This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Parr, E.; Page, R. D.; Joss, D. T.; Ali, F. A.; Auranen, Kalle; Capponi, L.; Grahn, Tuomas; Greenlees, Paul; Henderson, J.; Herzan, Andrej; Jakobsson, Ulrika; Julin, Rauno; Juutinen, Sakari; Konki, Joonas; Labiche, M.; Leino, Matti; Mason, P. J. R.; McPeake, C.; O’Donnell, D.; Pakarinen, Janne; Papadakis, Philippos; Partanen, Jari; Peura, Pauli; Rahkila, Panu; Revill, J. P.; Ruotsalainen, Panu; Sandzelius,

Title: Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf

Year: 2018

Version: Published version

Copyright: © 2018 American Physical Society

Rights: In Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf

E. Parr,1,* R. D. Page,1 D. T. Joss,1 F. A. Ali,1,† K. Auranen,2,‡ L. Capponi,$^{3,4,∥}$ T. Grahn,2 P. T. Greenlees,2 J. Henderson,5,†† A. Herzáñ,2,‡‡ U. Jakobsson,2,** R. Julin,2 S. Juutinen,2 J. Konki,$^{2,∥∥}$ M. Labiche,6 M. Leino,5 P. J. R. Mason,6 C. McPeake,1 D. O’Donnell,1,† J. Pakarinen,2 P. Papadakis,2,§ J. Partanen,2 P. Peura,2 P. Rahkila,2 J. P. Revill,1 P. Ruotsalainen,2 M. Sandzelius,2 J. Sarén,2 C. Scholey,6 J. Simpson,6 J. F. Smith,3,4 M. Smolen,3,4 J. Sorri,2 S. Stolze,$^{2,∥∥}$ A. Thornthwaite,1 and J. Uusitalo2

1Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
2University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 Jyvaskyla, Finland
3School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
4SUPA, Scottish Universities Physics Alliance, Glasgow G12 8QQ, United Kingdom
5Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
6Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom

(Received 4 July 2018; published 29 August 2018)

Fine structure in the α decay of high-spin isomers in 155Lu(25/2$^-$) and 156Hf(8$^+$) has been studied for the first time using $\alpha\gamma$-coincidence analysis. Three new α decays from 155Lu(25/2$^-$) and two from 156Hf(8$^+$) have been identified, populating seniority $s > 1$ states in the $N = 82$ nuclei 151Tm and 152Yb, respectively. The reduced hindrance factors of the α decays support the previous configuration assignments of the populated states. This is the first observation of states with excitation energy greater than 1.5 MeV being populated following α decay in nuclei outside of the 208Pb region.

DOI: 10.1103/PhysRevC.98.024321

I. INTRODUCTION

The establishment of 146Gd$_{62}$ as a semi-doubly-magic nucleus [1–3] has meant that the neighboring nuclei are excellent cases in which to test the nuclear shell model for systems with small numbers of valence nucleons. Notable successes of the shell model in this region have been the excellent reproduction of observed level energies, as well as $B(E2)$ values from decaying seniority isomers in the $N = 82$ isotones 148Dy, 149Ho, 150Er, 151Tm, 152Yb, 153Lu, and 154Hf above $Z = 64$ [4–12]. Here, low-lying levels are largely determined by valence protons in the $h_{11/2}$, $s_{1/2}$, and $d_{3/2}$ shells.

For the even $N = 82$ isotones with n valence protons outside of the core 146Gd, the shell model predicts five positive-parity states with $J^\pi = 2^+$, 4^+, 6^+, 8^+, 10^+ formed by the seniority $s = 2$, $\pi(h_{11/2})^n$ multiplet, and a full-paired, $s = 0$ ground state. All, or some, of these multiplet states have been observed in the even isotones mentioned and agree very well with predictions of the shell model. Additionally, three negative-parity states in each even isotope have been consistently observed. These have been assigned as $\pi(h_{11/2}d_{5/2}^{1-3})$ particle-hole octupole states, from the excitation of a $d_{5/2}$ proton from below the $Z = 64$ energy gap, and $\pi(h_{11/2}d_{5/2}^{1-5})$ and $\pi(h_{11/2}d_{5/2}^{1-7})$ states, from the breaking of a $h_{11/2}$ pair. In the odd isotones the additional $\pi(h_{11/2})$ proton would be expected to couple to these configurations, producing $J^\pi = 15/2^-$, $19/2^-$, $23/2^-$, $27/2^-$ seniority 3, $\pi(h_{11/2})^n$ multiplet states and $J^\pi = 15/2^+$, $19/2^+$, and $23/2^+$ opposite-parity states. These, again, have been observed in the odd isotones listed above, with the energies of the multiplet states being well reproduced by shell-model calculations.

An experimental observable that has not previously been utilized to study these states, however, is α-decay fine structure. The study of fine structure provides α-decay reduced hindrance factors (proportional to the inverse of the reduced decay widths), which are a measure of the overlap of the initial and final nuclear wave functions in an α-decay process; these then
indicate the similarities of configurations of the initial and final states. The comparison of reduced hindrance factors to different levels in product nuclei from the same initial state can also, therefore, provide evidence for the similarity, or otherwise, of these final states. Additionally, α-decay fine-structure studies are useful in constructing, or confirming, level schemes populated in product nuclei.

The main experimental challenge in populating states in $N = 82$ nuclei via α decay is the large excitation energies of their $s > 1$ states; which have minimum excitation energies of around 1.5 MeV. The reduction in Q_α leads to a dramatic drop in α branching ratios to the states. A possible solution to this problem is to search for α-decaying branches from high-energy isomeric states. Although the reduction in Q_α is the same, the higher energies of the possible α decays populating excited states allows these branches to compete with those to the ground states. This phenomenon has previously been observed in the region above 208Pb. In that region there have been five examples of nuclei whereby a high-energy isomeric state has been observed to α decay to a state with $E_{\text{excitation}} \gtrsim 1.5$ MeV; specifically those from 211Po [13,14], 213Po [14], 214Ra [15], 216Ra [16], and 217Pa [17].

This paper presents the results of a study of the α-decay fine structure populating excited states in the $N = 82$ nuclei 151Tm and 152Yb from the high-spin isomers in 155Lu ($J^\pi = 25/2^-$) and 156Hf ($J^\pi = 8^+$), respectively. This is the first time α-decay fine structure to states with seniority $s > 1$ configurations in $N = 82$ isotones above 146Gd has been reported. Previously only the α decay to single-proton states in odd isotones has been observed [18–22]. It is also the first report of states with $E_{\text{excitation}} \gtrsim 1.5$ MeV being populated following α decay in a different region to that just above 208Pb.

II. PREVIOUS STUDIES

A. Excited states in 151Tm and 152Yb

Excited states in 151Tm were first studied using γ-ray spectroscopy following the decay of a $J^\pi = 27/2^-$, $T_{1/2} = 470(50)$ ns isomer [7]. Four γ-ray transitions were observed, and from intensity comparisons were determined to have stretched E2 multipolarity. This allowed for the $\pi(h_{11/2})^3$, $s = 3$, multiplet sequence to be established. A subsequent investigation identified the γ rays emitted promptly following the production of 151Tm via fusion evaporation, as well as those from the decay of the isomer [10]. The initial level scheme below the isomer was confirmed, as well as the sequence of three positive-parity states described in Sec. I. Due to the low statistics some of these positive-parity states could only be placed tentatively in the work of Ref. [10].

The excited states in 152Yb were first investigated by studying prompt γ rays, as well as those emitted following the decay of a $J^\pi = 10^+$, $T_{1/2} = 39(5)$ μs isomer [10]. A cascade of five γ rays was used to identify levels from the $\pi(h_{11/2})^3$, $s = 2$, multiplet sequence, as well as the three negative-parity states. A further investigation was carried out detecting γ rays and conversion electrons emitted following the decay of the isomer in 152Yb [9]. From this work, the multipolarities of all the transitions were determined, allowing for a firm assignment of all energies, spins, and parities of the levels. The lowest three transitions were also observed following the β decay of 152Lu [23].

B. High-spin isomers in 155Lu(25/2−) and 156Hf(8+)

High-spin isomers in 155Lu and 156Hf were first observed via their α decays to the ground states of 151Tm and 152Yb, respectively [24]. The decay half-lives and α-particle energies were measured to be 2.7(3) ms and 7408(10) keV for 155Lu and 0.52(16) ms and 7804(15) keV for 156Hf. Although identified as decaying isomeric states with excitation energies between ~ 2 and 3 MeV, they were not, at the time, attributed to specific nuclei. Subsequent discussion, however, assigned them as states in 155Lu and 156Hf in Refs. [25,26]; the latter reference also giving new values of $E_\alpha = 7379(15)$ keV and $T_{1/2} = 2.60(7)$ ms for the decay from the isomer in 155Lu. Finally, the α decays from both of the isomers were studied and reported in Ref. [21]. Values of $E_\alpha = 7390(5)$ keV, $T_{1/2} = 2.71(3)$ ms and $E_\alpha = 7782(4)$ keV, $T_{1/2} = 0.52(1)$ ms were given for the α decays from the 155Lu and 156Hf isomers, respectively, and the mass assignments were confirmed using A/q recoil separation. No other α-decay branch or decay mode has been reported from either isomeric state.

With eight protons and two neutrons above the core of 146Gd, the high-spin isomer in 156Hf has been interpreted to have a $\nu(f_{7/2}h_{9/2})8^+$ configuration [26,27]. The isomeric state in 155Lu, with an unpaired $\pi h_{11/2}$ proton, has been interpreted to have a $\nu(h_{11/2})\nu(f_{7/2}h_{9/2})25/2^-$ configuration, which includes the addition of a proton seniority three structure [28]. The existence of these isomers is explained by the $8^+(25/2^−)$ state in 156Hf(155Lu) having been observed to have lower energy than that of the $6^+(23/2^−)$ state of the $\nu(f_{7/2})^3(\pi(h_{11/2})^2)7390(5)$ keV, $T_{1/2} = 25(7)$ μs band [27] [28]; hence forming a spin-trap isomer. The high-spin isomeric states will subsequently be referred to as 155Lu(25/2−) and 156Hf(8+) in this paper.

III. EXPERIMENTAL DETAILS

The results presented in this paper were obtained from an experiment performed at the Accelerator Laboratory of the University of Jyväskyla, Finland. The 155Lu and 156Hf nuclei were produced by a fusion-evaporation reaction using a 58Ni beam incident on a 106Cd target for around 292 hours. The 58Ni beam had energy of 318 MeV with an average intensity of 7804(15) keV for 156Hf. Although identified as decaying isomeric states with excitation energies between ~ 2 and 3 MeV, they were not, at the time, attributed to specific nuclei. Subsequent discussion, however, assigned them as states in 155Lu and 156Hf in Refs. [25,26]; the latter reference also giving new values of $E_\alpha = 7379(15)$ keV and $T_{1/2} = 2.60(7)$ ms for the decay from the isomer in 155Lu. Finally, the α decays from both of the isomers were studied and reported in Ref. [21]. Values of $E_\alpha = 7390(5)$ keV, $T_{1/2} = 2.71(3)$ ms and $E_\alpha = 7782(4)$ keV, $T_{1/2} = 0.52(1)$ ms were given for the α decays from the 155Lu and 156Hf isomers, respectively, and the mass assignments were confirmed using A/q recoil separation. No other α-decay branch or decay mode has been reported from either isomeric state.

With eight protons and two neutrons above the core of 146Gd, the high-spin isomer in 156Hf has been interpreted to have a $\nu(f_{7/2}h_{9/2})8^+$ configuration [26,27]. The isomeric state in 155Lu, with an unpaired $\pi h_{11/2}$ proton, has been interpreted to have a $\nu(h_{11/2})\nu(f_{7/2}h_{9/2})25/2^-$ configuration, which includes the addition of a proton seniority three structure [28]. The existence of these isomers is explained by the $8^+(25/2^−)$ state in 156Hf(155Lu) having been observed to have lower energy than that of the $6^+(23/2^−)$ state of the $\nu(f_{7/2})^3(\pi(h_{11/2})^2)7390(5)$ keV, $T_{1/2} = 25(7)$ μs band [27] [28]; hence forming a spin-trap isomer. The high-spin isomeric states will subsequently be referred to as 155Lu(25/2−) and 156Hf(8+) in this paper.

III. EXPERIMENTAL DETAILS

The results presented in this paper were obtained from an experiment performed at the Accelerator Laboratory of the University of Jyväskyla, Finland. The 155Lu and 156Hf nuclei were produced by a fusion-evaporation reaction using a 58Ni beam incident on a 106Cd target for around 292 hours. The 58Ni beam had energy of 318 MeV with an average intensity of ~ 6.4 particle mA. The target was a self-supporting 106Cd target of thickness 0.975 mg cm$^{-2}$. The fusion-evaporation products were separated from other reaction products and unreacted beam ions using the RITU gas-filled recoil separator [29,30]. They were then implanted into two double-sided silicon-strip detectors (DSSDs), which are part of the GREAT spectrometer [31], located at a focal plane of RITU. The two DSSDs each consisted of 40 horizontal and 60 vertical strips giving a total of 4800 individual pixels. An array of 28 silicon PIN diode detectors were located upstream from the DSSDs positioned to detect charged particles emitted out of the DSSDs. An array of three HPGe clover detectors surrounding the DSSDs was used to detect γ and x rays emitted by decaying implanted nuclei. These detectors were placed at $\theta = 90^\circ$ to the central path of
the recoils, on either side and above the DSSDs. Downstream of the DSSDs, within the vacuum chamber of GREAT, was a double-sided germanium strip detector. This was used to detect predominantly low-energy γ rays and x rays emitted following nuclear decays. At the entrance of GREAT was a multiwire proportional counter (MWPC). This was used to measure the energy loss of incoming recoils which, along with the time-of-flight from the MWPC to the DSSDs, enabled the selection of desired recoils over incoming unreacted beam or other reaction products. For the temporal correlation of the detection of recoils, within the vacuum chamber of GREAT, was a multiwire proportional counter (MWPC). This was used to measure the energy loss of incoming recoils which, along with the time-of-flight from the MWPC to the DSSDs, enabled the selection of desired recoils over incoming unreacted beam or other reaction products. For the temporal correlation of the detector signals each was time stamped in units of 10 ns [32].

IV. DATA ANALYSIS

The data analysis was performed using the GRAIN software [33], which was developed for use with data acquired by the Total Data Readout system [32]. The DSSDs were calibrated using α particles emitted by implanted evaporation residues, or those in their decay chains, produced during the experiment. The α particles used were from 150Dy $[E_\alpha = 4233(3)$ keV] [34], 152Er $[E_\alpha = 4799(3)$ keV] [34], 157Hf $[E_\alpha = 5729(4)$ keV] [21], 158Ta $[E_\alpha = 6046(4)$ keV] [21], and 159mW $[E_\alpha = 8286(7)$ keV] [35]. The branching ratios of the studied α decays of interest in 155Lu and 156Hf were small, therefore analysis of coincidences between α particles detected in the DSSDs and γ rays, emitted following the population of excited states in daughter nuclei, detected in the focal-plane clover-detector array was needed to identify them. The absolute efficiency for the detection of γ rays in the focal-plane clover-detector array was determined using GEANT4 Monte Carlo simulations.

Candidates for α decays from fusion-evaporation products were identified as signals in the DSSDs, which did not have coincident MWPC signals. As the recoiling nuclei were implanted close to the surface of the DSSDs a significant proportion (~40%) of the α particles were emitted out of the detectors, therefore depositing only a fraction of their energy. Some of these escaping α particles were then detected in the PIN-diode detectors. The background signals in the DSSDs produced by the partial energy deposition of the escaping α particles could, therefore, be reduced to some extent by vetoing potential α particles with a coincident PIN signal. Possible α decays were also correlated with a preceding recoil implantation in the same pixel of the DSSD. The incoming recoils were identified by gating on their characteristic energy loss in the MWPC and their time-of-flight from the MWPC to the DSSD. The time between the recoil and the decay was required to be up to 8.2 ms to identify α decays from 155Lu($25/2^-$) ($T_{1/2} = 2.7$ ms) and up to 1.5 ms for those from 156Hf(8^+) ($T_{1/2} = 0.52$ ms).

V. RESULTS

The properties of α decays identified in the present study are given in Table I. The table gives the following information: the α-particle energies; the α-decay branching ratios; the reduced decay widths; reduced hindrance factors of the decays calculated as described in Sec. VI; the spins, parities, and energies of the states populated in the daughter nuclei; and the total Q values of the decays, which is the sum of the Q value of the α decay and the excitation energy of the final state. Figure 1 shows the states in 151Tm and 152Yb populated following the α decays of 155Lu($25/2^-$) and 156Hf(8^+) reported here, as well as those from the 151Lu and 156Hf ground states.

<table>
<thead>
<tr>
<th>155Lu($25/2^-$)</th>
<th>$E_\alpha (keV)$</th>
<th>J_f^π</th>
<th>$E_f (keV)$</th>
<th>$Q_T (keV)$</th>
<th>$b_a (%)$</th>
<th>$\delta^2 (keV)$</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>7383(4)</td>
<td>11/2−</td>
<td>0</td>
<td>7578(4)</td>
<td>99.964(6)</td>
<td>3.63(10)</td>
<td>19.4(5)</td>
<td></td>
</tr>
<tr>
<td>5937(15)</td>
<td>15/2−</td>
<td>1478</td>
<td>7573(15)</td>
<td>2.4(13) $\times 10^{-3}$</td>
<td>0.22(12)</td>
<td>320(170)</td>
<td></td>
</tr>
<tr>
<td>5928(5)</td>
<td>(15/2−)</td>
<td>1490</td>
<td>7575(5)</td>
<td>2.8(6) $\times 10^{-2}$</td>
<td>0.87(19)</td>
<td>80(17)</td>
<td></td>
</tr>
<tr>
<td>5521(8)</td>
<td>(19/2−)</td>
<td>1905</td>
<td>7572(8)</td>
<td>5.8(16) $\times 10^{-3}$</td>
<td>1.2(3)</td>
<td>57(16)</td>
<td></td>
</tr>
<tr>
<td>156Hf(8^+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7775(5)</td>
<td>0+</td>
<td>0</td>
<td>7980(5)</td>
<td>99.990(4)</td>
<td>3.8(14)</td>
<td>18.2(6)</td>
<td></td>
</tr>
<tr>
<td>6274(15)</td>
<td>2+</td>
<td>1531</td>
<td>7971(15)</td>
<td>6.4(30) $\times 10^{-3}$</td>
<td>0.46(22)</td>
<td>150(70)</td>
<td></td>
</tr>
<tr>
<td>5942(15)</td>
<td>3−</td>
<td>1890</td>
<td>7989(15)</td>
<td>3.8(23) $\times 10^{-3}$</td>
<td>1.7(10)</td>
<td>45(25)</td>
<td></td>
</tr>
</tbody>
</table>

*Calculated assuming α decay populates known 3− state at 1890.1(6) keV reported in Ref. [23].
FIG. 1. Level schemes of 151Tm and 152Yb populated following the α decays of the 155Lu $J^\pi = 25/2^-$ isomer and ground state and the 156Hf $J^\pi = 8^+$ isomer and ground state, respectively. The spins, parities, and energies of each level are given along with the energies of the γ-ray transitions. For each γ-ray energy in coincidence with (a) 1905-keV, (b) 1478-keV, (c) 1490-keV, and (d) 1531-keV transitions. The populations that have previously been assigned to each state (see text for details) are shown.

A. 155Lu($25/2^-$) \rightarrow 151Tm α-decay fine structure

Figure 4 shows $\alpha \gamma$ coincidences gated for α decays from 155Lu($25/2^-$) (as detailed in Sec. IV). Spectra of α-particle energies in coincidence with the three γ rays identified from the deexcitation of states in 151Tm are shown separately in Figs. 2(b)–2(d). The α particles from 155Lu($25/2^-$) were identified with the help of the diagonal lines shown on the $\alpha \gamma$-coincidence spectrum in Fig. 4(a). The lines represent a constant Q_T value for summing the γ-ray energy and the α-decay Q value. They represent the Q_T values between 155Lu($25/2^-$) and the 151Tm ground state, $Q[\alpha^{155}$Lu($25/2^-$) \rightarrow 151Tm($11/2^-$)] (dashed line), and J^π = (15/2$^+$) state 1490 keV above the ground state (as reported in Ref. [10]), $Q[\alpha^{155}$Lu($25/2^-$) \rightarrow 151Tm($15/2^+$)] (dot-dashed line).

1. $E_{\alpha} = 5521$ keV

Along the $Q[\alpha^{155}$Lu($25/2^-$) \rightarrow 151Tm($15/2^+$)] line in Fig. 4(a) coincidences between α particles with $E_{\alpha} =$

FIG. 2. DSSD α-particle energy spectra recorded up to 8.2 ms after the identification of a recoil implantation in the same DSSD pixel. (a) shows all α-particle energies. The other panels show α-particle energies in coincidence with (b) 415-, (c) 1490-, and (d) 1478-keV γ rays identified from 151Tm.

FIG. 3. Decay time for the α decays identified from 155Lu($25/2^-$) to the (a) (19/2$^+$), (b) (15/2$^+$), and (c) 15/2$^-$ states in 151Tm and from 156Hf(8^+) to the (d) 2$^+$ and (e) 3$^-$ states in 152Yb. Also shown as a dashed line on each panel is the distribution of the decay times from the respective isomer to the ground state. These have been scaled for comparison with the weaker branches.
FINE STRUCTURE IN THE α DECAY OF HIGH-… PHYSICAL REVIEW C 98, 024321 (2018)

FIG. 4. Energies of coincident α particles and γ rays measured following the decay of 155Lu(25/2+). The diagonal lines on (a) represent a constant energy for the sum of the α-decay Q value, calculated from the α-particle energy, and the γ-ray energy; the energies represented are those between the 155Lu(25/2+) isomeric state and both the ground state (dashed line) and excited state at 1490 keV (dot-dashed line) in 151Tm. The $\alpha\gamma$ coincidences identified are circled and the γ-ray projections in coincidence with (b) the 5521(8)-keV and (c) the 5928(5)- or 5937(15)-keV α particles are shown.

5521(8) keV and γ rays with $E_\gamma = 415$ keV are highlighted; the projection of the coincident γ rays is shown in Fig. 4(b). Previously, a level has been tentatively assigned at 1905 keV with $J^\pi = (19/2^+)$ in 151Tm, which decays to the (15/2+) level via the emission of a 415-keV γ ray [10]. It is therefore proposed that the α decay associated with these coincidences directly populates this (19/2+) level in 151Tm from the 155Lu(25/2+) isomeric state; this also confirms the positioning of a level at 1905 keV. The DSSD spectra in coincidence with the 415- and 1490-keV γ rays are given in Fig. 2(b) and 2(c), respectively. As expected, the 5521(8)-keV α particle is seen in coincidence with both of these γ rays. The prominent 155Lu(25/2+) 7383-keV contaminant peak in Fig. 2(b) is the result of random coincidences due to the high intensity of Compton-scattered 511-keV electron-positron annihilation γ rays over the 415-keV peak. The total decay Q_T value of 7572(8) keV is consistent with the Q value of 7578(4) keV for the α decay to the ground state of 151Tm. Figure 3(a) shows the decay times of the $\alpha\gamma$ coincidences with γ-ray energy directly to the ground state [10]. It is therefore proposed that these coincidences are associated with the population, and subsequent decay, of this (15/2+) state via the α decay of 155Lu(25/2+). The total Q_T value of the decay is 7575(5) keV, which is consistent with the $Q = 7578(4)$ keV value for the α decay to the ground state. The distribution of decay times of these coincidences, shown in Fig. 3(b), are also consistent with the distribution of the α decays to the ground state.

3. $E_\alpha = 5937$ keV

A small number of coincidences between α particles with $E_\alpha = 5937(15)$ keV and γ rays with $E_\gamma = 1478$ keV are highlighted in Fig. 4(a), with the projection of γ rays given in Fig. 4(c). These coincidences appear on the $Q^{[155]$Lu(25/2+) → 151Tm(11/2-)] line. A 15/2+ state has previously been observed in 151Tm at 1490 keV, which decays via γ-ray emission directly to the ground state [10]. It is therefore proposed that these coincidences are associated with the population, and subsequent decay of this (15/2+) state via the α decay of 155Lu(25/2+). The total Q_T value of the decay is 7575(5) keV, which is consistent with the $Q = 7578(4)$ keV value for the α decay to the ground state. The distribution of decay times of these coincidences, shown in Fig. 3(b), are also consistent with the distribution of the α decays to the ground state.

B. 156Hf(8+) → 152Yb α-decay fine structure

Figure 5 shows $\alpha\gamma$ coincidences gated for α decays from 156Hf(8+) (as detailed in Sec. IV). Strong contaminant coincidences from the α-decay fine structure of 155Lu(25/2+) discussed previously, are highlighted in a dashed circle and labeled in brackets. The α particles from the 156Hf(8+) isomers were identified with the help of the diagonal line shown on the $\alpha\gamma$-coincidence spectrum. The line represents a constant Q_T value for the sum of the α-decay Q value, calculated from the α-particle energy, and the γ-ray energy. It is equal to the Q value between the 156Hf(8+) isomeric state and the 152Yb ground state, $Q^{[156]$Hf(8+) → 152Yb(0+)]$.

1. $E_\alpha = 6274$ keV

Coincidences between α particles with $E_\alpha = 6274(15)$ keV and γ rays with $E_\gamma = 1531$ keV are highlighted in Fig. 5(a). Figure 5(b) shows the projection of γ rays in coincidence with 6274-keV α particles (as well as those of 5942 keV to be discussed in the next section). These appear on the $Q^{[156]$Hf(8+) → 152Yb(0+)] line and the 21$^+_1$ state in 152Yb has previously been identified 1531 keV above the 0$^+$ ground state [9,10,23]. The coincidences are therefore proposed to derive from the α decay of 156Hf(8+) to the 21$^+_1$ state in 152Yb. The Q_T value of 7971(15) keV is consistent with the value of 7980(5) keV for the α decay to the ground state. Also, the decay times, shown in Fig. 5(d), compare well with the distribution for the decays to the ground state of 152Yb.
FIG. 5. Energies of coincident α particles and γ rays measured following the decay of 156Hf(8+). The diagonal line on (a) represents a constant energy for the sum of the α-decay Q value, calculated from the α-particle energy, and the γ-ray energy; the energy represents that between the 156Hf(8+) isomeric state and the ground state of 152Yb. The αγ coincidences identified from 156Hf(8+) are circled with contaminant coincidences from 155Lu(25/2−) also labeled. Also shown are the γ-ray energies in coincidence with (b) the 5942(15)- or 6274(15)-keV α particles and (c) the α-particle energies in coincidence with the 1531-keV γ rays.

2. $E_a = 5942$ keV

The DSSD energies in coincidence with the 1531-keV γ rays are shown in Fig. 5(c). Along with the counts associated with the population of the 2^+_1 state there is a cluster of three counts with an energy of 5942(15) keV. Comparison of the decay times of these three coincidences with the distribution for the decay of 156Hf(8+) to the ground state of 152Yb, in Fig. 3(e), shows them to be consistent; implying they could be produced by the decay of 156Hf(8+). If these counts are assumed to be associated with the α decay that populates the $3^−$ state in 152Yb at 1890 keV [9,10,23], which decay via a cascade of 359- and 1531-keV transitions, then the total Q value would be 7989(15) keV for the decay. This is consistent with the value of 7980(5) keV for the α decay to the ground state. It is therefore proposed that the coincidences are associated with the α decay of 156Hf(8+) to the $3^−$ state in 152Yb. No coincidences were observed between α particles with 5942 keV and 359-keV, 3−→2+, γ rays. Considering the low statistics of the αγ coincidences between 5942(15)-keV α particles and 1531-keV γ rays, only a small number, if any, of these counts would be expected. As the γ-ray energy lies in the Compton continuum produced by the 511-keV background γ rays, small numbers of these αγ would be difficult to identify; this can be seen in Figs. 4(a) and 4(b).

VI. DISCUSSION: α-DECAY REDUCED HINDRANCE FACTORS

Table I and Fig. 1 give the reduced hindrance factors (HFs) for each of the α decays observed. These are found from the reduced decay widths, δ^2, calculated using the method prescribed by Rasmussen [37], with the lowest permissible spin change for each α decay considered. The reduced hindrance factors have been taken as the inverse of these reduced decay widths, scaled so that HF(212Po → 208Pb) = 1 [where δ^2(212Po → 208Pb) = 71.4 keV]. Figure 6 shows the reduced hindrance factors of all of the α decays observed from 155Lu(25/2−) and 156Hf(8+), as well as those from their ground states. Populated states with analogous configurations in 151Tm and 152Yb have the same symbols.

It can be seen that the hindrance factors to states in 151Tm and 152Yb, which have been previously assigned with analogous configurations are comparable. This appears to corroborate the assignments. Comparing the hindrance factors to the daughter ground states (circles) from both the ground and isomeric states of the decaying nuclei, there is roughly an order of magnitude increase for the decays from the isomers. The hindrance of an α decay is determined by both the difference in nuclear structure of the initial and final states and also the pairing of the decaying state; this having a large influence on the α-particle preformation factor [38]. In this case, the increase in HFs may be attributed to the weakening of pairing correlations produced by the $\nu(f_7/2h_9/2)$ configuration of the isomeric states compared with the fully paired $\nu(f_7/2)^2$ ground states.

For α decays from the isomeric states there is again roughly an order of magnitude increase for the hindrance factors to the first $\pi(h_{11/2})^{5(0)} s = 3(2)$ multiplet excitations with 15/2− (2+) in 151Tm(152Yb) (triangles) compared with those to the $s = 1(0)$ ground states. This increase may be explained by nuclear-structure considerations due to the rearrangement of the $h_{11/2}$ protons required to form the first multiplet excitation. More surprising perhaps, when considering the α decays from 155Lu(25/2−), is that the hindrances to the 15/2− and 19/2− states are very similar. As they have been assigned with different structures, a $\pi(h_{11/2}d_{5/2}^{1/2})$ octupole excitation (15/2−) (square) and a $\pi(h_{11/2}s_{1/2})$ proton excitation (19/2−) (cross),
different hindrances may be expected to be observed to each of them. However, it may be the case that the populated states are both similarly different so as to produce comparably hindered α decays. The hindrance of the decay from 156Hf($8^+\alpha$) to the $\pi(h_{11/2}d_{5/2})$ (square) state in 152Yb is somewhat uncertain due to low statistics. However, it is consistent with that of the analogous octupole state in 151Tm. Recent theoretical attempts have been made to quantify the reduction of pairing in multiquasiparticle isomers, which causes an increase in α-decay hindrance from these states compared with those from ground states 38,39. However, the effects of nuclear structure and pairing changes are difficult to deconvolute. Experimental data for the fine structure in α decay from isomeric states in this region, combined with those from nuclei around 208Pb, could prove helpful in determining the effects of reduced pairing on α-decay hindrances.

VII. SUMMARY AND FUTURE WORK

The α-decay fine structure of high-spin isomers in 155Lu(25/2$^-$) and 156Hf(8$^+$) has been studied using $\alpha\gamma$-coincidence analysis. Three new α decays from 155Lu(25/2$^-$) and two from 156Hf(8$^+$) have been identified, which populate states in the $N = 82$ isotones 151Tm and 152Yb. This has allowed confirmation of the previously tentative level at 1905 keV assigned with $J^\pi = (19/2^+)$. The populated states had previously been interpreted as various proton seniority $s > 1$ structures, which are well described by the shell model. An analysis of the hindrance factors of the α decays populating these states was consistent with the structural assignments previously made.

This is the first report of states with such high energies ($E_{\text{excitation}} \gtrsim 1.5$ MeV) being populated following α decay outside the region above 208Pb. As well as providing a challenge for theorists to describe these α-decay branches in both regions there is also scope for further experimental investigation in nuclei above 146Gd. For example, another α-decaying high-energy spin-trap isomer in the $N = 84$ isotope chain is known to exist in 150W 26, and significant branches populating states in 154Hf could be observed. Additionally, a hint of a high-energy α-decaying isomeric state was reported in 157Ta 21, but the apparent similarity of its α-decay energy and half-life to that of the α decay from 156Hf(8^+) has meant this has not been possible to confirm. The observation of α-decay branches from this isomer to known excited states in 153Lu would provide confirmation of its existence.

ACKNOWLEDGMENTS

This work has been supported by the United Kingdom Science and Technology Facilities Council (STFC); the Academy of Finland under the Finnish Center of Excellence Programme (2012–2017); the EU 7th framework programme, Project No. 262010 (ENSAR); the Slovak Research and Development Agency under Contract No. APVV-15-0225; and the Slovak grant agency VEGA (Contract No. 20129/17). The authors also thank the GAMMAPOOL European Spectroscopy Resource for the loan of the detectors of the JUROGAM II array.
