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Recent experimental discoveries of graphene-stabilized patches of two-dimensional (2D) metals have moti-
vated also their computational studies. However, so far the studies have been restricted to ideal and infinite 2D
metallic monolayers, which is insufficient because in reality the properties of such metallic patches are governed
by microstructures pervaded by edges, defects, and several types of perturbations. Here we use density-functional
theory to calculate edge and vacancy formation energies of hexagonal and square lattices of 45 elemental 2D
metals. We find that the edge and vacancy formation energies are strongly correlated and decrease with increasing
Wigner-Seitz radii, analogously to surface energies. Despite a radical reduction in atomic coordination numbers,
the 2D and three-dimensional (3D) vacancy formation energies and work functions are nearly the same for each
metal. Finally, static polarizabilities reveal a clear cubic dependence on bond length. These trends provide useful
insights when moving towards reality with elemental 2D metals.

DOI: 10.1103/PhysRevB.98.115433

I. INTRODUCTION

Since the discovery and success of graphene [1–11], much
research has been devoted to finding new two-dimensional
(2D) systems [12–15]. The family of 2D materials has in-
creased to include, for example, halides and transition metal
chalcogenides [16]. Many of the known 2D structures con-
sist of tightly bound monolayers held together by van der
Waals forces and are therefore relatively easy to isolate by
exfoliation [17,18]. However, synthesizing 2D materials from
nonlayered bulk structures requires different approaches [19].
Recent experiments have found 2D structures having nonlay-
ered three-dimensional (3D) bulk counterparts, such as free-
standing 2D iron patches grown inside graphene nanopores
[20]. The existence of 2D iron is surprising considering
the metallic bonding in bulk iron that lacks the strongly
directional character of covalent bonding, usually associated
with 2D materials. In addition to being interesting for basic
research, metallic 2D materials have several potential applica-
tions [21–23], including catalysis and gas sensing [24,25].

The experimental evidence for 2D structures composed
of metal atoms has motivated much computational research.
Multiple elements and 2D lattices have been studied including
Au, Ag, and Cu monolayers [26–28], transition metal mono-
layers [29], and our recent study of elemental monolayers
from 45 metals in three 2D lattices [30]. However, so far most
of the computationally studied free-standing elemental mono-
layers have been ideal and periodic in the plane of the atoms.
These calculations are relevant for sufficiently large, ordered
systems. Yet under realistic conditions 2D systems will have
defects, such as edges and vacancies [31]. While the edges can
be stabilized by supporting materials, edge formation energies
provide information about the stabilities of finite systems
compared to the periodic ones. While the vacancy formation
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energy is related to the stability of a 2D structure, it is also
connected to the atom mobility and is useful in identifying
promising elements for 2D liquids [32,33]. Realistic systems
can also have perpendicular perturbations. For example, 2D
systems can host adsorbates [34], can be grown on surfaces
[35–42], or can be a part of a layered heterostructure [43]. In
these cases the interactions perpendicular to the monolayers
changes the properties of the ideal free-standing 2D lattices.

In this paper we aim to address how the finite size, vacan-
cies, and simple perpendicular perturbations affect the prop-
erties of ideal free-standing monolayers of 2D metals. Using
a density-functional theory (DFT) approach, we calculate the
edge and vacancy formation energies for 45 metals (Fig. 1) in
hexagonal and square geometries (Fig. 2). We correlate these
properties with the ones of conventional 3D bulk structures
and find that the edge formation energies are related to the sur-
face energies, both decreasing with increasing Wigner-Seitz
radii. Despite the drastic changes in coordination numbers, the
2D vacancy formation energies for many metals are close to
3D vacancy formation energies. Furthermore, since vacancy
can be considered to consist of a round edge encircling the
missing atom, the vacancy formation energies are related to
the edge energies. As a measure of sensitivity to perpendic-
ular perturbations, we also consider the static polarizability
of 2D monolayers and find that the polarizability per atom
increases with increasing 3D bond length. The work functions
of hexagonal 2D films are relatively close to those measured
for polycrystalline 3D samples.

II. COMPUTATIONAL METHODS

The edge and vacancy formation energies were obtained
from total energies calculated with the density-functional
approach as implemented in the GPAW code [44,45]. For
consistency with respect to earlier work, the exchange and
correlation energies were approximated with the Perdew-
Burke-Ernzerhof (PBE) functional [46]. Also previously
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FIG. 1. Part of the periodic table with the chemical symbols of
the 45 studied metals.

converged computational parameters and lattice constants
were used [30]. All structures were calculated without relax-
ation using ideal bond lengths. The plane-wave cutoff was 800
eV and 5 Å vacuum region separated atoms from the non-
periodic unit-cell edges. The atomic ribbons were modeled
with 1 × 12 × 1 Monkhorst-Pack k-point sampling [47,48]
and vacancy formation energies were calculated with a con-
stant k-point density in the atomic plane. The polarizabilities
of monolayers were calculated with dipole-layer corrections.
Jellium calculations were done as spin compensated and rest
as spin polarized.

III. RESULTS

A. Edge energies decrease with increasing Wigner-Seitz radii

We begin by considering the edge energy of all 45 metals
in hexagonal and square geometries. Spin polarization is taken
to account but since most systems are nonmagnetic we focus
on other properties, starting with the edge energy [49] defined

FIG. 2. Sketches of calculated structures. The dashed line indi-
cates the varying computational cell.

as

εedge = lim
N→∞

Er (N ) − Nε2D

Ledge
, (1)

where ε2D is the energy per atom in periodic 2D structure,
Er (N ) is the energy of a ribbon with N atoms, and Ledge

is the total length of the edge, i.e., twice the length of the
computational cell in the periodic direction. To get the edge
energy one could choose a ribbon of specific width, calculate
its energy, and subtract the corresponding 2D lattice energy. In
this case the result would depend on the width of the chosen
ribbon. Fortunately, this dependence can be removed with the
ansatz

Er (N ) = Nε2D + Ledgeεedge (2)

from which the edge energy is obtained by calculating rib-
bons of varying widths and fitting the properties εedge and
ε2D simultaneously. Furthermore, comparing the fitted 2D
lattice energy ε2D to one from a periodic calculation gives a
convergence test for the edge energy. This method is a 2D
analog of a similar approach for determining surface energies
[50]. The energy of a ribbon as a function of its width is
linear already for very narrow ribbons, indicating that the
ansatz (2) holds already for small N . To rationalize this ansatz
we consider a simple model of noninteracting electrons in a
one-dimensional (1D) box. To model a ribbon with varying
width Lx we set the number of particles N proportional to the
width of the well N = λLx . The energy as a function of N in
atomic units is

Ebox(N ) =
N/2∑
n=1

π2n2

L2
x

= π2λ2

(
N

24
+ 1

8
+ 1

12N

)
, (3)

which displays the observed linear behavior for large N .
Furthermore, the second term on the rightmost side is in-
dependent of N and corresponds to the edge energy. We
expect that similar calculation with a 3D box introduces some
complications, but leaves the general trend unaffected [51].

The edge energies obtained this way are in general high
near the middle of the d series and particularly high for 5d

metals in hexagonal structures (Fig. 3). As discussed in our
previous work [30], metals near the middle of the d series have
occupied bonding orbitals and unoccupied antibonding or-
bitals [52]. This makes their bonds stronger and edge energies
higher. The trend is qualitatively similar for both hexagonal
and square lattices. The previously reported value of 0.2 eV/Å
for Au agrees with our result [34].

Next, we consider edge energies as a function of the
Wigner-Seitz radius rs defined by the equation

V

N
= 4πr3

s

3
, (4)

where N is the number of valence electrons in volume V .
This new viewpoint emphasizes how the edge energies span
almost two orders of magnitude and display roughly mono-
tonic decrease with increasing rs (Fig. 4). The trend holds
especially well for simple metals. Most important, similar
behavior has been reported for surface energies [54]. We
conclude that metals with high surface energies will have
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FIG. 3. Edge energies for hexagonal and square ribbons as a
function of atomic number. Regions shaded with blue, red, and
yellow correspond to 3d , 4d , and 5d series, respectively.

high edge formation energies, a trend that calls for closer
inspection.

This trend can be rationalized using jellium ribbons. A
jellium ribbon has a finite width Lx and thickness Lz but
length Ly that approaches infinity. The rs for a ribbon is

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wigner-Seitz radius rs [Å]
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FIG. 4. Edge energies of hexagonal lattice as a function of rs .
Light blue, green, blue, red, yellow, and black correspond to alkali,
alkali earth, 3d , 4d , 5d , and post-transition metals, respectively. The
rs values are from Ref. [53].

defined as

LxLyLz

N
= 4πr3

s

3
, (5)

where N is the number of electrons in the unit cell and Ly is
the length of the unit cell in the periodic direction. We show
that DFT energies for ribbons with varying Lx , Lz, and rs

are reasonably well described by a liquid drop model [56].
This will imply a simple connection between edge and surface
energies. The liquid drop model gives the total energy of the
jellium ribbon as

Ej (rs ) = LxLyLzu(rs ) + 2(LxLy + LyLz)σ (rs ), (6)

where u is the energy density of bulk jellium and σ is the
surface energy. Using Eq. (5), the energy per electron εj =
Ej/N becomes

εj = εb + 8πr3
s

3

(
1

Lx

+ 1

Lz

)
σ, (7)

where εb is the energy per electron for bulk jellium. We
calculate ribbons with thickness of single Fermi wavelength
λf and change the width Lx from λf to 5λf . Figure 5 shows
the DFT results of fitting Eq. (7) to changing ribbon widths
Lx for different values of rs . The resulting bulk energies per
electron [Fig. 5(b)] are close to the analytic expression in
Rydberg units

ε
analytic
b = 2.21

r2
s

− 0.916

rs

− (0.115 − 0.0313 lnrs ) (8)

and fitted surface energies [Fig. 5(a)] agree with previously
reported values [55]. Therefore the energy of a ribbon is
reasonably well described by the liquid drop model. Since
the energy contribution from the jellium edges is 2LyLzσ , it
is natural that the edge energies have similar rs trend as the
surface energies. Nevertheless, the correspondence between
edge and surface energies is somewhat surprising considering
that the ribbons are only a monolayer thick.

B. 2D and 3D vacancy formation energies correlate well

Next we study the vacancy formation energies. In practice
they depend on the vacancy density, but this dependence
can be removed using a method analogous to the one used
to calculate the edge energy. We calculate five monolayers
of different size, each with a single vacancy. The vacancy
formation energy εv is then obtained from a fit

Ev (N ) = Nε2D + εv, (9)

where Ev (N ) is the energy of the monolayer with N atoms
and a single vacancy. As in the previous section, we can com-
pare the ε2D from the fit to the value from periodic calculation
to confirm convergence. The resulting vacancy formation
energies range from nearly zero to almost 4 eV [Fig. 6(a)].
Comparison to calculated 3D bulk vacancy formation energies
shows that for many metals the vacancy formation energies in
2D and 3D have similar values [Fig. 6(b)]. This supports our
previous observation of 2D bonds being stronger than the 3D
bonds [30].

Moreover, the vacancy formation and edge energies display
qualitatively similar trends. The vacancy formation energies
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FIG. 5. (a) Calculated surface energy from fit to Eq. (7) (cir-
cles) and surface energies calculated by Lang and Kohn [55]

(crosses).Values for rs = 1.1 Å (−0.06 eV/Å
2

by Lang and Kohn,

−0.05 eV/Å
2

by us) are omitted for easier visibility. (b) Calculated
bulk energy obtained from Eq. (7) (circles). The dashed line shows
the bulk energy given by Eq. (8).

are generally high near the middle of d series and again the
highest for the metals near the center of 5d series. This can
be understood by considering the formation of a vacancy as a
formation of finite-length edges to the monolayer. To confirm
this interpretation, we plot the vacancy formation energy as
a function of the edge energy times the length of the formed
edge. We simply assume that the vacancy is circular with edge
length πd, where d is the nearest neighbor distance. While the
vacancy formation energies from this simple approximation
are generally overestimated they are fairly close to the directly
calculated ones (Fig. 7).

C. 2D and 3D work functions are nearly identical

Next, we consider the work functions of hexagonal 2D
monolayers of all 45 metals. The work function is a global
reactivity descriptor related to the cost of electron removal
[59,60]. As a result, we find that the calculated work functions
of 2D monolayers are close to the work functions measured
for polycrystalline 3D bulk samples (Fig. 8). This is somewhat
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FIG. 6. (a) Calculated 2D vacancy formation energies for hexag-
onal and square ribbons as a function of atomic number. Shaded
regions are as in Fig. 3. (b) Comparison between 2D vacancy for-
mation energies calculated here and 3D vacancy formation energies
calculated in Ref. [57]. Dashed line shows equal energies.

surprising since the polycrystalline samples contain crystals
with different sizes and surface structures. For nanosized
systems the variation in size is known to lead to oscillations
in the work function. These changes are due to quantum size
effects that arise when some sample dimensions are close to
the electron wavelengths [61–63]. While the quantum size
effects are important for accurate calculations of small sam-
ples, the correlation between monolayer and polycrystalline
work functions indicates that the quantum size effects do
not drastically alter the work function. Therefore, the work
function of a 3D system is a reasonable first approximation
for the work function of a monolayer.
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FIG. 7. Vacancy formation energies obtained by direct calcula-
tion compared to vacancy formation energies estimated using edge
energy. Dashed line shows equal energy.

D. 2D polarizability increases with 3D bond length

To keep our approach as generic as possible, we also
consider a perturbation of a constant electric field perpendic-
ular to the atomic plane. We quantify the results in terms of
the static polarizabilities calculated for hexagonal 2D metals
only. Calculation of polarizabilities is motivated because the

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
3D work function [eV]

2

3

4

5

6

M
on
ol
ay
er
w
or
k
fu
nc
tio
n
[e
V
]

FIG. 8. Calculated work functions for hexagonal 2D lattices as
a function of experimental work functions measured from polycrys-
talline samples [58]. Dashed line shows equal work functions.

polarizability of a molecule is related to its reactivity. For
example, larger polarizability of a molecule correlates with
stronger physisorption [64]. Similarly, larger surface polar-
izabilities increase physisorption energies. We calculated the
polarizability α by applying an electric field perpendicular to
the atomic plane and varying the field strength E from 0.05 to
0.5 V/Å. The polarizability was then given by a fit

p = αE, (10)

where p is the dipole moment. The resulting polarizabilities

per atom for the monolayers range from 1 to 10 Å
3
, which are

significantly lower than the corresponding polarizabilities of

free atoms that range from 5 to 60 Å
3

[65] (Fig. 10). In order
to visualize the difference between free atom and a monolayer,
we define the local dipole moment

ploc(x, y) =
∫

dzn(x, y, z)z, (11)

where n is the electron density and z is the direction perpen-
dicular to the atomic plane. While free Na atom has large
dipole moment near the nucleus, ploc is almost constant for
a hexagonal Na monolayer (Fig. 9).

To understand the difference between free and bound
atoms, we consider a simple model. The static polarizability
per atom is given by the E → 0 limit of the equation [66]

α = −∂2εML(E )

∂2E , (12)

where εML is the energy per atom for a monolayer. For a
periodic system the energy per atom in terms of cohesive
energy εcoh is

εML = εfree − εcoh, (13)

where εfree is the energy of a free atom. Therefore, if εcoh(E )
and εfree(E ) are known, the polarizability of an extended
system can be calculated. In practice, exact expressions for
εcoh(E ) and εfree(E ) are not known. However, by approxi-
mating εcoh(E ) the polarizability of many-atom system αML

can be calculated in terms of polarizability of free atom
αfree. A simple approximation for εcoh(E ) can be obtained by
considering interaction between aligned dipoles. Assume that
the application of an electric field gives rise to an equal dipole
moment for each atom. The dipole-dipole interaction energy

FIG. 9. Local dipole moment for Na atom (left panel) and hexag-
onal Na monolayer (right panel) at constant electric field of 0.5 V/Å.
For monolayer the local dipole moment is almost constant.
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FIG. 10. Polarizability per atom for hexagonal 2D layers as a
function of experimental 3D bond length [70]. Dashed line is the fit
α = kd3, where d is the bond length and k = 0.077 is a fit parameter.

is εdip(r ) = p2/r3, where p is the dipole moment and r is
the distance between dipoles. Since p = αMLE , the energy
as a function of the applied field is εdip(r, E ) = α2

MLE2/r3.
Approximating the cohesion energy as a sum over all dipoles
gives

εcoh(E ) =
∑

(n,m)�=(0,0)

α2
MLE2

|n�a + m�b|3 , (14)

where the summation is over (n,m) ∈ Z2 \ (0, 0) and �a and
�b are the lattice vectors. Taking the second derivative with
respect to E gives

αML = αfree − 2S
α2

ML

d3
, (15)

where d is the bond length and S is the lattice sum

S =
∑

(n,m)�=(0,0)

1

(n2 + nm + m2)3/2
, (16)

as discussed in Ref. [67]. Solving for αML gives

αML = d3

4S

(√
1 + 8S

αfree

d3
− 1

)
. (17)

According to Eq. (17), the polarizability of an extended
system is always smaller than that of a free atom because
εML(E ) varies slower than εfree(E ) due to the cost from dipole
interactions. Also αML → αfree when S → 0 or d → ∞, as
expected. If we approximate the polarizability of a free atom
to be proportional to the size of the atom [68,69], which in
turn is proportional to the bond length, the polarizability of
a monolayer becomes proportional to the cube of the bond

length. This cubic dependence is indeed what we observe
(Fig. 10).

IV. SUMMARY AND CONCLUSIONS

We studied the properties of edges and defects in
monoatomic free-standing 2D structures composed of metal
atoms by density-functional theory. We considered 45 metals
in hexagonal and square geometries and calculated their edge
and vacancy formation energies. To keep our results general,
we removed ribbon size and vacancy density dependence by
utilizing a linear ansatz with a correct asymptotic behavior.
We rationalized the ansatz for edge energies with a simple
model of particles in 1D box. The edge energies ranged from
almost zero to 0.6 eV/Å and had the highest values near
the middle of d series. Furthermore, they decreased almost
monotonically with increasing Wigner-Seitz radius, especially
for the simple metals. A similar trend has been observed
for surface energies. We explained this connection and the
dependence between edge and surface energies by jellium
ribbons and the liquid drop model.

The 2D vacancy formation energies ranged from nearly
zero to almost 4 eV and were highest near the middle of
the d series. For many metals the 2D vacancy formation
energies were unexpectedly close to the 3D vacancy formation
energies. This was in line with our earlier observation of 2D
bonds being stronger than 3D ones. The vacancy formation
energies were approximated well by the edge energies after
considering the formation of a vacancy as the formation of a
hole with a round edge. This connection implies that the edge
energies can be used to estimate the formation energies also
for vacancies of multiple atoms. Furthermore, the energies of
flat clusters can be quickly estimated using the edge energies.

Last, we perturbed the hexagonal monolayers by a constant
electric field and calculated the dipole polarizabilities. We
found that the polarizability per atom is significantly lower
for monolayers compared to free atoms. We gave a simple
model based on dipole interactions and obtained a cubic
dependence between bond length and monolayer polarizabil-
ity. The polarizability is relevant for physisorption of the
monolayer on substrate and for adsorbates on the monolayer
since larger polarizabilities lead to stronger physisorption.
The work functions of hexagonal monolayers were found
to be close to work functions measured for polycrystalline
samples, indicating that the changes in surfaces structures
and quantum size effects do not drastically alter them when
going from 3D to 2D. The work function is a global reactivity
descriptor that is important in charge transfer processes. These
results, which have been collected to a single table (Table I)
for readers’ benefit, contribute to the growing field of 2D met-
als and especially to advancing from idealized semi-infinite
systems towards more realistic finite systems with defects and
interactions between the environment.
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APPENDIX

Table I shows edge and vacancy formation energies for hexagonal and square lattices together with work functions and
polarizabilities of hexagonal structures.

TABLE I. Edge and vacancy formation energies (εedge and Ev) for hexagonal (hex) and square (sq) lattices. Work function φ and
polarizability α are tabulated for hexagonal lattice only.

εhex
edge (eV/Å) ε

sq
edge (eV/Å) Ehex

v (eV) Esq
v (eV) φ (eV) α (Å

3
)

Ag 0.17 0.13 1.15 1.03 4.61 1.59
Al 0.18 0.11 1.11 0.84 4.39 1.81
Au 0.24 0.16 1.45 1.49 5.44 1.49
Ba 0.07 0.07 0.96 0.87 2.19 7.28
Be 0.48 0.44 2.06 1.58 4.73 0.95
Bi 0.08 0.07 0.39 1.17 4.39 2.66
Ca 0.1 0.09 1.1 0.87 2.74 4.9
Cd 0.14 0.06 0.81 0.35 3.74 2.02
Co 0.36 0.32 1.97 1.33 5.24 1.14
Cr 0.23 0.35 2.3 1.97 5.33 1.32
Cs 0.02 0.02 0.25 0.24 1.93 10.38
Cu 0.26 0.19 1.57 1.25 4.74 1.17
Fe 0.29 0.3 1.94 0.99 5.19 1.24
Ga 0.1 0.09 0.57 0.83 4.25 1.83
Hf 0.27 0.32 2.41 1.83 4.31 2.86
Hg 0.01 0.01 0.05 0.03 4.04 2.33
In 0.08 0.07 0.56 0.76 3.94 2.52
Ir 0.51 0.31 2.79 2.24 6.33 1.4
K 0.03 0.03 0.32 0.29 2.32 7.01
Li 0.08 0.08 0.63 0.61 3.3 2.49
Mg 0.14 0.09 1.08 0.45 3.5 2.49
Mn 0.31 0.34 1.57 0.44 5.07 1.22
Mo 0.44 0.43 2.61 2.41 5.16 1.74
Na 0.05 0.04 0.4 0.36 2.83 3.71
Nb 0.36 0.44 3.03 2.4 4.85 2.07
Ni 0.35 0.27 2.0 1.48 5.48 1.12
Os 0.58 0.34 3.11 2.78 6.01 1.46
Pb 0.08 0.08 0.7 0.81 4.0 2.78
Pd 0.26 0.19 1.82 1.43 6.05 1.45
Pt 0.39 0.24 2.5 2.02 6.45 1.39
Rb 0.02 0.02 0.27 0.26 2.16 8.3
Re 0.56 0.39 3.45 2.69 5.68 1.57
Rh 0.43 0.27 2.03 1.94 5.93 1.44
Ru 0.42 0.36 2.13 2.69 5.68 1.47
Sc 0.21 0.21 1.97 1.89 3.73 3.12
Sn 0.08 0.1 0.65 1.03 4.25 2.48
Sr 0.08 0.08 0.93 0.8 2.42 6.24
Ta 0.4 0.41 3.49 2.26 5.07 2.14
Ti 0.26 0.32 2.1 1.71 4.41 2.3
Tl 0.06 0.06 0.57 0.64 3.69 2.69
V 0.35 0.45 2.67 1.93 5.14 1.62
W 0.53 0.44 3.67 2.52 5.46 1.76
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