences or domain knowledge in providing
information on the uncertainty set. In this situation, the decision maker can seek
for solutions which help her or him to be well prepared for the worst possible
cases. Based on the domain knowledge, the decision maker can identify a nomi-
nal scenario. Since the nominal scenario describes the most typical behaviors of
the uncertain parameters, the decision maker can be more focused on it while
making decisions.

In order to support the decision maker in the consideration of the two as-
pects, i.e., preparing for the worst case and focusing on the nominal scenario
while making decisions, we develop the MuRO-NIMBUS method in Paper [PII]
utilizing set-based minmax robustness. The definition of set-based minmax ro-
bust Pareto optimality was published in [26]. The application in a wood cut-
ting problem [45] has shown potential of this concept to solve practical problems.
But, applications of this concept to supporting decision making have not yet been
published. The MuRO-NIMBUS method brings this into the context of decision
making. The MuRO-NIMBUS consists of the pre-decision making and the deci-
sion making stages. The reason is that considering both the worst case and the
nominal scenario at the same time requires solving two types of problems simul-
taneously. As a result, the decision maker also has to deal with the two types of
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solutions at the same time.
Any set-based minmax robust Pareto optimal solution can serve the pur-

pose of helping the decision maker to be well prepared for the worst case. We
do not need to involve the decision maker in the computation of the minmax ro-
bust Pareto optimal solutions (by e.g., asking for preferences). In the pre-decision
making stage, we compute a representative set of set-based minmax robust Pareto
optimal solutions without the involvement of the decision maker. Only in the
nominal scenario, which the decision maker focuses on when making decisions,
the preferences of the decision maker are needed. In the decision making stage,
we support the decision maker to find a set-based minmax robust Pareto optimal
solution which corresponds to the most preferred objective function values in the
nominal scenario.

5.2 Robust Version of Achievement Scalarizing Function

For the pre-decision making stage, we propose a robust achievement scalarizing
function (ASF) approach. Based on (7) and (2), the robust version of the subprob-
lem based on the achievement scalarizing function is as follows:

minimize sup
ξ∈U

max
i

[wi( fi(x, ξ)− z̄i)] + ρ
k
∑

i=1
wi( fi(x, ξ)− z̄i)

subject to x ∈ X.
(12)

Just like (2), the robust version also involves a reference point z̄ and a projection
weight w. The following theorem states the necessary and sufficient conditions
for an optimal solution of (12) to be set-based minmax robust Pareto optimal:

Theorem 10. Given an uncertain multiobjective optimization problem (6), x∗ ∈ X is a
set-based minmax robust Pareto optimal solution, if and only if x∗ is an optimal solution
to (12) for some z̄ and w, and maxξ∈U fi(x, ξ) exists for all x ∈ X and for all i = 1, ..., k.

The proof of the sufficient condition is given in Paper [PII]. Since the objec-
tive function in (12) is a strongly increasing function, it is also a strictly increasing
function. Theorem 4.4 in [15] states that a solution is set-based minmax robust
Pareto optimal only if it is an optimal solution of a strictly increasing scalarizing
function.

Figure 8 illustrates an example of solving subproblem (12) to find a set-
based minmax robust Pareto optimal solution. Given the same problem as in
Example 1, we specify a reference point z̄ marked as the black circle in the fig-
ure. The arrowed line represents the projection direction specified by w. The two
solid lines which intersect at the reference point represent the cone z̄ − R2

ρ. Since
x1, x2 and x3 are all set-based minmax robust Pareto optimal, the solution whose
outcome set intersects first with the cone z̄ − R2

ρ along the projection direction is
the solution which satisfies the reference point best. In this example, it is x2.
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FIGURE 8 Example of robust ASF

Based on (12), we can compute a set of set-based minmax robust Pareto op-
timal solutions by varying the reference point z̄ or the projection weights w. As
we use a pre-computed set of solutions for decision making, we should obtain a
good representative set of solutions. For example, in [19], reference vectors are
used in an evolutionary multiobjective optimization method to associate objec-
tive vectors in different parts of the objective space. Reference vectors are formed
by generating equally distributed points on an unit hyper plane in the objective
space. In the robust ASF approach, we utilize this idea to vary the reference point
and projection weights. We generate a set of equally distributed points as refer-
ence points, and use the vector from the utopian objective vector to the reference
point as the projection weights.

The robust ASF approach takes (6) as input and calculate a set of robust
Pareto optimal solutions Xrpo as output. The steps of the robust ASF approach is
as follows:

Step 1. Set Xrpo = ∅ and generate a set of reference points Z̄.
Step 2. If Z̄ = ∅, stop.
Step 3. Choose z̄ ∈ Z̄, and set Z̄ = Z̄ \ {z̄}.
Step 4. Find an optimal solution x∗ to (12) using z̄ as the reference point
and set w accordingly, e.g., wi =

1
zuto

i −z̄i
, where zuto is the utopian objective

vector. Set Xrpo = Xrpo ∪ {x∗}.
Step 5. Go to step 2.

5.3 The MuRO-NIMBUS Method

The MuRO-NIMBUS method includes the robust ASF approach presented above
in the pre-decision making stage and a decision making stage based on the syn-
chronous NIMBUS method [60]. The steps of the MuRO-NIMBUS method are as
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follows:

1. Pre-decision making.

(a) Calculate the set Xrpo with the robust ASF approach. Calculate also
the nominal ideal and nadir objective vectors.

2. Decision making

(a) Classify all the objectives into the class I< of the NIMBUS classification
and solve (4) (by including only the first constraint) to find an initial
set-based minmax robust Pareto optimal solution xc, whose nominal
outcome is non-dominated in the set Xrpo. Note that the feasible set in
(4) here is Xrpo.

(b) Present the nominal ideal and nadir objective vectors to the decision
maker.

(c) Present the outcomes in the nominal and worst cases corresponding
to xc to the decision maker. If the decision maker is satisfied, xc is the
final solution. Otherwise, continue.

(d) Ask the decision maker to classify the objectives at the current solution
based on the outcome in the nominal case. Then solve (4) to find a new
solution and set it as xc and go to step 2(c).

As mentioned before, the pre-decision making stage does not require the pres-
ence of the decision maker. In the decision making stage, we start from finding
and presenting to the decision maker a set-based minmax robust Pareto optimal
solution whose outcome is non-dominated in the nominal case together with the
nominal ideal and nadir objective vectors. Note that in Step 2(c), we also present
the worst case outcome. This is only an additional piece of information for the
decision maker to make informed decisions. The focus, i.e., specifying the pref-
erences, is on the nominal outcome. If (s)he feels that it is not necessary or the
cognitive load is getting heavy, the information about the worst case outcome
can be ignored.

In order to help the decision maker to understand the nominal outcome
and the worst case outcome of the presented solution, we augment the value
path visualization [57]. Figure 9 is an example of the visualization. In the fig-
ure, vertical bars represent the ranges, i.e., the nominal ideal and nadir values
of each objective function. The value path represents the nominal outcome. The
objective function values in the worst case are marked by the gray vertical bars
inside each objective. In case there is only one worst case scenario, the worst case
objective function values can be marked with triangles. With this visualization,
the decision maker observes not only the outcomes of the solution, but also the
differences between the nominal and worst case outcomes.

After having seen a solution, if the decision maker is not satisfied, (s)he is
expected to classify the objectives into the NIMBUS classification by considering
the nominal objective function values. The information on the worst case out-
come is for the decision maker to be aware of what to expect in the worst case.
Based on the classification, we find a new solution from the set Xrpo and present
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FIGURE 9 Visualization of a set-based minmax Pareto optimal solution

it to the decision maker. If the decision maker is satisfied, (s)he takes the current
solution as the final solution, and we terminate the solution process.

We demonstrated in [PII] the solution process of a multiobjective ship de-
sign problem where two parameters involved interval uncertainty by applying
the MuRO-NIMBUS method. The deterministic formulation of the problem has
been presented in [84]. We first computed a set of set-based minmax robust Pareto
optimal solutions and then supported a decision maker to find a most preferred
one in the decision making stage. During the decision making stage, the deci-
sion maker was able to consider the nominal outcomes and observe the worst
case outcomes. She was able to direct the solution process towards the most pre-
ferred solution by classifying the objectives based on the nominal outcomes. Even
though she was not able to interfere the outcomes in the worst case, she was able
to utilize them as background information to make informed decisions. So the
final solution found for her was most preferred in terms of the nominal objective
function values. At the same time, it is still valid even if the worst case happens.

5.4 Discussion Related to MuRO-NIMBUS

In MuRO-NIMBUS, we utilized subproblem (12) to obtain the set Xrpo in the pre-
decision making stage. The utilization of subproblem (12) is not limited here. It
can be used in the reference point approach when a decision maker wants to con-
centrate on the worst case and find a most preferred solution based on the worst
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case outcomes. In this setting, the decision maker can provide a reference point
which consists of desired values of objective functions in the worst case. With the
reference point, we can solve (12) to find a set-based minmax robust Pareto opti-
mal solution which satisfies the reference point as well as possible and present it
to the decision maker. The decision maker can iteratively specify reference points
until (s)he finds a set-based minmax robust Pareto optimal solution with a most
preferred worst case outcome.

There are two issues in the pre-decision making stage of MuRO-NIMBUS.
One is the number of the pre-computed set-based minmax robust Pareto optimal
solutions. The other is related to solving (12). For the number of pre-computed
solutions, it depends on the problem, for example how the set-based minmax
Pareto optimal solutions vary in the nominal case. For the multiobjective ship
design problem, 150 solutions were regarded as sufficient. With lower number of
solutions, it is frequently the case that we result in a same solution if the prefer-
ences between two iterations are not significantly different. With 150 solutions,
the solutions are diverse enough for the decision making stage to respond to the
decision maker’s preferences. As far as solving (12) is concerned, it is a very chal-
lenging task. We need to solve a maximization problem for each feasible solution
evaluated. In the robust ASF approach used to solve the multiobjective ship de-
sign problem, we took samples in the uncertainty set and used them to replace
the uncertainty set.

Using samples in solving (12) might not give us accurate results because
it is not guaranteed the samples include the ξ which gives the maximum of the
scalarized objective function for a fixed x ∈ X. In addition, we also need to
solve multiple instances of (12) to obtain Xrpo. As a further development of the
pre-decision making stage, we propose the simple indicator-based evolutionary
algorithm for set-based minmax robustness (SIBEA-R) to approximate a set of
set-based minmax robust Pareto optimal solutions in Paper [PIII].

5.5 The SIBEA-R Method

So far, we have discussed interactive methods which utilize scalarized subprob-
lems to compute Pareto optimal solutions for multiobjective optimization prob-
lems. As mentioned before, we can also calculate an approximated set of solu-
tions with evolutionary multiobjective optimization methods. The output of an
evolutionary multiobjective optimization method is a set of non-dominated solu-
tions. We propose the SIBEA-R method in [PIII] for improving the pre-decision
making stage in MuRO-NIMBUS.

The SIBEA-R method compares the worst case outcomes using set-based
order and is based on the SIBEA method [87]. In the literature, evolutionary
multiobjective optimization methods are proposed based on different ideas. The
decomposition based methods (e.g., MOEA/D [86]) require associating objective
vectors to different weights based on e.g., distance to the weight vector. In our
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FIGURE 10 The steps of SIBEA-R

case, we cannot easily associate a set of worst case outcomes to some weights. The
methods based on non-dominated sorting and crowding distance (e.g., NSGA-II
[24]) compares the solutions in the same front based on some distance. In our
case, we would have needed to comparing the distance between different sets
of worst case outcomes. In indicator-based methods, outcomes are compared
based on some indicator function. The relationships between comparing individ-
ual outcomes and different sets of outcomes using an indicator function are well
established in the literature, e.g., in [5, 89]. After exploring the possibilities, we
extend SIBEA which allows us to compare different sets of worst case outcomes
using the hypervolume indicator.

The SIBEA-R method takes the population size (NP) and the number of gen-
erations (NG) as the input and produces a set of non-dominated set-based min-
max robust solutions A as the output. The basic steps of SIBEA-R are illustrated
in Figure 10. We extend the SIBEA method by two components: finding the rep-
resentative worst case outcomes and the set-based non-dominated sorting.

The worst case outcomes of each solution are considered as a set. We com-
pare the sets of worst case outcomes corresponding to different solutions with
set-based dominance. As mentioned before, for a fixed solution, we need to max-
imize the objectives simultaneously with respect to the uncertainty parameters
(i.e., solve (9)) to find the worst case outcomes. We can employ an evolution-
ary multiobjective optimization method to find the approximated worst case out-
comes. But, doing so requires computational resources. In addition, comparing
the worst case outcome sets using set-based dominance requires us to consider
each elements in the sets. This means that we should limit the number of worst
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case outcomes in the set-based non-dominated sorting so that we can rank the
solutions in reasonable time.

So, in SIBEA-R, we propose to solve a small number (M) of scalarized func-
tion, e.g., (3) to find a representative set of worst case outcomes and use them in
the set-based non-dominated sorting. The value of M is a parameter in SIBEA-R.
The bigger the value is the more worst case outcomes can be found. As a result,
the comparison of the sets can be more accurate. However, more computational
resources are needed. The number of function evaluations of SIBEA-R depends
on the single-objective optimization solver used to solve the scalarized subprob-
lems. In case that there is a set of discrete scenarios in the uncertainty set, the
number of function evaluations is k × NP × NG× number of scenarios.

The set-based non-dominated sorting is an extension of the non-dominated
sorting presented in [24]. Instead of using normal Pareto dominance in the sort-
ing, we use lower set less order. The steps of set-based non-dominated sorting
are summarized as follows :

Compare individuals:
1. For each solution p ∈ P, find the representative set of worst case out-
comes f wc(p) and compare with other solutions q ∈ P \ {p} : f wc(q).
2. If f wc(q) ≺low f wc(p), increase the domination count of p, nP by 1.
3. If f wc(p) ≺low f wc(q), put q to Sp, the set of solutions dominated by p.
Sort individuals into fronts:
1. If np = 0, then p is in the first front F1. Set i = 1.
2. for each p ∈ Fi, set nq = nq − 1 for each q ∈ Sp. If nq = 0, then add q to
Fi+1.
3. Set i = i + 1 and repeat step 2 for p ∈ Fi+1.

It is very challenging to verify if SIBEA-R can find a reasonable set of approx-
imated set-based minmax robust Pareto optimal solutions. In Paper [PIII], we
calculated a set of set-based minmax robust Pareto optimal solutions with the
robust version of the weighted-sum approach [26] for a linear problem. We com-
pared these solutions with the final generations in 20 runs of the SIBEA-R method
with different initial populations. Even though evolutionary multiobjective op-
timization methods are not meant for linear problems, we can use the solutions
computed by the weighted-sum approach as references. The results showed that
the SIBEA-R method was able to find those solutions. In addition, SIBEA-R also
found some solutions which the robust weighted-sum approach was not able to
find. These solutions can be verified by the definition to be non-dominated set-
based minmax robust solutions.

5.6 Using SIBEA-R in Pre-decision Making in MuRO-NIMBUS

As SIBEA-R is developed for more efficient calculation of set-based minmax ro-
bust solutions in the pre-decision making stage of the MuRO-NIMBUS method,
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we also demonstrate in [PIII] how it can be used. We modified a common test
problem ZDT2 (see, e.g., [21]) with two assumed uncertain parameters from a
polyhedral uncertainty set. We first approximated a set of set-based minmax ro-
bust Pareto optimal solutions with the SIBEA-R method, and then we use the
reference point approach to help a decision maker to find a most preferred solu-
tion based on the outcomes in the nominal case. We did not apply the classifi-
cation based interactive method as in MuRO-NIMBUS in this example since the
ZDT2-based problem we used was a bi-objective optimization problem. The de-
cision maker could operate without much difficulty by considering the objective
function values.

The development SIBEA-R not only enriched the solution methods for com-
puting set-based minmax robust Pareto optimal solutions. For MuRO-NIMBUS,
SIBEA-R improves the pre-decision making process by more accurately approx-
imate the set of set-based minmax robust Pareto optimal solutions than the ini-
tially used approach based on sampling. Overall, SIBEA-R improves the integrity
of MuRO-NIMBUS. MuRO-NIMBUS is not capable of supporting the decision
maker to consider the trade-offs between robustness and nominal quality. In fact,
the analysis on the trade-offs between robustness and nominal quality in multiob-
jective setting is not a commonly studied topic. In [PIV], we study the trade-offs
based on the analysis of different solutions in the nominal case and the worst
case.



6 BALANCING BETWEEN ROBUSTNESS AND

NOMINAL QUALITY: ANALYZING SOLUTION

SETS

6.1 Motivation

As mentioned before, minmax robustness is rather conservative. The conserva-
tiveness means that the minmax robustness helps the decision maker to prepare
for the worst case, but the objective function values can be bad compared to other
solutions in other scenarios. This means that the minmax robust Pareto optimal
solution the MuRO-NIMBUS method supports the decision maker to find can
have a bad nominal outcome.

As discussed before, the MuRO-NIMBUS method does not have the capa-
bility of allowing the decision maker to consider the trade-off between robustness
and nominal quality. The trade-off between robustness and nominal quality can
mean giving up some nominal quality to gain some robustness. Before introduc-
ing this kind of feature into an interactive method, we first need to investigate
which robustness concepts can be utilized. We also need to understand the rela-
tionships among these robustness concepts.

In single-objective optimization, many concepts have been proposed (e.g.,
in [7, 12, 28, 35, 71]) to seek for less conservative solutions than minmax robust
optimal solutions. For single-objective optimization problems, the uncertainty
considered is usually reflected in the parameters in the constraints. The analysis
on the trade-offs has also been focused on the “price” to be paid for feasibility.

As said, we consider multiobjective optimization problems with uncertain
parameters in the objective functions. So, we consider the “price” to be paid for
finding solutions that are good when different scenarios are considered simul-
taneously. In multiobjective optimization problems with parameter uncertainty,
some less conservative concepts than minmax robustness have been developed
including regret robustness (e.g., [83]), the extension of considering cardinality-
uncertainty (e.g., [67]) and light robustness [44].
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Multiobjective regret robustness is to find a minmax robust Pareto optimal
solution whose nominal outcome is the nearest to that of a nominal Pareto opti-
mal solution. If we fix the nominal Pareto optimal solution, the decision maker’s
preferences on the nominal outcome can be incorporated. But, the solution found
is still a minmax robust solution without the trade-off between robustness and
nominal quality. We have already considered supporting the decision maker to
find a most preferred minmax robust Pareto optimal solution based on her or his
preferences in the nominal scenario in MuRO-NIMBUS.

The consideration of cardinality-uncertainty is based on the idea that not
all uncertain parameters attain the worst case at the same time. The decision
maker can specify her or his preferences as how many parameters can involve
uncertainty at the same time. Treatment of this information for trade-off between
robustness and nominal quality is not automatically included in this kind of ap-
proach.

Light robustness proposes an idea of controlling the tolerable degradation
in the nominal quality to gain robustness. The tolerable degradation is repre-
sented by the values ε. The robust solutions are found by optimizing in the worst
case and utilizing ε to constrain the degradation of their nominal quality. As in-
troduced in Chapter 3, the formulation of light robustness allow us to first fix the
nominal outcome with respect to which the tolerable degradation is considered.
This allows us to incorporate the decision maker’s preferences on the nominal
outcome. In addition, the decision maker can specify the value of ε to specify
how much nominal quality (s)he can sacrifice to gain robustness.

Based on the discussion above, we choose light robustness for introducing
trade-off between robustness and nominal quality. The intuition behind the light
robustness concept is that the more nominal quality is sacrificed, the more ro-
bustness can be gained. In order to verify our intuition and justify that lightly
robust solutions are good trade-offs between robustness and nominal quality, we
analyze the nominal, lightly robust, minmax robust Pareto optimal solutions in
Paper [PIV]. The nominal Pareto optimal solutions have the best nominal quality.
The minmax robust Pareto optimal solutions are considered to be the most robust
solutions.

In [44], the existence of ε such that lightly robust Pareto optimal solutions
are set-based minmax robust Pareto optimal has been discussed. However, a
systematical analysis of the relationships between the three sets of solutions when
considering robustness and nominal quality is still missing in the literature. The
set of nominal Pareto optimal solutions contains objective vectors. If we use set-
based worst case in light robustness and minmax robustness, we need to deal
with the comparison of set of outcome sets and a set of objective vectors. So, in
our analysis, we consider point-based worst case. This allows us to compare sets
consists of objective vectors.

In Paper [PIV], we analyze the three sets of solutions using set-based domi-
nance from set-valued optimization. With the analysis, we first verify that lightly
robust Pareto optimal solutions are good trade-offs between robustness and nom-
inal quality. We then quantify the trade-offs with two measures “price of robust-
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ness” and “gain of robustness”. In addition, we investigate how we can utilize
the relationships between the three sets of solutions and the quantified trade-off
to support decision making.

6.2 The Relationships between Three Sets of Robust Solutions

In our analysis in [PIV], we evaluate the set of point-based minmax robust Pareto
optimal solutions Xwc, the set of nominal Pareto optimal solutions Xnom, and the
set of lightly robust Pareto optimal solutions Xlight,ε under the nominal case f nom

and the worst case f wc. Then, we analyze the the relationships of different sets of
solutions under the nominal scenario f nom(Xnom), f nom(Xlight,ε), and f nom(Xwc)
as well as the relationships of f wc(Xnom), f wc(Xlight,ε), and f wc(Xwc) with the
lower set less order and upper set-less order. The notations and set-based domi-
nance are introduced in Chapter 3.

In Paper [PIV], we guarantee the domination property of f nom and f wc by
some assumptions. Domination property means that a feasible solution is either
Pareto optimal or there exists a Pareto optimal solution which dominates it. The
formal definition of domination property is given in e.g., [40]. So, Xnom is a non-
dominated set in f nom and Xwc is a non-dominated set in f wc. We summarize this
property in Lemma 11:

Lemma 11. For every set X̃ ⊆ X we have:

(i) f nom(Xnom) ≺upp f nom(X̃).
(ii) f wc(Xwc) ≺upp f wc(X̃).

Under the nominal case f nom, we find that Xlight,ε dominates f nom(Xnom)+ ε

as presented in Lemma 12:

Lemma 12. For every ε ≥ 0 we have

(i) f nom(Xlight,ε) ≺low f nom(Xnom) + {ε},
(ii) f nom(Xlight,ε) ≺upp f nom(Xnom) + {ε}.

Under the worst case f wc, we find that Xlight,ε dominates Xnom and the
lightly robust Pareto optimal solutions computed with a larger tolerance ε2 dom-
inates the set of lightly robust Pareto optimal solutions computed with a smaller
tolerance ε1 (here, we assumed the components of ε take the same value) as stated
in Lemma 13:

Lemma 13.

(i) f wc(Xlight,ε) ≺upp f wc(Xnom) for all ε ≥ 0 and
(ii) f wc(Xlight,ε2) ≺upp f wc(Xlight,ε1) for all 0 ≤ ε1 ≤ ε2.
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FIGURE 11 Relationships of different solution sets under f wc

Combining the results of Lemma 11 and 13, we summarize our main find-
ings concerning the relationships of the three sets of solutions under the worst
case f wc:

f wc(Xwc) ≺upp f wc(Xlight,ε2) ≺upp f wc(Xlight,ε1) ≺upp f wc(Xnom)

for ε1 ≤ ε2. This means that choosing lightly robust Pareto optimal solutions re-
sult in better outcomes in the worst case than choosing the nominal Pareto opti-
mal solutions. While the minmax robust Pareto optimal solutions are considered
to be most “robust”, lightly robust Pareto optimal solutions are “more robust”
than the nominal Pareto optimal solutions.

This main finding is illustrated in Figure 11 for a bi-objective optimization
problem with quadratic objective functions and an uncertain parameter in each
objective function. In the figure, there are four different sets of solutions. We can
see that f wc(Xwc) dominates f wc(Xnom) and f wc(Xlight,ε) and f wc(Xnom) is dom-
inated by f wc(Xlight,ε). As the two sets of lightly robust Pareto optimal solutions
are concerned, we can see that the set of outcomes of Xlight,10 dominates the set
of outcomes corresponding to Xlight,15. The purpose of using two values of ε is
to demonstrate the finding that the set of lightly robust Pareto optimal solutions
computed with larger ε dominates the set of lightly robust Pareto optimal solu-
tions computed with smaller ε in the worst case. Using other values than 10 and
15, we would observe similar phenomena.

Combining the results of Lemma 11 and 12, we summarize our main find-
ings concerning the relationships of the three sets of solutions in the nominal case
f nom:

f nom(Xnom) ≺upp f nom(Xlight,ε) ≺ f nom(Xnom) + {ε}.
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FIGURE 12 Relationships of different solution sets under f nom

This means that in the nominal case, we can get a set of lightly robust Pareto
optimal solutions with more similar outcomes to that of the set of nominal Pareto
optimal solutions by decreasing ε.

This finding is visually illustrated in Figure 12 for the same problem as in
Figure 11. In the figure, we can see that f nom(Xnom) dominates f nom(Xlight,ε).
Note that in the figure we observe f nom(Xlight,10) dominates f nom(Xlight,15) and
f nom(Xwc). This relationship does not hold in general, as we show with a coun-
terexample in Paper [PIV].

The relationships in f nom and f wc of the three sets of solutions provide a
formal proof that lightly robust Pareto optimal solutions are good trade-offs be-
tween robustness and nominal quality. They also provide some guidelines on
how to utilize the value of ε to adjust the robustness and nominal quality of the
solutions in solving problem (11) to find lightly robust Pareto optimal solutions.
Next, we quantify the trade-off between robustness and nominal quality, i.e., how
much nominal quality is sacrificed to gain robustness and how much robustness
we can gain. We call this the price of multiobjective robustness.

6.3 The Price of Multiobjective Robustness

With the price of multiobjective robustness, we measure the “price of robustness”
and “gain of robustness”. We first define the “price of robustness”:

Definition 14. Let x ∈ X be a feasible solution to (6). We define its “price of robustness”
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as

price(x) = inf
x̄∈Xwc

‖ f nom(x)− f nom(x̄)‖∞,

where ‖ · ‖∞ denotes the infinity-metric.

The measure “price of robustness” describes how much nominal quality is
given up to gain minmax robustness when comparing a feasible solution to a
minmax robust Pareto optimal solution. Next, we specify “gain of robustness”
to quantify how much better a minmax robust Pareto optimal solution x̄ is in the
worst case compared to a nominal Pareto optimal solution x̂:

gain(x̂, x̄) = ‖ f wc(x̂)− f wc(x̄)‖∞.

6.4 Decision Support with The Price of Multiobjective Robustness

Next, we utilize the measures “price of robustness” and “gain of robustness” for
decision support. We propose in Paper [PIV] two strategies the two-stage strategy
and the lexicographic strategy. The two strategies are meant to support the deci-
sion maker in the choices of a nominal Pareto optimal or minmax robust Pareto
optimal solution.

The Two-stage Strategy In the two-stage strategy, the decision maker first
concentrates on the nominal scenario and identifies a most interesting nominal
Pareto optimal solution x̂. Then, we compute the “price of robustness” of the
nominal Pareto optimal solution price(x̂) by comparing to the nearest minmax
robust Pareto optimal solution x̄. The value of price(x̂) is the price the decision
maker needs to pay to change x̂ to the nearest minmax robust Pareto optimal so-
lution x̄. We also compute “gain of robustness” gain(x̂, x̄), whose value describes
how much better x̄ is than x̂ under the worst case.

With the knowledge of the values of price(x̂) and gain(x̂, x̄), the decision
maker can analyze if it is worthy of sacrificing the nominal quality to gain the
amount of robustness. If it is, (s)he can choose the solution x̄. If it is not, (s)he
can choose the solution x̂. In case (s)he wants to have a solution with a preferred
trade-off between robustness and nominal quality, we need to compute a lightly
robust Pareto optimal solutions for her or him.

The Lexicographic Strategy The lexicographic strategy is suitable when the
decision maker does not have specific preferences on the objective function val-
ues. In this case, it is useful to find the nominal Pareto optimal solution with the
smallest “price of robustness” or find the minmax robust Pareto optimal solution
which is closest to the set of nominal Pareto optimal solutions. We can solve the
following optimization problem to find a pair of solutions x̂ ∈ Xnom and x̄ ∈ Xwc:

min
x̂∈Xnom

min
x̄∈Xwc

‖ f nom(x̂)− f nom(x̄)‖∞. (13)
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FIGURE 13 Nominal Pareto optimal solutions and their closest minmax robust Pareto
optimal solutions.

Figure 13 illustrates examples of utilizing the two strategies in a simple lin-
ear problem. In the figure, the solution sets Xnom and Xwc are evaluated in the
nominal case f nom.

There are three nominal Pareto optimal solutions under consideration x1, x2,
and x3. For example, with the two-stage strategy, the decision maker first identi-
fies x2 as the most interesting solution, then we find the nearest minmax robust
Pareto optimal solution x̄2. We compute price(x2) = 1.5 and gain(x2, x̄2) = 1 and
present the values to the decision maker. The value of price(x2) represent the
degradation in the nominal quality when solution x2 is changed to the nearest
minmax robust Pareto optimal solution x̄2. The value of gain(x2, x̄2) represents
the improvement in the worst case outcome when x2 is changed to x̄2. In the
example, the objective functions do not have any meanings. In practical prob-
lems, the objectives have concrete meanings, so the decision maker can under-
stand what the values mean in the problem context. Then, (s)he can compare the
two values. In this case, based on the comparison on the numerical values, the
decision maker may decide that it is not worthy of the sacrifice to gain robust-
ness and choose x2 as the final solution since the value of price(x2) is larger than
gain(x2, x̄2).

With the lexicographic strategy, we consider two set of three solutions. We
solve (13) and find a pair of nominal Pareto optimal and minmax robust Pareto
optimal solutions closest to each other under f nom. So, we find x̄3 in this case
with price(x3) = 0 and gain(x3, x̄3) = 0. This solution is desirable for a decision
maker who concentrates on nominal quality but wishes to gain robustness as
much as possible. The solution is also good for a decision maker who wants to
find a minmax robust Pareto optimal solution whose nominal quality is as good
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as possible.
The quantified “price of robustness” and “gain of robustness” provide con-

crete trade-off information for the decision maker to consider if it is worthy of
sacrificing nominal quality to gain robustness. In addition, the two strategies
can support the decision maker in finding a final solution. However, the com-
putation of “price of robustness” and solving (13) in the lexicographic strategy
requires pre-computed sets Xnom and Xwc. Without the pre-computed sets, it is
hard to find their values.

The results presented in Paper [PIV] motivate us to develop an interactive
multiobjective optimization method to support a decision maker to find a most
preferred lightly robust Pareto optimal solution in Paper [PV]. In the next section,
we summarize this paper.



7 BALANCING BETWEEN ROBUSTNESS AND

NOMINAL QUALITY: DECISION SUPPORT WITH

AN INTERACTIVE METHOD

7.1 Motivation

As discussed in Chapter 6, lightly robust Pareto optimal solutions are good trade-
offs between robustness and nominal quality. The trade-offs between robustness
and nominal quality can be adjusted by changing the value of ε in the lightly
robust problem (11). The larger the value is, the closer the lightly robust Pareto
optimal solutions are to the minmax robust Pareto optimal solutions. This means
that the more “robust” the lightly robust Pareto optimal solutions are.

In addition, we also proposed two strategies to support the decision maker
to choose between nominal Pareto optimal solutions and minmax robust Pareto
optimal solutions based on the measures of “price of robustness” and “gain of
robustness”. In case that a decision maker wants to find a solution with preferred
trade-offs between robustness and nominal quality, we can support the decision
maker to find a most preferred lightly robust Pareto optimal solution. By a most
preferred lightly robust Pareto optimal solution we mean that 1) the robustness
and nominal quality are balanced based on the decision maker’s preference and
2) the nominal objective function values satisfy the preferences of the decision
maker as well as possible.

As mentioned earlier, the lightly robust problem (11) requires us to fix a
nominal Pareto optimal solution first. This requirement allows us to incorporate
the decision maker’s preferences on the nominal outcome. In addition, the deci-
sion maker can specify the value of ε which represents how much nominal quality
(s)he is willing to sacrifice to gain robustness. Based on this idea, we develop a
lightly robust interactive multiobjective optimization (LiRoMo) method in Paper
[PV]. We summarize LiRoMo in this chapter.
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7.2 Building the LiRoMo Method

In LiRoMo, the decision maker is expected to specify the following preference
information:

1. A reference point, which consists of desired nominal objective function val-
ues.

2. The tolerable degradation ε on the nominal objective function values.

Based on the preferences, we first find a nominal Pareto optimal solution x̂ which
satisfies the reference point as well as possible by solving (3). Then, we find a
lightly robust Pareto optimal solution xlight,ε with respect to x̂ and ε by solving
the following lightly robust subproblem based on the achievement scalarizing
function:

minimize α + ρ
k

∑
i=1

(max
ξ∈U

f (x, ξ)− z̄i)

subject to fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi for all i = 1, · · · , k
wi(max

ξ∈U
fi(x, ξ)− z̄i) ≤ α for all i = 1, · · · , k

x ∈ X.

(14)

In Paper [PV], we prove that an optimal solution of (14) is a lightly robust Pareto
optimal solution to (6). In addition, we reformulate (14) under some assumptions
so that it can be efficiently solved. We considered the reformulation under poly-
hedral uncertainty set with quasi convex objective functions with respect to the
uncertain parameters. As a special case of polyhedral uncertainty, interval un-
certainty is included in the reformulation with quasi convex objective functions.
The reformulation is also valid for uncertainty sets consisting of a set of discrete
scenarios without the assumption on quasi convexity of the objective functions.

In order to support the decision maker to make informed decisions and find
a preferred balance between robustness and nominal quality, we use the measures
“price to be paid for robustness” and “gain of robustness” which originate from
[PIV]. We used the term “price for robustness” in Chapter 6. Here the term “price
to be paid for robustness” carries the message that it is the price to be paid only if
the lightly robust Pareto optimal solution is chosen. Since the objective functions
can be with very different magnitudes, we should normalize the two measures
such that they are more understandable for the decision maker as follows:

gain(xlight,ε, x̂) =

∥∥∥∥∥
(

f wc
1 (xlight,ε)− f wc

1 (x̂)

znad,wc
1 − zuto,wc

1

, ...,
f wc
k (xlight,ε)− f wc

k (x̂)

znad,wc
k − zuto,wc

k

)T
∥∥∥∥∥

∞

,

and

price(xlight,ε, x̂) =

∥∥∥∥∥
(

f nom
1 (xlight,ε)− f nom

1 (x̂)
znad

1 − zuto
1

, ...,
f nom
k (xlight,ε)− f nom

k (x̂)
znad

k − zuto
k

)T
∥∥∥∥∥

∞

.
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FIGURE 14 Visualizing a lightly robust Pareto optimal solution

The measure gain(xlight,ε, x̂) quantifies how much better the lightly robust Pareto
optimal solution is compared to the nominal Pareto optimal solution in the worst
case, i.e., how much “robustness” can be gained. The measure price(xlight,ε, x̂)
quantifies how much worse the lightly robust Pareto optimal solution is com-
pared to the nominal Pareto optimal solution in the nominal case, i.e., how much
nominal quality is to be sacrificed.

In order to visually support the decision maker to process the information
related to the solutions, we visualize the solution with an augmented value path
as shown in Figure 14. In the figure, the decision maker can observe five different
kinds of information:

1. The nominal objective function values of the current nominal Pareto optimal
solution which satisfies the reference point best in the colored bars. The
colored bars are within the white bars which represent the ranges of the
objective function values.

2. The nominal objective function values of the current lightly robust Pareto
optimal solution.

3. The change in the nominal quality, i.e., the difference between the markers
of the value path and the colored part of the bars.

4. How much better the current lightly robust Pareto optimal solution is com-
pared to the worst acceptable one whose nominal objective function values
are marked by the triangles in the figure.

5. How much robustness (s)he can gain compared to the sacrificed nominal
quality. The information is only presented with two small colored bars
marked by p (for price) g (for gain). The decision maker can compare their
lengths to get sufficient information without the numerical values. If the bar
marked by p is longer than the bar marked by g, more nominal quality is
sacrificed compared to robustness to be gained. If the situation is opposite,
less nominal quality is sacrificed compared to robustness to be gained. If
the two bars are similar length, the gain and price are similar.
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(14)

FIGURE 15 The steps of LiRoMo

7.3 LiRoMo

The LiRoMo method supports the decision maker in updating her or his prefer-
ences iteratively and directs the solution process towards a most preferred lightly
robust Pareto optimal solution. The steps of the LiRoMo method are illustrated
in Figure 15.

As shown in the figure, the basic idea of LiRoMo is to ask for the decision
maker’s preferences (a reference point) on the nominal outcome. And, find a
nominal solution which satisfies this preferences first. Then the decision maker
is informed about the nominal outcome of this solution. With respect to the in-
formation, the decision maker is expected to specify how much nominal quality
(s)he is willing to sacrifice. Based on the nominal solution and the preferences on
ε, we calculate a lightly robust Pareto optimal solution and visually present re-
lated information to the decision maker (like in Figure 14). If the decision maker
wants to alter the value of ε, we find a new lightly robust Pareto optimal solu-
tion. If the decision maker wishes to start with another nominal Pareto optimal
solution, (s)he is expected to specify a new reference point. This kind of steps
carries on until the decision maker finds a lightly robust Pareto optimal solution
with satisfactory nominal outcome and good trade-off between nominal quality
and robustness.

For demonstrating the application of LiRoMo to support decision making,
we formulated and solved a stock investment portfolio optimization problem for
a small sized start-up to find a lightly robust investment portfolio. The objectives
were maximizing the return on investment and minimizing risks (via multiple
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risk measures). The uncertainty in their investments came from the fact that they
did not know exactly how long their investments would stay in the stock market.
They planed for a long term investment. But, if they need the invested money
to start new projects, the investment would be withdraw earlier. So, we con-
sidered three scenarios simultaneously including the investment as a long term
investment, a mid-term investment and a short term investment. The different
investment periods require using different data, which is reflected as parameters
in the objective functions.

With the LiRoMo method, we were able to support the decision maker to
consider the planned long term investment case and the earlier withdraw cases
simultaneously. As a result, the decision maker found an investment portfolio
with a good long term return and acceptable risks. At the same time, the invest-
ment portfolio was not too bad in case of earlier withdrawal. The development
of the LiRoMo method resulted in the first interactive method for lightly robust
Pareto optimal solutions. LiRoMo also answered the question of how to support
the decision maker to make informed decisions and find a good balance between
robustness and nominal quality.



8 DISCUSSIONS

In this section, we first discuss some insights gained in the development of this
thesis. Then we derive some suggestions for applying the developed methods.
Some of them are either explicitly or implicitly mentioned in the previous chap-
ters. We deepen the discussion here since they are very important elements to
consider when solving practical problems.

8.1 Experimenting on Example Problems with Decision Makers

In our experiments, when solving the example problems presented in the in-
cluded papers, the interactions are done with real decision makers. Not only
the authors of the papers but also some colleges and friends acted as decision
makers. We carried out multiple experiments during the developments of the in-
teractive methods. The feedbacks helped us to refine our design of the methods.
For each example problem, we reported one of the interactive solution processes
among many of them.

We say that we terminate the solution process when the decision maker
finds a most preferred or satisfied solution. The methods and strategies for mea-
suring the satisfaction are not at all trivial. In our experiments, we relied on the
statements and opinions of the decision makers. Better assessment on the in-
teractive methods include for example repeating the experiments with a wider
range of decision makers and use questionnaires or interviews to access their sat-
isfaction. Alternatively, we can also evaluate the interactive methods based on
simulations, e.g., using artificial decision makers [65].

In addition, the interactive methods developed in this thesis have not been
tested in different problem domains. These methods still await more applications
in different disciplines. Solving different problems will provide feedbacks from
different view. The feedbacks should be utilized in refining the methods as well
as developing new features.
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8.2 Visualizing A Solution

In this thesis, we developed different kinds of visualizations. The visualizations
are used to support decision makers in understanding related information of the
solutions. Visualization is important because it can “provide extensions to men-
tal process” [17], thus, help the decision makers in understanding the solutions.
During the development of the visualization, we have explored other possibili-
ties. For example, we have experimented on augmenting the pedal diagrams and
different kinds of bar charts (see e.g., [57] for a summary of these visualization
techniques). The visualizations we chose serve the purpose of delivering differ-
ent kinds of information related to robustness and objective function values in an
understandable way to decision makers.

Typically, in our experiments, we explained the visualizations to the deci-
sion makers. It is an important action before presenting solutions via the visu-
alizations. When we have more information for the decision maker to consider,
it takes time for the decision maker to train. Typically, human can only handle
limited amount of information. For example, when there are a large number of
objectives, the visualizations developed in this thesis can contain too much infor-
mation for a decision maker to comprehend. In this situation, the visualization of
information on a single objective is not affected. But, grasping an overview can
be challenging. Thus, There should be a cognitive upper bound of the decision
maker. In this case, the trade-off has to be considered between how much infor-
mation the decision maker can digest and information about how many different
objectives or aspects we should provide to her or him.

In addition, other issues like the arrangements of visual elements and color
usage were not within the scope of this thesis. These aspects can affect the actual
decisions of the decision makers (see, e.g., [47]). So, they should be considered
when designing user interfaces for the interactive methods.

8.3 Recognizing Uncertainty

Sometimes, it can be challenging to recognize the sources of uncertainty. As men-
tioned earlier, it can also be challenging for the decision maker to estimate the
uncertainty sets for imprecise information or uncertain future developments. We
assumed that decision makers can provide information about the uncertainty sets
by e.g., utilizing her or his own domain knowledge or using data from the past.
If a decision maker is not confident in providing such information, we have to
utlize some other techniques to construct the uncertainty set, e.g., using machine
learning techniques (see e.g., [77]).
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8.4 Choice of A Robustness Concept

When solving practical problems, we face the challenge of choosing a robustness
concept to apply. Subsequently, when we consider supporting a decision maker,
we need to handle the choice of an interactive method. The interactive methods
developed in this thesis will be available in the DESDEO framework [1]. In this
thesis, we assumed that the problem formulation reflects the real problem to be
solved. So, the discussion here is focused on the practical consequences and the
meaning for the decision maker of using different robustness concepts considered
in this thesis.

When we use a robustness measure, we focus on quantifying the effects of
uncertainty in the objective functions. In this kind of approach, robustness means
how the objective function values vary due to uncertainty. A robustness measure
is suitable for problems where the values of uncertain parameters/decision vari-
ables are perturbed in a small neighborhood of their nominal values. If the un-
certainty is reflected in a different way, the ranges of variation can be so big that
it does not help in decision making. Also, the measure cannot be used alone, it
should be combined with the objectives because the focus of the decision maker
is still on the objectives. Introducing robustness with a measure is to guarantee
that the objective function values do not deviate as unexpected.

When there are a set of possible values of uncertain parameters which are
not any small perturbations in the neighborhood of the nominal values, it can
be more suitable to adopt some robustness concepts. When the decision maker
is e.g., risk averse, we can use minmax robustness to help her or him to find a
solution which is still valid even when the worst case occurs. Depending on how
the decision maker wishes to make decisions, we can for example either use the
robust ASF approach or the MuRO-NIMBUS method. The robust ASF approach
can support the decision maker to find a solution with the most preferred worst
case outcome. MuRO-NIMBUS can support the decision maker to find a solu-
tion corresponding to a most preferred nominal outcome. The solutions found
provide a pessimistic view on the consequences of uncertainty involved. The
decision maker might miss some better solutions in terms of outcomes in other
scenarios and her or his preferences.

When the decision maker is e.g., risk-seeking, we can solve the problem in
the nominal scenario. We do not consider the “best case scenarios” here, because
if the outcomes of solutions are better than expected, it can be a positive surprise
for the decision maker. When we support a e.g., risk-neutral decision maker who
wants to consider both robustness and nominal quality simultaneously. We can
use light robustness and apply the LiRoMo method. When the decision maker
can find a satisfactory trade-off between the two aspects, (s)he also needs to deal
with more information in terms of both understanding the solutions and specify-
ing preferences. In general, the choice of a robustness concept can depend on the
problem itself as well as the type of solution the decision maker desires.



9 AUTHOR’S OWN CONTRIBUTION

The research topic of utilizing interactive methods in multiobjective robust opti-
mization was proposed by the author’s supervisors. In the beginning, the author
reviewed the literature and found that the consideration should be in at least two
kinds of uncertainty: decision uncertainty and parameter uncertainty.

After some discussions, the supervisors and the author decided together
to start by considering decision uncertainty and using a robustness measure to
quantify the effects of uncertainty. The author investigated how she can incor-
porate a robustness measure to an interactive method. After finding the desired
characteristics of a robustness measure, the author discovered that none of the
existing robustness measures met the needs of supporting decision making in
an interactive method. So, the author developed the proposed robustness mea-
sure. The robustness measure was matured based on some feedbacks from the
supervisors. The modification of the NIMBUS method was done by the author,
and the visualization was also developed by the author. The author constructed
the example problems and conducted the numerical experiments. In addition,
the author was responsible for writing major parts of the text of Paper [PI]. The
supervisors also helped the author to improve the manuscript of Paper [PI].

During Prof. Schöbel’s visit in Jyväskylä, the author generated the idea of
Paper [PII] based on discussions with Prof. Schöbel and the supervisors. The
author developed the MuRO-NIMBUS method. The author also constructed the
example problem and conducted all the numerical experiments. The author pre-
sented the research in the SimScience workshop. The author wrote major parts of
the paper. The supervisors commented on the manuscript. The comments helped
the author to improve Paper [PII].

When the author was developing the MuRO-NIMBUS method, she realized
that solving the scalarized subproblem was challenging. She described this issue
to her colleagues and got the inspiration of seeking for some new ideas from the
evolutionary multiobjective optimization field. After some investigation, the au-
thor generated the idea in Paper [PIII]. The author extended an implementation
of SIBEA for the SIBEA-R method. She implemented new modules and inte-
grated them to the SIBEA implementation. The author conducted all the numeri-
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cal experiments and wrote the text in Paper [PIII]. Prof. Miettinen commented on
the text of Paper [PIII], which helped the author to improve the manuscript.

During the author’s visit in Prof. Schöbel’s research group, she talked with
Prof. Schöbel about her ideas of working on light robustness. Her intuitions on
the relationships between lightly robust, nominal, and minmax robust Pareto op-
timal solutions were also communicated. Prof. Schöbel suggested to analyze their
relationships using set-based dominance. Prof. Schöbel formalized the proofs in
Paper [PIV] while the author conducted the numerical experiments. The mea-
sures “price of robustness” and “gain of robustness” were developed as a joint
effort. The two-stage strategy was the author’s idea while the lexicographic strat-
egy was Prof. Schöbel’s idea. As a result, the author wrote the texts of Paper [PIV]
together with Prof. Schöbel.

With the solid basis that lightly robust Pareto optimal solutions are good
trade-offs between robustness and nominal quality, the author is motivated to
develop the LiRoMo method. The development of the LiRoMo method was done
by the author. The discussions with the supervisors helped to mature the ideas
during the developments. The author formulated the example problem and con-
ducted the numerical experiments. The author wrote the text of Paper [PV].
Prof. Miettinen’s comments helped to improve the manuscript.

Overall, the supervisors have guided the author more intensively at the be-
ginning of the research. In the later stage, the author was the primary source
of new ideas. In the whole process of preparing the thesis, the author was the
main source of developing the interactive methods. The author also constructed
the example problems and conducted the numerical experiments. Feedbacks and
comments from the supervisors and Prof. Schöbel were useful for the author to
consider various aspects in developing interactive methods for multiobjective ro-
bust optimization.



10 CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

The goal of this thesis is to develop interactive methods for tackling various chal-
lenges involved in supporting decision makers to make informed decisions for
practical multiobjective optimization problems under uncertainty. We utilized
the multiobjective robust optimization approach. In the literature, the research
efforts have been mainly devoted to developments of different robustness con-
cepts and discussions on their practical applicability in decision making are hard
to find. This thesis analyzed different robustness measures and concepts from the
perspective of their practical applicability in decision making. In addition, the in-
teractive methods developed in this thesis provide the needed tools for support-
ing decision makers in multiobjective robust optimization.

We first concentrated on multiobjective optimization problems with deci-
sion uncertainty. We proposed a new robustness measure and incorporated it into
the NIMBUS method as an example of using a robustness measure in an interac-
tive method. For multiobjective optimization problems with parameter uncer-
tainty, we first considered supporting a decision maker to find a most preferred
minmax robust Pareto optimal solution based on their outcomes in the nominal
scenario. As a result, we developed the MuRO-NIMBUS method which involved
the pre-decision making and the decision making stage. Since it is very chal-
lenging to compute minmax robust Pareto optimal solutions in the pre-decision
making stage, we utilized ideas from evolutionary multiobjective optimization
and developed the SIBEA-R method.

With the development of MuRO-NIMBUS, we realized that, sometimes,
finding minmax robust Pareto optimal solutions is not enough. There can be cases
that a decision maker prefers to search for a satisfactory trade-off between ro-
bustness and quality. After the exploration for suitable concepts to introduce the
trade-off, we analyzed nominal Pareto optimal solutions, minmax robust Pareto
optimal solutions, and lightly robust Pareto optimal solutions. Based on our anal-
ysis, we found that lightly robust Pareto optimal solutions are good trade-offs
between robustness and quality. We quantified the trade-offs with “price of ro-
bustness” and “gain of robustness”.
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For supporting decision makers to find a preferred trade-off between ro-
bustness and quality, we developed the LiRoMo method. In LiRoMo, the decision
maker can affect the nominal objective function values (i.e., nominal quality) of
the lightly robust Pareto optimal solutions. At the same time, the decision maker
can control the trade-off between robustness and nominal quality.

As mentioned before, the overall goal of this research is to support decision
makers in making informed decisions for multiobjective optimization problems
under uncertainty. As a result, decision makers are aware of and being well pre-
pared for involved uncertainty. This thesis presents achievements in some aspects
by bridging the theoretical developments and practical decision making in multi-
objective robust optimization. For achieving the overall goal, there are still many
interesting future research venues.

For supporting the decision maker with sufficient information, we utilize
sets of pre-computed solutions. For example in MuRO-NIMBUS, we computed
a set of set-based minmax robust Pareto optimal solutions to help the decision
maker prepare for the worst case. Also, we need a set of point-based minmax
robust Pareto optimal solution in our two-stage and lexicographic strategies. De-
veloping approximation methods to construct approximated sets of robust Pareto
optimal solutions is an interesting topic. The results from this line of research will
help to improve the effectiveness of the developed methods and strategies and
consequently enable better support for decision makers.

The developed interactive methods involves scalarized subproblems. The
scalarized subproblems are very challenging to solve. Solving the subproblems
is an important element in the interactive methods. We considered reformulation
of problems with some assumed characteristics. Thus, reformulations for wider
class of problems is also a relevant future research direction. The results from this
research direction enables us to solve the subproblems more efficiently.

In addition, preservation of the decision maker’s preferences in different
scenarios (e.g., when considering the nominal scenario and the worst case) is also
a valid future research topic. In this research topic, the aim should be at find-
ing solutions which reflect decision makers’ preferences in different scenarios as
well as possible. With this kind of solution, the decision makers’ preferences in
different point of view can be satisfied.

As discussed before, the interactive methods proposed in this thesis still
await more applications in different disciplines. For different applications, fine-
tuning the methods for some specific application problems can be necessary.
Feedbacks from decision makers in different problem domain can facilitate the
developments of new features. Different application problems can also motivate
us to explore possibilities in other robustness concepts and other types of interac-
tive methods. For example, extending the concept of adjustable robustness [9] to
multiobjective optimization problems can be beneficial for forest treatment plan-
ning where decisions are made for a long time horizon involving different kinds
of uncertainty.

To summarize, with the analysis on the practical applicability of robust-
ness measures and concepts in decision making, we bridge the theory of mul-
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tiobjective robust optimization and the practice of decision making in solving
multiobjective optimization problems under uncertainty. The developed interac-
tive methods provide necessary tools to support decision making under different
kinds of uncertainty and find different kinds of solutions. Together, the results of
analysis and the developed interactive methods can provide some insights and
guidelines for researchers and practitioners who consider solving multiobjective
optimization problems under uncertainty. Overall, this thesis brings multiobjec-
tive robust optimization into practice.
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YHTEENVETO (FINNISH SUMMARY)

Interaktiivisia menetelmiä robustiin monitavoiteoptimointiin

Käytännön optimointiongelmissa on tyypillisesti useita ristiriitaisia tavoitteita,
joissa on eri lähteistä syntyvää epävarmuutta. Erilaisia robustisuuden käsitteitä
on kehitetty huomioimaan useat tavoitteet ja niiden epävarmuus samanaikaises-
ti. Kuitenkaan niiden käytännön toimivuutta ei ole juurikaan kirjallisuudessa kä-
sitelty. Vielä vähemmän on tutkittu ratkaisumenetelmiä, joilla voidaan tukea pää-
töksentekijää löytämään paras robusti ratkaisu, joka ei ole liian herkkä epävar-
muuksille. Siksi tässä väitöskirjatutkimuksessa keskitytään kahteen pääteemaan:
erilaisten robustisuuskäsitteiden käytännön soveltuvuuteen päätöksenteossa ja
interaktiivisten eli vuorovaikutteisten menetelmien kehittämiseen, jotta päätök-
sentekijää voidaan tukea löytämään häntä parhaiten tyydyttävä robusti ratkaisu
erilaisten epävarmuuksien vallitessa ristiriitaisten tavoitteiden välillä.

Työssä käsitellään aluksi tilanteita, joissa optimoitujen ratkaisujen käytän-
nön toteutusta ei voida taata tarkasti, vaan toteutuksessa on epävarmuutta. Täl-
laisille ongelmille kehitetään uusi robustisuusmittari, jolla epävarmuuden vaiku-
tusta optimoitavien funktioiden arvoihin voidaan mitata. Tämä mittari kytketään
osaksi interaktiivista menetelmää, jossa päätösentekijälle esitetään ratkaisuja ja
tietoa niiden robustisuudesta tehostettujen havainnollistuskeinojen avulla.

Työssä käsitellään myös epävarmuutta optimoitavien funktioiden paramet-
reissa. Ensin käytetään joukkopohjaista min-max-robustisuuskäsitettä ja kehite-
tään kaksivaiheinen interaktiivinen menetelmä tukemaan päätöksentekijää löy-
tämään hänelle mieluisin ns. joukkopohjainen min-max-robusti, Pareto-optimaa-
linen ratkaisu. Koska tällaisia ratkaisuja on vaikeaa laskea, kehitetään niiden ap-
proksimointiin evoluutiopohjainen monitavoiteoptimoinnin menetelmä. Tämän
jälkeen analysoidaan erilaisia robustisuuskäsitteitä ja todetaan, että kevyesti ro-
bustit Pareto-optimaaliset ratkaisut tarjoavat hyvän tasapainon robustisuuden ja
tyydyttävien optimoitavien funktioiden arvojen välille. Uusi menetelmä kehite-
tään tukemaan päätöksentekijää löytämään paras kevyesti robusti Pareto-optimaa
linen ratkaisu.

Väitöskirjan tulokset laajentavat robustisuuskäsitteiden soveltuvuutta käy-
tännön päätöksenteossa. Lisäksi kehitetyt uudet menetelmät vievät robustia mo-
nitavoiteoptimointia käytännön päätöksenteon tueksi.
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1 Introduction

Practical optimization problems often involve multiple conflicting objectives. For 

these problems, there does not exist a single optimal solution. Instead, there is a 

set of mathematically equally good Pareto optimal solutions. A solution is Pareto 

optimal, if none of the objective function values can be improved without impair-

ing at least one of the others. Typically, a decision maker (DM) who is an expert 

in the problem domain is interested in a single Pareto optimal solution depending 

on her/his preferences (Branke et  al. 2008) and can be assumed to provide this 

preference information.

In optimization, uncertainty can originate from different sources and be 

reflected in different elements of the problems such as decision variables and 

parameters in objectives or constraints (Wiecek and Dranichak 2016). For exam-

ple, in portfolio optimization, uncertain future developments can be reflected as 

parameters in the objective functions as in Miettinen et al. (2014). Furthermore, 

uncertainty from possible changes on government policy can be reflected in con-

straints as in Hassanzadeh et al. (2013) and asset classes cannot be held exactly 

as planned due to for example change of the regulations can be reflected as uncer-

tainty in decision variables.

In conventional multiobjective optimization methods, the involvement of 

uncertainty in the problems is usually ignored. As a result, the immunity to 

uncertainty which we call robustness of solutions is not considered. However, the 

uncertainty can render the optimized solutions ineffective with undesirable and 

unexpected degradation on the objective function values. Thus, the consideration 

on robustness of solutions is as relevant as that of multiple objectives for practical 

problems.

When robustness is considered, a multiobjective optimization method has to 

find Pareto optimal solutions without knowing the behavior of the uncertain data 

exactly. Consequently, a DM has to understand the consequences of the involved 

uncertainty in addition to considering multiple conflicting objectives simultane-

ously. In addition, the DM also needs to learn the possible trade-off between the 

objective function values and robustness.

In recent years, different approaches have been developed sharing the common 

goal of identifying solutions both with respect to multiple conflicting objectives 

and being sufficiently immune to the uncertainty (see e.g., Azaron et  al. 2008, 

Ehrgott et  al. 2014, and Talaei et  al. 2016). However, in this paper, we do not 

assume the availability of probability distribution information as in Azaron et al. 

(2008) because such information is not always available. On the other hand, we 

do not expect any deep understanding on the problem from the DM to judge a 

fuzzy membership as in Talaei et  al. (2016). Instead, we aim at supporting the 

DM to learn about the problem, its attainable solutions, and the consequences of 

uncertainty and eventually find a most preferred solution.

Different multiobjective optimization methods (see e.g., Miettinen 1999, 

Sawaragi et  al. 1985 and Steuer 1986), can be classified into a priori, a poste-

riori, and interactive methods (see e.g., Miettinen 1999). Interactive methods has 
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demonstrated advantages in supporting a DM to iteratively find a most preferred 

solution. With interactive methods, the DM does not need to know her/his prefer-

ences before knowing the attainable solutions as in so-called a priori methods. 

(S)he is not expected to make a choice among a (large) set of solutions as in a 

posteriori methods which can be cognitively challenging. Instead, the DM guides 

the solution process by specifying her/his preferences in each iteration based on a 

given Pareto optimal solution. During this process, the DM is provided the oppor-

tunity to learn about the problem and its attainable solutions. The possibility of 

learning demonstrates strong potential for us to utilize to achieve the aim. Thus, 

we concentrate on exploiting interactive methods to support the DM to make a 

well-informed decision.

As mentioned before, uncertainty can be reflected in different elements of a mul-

tiobjective optimization problem. For problems with parameter uncertainty, different 

so-called robust Pareto optimal solutions (see summary in Ide and Schöbel 2016 and 

Wiecek and Dranichak 2016) have been defined and some solution methods have 

been proposed in Bokrantz and Fredriksson (2017) and Ehrgott et al. (2014). There 

have been also attempts to support the DM with interactive methods e.g., in Hassan-

zadeh et al. (2013) and Miettinen et al. (2014). We concentrate on decision uncer-

tainty (Eichfelder et al. 2017) in this paper because of the lack of research efforts in 

supporting the DM to find a most preferred solution for this type of problems.

By incorporation of robustness, we mean the analysis on the consequences of 

decision uncertainty in the objective function values. In the literature, there exist 

at least three different strategies to incorporate robustness in solving problems with 

decision uncertainty, but none of them concentrates on supporting the DM. The first 

type of strategy is to combine additional objectives, which quantify the robustness 

of a solution, with the original objectives as in Asafuddoula et al. (2015) and Gas-

par-Cunha and Covas (2007). The changes in the objective function values due to 

the uncertainty are optimized simultaneously with the original objectives to com-

pute a set of solutions. From these solutions, the DM is expected to select one based 

on her/his preferences.

Second, problems with decision uncertainty can be transformed to deterministic 

ones by modifying the objectives. In Eichfelder et al. (2017), the concept of regu-

larization robustness is extended to multiobjective optimization problems to derive 

a regularized robust counterpart of the uncertain problem. In Deb and Gupta (2006), 

the original objective functions are replaced by the so-called mean effective objec-

tive functions. In Liang et  al. (2011) and Sun et  al. (2010), the original objective 

functions are replaced by their approximated mean and variance functions.

Third, a robustness measure can be used as an additional constraint as in Deb and 

Gupta (2006), Gunawan and Azarm (2005) and Li et  al. (2005) where only solu-

tions whose measured robustness satisfies predefined thresholds are considered fea-

sible. Alternatively, a set of Pareto optimal or near-Pareto-optimal solutions can be 

compared based on their measured robustness as in Barrico and Antunes (2006) and 

Salimi and Lowther (2016).

Even though the first type of strategy allows the DM to consider multiple 

objectives and robustness simultaneously, additional objective functions can 

bring additional cognitive load to the DM. For example, when the deviation of 
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the value of each objective function is combined with the original objectives as 

in Asafuddoula et al. (2015), the DM has to consider double amount of objec-

tives simultaneously. Thus, the amount of additional objective functions should 

be minimized. To support the DM to make a well-informed decision, the infor-

mation exchange in the interactive solution process should be understandable, 

i.e., (s)he should understand the provided information and can express her/his 

preferences conveniently. So the DM should be informed on the objective func-

tion values during the solution process. For this purpose, the original objective 

functions should be preserved. Thus, the second type of strategy is not well fit-

ted for interactive methods. In addition, robustness measure as a constraint as in 

the third type of strategy does not provide the opportunity for the DM to con-

sider it simultaneously with the objectives and (s)he cannot directly specify her/

his preferences. In addition, robustness measure as such should have an under-

standable meaning to the DM. Thus, with the focus on supporting the DM to 

learn about the problem and the consequences of uncertainty, we need further 

developments.

Motivated by the gaps in the literature, we quantify the robustness of solu-

tions with a single understandable robustness measure to capture the conse-

quences of decision uncertainty in the multiple objectives in the problem. 

Together with the original multiple objectives, we add the robustness measure 

as an additional objective to give the DM the opportunity of considering robust-

ness and objective function values simultaneously and, thus, balancing between 

robustness and desirable objective function values. Our goal is not to develop a 

totally new interactive method but to enhance the existing ones when decision 

uncertainty is involved in the problem. As an example, we utilize elements of 

synchronous NIMBUS (Miettinen and Mäkelä 2006). But our approach can also 

be used in for example reference point-based methods (Wierzbicki 1982).

To support the DM to learn about the consequences of the uncertainty during 

an interactive solution process, a robustness measure should include the follow-

ing desired properties: 1. The numerical value should reflect how the uncertain-

ties in decision variables can affect the objective function values. Based on the 

value, the DM can consider how ’robust’ a solution is. 2. With the computed 

numerical value, the DM should be able to specify her/his preferences conveni-

ently. Based on these desired properties, we first identify and analyze the robust-

ness measures in the literature that are closest to them. Then we propose an 

alternative robustness measure which meets both of the desired properties, and 

can thus better support the DM in an interactive approach.

The rest of the paper is organized as follows: in Sect.  2, we present some 

basic concepts, introduce the NIMBUS method briefly, and discuss robustness 

measures that are closest to the desired properties. Then in Sect. 3, we present 

a robustness measure that can be understandable for the DM and propose the 

interactive approach, which is followed by numerical examples where we dem-

onstrate the advantages of our approach by solving two problems in Sect.  4. 

Finally, we conclude the paper in Sect. 5.
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2  Background

2.1  Multiobjective optimization and decision uncertainty

Deterministic multiobjective optimization problems are defined in the form

with objective functions (objectives) fi ∶ S → ℝ to be simultaneously optimized, 

where 1 ≤ i ≤ k and k ≥ 2 . The decision vectors (which consist of decision variables 

as their components) x = (x1,… , xn)
T belong to the nonempty feasible region S ⊂ ℝ

n . 

Objective vectors f (x) = (f1(x),… , fk(x))
T consist of objective function values which 

are the images of the decision vectors. The image of the feasible region is called the 

feasible objective region Z = f (S) . If all the objective functions are minimized, a solu-

tion x̄ is said to be Pareto optimal if there does not exist another solution x ∈ S such 

that fi(x) ≤ fi(x̄) for all i = 1,… , k and the inequality is strict for at least one index j. If 
some of the objectives fi is to be maximized, it is equivalent to minimize −fi.

For (1), the set of Pareto optimal solutions usually contains more than one elements. 

Mathematically, Pareto optimal solutions are incomparable. The DM is expected to 

identify the most preferred one among them as the final solution. Only one DM is 

assumed to be involved in the solution process in this paper. It is often useful for the 

DM to know the ranges of the objective function values in the set of Pareto optimal 

solutions. The ideal objective vector z∗ = (z∗
1
,… , z∗

k
)T and the nadir objective vec-

tor znad = (znad
1

,… , znad
k

)T give the bounds of the objective function values. The ideal 

objective vector is formed by the individual optima of each objective function in the 

feasible region. The utopian objective vector z∗∗ , which is strictly better than z∗ , is 

defined for computational reasons. In practice, z∗∗
i

 is set as z∗
i
− 𝜖 for i = 1,… , k if fi is 

to be minimized, where 𝜖 > 0 is a small scalar. The nadir objective vector, which rep-

resents the worst objective function values, can be approximated for example by a so-

called pay-off table (see e.g., Miettinen 1999 for further details). If the objective func-

tion values are with different magnitudes, the nadir and utopian objective vectors can 

be used to normalize them.

In this paper, we consider multiobjective optimization problems with decision 

uncertainty. By decision uncertainty, we mean that a computed solution, which we refer 

to as the base solution xb , cannot be guaranteed to be implemented exactly. Instead, the 

implementation can involve small perturbations 𝚫x , i.e., the implemented solution is 

from the set {xb + 𝚫x|𝚫x ∈ Ω} where Ω is the set of all possible perturbations in the 

neighborhood of the base solution. We assume that Ω is a hyperbox and 0 ∈ Ω , which 

does not have to be sysmetric. We refer to the corresponding objective vector f (xb) as 

the base objective vector whose components are the base objective function values. The 

type of uncertain multiobjective optimization problems considered is of the form:

(1)
minimize or maximize {f1(x),⋯ , fk(x)}

subject to x ∈ S,

(2)

minimize or maximize {f1(x + 𝚫x),… , fk(x + 𝚫x)}

subject to x ∈ S

x + 𝚫x ∈ S, for all 𝚫x ∈ Ω.
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In the formulation, x is the decision vector and 𝚫x is the unknown possible pertur-

bation within the hyperbox Ω . To solve this problem, we consider all the possible 

values 𝚫x ∈ Ω and search for a most satisfactory base solution xb for the DM. By 

a most satisfactory base solution, we mean that the DM is satisfied with the base 

objective function values (f1(x
b),… , fk(x

b))T and the objective function values when 

perturbations occur, i.e., (f1(x
b + 𝚫x),… , fk(x

b + 𝚫x))T for all 𝚫x ∈ Ω.

2.2  NIMBUS

As mentioned in Sect. 1, we utilize elements of the NIMBUS method to build our inter-

active approach. As mentioned in Miettinen and Mäkelä (2006), one can always derive 

a reference point from the preference information utilized in NIMBUS, and thus, our 

approach to be proposed can also be used with reference point based methods. In NIM-

BUS, given the current Pareto optimal solution xc , the DM directs the interactive solu-

tion process by specifying preferences as a classification of the objectives. The clas-

sification indicates how the current objective function values f (xc) should change to be 

more desired by the DM. The DM can classify the objective functions into up to five 

different classes including:

I< for those to be improved (i.e., decreased in case of minimizing, increased in case 

of maximizing),

I≤ for those to be improved until some desired aspiration level ẑi,

I= for those that are satisfactory at their current level,

I≥ for those that may be impaired until a bound 𝜖i , and

I♢ for those that are temporarily allowed to change freely.

Each objective is assigned to one of the classes described above. Some objectives must 

be allowed to be impaired to enable improvements in others because of the nature of 

the Pareto optimality. If aspiration levels or bounds are used, the DM is expected to 

provide them.

In the NIMBUS method, new Pareto optimal solutions are computed by solving 

a scalarized problem, which includes preference information given by the DM in the 

classifications. In this paper, we use one of the four scalarized problems of the synchro-

nous NIMBUS method (Miettinen and Mäkelä 2006), which has the form (for mini-

mizing the objectives):

(3)

minimize max
i ∈ I<

j ∈ I≤

{wi(fi(x) − z∗
i
), wj(fj(x) − ẑj)} + 𝜌

k∑
i=1

wifi(x)

subject to x ∈ S

fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ 𝜖i for all i ∈ I≥,



1 3

Solving multiobjective optimization problems with decision…

where xc is the current Pareto optimal solution, z∗ is the ideal objective vector, ẑi are 

the aspiration levels for the objective functions in I≤ , 𝜖i are the bounds of allowed 

impairment for the objective functions in I≥ , 𝜌 > 0 is a small scalar bounding the 

trade-offs, and the coefficients wi (1 ≤ i ≤ k) are constants used for scaling the objec-

tives. The value of wi is based on the estimated ranges, i.e., 
1

znad
i

−z∗∗
i

 , for normalizing 

the objective function values.

The DM can compare the two Pareto optimal solutions before and after the clas-

sification, so that (s)he can learn how attainable her/his desired changes were. For 

more information about the method and the proof of Pareto optimality, see Miettinen 

and Mäkelä (2006). In addition, the NIMBUS method provides the DM an opportu-

nity to generate intermediate solutions and to save interesting solutions during the 

iterative solution process. The DM can return to a saved solution any time or select 

one as the most preferred solution from the set of saved solutions.

We shall return to the NIMBUS method and discuss our interactive approach for 

solving multiobjective optimization problems with decision uncertainty in Sect. 3. 

In what follows, we discuss the robustness measures from the literature.

2.3  Robustness measures from the literature

As discussed in Sect. 1, objective functions are assumed to have a meaning to the 

DM and, thus, the original objective functions should be preserved to allow the DM 

to consider their values together with the robustness simultaneously. Furthermore, 

the DM should also be able to learn their possible trade-offs. For this purpose, natu-

rally, a robustness measure should be used as an additional objective to the prob-

lem formulation, i.e., we solve a multiobjective optimization problem by combining 

the original objectives and a robustness measure as its objectives. By employing an 

additional objective, the DM can consider balancing between robustness and objec-

tive function values.

We have identified three robustness measures in the literature that are closest to 

the desired properties to be used in the interactive solution process as listed in the 

introduction. These measures quantify the robustness of a base solution and were 

originally used as additional constraints, but they can be used as an additional objec-

tive as well.

In Deb and Gupta (2006), the measure involves sampling and the difference 

between the base objective vector and the average function values of samples in the 

neighborhood of a base solution is used to measure its robustness:

where ‖ ⋅ ‖ is the Euclidean norm. The so-called mean effective objective vector 

f p(x) consists of the average objective function values of the samples in the neigh-

borhood. According to the definition, the smaller the value of R1(x
b) is, the more 

(4)R1(x
b) =

‖f p(x) − f (xb)‖
‖f (xb)‖ ,
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robust the solution is. We can adopt this measure as an additional objective to be 

minimized.

In Gaspar-Cunha and Covas (2007), a measure, which is also based on study-

ing samples in the neighborhood of a base solution, is defined for each objective 

function to capture robustness:

where xh is a sample and H is the total number of samples. The notation f̃i is used to 

indicate that the objective function values are normalized within their ideal and 

nadir values. This measure studies how much the objective function value changes 

relative to the perturbation of a base solution. Based on the robustness measure of 

each objective function, so-called global robustness measures which include all k 

objectives are defined as R2(x
b) = max

i=1,…,k
f

R2

i
(xb) , and R2(x

b) =
1

k

∑k

i=1
f

R2

i
(xb) . We 

can adopt either as an additional objective to be minimized.

In Gunawan and Azarm (2005) and Li et al. (2005), given a base solution and 

the maximum acceptable changes from the base objective function values, the 

radius of the smallest hyper-sphere centered on the base solution is calculated to 

measure its robustness by solving a single-objective optimization problem:

This measure studies how much perturbation, i.e., the optimal value of Δx , is 

allowed in the base solution for the objective function values to be acceptable. The 

constraint, where Δfi is a function of Δx , states that the maximum change in the 

objective function values has to be equal to the pre-specified acceptable level Δf0,i . 

The optimized objective function value of (6) is the value of the robustness meas-

ure, which we refer to as R3(x
b) . A bigger value R3(x

b) means that the more robust 

the base solution is. We can adopt this measure as an additional objective to be 

maximized.

We summarize the characteristics of the three measures in Table  1. The 

required parameters to compute the robustness measures are presented in the first 

(5)f
R2

i
(xb) =

1

H

H∑
h=1

|f̃i(xh) − f̃i(x
b)|

‖xh − xb‖ ,

(6)
minimize ‖Δx‖p

subject to max(
|Δfi|
Δf0,i

) = 1.

Table 1  Summary of different 

robustness measures
Measures R1(x

b) R2(x
b) R3(x

b)

Parameters Ω, H Ω, H Lower and upper 

bounds of Δx , value 

of Δf0,i

Randomness involved Random Random Exact and stable
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row. The randomness involved in the computed values of the robustness measures 

is presented in the second row.

The three measures are based on the study of the neighborhood of a base solution 

and they require some parameters. As shown in the table, the size of the neighbor-

hood, which is represented by Ω in (2), is commonly required. For measures R1(x
b) 

and R2(x
b) , the number of samples (H) in the neighborhood is needed. There were 

no clear guidelines how these parameters should be set in the papers where the 

measures were originally proposed. For R3(x
b) , the acceptable levels of change from 

base objective function values Δf0,i are required. This parameter is said to be set by 

the user, which can be understood as the DM in our context.

Unfortunately, all the existing robustness measures have some shortcomings. As 

can be seen in the definitions of the measures, the numerical values do not have a 

direct meaning on how robust a solution is for the DM except the intuitive indica-

tion based on if the measure should be minimized or maximized. With the numeri-

cal values, the DM cannot formulate and specify her/his preferences conveniently 

during the interactive solution process. In the interactive solution process, the DM 

can only specify her/his preferences on the measures based on this intuition which 

does not help the DM to formulate her/his preferences clearly. The purpose of using 

an additional objective to incorporate the robustness is to support the DM to find a 

most preferred solution by simultaneously considering the base objective function 

values and the robustness of a solution. We can summarize that none of the robust-

ness measures meets our needs well. To communicate the meaning of robustness to 

the DM in a more understandable way and to allow the DM to formulate and specify 

preferences conveniently, it is desirable to formulate a new robustness measure. We 

propose such a measure in the next section.

3  Interactive approach for solving problems with decision uncertainty

3.1  A new robustness measure

As discussed before, we incorporate a robustness measure to the problem formula-

tion by adding an additional objective. None of the measures identified from the lit-

erature fully meets the desired properties to be incorporated in an interactive solution 

process. In this section, we first describe a new robustness measure which is suitable 

to be used in an interactive approach. Then we propose the interactive approach tai-

lored to solve multiobjective optimization problems with decision uncertainty.

We propose a robustness measure which can deliver the meaning of robustness 

to the DM in a more understandable way. Our robustness measure investigates 

the ranges of objective function values in the neighborhood Ω of a base solution 

xb . The existence of the ranges of the objective function values is a consequence 

of the uncertainty in the decision variables. In the form of the ranges, the DM can 

get the information on how the objective function values change. In other words, 

the ranges characterized by best and worst objective function values describe 

the variations due to the possible perturbations in the decision variables. For an 

objective function fi , the range of its value in the neighborhood can be defined as 
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ri(x
b) = max

𝚫x∈Ω fi(x
b + 𝚫x) − min

𝚫x∈Ω fi(x
b + 𝚫x) . We refer to these ranges as 

ri ranges. As discussed before, we want to introduce only one additional objective 

not to introduce too much cognitive load. We can use the maximum range, i.e., the 

upper bound, of all objective functions to measure the robustness of a solution as an 

objective to be minimized. So our robustness measure is:

where the lower and upper bounds of the neighborhood Ω are provided by the DM 

when the problem is formulated. As an expert in the application domain, the DM is 

more likely to know reasonable bounds than others. When compared to the robust-

ness measures discussed in Sect.  2, Ω has the same meaning as in the measures 

R1(x
b) and R2(x

b) . In this measure, the lower and upper bounds do not have to be 

symmetric around the base solution.

As can be seen in (7), we need to solve 2k additional single-objective optimiza-

tion problems to compute the value. In principle, this can provide the DM exact 

measurements of the ri ranges. If approximated ri ranges can be accepted by the 

DM, similar sampling techniques as presented in Deb and Gupta (2006) and Gaspar-

Cunha and Covas (2007) for measures R1(x
b) and R2(x

b) can be applied. For the rest 

of the paper, we refer to fi as an active objective function if i gives the maximum for 

R4(x
b) in (7).

The computed value of R4(x
b) is the percentage of the ri range with respect to the 

ideal and nadir values of the active objective function. With the help of the ideal and 

nadir values, this numerical value can tell the DM how much the objective func-

tion varies in its own range, which is a concrete expression on the consequences of 

the uncertainty. The DM can also learn without much effort that the ri ranges of the 

other objective functions are smaller than this value. In addition, by computing the 

value of R4(x
b) , the ri ranges of all the objective function values in the neighborhood 

are also available, which we will utilize to support the DM in the interactive solution 

process. We will discuss how we can utilize the ri ranges and develop an appropriate 

visualization to improve the understandability of the robustness measure in the next 

subsection where we discuss the proposed interactive approach.

3.2  An interactive approach for solving multiobjective optimization problems 
with decision uncertainty

We incorporate robustness into the problem formulation (1) by adding the meas-

ure R4(x
b) as an additional objective. In Wiecek et  al. (2009), Pareto optimal-

ity to the original problem of a Pareto optimal solution to a problem formulated 

with an additional objective is summarized. A solution remains Pareto optimal or 

not depending on how the objectives conflict with one another in the new prob-

lem with an additional objective. So whether the robust solutions found by our 

approach are Pareto optimal to the original problem depends on the problem itself 

and the consequences of uncertainty. However, as argued in Bertsimas and Sim 

(7)R4(x
b) = maxi

[
ri(x

b)

znad
i

−z∗∗
i

]
, i = 1,… , k,
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(2004), the robustness of a solution and the corresponding values of the original 

objectives usually conflict with each other. To gain robustness, sacrifices on the 

objective function values can be necessary. Furthermore, by learning the trade-

offs between the objective function values and robustness, it is a conscious choice 

for the DM if objective function values are sacrificed.

As mentioned before, we build our interactive approach by utilizing the ele-

ments of the synchronous NIMBUS method. We follow the interactive solu-

tion process of the NIMBUS method where the DM is expected to specify her/

his preferences by classifying the objective functions as described in Sect.  2.2. 

Our goal is to support the DM to find a base solution with most satisfactory base 

objective function values and objective function values when the perturbations 

occur. This involves differences from the original NIMBUS method, in which 

the goal is to support the DM to find a most preferred Pareto optimal solution. 

Because of the specific robustness consideration, we tailor some components of 

the NIMBUS solution process to support the DM to consider the base objective 

function values and the robustness of a solution simultaneously.

The numerical value of the robustness measure R4(x
b) is used to capture the 

robustness of a base solution. It is the percentage of the ri range of the active 

objective function for a base solution in its given neighborhood within the range 

of that objective. With the information of ideal and nadir values, the DM can 

combine the numerical value of R4(x
b) and the ranges of the active objective 

function to have a concrete understanding on the robustness of the solution.

Based on the definition of R4(x
b) , the ri ranges (in percentage) of other objec-

tive functions are guaranteed to be smaller. This allows the DM to indirectly 

specify her/his preferences on the ri range of a specific objective function by pro-

viding the desired value for R4(x
b) . By doing so, the DM has specified the desired 

maximum ri ranges for all the original objective functions, in which the specific 

objective function is included. The DM is more likely to learn about these facts 

without much cognitive effort than learning a numerical value without a direct 

meaning on the consequences of decision uncertainty. In addition, since the ri 

range of each objective function is naturally available with the computation of 

R4(x
b) , we will utilize this information when we present a solution to the DM.

Visualization can be used to support the DM in studying the trade-offs between 

optimality and robustness. To visually present a solution to the DM, we tailor a 

visualization method for presenting the base objective function values and the 

robustness information simultaneously. An additional component is added to one 

of the visualizations used in the IND-NIMBUS framework (see Miettinen 2006 

and Ojalehto et  al. 2014). An example of the visualization in IND-NIMBUS is 

shown in Fig.  1 with two objective functions to be minimized. Each objective 

function is visualized as a horizontal bar within the range of its ideal and nadir 

objective values. The colored part of the bar illustrates the current objective func-

tion value zc
i
 , which starts from the ideal value towards the nadir objective value. 

The DM can classify an objective function e.g., by sliding the endpoint of the 

colored bar. Instead of adding an additional bar for the value of R4(x
b) , we super-

impose the ri ranges on top of the corresponding bars of the k (original) objective 

functions.
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An example of the tailored visualization method is presented in Fig.  2. The ri 

range of each objective function is presented as a gray shadow around the current 

base objective function value. The ri range indicating the robustness of the current 

active objective function is highlighted with a frame to inform the DM that (s)he 

should pay attention to it and can specify her/his preferences. When we visualize 

a solution as a part of a solution process, the numerical values of the upper and 

lower bounds of variation in each objective function value will be shown in the cor-

responding places of the gray shadow. The value of the objective fk+1 will be shown 

in the upper right corner of the highlighted frame. This visualization can further 

help the DM to understand the robustness of the base solution concretely together 

with the value of R4(x
b) because it can illustrate how the uncertainties in the deci-

sion variable are reflected in each objective function.

With a solution presented in terms of the base objective function values and the ri 

ranges as in Fig. 2, the DM can specify her/his preferences for a more desired solu-

tion. In the original NIMBUS method, the DM is expected to classify all the objec-

tive functions and provide the aspiration levels and bounds for the corresponding 

Fig. 1  Original IND-NIMBUS 

visualization

Fig. 2  Visualization with 

robustness information
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classes of objective functions. In our approach, the DM can choose to follow the 

original NIMBUS method to classify the objective function for robustness in the 

same way as for the original objective functions. Alternatively, the DM can also 

choose to classify the original objective functions but specify lower and upper 

bounds of the ri range on the current active objective function. In this case, we say 

that the DM chooses to adjust the ri range. Once the adjusted ri range has been speci-

fied by the DM, we convert it as a NIMBUS classification by calculating the desired 

aspiration level. We return to this technical detail on converting an adjusted ri range 

to a proper classification later.

With the tailored visualization and the multiple available ways of expressing the 

preferences on the robustness of a solution, our interactive approach, as shown in 

the flowchart in Fig. 3, starts from computing an initial solution and presenting it 

to the DM with the tailored visualization. The multiple ways to specify preferences 

on the robustness measure are available for the DM in the highlighted intermediate 

step. Based on the specified preferences by the DM, we convert the preferences as 

classifications if necessary, then compute a new solution by solving the scalarized 

problem (3) and present it to the DM. If the DM is not satisfied with the solution, the 

solution process continues as in the original NIMBUS method. In this way, the DM 

iteratively guides the solution process towards a most preferred robust solution.

This interactive approach has four advantages which aim at providing better sup-

port to the DM in the solution process. First, the meaning of the numerical value of 

the robustness measure R4(x
b) is understandable for the DM, because it is the per-

centage of maximum possible change in the objective function values with respect 

to the ideal and nadir values. Second, the ri ranges presented to the DM provide 

an opportunity for the DM to observe and understand how the uncertainties in the 

Fig. 3  Flowchart of the interactive approach
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decision variables affect the objective function values, i.e., the consequences of 

uncertainty. In addition, the ri ranges are presented together with the base objective 

function values. So the DM can consider both of them at the same time. Third, we 

provide multiple alternatives for the DM to specify her/his preferences concerning 

the robustness of a more desired solution. So in the solution process, the DM can 

choose a comfortable way in each iteration of the solution process. Fourth, with the 

robustness measure incorporated as an addition objective function, the DM can find 

an acceptable balance between the robustness and the objective function values of a 

solution and gain insights on how they are interdependent.

As mentioned before, the DM can classify all the objectives. If (s)he does so, we 

can proceed directly by solving (3) for a new solution. Alternatively, the DM can 

pay special attention to the active objective function and adjust the ri ranges. In this 

case, we need to convert the adjusted ri range to a NIMBUS classification. The close 

relationship between the desirable aspiration level of an objective function and the 

classification of it was discussed in Miettinen and Mäkelä (2002) and Miettinen and 

Mäkelä (2006). Here we have fk+1 = R4(x
b) . Depending on the adjusted ri range, we 

have five different types of conversion:

• The adjusted ri range is smaller than the current one: it means that the DM 

wishes to have a more robust solution and fk+1 is classified as to be improved to 

an aspiration level, i.e., fk+1 ∈ I≤ with a value ẑk+1, where ẑk+1 is the calculated 

aspiration level based on the adjusted ri range ;

• The adjusted ri range is greater than the current one: it means that the DM can 

accept a less robust solution and fk+1 is classified as to be impaired until an upper 

bound, i.e., fk+1 ∈ I≥ with a value 𝜖k+1, where 𝜖k+1 is the calculated bound based 

on the adjusted ri range in the same way as for the aspiration level;

• The adjusted ri range is the same as the current one: it means that the DM wishes 

to have a solution as robust as the current one and fk+1 is classified as fk+1 ∈ I=;

• The DM has adjusted the ri range to be 0: it means that the DM wishes to have a 

solution as robust as possible and fk+1 is classified as fk+1 ∈ I<.

• The DM does not specify any adjustments for the ri range. This means that (s)he 

can accept any value in fk+1 . So fk+1 ∈ I♢.

After the conversion, we can use the resulting classification to compute a new solu-

tion for the DM.

4  Numerical results

4.1  River pollution problem

In this section, we illustrate the solution process of two  multiobjective optimiza-

tion problems with decision uncertainty with the proposed interactive approach. The 

river pollution problem considered was originally presented in Narula and Weistrof-

fer (1989) as a deterministic problem. In the problem, a fishery and a city are pollut-

ing water in a river. The city is located downstream from the fishery. Both the city 
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and the fishery have their own pollution treatment plants. We consider the following 

formulation:

where there are four original objectives and the fifth objective function represents 

robustness. The decision variables x1 and x2 represent the proportional amount of 

biochemical oxygen demanding material to be removed from water in the treatment 

plants after the fishery and the city, respectively. The more biochemical oxygen 

demanding material is removed, the more the quality of water will improve. The 

unknown possible perturbations are represented by Δx1 and Δx2 . The information 

on the neighborhood near the base solution, i.e., lower and upper bounds of the per-

turbations, is provided by the DM. The first and second objective functions describe 

the quality of water after the fishery and after the city, respectively, and the third 

objective function describes the percentage of return on investment at the fishery. 

The fourth objective represents the addition of tax rate in the city. The fifth objec-

tive is the robustness measure presented in (7). We consider uncertainties originat-

ing from the operations of the pollution treatment plants. As a result, the amount 

of removed biochemical oxygen demanding material can involve perturbations from 

the base values. Consequently, the objective function values can be different from 

their base values. We solve this problem with the proposed interactive approach 

interacting with a DM.

The individual optima of the original objectives were calculated to form the ideal 

objective vector z∗ = (6.34, 3.45, 7.50, 0)T . The nadir objective vector was approxi-

mated as znad = (4.75, 2.85, 0.32, 9.70)T . To get started, we set the ideal value of the 

robustness measure as 0, which means the perturbations of the base solution do not 

affect the objective function value at all. We set the nadir value as 1, which indicates 

that the ri range of the active objective function in the neighborhood is as large as 

the range between the ideal and nadir values.

Initialization we first introduced our robustness measure to the DM in terms of 

what the value of f5 means and what the ri ranges in the visualization mean. Then we 

computed and presented an initial solution z0 = (5.95, 3.08, 6.46, 1.40, 0.36)T with 

the tailored visualization method to the DM as shown in Fig. 4. The initial solution 

was calculated as in the NIMBUS method.

In Fig. 4, the bars present the water quality after the fishery WQ(F), water quality 

after the city WQ(C), return on investment of the fishery (ROI), and the additional 

tax rate in the city (TA). The colored part of a bar illustrates the current value of 

the corresponding objective (also given numerically) accompanied by the ideal and 

nadir values at its endpoints. The ri range, where the values of its lower and upper 

(8)

maximize f1(x + 𝚫x) = 4.07 + 2.27(x1 + Δx1)

maximize f2(x + 𝚫x) = 2.60 + 0.03(x1 + Δx1) + 0.02(x2 + Δx2) +
0.01

1.39−(x1+Δx1)
2
+

0.30

1.39−(x2+Δx2)
2

maximize f3(x + 𝚫x) = 8.21 −
0.71

1.09−(x1+Δx1)
2

minimize f4(x + 𝚫x) = −0.96 +
0.96

1.09−(x2+Δx2)
2

minimize f5(x + 𝚫x) = R4(x)

subject to 0.3 ≤ x1, x2 ≤ 1.0,

for all Δx1 ∈ [x1 − 0.1, x1 + 0.1] and Δx2 ∈ [x2 − 0.1, x2 + 0.1],
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bounds are presented at the endpoints, is superimposed on top of the correspond-

ing bar to present how uncertainties in the solution can affect the objective function 

value. For the current active objective function, we highlight its ri range and mark 

the current value of the robustness measure in red on the upper right corner. As 

discussed before, the objective function value of f5 was not presented in its own bar. 

Instead, we presented the ri ranges within the bars of the corresponding objective 

functions. The DM was asked to choose a preferred way to express her preferences.

The DM chose to adjust the ri range of the current active objective function f2 . 

With the adjusted ri range, we calculated an aspiration level 𝜖5 = 0.45 and converted 

it to a classification as allowing the value of f5 to be impaired till 0.45. The adjusted 

ri range is represented as a broken line in the first illustration of Fig. 4. When consid-

ering the initial solution z0 , the DM wanted to improve the quality of water after the 

fishery slightly and reduce the additional tax rate to 2% in the city. At the same time, 

the quality of water after the city was allowed to be impaired till 2.9 and the return 

on investment of the fishery was also allowed to reduce till 6% . In the NIMBUS 

notation, the DM provided the classification for iteration 1: I≤ = {f1, f4} with aspira-

tion level ẑ1 = 5.8 , and ẑ4 = 2 ; I≥ = {f2, f3, f5} with the bounds 𝜖2 = 2.9 , 𝜖3 = 6 , and 

𝜖5 = 0.45 . The aspiration levels and bounds are denoted by dots in Fig. 4.

Iteration 1 based on the classification, a new solution 

z1 = (6.04, 2.94, 6.12, 0.31, 0.40)T was calculated by solving the scalarized prob-

lem (3) and presented to the DM as in Fig. 5. Based on z1 , the DM could see that 

her preferences in iteration 1 were satisfied. However, she thought that better qual-

ity of water after the city should be achieved at the same time of maintaining the 

same quality of water after the fishery at the current level. In addition, she wished 

to maintain the current value of the maximum ri range, i.e., no change to the robust-

ness. Keeping in mind that some objectives have to be impaired in order to achieve 

better quality of water after the city, the DM allowed the return on investment of 

the fishery to reduce to 6% and the additional tax rate in the city till 1% . In other 

words, the DM gave her preference as: I≥ = {f3, f4} with bounds 𝜖3 = 6 , and 𝜖4 = 1 ; 

I= = {f1, f5} ; I
≤ = {f2} with ẑ2 = 3.1.

Iteration 2 according to this classification, a new solution 

z2 = (6.04, 3.03, 6.12, 0.98, 0.39)T was calculated and presented to the DM as in 

Fig. 6. The DM was not satisfied and wanted to make a new classification. Based 

Fig. 4  Intial solution
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on z2 , the DM noticed that the additional tax rate in the city almost approached her 

specified upper bound and she did not wish to have worse quality of water after the 

city. So she decided to keep the current quality of water after the city. As an explora-

tion of a more robust solution, she wanted to reduce the percentage of the ri range 

of the active objective function to 0.3 and allow the quality of water after the fishery 

to decrease to 5.8, return on investment of the fishery to 5.5% and the additional tax 

rate in the city to increase till 2% . The DM’s classification in NIMBUS notation 

was: I= = {f2} ; I
≤ = {f5} with aspiration level ẑ5 = 0.3 ; I≥ = {f1, f3, f4} with bounds 

𝜖1 = 5.8 , 𝜖3 = 5.5 , and 𝜖4 = 2.

Iteration 3 based on the classification, the new solution computed was 

z3 = (5.86, 3.04, 6.7, 1.04, 0.29)T as visualized in Fig.  7. The DM noticed that her 

preferences were not fully satisfied. So she tried with another classification, i.e., she 

did not want to have worst quality of water after the city and wanted to reduce the ri 

range of the active objective function to 0.25. She continued by allowing the water 

quality after the fishery to be impaired till 5.8 and the return on investment of the 

fishery till 5.5% . The DM’s classification was: I= = f4 ; I
≤ = {f2, f5} with ẑ2 = 3.15 , 

and ẑ5 = 0.25 ; I≥ = {f1, f3} with bounds 𝜖1 = 5.8 , and 𝜖3 = 5.5.

Iteration 4 based on this classification, z4 = (5.86, 3.04, 6.70, 1.04, 0.29)T was 

computed and visualized as in Fig. 8. Based on z4 , the DM noticed that the quality 

of water after the city did not improve as she wanted and the ri range of the active 

function value did not reduce as she wished either. So she decided to accept the 

Fig. 5  Iteration 1

Fig. 6  Iteration 2
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values of these two objectives. In addition, the return on investment of the fishery 

approached the bound, but the quality of water after the fishery was much better 

than the value she could accept. So she thought she could have a better return on 

investment by having a worse but acceptable quality of water after the fishery. In 

order to guarantee the operation of the water treatment plant in the city, thus main-

taining the quality of water after the city, she decided to allow up to 2% of additional 

tax in the city. In NIMBUS notation, the DM specified the classification to com-

pute z5 as: I= = {f2, f5} ; I
≤ = {f3} with an aspiration level ẑ3 = 6.2 ; I≥ = {f1, f4} with 

bounds 𝜖1 = 5.5 , and 𝜖4 = 2.

Termination with the classification, z5 = (5.79, 3.04, 6.84, 1.06, 0.28)T was com-

puted and presented to the DM as in Fig. 9. The DM noticed that the values of return 

on investment and the additional tax rate were better than she expected, but the qual-

ity of water after the fishery was already on the worst acceptable value. At the same 

time, the quality of water after the city and the ri range of the active objective func-

tion were maintained. So after this iteration, the DM decided to terminate the solu-

tion process and accept z5 as the final solution.

During the solution process, the DM was able to understand the consequences 

of the uncertainty via the robustness measure. Thus the final accepted solution 

offered a well-informed balance between the base objective function values and the 

robustness. At the beginning of the solution process, the DM chose to adjust the ri 

range of the active objective function because she felt it would be easier. In the later 

Fig. 7  Iteration 3

Fig. 8  Iteration 4
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iteration, she could directly classify f5 . The DM noticed that the active objective 

function changed. She assumed that by altering the ri range of the water quality after 

the city, the ri range of that particular objective function would become worse. But 

she soon learned that the meaning of the robustness measure specified value for the 

active objective function is actually an upper bound for the ri ranges of all the four 

objectives.

As for the advantages mentioned in Sect. 3, the DM was able to understand the 

meaning of the numerical value of the robustness measure. The simultaneously 

illustrated ri ranges and the base objective function values helped her to consider 

both types of information together and then formulate and specify her preferences. 

She can also easily specify preferences on the robustness of a more desired solution. 

At the beginning of the solution process, she utilized the possibility to adjust the ri 

range to get familiar and work with the robustness measure. By considering robust-

ness as an objective function, the DM learned how the robustness and base objective 

function values affect each other. Consequently, she utilized this knowledge to find a 

satisfactory balance between the robustness and the based objective function values 

of the final solution she accepted.

4.2  Procurement contract selection with pricing optimization for a process 
network

Next, we illustrate the application of our interactive approach by solving a prob-

lem in procurement contract selection with pricing optimization for a process net-

work. We utilize the optimization model presented in Calfa and Grossmann (2015) 

as the foundation and augment it with three additional objectives. In the model, 

procurement contract selection and pricing analytics are combined for multi-period, 

multi-site tactical production planning. The manufacturer needs to make two key 

decisions: to select procurement contracts and to set selling prices for products. For 

the selection of procurement contracts, the manufacturer needs to decide whether to 

sign or not a particular contract with a supplier for purchasing a type of raw mate-

rial. For setting the selling prices of final products, the manufacturer is assumed to 

use the price-response model (see e.g., Phillips 2005).

Fig. 9  Final solution
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The problem was modeled with a single profit-focused objective in Calfa and 

Grossmann (2015). In this paper, we consider three additional objectives for envi-

ronmental responsibilities and the maintenance of strategic competence of the 

manufacturer. The additional objectives include: minimizing the environmental 

impact scores of selected business partners (i.e., suppliers in this case), minimiz-

ing the pollution content emitted from the production process, and maximizing 

the demand in the market for the main products. Both the pollution content and 

environmental impact scores are for the consideration of environmental respon-

sibility. Minimizing the pollution content emission is to improve the sustainabil-

ity of the internal manufacturing process. Minimizing the environmental impact 

scores of suppliers aims at a responsible choice in business partners. Maximizing 

the demand in the market is to consolidate the strategic competence in the market.

The processing network considered has been presented in Section 5.1 of Calfa 

and Grossmann (2015). We consider a time horizon with a 3 months period and 

the manufacturer needed to decide whether or not to sign contracts with two sup-

pliers with different bulk discount contracts and two suppliers with different dis-

count contracts. Differing from Calfa and Grossmann (2015), where uncertainty 

due to future developments was incorporated as stochastic parameters, we con-

sider the uncertainty in the production process. It results in perturbations of the 

amount of raw materials consumed, which affect the objectives of maximizing 

the profit and minimizing the pollution of the production process. The other two 

objectives do not involve uncertainty. All data used can be found in Calfa and 

Grossmann (2015) and in Appendix of this paper.

We solved this problem by applying our interactive approach with a real DM. 

For computing solutions, we used  Gurobi® to solve the mixed integer quad-

ratic problem after scalarization. We first calculated the ideal objective vec-

tor z∗ = (28.25, 0, 0, 87.88)T . The nadir objective vector was approximated as 

znad = (0, 36, 12.31, 0)T . To get started, we set the ideal value of the robustness 

measure as 0 and the nadir value as 1.

We initialized the solution process by first introducing our robustness measure 

and visualization to the DM. The DM specified that the consumed raw materials 

in the product process can vary by 8% of their base values. Then we computed 

and presented an initial solution z0 = (28.25, 36.0, 6.22, 53.64, 0.08)T . The solu-

tion is visualized with our visualization method as illustrated in Fig. 10. In the 

figure, the objective function value of maximizing the profit under uncertainty 

can exceed its deterministic ideal value. The purpose of presenting the ideal and 

nadir values of the objective functions is to help the DM to get a general informa-

tion on the ranges of the values of the base solution. Based on the initial solution, 

the DM wanted to decrease the environmental score of selected suppliers to 30 

and increase the market demand of the main products to 75. At the same time, he 

also wanted to keep the pollution of the production process at its current value 

and allow the profit and the robustness of the solution to be impaired until 22 and 

0.15 respectively.

Based on his preferences, a new solution was calculated and presented to him. 

As the interactive solution process is described in Sect.  4.1 in details, we here 

omit the detailed description to avoid repetitions. Instead, we summarize the 
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preferences of the DM and the objective function values of solutions computed in 

each iteration in Table 2.

After four iterations, the final solution was satisfactory. During the solution 

process, the DM observed that the first objective (maximizing the profit) was 

more sensitive to the uncertainty in the production process than the third objec-

tive (minimizing the pollution content emitted). The DM understood that this is 

a property of the problem. This problem is a mixed-integer optimization prob-

lem and only the raw materials consumed which are continuous decision vari-

ables involved uncertainty. With the help of the suitable solver, our approach was 

able to handle the preferences of the DM and find solutions accordingly. In addi-

tion, our approach helped the DM to understand the consequences of the involved 

uncertainty and thus, supported him to consider the objective function values and 

the robustness of solutions simultaneously.

Fig. 10  Intial solution

Table 2  Iterations of the interactive solution process

Iteration Solution Preferences

Initial z0 = (28.25, 36.0, 6.22, 53.64, 0.08) I≥ = {1, 5} , 𝜖 = {22, 0.15},

I={3} , I≤ = {2, 4} , ẑ = {30, 75}

1 z1 = (22.12, 2.0, 6.22, 53.91, 0.073) I< = {3, 5} , I≥ = {1} , 𝜖1 = 20

2 z2 = (20.0, 5.0, 3.04, 28.29, 0.05) I< = {4} , I≥ = {1, 2, 3, 5},

𝜖 = {20, 30, 9.5, 0.15, }

3 z3 = (20.0, 13.33, 9.50, 74.48, 0.12) I≥ = {1, 2, 4, 5},

𝜖 = {20, 30, 70, 0.15} , I≤ = {3} , ẑ3 = 8

4 z4 = (20.0, 2.0, 8.71, 70.0, 0.10) I≥ = {1, 2, 4, 5},

𝜖 = {20, 30, 60, 0.15} , I≤ = {3} , ẑ3 = 7.5

5 z5 = (18.23, 2.0, 7.11, 60.0, 0.095) –
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5  Conclusions

In this paper, we focused on  supporting the DM to simultaneously consider the 

objective function values and robustness of solutions for multiobjective optimization 

problems with decision uncertainty. Based on the desired properties for a robust-

ness measure to be used in an interactive approach, we introduced a new robustness 

measure that can deliver the meaning of robustness in an understandable way to the 

DM.

We proposed an interactive approach by utilizing elements of the synchronous 

NIMBUS method which is specifically suitable for solving problems with deci-

sion uncertainty. Because of the incorporation of robustness, we modified two 

components of the interactive NIMBUS solution process. We tailored a visualiza-

tion method specifically for the new robustness measure and the associated robust-

ness information by superimposing them on top of the bars representing the orig-

inal objective functions. With this visualization, we can help the DM to consider 

the objective function values and the robustness of a solution at the same time. 

We also added a step to provide multiple alternatives for the DM to specify her/

his preferences on the robustness of a more desired solution. Even though we built 

our approach based on NIMBUS, same idea and robustness measure can be applied 

to other classification based and reference point based methods. We demonstrated 

the advantages of the interactive approach by solving the river pollution problem 

and the problem in procurement contract selection with price optimization in a pro-

cess network. Naturally, this approach can also be used to solve a wider range of 

problems.

Since we made the information on the ri ranges of all objective functions avail-

able, we can further allow the DM to directly specify preferences on robustness for 

all or selected objectives in the future. As some of the objectives might be more 

important in considering robustness than others, we can incorporate the information 

about the importance also into our robustness measure. Also, as in Miettinen et al. 

(2014), the obtained solution can be further analyzed to quantify how much worse 

the solutions are compared to the Pareto optimal solutions of the original problem.

Acknowledgements We thank Dr. Dmitry Podkopaev for various discussions in constructing the multi-

objective version of the procurement contract selection and pricing optimization problem.

Appendix: data for the example problem in Sect. 4.2

The model of the problem solved is based on Calfa and Grossmann (2015). Originally, 

it has only one objective to maximize profit. We augmented the model with three addi-

tional objectives: minimizing the environmental factors, minimizing the emission of 

pollutant, and maximizing the market demand of the main product. The objective to 

maximize profit ( f1 in this paper) and the estimation on the demand ( f4 in this paper) as 

well as the related data can be found in Calfa and Grossmann (2015). The objective for 
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responsible selection of suppliers has been inspired by Yeh and Chuang (2011). Using 

the same notation as in Calfa and Grossmann (2015), we have

In the equation, G
q

s,t represents the q-th environmental impact score of the supplier s 

in the planning period t and ys,t is the binary decision variable representing whether 

the supplier s is selected in the period t. The objective function is to take the average 

of the aggregation of all the environmental impact scores of all selected suppliers in 

each period.

For the consideration of pollutant emission, we consider the amount of sulphur diox-

ide emitted to the air based on the amount of sulphur content in the purchased raw 

materials. We have

The emission factor of the process plant j in th time period t is represented by Ej,t . 

The notation Wc
j,t

 is the amount of raw material c consumed in the plant j in the 

period t. The emission factor of the plants in different time periods can be different 

due to variation of the heating material used. In f2 and f3 , G
q

s,t and Ej,t are 

parameters.

The environmental impact score G1
s,t

 depends on percentage the supplier s has been 

paying attention to the environmental protection policies in the time period t:

The score G2
s,t

 depends on the percentage of sustainability of the product of the sup-

plier s in the time period t:

The score G3
s,t

 depends on the percentage of green customers’ market share of the 

supplier s in the time period t:

f2(x) =
1

T

T∑
t=1

Q∑
q=1

S∑
s=1

G
q

s,tys,t.

f3(x) =
1

T

T∑
t=1

P∑
j=1

M∑
c=1

Ej,tW
c
j,t

.

G1
s,t
=

⎧⎪⎨⎪⎩

1 ∶ 100%

2 ∶ more than 50%

3 ∶ less than 50%

4 ∶ none.

G2
s,t
=

⎧⎪⎨⎪⎩

1 ∶ 100%

2 ∶ more than 50%

3 ∶ less than 50%

4 ∶ none.
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The score G4
s,t

 depends on the percentage of recycling product design of the supplier 

s in the time period t:

G3
s,t
=

⎧⎪⎪⎨⎪⎪⎩

1 ∶ above 80%

2 ∶ 60% to 80%

3 ∶ 40% to 60%

4 ∶ 20% to 40%

5 ∶ less than 20%.

G4
s,t
=

⎧⎪⎨⎪⎩

1 ∶ 100%

2 ∶ more than 50%

3 ∶ less than 50%

4 ∶ none.

Table 3  Emission factors of 

processing plants
Plant Time period

1 2 3

p1 0.22 0.3 0.24

p2 0.15 0.18 0.24

p3 0.21 0.17 0.22

Table 4  Environmental impact 

scores of supplier 1 (discount 

contract)

Scores Time period

1 2 3

G1 3 2 1

G2 3 2 1

G3 2 1 2

G4 1 4 2

Table 5  Environmental impact 

scores of supplier 2 (bulk 

discount contract)

Scores Time period

1 2 3

G1 2 3 2

G2 3 2 1

G3 3 1 1

G4 1 1 2
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We used data presented in Table 3 for the emission factors of the processing plants. 

The scores of the four candidate suppliers in our problem setting are given in 

Tables 4, 5, 6, and 7, and the settings of the contracts are given in Tables 8 and 9.
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Abstract. In this paper, we introduce the MuRO-NIMBUS method for
solving multiobjective optimization problems with uncertain parameters.
The concept of set-based minmax robust Pareto optimality is utilized to
tackle the uncertainty in the problems. We separate the solution process
into two stages: the pre-decision making stage and the decision making
stage. We consider the decision maker’s preferences in the nominal case,
i.e., with the most typical or undisturbed values of the uncertain pa-
rameters. At the same time, the decision maker is informed about the
objective function values in the worst case to support her/him to make an
informed decision. To help the decision maker to understand the behav-
iors of the solutions, we visually present the objective function values.
As a result, the decision maker can find a preferred balance between
robustness and objective function values under the nominal case.

Keywords: Multiple criteria decision making, uncertainty, robustness,
interactive methods, robust Pareto optimality

1 Introduction

Many real-life optimization problems involve multiple (conflicting) objectives.
Multiobjective optimization methods (see e.g., [11] and [18]) solve these prob-
lems by optimizing the conflicting objectives simultaneously. For multiobjective
optimization problems, there usually is a set of mathematically equally good so-
lutions with different trade-offs among the multiple objectives. These solutions
are called Pareto optimal solutions. In most cases, only one Pareto optimal solu-
tion is chosen as the final solution to implement. This solution is usually found
by utilizing preferences of a decision maker, who is an expert in the problem
domain.

Different types of methods can be identified depending on the role of the
decision maker [11]. In interactive multiobjective optimization methods [3] , the
decision maker actively directs the solution process towards a most preferred so-
lution by iteratively specifying her/his preferences. With an active involvement,
which is not possible in other types of methods, the decision maker can gradu-
ally learn about the problem and its feasible solutions as well as how attainable
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her/his preferred solutions are. In this way, interactive methods can best support
the decision maker to find the most preferred solution.

In addition to multiple objectives, the presence of uncertainty in real-life op-
timization problems should be considered due to imprecise data, uncertain op-
eration environments, and uncertain future developments, etc. The uncertainty
can be reflected in parameters or decision variables in problem formulations. In
this paper, we concentrate on problems with uncertain parameters in objective
functions. With different realizations of uncertain parameters, the corresponding
outcomes (i.e., objective function values) are different.

On one hand, without considering the uncertainty, the outcome correspond-
ing to a deterministic Pareto optimal solution can become very bad when the
uncertain parameters realize differently. Many robustness concepts have been de-
fined for multiobjective optimization problems (see e,g., [9] [19]). They guarantee
the immunity of solutions to uncertainty by transforming uncertain problems to
deterministic ones with respect to the worst case. On the other hand, the out-
comes in the nominal case are very important for the decision maker, because
the nominal case describes the most typical behavior of uncertain parameters. In
addition, the robustness and quality of solutions, i.e., the outcome in the nomi-
nal case, usually conflict with each other [1]. In other words, objective function
values of a robust Pareto optimal solution are usually not as good as those of a
deterministic Pareto optimal solution in the nominal case.

When considering uncertainty, the decision maker faces the challenge of mak-
ing a decision with respect to different possible outcomes because of different
realizations of uncertain parameters. Considering multiple possible realizations
simultaneously can be too challenging for the decision maker. In addition, it is
desirable for the decision maker to find a preferred balance between robustness
and quality of the solutions. With the help of multiobjective robust optimization,
we can guarantee the robustness of solutions by finding the best solutions with
respect to the worst case but at the same time, the decision maker needs support
to find a most preferred balance between robustness and quality of solutions.

In the literature, most research efforts have been devoted to different defi-
nitions of robust Pareto optimality and only a few solution methods have been
developed (e.g., in [5] and [10]). In addition, in [2], necessary and sufficient condi-
tions for scalarizing functions with some special properties are discussed, which
can be used to transform a multiobjective optimization problem to a single-
objective one. In [7], [8], [14], and [15], interactive methods have been utilized to
find a final solution for multiobjective optimization problems with uncertainty.

In [7] and [8], a robust version of the augmented weighted Chebyshev method
[17] was developed for multiobjective linear optimization problems by extending
the concept of the budget of uncertainty [1] to multiobjective optimization prob-
lems. Uncertainty was tackled in a so-called all-in-one approach in [14], where the
decision maker considers all possible realizations of uncertain parameters simul-
taneously. During the solution process, the decision maker chooses the possible
realizations to concentrate on and formulates her/his preferences with respect
to them. In [15], the decision maker is expected to specify weights to alter the
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relative importance of objectives and robustness when they are combined to
formulate a single-objective optimization problem.

In this paper, we develop an interactive method called MuRO-NIMBUS to
better support the decision maker. The MuRO-NIMBUS method integrates the
concept of set-based minmax robustness [5] into the NIMBUS framework, which
to the best of our knowledge, is the first interactive method for supporting a
decision making to find set-based minmax robust Pareto optimal solutions.

The properties of desirable interactive methods were summarized in [16] in
terms of understandability, easiness to use, and features of being supportive. In
order to ensure those properties in MuRO-NIMBUS, we first guarantee the ro-
bustness of solutions by utilizing the set-based minmax robust Pareto optimality
to find a set of best possible solutions in the worst case. For this step, we develop
a robust achievement scalarizing function approach, which can also be used in-
dependently. Then we incorporate the preferences of the decision maker to find
a solution corresponding to a most preferred outcome in the nominal case. At
the same time, the decision maker is informed about the worst possible values.
In order to support the decision maker to understand the solution in terms of its
objective function values in the nominal case and the objective function values in
the worst case, we augment the value path visualization (see e.g., [6]) to visually
present different types of information. In this way, we can support the decision
maker to grasp a total balance in the robustness and quality of solutions during
the solution process.

By applying MuRO-NIMBUS, the decision maker is not expected to con-
sider all possible realizations of the uncertain parameters simultaneously as in
[14]. Unlike in [7] and [8] where solutions once discarded cannot be recovered,
the decision maker can move freely from one robust Pareto optimal solution to
another. Instead of providing preferences as weights which do not have concrete
meanings as in [15], MuRO-NIMBUS allows the decision maker to concretely
consider the objective function values of a more desired solution.

The rest of the paper is organized as follows: in the next section, we introduce
some basic concepts. In Section 3, we introduce MuRO-NIMBUS. We simulate
the solution process of a multiobjective ship design problem as a numerical
example in Section 4 to demonstrate the application of the new method. Finally,
we conclude the paper in Section 5.

2 Basic Concepts

2.1 Deterministic Multiobjective Optimization

A deterministic multiobjective optimization problem is of the form

minimize or maximize {f1(x), ..., fk(x)}
subject to x ∈ X ,

(1)

involving objective functions (objectives) fi : X → R to be simultaneously opti-
mized, where 1 ≤ i ≤ k and k ≥ 2. Objective vectors f(x) = (f1(x), ..., fk(x))

T
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consist of objective function values which are the images of decision vectors x =
(x1, x2, ..., xn)

T . Decision vectors belong to the nonempty feasible set X ⊂ R
n

and their components are called decision variables. In this paper, we refer to deci-
sion vectors as solutions and objective vectors as outcomes or objective function
values of solutions. For two feasible solutions, we say a solution dominates the
other when the value of at least one of the objectives is better and others are at
least as good as that of the other. For simplicity, we assume that the objective
functions are to be minimized.

Definition 1. A solution x∗ ∈ X is said to be Pareto optimal or efficient if
there does not exist another solution x ∈ X such that fi(x) ≤ fi(x

∗) for all
i = 1, ..., k and fj(x) < fj(x

∗) for at least one j.

With the help of the nonnegative ordering cone Rk
≥ = {z ∈ R

k|zi ≥ 0 for i =
1, ..., k} , we say that x∗ is Pareto optimal if there does not exist x ∈ X such
that f(x) ∈ f(x∗)− R

k
≥. We refer to the set of Pareto optimal solutions as the

Pareto optimal set.
For (1), the set of Pareto optimal solutions usually contains more than one

element. For the decision maker, it is often useful to know the ranges of the
objective function values in the Pareto optimal set. The ranges are given by
the ideal objective vector z∗ = (z∗1 , ...., z

∗
k)

T and the nadir objective vector
znad = (znad1 , ..., znadk )T . The ideal objective vector is formed by individual op-
tima of each objective function in the feasible set. For computational reasons,
we use the utopian objective vector z∗∗, which is strictly better than z∗. In
practice, z∗∗i is set as z∗i − a for i = 1, ..., k, where a > 0 is a small scalar. The
nadir objective vector, which represents the worst objective function values, can
be approximated for example by a so-called pay-off table (see [11] for further
details). If the objective function values have different magnitudes, znad and z∗∗

can be used to normalize them for computing purposes.
For calculating Pareto optimal solutions, one approach is to scalarize, i.e., to

formulate a single objective optimization problem such that its optimal solution
is a Pareto optimal solution for (1). In this, a single objective solver which is
appropriate for the characteristics of the problem must be used. The achievement
scalarizing function [20] is one of the widely used scalarizing functions. In this
paper, we consider the achievement scalarizing function of the following form:

minimize maxi [wi(fi(x)− z̄i)] + ρ

k∑
i=1

wi(fi(x)− z̄i)

subject to x ∈ X ,

(2)

where ρ is a small scalar binding the trade-offs, z̄ is a reference point and its
component z̄i is the aspiration level which represents the desired value of the
objective function fi given by the decision maker. The positive weight vector w
sets a direction toward which the reference point is projected onto the Pareto
optimal set.

As discussed in the literature (e.g., [3], [11], and [20]), the optimal solution
of (2) is a Pareto optimal solution for (1) and any Pareto optimal solution with
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trade-offs bounded by ρ can be found by changing z̄. The achievement scalarizing
function has many advantages, for example, the reference point can be feasible
or infeasible and the problem can be convex or nonconvex.

2.2 Uncertain Multiobjective Optimization Problems and Set-based
Minmax Robustness

For multiobjective optimization problems with uncertain parameters, given an
uncertainty set U ⊆ R

m, the uncertain multiobjective optimization problem is
given as a collection of deterministic multiobjective optimization problems:{

minimize f(x, ξ)
subject to x ∈ X

}
ξ∈U.

(3)

Every problem in the collection is called an instance, which is characterized
by a particular element ξ ∈ U . Depending on different realized values of ξ , a
decision vector can have different corresponding outcomes. As a result, we have
a set of outcomes corresponding to a feasible decision vector. We denote the set
of outcomes (i.e., the objective vectors) of a solution x ∈ X for all ξ ∈ U as
fU (x) = {fU (x, ξ) : ξ ∈ U} as in [5].

As briefly mentioned, among all the possible realizations of uncertain param-
eters, the nominal case ξ̂ describes the most typical behavior of the uncertain
parameters. It usually comes from previous experiences or the expert knowledge
of the decision maker. The worst case describes the situation where the objective
functions attain their worst values within U . For a fixed solution x ∈ X , we need
to solve the following problem to find the worst case:

maximize {f1(x, ξ), ..., fk(x, ξ)}
subject to ξ ∈ U . (4)

If the components of ξ do not relate to each other, there is a single worst case.
If they are related to each other, there can be multiple worst cases. With the
found worst case, the corresponding outcomes for the solution in question can
be calculated. The worst case does not necessarily realize in practice, but the
information on the outcomes provides the upper bounds of the objective function
values of a solution within U .

Analogously to the definition of Pareto optimality for deterministic problems,
set-based minmax Pareto optimality was defined in [5] by comparing the sets of
all outcomes corresponding to solutions.

Definition 2. A solution x∗ is a set-based minmax robust Pareto optimal solu-
tion for (3), if there does not exist another x ∈ X such that fU (x) ⊆ fU (x∗)−R

k
≥.

In other words, a feasible solution x∗ is a set-based minmax robust Pareto
solution if there does not exist another feasible solution x such that for all
outcomes f(x, ξ) ∈ fU (x), there exists an outcome f(x∗, ξ) ∈ fU (x∗) with
fi(x, ξ) ≤ fi(x

∗, ξ) for all i = 1, · · · , k. We apply this concept in MuRO-
NIMBUS to be introduced. With this concept, the decision maker can under-
stand that for all set-based minmax robust Pareto optimal solutions, there does
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not exist a feasible solution with better objective function values in every possible
realization of the uncertain parameters.

By interpreting the supremum of a set as the set itself, the robust counterpart
of (3) which transforms (3) to a deterministic problem to identify robust Pareto
optimal solutions is given in [5] as:

minimize sup
ξ∈U

f(x, ξ)

subject to x ∈ X .
(5)

Set-based minmax robust Pareto optimal solutions are the best possible solutions
in the worst case because they are obtained by minimizing the suprema of the
sets of outcomes. As explained earlier, finding the worst case outcomes for a
fixed solution x ∈ X requires solving a multiobjective optimization problem
with objectives to be maximized as (4). The notation sup in (5) denote the
supreme of the outcome sets which is used to identify the worst case outcomes.
For simplicity, in what follows, we refer to set-based minmax robust Pareto
optimal solutions as robust Pareto optimal solutions.

2.3 Interactive Multiobjective Optimization

As mentioned, in interactive methods, the decision maker directs the solution
process towards a most preferred solution by iteratively specifying her/his prefer-
ences. A typical solution process (e.g., [3] ) starts by presenting a Pareto optimal
solution to the decision maker. If the decision maker is satisfied, the final solu-
tion is found. If the decision maker is not satisfied, (s)he is expected to specify
preferences for a more desired solution. Based on the preferences, a new Pareto
optimal solution which satisfies the preferences best is found and presented to
her/him. The solution process continues until the decision maker finds a most
preferred solution.

NIMBUS ([11] and [13]) is a family of classification-based interactive meth-
ods. In NIMBUS, the decision maker can classify the objectives to indicate what
kind of objective vector would be more preferred than the current one. The
objective functions can be assigned to up to five different classes including:

I< for those to be improved (i.e., decreased in case of minimizing, increased
in case of maximizing),
I≤ for those to be improved until some desired aspiration level ẑi,
I= for those that are satisfactory at their current level,
I≥ for those that may be impaired till a bound εi, and
I♦ for those that are temporarily allowed to change freely.

If aspiration levels or bounds are used, the decision maker is expected to provide
them. If the classification is feasible, i.e., the decision maker allows at least one of
the objectives to be impaired to improve some objectives, a scalarizing problem
is solved to find a new Pareto optimal solution reflecting the preferences. In the
so-called synchronous NIMBUS method, up to four different solutions can be
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found in each iteration by solving different scalarizing problems. Since we have
to consider robustness and quality of the solutions, we limit the cognitive load
to the consideration of only one solution at a time. We will return later to the
variant of the NIMBUS scalarizing problems we use in MuRO-NIMBUS.

MuRO-NIMBUS inherits the advantage of classifying the objectives. First,
classification can remind the decision maker that it is not possible to improve all
objective function values at the same time but impairment in some objective(s)
must be allowed. Second, the decision maker deals with objective function values
and (s)he does not need to connect different types of information. Instead, (s)he
only needs to know what kind of changes (s)he desires for a new solution.

3 MuRO-NIMBUS

In this section, we introduce MuRO-NIMBUS. To be able to present it, we first
introduce some building blocks that we need for designing the method.

3.1 Building Blocks of MuRO-NIMBUS

As a building block of MuRO-NIMBUS, we first present the robust version of
(2). Based on it, we introduce the robust achievement scalarizing function (ASF)
approach to calculate a set of robust Pareto optimal solutions.

Based on the concept of robust Pareto optimality and the robust counterpart
as introduced in Section 2, the robust version of (2) can be formulated as:

minimize sup
ξ∈U

max
i

[wi(fi(x, ξ)− z̄i)] + ρ
k∑

i=1

wi(fi(x, ξ)− z̄i)

subject to x ∈ X for all ξ ∈ U .
(6)

Just like (2), the robust version involves a reference point and a weight vector.
We now prove the sufficient condition of the robust Pareto optimality:

Theorem 1. Given an uncertain multiobjective optimization problem (3), if x∗

is an optimal solution to (6) for some z̄ and w, and maxξ∈U fi(x, ξ) exists for
all x ∈ X and for all i = 1, ..., k, then x∗ is a robust Pareto optimal solution for
(3).

Proof. Assume that x∗ is not a robust Pareto optimal solution for (3). Then
there exists x′ ∈ X such that fU (x′) ⊆ f(x∗) − R

k
≥. Based on Lemma 3.4

in [5], for all ξ ∈ U , there exists η ∈ U such that fi(x
′, ξ) ≤ fi(x

∗,η) for
i = 1, ..., k and for at least one i the strict inequality holds. Since wi > 0, we

have max
i

[wi(fi(x
′, ξ) − z̄i)] + ρ

k∑
i=1

(fi(x
′, ξ) − z̄i) < max

i
[wi(fi(x

∗,η) − z̄i)] +

ρ
k∑

i=1

(fi(x
∗,η)− z̄i), where for all ξ ∈ U there exists a η ∈ U which satisfy the in-

equality. Further, we know that max
ξ∈U

max
i

[wi(fi(x
′, ξ)−z̄i)]+ρ

k∑
i=1

(fi(x
′, ξ)−z̄i) <



8 Zhou-Kangas et al.

max
η′∈U

max
i

[wi(fi(x
∗,η′)− z̄i)]+ρ

k∑
i=1

(fi(x
∗,η′)− z̄i). So max

ξ′∈U
max

i
[wi(fi(x

′, ξ′)−

z̄i)]+ρ
k∑

i=1

(fi(x
′, ξ′)− z̄i) < max

η′∈U
max

i
[wi(fi(x

∗,η′)− z̄i)]+ρ
k∑

i=1

(fi(x
∗,η′)− z̄i).

This contradicts with the assumption that x∗ is the optimal solution for (6). So
x∗ is a robust Pareto optimal solution for (3).

This result agrees with the sufficient condition presented in Theorem 4.4 in [2]
for strongly increasing scalarizing functions, which states that the optimal so-
lution of a strongly increasing scalarizing function is set-based minmax Pareto
optimal to (3). In [2], the detailed proof was omitted. The necessary condition
and the proof for strictly increasing scalarizing function are given in Theorem
4.1 in [2]. As a strongly increasing scalarizing function, (6) is also a strictly
increasing scalarizing function. For the properties of strongly and strictly in-
creasing scalarizing function see [2] and [20]. Based on (6), we introduce the
robust ASF approach with (3) as the input to calculate a set of robust Pareto
optimal solutions Xrpo as the output:

Step 1. Set Xrpo = ∅ and generate a set of reference points Z.
Step 2. If Z = ∅, stop.
Step 3. Choose a z̄ ∈ Z, and set Z = Z \ {z̄}.
Step 4. Find an optimal solution x∗ to (6) using z̄ as the reference point
and set w accordingly, e.g., wi =

1
z∗∗
i −z̄i

, where z∗∗ is the utopian objective

vector. Set Xrpo = Xrpo ∪ {x∗}.
Step 5. Go to step 2.

In the robust ASF approach, we alter z̄ and set w accordingly for efficiently
gaining a good representative set of robust Pareto optimal solutions Xrpo. When

we evaluate their outcomes in the nominal case ξ̂, some of them can be dom-
inated. We should only present nondominated solutions to the decision maker.
So we refer to the robust Pareto optimal solutions whose corresponding out-
comes are nondominated as nominal nondominated robust Pareto optimal solu-
tions: a robust Pareto optimal solution x∗ is a nominal nondominated robust
Pareto optimal solution if there does not exist another x ∈ Xrpo such that

f(x, ξ̂) ∈ f(x∗, ξ̂)− R
k
≥.

For finding a nondominated robust Pareto optimal solution based on a NIM-
BUS classification, we solve a variant of the synchronous NIMBUS scalarizing
problem presented in [13]:

minimize max
i∈I<

j∈I≤

[wi(fi(x, ξ̂)− z∗i ), wj(fj(x, ξ̂)− ẑj)] + ρ

k∑
i=1

wifi(x, ξ̂)

subject to x ∈ Xrpo

fi(x, ξ̂) ≤ fi(x
c, ξ̂) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x, ξ̂) ≤ εi for all i ∈ I≥,

(7)

where I<, I=, I≥, I≤, and I♦ represent the corresponding classes of objectives
and xc is the current solution.
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Proposition 1. The solution of (7) is a nominal nondominated robust Pareto
optimal solution for problem (3).

Proof. Problem (7) is equivalent to a deterministic problem in the nominal case
with the feasible set Xrpo. The proof that the solution of (7) is Pareto optimal
for deterministic problems was given in [13]. Thus it fulfills the requirements to
be a nominal nondominated robust Pareto optimal solution.

3.2 MuRO-NIMBUS

Based on the building blocks discussed above, we introduce MuRO-NIMBUS
which can support the decision maker to find a most preferred solution for (3).
We first discuss the idea of MuRO-NIMBUS in general. Then we present its
steps followed by a discussion on the technical details of each step.

As mentioned before, e.g., in [1], the robustness and the quality of solutions
usually conflict with each other. If the decision maker is not willing to sacrifice
some quality to gain robustness, we can solve (3) in the nominal case as a
deterministic problem. On the other hand, if the decision maker is willing to
make some sacrifice to gain robustness, (s)he prefers to have a robust Pareto
optimal solution by bearing the fact that its quality may not be as good as a
Pareto optimal solution in the nominal case. MuRO-NIMBUS is developed for
solving (3) when the decision maker is willing to sacrifice some quality to gain
robustness. Because outcomes in the nominal case are very important for the
decision maker and robustness of solutions can be guaranteed by finding best
possible solutions in the worst case, we have three tasks during the solution
process.

First, we need to guarantee the robustness of the solutions. Second, the nom-
inal case has to be considered in terms of corresponding outcomes of solutions
to satisfy the decision maker’s preferences as much as can. Third, to help the
decision maker to make an informed decision, corresponding outcomes in the
worst case should be found. It is not possible to guarantee the robustness and
consider two different kinds of realizations of the uncertain parameters at the
same time during the solution process. So we separate the consideration into two
stages in MuRO-NIMBUS: pre-decision making and decision making.

In the pre-decision making stage, we first concentrate on robustness, i.e.,
finding a set of robust Pareto optimal solutions. Then we consider the preferences
of the decision maker in the decision making stage. Specifically, we support the
decision maker to direct the solution process towards a most preferred robust
Pareto optimal solution among the ones calculated. As a result, the final solution
selected is robust Pareto optimal and at the same time corresponding to a most
preferred outcome by the decision maker in the nominal case. In addition, the
decision maker is informed of the outcome in the worst case.

We should be aware of the necessity of asking the decision maker whether
(s)he is willing to sacrifice some quality to gain robustness before the solution
process of a problem. Now we can present the overall algorithm of MuRO-
NIMBUS as follows:
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1. Pre-decision making.
(a) Calculate the set Xrpo with the robust ASF approach. Calculate also the

ideal and nadir objective vectors in the nominal case.
2. Decision making

(a) Classify all the objectives into the class I< of the NIMBUS classification
and solve (7) (by including only the first constraint) to find an initial
nominal nondominated robust Pareto optimal solution xc.

(b) Present the ideal and nadir objective vectors calculated in the nominal
case to the decision maker.

(c) Present the outcomes in the nominal and the worst cases corresponding
to xc to the decision maker. If the decision maker is satisfied, xc is the
final solution. Otherwise, continue.

(d) Ask the decision maker to classify the objectives at the current solution,
i.e., the outcome in the nominal case. Then solve (7) to find a new
nominal nondominated solution and set it as xc and go to step 2(c).

In step 1, the presence of the decision maker is not required. We use the robust
ASF approach which can handle general problems (for example, the weighted-
sum method in [5] assumes the problem to be solved is convex). In addition,
in robust ASF, we apply the idea from [4] to alter the reference points z̄ and
set w accordingly to efficiently obtain the set Xrpo. As for efficiently solving
the scalarized problem and handling the constraints which should be fulfilled
for all the possible realizations of the uncertain parameters, we discretize the
uncertainty set to reformulate (6).

After step 1, we start the stage where the decision maker actively participates
in the solution process. The goal is to find the most preferred solution from the
set Xrpo by considering the corresponding outcomes in the nominal case. As
an inherited advantage, MuRO-NIMBUS only requires the decision maker to
classify the objectives based on the outcome of the current solution.

The decision making stage starts by calculating an initial nominal nondomi-
nated robust Pareto optimal solution. Before presenting the initial solution, the
calculated ideal and nadir objective vectors are presented to the decision maker
to help her/him to have a general idea on the ranges of the values of each ob-
jective function in the nominal case. With this information, when the outcome
corresponding to the initial solution in the nominal case is presented, the de-
cision maker can have a concrete understanding on its quality. As background
information, the outcome(s) in the worst case is/are also shown to the decision
maker to help her/him to make an informed decision.

As a tool for presenting the solutions to the decision maker, we utilize the
value path visualization (see e.g., [6]). One can also modify some other visu-
alization methods (see e.g., [12]) for this purpose. As said, depending on the
characteristics of the involved uncertainty, there can exist multiple worst cases.
We indicate the information on the outcomes in the worst cases accordingly in
the visualization.

Figure 1 presents the idea of calculating the worst case objective function
values in the visual presentation of a solution. In the figure, we have five different
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realizations of the uncertain parameters and the uncertain parameters do not
relate to each other. The outcome in the nominal case is presented as the value
path in the figure in blue. Outcomes with other realizations are presented in
grey. By solving (4), we obtain the individual maxima of each objective in the
uncertainty set as the outcome in the worst case. The corresponding outcome in
the worst case is marked by triangles in the figure. The same idea applies when
the uncertain parameters are related to each other. Instead of single values, we
get ranges of values as the outcomes in the worst cases.

Fig. 1. Outcomes in the worst case

After having seen the initial solution, the decision maker can classify the
objectives into up to five classes as discussed in Section 2 to express her/his
preferences for a more desired solution. Based on the classification, we solve the
scalarizing problem (7) to find a new nominal nondominated robust Pareto opti-
mal solution which satisfies the classification best. The new solution is presented
to the decision maker with an updated visualization. The solution process con-
tinues until the decision maker finds the most preferred nominal nondominated
robust Pareto optimal solution.

4 Numerical Example

In this section, we simulate the solution process of the multiobjective ship design
problem [21] to demonstrate the application of MuRO-NIMBUS. The problem
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has three objectives: minimizing the transportation cost, minimizing the light
ship mass and maximizing the annual cargo. A detailed presentation of the
problem in the deterministic case is in the Appendix A of [21].

The problem was originally studied as a deterministic problem. In the uncer-
tain version studied in this paper, we consider two parameters which stem from
given intervals: the fuel price and the round trip mileage. The fuel price affects
the transportation cost. The round trip mileage affects both the transportation
cost and the annual cargo. The fuel price can fluctuate for example due to the
change of the energy market situation. The round trip mileage can vary if the
weather conditions change. We treat the values of the two parameters in the
deterministic formulation as their nominal values since they are supposed to de-
scribe the most typical values of the parameters. We implemented the problem
in MATLAB®and used a build-in solver with MultiStart to find Xrpo.

tonstons 6

Fig. 2. Iteration 1 of ship design problem

Before the solution process, we communicated with the decision maker and
she was willing to sacrifice some quality to gain robustness. In step 1 of MuRO-
NIMBUS, we calculated a representative set of 150 robust Pareto optimal solu-
tions with the robust ASF approach and we also calculated the ideal and nadir
objective vectors in the nominal case. Based on our computational experiments,
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150 solutions were sufficient for this problem. Then we started the first iteration
of the decision making stage.

Step 2(a) We set the three objectives in I< and solved (7). We found an
initial nominal nondominated Pareto optimal solution from Xrpo.

Step 2(b)We presented the ideal objective vector z∗ = (9.479, 716.3, 0.8534)T

and the nadir objective vectors znad = (12.813, 2040.1, 0.372)T in the nominal
case to the decision maker. Their components corresponding to each objective
are also shown in the visual illustration. In the visual presentation, we used 103

tonne as the unit, i.e., the ideal and nadir values for the light ship mass was
marked as 0.7163 and 2.0401 respectively. To help the decision maker to quickly
read the number, we used a million tonnes as the unit for annual cargo.

Step 2(c) Then we presented the initial outcome to the decision maker as
illustrated in Figure 2. In the nominal case, 10.5 pounds/tonne for the trans-
portation cost, 1090 tonnes light ship mass and the ship can handle 0.58 million
tonnes cargo annually. The outcome in the worst case is marked in the figure.
Even though one of the considered uncertain parameters affects two objectives,
we had only one worst case because the two objectives are not conflicting with
each other. The decision maker was not satisfied with the solution and wanted
to continue the solution process.

Step 2(d) The decision maker specified her preferences by classifying the
objectives and wanted to improve the annual cargo as much as she can while
allowing the light ship mass to be impaired until 1800 tonnes. In the NIMBUS
classification, this corresponds to: I< = {f3}, I≥ = {f2} with ε2 = 1800 and
I♦ = f1. Based on this classification, we solved (7). As a result, we got a new
nominal nondominated robust Pareto optimal solution.

Iteration 2. We presented the new solution to the decision maker as in
Figure 3. The transportation cost was 9.51 pounds/tonne, and the light ship
mass was 1640 tonnes while the annual cargo was 0.77 million tonnes in the
nominal case. The decision maker observed in the visual presentation that the
worst case outcome of the transportation cost did not degrade as much as in the
initial outcome. Even though she seemed to have a solution whose outcome in
the worst case did not degrade much compared to the outcome in the nominal
case, she could not accept the light ship mass. So she decided to reduce the light
ship mass to 1100 tonnes by allowing the transportation cost to increase until
10.9 pounds/tonne and the annual cargo to reduce until 0.5 million tonnes, i.e.,
she classified the objectives as I≤ = {f2} with an aspiration level ẑ2 = 1100 and
I≥ = {f1, f3} with bounds ε1 = 10.9 and ε3 = 0.5. Based on this classification,
problem (7) was solved to get a new solution.

Iteration 3. We presented the new solution to the decision maker as in
Figure 4 with 10.59 pounds/tonne for the transportation cost, 1040 tonnes as
the light ship mass and 0.57 million tonnes annual cargo. With this solution, the
decision maker noticed that even though the light ship mass was quite low, the
other two objectives were at the same time approaching her specified bounds. She
also observed that the value of the first objective function has higher degradation
than the previous solution. She understood that she cannot have lower light ship
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tons tons6

Fig. 3. Iteration 2 of ship design problem

mass if she is not willing to impair the other two objectives further and decided
to stop. Naturally, if the decision maker is not satisfied, she can continue the
solution process until she finds a most preferred solution.

During the solution process of the uncertain version of the multiobjective
ship design problem, the decision maker was able to consider the outcomes in
the nominal case with guaranteed robustness of solutions. Bearing in mind that
the outcome in the nominal case of her final solution might not be as good as
a deterministic Pareto optimal solution, she could still direct the interactive so-
lution process towards a most preferred one among the robust Pareto optimal
solutions according to their outcomes in the nominal case. Expressing her pref-
erences by classifying the objectives did not bring her additional cognitive load.
With the visualized information, she observed the outcomes of the solutions in
the worst case in addition to the outcomes in the nominal case. Even though she
could not interfere directly how the outcomes in the worst cases behaved, the
information was critical for her to make an informed decision. In addition, if the
worst case is realized, the solution the decision maker has would still be valid.

5 Conclusions

In this paper, we introduced MuRO-NIMBUS which is an interactive method
for solving multiobjective optimization problems with uncertain parameters. In
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6tons tons

Fig. 4. Iteration 3 of ship design problem

MuRO-NIMBUS, we support the decision maker to find a preferred balance by
interacting in the nominal case but also following what happens in the worst case.
We divided the consideration of the robustness and the outcomes in the nominal
cases into the pre-decision making and the decision making stages. With the two-
stage solution process, the decision maker finds a robust Pareto optimal solution
with a preferred outcome in the nominal case and at the same time, the outcome
in the worst case is also acceptable. In this way, the information provided to and
requested from the decision maker is understandable in MuRO-NIMBUS. The
decision maker can also be easily involved in the interactive solution process
without much additional cognitive load. By providing the information in both
nominal and worst cases, MuRO-NIMBUS supports the decision maker to make
an informed decision. We demonstrated the application of MuRO-NIMBUS with
an example problem.

The development of MuRO-NIMBUS has initiated many avenues for further
research. First, some additional features on the decision making stage can be
developed. We can allow the decision maker to choose whether (s)he would like
to find a most preferred solution based on the corresponding outcome in the
nominal case (as is done in MuRO-NIMBUS), or in the worst case. This will
allow the decision maker to consider different aspects during the decision making
process. As an essential part to support the decision maker, we can also consider
how to visualize the solutions more effectively. Second, a decision maker might
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want to find a robust Pareto optimal solution but with only a limited amount
of sacrifice on the quality. To achieve this, we can study some other robustness
concepts and analyze their properties from the decision making point of view
aiming at finding a good trade-off between robustness and quality.

References

1. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

2. Bokrantz, R., Fredriksson, A.: Necessary and sufficient conditions for Pareto ef-
ficiency in robust multiobjective optimization. European Journal of Operational
Research 262(2), 682–692 (2017)

3. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective Optimiza-
tion, Interactive and Evolutionary Approaches. Springer (2008)

4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation 20(5), 773–791 (2016)
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Abstract. For multiobjective optimization problems with uncertain pa-
rameters in the objective functions, different variants of minmax robust-
ness concepts have been defined in the literature. The idea of minmax ro-
bustness is to optimize in the worst case such that the solutions have the
best objective function values even when the worst case happens. How-
ever, the computation of the minmax robust Pareto optimal solutions
remains challenging. This paper proposes a simple indicator based evo-
lutionary algorithm for robustness (SIBEA-R) to address this challenge
by computing a set of non-dominated set-based minmax robust solutions.
In SIBEA-R, we consider the set of objective function values in the worst
case of each solution. We propose a set-based non-dominated sorting to
compare the objective function values using the definition of lower set
less order for set-based dominance. We illustrate the usage of SIBEA-R
with two example problems. In addition, utilization of the computed set
of solutions with SIBEA-R for decision making is also demonstrated. The
SIBEA-R method shows significant promise for finding non-dominated
set-based minmax robust solutions.

Keywords: minmax robust Pareto optimal solutions, hypervolume, set-
based dominance, SIBEA, uncertainty

1 Introduction and background

The need to simultaneously consider multiple objectives and the existence of
uncertainty from various sources complicate real-world optimization problems.
Uncertainty due to for example imprecise data or uncertain future developments
usually reflects as parameters in the objective functions. Traditional multiob-
jective optimization methods concentrate on optimizing multiple objectives si-
multaneously and finding a set of Pareto optimal or non-dominated solutions
for deterministic formulations of problems. Different approaches can be used to
find this set, for example with scalarization techniques (see e.g., [21]) or with
evolutionary multiobjective optimization methods (see e.g., [8]). However, the
involved uncertainty can affect deterministic Pareto optimal or non-dominated
solutions with undesired degradation in their objective function values. Thus,



considering uncertainty in the optimization process is as important as optimiz-
ing multiple objectives simultaneously.

The goal of handling uncertainty and multiple objectives simultaneously is
finding robust solutions that are sufficiently immune to the uncertainty and with
trade-offs among the objectives. Different concepts of robustness and measures
of robustness have been proposed in the literature. Typically, robustness mea-
sures are incorporated into evolutionary multiobjective optimization methods to
quantify the effects of uncertainty on the objective function values (e.g., [4, 9,
12, 17]). Different robustness concepts alter the definition of dominance. Based
on the concepts, uncertain multiobjective optimization problems can be trans-
formed to deterministic ones (as summarized in [14] and [25]). In addition, dif-
ferent possible values of uncertain parameters can be considered simultaneously
during the optimization process (as e.g., in [22] and [24]).

Among the robustness concepts, the most widely used ones belong to the
family of minmax robustness (e.g., [5, 11, 16]). Due to different possible values
of the uncertain parameters, a solution in the decision space can correspond to
a set of outcomes (i.e., objective function values). We refer to a set of outcomes
corresponding to a solution as the outcome set of the solution. Minmax robust-
ness compares the worst outcomes in the outcome sets and finds the best possible
ones. The worst outcomes are referred to as the worst case outcome set.

Set-based minmax robustness [11] finds the solutions with the best worst
case outcome sets by utilizing set-based dominance [23]. For feasible solutions
considered, we need to identify their worst case outcome sets by maximizing the
multiple objectives simultaneously in their outcome sets and compare them with
set-based dominance. This series of tasks makes the computation of set-based
minmax robust solutions challenging. Methods from robust optimization and
mathematical optimization can only address the challenge partially.

Some solution methods via scalarizing and reformulating the scalarized sub-
problems have been proposed e.g., in [5, 16]. However, typically the reformula-
tions are based on some (strict) assumptions on the characteristics of the problem
which cannot be always guaranteed in practical problems. If no assumptions on
the characteristics can be made, using samples to replace the uncertainty set has
been explored e.g., in [27]. The shortcoming is that the resulting solutions might
not be or near to minmax robust. The needs of obtaining a more accurately
approximated set of set-based minmax robust solutions have motivated us for
further developments.

Different types of evolutionary multiobjective optimization methods have
been able to approximate solutions for many challenging problems. For compar-
ing worst case outcome sets, methods which combine non-dominated sorting and
crowding distance are not suitable since defining the crowding distance between
the worst case outcome sets is not possible. Decomposition based methods cannot
be directly applied since we cannot directly associate worst case outcome sets to
the weighting vectors. Set-based dominance has been utilized in the evolutionary
multiobjective optimization community e.g., in [3, 30]. The population is treated
a whole set and set-based dominance is used to improve the population. Very



recently, using set-based dominance to solve problems involving uncertainty has
also attracted interest. In [15], a genetic algorithm has been proposed for solving
combinatorial bi-objective optimization problems with a set of discrete values of
the uncertain parameters. In [13], an evolutionary algorithm has been proposed
for solving problems with interval uncertainty (i.e., the uncertain parameters
stem from some intervals) with reformulated objective functions. A specific defi-
nition of set-based dominance has been used to compare the worst case outcomes
in [2]. These earlier research demonstrates potential to address the challenges.

In this paper, we propose utilizing an evolutionary multiobjective optimiza-
tion approach SIBEA-R to tackle the challenge of approximating set-based min-
max robust Pareto optimal solutions. We extend SIBEA [28] for this purpose.
We incorporate the definition of set-based minmax robustness into the SIBEA
method and develop a non-dominated sorting procedure based on the lower set
less order. We also utilize the hypervolume of the worst case outcome sets in the
environmental selection process.

The rest of the paper is organized as follows: Section 2 presents some concepts
we use in this paper. Section 3 presents SIBEA-R followed by some numerical
examples of how it can be used in Section 4. Finally, Section 5 concludes the
paper and identifies some future research directions.

2 Preliminaries

In this paper, we consider multiobjective optimization problems with uncertainty
reflected in the parameters of the objective functions in the following form:(

minimize
(
f(x, ξ) = f1(x, ξ), · · · , fk(x, ξ)T

)
subject to x ∈ X

)
ξ∈U

, (1)

where x = (x1, · · · , xn)
T is the decision vector from the feasible set X in the

decision space Rn whose components are called decision variables and ξ consists
of the uncertain parameters which are assumed to stem from an uncertainty
set U . With ξ stemming from U , a solution x ∈ X is mapped in the objective
space as a set-valued map [23] under the objective functions f1, · · · , fk to the
objective space. We call this set-valued map the outcome set and denote by
fU (x) = {f(x, ξ), ξ ∈ U}. In the outcome set, a specific objective vector f(x, ξ)
is called an outcome.

The set-based minmax robust counterpart of (1) is presented in [11] as:

minimize
x∈X

maximize
ξ∈U

f(x, ξ) = (f1(x, ξ), · · · , fk(x, ξ))T . (2)

We say that a solution x∗ ∈ X is set-based minmax robust Pareto optimal for
problem (1), if there does not exist another solution x ∈ X such that fU (x) ⊆
fU (x∗)−R

k
≥, where R

k
≥ = {x ∈ R

k : xi ≥ 0, i = 1, · · · , k} [11]. This definition is
based on the concept of lower set less order: let A and B be arbitrary closed sets,
then A �l B implies A ⊆ B − R

k
≥. Thus, when we compare two sets of vectors,

we say A �l B if for all a ∈ A there exists b ∈ B such that ai ≤ bi, i = 1, · · · , k.



Figure 1 illustrates an example of set-based minmax robustness with two
objective functions to be minimized. In the example, we have a feasible set
X = {x1, x2, x3, x4} and an arbitrary uncertainty set U . We plot the outcome
set of the three solutions in the figure fU (x1) (bold solid curve), fU (x2) (bold
dotted line), fU (x3) (bold dashed line), and fU (x4) (bold dash-dotted line). The
gray thin lines help us to identify the borders of the outcome sets. Solution x1

is a set-based minmax robust Pareto optimal solution, since fU (x1) − R
2
≥ does

not contain fU (x2) nor fU (x3). Similarly, we can see that x2 and x3 are also
set-based minmax robust Pareto optimal solutions. However, x4 is not set-based
minmax robust Pareto optimal since fU (x4) − R

2
≥ contains fU (x1) and fU (x3).

The formulation (2) minimizes the worst case outcomes. As mentioned before,
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Fig. 1: Example of set-based minmax robustness

we need to first find the worst case outcomes and compare them as a whole. So,
finding set-based minmax robust Pareto optimal solutions requires us to address
these two challenges in a systematical way. Finding the worst case outcome set
of a fixed solution x ∈ X requires solving a multiobjective optimization problem
with the objective functions to be maximized as follows:

maximize
ξ∈U

(f1(x, ξ), · · · , fk(x, ξ))T . (3)

3 The SIBEA-R method

In this section, we introduce SIBEA-R for approximating set-based minmax
robust Pareto optimal solutions. We first introduce the steps of SIBEA-R. Then,
we discuss details of the steps with a concentration on the further developments
on SIBEA for set-based minmax robustness.



The SIBEA-R method takes the population size (NP) and the number of
generations (NG) as the input and produces a set of non-dominated set-based
minmax robust solutions A as the output. The basic steps are as follows:

Step 1. (Initialization) Generate an initial set of decision vectors P of size
NP and find their worst case outcome sets by solving (3). Set the generation
counter m = 1.
Step 2. (Mating) Create an offspring population Q using crossover and
mutation operators and find their worst case outcome sets. Set P = P ∪Q.
Step 3. (Environmental selection) Rank the population P using lower set
less order and sort the individuals into different fronts F i, i = 1, 2, · · · . and
do the following:
• Set a new population P 1 = ∅. Set i = 1 and P 1 = P 1 ∪ F 1. As long as
|P 1| < NP , set i = i + 1, P 1 = P 1 ∪ F i. The notation |P 1| represents
the cardinality of P 1.

• if |P 1| = NP , set P = P 1 and go to Step 4. Otherwise, do the following
until |P 1| = NP : identify the solutions with the worst rank P ′ ⊂ P 1.

• For each solution x ∈ P ′, determine the loss of the value of the hypervol-
ume indicator d(x) if it is removed from the set P ′. Remove the solution
with the smaller loss from P ′, i.e., set P ′ = P ′ \ {x}

Step 4. (Termination) If m > NG, set A = P 1 and stop. Otherwise, set
m = m+ 1 and go to Step 2.

In Steps 1 and 2, we consider the worst case outcome sets of the individuals
and their offspring. We have mentioned earlier that for a fixed solution, finding
its worst case outcomes is a multiobjective optimization problem with objectives
to be maximized in the uncertainty set. We can solve the maximization prob-
lem with an evolutionary multiobjective optimization method to approximate a
set of outcomes in the worst case. However, doing so requires a lot of compu-
tation resources. Thus, we should find a representative set of solutions of the
maximization problem and use it to save the computation resource.

We propose to systematically solve a small number of scalarized subproblems
to obtain the representative worst case outcome sets. For example, we can utilize
the approach used in [6] to generate a set of evenly distributed points on a unit
hyperplane in the objective space. Then, we use them as the reference points
to optimize a series of the achievement scalarizing functions (see e.g., [26]). In
what follows we denote the number of worst case outcomes in the representative
worst case outcome set by W and the values of the uncertain parameters which
the objective functions reach their worst case values by ξw, w = 1, · · · ,W . The
number of function evaluations depends on the solver used to solve the scalarized
subproblems. In case of discrete scenarios in the uncertainty set, the number of
function evaluations is k ×NP ×NG× number of scenarios.

After we have found the representative worse case outcome sets of the indi-
viduals, we need to rank them and sort them into different fronts. We call this
step set-based non-dominated sorting, where we define the dominance between
two representative worst case outcome sets with lower set less order. The sort-
ing procedure is inspired by that presented in [10]. The steps of the set-based
non-dominated sorting are as follows:



Step 1. For each solution p ∈ P , set the domination count np = 0 and the
set of solutions dominated by p as an empty set Sp = ∅. Set P = P \ {p}
and carry out the following steps:

(a) For each q ∈ P , do the following:
If for all f(q, ξw), w = 1, · · · ,W , there exists f(p, ξw) such that
f(q, ξw) ≤ f(p, ξw), set np = np + 1.
Otherwise if for all f(p, ξw), w = 1, · · · ,W , there exists f(q, ξw) such
that f(p, ξw) ≤ f(q, ξw), set Sp = Sp ∪ {q}

(b) If nq = 0, then prank = 1 and F 1 = F 1 ∪ {p}.
Step 2. Set front counter i = 1
Step 3. Do the following steps until F i = ∅

For each p ∈ F i

for each q ∈ Sp

set nq = nq − 1
if nq = 0, then qrank = i+1, and F i+1 = F i+1∪{q}, set i = i+1
and continue with Step 3 to the next front.

In the set-based non-dominated sorting, Step 2(a) is for checking if fU (p) �l

fU (q) or fU (q) �l fU (p). We pair-wise compare the solutions and go through the
outcomes in the representative worst case outcome sets.

After we have sorted the solutions into different fronts, we start the environ-
mental selection in Step 3. We fill the next generation population incrementally
starting from solutions that are in F 1 until the number of solutions exceeds the
population sizeNP . Then we delete the solutions from the last front based on the
loss of the value of the hypervolume indicator (see e.g., [1] and [28]). We calculate
the loss of the hypervolume when deleting a solution x′ as d(x′) = H(S)−H(S′),
where S = {f̃U (x) : x ∈ P ′} and S′ = S \ {f̃U (x′)}. Here, we use f̃U instead of
fU because we consider the representative worst case outcome sets.

After step 3, we have a new population. If the number of generations has
been exceeded, we terminate the solution process and take the set-based non-
dominated solutions of the last generation as the output set A. If the number of
generations has not been exceeded, we continue by going to Step 2.

After obtaining the set A, a decision maker should choose a final solution.
For example, [27] uses an interactive post-processing procedure to find the final
solution based on preference information. In the interactive process, we present
the outcome of a solution in the nominal case which is the undisturbed or usual
case. Then, the decision maker can specify her or his preferences for a more
desired solution until (s)he finds a satisfactory solution. The purpose is to help
the decision maker to find the final solution based on the nominal value and at
the same time the solution is the best possible when the worst case happens.

4 Numerical results

In this section, we demonstrate the usage of the SIBEA-R method with two
example problems. The examples help us to test our proposal of using set-based



non-dominated sorting in an evolutionary algorithm. The first example problem
is a simple linear problem based on one of the examples presented in [25]:⎛

⎜⎜⎝
minimize

(
2ξ1x1 − 3ξ2x2

5ξ1x1 + ξ2x2

)
subject to 0 ≤ x1 ≤ 1.5

0 ≤ x2 ≤ 3

⎞
⎟⎟⎠

ξ∈U

, (4)

where U =
{(−1

2

)
,
(
2
3

)}
.

In the experiments, we used the default setting of parameters as in the im-
plementation of SIBEA in [7]. For (4), we can compute the outcomes in both
possible sets of values for the uncertain parameters. We first illustrate the evolve-
ment of the population, we visualize the initial generation in the decision space
in Figure 2a and in the objective space in Figure 2b. In the figures, the solid
lines are the borders of the feasible set and we visualize 10 individuals because
of limited varieties of markers. In Figure 2b, the same marker appears twice be-
cause of the two possible cases in U . We use SIBEA-R to evolve the population
by considering their outcome sets (each set consists of two outcomes with the
same marker in the figure). After 100 generations, the last generation is shown
in Figure 2c in the decision space and in Figure 2d in the objective space.

We then studied the final populations of 20 independent runs with NP = 30.
It is not even possible to compute a complete set of set-based robust Pareto
optimal solutions for linear problems like (4). To the best of our knowledge,
methods with similar ideas in the literature (e.g., [2]) had a different definition
of robust Pareto optimality. We cannot easily benchmark the example problems.
Thus, we first visually compare the solutions computed by SIBEA-R with 30
solutions computed by the weighted-sum approach proposed in [11]. The purpose
is to use the solutions computed by the weighted-sum approach as references.

Figures 3a and 3b illustrate the solutions computed by the weighted-sum
approach and SIBEA-R. The solutions computed by the weighted-sum approach
are marked as solid red circles in the figures and the solutions computed by
SIBEA-R are marked by the gray plus sings. In the figures, the gray cloud
consists of the solutions computed with 20 runs of the SIBEA-R method. We
can see that SIBEA-R was able to find the solutions found by the weighted-sum
approach. In addition, SIBEA-R also found other solutions in the interior of the
feasible space. The existence of set-based minmax Pareto optimal solutions in the
interior of the feasible space is proven in [20]. For example, the point (0.5, 2.4) is
set-based minmax robust Pareto optimal which can be checked by the definition.
Based on the visualizations, we can observe that SIBEA-R has considered the
outcomes concerning both sets of possible values of the uncertain parameters
and found a set of non-dominated set-based minmax robust solutions.

The second example problem is based on a standard benchmark problem,
ZDT2 (see, e.g., [8]). In this problem, we introduced two uncertain parameters
which stem from a polyhedral uncertainty set. A polyhedral uncertainty set is
given as the convex hull of a finite set of points. Even though modifying the
problem can cause the loss of the characteristics of the carefully designed test
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(a) Initial population in the decision space
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(c) Final population in the decision space
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(d) Outcomes of the final population

Fig. 2: The evolvment of the population by SIBEA-R

problems, our purpose is to illustrate the solutions founds by SIBEA-R and
the usage of them for decision making. For the ZDT2-based problem, we set
NG = 100, NP = 30 and found six worst case outcomes to represent the worst
case outcome set. We run SIBEA-R 20 times to solve the problem.

We analyzed the results with the so-called average non-dominated objective
space (i.e., the percentage of the volume of objective space between the ideal
point and a reference vector which are not covered by the solutions) in each
generation in all the runs to observe the convergence (see details in [29]). We
also analyzed the attainment surface of the worst case outcome sets from mul-
tiple runs with the empirical attainment function graphical tools [18, 19]. We
visualized the 25%, 50%, 75% attainment surfaces.

The average non-dominated objective space in each generation for the 20 runs
of the ZDT2-based problem is illustrated in Figure 4. The figure shows that the
non-dominated objective space gradually reduced with generations and at the
final generations, the average non-dominated space stayed stable. This means
that the objective function values of solutions reduced along the generations.
The attainment surfaces of the results from the 20 runs are shown in Figure 5.
The figure illustrates that the solutions tend to converge to the area bounded



0 1 2
x
1

0

1

2

3

x 2

(a) Solutions in the decision space
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(b) Solutions in the objective space

Fig. 3: Solutions computed by the weighted-sum approach and SIBEA-R

by the intervals f1 = [0.5, 0.8], f2 = [0.2, 0.7]. Based on the experiment results,
we can observe that SIBEA-R was able to improve the populations with the
generations and the final populations of different runs were similar.
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Fig. 4: Average non-dominated ob-
jective space, ZDT2-based problem
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Fig. 5: Attainment surface, ZDT2-
based problem

After SIBEA-R has found a set of non-dominated set-based minmax robust
solutions, the set can be used for decision making. We illustrate the usage with
a reference point-based interactive approach (see e.g., [21] for a detailed de-
scription). In a reference point-based approach, the decision maker specifies the
desired objective function values as a reference point. We find a solution which
satisfies the reference point as well as possible and present the solution to the de-
cision maker. This kind of interactive process continues until the decision maker
finds a most satisfactory solution. We used the final population of a run of the
ZDT2-based problem and helped a decision maker to choose a final solution
based on their outcomes in the nominal case. In the nominal case, the uncer-



tain parameters behave normally without disturbance. So, we used the original
ZDT2 problem as the nominal case. We carried out four iterations. The reference
points and the solutions found are illustrated in Table 1. The solutions are also
presented in Figure 6 with different markers. The decision maker took the third
solution as the final solution since it is the nearest to her desired values.

ref. solution Marker

(0.3, 0.7)T (0.43, 0.81)T square
(0.3, 0.95)T (0.3, 0.91)T up triangle
(0.5, 0.6)T (0.57, 0.67)T diamond
(0.8, 0.6)T (0.61, 0.61)T down triable

Table 1: Interactive post-processing
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Fig. 6: Solutions found based on refer-
ence points

In the examples, we observed that SIBEA-R was able to find set-based min-
max robust Pareto optimal solutions found by the weighted-sum approach. It was
also able to find some solutions that the weighted-sum approach was not able to
find. In the ZDT2-based problem, SIBEA-R was stable regarding finding similar
final populations in different runs. These observations suggested that SIBEA-R
has an appealing potential for approximating set-based minmax robust Pareto
optimal solutions, which can be then used for decision making.

5 Conclusions

In this paper, we proposed SIBEA-R to compute an approximated set of set-
based minmax robust Pareto optimal solutions. This is an initial study to explore
opportunities evolutionary multiobjective optimization methods can provide in
tackling challenges with robustness which are otherwise difficult. In SIBEA-R,
instead of considering single outcomes, we considered the worst case outcome
sets of solutions. We proposed a set-based non-dominated sorting procedure
based on the lower set less order to rank the solutions for environmental selec-
tion. We illustrated the utilization of SIBEA-R with two example problems. The
experiments on the example problems suggest that SIBEA-R can approximate
set-based minmax robust Pareto optimal solutions. We also illustrated how the
solutions found by SIBEA-R can be used in decision making.

Due to the set-based non-dominated sorting and the calculation of the hyper-
volume of outcome sets, SIBEA-R is computationally expensive and it tends to
work with small population sizes. Thus, an immediate future research direction



is to improve the computational efficiency and enable the calculation of a larger
number of non-dominated set-based minmax robust solutions. In this paper, we
only presented a limited amount of numerical experiments. It is necessary to ex-
tend the numerical experiments to a wider range of problems to further identify
the strengths and limitations of SIBEA-R.
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Abstract

Defining and finding robust efficient solutions to uncertain multiobjective optimization
problems has been an issue of growing interest recently. Different concepts have been
published defining what a “robust efficient” solution is. Each of these concepts leads to
a different set of solutions, but it is difficult to visualize and understand the differences
between these sets. In this paper we develop an approach for comparing such sets of robust
efficient solutions, namely we analyze their outcomes under the nominal scenario and in
the worst case using the upper set-less order from set-valued optimization. Analyzing
the set of nominal efficient solutions, the set of minmax robust efficient solutions and
different sets of lightly robust efficient solutions gives insight into robustness and nominal
quality of these sets of solutions. Among others we can formally prove that lightly robust
efficient solutions are good compromises between nominal efficient solutions and minmax
robust efficient solutions. In addition, we also propose a measure to quantify the price of
robustness of a single solution. Based on the measure, we propose two strategies which
can be used to support a decision maker to find solutions to a multiobjective optimization
problem under uncertainty. All our results are illustrated by examples.
Keywords: multiobjective robust optimization, decision making, uncertainty, price of
robustness

1 Introduction

More and more complex optimization problems are being solved in the modern society.
These problems are characterized by multiple conflicting objectives and they almost in-
evitably involve uncertainty due to imprecise data, uncertain future developments, imple-
mentation uncertainty and so on. Multiobjective robust optimization is an evolving field
specifically aiming at finding robust solutions that are sufficiently immune to uncertainty.

While robust optimization for single-objective optimization problems is well researched,
the topic of robust multiobjective optimization is relatively young. For example, for single-
objective optimization problems, [1] presents many results on the classical concept of strict
robustness where the solutions are optimized in the worst case. Due to the conservative-
ness of strictly robust solutions, i.e., their objective function values can be very bad in
other cases, less conservative robustness concepts than strict robustness have also been
developed, see e.g., [15] for an overview. In recent years, different robustness concepts
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have been developed to take uncertainty into account also for multiobjective optimization
problems, see [18, 27] for surveys of the many evolving robustness concepts.

The easiest way to handle uncertainty in the input parameters is to identify the so-
called nominal scenario, which is the most typical, the undisturbed, or the expected
scenario, and to solve the problem only for this case. This means that the uncertainty is
ignored and one receives a standard multiobjective optimization problem. The resulting
(Pareto-) efficient solutions are called nominal efficient. However, nominal efficient solu-
tions may be very bad in terms of their objective function values when uncertain data
does not behave as expected.

In order to take data uncertainty into account, different varieties of minmax robust
efficiency, see e.g., [7, 10, 12, 21] have been proposed for multiobjective optimization
problems under uncertainty. The idea of minmax robust efficiency is to optimize the
objective function in the worst case over all scenarios. The resulting solutions are called
minmax robust efficient. Unfortunately, it is often not clear how they can be computed,
and they are rather conservative.

Conservatism of minmax robust solutions has been recognized for single-objective op-
timization problems for several years, which has led to different concepts to control the
loss of quality (in the nominal case) in single-objective robust optimization, see e.g.,
[2, 5, 9, 13, 14, 22, 25], or [15] for a survey. For the same reason, also for multiobjective
optimization problems, concepts have been refined in [16, 18, 20]. Here, we focus on the
concept of lightly robust efficiency in which one looks for a robust solution still satisfying
a given tolerable nominal quality.

While the relationships between different types of (robust) efficient solutions have been
analyzed in [18], a comparison between their nominal quality, i.e., the objective function
values in the nominal case, and robustness has not been investigated so far. In this paper,
we propose to analyze the objective function values of a (robust efficient) solution under
the nominal scenario and in the worst case (i.e., taking the most pessimistic view). This
approach helps to understand and explain the meaning of robustness and hence may assist
the decision maker to find a good balance between the nominal quality and the robustness.
In our main result we show that lightly robust efficient solutions behave as intended: they
are good compromises between minmax robust efficient and nominal efficient solutions,
both with respect to the nominal scenario and with respect to the worst case.

For single-objective optimization problems, the trade-off between the nominal quality
and the robustness of a solution has been analyzed in [9, 25]. In this paper we extend
such an analysis to multiobjective optimization problems, i.e., we discuss how the trade-
off between nominal quality and robustness can be quantified by providing a measure
for the price of robustness. Note that some literature considers multiple scenarios of
a single-objective optimization problem simultaneously, e.g., in [17], which results in a
multiobjective optimization problem. In this paper, we discuss the loss of nominal quality
and gain in robustness when considering the possible values of the uncertain parameters
in the objective functions of multiobjective optimization problems simultaneously. We
also provide two approaches utilizing the measure ‘price of robustness’ to find different
types of solutions depending on the preferences of a decision maker. Analogously, we
also quantify the gain in robustness. By combining the values of the two measures, the
decision maker can decide if it is worth to increase the robustness of the solution. If not,
the decision maker can decide to take the nominal efficient solution or find a lightly robust
efficient solution. In this way, the decision maker can have helpful information to find a
balance between nominal quality and robustness.

The remainder of the paper is organized as follows: Section 2 formally introduces nom-
inal efficiency, minmax robust efficiency, and lightly robust efficiency. Section 3 analyzes
the relationships among the three different kinds of solutions in the nominal scenario and
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in the worst case. Section 4 illustrates the results on some numerical examples, followed
by Section 5 which introduces the price of robustness as a new measure and develops two
strategies to assist decision making. Finally, Section 6 concludes the paper.

2 Nominal efficiency, minmax robust efficiency and
lightly robust efficiency

Let a feasible set X, an uncertainty set U and a function f : X × U → IRk be given. We
deal with the following uncertain problem

(PU )

⎛
⎜⎜⎜⎜⎜⎝

min f(x, ξ) :=

⎛
⎜⎜⎜⎝

f1(x, ξ)
f2(x, ξ)

...
fk(x, ξ)

⎞
⎟⎟⎟⎠

s.t. x ∈ X

⎞
⎟⎟⎟⎟⎟⎠ , ξ ∈ U .

The elements of U are called scenarios. It is not known which scenario ξ ∈ U will occur
making the above problem an uncertain multiobjective optimization problem. For any
fixed choice of ξ ∈ U we have a deterministic multiobjective optimization problem

(P (ξ))

⎛
⎜⎜⎜⎜⎜⎝

min f(x, ξ) :=

⎛
⎜⎜⎜⎝

f1(x, ξ)
f2(x, ξ)

...
fk(x, ξ)

⎞
⎟⎟⎟⎠

s.t. x ∈ X

⎞
⎟⎟⎟⎟⎟⎠

for which optimal solutions are defined in the sense of (Pareto-)efficiency:

Notation 1. • Let y, y′ ∈ IRk. In what follows, notation y′ ≤ y and y′ < y are both
meant componentwise, i.e., y′i ≤ yi and y′i < yi, respectively, for all i = 1, . . . , k. We
say that y′ dominates y if y′ ≤ y and there exists some i ∈ {1, . . . , l} with y′i < yi.

• Let x, x′ ∈ X. We say that x′ dominates x if f(x′) dominates f(x). A solution x is
called efficient, if there does not exist a solution x′ which dominates x.

The domination property for the deterministic multiobjective optimization problem
(P (ξ)) says: For every x ∈ X, either x is efficient or there exists an efficient solution
x′ ∈ X which dominates x. It is known (e.g., in [24]) that the domination property
holds for (P (ξ)) if X is finite and if X is compact and the objective functions fi(·, ξ) are
continuous in x for all i = 1, . . . , k.

For the results in this paper, let us assume that one of the following conditions is
satisfied’:

• X and U are both finite sets,

• U is finite, X is compact and f(·, ξ) : X → IRk is continuous in x for every fixed
ξ ∈ U ,

• X is finite, U is compact and f(x, ·) : U → IRk is continuous in ξ for every fixed
x ∈ X,

• U and X are both compact and f : X× U → IRk is jointly continuous in (x, ξ).

Each of these assumptions guarantees that all minima and maxima exist, i.e., that

• (P (ξ)) has the domination property for all fixed ξ ∈ U .
• maxξ∈U f(x, ξ) exists for every fixed x ∈ X,
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The assumptions hold in many problems studied in the literature and in some applications.

For the uncertain problem, several concepts on how to define robust efficiency have
been proposed. Here, we consider minmax robust efficiency and lightly robust efficiency.
Our goal is to compare minmax robust efficient and lightly robust efficient solutions to
the solutions we would obtain without considering robustness, i.e., the nominal efficient
solutions.

2.1 Nominal efficiency

As usual in robust optimization (e.g., in [5] and many other references) we assume that a

nominal scenario ξ̂ ∈ U is known. This is the standard scenario one would usually take
if robustness issues do not play a role. It might be the undisturbed or the most likely
scenario, or it contains the parameters which have been measured without any deviation.
We define fnom(x) := f(x, ξ̂) and the nominal problem as

(P nom)

⎛
⎜⎜⎜⎜⎜⎝

min fnom(x) =

⎛
⎜⎜⎜⎝

f1(x, ξ̂)

f2(x, ξ̂)
...

fk(x, ξ̂)

⎞
⎟⎟⎟⎠

s.t. x ∈ X

⎞
⎟⎟⎟⎟⎟⎠ .

Note that (P nom) is a deterministic multiobjective optimization problem. It is the problem
which is ’usually’ solved, i.e., when no robustness is taken into account.

Definition 2. We denote the set of efficient solutions to (P nom) by Xnom. Solutions
x ∈ Xnom are called nominal efficient. For x ∈ X, we furthermore call fnom(x) its
nominal quality.

Since (P nom) equals (P (ξ̂)), it has the domination property.

Lemma 3. For every x ∈ X there exists x′ ∈ Xnom with fnom(x′) ≤ fnom(x).

2.2 Minmax robust efficiency

Minmax robustness is the most widely used concept in single-objective robust optimization
(see a summary in [1]). Several generalizations to the multiobjective case have been
proposed. Here we use the concept of point-based minmax robustness as proposed in
[12, 21]. In case of objective-wise uncertainty (called owu in [10]), i.e., if the uncertainty
is independent between the objective functions, point-based robustness coincides with
set-based robustness [10] and hull-based robustness [7].

In order to find minmax robust efficient solutions, we define the worst case objective
function fwc as

fwc(x) :=

⎛
⎜⎜⎜⎝

maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)

⎞
⎟⎟⎟⎠ .

The resulting optimization problem in the worst case is given as

(Pwc)

⎛
⎜⎜⎜⎜⎜⎝

min fwc(x) =

⎛
⎜⎜⎜⎝

maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)

⎞
⎟⎟⎟⎠

s.t. x ∈ X

⎞
⎟⎟⎟⎟⎟⎠ .
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The problem (Pwc) is again a deterministic multiobjective optimization problem.

Definition 4. Let Xwc be the set of efficient solutions to (Pwc). Solutions x ∈ Xwc are
called minmax robust efficient. For x ∈ X, we furthermore call fwc(x) its worst case
objective value.

From our general assumptions we can conclude that (Pwc) has the domination prop-
erty.

Lemma 5. For every x ∈ X there exists x′ ∈ Xwc with fwc(x′) ≤ fwc(x).

Proof. If X is finite, it is trivial that the Lemma holds. Otherwise, X is compact and we
have to distinguish two cases:

• Either U is finite and f is continuous in x for every fixed ξ. Then, fwc is continuous
as maximum of a finite set of continuous functions.

• Or both, X and U are compact and f is jointly continuous in x and ξ. Then fwc is
continuous due to Berge’s theorem, see, e.g., [4].

In case of objective-wise uncertainty there exists a worst case scenario ξ ∈ U for which
all objective functions simultaneously take their maxima. In this case, (Pwc) equals (P (ξ))
and is hence a deterministic problem. This need not hold if the same uncertain parameter
influences more than one of the objective functions.

2.3 Lightly robust efficiency

Finally, we introduce the concept of lightly robust efficient solutions. The idea comes
from light robustness in single-objective optimization (see [11, 25]) and focuses on finding
solutions which are not too bad in the nominal case. Light robustness was generalized
in [18, 20] to the multiobjective case as follows: one first determines the set of efficient

solutions Xnom for the nominal scenario ξ̂. We allow a lightly robust efficient solution to
be a bit worse than the efficient solutions in the nominal scenario. The deviation from the
objective values in the nominal scenario should be bounded by some given ε ∈ IRk, where
εi bounds the deviation in objective function fnom

i . In order to ensure this, we define for
each x̂ ∈ Xnom

(P light,ε(x̂))

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

min fwc(x) =

⎛
⎜⎜⎜⎝

maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)

⎞
⎟⎟⎟⎠

s.t. fnom(x) ≤ fnom(x̂) + ε
x ∈ X

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., among all solutions which are only a bit worse than x̂ in the nominal scenario we
take the ones which are efficient in the worst case, i.e., which are minmax robust efficient
within the set

F light,ε(x̂) := {x ∈ X : fnom(x) ≤ fnom(x̂) + ε}
of feasible solutions to (P light,ε(x̂)).

Definition 6. For x̂ ∈ Xnom, let X light,ε(x̂) be the set of efficient solutions to (P light,ε(x̂)).
Solutions x ∈ X light,ε :=

⋃
x̂∈Xnom X light,ε(x̂) are called lightly robust efficient.

Due to its closedness, the feasible set F light,ε(x̂) is compact if X is compact, and finite
if X is finite. With the same reasoning as for (Pwc) we hence conclude that the domination
property holds for (P light,ε(x̂)).

Lemma 7. For every x ∈ F light,ε(x̂) there exists x′ ∈ X light,ε(x̂) with fwc(x′) ≤ fwc(x).
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3 Comparing sets of robust efficient solutions

In (non-robust) multiobjective optimization, the quality of a set of solutions X ⊆ X is
usually evaluated by looking at the images of the solutions f(X) in the objective space.
If X is the set of efficient solutions, their images f(X) are called the efficient front. In
order to compare the sets of nominal efficient solutions Xnom, of minmax robust efficient
solutions Xwc, and of lightly robust efficient solutions X light,ε, we proceed similarly: we
look at the images under the objective function f . However, the objective function values
not only depend on x ∈ X but also on the scenario which occurs; we hence get different
objective function values for each scenario ξ ∈ U and an efficient point in the nominal
scenario need not be an efficient point in other scenarios. To consider properties of a set
X ⊆ X of solutions (specifically for X = Xnom, X = Xwc, or X = X light,ε) we propose to
evaluate, i.e., to calculate the objective function values of, X in two cases:

• A first evaluation should consider the nominal case, i.e., discuss

fnom(X) = {f(x, ξ̂) : x ∈ X}.

From a practical point of view such an evaluation makes sense since it shows what
to expect in the most likely (or undisturbed) scenario. Clearly, fnom(Xnom) shows
the efficient front of the problem (P nom).

• The second evaluation takes a robust perspective considering X under its worst case,
i.e., we evaluate

fwc(X) := {fwc(x) : x ∈ X} =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

maxξ∈U f1(x, ξ)
...

maxξ∈U fk(x, ξ)

⎞
⎟⎠ : x ∈ X

⎫⎪⎬
⎪⎭ .

Note that in contrast to fnom(X) which is always evaluated under the scenario ξ̂ ∈ U ,
the scenarios which are relevant for evaluating fwc(x) depend on the objective function
fi, i = 1, . . . , k and on the point x ∈ X itself.

The intuition is that under the nominal scenario, the set fnom(Xnom) is better than
the set of minmax robust efficient solutions fnom(Xwc) while this result of comparison
changes if we evaluate under the worst case objective function fwc, i.e., fwc(Xwc) is better
than fwc(Xnom). The set of lightly robust efficient solutions is expected to lie somewhere
in between as they are claimed in [18, 20] to be a good compromise between nominal
quality and robustness.

To formalize the intuitions described above of robust efficient solutions, we use a set-
based order to compare two sets Y1, Y2 ⊆ IRk:

Notation 8.

Y1 ≺upp Y2 if for all y ∈ Y2 there exists y′ ∈ Y1 with y′ ≤ y

Y1 ≺low Y2 if for all y ∈ Y1 there exists y′ ∈ Y2 with y ≤ y′.

Denoting IRk
≥ = {y ∈ Rk : yi ≥ 0 for all i = 1, . . . , k} as the nonnegative ordering

cone, Y1 ≺upp Y2 can equivalently be written as

Y1 ≺upp Y2 if Y1 + IRk
≥ ⊇ Y2

which is known as the upper set less order, see [19], and Y1 ≺low Y2 can equivalently be
written as

Y1 ≺low Y2 if Y2 − IRk
≥ ⊇ Y1
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which is known as the lower set less order, see again [19].

We first show that evaluating solutions in the worst case always gives a more pessimistic
point of view than evaluating in the nominal case, no matter what we choose as the set
X ⊆ X.

Lemma 9. For every set X ⊆ X we have:

(i) fnom(X) ≺upp fwc(X).

(ii) fnom(X) ≺low fwc(X).

Proof.

(i) : Let y ∈ fwc(X), i.e., y = fwc(x, ξ) for some x ∈ X and some ξ ∈ U . Define
y′ := fnom(x). Then y′ ∈ fnom(X) and for each component i = 1, . . . , k we have

y′i = fi(x, ξ̂) ≤ max
ξ∈U

fi(x, ξ) = yi,

hence y′ ≤ y.

(ii) : Let y ∈ fnom(X), i.e., y = fnom(x, ξ) for some x ∈ X and some ξ ∈ U . Define
y′ := fwc(x). Then y′ ∈ fwc(X) and analogously to part (i) it follows y ≤ y′.

It is more interesting to compare the different sets of robust efficient points with each
other. We start by showing that under the upper set less order relation, Xnom is better
than any other set X ⊆ X in the nominal scenario, and Xwc is better than any other set
X ⊆ X under worst case evaluation.

Lemma 10. For every set X ⊆ X we have:

(i) fnom(Xnom) ≺upp fnom(X).

(ii) fwc(Xwc) ≺upp fwc(X).

Proof.

(i) Let y ∈ fnom(X), i.e., y = fnom(x) for some x ∈ X. Due to the domination property
for (P nom) (Lemma 3), there exists x′ ∈ Xnom with fnom(x′) ≤ fnom(x). Setting
y′ := fnom(x′) shows the assertion.

(ii) Now let y ∈ fwc(X), i.e., y = fwc(x) for some x ∈ X. Due to the domination property
for (Pwc) (Lemma 5) there exists x′ ∈ Xwc with y′ := fwc(x′) ≤ fwc(x) = y, and
the proof is complete.

Note that Lemma 10 does not hold under the lower set less order relation, not even if
we only compare the sets Xnom and Xwc with each other in the nominal scenario. This
is shown in the following small example. Note that the problem in this example only
has k = 2 objective functions which are objective-wise independent (see [10] for a formal
definition); so the relation does not even hold under this rather special condition.

Example 1. Let two scenarios U = {ξ̂, ξ̄} be given, consider a feasible set X which
contains only two elements X = {x1, x2} and two objective functions. Let

f(x1, ξ̂) =

(
2
1

)
, f(x2, ξ̂) =

(
0
3

)

f(x1, ξ̄) =

(
5
5

)
, f(x2, ξ̄) =

(
1
4

)
,
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f

f

Figure 1: Illustration of Example 1. We compare fnom(Xnom) = {f(x1, ξ̂), f(x2, ξ̂)} and fnom(Xwc) =

{f(x2, ξ̂)}.

see Figure 1 for an illustration. In this example, we receive

Xnom = {x1, x2}

since their objective function values in the nominal scenario do not dominate each other.
For fwc we receive

fwc(x1) =

(
max{2, 5}
max{1, 5}

)
=

(
5
5

)

fwc(x2) =

(
max{0, 1}
max{3, 4}

)
=

(
1
4

)
,

i.e.,
Xwc = {x2}.

Hence,

fnom(Xnom) =

{(
2
1

)
,

(
0
3

)}
and fnom(Xwc) =

{(
0
3

)}
.

As Lemma 10 says, we have

fnom(Xnom) ≺upp fnom(Xwc),

but for the lower set less order this does not hold. We even receive

fnom(Xwc) ≺low fnom(Xnom).

We continue with analyzing the set of lightly robust efficient solutions X light,ε. We
start with a simple observation which follows directly from Definition 6.
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Lemma 11. For every ε ≥ 0 we have

(i) fnom(X light,ε) ≺low fnom(Xnom) + {ε},
(ii) fnom(X light,ε) ≺upp fnom(Xnom) + {ε}.
Proof.

(i) Let y ∈ fnom(X light,ε), i.e., y = fnom(x) for x ∈ X light,ε. Then there exists a solution
x̂ ∈ Xnom such that x is an efficient solution to (P light,ε(x̂)). In particular,

fnom(x) ≤ fnom(x̂) + ε.

We define y′ := fnom(x̂)+ε ∈ fnom(Xnom)+{ε} and receive that y = fnom(x) ≤ y′.

(ii) Let y ∈ fnom(Xnom) + {ε}, i.e., y = fnom(x̂) + ε for some x̂ ∈ Xnom. Due to the
domination property for (P light,ε(x̂)) (Lemma 7) there exists x′ ∈ X light,ε(x̂). In
particular,

fnom(x′) ≤ fnom(x̂) + ε.

With y′ := fnom(x′) we hence receive y′ = fnom(x′) ≤ fnom(x̂) + ε = y.

Together with Lemma 10 we summarize

fnom(Xnom) ≺upp fnom(X light,ε) ≺upp fnom(Xnom) + {ε},

i.e., for small ε > 0 the evaluation of Xnom and X light,ε under the nominal scenario differs
only slightly. The next lemma analyzes what might happen to lightly robust efficient
solutions in the worst case.

Lemma 12.

(i) fwc(X light,ε) ≺upp fwc(Xnom) for all ε ≥ 0 and

(ii) fwc(X light,ε2) ≺upp fwc(X light,ε1) for all 0 ≤ ε1 ≤ ε2.

Proof.

(i) Let y = fwc(x) for x ∈ Xnom. Then x ∈ F light,ε(x), i.e., it is feasible for (P light,ε(x)).
Due to the domination property for (P light,ε(x)) (Lemma 7) there exists x′ ∈
X light,ε(x) with fwc(x′) ≤ fwc(x). We hence have y′ := fwc(x′) ≤ fwc(x) = y.

(ii) Now let y = fwc(x) for x ∈ X light,ε1 . Then there exists x̂ ∈ Xnom such that
x ∈ F light,ε1(x̂). Since ε2 ≥ ε1 we know that x ∈ F light,ε2(x̂). We again use the
domination property (Lemma 7) for (P light,ε2(x̂)) and receive x′ ∈ X light,ε2 which
satisfies y′ := fwc(x′) ≤ fwc(x) = y.

Note that the statements of Lemma 12 do not hold for the lower set less order. They
also cannot be mirrored to the nominal case, i.e., it is not true in general that

1. fnom(X light,ε) ≺ fnom(Xwc) for ε > 0, and that

2. fnom(X light,ε1) ≺ fnom(X light,ε2) for 0 ≤ ε1 < ε2,

neither for ≺ being the upper set less order nor for the lower set less order. This is
illustrated next.
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1
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Figure 2: Illustration of Example 2. Lemma 12 neither holds for ≺low nor can it be mirrored to the
nominal case for ≺upp.

Example 2. Let two scenarios U = {ξ̂, ξ̄} be given, consider a feasible set X = {x1, x2, x3}
and two objective functions. Let

f(x1, ξ̂) =

(
3
3

)
, f(x2, ξ̂) =

(
3.5
4

)
, f(x3, ξ̂) =

(
5
3.5

)
,

f(x1, ξ̄) =

(
10
10

)
, f(x2, ξ̄) =

(
8
8

)
, f(x3, ξ̄) =

(
6
6

)
.

Then
Xnom = {x1}, X light,1 = {x2}, X light,2 = {x3}, Xwc = {x3}

This example is illustrated in Figure 2.

The next lemma analyzes what happens in the nominal scenario when lightly robust
efficient solutions and minmax efficient solutions are compared.

Lemma 13. Let ε ≥ 0 and x ∈ X light,ε. Then there does not exist x′ ∈ Xwc which is at
least as good as x with respect to fnom and dominates x with respect to fwc.

Proof. Let x′ ∈ Xwc and x ∈ X light,ε. Assume that fnom(x′) ≤ fnom(x). We know that
fnom(x) ≤ fnom(x̂) + ε for some x̂ ∈ Xnom. So fnom(x′) ≤ fnom(x̂) + ε holds. Hence,
x′ ∈ F light,ε(x̂) and due to x′ ∈ Xwc we conclude that x′ ∈ Xlight,ε(x̂), i.e., both x and
x′ are lightly robust efficient and consequently, do not dominate each other under fwc.
Thus, the lemma holds.

What we have learnt about lightly robust efficient solutions. We sum-
marize our main findings with respect to lightly robust efficient solutions: First, the set of
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lightly robust efficient solutions lies (in the worst case) always between the set of nominal
efficient and the set of worst case efficient solutions (see Lemma 10 and Lemma 12):

fwc(Xwc) ≺upp fwc(X light,ε2) ≺upp fwc(X light,ε1) ≺upp fwc(Xnom) (1)

for ε1 ≤ ε2. Hence, choosing lightly robust efficient solutions might be a good compromise
between nominal and minmax efficient solutions. Second, the larger ε is chosen, the more
robustness we gain.

For the nominal scenario, due to Lemma 10 and Lemma 11 we furthermore know that

fnom(Xnom) ≺upp fnom(X light,ε) ≺ fnom(Xnom) + {ε} (2)

where the second relation holds for both, the upper set less order ≺upp and the lower set
less order ≺low, which means that in the nominal scenario, the set of lightly robust efficient
solutions gets more similar to the set of nominal efficient solutions if ε is decreased.

4 Examples and Illustration

So far, we have analyzed the three different sets of nominal, lightly robust efficient and
minmax robust efficient solutions in the nominal case and in the worst case. In this
section, we illustrate our findings with some examples.

We first look at a bi-objective optimization problem given as follows.

Example 3. ⎛
⎜⎜⎝

min f1(x, ξ1) = x2
1 + ξ1x

2
2,

f2(x, ξ2) = (ξ2x1 − 5)2 + (x2 − 5)2

s.t. 0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 3,

⎞
⎟⎟⎠

ξ1∈U1,ξ2∈U2.

(3)

where U1 = {−6,−1, 0.5, 1} and U2 = {−2,−1, 1, 2} and the nominal values for the un-

certain parameters are ξ̂1 = −1 and ξ̂2 = 1. This problem is a variation of the Binh and
Korn function [6], which minimizes two quadratic functions within the given ranges of
decision variables. In this problem, ξ1 and ξ2 are independent from each other and there
exists a single worst case scenario ξ1 = 1, ξ2 = −2.

Figure 3 shows Xwc, X light,15, X light,10, and Xnom evaluated in the nominal case. We
can see the relationship

fnom(Xnom) ≺upp fnom(X light,10) ≺upp fnom(X light,15) ≺low/upp fnom(Xnom) + 15.

Figure 4 illustrates Xwc, X light,15, X light,10, and Xnom evaluated in the worst case. In
the figure, we observe the results of Lemma 10 and Lemma 12, namely,

fwc(Xwc) ≺upp fwc(X light,15) ≺upp fwc(X light,10) ≺upp fwc(Xnom).

In this specific problem, we have

fnom(X light,10) ≺upp fnom(X light,15) ≺upp fnom(Xwc)

even though it does not hold in general. The example also illustrates that fnom(Xnom) ≺low

fnom(X light,ε) and fnom(Xnom) ≺low fnom(Xwc) need not hold.
We also observe that a solution in Xnom can have very bad objective function values

in the worst case compared to lightly and minmax robust efficient solutions. On the other
hand, gaining minmax robust efficiency comes at a high price: there has to be a great
sacrifice on the nominal quality of the solutions as the minmax robust efficient solutions
are very far from the nominal solutions when evaluated in the nominal case. In this
example, lightly robust solutions are a good compromise.
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Figure 3: Evaluation in the nominal
case of Example 3

Figure 4: Evaluation in the worst
case of Example 3

The example also illustrates a general property, namely, which of the depicted sets
form “efficient fronts”, i.e., in which cases the depicted points do not dominate each
other. This holds per definition for fnom(Xnom), fwc(Xwc), and fwc(X light,ε), i.e., we
obtain a nominal efficient front for the nominal robust efficient points and a minmax
robust efficient front for the minmax robust efficient and for the different lightly robust
efficient points. In contrast to this, Figures 4 shows that the points in fwc(Xnom) may
dominate each other.

Next, we consider a more interesting example where the worst case depends on the
solution x.

Example 4. ⎛
⎜⎜⎝

min f1(x, ξ1) = ξ1x1 + x2,
f2(x, ξ2) = −x1 − ξ2x2

s.t. −2 ≤ x1 ≤ 2
−2 ≤ x2 ≤ 2,

⎞
⎟⎟⎠

ξ=(ξ1,ξ2)T∈U.

(4)

The uncertainty set U is:

U =

{( −3
1.5

)
,

( −1
2

)
,

(
1
2.5

)}
.

The nominal values for the uncertain parameters are ξ̂1 = −1 and ξ̂2 = 2. Finding a
worst case for some given and feasible x in this example can be written as the following
two-objective optimization problem⎛

⎝ max f1(x, ξ1) = ξ1x1 + x2,
f2(x, ξ2) = −x1 − ξ2x2

s.t. ξ ∈ U

⎞
⎠ . (5)

We see that the worst case depends on the solution x: for −2 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 2,
the worst case is ξ = (−3, 1.5)T . For −2 ≤ x1 ≤ 0 and −2 ≤ x2 ≤ 0, there does not
exist a single worst case. We observe that no pair of the three scenarios in U dominates
each other, hence the set of non-dominated solutions of the maximization problem (5)
is U itself. Similarly, for 0 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 0, the worst case is ξ = (1, 2.5)T

and for 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 2, the set of worst-case scenarios is again U . Since
we use point-based minmax robust efficiency, we need not worry about the existence of
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Figure 5: Evaluation in the nominal
case of Example 4

1f

f2

Figure 6: Evaluation in the worst
case of Example 4

multiple worst-case scenarios, but compute the worst-case objective function fwc by taking
the componentwise maximum. We hence receive

Xnom = {(2, x2) : −2 ≤ x2 ≤ 2},
X light,1 = {(1, x2) : −2 ≤ x2 ≤ 2} ∪ {(x1, 2) : 1 ≤ x1 ≤ 2},

Xwc = {(0, x2) : −2 ≤ x2 ≤ 2} ∪ {(x1, 2) : 0 ≤ x1 ≤ 2}.
Figure 5 shows Xnom, X light,1 and Xwc in the nominal case and Figure 6 shows the three
sets of solutions in the worst case. As shown in Figure 5, this example is in accordance
with our results of Section 3:

fnom(Xnom) ≺upp fnom(X light,1) ≺upp fnom(Xnom) + 1.

In this example we also receive fnom(X light,1) ≺upp fnom(Xwc) although it does not hold
for general problems. Figure 6 illustrates our results on the worst case evaluation, namely

fwc(Xwc) ≺upp fnom(X light,1) ≺upp fwc(Xnom).

The example has a particularity, namely the solution x = (2, 2)T is a common element
in all three sets of solutions and hence naturally a good choice as a final solution to
gain best possible objective function values in both, the nominal and the worst case. The
solution is indicated with a triangle in the two figures. We also observe that fnom(Xnom)
is not that far from the minmax robust efficient front in the worst case while the two
sets differ significantly in the nominal case. Hence, in this example, much quality in the
nominal case has to be sacrificed to gain minmax robust efficiency, i.e., the price to gain
robustness is rather high.

The observations on the examples motivate us to further analyze the trade-off between
the nominal quality and the robustness of the solutions in the next section.

5 Utilizing the price of robustness in decision making

The price of robustness has been popular in single-objective robust optimization since
its proposal in [5]. In this section we propose how to measure the price of robustness in
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Figure 7: A nominal efficient solution and the closest minmax robust efficient solution.

a multiobjective setting, i.e., how much nominal quality has to be sacrificed in order to
receive a minmax robust efficient solution. We first define the price of robustness, and
then sketch ideas on how to utilize it to support a decision maker to find a desired solution
which is satisfactory in both respects, nominal quality and robustness.

Definition 14. Let x ∈ X be a feasible solution to PU . We define its price of robustness
as the objective value of the minimization problem

price(x) = inf
x̄∈Xwc

‖fnom(x)− fnom(x̄)‖∞,

where ‖ · ‖∞ denotes the infinity-metric.

Note that a minimum of the above optimization problem need not always exist, not
even under the assumptions we stated in Section 2. However, a minimum exists for
linear optimization problems and if the objective function fwc is continuous and strictly
quasiconcave [3]. For x ∈ Xnom being efficient in the nominal case, price(x) tells us how
much nominal quality we have to sacrifice in one of the objective functions if we replace x
by its (closest) robust efficient solution. Instead of using ‖ · ‖∞ we could also use another
norm, e.g., ‖ · ‖1 would give us the average nominal quality over all objective functions
we lose when changing x to a minmax robust efficient solution. Clearly, a points x ∈ X is
minmax robust efficient if and only if its price of robustness is zero, i.e.,

x ∈ Xwc ⇐⇒ price(x) = 0.

Geometrically, for computing price(x), the closest minmax robust efficient solution to
x is chosen from Xwc with respect to ‖ · ‖∞. The situation is illustrated in Figure 7. In
the figure, the nominal efficient solution is marked by a bullet and the closest minmax
robust efficient solution is marked by a filled square on the robust efficient front. The big
square centered in the nominal efficient solution is the visual representation of ‖ · ‖∞.

The relation to lightly robust efficient solutions is analyzed next. In Lemma 31 in [18] it
was shown that there exists ε ≥ 0 such that there exists a solution x to (P light,ε(x̂)) which
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is minmax robust efficient, i.e., with price(x) = 0. We strengthen this result by specifying
the size of ε and we extend it to the situation in which all solutions to (P light,ε(x̂)) are
minmax robust efficient.

Lemma 15. Let x̂ ∈ Xnom be given. Then the following hold.

• ε ≥ price(x̂) if and only if there is a solution x to (P light,ε(x̂)) with price(x) = 0,
and

• ε ≥ supx̄∈Xwc ‖fnom(x̄) − fnom(x̂)‖∞ if and only if all solutions x to (P light,ε(x̂))
satisfy price(x) = 0.

Proof. • Let ε ≥ price(x̂), i.e., there exists x̄ ∈ Xwc with ‖x̂ − x̄‖∞ ≤ ε. Due to x̄
being minmax robust efficient, it is an optimal solution to (P light,ε(x̂)) and satisfies
price(x̄) = 0. On the other hand, let x be an optimal solution to (P light,ε(x̂)) with
price(x) = 0, i.e., x ∈ Xwc. Since x ∈ F light,ε(x̂) we furthermore know ‖fnom

i (x) −
fnom
i (x̂)‖∞ ≤ ε for all objectives i = 1, . . . , k. We hence conclude

ε ≥ ‖fnom(x)− fnom(x̂)‖∞ ≥ inf
x∈Xwc

‖fnom(x)− fnom(x̂)‖∞ = price(x̂).

• Now let ε ≥ supx̄∈Xwc ‖fnom(x̄)−fnom(x̂)‖∞, i.e., all x̄ ∈ Xwc satisfy ‖x̂− x̄‖∞ ≤ ε,
hence Xwc ⊆ F light,ε(x̂) and consequently, every solution to (P light,ε(x̂)) is minmax
robust efficient. For the reverse direction, if every minmax robust efficient solution
x̄ ∈ Xwc is optimal to (P light,ε(x̂)) we have in particular that Xwc ⊆ F light,ε(x̂).
Hence, for all x̄ ∈ Xwc we have

ε ≥ ‖fnom(x̄)− fnom(x̂)‖∞,

i.e.,
ε ≥ sup

x∈Xwc

‖fnom(x)− fnom(x̂)‖∞.

In practice it is preferable to choose a solution which is good in both respects, i.e.,
with respect to fnom and with respect to fwc. To find such a solution, we propose the
following strategies that can be followed by a decision maker.

A two-stage strategy. In the two-stage strategy, the decision maker may first con-
centrate on the nominal scenario and identify a most interesting nominal efficient solution
x̂ based on her/his preferences. This may be done with an interactive method, see e.g.,
[8, 23, 26]. The interactive solution process also identifies what kind of values of the
objective functions are desirable according to the preferences of the decision maker. In
the second stage, the decision maker then takes robustness into account as follows: For
the identified x̂ we compute its price of robustness price(x̂) together with its closest
minmax robust efficient solution x̄. If a closest solution does not exist we take x̄ with
‖x̄ − x̂‖∞ ≈ price(x̂). Since x̄ is the closest solution from Xwc to x̂ it is likely that it is
not too far from the preferences of the decision maker that have been already used in the
nominal case. The price of robustness price(x̂) is the nominal quality the decision maker
has to sacrifice for changing x̂ to this minmax robust efficient solution while still keeping
her/his preferences. This value should be compared with the gain of robustness

gain(x̂, x̄) = ‖fwc(x̂)− fwc(x̄)‖∞
when changing from the solution x̂ to the (nominal closest) minmax robust efficient solu-
tion x̄. Being presented the values of price(x̂) and of gain(x̂, x̄), the decision maker can
then decide if it is worth to change the nominal solution x̂ to x̄.
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• If price(x̂) is large or if gain(x̂, x̄) is small, the decision maker should keep the
nominal efficient solution x̂.

• It is preferable to change to x̄ if the decision maker is very risk-averse i.e., the
decision maker wants to be prepared for the worst case, or if price(x̂) is small, or if
gain(x̂, x̄) is large compared to price(x̂).

• If the decision maker does not want to sacrifice that much nominal quality but still
wants to increase the robustness of the solution x̂, (s)he can specify a maximum
tolerable loss ε on the nominal quality by defining εi ≤ price(x̂), and solve (P light,ε)
to find a lightly robust efficient solution x which

– is still close to x̂, i.e., it keeps the preferences of the decision maker in the
nominal scenario,

– has loss of nominal quality of at most ε,

– and is the most robust solution among all solutions in (P light,ε), i.e. probably
more reliable than x̂.

Lexicographic strategies. If the decision maker has no specific preferences but is
either mainly interested in the nominal quality or mainly interested in minimizing the
risk, it might be appropriate to choose the nominal efficient solution x̂ ∈ Xnom which
has the smallest price of robustness (in the first case) or to compute the robust efficient
solution x̄ ∈ Xwc which is closest to the set of nominal efficient solutions Xnom (in the
second case). In mathematical terms we solve

min
x̂∈Xnom

min
x̄∈Xwc

‖fnom(x̂)− fnom(x̄)‖∞
and receive a pair of closest points x̂ and x̄. A risk-averse decision maker (without specific
preferences otherwise) might then choose x̄ while a decision maker mainly interested
in nominal quality, again without specific preferences, can choose x̂. The optimization
problem can be geometrically solved when the sets Xwc and Xnom are known, but is
otherwise hard to compute.

We illustrate the strategies in an example.

Example 5. We continue Example 4 to illustrate the two-stage strategy.
We selected three different nominal efficient solutions (which might reflect the individ-

ual preferences for three different decision makers): x1 is the lexicographic solution with
respect to fnom

1 , x2 is some solution in which the decision maker wants to have a good value
of fnom

2 but a not too bad value of fnom
1 and x3 is the lexicographic solution with respect to

fnom
2 . We computed the price of robustness price(xl), l = 1, 2, 3 as illustrated in Figure 8.
The figure shows the closest minmax robust efficient solutions for each of the three se-
lected nominal efficient solutions. In this example, their price-values are: price(x1) = 2,
price(x2) = 1.5, and price(x3) = 0 and the corresponding gains are gain(x1, x̄1) = 2,
gain(x2, x̄2) = 1, and gain(x3, x̄3) = 0. Based on the values above, the decision maker can
then make the choices described in the strategy. In our case, the decision maker with x3

as her or his most preferred nominal efficient solution might be extremely satisfied because
the nominal efficient solution is a minmax robust efficient solution. On the other hand,
the decision makers having preferences for x̂1 and x̂2 observe that gain(x̂i, x̄i) is rather
low compared to what they would have to pay. If not over-conservative they probably keep
the nominal efficient solutions found.

We finally illustrate the lexicographic strategies. The closest pair of points on the
two fronts is depicted in Figure 8 as well. We see that x3 is the nominal efficient solution
with the lowest price of robustness (a good choice for a decision maker who mainly cares
for nominal quality) while it is also the minmax robust efficient solution which is closest to
the set of nominal efficient solutions, i.e., a good choice for a risk-averse decision maker.
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Figure 8: Nominal efficient solutions and their closest minmax robust efficient solutions.

6 Conclusion

In this paper, we formally analyzed nominal efficient solutions, minmax robust efficient
solutions, and lightly robust efficient solutions to multiobjective optimization problems
with uncertain parameters in the objective functions. We evaluated and compared the
three different sets of solutions under the nominal scenario and in the worst case. We found
that in the worst case, the set of minmax robust efficient solutions upper dominates the sets
of nominal and lightly robust efficient solutions. We also found that in the nominal case,
the set of nominal efficient solution upper dominates the set of lightly robust solutions
and the set of lightly robust efficient solutions upper and lower dominates the shifted
(with respect to ε) outcomes of the lightly robust efficient solutions. We illustrated their
relationships with different examples.

In order to further analyze the trade-off between nominal quality and robustness, we
proposed a measure for the price of robustness. We also analyzed its relationship to lightly
robust efficient solutions. For supporting the decision maker to find a solution which is
satisfactory in both nominal quality and robustness, we developed two strategies based
on the price of robustness. We illustrated the utilization of the strategies in an example.

The two strategies rely on the measure price of robustness which can be easily com-
puted if the set of minmax robust efficient solutions is known. If the minmax robust
efficient solutions cannot be numerically computed, we can approximate the minmax ro-
bust efficient front, which can be considered as a future research direction. Our current
measure price of robustness depends on a fixed nominal efficient solution. Another inter-
esting future research direction is to quantify the price of robustness of the whole set of
nominal efficient solutions.
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Abstract

As an emerging research field, multiobjective robust optimization employs minmax
robustness as the most commonly used concept. Light robustness is a concept in which
a parameter, tolerable degradations, can be used to control the loss in the objective
function values in the most typical scenario for gaining in robustness. In this paper,
we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to
support a decision maker to find a most preferred lightly robust efficient solution with a
good balance between robustness and the objective function values in the most typical
scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement
scalarizing function which involves a reference point specified by the decision maker. With
this subproblem, we compute lightly robust efficient solutions with respect to the decision
maker’s preferences. With LiRoMo, we support the decision maker in understanding the
lightly robust efficient solutions with an augmented value path visualization. We use two
measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision
maker in considering the trade-offs between robustness and quality. As an example to
illustrate the advantages of the method, we formulate and solve a simple investment
portfolio optimization problem.

Keywords: Multiobjective robust optimization, Interactive methods, Light robust effi-
ciency, Handling uncertainty, Trade-off between robustness and quality, Decision support.

1 Introduction

Many decision-making problems involve multiple criteria to be optimized and they also
include uncertainty from different sources such as uncertain future developments and
imprecise measurements. Due to the uncertainty, the outcome of implementing a decision
can become unexpected and undesired. In recent years, both researchers and practitioners
have started to pay attention to dealing with multiple criteria and the involved uncertainty
simultaneously. The approaches employed depend on the availability of data and the
expert knowledge of the decision maker. When enough data about the uncertainty is
available, problems can be solved with stochastic approaches (see e.g., [20]) and when
the expert judgments on fuzzy memberships can be relied on, fuzzy approaches can be
implemented (see e.g., [23]). On the other hand, when there is no sufficient data available
or the decision maker does not have sufficient knowledge to judge the memberships, robust
optimization approaches can be utilized (see e.g., [22, 36]).
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In robust optimization approaches, typically the uncertainty is modeled as parameters
whose exact values are not known but are assumed to stem from a set. We call this set
an uncertainty set. Possible realizations of the unknown parameters are called scenarios,
which are the elements in the uncertainty set. We call the most typical or expected
scenario the nominal scenario and the objective function values in the nominal scenario
as the nominal quality. In order to find solutions when uncertainty is taken into account,
different robustness concepts have been developed. Flimsly robust solutions [8, 22] are the
best solutions in one of the possible realizations of the uncertain parameters. Highly robust
solutions [8, 12, 17, 22] are the best solutions in all the possible realizations of uncertain
parameters at the same time. The most common concepts used in multiobjective robust
optimization belong to the family of minmax robustness concepts (e.g., [9, 13, 14, 25]).
For minmax robustness, we optimize the objective functions in the worst case over all
scenarios. The solutions computed are said to be minmax robust efficient.

However, minmax robust efficient solutions are not always easy to compute. In ad-
dition, the conservatism of minmax robustness has been recognized in single objective
cases (see e.g., [5, 7, 30]), i.e., the objective function value of a minmax robust solution
is usually not that good in other scenarios. Also, the decision maker may not be willing
to make decisions based on the worst possible realizations of the uncertain parameters.
On the other hand, if a solution is found only by optimizing in the nominal scenario, the
possibility of realizations of other scenarios is ignored. So, the decision maker may want
to focus on the nominal scenario but make decisions which are still valid in other scenar-
ios. Based on the consideration of both robustness and the nominal quality, developments
in single objective cases have led to different concepts in controlling the degradation of
the objective function value in the nominal scenario (see e.g., [3, 4, 5, 7, 18, 30]). These
concepts share the same idea of balancing between robustness and the nominal quality.

Similar thoughts have initiated developments in multiobjective optimization in [21,
22, 24]. In [21], a multiobjective version of the concept proposed in [7] has been devel-
oped and the robust optimization problem is solved based on the augmented Chebychev
function (see e.g., [34]). The concept of light robustness has been originally proposed
in [15] for single objective linear problems with uncertain parameters which stem from
an interval uncertainty set and generalized in [30] for other types of uncertain sets and
quasi-convex objective functions. It has been extended to light robust efficiency for mul-
tiobjective cases in [22]. The idea of light robust efficiency is to find a robust solution
with tolerable degradations in the nominal quality. Concepts based on light robustness
have been developed in [24] for problems where uncertain parameters are involved in one
of the two objectives in bi-objective optimization problems. An algorithm for bi-objective
combinatorial optimization problems with a finite uncertainty set has also been devel-
oped. Solution methods for supporting a decision maker to find a most preferred lightly
robust efficient solution when uncertainty is involved in multiple objectives have not been
published.

In light robustness, the loss in the nominal quality is controlled by a parameter, indicat-
ing tolerable degradations in nominal quality. With respect to the tolerable degradations
in the nominal quality, we optimize in the worst case to seek for a most robust solution.
By doing so, usually, the computed solutions do not have as good quality in the worst case
as minmax robust efficient solutions but they are usually better in terms of nominal qual-
ity. It is proven in [22] that with a sufficiently large tolerance on the degradations in the
nominal quality, a computed lightly robust efficient solution is a minmax robust efficient
solution. The relationships between minmax robust efficient, lightly robust efficient and
nominal efficient solutions are analyzed in [38]. It is also proven that the lightly robust
efficient solutions are good trade-offs between robustness and the nominal quality. Thus,
with the concept of light robust efficiency, the decision maker can focus on the nominal
quality but find solutions that are also valid in other scenarios. This is why we focus on
utilizing the concept of light robustness.
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In the solution process of a multiobjective optimization problem, the decision maker
can utilize the parameter, tolerable degradations in the nominal quality, to control the
trade-off between robustness and the nominal quality in order to find a solution with a
good balance in both respects. As there usually is a set of efficient solutions, the decision
maker needs support to understand the trade-offs among the objectives to choose a final
solution. When robustness is considered in the solution process, the decision maker needs
further support, not only for the trade-offs among the objectives but also the trade-offs
between robustness and the nominal quality.

In this paper, we focus on applying light robustness for decision support and develop an
interactive method, LiRoMo, to support the decision maker to find a good balance between
robustness and the nominal quality by finding a most preferred lightly robust efficient
solution. Interactive methods (see e.g., [26, 33]) are a category of solution methods for
multiobjective optimization problems. With interactive methods, the interactive solution
process starts by presenting an initial solution to the decision maker. If the decision
maker is not satisfied, (s)he can specify preferences for a more desired solution. Then, a
scalarized subproblem is solved to find a new solution which satisfies the preferences as
well as possible. This process continues until the decision maker finds a most preferred
solution. During the interactive solution process, the decision maker can learn about the
problem, for example, some specific properties of the problem. The decision maker can
also learn about the attainable objective function values and at the same time learn how
achievable her or his own preferences are.

When seeking a most preferred lightly robust efficient solution, the decision maker
needs to consider the robustness and the nominal quality of solutions at the same time.
So, (s)he should be provided the opportunity not only to learn about the problem, the
attainable objective function values, and her or his own preferences but also to learn about
the trade-offs between robustness and the nominal quality. With an interactive method,
we can provide such support. As a result, the decision maker can eventually find a final
solution with a satisfactory balance between robustness and the nominal quality.

The decision maker directs the interactive solution process and we need to generate
solutions utilizing the decision maker’s preferences. As a common approach to compute
efficient solutions in multiobjective optimization, scalarization functions combine multiple
objectives (and preferences) into a single objective such that an optimal solution of the
scalarized problem is an efficient solution to the multiobjective optimization problem.
Scalarization for computing minmax robust efficient solutions has been discussed in [9].
In the LiRoMo method, we formulate a lightly robust subproblem based on an achievement
scalarization function [37]. For computing lightly robust efficient solutions efficiently, we
reformulate the subproblem by utilizing the properties of the objective functions and the
uncertainty sets. For supporting the decision maker to understand the trade-offs between
robustness and the nominal quality, we quantify the gain in robustness and the price to be
paid for robustness. In order to effectively illustrate the solutions to the decision maker,
we augment the value path visualization [27] to support the decision maker.

The rest of the paper is organized as follows: Section 2 describes the definitions and
background information needed which is followed by Section 3 where we formulate the
lightly robust subproblem based on the achievement scalarizing function and present its
reformulation. In Section 4, we describe the LiRoMo method for supporting the decision-
making process of balancing between robustness and quality. Then we formulate and
solve an investment portfolio optimization problem to demonstrate the application of the
LiRoMo method in Section 5 and conclude in Section 6.
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2 Preliminaries

2.1 Multiobjective optimization under uncertainty

We consider multiobjective optimization problems where some parameters in the objective
functions are unknown but stem from an uncertainty set U in the following form:(

minimize (f1(x, ξ), · · · , fk(x, ξ))
subject to x ∈ X

)
ξ∈U

, (1)

where x = (x1, · · · , xn)
T is the decision vector which belongs to a feasible set X ∈ R

n

and ξ represents the uncertain parameters which stem from the set U . We assume that a
nominal scenario ξ̂ is known. When robustness does not play a role, the problem is solved
in the nominal scenario as a deterministic problem:

minimize
(
f1(x, ξ̂), · · · , fk(x, ξ̂)

)
subject to x ∈ X.

(2)

We call problem (2) a nominal problem and for each x ∈ X, we define the objective

vector fnom(x) := (f1(x, ξ̂), · · · , fk(x, ξ̂))T as its nominal quality. We say that x∗ is an
efficient (or Pareto optimal) solution to (2), if there does not exist any x′ ∈ X such that
fnom
i (x′) ≤ fnom

i (x∗) for all i = 1, ..., k and fnom
j (x′) < fnom

j (x∗) for at least one j. The set
of efficient solutions to (2) is denoted by Xnom. Problem (2) can be solved with methods
for deterministic multiobjective optimization problems in the following form where no
uncertainty is involved:

minimize (f1(x), · · · , fk(x))
subject to x ∈ X.

(3)

For decision making, it is usually useful for the decision maker to know the ranges
of the objective function values in Xnom. The ideal objective vector zideal and the nadir
objective vector znad can provide information on the ranges. The ideal objective vector is
formed by the individual optima of each objective function. The nadir objective vector can
give the upper bounds of the objective vectors correspond to Xnom. The nadir objective
vector can be approximated by for example the payoff table (see e.g., [26, 33]). This
approximated vector can over or underestimate the nadir objective vector. There are also
other ways to approximate the nadir objective vector (see e.g.,[11]). For computational
reasons, we also define a utopian objective vector zuto = (zideal1 −a, · · · , zidealk −a)T , where
a > 0 is a small scalar.

2.2 Minmax robustness

Minmax robust efficient solutions are found by optimizing in the worst case. The values of
the uncertain parameters with which a solution x ∈ X attains its worst objective function
values are called the worst case scenarios or simply worst cases. For a fixed x ∈ X,
finding its worst case objective vector(s) requires maximizing k objectives simultaneously.
If the problem is objective-wise uncertain, i.e., the uncertain parameters in the objective
functions do not relate to each other (see [13] for a formal definition), there exists a single
worst case scenario. Otherwise, there usually exists a set of worst case scenarios.

In this paper we employ the concept called point-based minmax robustness (see [16,
25]) for optimizing in the worst case. A point-based minmax robust optimization problem
is defined as follows:

minimize

(
sup
ξ∈U

f1(x, ξ), · · · , sup
ξ∈U

fk(x, ξ)

)

subject to x ∈ X.

(4)
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In this formulation, with a fixed x ∈ X, the worst case objective function values are
represented by an objective vector. This vector is formed by the individual maxima of
each objective function with respect to the uncertain parameters involved. So, we consider
a single objective vector in the solution process of problems regardless of if the problem
is objective-wise uncertain or not. However, the point-based worst case usually does not
realize i.e., the objective functions do not attain their worst values simultaneously unless
the problem is objective-wise uncertain. We use fwc(x) := (f1(x, ξ̄), · · · , fk(x, ξ̄))T to
represent a point-based minmax robust objective vector for a fixed x ∈ X. The vector
fwc consists of the individual maxima of each objective function. We refer to fwc as the
worst case.

If the decision maker wishes to concentrate only on robustness, we can solve problem
(4) to find point-based minmax robust efficient solutions for her or him. For helping the
decision maker to understand the ranges of the objective function values of the point-based
robust efficient solutions, we can identify the robust ideal objective vector zideal,wc and the
robust nadir objective vector znad,wc. The robust ideal objective vector zideal,wc is formed
by the individual minima of the objective functions in problem (4) and znad,wc can be
approximated by the payoff table. Corresponding to the nominal utopian objective vector,
we also have the robust utopian objective vectors zuto,wc = (zideal,wc

1 −a, · · · , zideal,wc
k −a)T ,

where a > 0 is a small scalar.

2.3 Light robustness

In the concept of light robustness, we assume that the set Xnom is nonempty. The idea
is that we first determine some x̂ ∈ Xnom, and then we look for the most robust solution
(i.e., optimize in the worst case) with tolerable degradations in the nominal quality. The
tolerable degradations are given by ε ∈ IRk, whose component εi represents the allowed
degradation of fnom

i .
For each x̂ ∈ Xnom, the point-based lightly robust problem with respect to (1) can be

defined as follows:

minimize

(
sup
ξ∈U

f1(x, ξ), · · · , sup
ξ∈U

fk(x, ξ)

)

subject to x ∈ X
fnom
i (x) ≤ fnom

i (x̂) + εi for all i = 1, · · · , k.
(5)

In this formulation, we refer to F light(x̂, ε) := {x ∈ X : fnom
i (x) ≤ fnom

i (x̂)+ εi for all i =
1, · · · , k} as the lightly robust feasible set. Lightly robust efficient solutions are identified
by optimizing in the worst case with respect to the lightly robust feasible set. We say
that a solution xlight,∗ ∈ F light(x̂, ε) is lightly robust efficient if there does not exists any
solution xlight,∗∗ ∈ F light(x̂, ε) such that fwc

i (xlight,∗∗) ≤ fwc
i (xlight,∗) for all i = 1, · · · , k

and fwc
j (xlight,∗∗) < fwc

j (xlight,∗) for at least one j. The set of lightly robust efficient

solutions is denoted by X light,ε.
By varying the value of ε, we can alter the trade-offs between robustness and the

nominal quality in (5). Figure 1 illustrates the idea of light robustness with two objectives.
The dashed line represents the set fnom(Xnom). The dot represents the nominal objective
vector fnom(x̂) of the pre-selected nominal efficient solution x̂. With a given ε, the area
which can contain the nominal objective vectors of lightly robust efficient solutions is
indicated by the dotted lines.

In [38], the gain in robustness and the price to be paid for robustness are defined for
fixed nominal efficient and lightly robust efficient solutions. With fixed x̂ ∈ Xnom and
xlight,ε ∈ X light,ε, we can quantify the gain in robustness by comparing their corresponding
objective vectors in the worst case with the following measure:

gain(xlight,ε, x̂) = ‖fwc(x̂)− fwc(xlight,ε)‖∞. (6)

5



Figure 1: Light robustness

The notation ‖ · ‖∞ represents the L∞ norm, which tells the maximum gain in robustness
among the objectives. Other norms can also be used, for example, ‖ ·‖1 can give the value
on the average gain in robustness among the objectives. Analogously, with fixed x̂ ∈ Xnom

and xlight,ε ∈ X light,ε, we can quantify the price to be paid for robustness by comparing
their corresponding objective vectors in the nominal scenario with the following measure:

price(xlight,ε, x̂) = ‖fnom(x̂)− fnom(xlight,ε)‖∞. (7)

2.4 Achievement scalarizing function

As mentioned earlier, one approach to solving multiobjective optimization problems in
the form of (3) is to formulate a single objective optimization subproblem by scalarizing.
The achievement scalarizing function [37] is one of the widely used scalarizing functions.
In this paper, we utilize the following subproblem based on a variant of the achievement
scalarizing function:

minimize α+ ρ
k∑

i=1

wi(fi(x)− z̄i)

subject to wi(fi(x)− z̄i) ≤ α for all i = 1, · · · , k
x ∈ X,

(8)

where ρ is a small scalar bounding the trade-offs among the objectives, z̄ is a reference
point and its components z̄i are aspiration levels which represent the desired values of the
objective function fi given by the decision maker. We have presented subproblem (8) in
a differentiable form (assuming that the objective functions are differentiable), where the
auxiliary variable α is used for the transformation from a minmax form (see e.g., [26]).
The positive weight vector w sets a direction which the reference point is projected onto
the set of objective vectors corresponding to the efficient solutions. We refer to w as
projection direction.

As discussed in the literature (e.g., in [10, 26, 37]), any optimal solution of (8) is an
efficient solution for (2) and any efficient solution with trade-offs bounded by ρ can be
found by changing z̄. Such solutions are also called properly efficient solutions (for details,
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see e.g., [37]). The achievement scalarizing function works independently of the problem
and preferences considered. For example, the reference point can be feasible or infeasible
and the problem can be convex or nonconvex.

3 Computing lightly robust efficient solutions

3.1 Lightly robust subproblem based on the achievement scalar-
izing function

In this section, we assume that max
ξ∈U

f(x, ξ) exists for all i = 1, · · · , k for a fixed x ∈ X.

The existence of max
ξ∈U

f(x, ξ) for all i = 1, · · · , k can be guaranteed for example when X is

finite, U is compact and f(x, ·) : U → IRk is continuous in ξ for every fixed x ∈ X. Based
on (5) and (8), a lightly robust subproblem based on achievement scalarizing function can
be given as follows:

minimize α+ ρ
k∑

i=1

wi(max
ξ∈U

fi(x, ξ)− zi)

subject to fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi for all i = 1, · · · , k
wi(max

ξ∈U
fi(x, ξ)− zi) ≤ α for all i = 1, · · · , k

x ∈ X.

(9)

Theorem 1. Any optimal solution of (9) is a lightly robust efficient solution for (1).

Proof. Let x∗ be an optimal solution of (9) and assume that it is not lightly robust efficient
to problem (1). Then there exists x′ ∈ F light(x̂, , ε), such that fwc

i (x′) ≤ fwc
i (x∗) for all

i = 1, ..., k and fwc
j (x′) < fwc

j (x∗) for at least one j. So we have max
i

[wi(max
ξ∈U

fi(x
′, ξ) −

zi)]+ρ

k∑
i=1

(max
ξ∈U

f(x′, ξ)−zi) < max
i

[wi(max
ξ∈U

fi(x
∗, ξ)−zi)]+ρ

k∑
i=1

(max
ξ∈U

f(x∗, ξ)−zi). This

contradicts with the assumption that x∗ is an optimal solution to (9). Thus x∗ is a lightly
robust efficient solution to (1).

The formulation (9) involves finding the optimal solution of the maximization problem
to identify the worst case value of each objective function, i.e., the problem max

ξ∈U
fi(x, ξ)

for a fixed x ∈ X. So, using (9) to find a lightly robust solution requires solving a
more complicated optimization problem than for a deterministic problem with (8). As
mentioned in the literature (e.g., in [4, 6]), problem (9) cannot be efficiently solved in
a general case. Next, we reformulate the problem so that it can be efficiently solved by
making some assumptions.

3.2 Reformulating the lightly robust subproblem

Reformulating problems to compute robust optimal solutions is a research topic with a
long history in single objective optimization (see e.g., [2, 7, 32]).

Here we utilize the properties of fi(x, ξ) and U . The following result have been pre-
sented in Corollary 2.14 in [35]:

Lemma 2. A real-valued function g(x) on a compact convex set C attains its maximum
at an extreme point of C.
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We consider the uncertainty set conv(U) which is called a polyhedral uncertainty set.
It is defined by a set of scenarios U = {ξ1, · · · , ξm} as the extreme points of the convex
hull. The results in Lemma 2 has been utilized in [24] for reducing polyhedral uncertainty
sets to discrete uncertainty sets involved in one of the objective functions in bi-objective
optimization problems. It has also been utilized in [13] for replacing conv(U) by U for
objective-wise uncertain problems. Since in this paper, we optimize in the point-based
worst case for finding lightly robust efficient solutions, problem (9) has the following
equivalent reformulation:

Theorem 3. Let conv(U) be a polyhedral uncertainty set with extreme points U = {ξ1, ..., ξm}
and fi quasi-convex in ξ for every fixed x ∈ X and i = 1, · · · , k. Problem (9) can be solved
in the following form:

minimize α+ ρ
k∑

i=1

wi(γ − z̄i)

subject to x ∈ X

fi(x, ξ̂) ≤ fi(x̂, ξ̂) + ε for all i = 1, · · · , k
wi(γ − z̄i) ≤ α
fi(x, ξ

j) ≤ γ for all i = 1, · · · , k and j = 1, · · · ,m.

(10)

Proof. Based on Lemma 2, fi attains its maximum over conv(U) at an extreme point of
it with the assumption that fi is quasi-convex in ξ for every fixed x. So we have

max
ξ∈conv(U)

fi(x, ξ) = max
j

fi(x, ξ
j).

Corresponding to using α in (8), we use the auxiliary variable γ (which is a scalar valued
variable) to bound max

i
max

j
fi(x, ξ

j), i.e., we can solve (9) by considering the extreme

points of conv(U) and the objective function with gives the largest value.

Based on e.g.,[24], polyhedral uncertainty sets include interval uncertainty sets (see
e.g., [15, 30]) as special cases. When the uncertain parameters vary in intervals, we obtain
a box as the uncertainty set, which is a special polyhedron. On the other hand, affine
objective functions are also quasi-convex. So, (10) is also valid for problems with such
characteristics.

If we have a multiobjective optimization problem with ξ stemming from a set U with a
finite number of scenarios, i.e., U is a finite uncertainty set, we can use the reformulation
(10) to solve the problem. In this case, we do not need to assume that fi is quasi-convex
in ξ for every fixed x ∈ X since we can directly compare the objective vectors in the
scenarios.

4 The LiRoMo method

As introduced earlier, finding minmax robust efficient or nominal efficient solutions may
not well serve the purpose of considering both robustness and the nominal quality. Min-
max robust efficient solutions can have bad objective function values in other scenarios
and the decision maker may not want to make decisions based on the worst possible re-
alizations of the uncertain parameters. Nominal efficient solutions only concentrate on
the nominal quality and other scenarios are ignored. Lightly robust efficient solutions
can have both aspects incorporated. In this section, we propose the LiRoMo method to
support the decision maker to find a most preferred lightly robust efficient solution with
a preferred balance between robustness and the nominal quality. We first discuss the
LiRoMo method in general. Then, we present its steps followed by a detailed discussion
on the steps.
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Using a reference point to find a most preferred efficient solution for the decision maker
in an interactive method has been used in earlier research for deterministic problems for
example in [28, 37]. In the LiRoMo method, we also utilize reference points as a means
for the decision maker to express preference information. We first find a nominal efficient
solution x̂ which satisfies the preferences of the decision maker as well as possible. This is
done by solving (8) based on the reference point specified by the decision maker. Then,
based on the tolerable degradations of the nominal quality, which are also specified by the
decision maker, we optimize in the worst case to find a lightly robust efficient solution by
solving (9).

When the decision maker studies a lightly robust efficient solution, (s)he needs to un-
derstand its essence with respect to both robustness and the nominal quality. For the
nominal quality, the decision maker needs to consider the nominal objective function val-
ues of the lightly robust efficient solution. For robustness, the concept of light robustness
only finds the most robust solution with respect to the tolerable degradations. It is not
enough to purely rely on this fact. Without additional information, it is hard for the
decision maker to understand the trade-off between robustness and nominal quality, i.e.,
if the robustness gained is worthy of the sacrifice in the nominal quality.

Thus, we provide some additional information to help the decision maker to under-
stand the trade-off between robustness and the nominal quality. In order to provide this
information, we can utilize the gain in robustness to compare the lightly robust efficient
and nominal efficient solutions in the worst case and use the price to be paid for robustness
to compare the two solutions in the nominal scenario. As the objective function values
can have very different scales, the original forms of gain in robustness and price to be paid
for robustness presented in (6) and (7) need to be normalized. In the LiRoMo method,
we calculate the gain in robustness as

gain(xlight,ε, x̂) =

∥∥∥∥∥∥
(
fwc
1 (xlight,ε)− fwc

1 (x̂)

znad,wc
1 − zuto,wc

1

, · · · , f
wc
k (xlight,ε)− fwc

k (x̂)

znad,wc
k − zuto,wc

k

)T
∥∥∥∥∥∥
∞

. (11)

The value of gain(xlight,ε, x̂) quantifies how much better the lightly robust efficient solution
is in the worst case compared to the nominal efficient solution. The value of gain(xlight,ε, x̂)
represents the largest percentage that xlight,ε is better in terms of the worst case objective
function values than x̂ in the ranges of the objective vectors corresponding to the minmax
robust efficient solutions. In addition, we also calculate the price to be paid for robustness:

price(xlight,ε, x̂) =

∥∥∥∥∥
(
fnom
1 (xlight,ε)− fnom

1 (x̂)

znad1 − zuto1

, · · · , f
nom
k (xlight,ε)− fnom

k (x̂)

znadk − zutok

)T
∥∥∥∥∥
∞

.

(12)
The value of price(xlight,ε, x̂) quantifies how much worse the lightly robust efficient solu-
tion is in the nominal scenario compared to the nominal efficient solution. The value of
price(xlight,ε, x̂) presents the largest percentage that xlight,ε is worse than x̂ in terms of
the nominal objective function values in the ranges of the objective vectors correspond-
ing to the nominal efficient solutions. If price(xlight,ε, x̂) is larger than gain(xlight,ε, x̂),
more nominal quality is sacrificed compared to the gain in robustness. By combining the
comparison of the two measures and the nominal objective vectors of the lightly robust
efficient solution, the decision maker can consider her or his preferences in both respects
and make informed decisions.

After understanding the presented lightly robust efficient solution, the decision maker
needs to consider two different types of preference information for finding a more desired
lightly robust efficient solution. First, (s)he needs to consider the preferences for a more
interesting nominal efficient solution. Second, (s)he needs to consider the tolerable degra-
dations in the nominal quality. The decision maker could also consider how much (s)he
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wants to gain in robustness by the maximum tolerable loss in the nominal quality which
is specified by the tolerable degradations.

From the computation point of view, incorporating preferences on the gain in ro-
bustness can be achieved by adding additional constraints to the lightly robust problem.
However, from a decision-making point of view, the decision maker should know the attain-
able objective function values and the trade-off between robustness and nominal quality
very well. For example, with an unrealistic preference in the tolerance and gain, it may
happen that there are no feasible lightly robust efficient solutions because the decision
maker sacrifices too little but hopes to gain too much. This is why we do not request
the preference information on the gain in robustness from the decision maker in LiRoMo
but concentrate on finding a satisfactory lightly robust efficient solution by allowing the
decision maker to alter her or his preferences in the nominal objective vector in the form
of reference points and specifying the tolerable degradations.

The steps of the LiRoMo method are the followings:

Initialization. Present zideal, znad and zideal,wc and znad,wc to the decision maker.
Set the iteration counter c = 0.

Step 1. Ask the decision maker to specify the desired values of each objective
function which forms the reference point z̄.

Step 2. Solve (8) to find a nominal efficient solution x̂c.

Step 3. Present the objective vector corresponding to x̂c to the decision maker.

Step 4. Ask the decision maker to specify her or his preferences on how much
(s)he is willing to sacrifice in the nominal quality to gain robustness which forms
the tolerable degradations ε for the preferred nominal solution.

Step 5. With x̂c and ε, solve (9) to find a lightly robust efficient solution x(light,ε)c

and compute the gain in robustness gain(x(light,ε)c , x̂c) and the price to be paid for
robustness price(x(light,ε)c , x̂c).

Step 6. Present the nominal objective vectors corresponding to x(light,ε)c and x̂c

together with the values of gain(x(light,ε)c , x̂c) and price(x(light,ε)c , x̂c) to the decision
maker.

Step 7. If the decision maker is satisfied, terminate the solution process and set
x(light,ε)c as the final solution. Otherwise, continue.

Step 8. If the decision maker wishes to alter the trade-offs between robustness and
the nominal quality, i.e., modify the tolerable degradations, ask the decision maker
to give a new preferred value of ε, set c = c + 1 and go to step 3. If the decision
maker wants to change her or his preferences on the nominal efficient solution, set
c = c+ 1 and go to step 1.

In the initialization step, the nominal ideal and nadir objective vectors are presented to
the decision maker to help her or him to have a general idea of the ranges of the objective
function values among the nominal solutions. This helps the decision maker to specify the
reference point in step 1. The robust ideal objective vector and the robust nadir objective
vector are also presented to help the decision maker to grasp a picture on the ranges of
the objective function values of solutions in the worst case if (s)he fully concentrates on
robustness. This can help her or him to specify the tolerable degradations in the nominal
quality later. In step 2, we solve (8) to find the nominal efficient solution x̂c using z̄ as
the reference point. Then, we can present the objective vector corresponding to x̂c to the
decision maker in step 3 and ask the decision maker to specify her or his preferences on
ε in step 4.

In step 5, with x̂c and ε, we solve (9) to find a lightly robust efficient solution x(light,ε)c .
The value of ε is closely related to the reservation levels (see e.g., [19]). Reservation
levels are limits of objective function values that the decision maker cannot accept to go
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Figure 2: Visualizing a lightly robust efficient solutions

beyond. In our context, the decision maker wants to avoid any nominal objective vector
worse than fnom(x̂)+ε. So, with a fixed fnom(x̂), if a decision maker changes the value of
ε, (s)he changes the limits of the acceptable nominal objective vector beyond which the
corresponding solutions should be avoided. This means that changing the value of ε can
be understood as changing the reservation levels.

When solving (9), we use fnom(x̂c) + ε as the reference point. This is because of two
reasons. First, the value of fnom(x̂c)+ε is still acceptable for the decision maker. Second,
(s)he is expecting the most robust solution within the range of fnom(x̂c) and fnom(x̂c)+ε,
so (s)he is willing to sacrifice until the limits of the acceptable nominal objective function
values to gain robustness. We set the projection vector w = 1

fnom(x̂c)+ε−fnom(x̂c) = 1
ε

because in the ideal situation, x̂c is a lightly robust efficient solution. If x̂c is not a lightly
robust efficient solution, we may preserve the preferences on the trade-offs among the
objectives with this projection direction.

In order to efficiently solve (9), we can use the reformulation presented in the subprob-
lem (10). Correspondingly, we can compare the objective function values in the scenarios
which specify U to find the point-based worst case objective vector for computing the
value of gain(x(light,ε)c , x̂c). For computing the value of price(x(light,ε)c , x̂c), we only need
to evaluate the two solutions in the nominal scenario. If the problem does not meet the
assumptions in the reformulation, it is possible to represent the uncertainty set by a set of
discrete scenarios by utilizing a good sampling technique presented e.g., in [31]. When we
replace the uncertainty set by a set of sampled discrete scenarios, we can use reformulation
presented in (10).

In step 6, we visualize fnom(x(light,ε)c) and fnom(x̂c) together with the values of
gain(x(light,ε)c , x̂c) and price(x(light,ε)c , x̂c) to the decision maker. As mentioned earlier, by
combining the two types of information, the decision maker can understand the trade-offs
in the objectives and also consider balancing between robustness and the nominal quality.

For illustrating the computed lightly robust efficient solutions in step 6, we augment
the value path visualization [27] to help the decision maker to understand the essence of
the solutions. Figure 2 shows an example of visualizing a lightly robust efficient solution
with its corresponding nominal objective vector and other related information. In the
example figure, there are three objectives represented by bars. The minima and maxima
of the bars represent the nominal ideal and nadir values respectively. The filled part of
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the bar is the objective function value of the nominal efficient solution which satisfies
the reference point best. The triangles mark the tolerable degradations (i.e., the value
until which the decision maker is willing to sacrifice to gain robustness). The value path
illustrates the nominal objective vector of the current lightly robust efficient solution.
The gain in robustness (marked as g in the figure) and the price to be paid for robustness
(marked as p in the figure) are illustrated by the horizontal bars on the upper left corner.

When a decision maker sees the visualization, (s)he considers the nominal objective
function values of the lightly robust efficient solution. This is because of the nature of
concentration on the nominal scenario in light robustness. If the values are acceptable,
(s)he then further considers if the gained robustness is worthy of the sacrifice in the
nominal quality by simply comparing the lengths of the bars marked by g and p. If the
decision maker asks, we can present their numerical values.

To summarize, in the figure, the decision maker can see five types of information:

• The nominal objective function values of the current nominal efficient solution which
satisfies the reference point best in the colored bars.

• The nominal objective function values of the current lightly robust efficient solution.

• The change in the nominal quality, i.e., the difference between the markers of the
value path and the filled part of the bars.

• How much better the current lightly robust efficient solution is compared to the
worst acceptable one.

• How much robustness (s)he has gained in the solution compared to the sacrificed
nominal quality.

The five types of information together help the decision maker to understand the
current lightly robust efficient solution in terms of its nominal quality, the relationships
with the nominal efficient solution and the trade-offs between robustness and nominal
quality. They also help the decision maker to analyze what kind of changes (s)he should
make to get a more desired solution by specifying the preferences for the next iteration. If
(s)he sees that the tolerable degradations can be still modified while the gain in robustness
is not sufficient, (s)he can relax the value of ε to get a more robust solution. If (s)he is
not willing to sacrifice more in the nominal quality or is not satisfied by the nominal
objective function values of the lightly robust efficient solution, (s)he can try to provide
a new reference point to change the nominal efficient solution.

After presenting the lightly robust efficient solution, if the decision maker is satisfied,
we terminate the solution process with x(light,ε)c as the final solution. If the decision
maker wishes to continue the solution process, we calculate a new solution based on her
or his preferences. By interacting with the decision maker, we support her or him to find a
satisfactory lightly robust efficient solution based on her or his preferences on the nominal
objective function values and the tolerable degradations. If the decision maker so desires,
the objective vector of the final solution in the worst case can also be presented. In case
that the worst case objective vector is not acceptable, the decision maker can provide new
preferences to get a new solution.

5 Example in investment portfolio optimization

Portfolio optimization problems have been considered in the literature but with different
concepts of robustness. In this section, we formulate a simple investment portfolio op-
timization problem with uncertainty in future developments. We solve this problem to
demonstrate the ability of the LiRoMo method in supporting the decision maker to find
a most preferred balance between robustness and the nominal quality.

The main products of a start-up Company A are software products. Now the owners
of the company are considering investing in some stocks for long-term return. Just like
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in any portfolio investment problem, they want to maximize the return on investment
and minimize the risks. They plan to study the long-term historical data of the stocks to
find a good composition for their investment portfolio. However, it is also possible that
their investment will be withdrawn as a mid-term or even a short-term investment if they
discover and initiate a new interesting project. Here, the uncertainty comes from the fact
that Company A does not know exactly which of the time frames should be used in the
portfolio optimization. In this case, we have three discrete scenarios in the uncertainty
set including the short-term data, mid-term data, and long-term data. Company A wants
to concentrate on a long-term investment, so using long-term data is considered as the
nominal scenario and using short- and mid-terms data are considered as the other two
possible scenarios.

In the solution process, we aim at finding a composition of investments, which is good
with respect to all scenarios and especially not too bad as a long-term investment. We
apply the LiRoMo method and interact with a decision maker to find a lightly robust
investment portfolio with good return and acceptable risks in long-term but at the same
time with not too bad return and risks at any earlier withdrawal.

As mentioned before, the objectives of the investment include maximizing the return on
investment and minimizing the risks. Different risk measures providing different insights
are used in the literature such as the standard deviation, β index, Sharpe index, and
Treynor index, etc (see e.g., [29]). In this paper, we use the Sharpe index and the Treynor
index to be maximized as the standard deviation is related to the Sharpe index and the β
index is related to the Treynor index and we only consider indices with a low correlation.
Briefly speaking, the Sharpe index indicates how well a portfolio uses risk to get return
and the Treynor index measures the volatility in the market to calculate the value of a
portfolio adjusted risk. In order to avoid any failure in unexpected behaviors in a single or
a few good stocks, we also minimize the maximum amount of investment in a single stock
among all the invested stocks. The problem is formulated as a multiobjective optimization
problem with uncertain parameters in the objectives:

maximize f1(x) =

n∑
i=1

ptij − pt−1
ij

pt−1
ij

xi

maximize f2(x) =
1
σj
(

n∑
i=1

ptij − pt−1
ij

pt−1
ij

xi − r̃)

maximize f3(x) =
1
βj
(r̄j − r̃)

minimize f4(x) = maxi xi

subject to xi ≥ 0
n∑

i=1

xi = 1

ptij ∈ P t
i

pt−1
ij ∈ P t−1

i .

(13)

In the formulation, f1 represents the return on investment, f2 represents the Sharpe
index, f3 represents the Treynor index, and f4 represents the maximum investment in a
single stock. In this formulation, if the value of f1 is smaller than 1, there is loss in the
investments. The decision variables xi represents the proportion of the total amount of
investment in the stock i and there are in total n stocks for investment. The parameters
ptij , p

t−1
ij are the historical buying and selling prices of the stock i when the time frame

j is used, where t stands for the most recent time and t − 1 represent the previous time
period. The notation r̃ represents the risk free rate and r̄j is the average return rate of
the portfolio when the time frame j is used. The standard deviation of the return on the
portfolio in the time frame j is denoted by σj . The beta index is denoted by βj in the
time frame j. The value of the beta index depends on the return on investment of the
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Figure 3: Initial solution Figure 4: Iteration 1

investment portfolio.
The parameters can have different values depending on the time frame used. Each

parameter has three different possible values to consider, i.e., when short-, mid-, and
long-term data are used in optimizing the portfolio. So, we have two uncertainty sets
P t
i and P t−1

i and each uncertainty set has three elements. For example, we have P t
i =

{ptis, ptim, ptil} where s stands for the short time frame, m stands for the mid-term time
frame and l stands for long time frame. The nominal values of the sets are ptil and pt−1

il .
The indices σj , and βj depend on the data in the time frame (i.e., pt−1

ij and ptij). Note that
in the formulation, f4(x) does not involve uncertain parameters but different investment
portfolios (i.e., solutions) have correspond to different values of f4(x). Problem (13) can
be reformulated for computing lightly robust efficient solutions based on problem (5).

As for the historical data of the portfolios, we downloaded 10 different NASDAQ
stocks from Google finance [1] and computed the needed indices. We started our so-
lution process by calculating the nominal ideal objective vector and approximating the
nadir objective vector with the payoff table. We have zideal = (1.677, 118.85, 0.1266, 0.1)T

and znad = (0.636, 25.665, 0.0478, 1)T . We also calculated and approximated the ro-
bust ideal and nadir objective vectors zideal,wc = (1.34, 89.67, 0.093, 0.1)T and znad,wc =
(0.38, 23.37, 0.0289, 1)T . One should note that since the first three objectives are to be
maximized, the corresponding components in the ideal objective vector are higher than
those of the nadir objective vector. In this problem, the uncertain parameters stem from
discrete sets, so we utilized the reformulation (10) to compute the lightly robust efficient
solutions.

Initialization. We presented the nominal ideal and nadir objective vectors to the
decision maker as the ranges of the objective function values of the nominal efficient
solutions. We also presented the robust ideal and nadir objective vectors to the decision
maker as the ranges in the minmax robust efficient solutions.

Initial solution. Based on the ranges, the decision maker specified the reference
point: z̄0 = (1.1, 75, 0.1, 0.5)T . With the preferences, we first solved (8) and found x̂0.
Then, we presented the nominal objective function values of x̂0 to the decision maker and
asked him to specify his preferences on the tolerable degradation. Then, we solved the
reformulated lightly robust problem and found an initial lightly robust efficient solution
and presented it to the decision maker as shown in Figure 3. Based on this solution, the
decision maker could not accept the loss in the investments even though the price to be
paid for robustness resulted in a good gain in robustness.

Iteration 1. So, we asked him to specify a new reference point. Based on the new
reference point z̄1 = (1.1, 85, 0.1, 0.35)T , we calculated x̂1. Based on on the objective
function values of x̂1, the decision maker specified the tolerable degradations. With the
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Figure 5: Iteration 2 Figure 6: Iteration 3

tolerable degradations ε1 = (0.05, 10, 0.008, 0.09)T and x̂1, we calculated a new lightly
robust efficient solution by solving (10). We presented its nominal objective vector to the
decision maker as in Figure 4. With the solution, the decision maker could make only
little profit even though he noticed that the price to be paid for robustness resulted in a
much bigger amount of gain in robustness.

Iteration 2. The decision maker decided to try to provide a really good aspiration
level to the return on investment with less emphasis on other objectives. With z̄2 =
(1.8, 20, 0.05, 1)T , we calculated x̂2. Based on fnom(x̂2), the decision maker specified
ε2 = (0.1, 28, 0, 0.1)T , we again solved (10) and found a new lightly robust efficient solution
as illustrated in Figure 5. The decision maker noticed that even though the return on
investment was good, the investment was rather risky and the lightly robust efficient
solution was very different from the nominal efficient solution. Since the nominal objective
function values of the lightly robust efficient solution were not acceptable, he did not even
consider the trade-off between robustness and the nominal quality.

Iteration 3. The decision maker provided a new reference point z̄3 = (1.2, 40, 0.11, 1)T

with which we computed x̂3. With the presented fnom(x̂3), the decision maker specified
the tolerable degradations ε3 = (0.08, 20, 0.008, 0.09)T . Based on x̂3 and ε3, we calculated
and presented a new lightly robust efficient solution to the decision maker as in Figure
6. In this solution, the decision maker noticed that the Treynor index increased as she
intended. However, there were losses in the investment. As before, since this solution was
not acceptable, he did not consider comparing the values of gain in robustness and price
to be paid for robustness.

Iteration 4. The decision maker tried with another reference point with a better
aspiration level on return on investment z̄4 = (1.5, 85, 0.1, 0.35)T . After knowing fnom(x̂4)
which we computed, he also decided not to allow the return on investment and the Sharpe
index to degrade as much as in previous iterations with ε4 = (0.05, 10, 0.008, 0.09)T . Using
x̂4 and ε4, we found a new lightly robust efficient solution as in Figure 7. The decision
maker liked the solution in terms of its nominal objective function values and the balance
in the price to be paid for and the gain in robustness.

Termination. Even though the decision maker liked the solution in the previous
iteration, he still provided a new reference point z̄5 = (1.7, 55, 0.1, 0.25)T to try to increase
the return on investment by lowering the Sharpe index. After knowing fnom(x̂5), he
decided to further reduce the tolerable degradations of the return on investment and the
Sharpe index with ε5 = (0.04, 5, 0.008, 0.09)T . With the new preference information, the
solution presented in Figure 8 was obtained. The decision maker found that this lightly
robust efficient solution had better nominal objective function values than in the previous
iteration with the reduced tolerable degradations. In addition, the gain in robustness was
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Figure 7: Iteration 4 Figure 8: Final solution

worthy of the sacrifice in the nominal quality with a preferred balance. So, he decided to
terminate the solution process.

During the solution process, the decision maker chose to provide reference points and
tolerable degradations for the computation of lightly robust efficient solutions. In the
beginning of the solution process, the decision maker took some iterations to learn about
the attainable objective function values and how he could utilize the reference point and
the value of ε to guide the solution process toward the kind of solutions she desires. In the
last two iterations, the decision maker was able to find a desirable lightly robust efficient
solution and utilize ε to fine-tune the solution. In addition, the comparison between
the price to be paid for and the gain in robustness served as useful information for the
decision maker to make an informed decision. The final solution found was satisfactory
with a good return on investment and acceptable risk levels.

6 Conclusions

In this paper, we considered multiobjective optimization problems where some parameters
are uncertain in the objective functions. In order to support the decision maker to find a
most preferred solution with a good balance between robustness and the nominal quality,
we developed the LiRoMo method by utilizing the concept of light robustness. It is the
first interactive method using light robustness. In the LiRoMo method, the decision maker
can alter the trade-offs between robustness and the nominal quality by changing tolerable
degradations in the nominal quality. As a support for the decision maker to consider
the balance, we quantified the price to be paid for robustness and the gain in robustness
in each computed lightly robust efficient solution. In addition, we visualized the lightly
robust efficient solutions and related information to help the decision maker to understand
them with an augmented value path visualization.

We formulated an investment portfolio optimization problem and solved it with the
LiRoMo method involving a decision maker to demonstrate the advantages of the method.
With the support provided by the method, the decision maker was able to explore the
objective function values of the solutions of the problem and eventually found a lightly
robust efficient solution with a good balance between robustness and the nominal quality.

In this paper, we reformulated the lightly robust problem based on the achievement
scalarizing function under some assumptions: the objective functions are quasi-convex
with respect to the uncertain parameter with a fixed decision vector and the uncertain
parameters stem from polyhedral uncertainty sets. An immediate continuation of this
research is to efficiently compute lightly robust solutions for more general problems. In
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the current version of the interactive method, it is possible that the trade-offs between
the objective function values of the lightly robust efficient solutions are different from
those of the nominal efficient solution. The reason is that the preferences on the nominal
objective function values are first considered in the form of a reference point. When
calculating the lightly robust efficient solution, the focus is on the robustness. Thus,
another interesting future research direction is to refine interactive methods to further
maintain the preferences set in the nominal objective function values in the lightly robust
efficient solutions.
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