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Abstract

Causal models provide a formal approach to the study of causality. One of the most useful
features of causal modeling is that it enables one to make causal claims about a phenomenon
using observational data alone under suitable conditions. This feature enables the analysis
of interventions that may be infeasible to conduct in the real world for practical or ethical
reasons. The uncertainty associated with the variables of interest is taken into account by
including a probability distribution in the causal model, making it is possible to study the
effects of external interventions by examining how this distribution is changed by the action.
The probability distribution of a specific variable in a causal model perturbed by an outside
intervention is the causal effect of that intervention on the variable.

One of the most fundamental problems of causal inference is determining whether a causal
effect can be uniquely expressed in terms of the joint probability distribution over the observed
variables in a given causal model. Causal effects that can be expressed in this way are called
identifiable and they serve as the link between observational and experimental information.
Complete solutions to the identifiability problem take the form of an algorithm that produces an
expression in terms of observed quantities whenever the causal effect given as input is identifiable.
However, completeness in this context refers only to the correctness and exhaustiveness of the
methods. The formulas obtained as output from identifiability algorithms are often impractical
and unnecessarily complicated.

The thesis augments the pre-existing identifiability methodology by providing a simplifica-
tion procedure that drastically improves the complicated outputs in many cases. Simplification
also has practical benefits when statistical estimation is considered if variables affected by bias
or missing data no longer appear in the simplified expression. The thesis also introduces a
new method called pruning, which aims to eliminate variables that are unnecessary for the
identification task from the causal model itself. Finally, a variety of identification algorithms
are implemented more complicated settings, such as when data are available from multiple
domains. The methods are provided through the R package “causaleffect”.



Tiivistelma

Kausaalimallit tarjoavat formaalin lahestymistavan kausaalisuuden tutkimiseen. Kausaalimallin
yvksi hyodyllisimmisté ominaisuuksista on, ettd sen avulla on mahdollista tehda johtopaatok-
sia syy-seuraussuhteista pelkistdin havainnoivan aineiston perusteella sopivien olosuhteiden
vallitessa. Tdmé& ominaisuus mahdollistaa sellaisten kokeiden analysoinnin, joita ei kaytannol-
lisista tai eettisista syisté ole mahdollista toteuttaa todellisuudessa. Kiinnostuksen kohteena
oleviin muuttujiin liittyva epavarmuus otetaan huomioon lisdadmaélla kausaalimalliin todennakoi-
syysjakauma, mikd mahdollistaa ulkopuolisten interventioiden vaikutusten tutkimisen mallin
todennékoisyysjakaumassa tapahtuvien muutosten kautta. Tietyn muuttujan jakauma kausaa-
limallissa, johon on tehty interventio mallin ulkopuolelta, on intervention kausaalivaikutus
muuttujaan.

Yksi kausaalipdattelyn perustavanlaatuisimmista kysymyksistd on méarittasd, milloin an-
nettu kausaalivaikutus voidaan ilmaista yksikéasitteisesti annetun kausaalimallin muuttujien
yhteisjakauman avulla. Téllaisia kausaalivaikutuksia kutsutaan identifioituviksi ja ne yhdistavét
kokeisiin ja havaintoihin perustuvan informaation toisiinsa. Téydelliset ratkaisut identifioitu-
vuusongelmaan esitetdén yleensé algoritmin avulla, joka tuottaa identifioituvalle kausaalivaiku-
tukselle lausekkeen havaittujen suureiden avulla esitettyna. Taydellisyys viittaa tdssd yhteydessa
ainoastaan menetelmien korrektiin toimintaan ja kattavuuteen. Identifoituvuusalgoritmien
tulosteena tuotetut lausekkeet ovat usein vaikeaselkoisia ja tarpeettoman monimutkaisia.

Tamaé vaitoskirja tdydentédd jo olemassa olevaa identifioituvuusmetodien joukkoa tarjoamalla
sievennysmenetelmin, joka huomattavasti parantaa monimutkaisia tuloksia monissa tapauksis-
sa. Sievennyksesta on myos kiytdnnon hyotya tilastollisessa estimoinnissa jos muuttujia, joihin
liittyy valintaharhaa tai puuttuvaa tietoa, ei enédé esiinny sievennetyssa lausekkeessa. Vaitoskir-
jassa esitelldan myo6s karsintamenetelmé, jonka tavoitteena on eliminoida identifioituvuuden
kannalta epdoleellisia muuttujia kausaalimallista itsestaén. Vaitoskirjassa myos implementoi-
daan lukuisia identifioituvuusmenetelmié erilaisiin tilanteisiin, esimerkiksi joissa aineistoja on
saatavilla useista eri lahteistd. Namé& menetelmét tarjotaan R-paketin “causaleffect” kautta.
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Chapter 1

Introduction

Causality permeates our everyday discourse and it is an essential component in our under-
standing of the natural world. An intuitive understanding of causality has been necessary for
not only our survival, but for other species of the animal kingdom as well. One will surely
meet a quick end without learning to recognize that certain sounds imply the presence of a
dangerous predator or that a plant having a specific shape or color is inedible. It seems though
that for humanity the capacity to reason about causes and effects extends further to seemingly
disconnected events or networks of multiple events and leads us to ask what causality truly
is. The underlying processes in our minds are quick to pick apart notions such as “wet grass
causes rain” and “eating ice cream causes drowning”. Consensus can be reached about even
more involved claims, such as “smoking causes lung cancer”. However, even with questions that
may seem trivial it is important to consider what they really mean.

Without a formal approach to causality, our intuition is always at risk of leading us to
incorrect conclusions, the consequences of which range from harmless to catastrophic. A
comparison can be drawn with the concept of probability which almost everyone has an
intuitive understanding about. Without a proper formal characterization it is possible to derive
many seemingly paradoxical results, that turn out to be straightforward to resolve with a
rigorous approach and proper understanding of the issue. Just as there have been many formal
definitions of probability (Bayes, 1763; Laplace, 1812), causality has also received its fair share
of attempts at formalization that more or less tend to agree with our intuitive understanding
of causes and effects (Neyman, 1923; Granger, 1969; Lewis, 1973a; Rubin, 1974). In this thesis,
we will focus on a formalization by Pearl (1995, 2009) that is based on directed graphs and
probability theory.

In the natural world, the temporal order of events often dictates the inherent directionality
of causation. An event cannot precede its cause, but we can recognize systems where cyclical
or mutual causation occurs. We can find such systems in nature, such as the decomposition
of organic matter being used as nutrition for new life or two objects in motion colliding and
causing each other to stop or change direction. When addressing more complicated systems, it
is beneficial to focus on the distinct causes of the components involved in the system instead



of the system as a whole. This leads us to the notion of modularity that we also consider an
inherent feature of causal influence. When considering a given effect, we are not required to be
aware of the entire state of the rest of the world. Having knowledge of all the direct causes of
the effect is enough for making accurate claims about the effect. When designing an experiment
or formulating a statistical model, we have to make a decision about the scope of our approach.
The variables we decide to include in the model and the precision of our instruments that we
use to measure them all play a role in how well the model is able to capture reality. The same
challenge of deciding the appropriate level of granularity in our analysis applies to making
causal inferences. We will never be able to include every possible observable direct cause in our
model due to both practical reasons and quantum interactions at the most fundamental level.

Graphs allow us to incorporate these intuitive concepts of directionality and modularity
under a mathematical framework. They also provide a visual aid that may help researchers and
applied scientists to be more precise about their claims and to better communicate the processes
involved in the analysis. Graphs have emerged as a prominent tool in many scientific fields
including econometrics (Strotz and Wold, 1960), artificial intelligence (Larranaga and Moral,
2011), biomechanics (Andreassen et al., 1987) and social sciences (Blalock, 1971). Vertices
of the graph represent variables of interest and edges of the graph represent direct causal
relationships between those variables. The value of each variable is then completely determined
by the values of those variables that are its direct causes, also known as its parents in graphical
terms. Graphs associated with this interpretation are often called causal diagrams (Pearl, 2009).
Prevalent issues involving real-world data such as selection bias and missing data have led to a
causal formulation of these problems further necessitating the need for causal diagrams that
extend the original interpretation. Graphs used to solve these issues include special vertices
that have been given a role distinct from other vertices such as the mechanism responsible for
the selection preference (Cooper, 2000; Geneletti et al., 2009; Didelez et al., 2010; Bareinboim
et al., 2014) or missingness (Karvanen, 2015; Shpitser et al., 2015; Thoemmes and Mohan,
2015).

We are often faced with uncertainty regarding our causal system of interest. First, we may
know that a variable is a direct cause of another, but do not have enough information to fully
specify the functional form of the causal influence. Second, we are limited in the scope of our
model and can only partly observe the direct causes of effects. Using probability theory, we
are able to formally take these sources of uncertainty into account. As we have the capability
to collect data on the variables that we have observed, we can postulate a joint probability
distribution over them. In order to be able to make use of this distribution, we consider
specific vertices in our graph unobserved and imbue them with a probability distribution. The
flow of information in the network now induces a probability distribution over the observable
effects. Additionally, we can make inferences about the functional relationships through this
distribution by fixing a set of values for the causes of interest and analyzing the conditional
probability of the effect conditioned on the fixed values.

To fully understand the causal nature of a phenomenon, a causal analysis can be conducted
in three distinct steps: discovery, identification and estimation. In causal discovery, we are



not readily provided with a causal model but instead it has to be constructed from relevant
data that is available or that can be collected. Thus the analysis begins by searching for a
causal model that depicts the causal relationships in the data with sufficient accuracy. This
domain of research is known as causal discovery, but labels such as causal induction have also
been used (Griffiths and Tenenbaum, 2009). A statistical dependence between two variables
is easy to confirm, but making a claim about a causal connection is much stronger. Many
causal structures are able to generate the same dependence structure and usually specialized
background knowledge is required to rule out undesirable structures. A common phrase
“correlation does not imply causation” is an important principle here, since an unobserved
common cause between two variables may result in the observed association between them
(Reichenbach, 1956). There are many factors that have to be considered in causal discovery,
such as latent confounding (Robins and Wasserman, 1999), direction of causation (Peters et al.,
2009) and presence of cycles (Hyttinen et al., 2012).

Not every inferential question can be answered in the presence of uncertainty even when
the causal model is known. At the heart of causal inference lies the question of whether
the information encoded in our causal model is sufficient to uniquely characterize a specific
query. This problem is known as the identifiability problem and it has been widely studied
in many aspects of causal inference. Complete solutions have been derived for a general
non-parametric setting (Tian, 2002; Shpitser and Pearl, 2006b; Huang and Valtorta, 2006b)
as well as for various extensions (Bareinboim and Pearl, 2012a, 2014). Identifiability has also
been studied in settings where the missing data mechanism or preferential selection is included
in the causal model (Shpitser et al., 2015; Bareinboim and Pearl, 2012b) and when the causal
relationships are assumed to be linear (Wright, 1921; Angrist et al., 1996; van der Zander
and Liskiewicz, 2016; Chen et al., 2017). Identification is the second step in a causal analysis
and various identification problems can be distinguished according to the causal hierarchy as
defined by Pearl (2009). This hierarchy is useful for classifying various questions based on the
type of information that is required to answer them and how difficult they are to understand
conceptually. The first level of inquiry is called associative, which is concerned with queries
such as how likely it is that a person who smokes will develop lung cancer. Questions at the
associative level do not invoke the causal information embedded in our model and can be
answered using the observed probability distribution alone.

The second level, intervention, is the primary focus of this thesis and it is placed higher in
the causal hierarchy because it involves the effects of actions on the causal model that change
the functional relationships involved. Intervention in this context means an ideal manipulation
where only the causal mechanism of the target of the intervention is manipulated and other
mechanisms of the model are left intact. For instance, we could consider how the likelihood of
lung cancer changes if a smoker stops smoking or a non-smoker decides to start smoking while
keeping other habits unchanged. Observational information about lung cancer prevalence alone
is not enough to answer these questions since it does not account for this change in smoking
behavior. Purely associational questions can be formulated also at this level. We simply omit
the action on the model from our query. A traditional approach to answering such causal queries



is to conduct a randomized experiment. However, conducting an experiment may not always
be a possibility. In the case of smoking, it would be unethical to force participants to smoke.
Practical limitations may also prevent us from obtaining experimental data; the experiment
may be too costly to implement or in fact physically impossible to carry out. Furthermore, an
experimental study may not be able to reflect the semantics of an ideal manipulation. As an
example, a drug may have side-effects that cause unintended perturbations in the physiology
of the patient.

The third and topmost level is the counterfactual level which addresses retrospective
questions. The term ‘“counterfactual” originates from the term “counterfactual conditional”
which was coined by Goodman (1947). Counterfactuals are not only important for scientific
thinking, but for traditional western judicial systems as well. When assessing whether the
defendant is at fault for causing harm to the plaintiff for example, a guilty verdict can be
drawn only if it is found beyond reasonable doubt that the harm would not have been caused
had the defendant not acted as they did. In this instance, we compare the real world, where
some action was taken, to an alternative hypothetical world, where no action took place. Lewis
(1973b) described this concept using the notion of closest worlds and a formal characterization
was provided by Galles and Pearl (1998).

Counterfactuals can be vastly more complicated than a single clause comparing two worlds
and they may even involve multiple parallel worlds at once. Counterfactuals encompass both
of the lower levels of the hierarchy. An interventional question such as “what happens if a
smoker stops smoking?” can be reformulated as “what would have happened had a smoker
stopped smoking?”. This translation does not work if attempted in the opposite direction. No
intervention is able to capture the notion of alternative worlds, where an action is both taken
and not-taken at the same time. As an example, a question such as “what would have been
the effect of a treatment on a subject that was not treated?” cannot be represented as an
interventional question. A study cannot be conducted on subjects that have already received
treatment to obtain information about a response had they not received the treatment. This
has not stopped researchers from attempting to overcome this issue in practical experiments.
For example, once a sufficient time has elapsed, the effects of the treatment may be considered
non-existent. Alternatively, the originally treated subjects might be replaced with a completely
new group of subjects that are as similar to the original subjects as possible in the aspects
relevant to the study.

The last step of a causal analysis is the estimation of the identifiable queries of interest
based on the available information. Often the estimators are complicated functionals of the
observed probability distribution and there is no standard approach that would be applicable
in every scenario. Propensity score matching (Rosenbaum and Rubin, 1983) is a standard
technique in the framework of potential outcomes (Rubin, 1974) for estimating causal effects.
The technique attempts to account for covariates that affect the probability of an intervention,
such as a treatment or a policy decision. A similar technique of inverse probability weighting
(Robins, 1986) has led to wide application of the so-called doubly-robust methods (e.g. Funk
et al., 2011; Cao et al., 2009; Waernbaum, 2012). Doubly robust methods include a regression



model for the outcome of interest as well as a model for the exposure which protects against
model misspecification since only one of the models has to be correctly specified for unbiased
estimation. In general, if enough data and expert knowledge are available, it may be feasible to
fit a parametric model for the observed joint probability distribution and then use the model to
simulate potential values for the causal quantity of interest even outside the potential outcome
framework.

In this thesis, we focus on the problem of non-parametric identifiability of causal effects and
its generalizations to relevant problems in statistics. The purpose of this thesis is to improve the
current methodology in three aspects. First, we aim to improve the availability of identification
methods by implementing fundamental algorithms and providing them as free software. One of
the main contributions of this thesis is the software package causaleffect implemented in the
statistical computing language R (R Core Team, 2018). Second, we present tools for improving
the clarity and practical usability of the pre-existing methods. Even though completeness has
been achieved in many identification procedures, the outputs of the corresponding algorithms
are often unnecessarily complicated. It turns out that there often exists an equivalent but
simpler expression that describes the same quantity of interest. We present a simplification
procedure that attempts to symbolically manipulate these output expressions in order to reach
a simpler expression. The simplicity of the expression can be evaluated by various criteria.
Third, we present a new method called pruning which seeks to eliminate unrelated variables
from the causal model before the identification procedure takes place thereby reducing the
complexity of the task and the output.

The thesis is organized as follows. In Chapter 2 we review the most important concepts
related to graphs and causal models. Chapter 3 addresses the identification of causal effects.
Chapter 4 is dedicated to the contribution of this thesis to the field. Chapter 5 concludes with
a discussion.



Chapter 2

Causal models

The origins of causal modeling can be traced back to the framework of structural equation
models (SEM) (Haavelmo, 1943) which in turn evolved from path analysis (Wright, 1921).
SEMs consist of multiple linear regression equations, where the response of one equation may
appear as a predictor in another equation. The goal is to give a causal interpretation to the
regression coefficients appearing in these equations (Kline, 2005).

A formal model for causality should capture the principles of directionality and modularity
discussed in Chapter 1. To motivate the use of graphs, we begin by considering a simple
candidate model for representing causality: a model that consists only of the joint probability
distribution of the relevant variables. While this model is certainly capable of capturing
uncertainty, it falls short in being able to take the main principles into account in every scenario.
We can consider a simple system with three variables, X, Y and Z, such that X is the cause
of Z and Z is the cause of Y. In this system, we can represent modularity in a probabilistic
model with the property that X and Y are conditionally independent when conditioned on Z.
This would mean that it is enough to know the direct causes of Y when predicting its value.
However, this independence structure also applies if we reverse the roles of X and Y which
means that we are unable to represent directionality in this model.

2.1 Graphs

Graphs have evolved to be the standard tool for representing uncertainty. The power of graphs
is evidenced by their popularity in recent history and the formalism of graphical models is
employed in many scientific disciplines. In the context of path analysis, graphs are an important
tool for path tracing which is a method of calculating relationships between variables in the
model (Wright, 1934). In structural equation modeling graphs can be used to visually represent
the system of equations. In the advent of computational methods, Bayesian networks were
introduced where graphs play a central role, even before a causal interpretation was attributed
to the directionality of the edges (Pearl, 1985; Lauritzen and Spiegelhalter, 1988).

Graphs have an inherent connection to joint probability distributions that factorize according



to the structure of the graph. When a distribution agrees with a graph in this way, the graph
provides an informative representation of the distribution and allows probabilistic reasoning
through its properties. It is perhaps this feature that has led to the formalism of graphical
models that encompasses various seemingly unrelated special cases.

Next we present the notation and definitions used for graphs throughout this thesis as
outlined in (Koller and Friedman, 2009).

A graph is an ordered pair G = (V,E), where V and E are sets such that

EC{{X,Y}|XeV,YeEV XY}

The elements of V are the vertices of G and the elements of E are the edges of G. A graph
F = (V' E') is a subgraph of G if V' C'V and E’ C E such that for cach edge {X,Y} € E it
hold that X,Y € V’. This is denoted as F' C G. A subgraph such that V' =V is called an
edge subgraph. An induced subgraph, induced by a set of vertices W C V, is denoted by G[W].
This subgraph retains all edges {X,Y} € E such that X, Y € W.

A graph G is directed if the set E is considered to consist of ordered pairs (X,Y) instead
of sets {X,Y}. In a directed graph, vertex Y is a child of vertex X if G contains an edge
from X to Y, which means that (X,Y’) € E. Similarly, X is a parent of Y if (X,Y) € E. The
child-parent relationship is often denoted as X — Y, where X is a parent of Y and Y is a
child of X. This can also be denoted as Y < X. For each vertex X of G the sets of incoming
edges of X and outgoing edges of X contain all edges such that (Y, X) € E and (X,Y) € E,
respectively. The graph obtained from G by removing all incoming edges of X and all outgoing
edges of Z is written as G)—(’Z.

In (Koller and Friedman,_2009), a path is a sequence of edges connecting adjacent vertices.
Here we define paths as graphs where the set of edges forms such a sequence. Let n > 1 and
V ={WV,...,V,}. If n > 1, then the graph H = (V,E) is a path if

E= {1, Va}, {Vo,V3}, ..., {Va1,V}}

or if
E= {{‘/17 ‘/'2}’ {‘/27 ‘/33}7 RN} {anh Vn}; {Vn; Vl}}
In the first case, H is a path from V; to Vj,. In the second case H is a cycle. If n =1, then

H = ({V1},0) is also a path. A path H is a directed path from Vi to V,, if all of its edges are
directed and point to the same direction, which means that either

E={(Vi,Va),(Va,V3), .., (Voro1, Vi) }

or

E= {(Vla V2)a (V2> V3)7 ) (anla Vn)a (Vna Vl)}

If a directed graph G does not contain any cycles, it is acyclic. A directed acyclic graph
is commonly abbreviated as DAG. Even if the graph itself is directed we may still consider
(undirected) paths within it.



Additional useful but slightly more complicated relationships between vertices can be
defined via paths in directed graphs. Vertex Y is a descendant of X in G if there exists a
directed path H from X to Y and H C . Similarly, X is an ancestor of Y in G if there
exists a directed path H from X to Y and H C G. For a directed graph G = (V,E) and a
set of vertices W C V the sets Pa(W)g, Ch(W)g, An(W)g and De(W) denote a set that
contains W in addition to its parents, children, ancestors and descendants in G, respectively.
It is important to note that these sets also contain their argument for convenience and not
to be confused with the sets defined through the ancestral relations alone, such as the set of
parents. Conversely, a vertex is not considered a parent of itself or to have any other such
relation to itself.

Contrary to usual graph theoretic conventions, we call a vertex without any descendants
a root (typically referred to as sink). The root set of G is the set of all roots of G, which is
{X € V| De(X)g \ {X} =0}. The reason for this reversal of the names of sinks and roots
is to retain consistency with relevant literature (e.g. Shpitser and Pearl, 2006b) and other
important definitions.

Two vertices are said to be connected if there exists a path between them. Similarly, a graph
G = (V,E) is connected if there exists a path between every pair of vertices V;,V; € V. A
connected component of G is a connected subgraph of G that is not connected to any additional
vertices in G. We also define the set Co(W)¢ to denote the set of vertices that are connected
to W in G via paths where the directionality of the edges is ignored, including W.

When a DAG is considered, we can relate an ordering of its vertices to its topological
structure. This is useful especially when a causal interpretation is associated with the graph.
A topological ordering m of a DAG G = (V,E) is an ordering of its vertices, such that if X is
an ancestor of Y in G' then X <Y in 7. The subset of vertices that are less than Vj; in 7 is

denoted by Véj Y. An algorithm by Kahn (1962) can be used to derive a topological ordering
for any DAG. First, we add the vertices without ancestors to the ordering in any order. At the
next stage, we add all vertices such that their parents are already contained in the ordering.
This is repeated until every vertex has been included. It should be noted that a DAG may have
more than one ordering. As a practical consideration, if an ordering is needed for a procedure,
it should be fixed beforehand.

2.2 Probabilistic causal model

The most important object of causal inference and the formal description of causality in this
thesis is the probabilistic causal model (Pearl, 2009).

Definition 2.2.1 (Probabilistic Causal Model). A probabilistic causal model (PCM) is a
quadruple
M = <U7 V? F? P(u)>’

where



1. U is a set of unobserved (exogenous) variables that are determined by factors outside the
model.

2.V is a set {V1,Va,...,Vy,} of observed (endogenous) variables that are determined by
variables in UU V.

3. F is a set of functions {fv,, fv,,..., fv,} such that each fy, is a mapping from (the
respective domains of) U U (V \ {V;}) to V; and such that the entire set F forms a
mapping from U to V.

4. P(u) is a joint probability distribution of the variables in the set U.

Each causal model induces a causal diagram which is a directed graph that provides a
graphical representation of the model. Often we do not have enough information to fully specify
the functions of F and our analysis relies only on the induced graph and the joint probability
distribution P. The induced graph contains a vertex for each variable in U UV and a directed
edge from V; € UU V into V; € V whenever fy; is defined in terms of V.

Causal inference often focuses on a sub-class of models that satisfy additional assumptions:
each U € U appears in at most two functions of F, the variables in U are mutually independent
and the induced graph of the model is acyclic. Models that satisfy these additional assumptions
are called semi-Markovian causal models. The first two of these assumptions are merely for
convenience and do not affect the generality of the presented results. The last assumption of
acyclicity is a more straight-forward statement about what type of system we are interested
in. Causal models that induce acyclic graphs are called recursive (Shpitser and Pearl, 2006b;
Kiiveri et al., 1984). The study of non-recursive models that allow feedback loops is also a
broad topic of research (e.g. Spirtes, 1995; Koster, 1996; Richardson, 1996; Hyttinen et al.,
2012).

A graph associated with a semi-Markovian model is called a semi-Markovian graph (SMG).
In SMGs every U € U has at most two children. When semi-Markovian models are considered
we do not depict background variables in the induced graph explicitly. Unobserved variables
with exactly two children are not denoted as V; <~ U — V; but as a bidirected edge V; <+ V;
instead. Furthermore, unobserved variables with only one or no children are omitted entirely.
As an example, Figure 2.1(a) shows a graph where every unobserved variable is explicitly
visible. Figure 2.1(b) depicts the same graph using the aforementioned abbreviated notation.



(a) A graph showing unobserved variables explicitly. (b) A graph where unobserved variables are
abbreviated.

Figure 2.1: Example on the abbreviations regarding unobserved variables.

These abbreviations provide a useful interpretation where directed edges correspond to
causal relations and bidirected edges denote the existence of unobserved confounders. For
SMGs the sets Pa(-)g, Ch(-)a, An(-)g, De(-)e and Co(+)g are defined to contain only observed
vertices. Additionally, a subgraph G[W] of an SMG G will also retain any bidirected edges
between vertices in W. Semi-Markovian models are sometimes characterized using Acyclic
directed mized graphs (ADMG) (Richardson, 2003). Instead of the notation described for SMGs
above, the definition of an ADMG considers directed and bidirected edges explicitly as different
entities.

Results concerning semi-Markovian models can be generalized to arbitrary structures of
unobserved variables through an operation called latent projection (Pearl and Verma, 1991;
Verma, 1993).

Definition 2.2.2 (Latent Projection). Let G = (VUL,E) be a DAG such that the vertices
in 'V are observed and the vertices in L are latent. The latent projection L(G,V) is a DAG
(V,EL), where for every pair of distinct vertices X,Y € V it holds that:

1. L(G,V) contains an edge X — Y if there exists a directed path X — --- =Y in G on
which every verter except X and Y is in L.

2. L(G,V) contains an edge X <Y if there exists a path from X to'Y in G that does not
contain the pattern X — Z <Y (a collider) and on which every vertex except X and
Y is in L and the first edge has an arrowhead pointing into X and the last edge has an
arrowhead pointing into Y .

From the construction it can be seen that a latent projection of any DAG is in fact an
SMG. Furthermore, applying the latent projection to an SMG G = (V, E) will simply output
the graph itself if the vertex set is unchanged, meaning that L(G,V) = G.

Equipped with the causal model we are ready to consider various causal queries. Not every
question can be answered by using the assumptions embodied in the induced graph due to
the probabilistic nature of the model and presence of confounding. An answer to a causal
query in this context can be intuitively understood as a series of operations that enable us to
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uniquely compute the query from available information in every model that encodes the same
information. Perhaps the most fundamental question in causal inference is whether a given
causal query can be uniquely determined in such a manner. A formal characterization of this
question is provided by the concept of identifiability (Pearl, 2009).

Definition 2.2.3 (Identifiability). Let M be a set of models with a description T and two
objects ¢ and 0 computable from each model. Then ¢ is identifiable from 6 in T if ¢ is uniquely
computable from 0 in any model M € M. In other words, all models in M which agree on 6
also agree on ¢.

We use the notation of (Shpitser and Pearl, 2008a) and write 7,0 Fiq ¢ whenever ¢
is identifiable from # in 7. Non-identifiability is denoted as T,0 t/q ¢. Before we can
assess identifiability of various queries, we must draw a connection between the conditional
independence properties of the joint distribution P of the causal model and its induced graph

G.

2.3 Causal and probabilistic independence

When an induced graph of a causal model is considered, the various paths between variables
can be seen to represent the flow of causal influence between them. Direct cause is the simplest
form of such flow but information can propagate through directed paths via mediators as
well. However, our intuition tells us that even if some variables are connected in a network,
they do not necessarily influence each other. Sometimes the flow of influence is blocked along
such paths. This concept is known as d-separation (Pearl, 1986, 1988) of which we present a
definition that also accounts for the presence of bidirected edges explicitly (Shpitser and Pearl,
2008a). This definition is called m-separation in the context of ADMGs (Richardson, 2003).

Definition 2.3.1 (d-separation). A path P in an SMG G is said to be d-separated by a set Z
if and only if either

1. P contains one of the following three patterns of edges: I — M — J, [ < M — J or
I+ M — J, such that M € Z or

2. P contains one of the following three patterns of edges: I — M + J, I < M + J,
I < M < J, such that De(M)c NZ = (.

Disjoint sets X and Y are said to be d-separated by Z in G if every path from X to Y is
d-separated by Z in G.

A connection between d-separation in the induced graph G and the conditional indepen-
dences of the joint probability distribution P can be established because the distribution P of a
causal model admits a factorization where each factor corresponds to a conditional distribution
of a vertex conditioned on the values of its parents. A probability distribution admitting this
factorization is said to be an independence map of G (Pearl, 1988).
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Definition 2.3.2 (Independence Map). Let G be the induced graph of a PCM (U, V,F, P(u)).
Then P is an independence map (I-map) of G if

P(v,u) = [ Pl Pa*(vi)e \ {oi}) [ ] Puw),

where Pa*(v;) includes the values of the observed and unobserved parents of V; in G and v;
itself.

An important result of Verma and Pearl (1988) states that if two disjoint sets X and Y are
d-separated by Z in G, then X is independent of Y given Z in every distribution P for which
G is an I-map. We adopt the standard notation of (Dawid, 1979) and represent conditional
independence statements and d-separation of this kind as (X L Y|Z)p and (X L Y|Z)g,
respectively. Remarkably, the conditional independence properties of an SMG G are retained
in a latent projection (Verma, 1993). In other words, if we consider a set W C V latent and it
holds that (X 1L Y|Z)q for some disjoint subsets X,Y and Z of V \ W, then it also holds
that (X 1 Y‘Z)L(G,V\W)'

The concept of d-separation can be viewed as causal independence. Furthermore, it allows
us to discover probabilistic independences from this causal independence that must hold in
every distribution P that is an [-map of G. It is often tempting to make claims in the converse
direction as well and infer that there is no causal connection between variables that have been
found to be conditionally independent in some distribution. If the distribution at hand is
faithful, then these kind of propositions are accurate (Pearl, 1988).

Definition 2.3.3 (Faithfulness). Let G be the induced graph of a PCM (U, V F, P(u)). The
distribution P is said to be faithful if (X L Y|Z)g precisely when (X L Y|Z)p for all disjoint
subsets X, Y and Z of V.

In faithful models, d-separation and conditional independence are equivalent which captures
the notion that “no correlation implies no causation”. A classic pathological example shows
how an unfaithful distribution may manifest itself. There are no conditional independences
implied by the graph of Figure 2.2.

Figure 2.2: An example of a graph where a non-faithful distribution can be constructed.

However, if we consider a linear model where
z=vyx+¢€ and y=ar+ Bz+e¢,
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and €;, €, and €, are independent normally distributed disturbances. In this model the choice
of &« = —fv renders X and Y marginally independent.

Faithfulness is important especially in causal discovery. If the data leads us to conclude
some conditional independence relations that are not a result of the true underlying causal
structure, it may lead to incorrect conclusions about the learned model. In causal inference,
the ramifications are not as severe, but the power of many identifiability results is not as
great without the faithfulness assumption. Most identifiability methods are not designed to
incorporate extraneous conditional independences that hold in the joint distribution.

The faithfulness assumption is a topic of great debate with both justifications to assume
faithfulness in a general non-parametric setting and criticisms warning of the dangers of the
assumption (Weinberger, 2018). A measure theoretic argument (e.g. Spirtes et al., 2000) can be
used to defend faithfulness on the grounds that cancellation occurs only in a set of parameter
values with zero measure. This directly extends to a probability measure over the set of possible
parameter values: a set of parameters with zero measure will occur with probability zero.

Steel (2006) further clarifies the measure theoretic argument and shows that only a few fairly
general conditions need to hold in order for the argument to be valid. First, the parameters
must vary in the joint distribution and they cannot be restricted to discrete sets of values.
Second, this must also hold for each parameter when conditioned on the other parameters.
This is a formal argument corresponding to the notion that independences of this kind are rare
in real world settings since they usually require a very specific parametrization and if we were
to slightly perturb the values of the parameters, the cancellation would no longer occur (Pearl,
2009). A counterargument can be made by noting that even if the set of exactly canceling
parameters has measure zero, the set of almost canceling parameters need not be and can even
have a high probability of occurring (Cartwright, 1999; Hoover, 2001).
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Chapter 3

Causal effects

The simplest causal query at the identification level of the causal hierarchy is the causal effect.
Causal effects are probability distributions of causal models that are the result of an outside
intervention. In an ideal scenario, we are able to make claims regarding this post-interventional
model using only the statistical knowledge encoded in the joint probability distribution of the
pre-interventional model and the causal knowledge represented by the graph associated with
it. In such a setting, causal claims can be made from observational data alone. Recognizing
settings where this is possible is often a difficult task and increasingly complex inferential
machinery has been developed to address more complicated models.

3.1 Joint and conditional interventional distributions

An important feature of PCMs is their capacity to portray external actions that impose changes
to the model. The target of these actions is the set of functions F. The independent causal
mechanisms encoded in a PCM correspond to our intuitive notion of modularity. Imposing a
change on one function has no effect on any other function. An action that forces a variable
X to take a specific set of values x is called an intervention and it is denoted by do(X = x)
(Pearl, 2009). The operator do(-) that performs the intervention is sometimes referred to
as the do-operator. An intervention do(X = x) on a PCM M creates a new submodel
My = (V,U,Fx, P(u)), where the new set of functions Fx is obtained from F by replacing the
functions that determine the value of X with constant functions that output the corresponding
values in x. Other aspects of the submodel, mainly the sets V and U and the distribution
P(u) are unchanged. The post-interventional model My created by the do-operator can be
viewed as the result of an ideal manipulation which was discussed in Chapter 1.

This functional change in the model generates a new joint distribution over the observed
variables and an induced graph for the submodel My that differ from those of the original model
M. The interventional distribution of a set of variables Y in the model My is denoted by Px(Y)
(or by P(Y|do(X = x))). This distribution is also known as the causal effect of X on Y. For
any intervention that we consider, we also require that P(x|Pa(x)g \ x) > 0 to ensure that the
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full distribution of the submodel Px(V) is well defined (Pearl, 2009). It should be noted that
the term “causal effect” is very conflated in literature and it encompasses many definitions that
are not always equivalent. For example, the term is sometimes used to describe the expected
difference of a response between treatment and control groups (Rubin, 1974; Holland, 1986).
The concept of conditional probability extends naturally to interventional distributions. For
disjoint sets X,Y and Z conditional interventional distributions or conditional causal effects
are of the form Px(y|z) and they are defined as

Px(y,z)

Pulyln) = S0
whenever Px(z) > 0. Conditional causal effects can be viewed as a specification of an ordinary
intervention. Instead of investigating the effect of an action at the population level, we can
target a specific subpopulation of interest. For example, it may be of interest to determine
how the level of education affects future salary in a particular age group. By requiring that Z
and X are disjoint we ensure that the intervention does not create logical contradictions, such

as how smoking affects lung cancer among non-smokers.

In addition to joint and conditional interventional distributions it is possible to consider
more complicated objects resulting from the effects of actions. Path-specific effects for example
relate to settings where we are interested in the effect of do(X = x) on Y along specific paths
in the induced graph of the model. In mediation analysis for example, the effect of a treatment
is often separated into direct and indirect effects (Robins and Greenland, 1992). We may also
consider counterfactual queries by constructing a twin-network graph (Pearl, 2009) or more
generally, a counterfactual graph (Shpitser and Pearl, 2007, 2008a).

Typically, we do not have access to the interventional distribution which leaves us with
the task of attempting to find a direct link between the joint distribution over the observed
variables P(v) and the interventional distribution Px(y).

3.2 Identifiability of causal effects

We are reliant on the information encoded in the causal model when determining the effects of
actions. Causal effects that can be completely characterized by the joint probability distribution
of the pre-interventional model and the induced graph fall under the category of identifiable
queries as can be seen from the following definition.

Definition 3.2.1 (Causal Effect Identifiability). Let G = (V,E) be an SMG and let X and
Y be disjoint sets of variables such that X, Y C V. The causal effect of X on'Y is said to be
identifiable from P in G if Px(y) is uniquely computable from P(v) in any causal model that
mduces G.

Recalling Definition 2.2.3, the description 7" of the set of models M is now the induced
graph G and 6 is the joint distribution P(v). The query ¢ to be computed corresponds to
the interventional distribution Px(y). The definition of identifiability gives no direct method
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for determining identifiability of a given query. Demonstrating non-identifiability is more
straightforward since it is sufficient to construct two PCMs, M M and M@, such that their
joint probability distributions agree but the interventional distributions do not. As an example,
we show that the causal effect of X on Y is not identifiable in the graph G of Figure 3.1 by
constructing two models that generate the same graph but contradicting causal effects. This is
the simplest graph where non-identifiability occurs.

%ﬁ.
X Y

Figure 3.1: An example of a graph where the causal effect of X on Y is not identifiable.

Let U be the unobserved variable corresponding to the bidirected edge between X and Y
and let Uy be an unobserved variable affecting Y. We construct two PCMs, M) and M?),
as follows:

U = (U, Uy}, U = {U, Uy},
vl = (X Y}, v® = (X Y},
1) =, 1) =,
}(})(u,uy,w) = (1 —uy)(xz ®u) + uy, f}(g)(u,uy,x) = Uy,
U ~Uu{o,1}), U ~Uu({0,1}),
Uy ~U({0,1}), Uy ~U({0,1}),

where @ denotes the exclusive or (XOR) operator, U(-) denotes a uniform distribution and U
and Uy are assumed to be independent in both models. A simple computation shows that the
joint distributions of X and Y are:

POX,Y)|Y =0 Y =1 POX, Y)Y =0 Y =1
X =0 0.25 0.25 X=0 0.25 0.25
X =1 0.25 0.25 X=1 0.25 0.25
Under the intervention do(X = 1), the marginal distributions for variable Y update to

P;lz)l(Y =1) = 0.75 and PQEQZ)I(Y = 1) = 0.5. Similarly, under the intervention do(X = 0)
we have that nglz)O(Y =1)=0.75 and ngi)o(Y = 1) = 0.5. Thus we have that P()(X,Y) =
PP(X,Y),PV(X)=P?(X) >0 but ngl)(y) # p? (y) for both x = 1 and = 0 meaning
that the effect is not identifiable.

3.3 Manipulation of interventional distributions

An intervention do(X = x) removes the flow of information from the parents of X into X which
corresponds to the removal of incoming arrows of X from the graph in graphical terms. Thus
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the induced graph of a submodel My is the edge subgraph G which is sometimes referred
to as the mutilated graph. This graph has its own set of d-separation statements which in
turn imply conditional independences for the interventional distribution known as dormant
independences (Shpitser and Pearl, 2008b).

In addition to standard probability calculus, a set consisting of three inference rules called
do-calculus can be used to manipulate interventional distributions (Pearl, 1995). The correctness
of these rules can be established through the properties of the mutilated graph. The rules of
do-calculus are:

1. Insertion and deletion of observations:

Pu(ylz, w) = Pu(ylw), if (Y L Z|X, W)cg.

2. Exchange of actions and observations:

Px,z(Y|W) = PX(Y‘Zaw)’ if (Y 1 Z‘X7W)G

Xz’
3. Insertion and deletion of actions:

Py 2(y|w) = Px(y|lw), if (Y L Z‘X’W)Gi,zﬁv)’
where Z(W) = Z\ An(W)gg. In other words, Z(W) is the set of those vertices of Z
that are not ancestors of any vertex in W in G'x.

Rule 1 describes simple conditional independence statements in the mutilated graph. When rule
2 is applicable, an intervention do(Z = z) has the same effect on Y as the passive observation
Z = z has. Rule 3 characterizes situations where adding or removing specific interventions has
no effect on Y. We refer to the three rules of do-calculus as rules 1, 2 and 3 throughout this
thesis. An alternative approach to do-calculus based on formal logic was proposed by Halpern
(2000). In this framework, identifiable causal effects are essentially considered as provable
theorems in an axiom system.

Despite its prowess, there are several challenges in applying algebraic methods such as
do-calculus in practice. Even though do-calculus has been shown to be complete for identifying
causal effects and conditional causal effects (Huang and Valtorta, 2006b; Shpitser and Pearl,
2006b,a), this result is not immediately apparent from the rules themselves. Furthermore, it is
not obvious in which order the rules should be applied to find an expression for Px(y) in terms

of P(v).
3.4 Graphical criteria for identifiability

Expressing the interventional distribution Px(y) in terms of the joint distribution P(v) is
a difficult task in general. An effective strategy for characterizing identifiable effects is to
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recognize common features between PCMs that produce identifiable effects. These features
essentially serve as shortcuts that allow us to bypass the use of do-calculus in the identification
task and to obtain the identifying expression directly. Furthermore, models where such a
computation is possible can be described via graphical criteria, which typically consist of a
set or sets of vertices that block paths responsible for confounding between X and Y when
adjusted for. The concept of a back-door path is important for understanding confounding bias.

Definition 3.4.1 (Back-door path). Let G be an SMG and let (X,Y') be an ordered pair of
vertices of G. A path P is said to be a back-door path from X toY if it contains an edge with
an arrowhead pointing into X.

A simple criterion can be derived from do-calculus directly. If (Y 1L X)gy then rule 2
applies and we have that Py(y) = P(y|x). This corresponds to a situation where there are
no back-door paths between X and Y. Similarly, if (Y L X)G)_( then rule 3 applies and
P« (y) = P(y) which means that there are no directed paths from X to Y. A simple graphical
test described in (Pearl, 1993) can be used to determine whether a suitable set of vertices Z
exists for blocking all back-door paths and rendering Px(y) identifiable. If a set of vertices Z
blocks all back-door paths from X to Y and no member of Z is a descendant of X then we
obtain

Pu(y) =) P(ylz,x)P(z).

This result is known as the back-door criterion which is often sufficient when all confounders
are observed. The set Z is often not unique and there exist multiple sets that block all
back-door paths between X and Y. For example, in the graph of Figure 3.2 there are four such
sets: {Z1, Z2}, {Z2, Z3}, {Za, Zs} and {Z3, Zs}. Importantly, the set {Z} is not sufficient for
blocking all back-door paths from X to Y, since conditioning on Zs unblocks the path

X+ 1« Zy =Ty Js— Jg—Y,

where Z5 is a collider.

Z4 Z5
Z3

X Y

Figure 3.2: An example of a graph where there are multiple sets that block all back-door paths
from X to Y.

It is not always possible to find a suitable set Z for adjustment in the presence of unobserved
confounders. Identifiability can still be reached in such a setting sometimes by again finding a
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suitable set Z such that it intercepts all directed paths from X to Y, there is no back-door
path from X to Z and all back-door paths from Z to Y are blocked by X. If such a set exists
we have

Pu(y) = P(z}x) ) P(y|z,x)P(z).

This is known as the front-door criterion (Pearl, 1995). The idea here is to divide the flow of
information from X to Y into the flow from X to Z and Z to Y. This enables X to block the
back-door paths from Z to Y. Figure 3.3 depicts a graph where the front-door criterion applies
with Z = {Z1, Z>}. Tt is easy to verify that neither {Z;} nor {Z2} alone is able to satisfy the
criterion in this graph.

Figure 3.3: An example of a graph where the front-door criterion applies.

More advanced criteria have been derived for SMGs (Galles and Pearl, 1995; Kuroki and
Miyakawa, 1999; Tian and Pearl, 2002a), but also for a larger class of models (Perkovi¢ et al.,
2015) and for settings where selection bias is present (Correa and Bareinboim, 2017; Correa
et al., 2018). Despite the existence of powerful criteria, they are not sufficient for determining
identifiability in all cases. If a specific graphical criterion is not applicable, it does not follow
that a causal effect is not identifiable as it may be identifiable by some other means. This is
the primary motivation behind the development of identifiability algorithms that completely
characterize the problem of computing causal effects of the form Px(y) and Px(y|z).

3.5 Identifiability algorithms

A complete identifiability algorithm always produces a formula for a causal effect of interest
in terms of P(v) whenever the effect is identifiable and fails to do so for any non-identifiable
effect. Such an algorithm was first proposed by Tian (2002) and studied further by Tian and
Pearl (2003) who relied heavily on earlier work on graphical criteria in (Tian and Pearl, 2002a)
and the structure known as a c-component studied in (Tian and Pearl, 2002b). This algorithm
was independently shown to be complete by Huang and Valtorta (2006b) and Shpitser and
Pearl (2006b). Furthermore, it was confirmed by Huang and Valtorta (2006a) that the latent
projection of Definition 2.2.2 preserves identifiability, meaning that this algorithm can also
be applied to a class of models with arbitrary latent variables by first applying the latent
projection.
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In this section, we review the most important definitions that led to the conception of the
algorithmic approach and present the original algorithm by Tian (2002) as well as the algorithm
by Shpitser and Pearl (2006b) which was used to show completeness. An important concept
for both algorithms is the set of components of the graph characterized by its bidirected edges.

Definition 3.5.1 (c-component). Let G be an SMG and let C C G. If every pair of vertices
i C' is connected by a path consisting entirely of bidirected edges, then C' is a c-component
(confounded component). Furthermore, C' is a maximal c-component if C' contains every vertex
connected to C' via bidirected paths and C' is an induced subgraph of G.

It should be noted that a graph that has only one vertex is always a c-component, although
not necessarily maximal. Any SMG G can always be partitioned into a unique set of maximal
c-components, denoted by C(G). This partition can be obtained by first considering an edge
subgraph H of G that only contains the bidirected edges of G. The maximal c-components
are now the connected components of H. The maximal c-components of an SMG G = (V,E)
provide the so-called c-component factorization of the joint distribution P(v). For any set
C C V we define the following function

QICI(v) = Pe(e) = ) [ P(vilPa*(vi) \ {vi}) P(w), (3.1)

where Pa*(v;) includes the observed and unobserved parents of V; and v; itself. By definition
we have that Q[V](v) = P(v). For C = 0, we set Q[](v) = 1. For the sake of convenience,
we abbreviate Q[C](v) simply as Q[C]. The right-hand side of (3.1) is also known as the
g-formula (Robins, 1986). The distribution P(v) can now be factorized as

pv)= [ @msi (3.2)

G[S;]eC(G)

The factors Q[S;] are called c-factors since they correspond to the c-components of G. It
was shown by Tian (2002) that Q[C] is identifiable when C is a maximal c-component of
G. Applying the factorization of (3.2) to the interventional distribution Px(y) we obtain the
c-component factorization (Shpitser and Pearl, 2006b)

P(y)= ) I[I s (3.3)

v\(yUx) G[Si]eC(GIV\X])

This factorization is one of the core ideas behind the algorithms of Tian and Pearl (2003) and
Shpitser and Pearl (2006b). The original identification task can be recursively broken down
into smaller subproblems, mainly the identification of the c-factors appearing on the right-hand
side of (3.3), which correspond to the c-components of the subgraph G[V \ X]. Eventually,
every subproblem is solved or one of them fails rendering the original problem non-identifiable.

Algorithm 1 is the original identifiability algorithm of Tian (2002) as formulated by Shpitser
and Pearl (2006b). The algorithm removes non-ancestors of Y on line 1 and computes the
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C-components of the resulting graph of line 2. This is followed by the c-component factorization
on line 3, where Algorithm 2 is used to determine if the corresponding c-factors are identifiable.

Algorithm 1 The causal effect of intervention do(X = x) on Y (identify).
INPUT: Value assignments x and y, joint distribution P(v) and an SMG G = (V,E). G is

an [-map of P.
OUTPUT: Expression for Px(y) in terms of P(v) or FAIL.

function identify(y,x, P,G)
1: let D = AD(Y)GX
2: assume C(G[D]) = {G[D1],...,G[Di]},C(G) = {G[C4],...,G[Cu]}
3: return 3 p\y Hle c-identify (G[D,], G[C;], Q[C;])
where D; C Cj for alli=1,...,k

Algorithm 2 takes as input two c-components, F' and H, where the c-factor Q[T] corre-
sponding to H is known to be identifiable. There are three possible outcomes regarding the
identifiability of Q[C]: either Q[T] is identifiable from @[T] directly on line 1, the identification
fails on line 2 or a reduced identification task is solved on line 3. It should be noted that even
though Algorithm 2 may seem simple, it is actually quite abstract since it attempts to express
the c-factors given as input in terms of other c-factors that are known to be identifiable. Auxil-
iary results such as Lemma 11 of (Tian, 2002) have to be employed to express an identifiable
c-factor in terms of P(v).

Algorithm 2 Computing c-factor Q[C] from Q[T] (c-identify).
INPUT: c-components F' = (C,Er), H = (T,Epy), FF C H, probability distribution Q[T].
OUTPUT: Expression for Q[C] in terms of Q[T] or FAIL.

function c-identify (F, H, Q[T])
let A = An(C)y
L. if A =C, return } . Qt]
2: if A =T, throw FAIL
323 if CCACT
let H[T'| € C(H[A]) such that CC T/ C A
return c-identify (F, H[T'], Q[T’])
(Q[T'] is known to be computable from 3, , Q[T].)

An alternative approach to determining identifiability relies on a graphical structure called a
hedge, which is formed by a pair of special c-components called c-forests. To better understand
the intuition behind c-trees and hedges, we first present c-trees.

Definition 3.5.2 (c-tree). Let G be a c-component such that every observed vertex has at most
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one child. If there is a vertex Y such that G[An(Y )g] = G, then G is a Y -rooted c-tree.

Identifiability of direct effects is linked to c-trees. If a subgraph of G is a Y-rooted c-tree,
then the causal effect of Pa(Y) on Y is not identifiable in G from P(V) (Shpitser and Pearl,
2008a). This shows that identification on a single variable can be difficult and is characterized
through a graphical structure. A multivariate generalization of c-trees is the c-forest.

Definition 3.5.3 (c-forest). Let G be a c-component and let Y be the root set of G. If every
observed vertex of G has at most one child, then G is a Y —rooted c-forest.

It turns out that result regarding direct effects in the case of c-trees cannot be generalized
directly to c-forests. What is required is a more complicated structure that consists of a pair
of c-forests.

Definition 3.5.4 (hedge). Let X, Y C 'V be disjoint sets of variables and let G be an SMG. Let
F=(Vp,Up,Ep) and F' = (Vp,Up/,Eps) be R-rooted c-forests in G such that VpNX # 0,
VeenNnX=0, FFCF and R C An(Y)Gyg . Then F' and F' form a hedge for Px(y) in G.

It is not easy to understand hedges intuitively. They can be used to construct a pair of
causal models for a given identifiability problem, where the interventional distributions do not
agree despite the fact that the models have the same joint probability distribution over the
observed variables. Shpitser and Pearl (2006b) showed that hedges completely characterize
the identifiability of causal effects and provided Algorithm 3, known as the ID algorithm, that
simultaneously tries to derive an expression for the effect and keeps track of the structure of the
graph in an attempt to detect the presence of a possible hedge. They also showed soundness
and completeness of the algorithm: a correct expression is always returned for an identifiable
causal effect, otherwise a hedge witnessing non-identifiability is returned. Incidentally, this also
shows the completeness of do-calculus, since each line of Algorithm 3 corresponds to standard
probability manipulations and application of the rules of do-calculus.
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Algorithm 3 The causal effect of intervention do(X = x) on Y (ID).

INPUT: Value assignments x and y, joint distribution P(v) and an SMG G = (V,E). G is
an [-map of P.
OUTPUT: Expression for Px(y) in terms of P(v) or FAIL(F, F").

function ID(y, x, P, G)
1. if x = (Z),
return )\, P(v).
2: if V #£ AH(Y)G,
return ID(y,x N An(Y)q, P(An(Y)q), G[An(Y)q]).
3: let W = (V\ X)\ An(Y)gy
if W #£ 0,
return ID(y,xUw, P,G).
4: if C(GIV\ X]) ={G[S4],...,G[Sk]},
return ZV\(yUX) Hle ID(s;, v\ si, P, G).

if C(G[V\X]) ={G[S]},
5. if C(G) ={G},
throw FAIL(G, G[S]).
6: if G[S] € C(G),
return 3 o\ [yes P(vi|v7(rz_1)).
7. if (3S')S C S’ such that G[S'] € C(G),

return ID(y,x N8/, [[y.ce PVIIVA ™ NS08 Y\ 8), GIS)).

Using their previous work as a foundation, Shpitser and Pearl (2006a) further showed that
the problem of identifying conditional causal effects can also be solved using hedges. They
provided Algorithm 4, known as IDC, which can be used to determine the identifiability of a
given conditional causal effect.

Algorithm 4 The causal effect of intervention do(X = x) on Y given Z (IDC).

INPUT: Value assignments x, y and z, joint distribution P(v) and an SMG G = (V,E). G
is an I-map of P.
OUTPUT: Expression for Px(y|z) in terms of P(v) or FAIL(F, F").

function IDC(y, x,z, P, G)
1: if 37 € Z such that (Y L Z|X,Z\{Z})cy
return IDC(y,xU {z},z\ {z},P,G).
2: else let P =ID(y Uz,x, P,G).
return P’/ >0 P

To illustrate how Algorithms 1 and 3 work, we compare their operation when the causal
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effect of X on Y is computed in the graph G of Figure 3.4(a). We fix the topological ordering
mof GasY >W > X > Zy > 7.

Y
(b) Subgraph G[D].
i
Z1
(¢) Subgraph G, (d) Subgraph G(?). (e) Subgraph G,

Figure 3.4: Subgraphs used in the computation of P,(y) for the example on the operation of
Algorithms 1 and 3.

In the case of the ID algorithm, the first call ID({y}, {z}, P, G) brings us to line 3, where

W= (VAX)\An(Y)g, = (Y, W, X, Z5, ZI P\ {XH) \{Y, W, X, Z1} = {Z,}.

)?_

We add Z> to the intervention set and call ID({y}, {x, 22}, P, G). The computation continues
on line 4, since
C(GIV\X]) = C(GY,W, Z1]) = {G[Y], G[W, Z11},

we have that
Pi(y) = Pr 2y (y) = Z Pz, (Y) Py,,20 (21, ), (3.4)

w,z1

which requires the evaluation of two recursive calls corresponding to the two c-components:
ID{y},{w,x, 22,21}, P,G) and ID({z1,w}, {y,x, 22}, P,G). The first recursive call ends up
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on line 6 since the c-component G[Y] of G[Y, W, Z1] is also a c-component of G. It follows that

Pw,a:,zz,zl (y) = P(y‘zla 22,$,W). (35)

The second recursive call ends up on line 2 because Y is not an ancestor of Z; or W.
By calling ID({z1, w}, {z, 2}, P, GM) the computation continues in the subgraph G*) =
G[W, X, Zy, Z1] shown in Figure 3.4(c) with the distribution P®Y) = P(W, X, Zy, Z1). This
time line 7 is triggered by noting that

C(GWIV\ X)) = C(GVW, 21]) = {GD[W, Z1]},

and that 8 = {W, Z,} C {W, Zy, Z;} = S’ where G® = GV[S/] is a c-component of GV as
shown in Figure 3.4(d) . The next recursive call is ID({z1,w}, {z2}, P, G?)[S']) where

= [[ POV 08" Wi\ = P(W|Z1, Za, ) P(Za] 21)P(Z1).
V;eS’

Line 2 is reached again due to Zs not being an ancestor of Z; or W in G resulting in the call
ID({z1,w}, 0, PG, G®)) with G®) = G [Z;, W], shown in Figure 3.4(e) and P®) = >, P,
Line 1 is finally reached since the intervention set is empty and we obtain

Py g2 (21,0 ZP w|z1, 22,2) P(22|21) P(21). (3.6)

Inserting the expressions (3.5) and (3.6) for the causal effects Py 4 2, 2, (y) and Py 4 2, (21, w)
back into the expression (3.4) for P,(y) yields an expression for the causal effect:

ZP ylz1, 22, x,w ZP w21, 25, ) P(25]21) P(21).

w,z1

For comparison, the Algorithm 1 starts by computing the subgraph G[D] = G[An(Y)g,]
depicted in Figure 3.4(b). Next, the set of c-components of G[D] is derived on line 2 and it is

C(G[D)) = C(GY, W, Z1]) = {G[Y], G[W, Z1]}.
The set of C-components of GG is also derived and it is
C(G) ={G[Y],G[X],GIW, Za, Z1]}.

Next, recursive calls to C-IDENTIFY are launched to compute the following expression on line 3

P, y) = Z Q[Y]Q[W Zl prxZQ,z1 ymzz(zla )

w,z1 w,z1

which is the same expression as derived by the ID algorithm for this causal effect. We proceed
to identify the c-factor Q[Y] by calling C-IDENTIFY(G[Y], G[Y], Q[Y]). We compute the set
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A = An(Y)gy) = {Y} and since A = {Y} = C we know this c-factor to be identifiable.
Fortunately, we already know that the expression is (3.5) from the computation using the ID
algorithm and it is

QY] = P(y|z1, 22, z,w).

Alternatively, lemma 11 of (Tian, 2002) could have been used for manual derivation of this
c-factor. Next, we attempt to identify the c-factor Q[W, Z1] from Q[W, Za, Z1] by initiating a
call to C-IDENTIFY(G[W, Z1], GIW, Za, Z1], QIW, Za, Z1]), since {W, Z1} C {W, Z2, Z1}. Again,
we compute the set A = An(W, Z1)gw,z,,7,) = {W, Z1}. We have that A = {W, Z;1} = C and
obtain

QIW, 1) =Y QIW, Za, Z4].

Once more, we know this c-factor to be identifiable and have already obtained its expression
3.6 in the computation using the ID algorithm

QW, Z1) = > P(wl21, 22, 2) P(22]21) P(21).

Here we used the results obtained from the derivation through the ID algorithm to compute the
expressions of the required c-factors. This illustrates the difficulty of applying Algorithm 1 in
practice. Without pre-existing knowledge, a manual derivation or another algorithm is required
to derive a suitable expression for the identifiable c-factors. This issue is entirely bypassed by
the ID algorithm.
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Chapter 4

Research contribution

This section summarizes the research contribution of Articles I-III to the causal inference
methodology.

4.1 Implementation of causal inference algorithms

Article T describes an implementation of Algorithms 3 and 4 in a software package called
causaleffect using the statistical computing language R (R Core Team, 2018). The article
illustrates how these causal effects and conditional causal effects can be identified in practice
and how to construct a graph of interest. An in-depth description of the implementation itself is
also given which may be of use for subsequent implementations or other works taking advantage
of the causaleffect package. A substantial review of R packages related to causality was
also done to discover the extent of how R can be used for causal inference. The R language
was chosen for the implementation for various reasons. First, R is freely available for almost
any platform and it is still being actively developed. Second, the R language has a wide
reach through the Comprehensive R Archive Network (CRAN) which hosts the majority of
R packages and connects package developers to the users effortlessly. R users can always
obtain the most up-to-date version of their favorite packages through CRAN. Finally, the
implementation does not have to be built from scratch, since a powerful library for constructing
and manipulating graphs called igraph (Csardi and Nepusz, 2006) could be taken advantage
of.

Since the publication of Article I, the causaleffect package has received new features in
addition to those described in Articles II and III. The package currently also implements algo-
rithms for z-identifiability (Bareinboim and Pearl, 2012a), meta-transportability (Bareinboim
and Pearl, 2014) and selection bias recoverability (Bareinboim and Tian, 2015). The package
can also be used to discover functional constraints of causal models using a systematic method
of (Tian and Pearl, 2002b).
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4.2 Simplification of causal effect formulas

Article II provides a rigorous approach for expression simplification in a probabilistic context.
The fundamental primitive unit of a probabilistic expression is an atomic expression of the

form .
pPy=Y [IPwilcy.
S i=1
In other words, atomic expressions are marginalized products of conditional distributions where
the left-hand side contains a single variable. More complicated expressions can be constructed
using atomic expressions.

In the context of the article, the focus is on simplifying expressions obtained as output
from Algorithms 3 and 4. It is challenging to give a general definition of simplification. We
can, however, consider various criteria when comparing two expressions for the same causal
effects of interest, such as expression length, the number of summations, the number of unique
variables and the number of fractions. The article provides a complete simplification procedure
for atomic expressions that admit a specific factorization in terms of a single variable that
is to be eliminated from the expression. This procedure can also be applied to non-atomic
expressions by first simplifying all atomic expressions that were used construct the non-atomic
expressions, combining the results into new atomic expressions and simplifying them again
until the expression can no longer be further simplified. The methods of Article II have been
made available through the causaleffect package.

4.3 Detecting variables that are unnecessary for identifiability

Article III is in some sense a continuation of Article II. Often complicated expressions arise as
a result of variables being included in the causal model that play no role in the identification of
causal effect of interest. Due to the nature of the ID algorithm, the presence of these variables
carries over to the output which can have detrimental effects. Typically, a simpler expression
can easily be derived by removing these variables from the causal model before the identification
task takes place. We call this operation pruning.

Article III provides several criteria that can be used to easily construct sets of variables
that can be pruned from the model. Even though these methods are not shown to be complete,
they have a polynomial time complexity and avoid enumeration over the possible vertex subsets
making them suitable for almost any setting. Some examples of prunable sets include specific
ancestors of the variable that has been intervened upon and variables that are connected to
other vertices through a single vertex. It is also shown that latent projections can be used as
a tool for pruning. The pruning methods presented in Article III are combined into a new
pruning identifiability algorithm which is again provided through the causaleffect package.
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Chapter 5

Discussion

The aim of this thesis was to improve the current causal inference methodology by focusing on
the practical aspects of algorithmic solutions to the causal effect identifiability problem. We
provided the standard methods as a software package that is freely available (Article I). We
studied to what extent the output of the identifiability algorithm can be simplified after the
identification task has already been completed and the desired expression is obtained (Article
IT). We also investigated the possible operations to be carried out before the identification task
such that a simpler expression could be obtained directly (Article III).

There have been remarkably few software implementations of any causal identification
methods. As far as we know, implementations of Algorithms 3 and 4, in addition to the
package described in Article I, can only be found in the CIBN software by Jin Tian available at
http://web.cs.iastate.edu/ " jtian/Software/CIBN.htm. More advanced methods listed
in Section 4.1 are not publicly available elsewhere to the best of our knowledge. Popular
software packages such as DAGitty (Textor et al., 2016) and pcalg (Kalisch et al., 2012) provide
graphical adjustment criteria but lack complete methods which is understandable, since the
identifiability of causal effects is not the primary focus of either package. The R package
medflex (Steen et al., 2017) provides a comprehensive selection of tools for mediation analysis.

The approach to expression simplification proposed in Article II creates pathways for
possible future work. Importantly, the proposed simplification algorithm, although complete to
a specific class of expressions, has exponential time complexity in the number of vertices of the
associated graph. It may be possible to derive an alternative but equivalent procedure that
would operate in polynomial time. Further improvements to the efficiency of the procedure
could be discovered by considering graphs or expressions with a specific structure. Benefits of
such considerations could be realized even if the problem itself turns out to be NP-hard. A
reviewer of Article II also suggested that simplification may have a connection with dormant
independence, a concept that was briefly mentioned in Section 3.3, which opens up another
line of inquiry.

Various sufficient criteria for pruning were discovered in Article III. A complete character-
ization of the problem is challenging, since some pruning operations are mutually exclusive.
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This does not rule out the possibility of deriving stronger sufficient criteria that are also easily
applicable in practice without resorting to heavy computation.

Articles II and III share a common theme of equivalent expressions that describe the same
causal effect. When two expressions are compared, it is often beneficial to use the simpler of
the two especially if it is known that variables affected by bias do not appear in the simpler
expression. This notion can be generalized to ask the following question: If a researcher is
equipped with a set of expressions for a causal effect of interest, which one should be used? In
other words, which expression has the most desirable properties for estimation?
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Appendix A

Errata for original publications

Article 11

1. Pages 17 through 18: The sets being computed should be denoted with bold letters, i.e.
A and B instead of A and B.

2. Page 17: Computing the set A = (An*(Z3) UP4)AD should result in () instead of {X}.

3. Page 27: The numerator P(V,M \ M) should be P(V,M \ M~ |D) instead.

Article III

1. Pages 12 through 13: The term P(w|Pa(w)g \ (z U {w})) should be P(w|Pa(w)g \ (z U
u, U {w})) instead.

2. Page 13: The proof of Corollary 13 is poorly worded. A reformulated proof shows
explicitly why the constructed set T satisfies the conditions for the set Z of Theorem 12:
Let R = An(W)g, \ De(X)g and let T = R\ Co(V \ R)g,,,. Since G = G[An(Y)g] and
the set R does not contain X or any of its descendants, we have that TN (Y UX) = (.
The set Co(V \ R)g;,, contains all vertices that are connected to V'\ R through a path
that does not contain W. It follows that the set T contains only those members of R
that are connected to V' \ R only through W. Thus the set T satisfies both criteria for
the set Z of Theorem 12.

3. Page 15: P,(y) should be P,(y) in the proof of Corollary 16.

4. Page 17: Line 5 should make the definitions of the sets Sx and S’X more explicit: let Sx
be such that X € Sx with G[Sx]| € C(G). Similarly for S’, the line should read: let
S’y be such that X € S’y with G'[S] € C(&).
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Abstract

Do-calculus is concerned with estimating the interventional distribution of an action
from the observed joint probability distribution of the variables in a given causal struc-
ture. All identifiable causal effects can be derived using the rules of do-calculus, but
the rules themselves do not give any direct indication whether the effect in question is
identifiable or not. Shpitser and Pearl (2006b) constructed an algorithm for identifying
joint interventional distributions in causal models, which contain unobserved variables
and induce directed acyclic graphs. This algorithm can be seen as a repeated application
of the rules of do-calculus and known properties of probabilities, and it ultimately either
derives an expression for the causal distribution, or fails to identify the effect, in which
case the effect is non-identifiable. In this paper, the R package causaleffect is presented,
which provides an implementation of this algorithm. Functionality of causaleffect is also
demonstrated through examples.

Keywords: DAG, do-calculus, causality, causal model, identifiability, graph, C-component,
hedge, d-separation.

1. Introduction

When discussing causality, one often means the relationships between events, where a set
of events directly or indirectly causes another set of events. The aim of causal inference is
to draw conclusions from these relationships by using available data and prior knowledge.
Causal inference can also be applied when determining the effects of actions on some vari-
ables of interest. These types of actions are often called interventions and the results of the
interventions are referred to as causal effects.

The causal inference can be divided into three sub-areas: discovering the causal model from
the data, identifying the causal effect when the causal structure is known and estimating an
identifiable causal effect from the data. Our contribution belongs to the second category,
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identification of causal effects. As a starting point, we assume that the causal relationships
between the variables are known in a non-parametric form and formally presented as a proba-
bilistic causal model (Pearl 1995). Part of the variables may be latent. The causal structure,
i.e., the non-parametric causal relationships, can be described using a directed acyclic graph
(DAG). A causal effect is called identifiable if it can be uniquely determined from the causal
structure on basis of the observations only.

Do-calculus (Pearl 1995) consist of a set of inference rules, which can be used to express the
interventional probability distribution using only observational distributions. The rules of do-
calculus do not themselves indicate the order in which they should be applied. This problem
is solved in the algorithm developed by Tian and Pearl (2003) and Shpitser and Pearl (2006D).
The algorithm is proved to determine the interventional distribution of an identifiable causal
effect. When faced with an unidentifiable effect, the algorithm provides a problematic graph
structure called a hedge, which can be thought of as the cause of unidentifiability.

Other R packages for causal inference are summarized in Table 1. It can be seen that in
addition to causaleffect, only pcalg (Kalisch et al. 2012) supports the identification of causal
effects. pcalg supports the generalized back-door criterion but does not support the front-
door criterion. Thus, according to our knowledge, causaleffect is the only R package that
implements a complete algorithm for the identification of causal effects.

An algorithm equivalent to the one developed by (Shpitser and Pearl 2006b) has been im-
plemented earlier by Lexin Liu in the CIBN software using JavaBayes, which is a graphical
software interface written in Java by Fabio Gagliardi Cozman. In addition to causal effect
identification CIBN also provides tools for creating and editing graphical models. CIBN is
freely available from http://web.cs.iastate.edu/~jtian/Software/CIBN.htm. DAGitty
(Textor et al. 2011) provides another free interface for causal inference and causal modeling.
One of the main features of DAGitty is finding sufficient adjustment sets for the minimiza-
tion of bias in causal effect estimation. DAGitty can also be used to determine instrumental
variables, which is a feature currently not provided by causaleffect. However, DAGitty does
not provide a complete criterion for identifiability.

Familiarity of Pearl’s causal model, do-calculus and basic graph theory is assumed throughout
the paper. These concepts are briefly reviewed in Appendix A. A more detailed description
can be found in (Pearl 2009) and (Koller and Friedman 2009). Notation similar to that of
(Shpitser and Pearl 2006b) is also utilized repeatedly in this paper. Capital letters denote
variables and small letters denote their values. Bold letters denote sets which are formed
of the previous two. The abbreviations Pa(Y)g, An(Y)g, and De(Y)qs denote the set of
observable parents, ancestors and descendants of the node set Y while also containing Y
itself. Tt should also be noted that the shorthand notation of bidirected edges is used to
represent the direct effects of an unobserved confounding variable on the two variables at the
endpoints of the bidirected edge.

A motivating example is presented in Section 2. The identification algorithm is presented
in Section 3 and the details of its R implementation are described in Section 4. Section 5
showcases the usage of causaleffect in R with some simple examples, and describes some
curious special cases arising from the nature of the algorithm itself. Section 6 concludes this
paper by providing some examples of similar algorithms, where the work of this paper could
be applicable.
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Packages for specific applications

ASPBay Bayesian inference on causal genetic variants using affected
sib-pairs data (Dandine-Roulland 2015)

cin Causal inference for neuroscience (Luo et al. 2011)

mwa Causal inference in spatiotemporal event data (Schutte and
Donnay 2015)

gtlnet Causal inference of QTL networks (Neto and Yandell 2014)

Packages for estimation of causal effects from data

CausalGAM Estimation of causal effects with generalized additive models

(Glynn and Quinn 2010)
InvariantCausalPrediction Invariant causal prediction (Meinshausen 2016)

iWeigReg Improved methods for causal inference and missing data prob-
lems (Tan and Shu 2013)

pcalg Methods for graphical models and causal inference

SVMMatch Causal effect estimation and diagnostics with support vector
machines (Ratkovic 2015)

wie Weighted linear fixed effects regression models for causal in-

ference (Kim and Imai 2014)

Packages for sensitivity analysis and other specific problems in causal inference

causalsens Selection bias approach to sensitivity analysis for causal ef-
fects (Blackwell 2015)

cit Causal inference test (Millstein 2016)

ImpactIV Identifying causal effect for multi-component intervention us-
ing instrumental variable method (Ding 2012)

inferference Methods for causal inference with interference (Saul 2015)

MatchingFrontier Computation of the balance — sample size frontier in matching
methods for causal inference (King et al. 2015)

mediation Causal mediation analysis (Tingley et al. 2014)

qualCI Causal inference with qualitative and ordinal information on
outcomes(Kashin et al. 2014)

SimpleTable Bayesian inference and sensitivity analysis for causal effects

from 2 x 2 and 2 x 2 x K tables in the presence of unmeasured
confounding (Quinn 2012)

treatSens Sensitivity analysis for causal inference (Carnegie et al. 2016)

Packages for causal discovery

CAM Causal additive model (CAM) (Peters and Ernest 2015)

D2C Predicting causal direction from dependency features (Bon-
tempi et al. 2015)

pcalg Methods for graphical models and causal inference

Packages for identification of causal effects

causaleffect Deriving expressions of joint interventional distributions in
causal models

pcalg Methods for graphical models and causal inference

Table 1: R packages for causal inference.
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2. Example on do-calculus

Consider identification of causal effect P, (y) in the graph G of Figure 1. We show how this
causal effect can be identified by applying do-calculus (Pearl 2009) manually. Later the same
example is reconsidered using the identification algorithm.

First, the rules of do-calculus are shortly reviewed. The purpose of do-calculus is to represent
the interventional distribution Px(y) by using only observational probabilities. A causal
effect is identifiable, if such an expression can be found by applying the rules of do-calculus
repeatedly. This result follow directly from the definition of identifiability due to the fact that
all observational distributions are assumed identical for the causal models that induce G.

Let X,Y and Z be pairwise disjoint sets of nodes in the graph G induced by a causal model
M. Here Gg %z means the graph that is obtained from G by removing all incoming edges of
X and all outgomg edges of Z. Let P be the joint distribution of all observed and unobserved
variables of M. Now, the following three rules hold (Pearl 1995):

1. Insertion and deletion of observations:

Pu(ylz, w) = Px(ylw), if (Y LZ[X, W)ag

2. Exchanging actions and observations:

Py ,(y|w) = Px(y|z, w), if (Y ILZ|X, W)g

3. Insertion and deletion of actions:

Pra(ylw) = Pu(ylw), if (Y LLZIX, W)y

X,zZ(W)’
where Z(W) = Z\ An(W)ag

The rules of do-calculus can be shown to be true by using d-separation and the definition of

the do(-)-operator. Pearl presented proofs for these three rules (Pearl 1995). Do-calculus has

also been shown to be complete, meaning that the expressions of all identifiable causal effects
can be derived by using the three rules (Shpitser and Pearl 2006b; Huang and Valtorta 2006).

To identify P,(y) in the causal model of Figure 1, we begin with the factorization

ZP (ylw, 2) Po(2[w) Pr(w). (1)

Let us start by focusing on the first term in the sum. Because (Y I Z|X, W)g- rule 2

Xz
implies that
Px(y|w7 Z) = Px,z(y|w)
and by noting that (Y L X[Z, W)¢ - rule 3 allows us to write
Px,z(y|w) = Pz(y|w)

By expanding the previous expression we get

P (ylw) = ZP (ylw, ) P-(z|w). (2)
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Figure 1: Graph G for the illustrative example.

Rule 2 and the fact that (Y 1L Z|X,W)¢, together imply
P:(ylw, z) = P(y|lw, z, 2). (3)
The condition (X 1L Z|W)¢ and rule 3 allow us to write
P (z|w) = P(z|w). (4)
Inserting (3) and (4) into (2) yields
P.(ylw) =) P(ylw,z, z)P(z|w). (5)

Focusing now on the second term of (1) we see that because (Z I X|W)a

« rule 2 implies
that

P,(z|lw) = P(z|z,w). (6)
Similarly, the third term simplifies by using rule 3 and the condition (W 1 X)¢ rule 3.

Py(w) = P(w). (7)

Finally, we combine the results above by inserting (5), (6) and (7) into (1) which yields the
expression for the causal effect.

Po(y) =) (Z P(ylw,mvz)P(wlw)> P(z|z, w)P(w)

w,z

In Section 3.3 we will see how the causal effect can be identified by applying the algorithm
of (Shpitser and Pearl 2006b). The previous result highly resembles the front-door criterion,
which states that

Pe(y) =) (Z P(Y|X75)P(X)) P(s]x),

whenever the set S blocks all directed paths from X to Y, there are no unblocked back-door
paths from X to S and X blocks all back-door paths from S to Y. However, neither W, Z,
or {W, Z} satisfy the role of the set S. The criterion would certainly hold if we removed W
from the graph.

3. Identifiability algorithm
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(a) Graph G. (b) A subgraph of G induced by the set {X, Z1, Z»}.

Figure 2: An example illustrating the definition of an induced subgraph.

Even if a causal effect is identifiable, the rules of do-calculus themselves do not guarantee
that they could be used to form an expression for the interventional distribution, and that it
would contain only observed quantities. It is also not self-evident in which order the rules of
do-calculus should be applied to reach the desired expression from the joint distribution of
the observed variables P(V).

To overcome these limitations an identifiability algorithm has been developed by Shpitser
and Pearl (2006b). This algorithm can be used to determine the identifiability of any causal
effect, in addition of generating the expression for the interventional distribution in the case
of an identifiable effect.

3.1. Definitions

Some graph theoretic definitions are necessary in order to present the algorithm. The notation
mostly follows that of (Shpitser and Pearl 2006b) with some slight alterations for the benefit
of the reader.

Definition 1 (Induced Subgraph). Let H = (W,F) and G = (V,E) be graphs such that
W C V. If every pair of nodes X,Y € W is connected by an edge in graph H precisely
when they are connected by an edge of the same direction in graph G, then H is an induced
subgraph induced by the set W and H = G[W].

Defining new graphs using only a set of nodes can easily be achieved using induced subgraphs.
For example, the graph in Figure 2(b) is an induced subgraph induced by the nodes X, Z;
and Z from G in 2(a).

Perhaps the most important definition is C-component (confounded component).

Definition 2 (C-component, (Shpitser and Pearl 2006b) 3). Let G = (V,E) be a graph. If
there exists a set B such that B C E and B contains only bidirected edges, and the graph
(V,B) is connected, then G is a C-component.

Both graphs in Figure 2 are examples of C-components. Even if a graph is not a C-component,
at least one of its subgraphs is guaranteed to be a C-component because every subgraph
induced by a single node is always a C-component. It is often of greater interest to determine
how a given graph can be partitioned in C-components that contain as many nodes as possible.
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Figure 3: Path H.

Definition 3 (Maximal C-component). Let G be a graph and C' = (V,E) a C-component
such that C' C G. C-component C' is mazimal (with respect to graph G) if H C C for every
bidirected path H of graph G which contains at least one node of the set V.

Tian (2002) proved, that the joint probability distribution P(V) of the observed variables of
graph G can always be factorized in such a way, that each term of the resulting product corre-
sponds to a maximal C-component. This property is in a fundamental role in the algorithm,
since it can be used to recursively divide the expression of the interventional distribution into
simpler expressions.

If a given graph G is not a C-component, it can still be divided into a unique set C(G) of
subgraphs, each a maximal C-component of GG. This follows from the fact, that there exists
a bidirected path between two nodes in G if and only if they belong in the same maximal
C-component, which in turn follows from the definition of a maximal C-component. This
means, that the bidirected paths of graph G completely define its maximal C-components.

C-trees are a special case of C-components. They are closely related to direct effects, which
are causal effects of the form Pp,y)(Y).

Definition 4 (C-tree, (Shpitser and Pearl 2006b) 4). Let G be a C-component such that
every observed node has at most one child. If there is a node Y such that G[An(Y)q] = G,
then G is a Y-rooted C-tree.

Using only C-trees and C-components it is already possible to characterize identifiability of
effects on a single variable. C-forest is the multivariate generalization of a C-tree in such a
way that the root set, which is the set of nodes {X € G | De(X)g \ {X} = (0}, contains one
or more nodes.

Definition 5 (C-forest, (Shpitser and Pearl 2006b) 5). Let G be a graph and Y its root set.
If G is a C-component, and every observed node has at most one child, then G is Y-rooted

C-forest.

Both C-components in Figure 2 are also C-forests, because every observed node has at most
one child in both graphs. In addition, their root sets consist only of a single node. There
exists a connection between C-forests and general causal effects of the form Py(Y). A graph
structure formed by a pair of C-trees is used to determine such effects.

Shpitser and Pearl (2006b) proved, that if a graph G contains a hedge for Px(y), then the
effect is not identifiable.

Definition 6 (Hedge, (Shpitser and Pearl 2006b) 6). Let G = (V,E) be a graph, and X,Y C
V disjoint subsets. If there are two R-rooted C-forests F' = (Vp,Ep) and F' = (Vg Epr)
such that VENX #0, VeeNX =0, F' C F,and R C An(Y)cy, then F and F’ form hedge
for P¢(y) in G.
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Hedges are a remarkable structure, since they generalize certain results regarding identifia-
bility. One example of such a result is the condition for identification of a causal effect of the
form P,(y) in (Tian and Pearl 2002). The result states that P,(y) is identifiable if and only
if there are no bidirected paths between X and any of its children in G[An(Y)g]. Consider
the graph H = (V,E) in Figure 3 containing the nodes X and Y and a bidirected path
connecting them formed by the intermediary nodes {Z1,..., Zx}. One can observe, that the
C-forests H and H[V \ {X}] form a hedge for P,(Y, Z1,..., Zy).

3.2. Algorithm

Using the previously presented definitions it is now possible to define Algorithm 1, which
completely characterizes the identifiability problem of general causal effects. Shpitser and
Pearl (2006b) showed, that the expression returned by Algorithm 1 for Px(y) is always correct
if the effect in question is identifiable. They also showed, that if the algorithm is interrupted
on line five, then the original graph G contains a hedge, preventing the identifiability of the
effect. The existence of a hedge is therefore equivalent with unidentifiability. This result also
shows the completeness of do-calculus, because the algorithm only applies standard rules of
probability manipulations and the three rules of do-calculus. All variables are assumed to
be discrete, but the algorithm can also be applied in a continuous case, when the respective
sums are replaced with integrals.

The algorithm is required to be able to iteratively process the nodes of the graph, which
means that the nodes have to be ordered in some meaningful fashion. This ordering must
be able to take the directions of the edges into account, and at least one such ordering must
always exist for any given graph. Topological ordering has all of these prerequisite properties.

Definition 7 (Topological Ordering). Topological ordering = of a DAG G = (V,E) is an
ordering of its nodes, where either X > Y or Y > X for all pairs of nodes X,Y €¢ V., X #Y
in G. In addition, no node can be greater than its descendants in 7. In other words, if X is
an ancestor of Y in G, then X <Y

There exists at least one topological ordering for any DAG, but in some cases there can be
multiple orderings. One way to always construct an ordering for a given graph is to begin
by determining all nodes without parents, and ordering them arbitrarily. Next, all nodes
without parents excluding the nodes found in previous step are determined and again ordered
arbitrarily. It is also assigned, that the largest node in the previous step is smaller than the
smallest node in the current step. This process is iterated, until all nodes have been ordered.

Algorithm 1 is simple in a sense that at each recursion stage the computation proceeds to
exactly one line only. This is easy to see from the fact that after a condition regarding any of
the line has been checked, either a return or a FAIL command will be executed. If x = () on
line one, then the marginal distribution P(y) is computed instead of a causal effect. This can
be achieved by marginalizing over the joint distribution P(V). On line two, all non-ancestors
of Y in G are eliminated. This is possible due to the fact that the input of the algorithm
assumes that G is an I-map of G and thus all necessary conditional independences hold. On
line three, interventions are added to the original causal effect, which is feasible due to the
third rule of do-calculus, because (Y 1L W|X)

It is possible to index the nodes of GG and the nodes of any subgraph of G using the topological
(i-1)

ordering. This property is utilized on lines four, six and seven. The notation Vr refers

Gzxw
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INPUT: Value assignments x and y, joint distribution P(v) and a DAG G = (V,E). G is
an I-map of P.
OUTPUT: Expression for Px(y) in terms of P(v) or FAIL(F, F').

function ID(y, x, P, G)
1: if x =0, then
return ) c\y, P(v).
2: if V # An(Y)g, then
return ID(y,x N An(Y)qg, P(An(Y)qg), G[An(Y)ag)].
3: Let W = (V\ X) \ An(Y)cy.
if W # (), then
return ID(y,xUw, P,G).
4: if C(G[V\ X]) = {G[S4],...,G[Sk]}, then
return -, .\ (yux) Hle ID(s;, v\ s, P,G).

if C(GIV\ X]) = {G[S]}, then

5. if C(G) = {G}, then
throw FAIL(G, G[S]).
6: if G[S] € C(G), then
return 3 oy [ves P(vi|117(f_1)).
7. if (3S')S C S’ such that G[S'] € C(G), then

return ID(y,x N8, [Ty,cs P(Vi[VA Y 080l 6, GS).

Algorithm 1: The causal effect of intervention do(X = x) on Y.

to all nodes in G that are smaller than V; in m. Any topological ordering of G is also a
topological ordering for any subgraph of G. This means, that it is unnecessary to determine
a new ordering for each subgraph of G. Instead, one can fix the ordering before applying the
algorithm.

The maximal C-components of G[V \ X] are determined on line four and their factorization
property is utilized. If more than one C-components were found, it is now necessary to
calculate a new causal effect for every C-component. The algorithm proceeds to either line
five, six or seven in the case if only one C-component was found.

If Algorithm 1 throws FAIL, then the original graph G contains a hedge formed by graph
G and G[S] of the current recursion stage, due to which the original effect is not identifiable
and computation terminates. If the algorithm continues, then it is necessary to determine
whether G[S] is a maximal C-component of G. If this is the case, then the condition of line
six has been satisfied. In the other case, the computation of the intervention can be limited
to the intersection of sets X and S’ on line seven.

Identifiability of conditional interventional distributions is characterized by Algorithm 2. This
algorithm is a generalization of Algorithm 1 and in fact it utilizes the function ID in the
computation. It was constructed by Shpitser and Pearl (2006a) for identifying conditional
causal effects i.e., causal effects of the form Px(y|z). They showed, that this algorithm is also
sound and complete for identifying all such effects.

The primary focus of this paper however, is the implementation of Algorithm 1. The imple-
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INPUT: Value assignments x, y and z, joint distribution P(v) and a DAG G = (V,E). G
is an I-map of P.
OUTPUT: Expression for Px(y|z) in terms of P(v) or FAIL(F, F’).

function IDC(y, x,z, P, G)
1: if 37 € Z such that (Y 1L Z|X,Z\ {Z})Giz then
return IDC(y,xU{z},z\ {z}, P,G).
2: else let P'=ID(yUz,x, P,QG).
return P’/ o P’

Algorithm 2: The causal effect of intervention do(X = x) on Y given Z.

ey

(a) Graph G (b) Subgraph G[An(Z)¢c]. (¢) Subgraph G[S/].

Figure 4: Graph G and its subgraphs.

mentation of Algorithm 2 follows seamlessly from this implementation, because at the bottom
of any recursive stack of IDC the function ID is ultimately called, which determines if the
original conditional effect is identifiable. The only additional task is to determine whether a
suitable node for the d-separation condition exists on line 1.

3.3. Application in practice

We return to the example presented in Section 2. The graph of the example along with some
subgraphs are shown here in Figure 4. Let G = (V,E) be a graph such as in Figure 4(a)
and a causal effect of interest P,(y), which is to be identified from the joint distribution
P(X,Y,Z,W). Ouly a single topological ordering exists for the nodes of G, and it is W <
X <Z<Y. Clearly x # 0,V = An(Y ) and W = 0, so the first three lines are ignored and
line four is triggered, since

C(GIVA{X]]) = {G[W],G[Z], G[YT}.

Because v\ ({y} U{z}) = {w, 2}, it is now necessary to identify three new causal effects in
the following expression:

Z Px7zvy(w)Pw7z7y(Z)Pw7x7Z (y)'
w,z

Consider the first term of the product. Because V # An(W)q, line two is triggered, and
non-ancestors of W are ignored. This results in the first term simplifying to P(w) because
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An(W)g = {W}. Line two is also triggered when computing the second term, and

Pw,l’,y(z) = Pw,z(z)
in a subgraph induced by ancestors of Z as in Figure 4(b). Observing that
C(G[An(Z)a \ {W, X}]) = {G[Z]}
and
G[Z] € C(G[An(Z)c]) = {G[X], GIW], G[Z]},

the algorithm proceeds to line 6 and the second term simplifies again
Py (2) = P(z|lw, ).
The last term P, , .(y) triggers line four, because
CGIV\{W, X, Z}]) = {G[Y]}.

G[Y] is not a maximal C-component of G, but Y is a node of one of the maximal C-components
of G: {Y} C {X,Y} =S It holds for the set S', that

G[S'] € C(G) = {G{X,Y}],GIW],G[Z]}.

So it is mandatory to compute P, (y) from P(X|w)P(Y|X,w, z) in the graph corresponding
to Figure 4(c). It should be noted, that this causal effect differs from the original effect
P.(y), because the joint distribution P(V) of observed variables of G is not the same as the
distribution P(X|w)P(Y|X,w,z) of the subgraph of the current recursion stage.

Line two is triggered next, and since Y has no observed ancestors in the graph corresponding
to 4(c), it follows that

Py(y) =) P(x|w)P(yla,w, 2).
x
An expression for the original causal effect is obtained by combining the previous results

Puly) = Y Palw,2) P(w) 3 Plylw, 2, 2) Plalw).

The result agrees with the result derived in Section 2.

Algorithm 1 can also be used to detect unidentifiability. Let F' = (V,E) be a graph of Figure
5(a) and a causal effect of interest P,(y), which is to be identified from P(X,Y, Z1, Z5). Let
the topological ordering of the nodes of F'be Z; < X < Zy < Y.

The computation starts from line three
W = (VAX)\ An(Y)rg = ({X,Y, Z1, Zop \ {X}) \{X, 22, YV} = {Z1} # 0.

Z is added to the original intervention, so P,, »(y) has to be identified. Line four is triggered
next, because
C(FIVA\{21, X}]) = {F[2], F[Y]}.

Since v\ ({y} U{z1,2}) = {22}, two new causal effects have to be identified following expres-
sion:

Z Pey wy(22) Pey 2,2 (Y)-

22
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(a) Graph F. (b) Subgraph An(Z;)p.

Figure 5: Graph F and its subgraph F[An(Z3)r].

Consider the first term of the product. Clearly V # An(Z2)r, so the algorithm proceeds to
line two, which means that

PZLx,y(z?) = P, 2(22)

in a subgraph formed by ancestors of Z, as in Figure 5(b). However, P;, ;(22) is not identifi-
able, because

C(FlAn(Z2)r \ {Z1, X}]) = {F[22]} and C(F[An(Zy)F]) = {F[An(Z2)r]},

which trigger line five. In conclusion, F' contains a hedge for P, ;(22) formed by C-forests
F[Zs] and F[{Z1, Z2, X}]. Thus the original effect P,(y) is not identifiable.

4. Implementation using R

The programming language R (R Core Team 2016) was chosen for the implementation of
Algorithm 1. The R packages XML (Temple Lang 2016), igraph (Csardi and Nepusz 2006)
and ggm (Marchetti et al. 2015) are utilized repeatedly throughout the implementation.

4.1. Graph files

A graph G induced by the causal model is a crucial argument of Algorithm 1. Many file
formats for visualizing graphs are available, each with their own strengths and weaknesses.
Some of these formats are very simple, and do not differentiate directed and undirected
graphs. Some formats offer excessive features for describing causal models, or they might
require handling complex syntax, which can be time consuming.

GraphML (Brandes et al. 2002) is a user-friendly file format for graphs. Its features include
support for directed graphs and visualizations. GraphML is based on the extensible markup
language XML (Maler et al. 2004), which makes processing of graphs files almost effortless.
One can also include the names of the nodes within the GraphML file itself, so the user is not
limited to having to input the node names themselves inside the R environment. Graphical
editors for creating GraphML files are freely available for the user. A special function called
parse.graphml has been developed for processing GraphML files. However, the implemen-
tation of Algorithm 1 is not limited to GraphML files alone. Any file format supported by
the igraph package can be used, as long as the graph follows one of the following notations
for bidirected edges.
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(a) Notation 1. (b) Notation 2. (¢) Notation 3.

Figure 6: Notations for bidirected edges.

Bidirected edges can be separated from unidirected edges by using graphical parameters. For
this purpose, three distinct notations have been selected to describe bidirected edges, which
correspond to unobserved nodes.

The available notations for bidirected edges are shown in Figures 6(a), 6(b) and 6(c). It
should be noted, that notations 1 and 2 are almost identical. Because of their similarity, both
notations 1 and 2 are referred to as standard notation. Notation 3, as shown in Figure 6(c)
differs from the previous two. It is apparent, that this notation cannot be used as such,
because it induces loops in the graph which is not allowed in the context of DAGs. However,
GraphML format enables the assignment of parameters for the edges, which in turn allows
one to separate these edges from their unidirected counterparts. When using notation 3, one
must define a parameter called description for the two unidirected edges corresponding to
the bidirected edge, and assign its value to "U" (Unobserved). Notation 3 is used in the
implementation itself, which is why it is referred to as the internal notation.

The process of importing GraphML files created by a graphical editor is handled by using the
R package XML. This package contains the function xmlParse, which is utilized to import
graph files into R objects. It should be noted, that these objects only reflect their internal C
objects and are thus different from ordinary R objects. This means that the memory reserved
by the XML objects has to be freed after the files have been imported. Normally R does this
automatically.

Algorithm 1 requires only a small portion of the XML content, and the unnecessary content
is removed in the process of searching for the important items. Items of importance are
those that contain data about the node names, node count, edge count and the values of the
description parameters of the edges. If notation 1 or 2 of Figures 6(a) and 6(b) was used for
the bidirected arcs, it is converted to match the internal format of Figure 6(c). The XML
search is implemented using the function getNodeSet of the XML package. This function
uses XPath, which is a processing language for XML content search (Simpson 2002).

When the crucial information has been extracted, an igraph graph is formed from the remain-
ing content. igraph is a tool for visualizing and processing graphs, and it can handle graphs
which may contain millions of nodes due to its implementation in C. This package also offers
many useful functions related to Algorithm 1, such as determining the ancestors of a node,
constructing a topological ordering and generating induced subgraphs from a set of edges or
nodes. One of the main goals of igraph is the effortless implementation of graph algorithms.

4.2. Distribution objects

An important question regarding the Algorithm 1 of Section 3.2, is how the probability
distribution which changes at each recursive stage should be implemented. An intuitive
solution is to construct a distribution object, which maintains the terms currently present in

13
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the expression. Distribution objects are recursive by construction as is the algorithm itself.
In practice this means that when any of the lines four, six or seven is triggered, sub objects
are formed, which correspond to the product terms of the expression. These sub objects can
further branch into sub objects of their own and so forth. causaleffect implements an R class
called probability to represent the distribution objects.

Multiple attributes have to be set for the distribution objects in order to present the prob-
ability distribution precisely. The string vectors var and cond are one of the most common
attributes, because they enable the definition of a simple conditional distribution. A distribu-
tion is formed by the variables described in var conditioned on those of cond. For example,
let p be a distribution object, and let the values of its attributes be var = "Y" and cond =
"X". Therefore object p represents the conditional distribution P(Y|X).

When the distribution is a product, the individual terms are defined in a list of distribution
objects called children and a logical variable recursive is set to TRUE to differentiate this ob-
ject from those containing only a single term. For example, for a distribution which represents
the distribution P* = P(Z|X)P(X|Y)P(Y) one has to set children = list(a,b,c), where
the objects a, b and ¢ represent the distributions P(Z]X), P(X|Y) and P(Y") respectively.

For marginal distributions a string vector sumset has been defined. The contents of this
vector correspond to the variables which the distribution is to be summed over in the discrete
case, or integrated over in the continuous case. In simple situations this parameter is not
needed, but often with more complex graphs one encounters instances, where the computa-
tion of conditionals is no longer straightorward. Suppose one had to compute the marginal
distribution P*(X) of X from the joint distribution P*(X,Y, Z) of the previous example.
To achieve this, one has to set sumset = c("Y","Z") for the matching distribution object,
because P*(X) = >y, P(Z|X)P(X|Y)P(Y).

The level of complexity increases further when computing conditionals from distributions
which consist of multiple product terms. The previously presented attributes are often insuf-
ficient to form an expression for the corresponding distribution object. Consider once more
the joint distribution P*. Computing the marginal conditional distribution P*(X|Y") results
in

PY(X,Y) _ ¥, PZIX)P(X|V)P(Y) _

PrY) Sy, PEX)PX[Y)P(Y)
P(X|Y) Y, P(Z]X)
>y PX|Y) X, P(Z]X)

The implementation is able to handle similar situations, where the expression can easily be
simplified using the following procedure. Any term which does not depend on the summation
index, will be placed outside of the sum. Next, it is checked whether any expressions can
be simplified by changing the order of summation. Corresponding terms are subtracted if
possible.

PH(X[Y) =

= P(X|Y).

These simplification rules are not sufficient to handle every situation. For example, the
expression . x P(Y|X)P(X) cannot be simplified using the procedure above. One cannot
remove any terms from within the sum and the summation order is clearly fixed. In situations,
where the denominator is necessary in order to correctly form the expression, one needs to
include additional attributes called divisor and fraction. These attributes are similar to
the attributes children and recursive in a sense that divisor contains the distribution
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object that represents the denominator and fraction is set to TRUE when it is necessary to
represent the expression as a fraction.

4.3. Maximal C-components

In Section 3.1 it was shown, that for every causal diagram G there exists a unique set C'(G)
of maximal C-components of G. To construct this set, one has to begin by determining all
bidirected edges of G. Afterwards, a subgraph containing only bidirected edges is formed. This
subgraph will contain one or more components, which are connected subgraphs of G. Because
these components are disjoint and every pair of nodes within a component is connected by a
bidirected path, it follows that they must be the maximal C-components of G. The adjacency
matriz of G is utilized to find the bidirected edges of G.

Definition 8 (adjacency matrix). An adjacency matriz of a graph G = (V,E) isa nxn
matrix A = [a;j], where n is the number of nodes of G, V = {V1,V5,...,V,,} and qa;; is the
number of edges from V; to Vj.

Because G is directed, its adjacency matrix is not necessarily symmetric. When notation 3
of Figure 6(c) is used to describe the bidirected edges, it is easy to confirm that two nodes V;
and Vj are connected by at least one bidirected edge if and only if a;; > 1 and a;; > 1. Thus
all bidirected edges can be determined by comparing A to its transpose AT, and by choosing
only those edges which correspond to indices with a;; > 1 and aj; > 1.

The subgraph of G containing only bidirected edges is constructed by using the function
subgraph.edges of the igraph package. This function retains all nodes of the input graph,
but removes all the edges that were not given as input. The subgraph returned by this
function is further divided into components by using the function decompose.graph which is
also provided by igraph.

4.4. ITmplementation

All necessary preparations have been presented to implement Algorithm 1. Any probability
distribution can be represented with a corresponding distribution object, and the adjacency
matrix provides a method to determine the maximal C-components of G. Other important
methods are provided by the igraph package, such as constructing subgraphs and determining
the ancestors of a given set of nodes. In this implementation, the input of Algorithm 1 consists
of the sets x and y including the graph G, and returns a probability object, which is a list
structure that describes the expression of the causal distribution Px(y) in terms of P(V).
The returned object can be further parsed into a character representation.

The R function of Algorithm 1 is called id. This function takes five parameters as input:
a string vector y, a string vector x, a distribution object P, an igraph graph G and a string
vector to. The first four parameters correspond to their mathematical counterparts, namely
the vectors x, y, P and G. The last parameter to is a string vector representing some
topological ordering of the nodes of G. All required set theoretic operations are included in
R as the functions intersect, setdiff and union.

The observed portion of G is saved as G.obs. This graph contains all the observed nodes of
G and the edges between them. In addition, the observed nodes are saved into vector v, and
the ancestors of y are saved into vector anc. The implementation of each line of Algorithm 1
is presented next.

15



16 Identifying Causal Effects with the R Package causaleffect

1: if x = (), then

return ) P(v).

vev\y
The truth value of the expression x = () is determined on line 1. This is done by computing
the length of x. If the length is zero, then id combines the difference of the sets v and y with
the sumset of P and returns P.

2: if V # An(Y)q, then
return ID(y,x N An(Y)qg, P(An(Y)qg), G[An(Y)ag)].

The truth value of the condition on line 2 is determined by computing the length of the
vector setdiff (v, anc). If the length is not zero, then id is called with the arguments
id(y, intersect(x, anc), P, anc.graph, to), where anc.graph is the induced subgraph
G[An(Y)q], which is constructed by using the induced.subgraph function of the igraph
package. This function takes a set of nodes and a graph as input, and constructs a subgraph,
which retains all of the nodes given as input, and all of the edges between them in the original
graph.

3: let W= (V\X)\ An(Y)Gi.
if W # (), then
return ID(y,xUw, P,G).

To construct a vector w which represents the node set W, one must first construct the subgraph
Gx. To accomplish this, all incoming edges of X have to be determined. A useful operator
is provided by the igraph package to accomplish this. The operator %->% can be used to find
incoming or outgoing edges of a node. In this case, one finds the incoming nodes of x with
the command E(G) [1:length(E(G)) %->% x], where E is a function that returns all edges
of G. When the subgraph has been constructed, w can also be constructed. If the length of w
is not zero, then id is called with the arguments id(y, union(x, w), P, G, to).

4: if C(G[V\ X]) = {G][S1],...,G[Sk]}, then
return -, .\ (yux) 15, ID(s;, v \ s, P, G).

The set C(G[V \ X]) can be found with the function c.components. This function deter-
mines the node set of every maximal C-component of the input graph, and returns them
as a list s. If the length of this list is larger than one, then id returns a new distribu-
tion object with sumset = setdiff(v, union(y, x)), recursive = TRUE, children =
productlist, where every object in productlist is determined by a new recursive call for
every C-component G[S;], i =1, ...,k that was found. These components are constructed by
calling id with the arguments id(s[[i]], setdiff(v, s[[ill), P, G, to),i=1,...,k.

If the algorithm did not proceed to any of the previous lines, then the additional condition
C(G[V \ X]) = {G[S]} must be true. The node set of the single C-component G[S] is now
saved in the vector s, which was previously a list. This means that s is replaced by s[[1]].

5. if C(G) = {G}, then
throw FAIL(G,G[S]).

The function c.components is utilized again in order to find the maximal C-components of G.
If in addition to having only a single C-component this C-component is G itself, then line five
is triggered. This is checked by comparing s and v. If they are equal, then the computation
is interrupted by the stop function and an error message is produced. The error message
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describes the C-forests which form the problematic hedge structure for the causal effect of
the current recursion stage.

6: if G[S] € C(G), then
return ZvEs\y [lv.es P(Ui|UT(f_1))_

If the single C-component found on line four is one of the maximal C-components of G,
then the function id returns a new distribution object. The sumset of this object is set to
setdiff (s, y). The distribution is a product so it must also be set, that recursive = TRUE
for this new object. The objects in the list children are determined by new recursive calls
for every node V; in S. The conditioning nodes are the ones that precede V; in the topological
ordering to.

7. if (3S')S C S’ such that G[S'] € C(G), then
return ID(y,x Ns', [y, cs P(Vi|V7r(271) ns, ol \s'), G[S).

If the single C-component found on line four is not one of the maximal C-components of G,
then it must be a subgraph of some maximal C-component G[S']. Vector s is replaced by a vec-
tor corresponding to the nodes of S’, since the nodes of S are no longer required. The function
id is called with the following attributes id(y, intersect(x, s), probability(recursive
= TRUE, children = productlist), s.graph, to), where s.graph is the induced sub-
graph G[S'] and every distribution object in productlist is constructed by setting var <-
s[i] and cond <- v[0:(ind[i]-1)] for every node V; in S'.

Algorithm 2 is also implemented in causaleffect as the function idc. This function iterates
through the nodes z which it receives as input in addition to the parameters that were
previously defined for the id function. The d-separation condition on line 1 is checked by
using the function dSep from the ggm package.

5. Package causaleffect

The primary goal of the causaleffect package is to provide the implementation described in
Section 4. The package also provides a means of importing GraphML files into R while
retaining any attributes that have been set for the nodes or edges of the graph.

5.1. Using causaleffect in R

The primary function which serves as a wrapper for the functions id and idc is called
causal.effect. This function can be called as

causal.effect(y, x, z = NULL, G, expr = TRUE)

where the parameters y, x and G are identical to those of id. The parameter z is optional and
it is used to represent the conditioning variables of idc. The initial probability object P which
is a parameter of id does not have to be specified by the user. In essence, causal.effect
starts from an empty distribution object, and gradually builds the final expression if possi-
ble. Also, the topological ordering to of the function id is automatically generated by the
topological.sort function of the igraph package. It is verified, that the vectors y, x and z
actually contain nodes that are present in G. If G is not a DAG then causal.effect will also
terminate. The last parameter expr is a logical variable. If assigned to TRUE, causal.effect
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will return the expression in ITEX syntax. Otherwise, the probability object used internally
by id is returned, which can be manually parsed by the user to gain the desired output. The
function get.expression is also provided to get a string representation of a probability
object. This function currently supports ITEX syntax only.

First, causaleffect is loaded to demonstrate the usage of the package.
R> library("causaleffect")

The causal.effect function can be utilized without first importing a graph file. One can
utilize the igraph package to construct graphs within R itself. This is demonstrated by
replicating some of the graphs of Section 3.3. The graph of Figure 1 is created as follows.

R> library("igraph")

R> figl <- graph.formula(W -+ X, W -+ Z, X -+ Z, Z + Y, X +Y, Y -+ X,
+ simplify = FALSE)

R> figl <- set.edge.attribute(graph = figl, name = "description",

+ index = ¢(5,6), value = "U")

R> cel <- causal.effect(y = "Y", x = "X", z = NULL, G = figl, expr = TRUE)
R> cel

[11 "\\left (\\sum_{W,Z}P(WP(Z|W,X)\\left (\\sum_{X}P(Y|W,X,Z)P(XIW)\\right)\\right)"

Here X -+ Z denotes a directed edge from X to Z. The argument simplify = FALSE allows
the insertion of duplicate edges for the purposes of forming bidirected arcs. Recalling the
internal notation from Section 4.1 we must denote the unidirected edges that correspond to
a bidirected edge with a special description parameter, and assign its value to "U". This can
be done with the set.edge.attribute function of the igraph package. Finally, the expression
for the interventional distribution is obtained by using the causal.effect function. Usually
one needs to apply the standard R function cat to obtain the expression with only singular
slash symbols.

R> cat(cel)
\left (\sum_{W,Z}IP(WP(Z|W,X)\left (\sum_{X}P(Y|W,X,Z)P(X|W) \right) \right)

To observe unidentifiability, the graph of Figure 5(a) is also constructed and an attempt is
made to identify P, (y).

R> figh <- graph.formula(Z_1 -+ X, X -+ 2.2, Z2 —+ Y, Z_1 —+ X, X —+ Z_1,
+ Z1-+22,22-+21,21-+7Y,Y-+21,X-+Y, YV -+X,

+ simplify = FALSE)

R> figh <- set.edge.attribute(graph = figh, name = "description",

+ index = 4:11, value = "U")

R> causal.effect(y = "Y", x = "X", z = NULL, G = figh, expr = TRUE)

Error: Graph contains a hedge formed by C-forests of nodes:
{Z_1,X,Z_2} and {Z_2}.
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The identification fails in this case due to a hedge present in the graph.

Another function provided by causaleffect is parse.graphml which can be called as

parse.graphml(file, format = c("standard", "internal"), nodes = c(),
use.names = TRUE)

Parameter file is the path to the GraphML file the user wishes to convert into an igraph
graph. Parameter format should match the notation that is used to denote bidirected edges
in the input graph. The vector nodes can be used to give names to the nodes of the graph
if they have not been specified in the file itself or alternatively, to replace them. Finally,
use.names is a logical vector indicating whether the names of the nodes should be read from
the file or not.

We provide an example GraphML file in the replication materials to demonstrate the use
of the parse.graphml function. The file gl.graphml contains the graph of Figure 1 in
standard notation. This means that we do not have to provide names for the nodes or
set the unidentified edges manually. First, we read the file into R. This produces several
warnings which can be ignored because they are related to the visual attributes created by
the graphical editor that was used to produce gl.graphml. These attributes play no role in
the identification of P,(y). We omit these warnings from the code for clarity.

R> gmll <- parse.graphml("gl.graphml", format = "standard")
R> ce2 <- causal.effect(y = "Y", x = "X", z = NULL, G = gmll, expr = TRUE)
R> cat(ce2)

\left (\sum_{W,Z}IP(W)P(Z|W,X)\left (\sum_{X}IP(YIW,X,Z)P(X|W)\right)\right)

We see that the result agrees with the one derived from the manually constructed graph.

For conditional causal effects, we simply utilize the parameter z of the causal.effect func-
tion. For example, we can obtain the formula for P,(z|w) in the graph of Figure 1.

R> condl <- causal.effect(y = "Z", x = "X", z = "W", G = gmll, expr = TRUE)
R> cat(cond1)

\frac{P(ZIW,X) H\left (\sum_{Z}P(ZIW,X)\right)}

In mathematical notation the result reads
P(z|lw, )
L[P(efw, )]
This is a typical case where the resulting expression is slightly awkward due to the incom-

pleteness of the simplification rules. However, in this case it is easy to see that the expression
can be simplified into P(z|w, x).

5.2. A complex expression
(i—1)

The conditional distributions P(v;|ux ) that are computed on line 6 can sometimes produce
difficult expressions when causal effects are determined from complex graphs. This is a result
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Figure 7: An example of a graph, where an identifiable causal effect results in a complex
expression.

of the simplification rules which were described in the previous section, and their inability to
handle every situation. The graph G of Figure 7 serves to demonstrate this phenomenon. An
attempt is made to identify P, (21, 22, 23, y) in this graph.

Tian (2002) proved this effect to be identifiable, and showed that its expression is

Py(21, 22, 23,y) = P(21|z, zg)ZP(y,Z3|x, 21, 22) P(, 22).
€T

When applying Algorithm 1 to this causal effect, it is necessary to compute a conditional
distribution P*(Y|Z2, Z3), where

P*(y,22,23) = Y _ P(y|22, @, 23, 21) P(23]22, ) P(%] 22) P(22)
xT

and P is the joint distribution of the observed variables of G. Now, the function causal.effect
is applied as follows.

R> fig7 <- graph.formula(X -+ Z_1, Z_1 -+ Y, Z 3 -+ Y, Z 2 -+ X,
+ Z2-+21,22-+23, X -+Y,Y-+X, X -+23,23-+X,
+ X -+22,22-+X,Y-+22,Z2-+Y, simplify = FALSE)
R> fig7 <- set.edge.attribute(graph = fig7, name = "description",
+ index = 7:14, value = "U")

R> ce3 <- causal.effect(y = c("Z_1", "Z_2", "Z_3", "Y"), x = "X",
+ z = NULL, G = fig7, expr = TRUE)

R> cat(ce3)

This results in the expression

(34 Pyle2, @, 23, 21) P(23]22, ¥) P(x]22) P(22))

P )
(2122, @) (Zz,y P(y|z2, x, 23, 21) P(23| 22, EC)P($|22)P(32))

X ( Z P(y|22,l‘,23,Zl)P(2’3|ZQ,LL‘)P(CL‘|ZQ)P(ZQ)> P(z3]22)

T,23,Y

This result is clearly more cumbersome than the one determined by Tian. However, it can be
shown that this expression is correct by using do-calculus. Because the set {X, Z2} d-separates



Journal of Statistical Software 21

all paths from Z; to Zs, it follows that (Z3 1l Z1|X, Z2)¢, so

P(z1]22,2) Y P(y|2e, @, 23, 21) P(23] 22, ) P(] 22) P(22)
x
= P(z1]22,%) Y _ P(yl22, @, 23, 21) P(23] 22, ¥, 21) P(, 22)
x
= P(21|ZQ7$)ZP(Z/,Z3|227LL‘, Zl)P(xsz)v
T

where the second equality is due to the conditional independence of Z; and Z3 given X and
Zo. The last line is equivalent with Tian’s expression up to the ordering of terms. It can be
shown, that the remaining terms are subtracted from the expression.
P(23|Z2)Zx,Z3,y P(ylzo, x, 23, 21) P(23| 22, ) P(x|22) P(22)
ouy PWlze, @, 23, 21) P(23|22, ) P(|22) P(22)
_ P(z3]22) P(22)
Y.y Plylee, @, 23, 21) P(23] 22, ) P, 22)

By applying the same logic to the denominator, it follows that

P(z3]22) P(22) _ P(z3|22) P(22)
Zz,y P(ylze, x, 23, 21) P(23|22, 2) P2, 22) Zr,y P(y723‘22,3:',21)P($,22).

By using the conditional independence of Z; and Zs3 given X and Z3 one gets

P(23,22) _ P (23, 22)
Zz P(Z3|227m321)P(x722) Zw P(23|22,1‘)P(1‘, 22)
P(z3, 22) P(z3,20)  Plz3,22)

T Y, Plaslza)P(w,22) S, Pz zea)  Plzs,za)

The expression produced by causal.effect is correct despite its complexity.

5.3. d-separation

Algorithm 1 does not utilize every possible independence property of a given graph G. For
example, the conditional distribution of line six is conditioned on all nodes preceding V; in
the topological ordering 7, even though at least some nodes on paths preceding V; are often
d-separated by some sets of nodes. In these cases, the nodes that are d-separated with Vj
could be excluded from the expression, because they are conditionally independent from Vj
in G. This situation is demonstrated by determining the expression of P, ,,(y) in the graph
G of Figure 8.

The function causal.effect is utilized

R> fig8 <- graph.formula(z -+ x, z ~+ w, x —+ y, w -+ y)

R> ce3 <- causal.effect(y = "y", x = c("x", "w"), z = NULL, G = fig8,
+ expr = TRUE)

R> cat(ce3)

The function returns P(y|z,w) even though Algorithm 1 would return P(y|z,z,w). This is
possible because (Y Il Z|X,W)q. This means that our implementation is able to simplify
the expression into P(y|z,w).
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w
Figure 8: An example of a graph with additional conditional independences.

6. Discussion

We have introduced R package causaleffect for deriving expressions of joint interventional
distributions in causal models. The task is a specific but important part of causal inference.
We believe that our implementation has two practical use cases. First, causaleffect can be
simply used to derive expressions of interventional distributions for complex causal models or
to check manual derivations. This is an important step in the estimation of causal effects in
complicated settings (Karvanen 2015). Second, causaleffect can be used as a building block
in simulation studies and automated systems where identifiability needs to be checked for a
large number of causal models. An example of this kind usage is already given by Hyttinen
et al. (2015).

The efficiency of the presented implementation causaleffect could be analyzed further for
example by simulation studies. However, an attempt to maximize performance was made
by utilizing the most efficient packages available for the processing of graph files and for the
objects corresponding to them. The existing simplification rules of the expressions could also
be further improved, but it should be noted that sometimes the more complex expression can
prove useful.

There have been many recent developments in the field of causality resulting in graph theoretic
algorithms similar to ID and IDC. These include for example:

« Causal effect z-identifiability algorithm ID? (Bareinboim and Pearl 2012). z-identifiability
deals with a situation, where it is possible to utilize a set Z that is disjoint from X to
achieve identifiability.

o Causal effect transportability algorithm sID (Bareinboim and Pearl 2013a). Transporta-
bility means, that results obtained from experimental data can be generalized into a
larger population, where only observational studies are applicable.

o Causal effect meta-transportability algorithm psID (Bareinboim and Pearl 2013b). Meta-
transportability is an extension of the concept of transportability, where the results are
to be generalized from multiple experimental studies simultaneously.

o Counterfactual and conditional counterfactual identifiability algorithms ID* and IDC*
(Shpitser and Pearl 2007).

The work presented in this paper could be utilized to implement these algorithms.
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A. Graphs, causal models and causal effects

A.1. Graphs

The definitions that are presented here follow those of (Koller and Friedman 2009). Graph is
an ordered pair G = (V,E), where V and E are sets such that

EC{{X,Y}|XeV,YEV,X £Y}.

The elements of V are the nodes of GG, and the elements of E are the edges of G. A graph
F = (V' E') is a subgraph of G if V' C V and E' C E. This is denoted as F' C G. A graph G
is directed if the set E consists of ordered pairs (X,Y). In a directed graph, node V5 is a child
of node V1 if G contains an edge from V; to Vo, which means that (Vi,V5) € E. Respectively
Vs is a parent of Vi if (Va, V1) € E. The child-parent relationship is often denoted as Vi — V5,
where V7 is a parent of V5 and V5 is a child of V4. This can also be notated as Vo < V7.
Let n>1, V=A{V,....,V;,} and V; # Vj for all i # j. If n > 1, then the graph H = (V,E)
is a path if
E= {{Vla VV2}a {V27 V3}v B {anla Vn}}

or if

E= {{‘/17 VZ}? {V27 ‘/3}7 RRR) {anly Vn}7 {Vna Vl}}
In the first case, H is a path from Vi to V},. In the second case H is a cycle. If n =1, then
H = ({V1},0) is also a path. A path H is a directed path if all of its edges are directed and
point to the same direction, which means that either

E = {(‘/1, ‘/2)7 (‘/27 V3)a e (Vn—l, Vn)}

or

E={(V1,V2),(V2,Va), ..., (Va1, Vo), (Var, V1) }-

A node V5 is a descendant of Vq in G, if there exists a directed path H from V; to V5 and
H C G. Respectively, V5 is an ancestor of Vi in G, if there exists a directed path H from V5
to Vy and H C G. If a graph G does not contain any cycles, it is acyclic. A graph G = (V,E)
is connected if there exists a path H C G between every pair of nodes V;, V; € V. Examples
of paths are cycles are presented in Figure 9.

If a graph is directed it is also possible to consider its subgraphs as undirected graphs, when
all of the edges of the graph are regarded as undirected edges. For example, a directed graph
contain paths, even if it does not contain any directed paths. The directed graph in Figure
10 contains a path connecting the nodes X and Y, even though they are not connected by a
directed path.

Let G = (V,E) be a graph and Y C V. Assume that the nodes of Y correspond to some ob-
served variables, and that the set V can also contain nodes, which in turn correspond to some
unobserved variables. Then the abbreviations Pa(Y)qg, An(Y)q, and De(Y)g denote the set
of observable parents, ancestors and descendants of the node set Y while also containing Y.

A.2. Causal model

Causal model can be used to describe the functional relationships between variables of inter-
est. In addition, the model enables the formal treatment of actions or interventions on the
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Figure 9: Directed and undirected paths and cycles.

X Y

Figure 10: An undirected path in a directed graph.

variables of the model. Judea Pearl defined the deterministic causal model and its probabilis-
tic counterpart (Pearl 2009, p. 203-205), which are presented in this section.

Definition 9 (Causal Model, (Pearl 2009) 7.1.1). A causal model is a triple
M = (U, V,F),
where:
1. U is a set of background variables that are determined by factors outside the model;

2. Vis a set {V1,Va,...,V,} of variables, called endogenous, that are determined by
variables in the model — that is, variables in U U V; and

3. F is a set of functions {fv;, fus, ..., fy, } such that each fy; is a mapping from (the
respective domains of) UU(V\V;) to V;, and such that the entire set F forms a mapping
from U to V. In other words, each f; tells the value of V; given the values of all other
variables in U UV, and the entire set F has a unique solution V(u). Symbolically, the
set of equations F can be represented by writing

vi = fv,(pay,,uy,), i=1,...,n,
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Figure 11: Example notation of unobserved edges.
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Figure 12: Notation for bidirected edges.

where pa; is any realization of the unique minimal set of variables PAy, in V \ V;
(connoting parents) sufficient for representing f;. Likewise, Uy, C U stand for the
unique minimal set of variables in U sufficient for representing f;.

For each causal model M there is a corresponding graph G = (W,E). The node set W
contains a node for each observed and unobserved variable of M. The edge set E is determined
by the functional relationships between the variables of V and U in the causal model M. The
set E contains an edge from X to Y if X € PAy, which means that there is an edge coming
into V; from every node required to uniquely define fy;. Likewise, the set E contains an edge
from U to every node V; such that U € Uy;.

The definition of causal model does not set any limitations for the unobserved variables. Thus
any unobserved node can be a parent of an arbitrary number of observed nodes. If every
unobserved node is a parent of exactly two observed nodes, then the causal model is a semi-
Markovian causal model. Verma (1993) showed, that for any causal model with unobserved
variables one can construct a semi-Markovian causal model that encodes the same set of
conditional independences. This is why only semi-Markovian models are considered in this
paper.

The edges coming from unobserved variables are sometimes denoted as in Figure 11. However,
it is common not to include the unobserved nodes in the visual representation of the graph,
which serves to simplify the notation. Instead, it is said that there exists a bidirected edge
between X and Y, which corresponds to the effect of the unobserved variable. Thus the
notation of Figure 12 is utilized instead of the one in Figure 11.

This notation is used in (Huang and Valtorta 2006; Shpitser and Pearl 2006b; Tian 2002). It
should be noted, that a bidirected edge is not the same as two directed edges between two
nodes, as this would induce a cycle in the graph which is not allowed. Next, the definition
of the causal model is expanded by defining a probability distribution for the unobserved
variables.

Definition 10 (Probabilistic Causal Model, (Pearl 2009) 7.1.6). A Probabilistic causal model
is a pair
M = (Mp, P(U)),
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where Mp is a (deterministic) causal model and P(U) is the joint distribution of the variables
in U.

Henceforth in the paper, the term causal model refers to a probabilistic semi-Markovian causal
model without exception. Similarly, any graphs discussed will also refer to the graphs induced
by these causal models. A graph G induced by a causal model is strongly related to the joint
distribution P of all variables in the model, where P = [} { P(v;|pa*(Vi)g) ;?:1 P(uj), and
Pa*(.)g also contains all unobserved parents. If this relationship holds, then G is an I-map
(independence map) of P. Independence properties of G and P are closely related through

the following definition

Definition 11 (d-separation, (Pearl 2009) 1.2.3). Let H = (V,E) be a path and aset Z C V.
H is said to be d-separated by Z in G, if and only if either

1. H contains a chain I — M — J or a fork I <~ M — J, where M € Z and I,J € V., or

2. H contains an inverted fork I — M <« J, where De(M)g NZ = .

Disjoint sets X and Y are said to be d-separated by Z in G if every path from X to Y is
d-separated by Z in G.

If X and Y are d-separated by Z in G, then X is independent of Y given Z in every P for
which G is an I-map of P. The notation of (Dawid 1979) is used to denote this statement as
(XY |Z)g.

A.3. Causal effects

Interventions on a causal model alter the functional relationships between its variables. Any
intervention do(X = x) on a causal model M produces a new model My = (U, V,Fy, P(U)),
where Fy is obtained by replacing fx € F for each X € X with a constant function, where
the constants are defined as the x values of do(X = x). It is now feasible to formalize the
notion of causal effects as follows.

Definition 12 (Causal Effect, (Shpitser and Pearl 2006b)). Let M = (U, V,F, P(U)) be
a causal model and Y, X C V. The causal effect of do(X =x) on the set Y in M is the
marginal distribution of Y in My, which is noted by P(Y|do(X = x)) = Px(Y).

For every action do(X = x) it is required that P(x|Pa(X)g \ X) > 0. This limitation ensures
that Px(V) and its marginals are well defined. The restriction stems from the fact that it is
unfeasible to force X to attain values which cannot be observed. No inference can be made
from the distribution of such an intervention using observational data.

Definition 13 (Causal Effect Identifiability, (Shpitser and Pearl 2006b) 2). Let G = (V,E)
be a graph and Y,X C V. The causal effect of do(X = x) on the set Y, where Y N X = 0),
is identifiable in G if PL(Y) = P2(Y) for every pair of causal models M' and M? such that
PY(V) = P?(V) and P!(x|Pa(X)g \ X) > 0.

It is often impossible to show that a causal effect is identifiable by using solely the definition,
because one would have to compare every causal model that agree on the distribution of the

29
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observed variables. However, the definition serves as a tool to prove unidentifiability in certain
cases by constructing two causal models with the same induced graph and observational
distribution, and by showing further that the interventional distributions differ. The reader
is referred to (Shpitser and Pearl 2006b) for examples.
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Abstract

Obtaining a non-parametric expression for an interventional distribution is one of the most
fundamental tasks in causal inference. Such an expression can be obtained for an identifiable
causal effect by an algorithm or by manual application of do-calculus. Often we are left
with a complicated expression which can lead to biased or inefficient estimates when missing
data or measurement errors are involved.

We present an automatic simplification algorithm that seeks to eliminate symbolically
unnecessary variables from these expressions by taking advantage of the structure of the
underlying graphical model. Our method is applicable to all causal effect formulas and is
readily available in the R package causaleffect.

Keywords: simplification, probabilistic expression, causal inference, graphical model,
graph theory

1. Introduction

Symbolic derivations resulting in complicated expressions are often encountered in many
fields working with mathematical notation. These expressions can be derived manually or
they can be outputs from a computer algorithm. In both cases, the expressions may be
correct but unnecessarily complex in a sense that some unrecognized identities or properties
would lead to simpler expressions.

We will consider simplification in the context of causal inference in graphical models
(Pearl, 2009). Advances in causal inference have led to algorithmic solutions to problems such
as identifiability of causal effects and conditional causal effects (Huang and Valtorta, 2006;
Shpitser and Pearl, 2006a,b), z-identifiability (Bareinboim and Pearl, 2012), transportability
and meta-transportability (Bareinboim and Pearl, 2013b,a) among others. The aforemen-
tioned algorithmic solutions operate symbolically on the joint distribution of the variables of
interest and return expressions for the desired queries. These algorithms have been previously
implemented in the R package causaleffect (Tikka and Karvanen, 2017). Another implemen-
tation of an identifiability algorithm can be found in the CIBN software by Jin Tian and
Lexin Liu freely available from http://web.cs.iastate.edu/~jtian/Software/CIBN.htm.
However, the algorithms themselves are imperfect in a sense that they often output an
expression that is complicated and far from ideal. The question is whether there exists a
simpler expression that is still a solution to the original problem.

(©2017 Santtu Tikka and Juha Karvanen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/vi8/16-166.html.
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Simplification of expressions may provide significant benefits. First, a simpler expression
can be understood and reported more easily. Second, evaluating a simpler expression will
be less of a computational burden due to reduced dimensionality of the problem. Third, in
situations where estimation of causal effects is of interest and missing data is a concern,
eliminating variables with missing data from the expression has clear advantages. The same
applies to variables with measurement error.

We begin with presenting in Section 2 a general form of probabilistic expressions that are
often encountered in causal inference. In this paper probabilistic expressions are formed by
products of non-parametric conditional distributions of some variables and summations over
the possible values of these variables. Simplification in this case is the process of eliminating
terms from these expressions by carrying out summations. As our expressions correspond to
causal effects, the expressions themselves take a specific form.

Causal models are typically associated with a directed acyclic graph (DAG) which
represents the functional relationships between the variables of interest. In situations where
the joint distribution is faithful, meaning that no additional conditional independences
are generated by the joint distribution (Spirtes et al., 2000), the conditional independence
properties of the variables can be read from the graph itself through a concept known as
d-separation (Geiger et al., 1990). We will use d-separation as our primary tool for operating
on the probabilistic expressions. The reader is assumed to be familiar with a number of
graph theoretic concepts that are explained for example in (Koller and Friedman, 2009) and
used throughout the paper.

Our simplification procedure is built on the definition of simplification sets, which is
presented in Section 3. We continue by introducing a sound and complete simplification
algorithm for probabilistic expressions defined in Section 2 for which these simplification
sets exist. The algorithm takes as an input the expression to be simplified and the graph
induced by the underlying causal model, and proceeds to construct a joint distribution of
the variables contained in the expression by using the d-separation criteria. Higher level
algorithms that use this simplification procedure are presented in Section 4. These include an
algorithm for the simplification of a nested expression and an algorithm for the simplification
of a quotient of two expressions. Section 5 contains examples on the application of these
algorithms. We have also updated the causaleffect R-package to automatically apply these
simplification procedures to causal effect expressions.

As a motivating example we present an expression of a causal effect given by the ID
algorithm of Shpitser and Pearl (2006a) that can be simplified. The complete derivation
of this effect can be found in Appendix C. The causal effect of X on Z;, Zy, Z3 and Y is
identifiable in the graph of Figure 1 and application of the ID algorithm gives

Yox P(Y|Zy, X, Zs, Z,) P(Z3| Zy, X) P(X|Z5) P(Z5)
Yoxy P(Y 2, X, Z3, 1) P(Z3| Zy, X)P(X|Z3) P(Z5)

N P(Y|Zy, X, Z3, Z1) P(Z3| Zg, X)P(X | Zo) P(Zs).
X,Z4.Y

P(Zy|Zy, X)P(Z5|Zs)

It turns out that there exists a significantly simpler expression,

P(ZI‘Z%X)P(ZQ)ZP(Y‘Z%X? Z37Z1)P(Z3‘Z27X)P(X‘Z2)7 (1)
X
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Figure 1: A graph for the introductory example on simplification.

for the same causal effect. This expression can be obtained without any knowledge of the
underlying model by using standard probability manipulations. However, this requires that
a favorable choice is made for the ordering of the nodes of the graph in the ID algorithm.
In the case that we had chosen an ordering where Z; precedes Z3, the term for Z5 would
instead be P(Z3|Zy, Z1, X ) and simplification would require knowledge about the underlying
graph. We will take another look at this example later in Section 5 where we describe in
detail how our procedure can be used to find expression (1).

Our simplification procedure is different from the well-known exact inference method of
minimizing the amount of numerical computations when evaluating expressions for condi-
tional and marginal distributions by changing the order of summations and multiplications
in the expression. Variants of this method are known by different names depending on
the context, such as Bayesian variable elimination (Koller and Friedman, 2009) and the
sum-product algorithm (Bishop, 2006) which is a generalization of belief propagation (Pearl,
1988; Lauritzen and Spiegelhalter, 1988). Efficient computational methods exist for causal
effects as well, such as (Shpitser et al., 2011). The general principle is the same in all of the
variants, and no symbolic simplification is performed.

In our setting simplification can be defined explicitly but in general it is difficult to
say what makes one expression simpler than another. Carette (2004) provides a formal
definition for simplification in the context of Computer Algebra Systems (CAS) that operate
on algebraic expressions. Modern CAS systems such as Mathematica (Wolfram Research
Inc., 2015) and Maxima (Maxima, 2014) implement techniques for symbolic simplification.
Bailey et al. (2014) and references therein discuss simplification techniques in CAS systems
further. However to the best of our knowledge, the symbolic simplification procedures for
probabilistic expressions described in this paper have neither been given previous attention
nor implemented in any existing system.

2. Probabilistic Expressions

Every expression that we consider is defined in terms of a set of variables W. As we are
interested in probabilistic expressions, we also assume a joint probability distribution P for
the variables of W. The most basic of expressions are called atomic expressions which will
be the main focus of this paper.
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Definition 1 (Atomic expression) Let W be a set of p discrete random variables and
let P be any joint distribution of W. An atomic expression is a pair

A= A[W]|=(T,S),
where

1. T is a set of pairs {{(V1,Cy),...,(V,,C,)} such that for each V; and C; it holds that
V,eW,C,CW, V,¢C; and V; #V; fori#j.

2. Sis aset {S,...,8,} © W such that for each i =1,...,m it holds that S; =V} for
some j € {1,...,n}.

The value of an atomic expression A is
n
Py=> T PWilCy).
S =1

The probabilities P(V;|C;) are referred to as the terms of the atomic expression. A term
P(V;|C;) is said to contain a variable V if V; =V or V € C;. A term for a variable V' refers
to a term P(V]-). We also use the shorthand notation V[A] := {V;,...V,,}. As S is a set,
we will only sum over a certain variable once. All variables are assumed to be univariate
and discrete for clarity, but we may also consider multivariates and situations where some of
the variables are continuous and the respective sums are interpreted as integrals instead.
As an example we will construct an atomic expression describing the following formula

> P(Y|Zy, X, Zy, Z)) P(Z3] Zy, X) P(X|Z5) P(Z5),
X
which is a part of the motivating example in the introduction. We let W = { XY, Z,, Z,, Z3},
which is the set of nodes of the graph of Figure 1. The sets T and S can now be defined as
{<Y7{Z27X7 Z37ZI}>7<Z37{Z27X}>7<X7{Z2}>7<Z27®>} and {X}7
respectively. Next we define a more general probabilistic expression.

Definition 2 (Expression) Let W be a set of p variables and let P be the joint distribution
of W. An expression is a triple

B = B[W,n,m] = (B, A,S),
where
1. S is a subset of W.
2. Form >0, A is a set of atomic expressions
{T,S1),...,(T,,,Sm)}

If m =0 then A = ().
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3. Forn >0, B is a set of expressions
{Bl[Wlanhml]:-"7Bn[Wn7nn7mn]}
such that W; CW, n; <n,m; <m foralli=1,...,n. If n =0 then B = (.

The value of an expression B is
n m
Pp = ZHPBi HPAj’
S i ‘

i=1 j=1
where an empty product should be understood as being equal to 1.

The recursive definition ensures the finiteness of the resulting expression by requiring
that each sub-expression has fewer sub-expressions of their own than the expression above it.
A single value might be shared by multiple expressions, as the terms of the product in the
value of the expression are exchangeable. Expressions B1[W,ny,m ] and By[W, ny, msy| are
equivalent if their values Pp and Pp, are equal for all P. Equivalence is defined similarly for
atomic expressions. Every expression is formed by nested atomic expressions by definition.
Because of this, we focus on the simplification of atomic expressions.

As an example we construct an expression for the causal effect formula (1). We define
W .={X,Y, 7,7y, Z3} and let the sets B and S be empty. We define the set A to consist
of three atomic expressions A;, Ay and As defined as follows

A = {{(Z1,{Z, X})},0),
Ay = ({(Z2,01)},0),
Ay = ({(YVi{2y, X, Z3, Z1}),(Z3,{Z2, X}), (X, {Z2}), (Z5,0) }, {X}).

In the context of probabilistic graphical models, we are provided additional information
about the joint distribution of the variables of interest in the form of a DAG. As we are
concerned on the simplification of the results of causal effect derivations in such models, the
general form of the atomic expressions can be further narrowed down by using the structure
of the graph and the ordering of vertices called a topological ordering.

Definition 3 (Topological ordering) Topological ordering m of a DAG G = (W, E) is
an ordering of its vertices, such that if X is an ancestor of Y in G then X <Y in 7.

The symbol Vf is used to denote the subset of vertices of G that are less than V; in 7.
For sets we may define V" to contain those vertices of G that are less than every vertex of V
in . Consider a DAG G = (W, E) and a topological ordering 7 of its vertices. We use the
notation 7(-) to denote indexing over the vertex set W of G in the ordering given by m, that
is Veqy > Vre) > -+ + > Vi) where m = [W|. For any atomic expression A[V] = (T, S)
such that V.C W we also define the induced ordering w. This ordering is an ordering of the
variables in V such that if X > Y in w then X > Y also in 7. From now on in this paper,
any indexing over the variables of an atomic expression will refer to the induced ordering of
the set V when 7 is given, i.e Vi > V5 > --- >V, in w. In other words, w is obtained from
7 by leaving out variables that are not contained in A.
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The ID algorithm performs the so-called C-component factorization. These components
are subgraphs of the original graph where every node is connected by a path consisting
entirely of bidirected edges. The resulting expressions of these factors serve as the basis for
our simplification procedure.

Definition 4 (Topological consistency) Let G’ be a DAG with a subgraph G = (W,
and let 7 be a topological ordering of the vertices of G. An atomic expression A{W| = (T,
is topologically consistent (or mw-consistent for short) if

E)
S)

An(Vy)g CC; C V" foralli=1,...,n.

Here An(V;)q denotes the ancestors of V; in G. To motivate this definition we note that
the outputs of the algorithms of Shpitser and Pearl (2006a,b) can always be represented by
using products and quotients of topologically consistent atomic expressions. An expression
is topologically consistent when every atomic expression contained by it is topologically
consistent with respect to a topological ordering of a subgraph. We provide a proof for this
statement in Appendix A. This also shows that any manual derivation of a causal effect
can always be represented by a topologically consistent expression. The assumption that
An(V;)g C C; is not necessary for the simplification to be successful. This assumption is
used to speed up the performance of our procedure in Section 3.

3. Simplification

Simplification in our context is the procedure of eliminating variables from the set of variables
that are to be summed over in expressions. In atomic expressions, a successful simplification
in terms of a single variable should result in another expression that holds the same value,
but with the respective term eliminated and the variable removed from the summation. As
we are interested in causal effects, we consider only simplification of topologically consistent
atomic expressions.

Our approach to simplification is that the atomic expression has to represent a joint
distribution of the variables present in the expression to make the procedure feasible. The
question is whether the expression can be modified to represent a joint distribution. Before
we can consider simplification, we have to define this property explicitly.

Definition 5 (Simplification sets) Let G’ be a DAG and let G be a subgraph of G’
over a vertex set W with a topological ordering mw. Let A[W]| = (T,S), where T =
{V1,Cq,), ., (V,, Cp) ), be a m-consistent atomic expression and let V; € S. Suppose
that Vi) = V; and that Vi, = V1 and let M be the set

{U ew | U ¢ V[A},Vﬂ(q) >U > Vﬂ.(p)}.

If there exists a set D C Vjﬂ and the sets Ey C'W for all U € M such that the conditional

distribution of the variables Vi), ..., Vr(q) can be factorized as

UeM VizV;
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and

(U L V;[Ey \ {V;}) s for all U € M. (3)

then the sets D and Ey;, U € M are the simplification sets of A with respect to V;.

This definition is tailored for the next result that can be used to determine the existence
of a simpler expression when simplification sets exist. Afterwards we will show how this
result can be applied in practice via an example. The definition characterizes m-consistent
atomic expressions that represent joint distributions. It is apparent that simplifications sets
are not always unique, which can lead to different but still simpler expressions. Henceforth
the next result considers simplification in terms of a single variable. The proof is available
in Appendix B.

Theorem 6 (Simplification) Let G’ be a DAG and let G be a subgraph of G' over a vertex
set W with a topological ordering w. Let A]W| = (T, S) be a m-consistent atomic expression
and let D and Ey,U € M be its simplification sets with respect to a variable V; € S. Then
there exist an expression A'[W \ {V;}] = (T',S) such that V; ¢ S', Py = P,/ and no term
in A" contains V.

Note that even if M = () in Definition 5, the existence of simplification sets still requires
that [Ty >y P(V;|C;) = P(Vj,...,V4|D). In many cases there exists variables U € M such
that the expression does not contain a term for UU. Condition (2) of Definition 5 guarantees
that if these terms were contained in the expression it would represent a joint distribution.
Our goal is thus to introduce these terms into the original expression temporarily, carry
out the desired summation, and finally remove the added terms. This can only be achieved
if the variables in the set M are conditionally independent of the variable currently being
summed over, hence the assumption (U L V;|Ey \ {V;}) of condition (3) of Definition 5.

We show how simplification sets can be used in practice to derive a simpler expression
via an example. We consider the causal effect of {X,Z, W} on Y in the graph G of Figure 2.

Figure 2: A graph G for the example on the use of simplification sets.
The effect in question is identifiable and the ID algorithm readily gives atomic expression

> PY|X,W,Z)P(X|W)P(W).
X,W
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We consider simplification sets with respect to V; = W. The topological order is W < X <
Z <Y. The atomic expression does not contain a term for Z so we have M = {Z}. By
noting that (Z 1L W|X)s we are able to satisfy condition (3) of Definition 5. We can write

P(Y,Z,X,W) = P(Z|X,W)P(Y|X,W, Z)P(X|W)P(W),

as required by condition (2) of Definition 5 by setting E, = {X, W}. Thus, the simplification
sets D and E, for the atomic expression with respect to W are () and {X, W}, respectively.
Finally, we obtain the simpler atomic expression by carrying out the summation over W:

Y P(Y|X,Z)P(X).
X

Neither Definition 5 nor Theorem 6 provide a method to obtain simplification sets or to
determine whether they exist in general. To solve this problem we present a simplification
algorithm for m-consistent atomic expressions that operates by constructing simplification
sets iteratively for each variable in the summation set.

Algorithm 1 always attempts to perform maximal simplification, meaning that as many
variables of the set S are removed as possible. If the simplification in terms of the entire
set S can not be completed, the intermediate result with as many variables simplified as
possible is returned. If simplification in terms of specific variables or a subset is preferred,
the set S should be defined accordingly.

The function SIMPLIFY takes three arguments: an atomic expression A[W] that is to
be simplified, a graph G and a topological ordering 7 of its vertices. A is assumed to be
m-consistent.

On line 10 the function INDEX.OF returns the corresponding index ¢ of the term containing
S;. Since A is m-consistent, we only have to iterate through the variables Vy,...,V; as the
terms outside this range contain no relevant information about the simplification of V;. The
variables without a corresponding term in the atomic expression A are retrieved on line 11
by the function GET.MISSING. This function returns the set M of Definition 5 with respect
to the current variable to be summed over.

In order to show that the term of A represent some joint distribution, we proceed in
the order dictated by the topological ordering of the vertices. The sets J and D keep track
of the variables that have been successfully processed and of the conditioning set of the
joint term that was constructed on the previous iteration. Similarly, the sets R and I keep
track of the variables and conditioning sets of the corresponding variables that the atomic
expression does not originally contain a term for. Iteration through relevant terms begins
on line 13. Next, we take a closer look at the function JOIN which is called next on line 14.

Here P(-) denotes the power set, A denotes the symmetric difference and An*(+)s denotes
the ancestors with the argument included. The function JOIN attempts to combine the joint
term P(J|D), obtained from the previous iteration steps, with the term P(V|C) := P(V}|C})
of the current iteration step. d-separation statements of G are evaluated to determine whether
this can be done. In practice this means finding a suitable subset P; of G, where GUAnR(V)q
is the largest possible conditioning set of the new combined term. The set G is computed
on line on line 4 of Algorithm 2. A valid subset P; satisfies P(J|D) = P(J|An"(V)g, P;)
and P(V|C) = P(V|An(V)q,P;) which allow us to write the product P(J|D)P(V|C) as
PJ,VIAn(V)q, Py).
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Algorithm 1 Simplification of an atomic expression A = (T, S) given graph G and topo-
logical ordering 7.
1: function SIMPLIFY(A, G, )

2: j+<0

3: while j < |S| do

4: B+ A

5: J—0

6: D+ 0

7 R+ 0

8: I+ 0

9: jej+1

10: i < INDEX.OF(A4, j)
11: M <« GET.MISSING(A, G, j)
12: k+1
13: while k£ <7 do

14: (Jnews Dnew, Ryew) <= JOIN(J, D, V,, Cy, S;, M, G, )
15: if J,ow € J then

16: break

17: else

18: J—Joew

19: D« Dnew
20: if R, o # 0 then
21: R+~ RUR,
22: I+~ 1Iu{D}
23: M+ M\ R, .
24: else
25: k< k+1
26: if k=741 then
27: Apew ¢ FACTORIZE(J, D, R, I, A)
28: if A = A then
29: A+ B
30: else
31: A+ Aew
32: S+ S\ {S;}
33: 7+0
34: return A

In order to find this valid subset, we compute the sets A and B for each candidate
on lines 8 and 9. These sets characterize the necessary change in the conditioning sets of
the terms P(J|D) and P(V|C) that would enable a joint term to be formed by these two
terms. The validity of the candidate set is finally checked on line 10 which determines if the
necessary change is allowed by d-separation criteria in the graph G. If no valid subset P; can
be found, we can still attempt to insert a missing variable of M by calling INSERT. If this
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Algorithm 2 Construction of the joint distribution of the set J and a variable V' given
their conditional sets D and C using d-separation criteria in G. S is the current summation
variable, M is the set of variables not contained in the expression and 7 is a topological
ordering.

1: function JOIN(J,D,V,C, S, M, G, 7)

2: if J =0 then
3 return ({V},C,0)
4 G« J"\ An*(V)q
5 P+ P(G)
6: n < ‘P|
7
8
9

fori=1:ndo
A« (An*(V)qUP;) AD
: B+ (An(V)gUP;,)AC
10: if (JLAD\A)g and (V L B|C\ B); then

11: return (JU{V}, (An(V)g UP;),0)

12: if M # () then

13: for M' € M do

14: if M' ¢ D,M' ¢ C then

15: (I ews Dpews R) <= INSERT(J, D, M, S, G, )
16: if J C J,. then

17: return (J, ., Dpews R)

18:  return (J,D,0)

does not succeed either, the original sets J and D are returned, which instructs SIMPLIFY to
terminate simplification in terms of V; and attempt simplification in the next variable.

A special case where the first variable of the joint distribution forms P(J, D) alone is
processed on line 2 of Algorithm 2. In this case, we have an immediate result without having
to iterate through the subsets of G. The formulation of the set G ensures that the resulting
factorization is w-consistent if it exists. Knowing that the ancestral set An(V)s has to be a
subset of the new conditioning set also greatly reduces the amount of subsets we have to
iterate through. In a typical situation, the size of P is not very large. Let us now inspect
the insertion procedure in greater detail.

In essence, the function INSERT is a simpler version of JOIN, because the only restriction
on the conditioning set of M’ is imposed by the conditioning set of J and the fact that M’
has to be conditionally independent of the current variable S to be summed over. If JOIN or
INSERT was unsuccessful in forming a new joint distribution, we have that J,.,, C J. In this
case simplification in terms of the current variable cannot be completed. If we have that
Joew € J the iteration continues.

Together the functions JOIN and INSERT capture the two conditions of Definition 5. They
are essentially two variations of the underlying procedure of determining whether the terms
of the atomic expression actually represent a joint distribution. The only difference is that
JOIN is called when we are processing terms that already exist in the expression, and INSERT

10
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Algorithm 3 Insertion of variable M’ into the joint term P(J|D) using d-separation criteria
in G. S is the current summation variable and 7 is a topological ordering.
1: function INsErT(J, D, M', S, G, 7)
2 G« I\ A" (M)
n « |G|
fori=1:ndo
A+ (A" (Mg UP,)AD
B« (An(M')g UP;)
if (J 1L A|ID\ A); and (M’ I S|B\ S); then
return (J U {M'}, (An* (M) UP;), {M'})
return (J, D, ()

is called when there are variables without corresponding terms in the expression, that is the
set M of Definition 5 is not empty.

If the innermost while-loop of Algorithm 1 succeeded in iterating through the relevant
variables, we are ready to complete the simplification process in terms of S;. We carry
out the summation over S; which results in P(J \ {V;}|D). This is done on line 27 by
calling FACTORIZE(J, D, R, I, A) which checks whether the joint term P(J\ {V;}|D) can be
factorized back into a product of terms. In practice this means that if the function succeeds,
it will return an atomic expression obtained by removing each inserted term P(R|Ig) such
that R € R and Iy € I from atomic expression A. The status of the atomic expression is
updated on lines 31 and 32 to reflect this. If the function fails, it will return A unchanged.

If the innermost while-loop did not iterate completely through the relevant variables,
the simplification was not successful in terms of S; at this point. In this case we reset A
to its original state on line 29 and attempt simplification in terms of the next variable. If
there are no further variables to be eliminated, the outermost while-loop will also terminate.
In the next theorem, we show that Algorithm 1 is both sound and complete in terms of
simplification sets. The proof for the theorem can be found in Appendix D.

Theorem 7 Let G' be a DAG and let G be a subgraph of G' over a vertex set W with a
topological ordering 7. Let A]W| = (T, {V;}) be a m-consistent atomic expression. Then if
SIMPLIFY (A, G, ) succeeds, it has constructed a collection of simplification sets of A with
respect to V;. Conversely, if there exists a collection of simplifications sets of A with respect
to V;, then SIMPLIFY (A, G, m) will succeed.

4. High Level Algorithms

In this section, we present an algorithm to simplify all atomic expressions in the recursive
stack of an expression. We will also provide a simple procedure to simplify quotients
defined by two expressions: one representing the numerator and another representing the
denominator. In some cases it is also possible to eliminate the denominator by subtracting
common terms. First, we present a general algorithm to simplify topologically consistent
expressions.

11



TIKKA AND KARVANEN

Algorithm 4 Recursive wrapper for the simplification of an expression B = (B, A, S) given
graph G and topological ordering 7.
1: function DECONSTRUCT(B, G, )

22 R+

3: for Y € A do

4: {(V1,Cq),...,(V,,,C)}, Sy ) < simpLIFY(Y, G, )
5: if Sy = () then

6: A« AU Uz {{{Vi.C}0)})

7 for (By,Ax,Sx) € Bdo

8: (Bx,Ax,Sx) < DECONSTRUCT((By,Ax,Sx),G)
9: if By =0 and Sy = () then

10: R+~ RU{(Bx,Ax,Sx)}

11: A+—AUAy

12: B+~ B\R
13: return (B, A, S)

Algorithm 4 begins by simplifying all atomic expressions contained in the expressions.
If an atomic expression contains no summations after the simplification but does contain
multiple terms, each individual term is converted into an atomic expression of their own.
After this, we iterate through all sub-expressions contained in the expression. The purpose
of this is to carry out the simplification of every atomic expression in the stack and collect
the results into as few atomic expressions as possible. First, we traverse to the bottom of the
stack on line 8 by deconstructing sub-expressions until they have no sub-expressions of their
own. Afterwards, it must be the case that (Bx, Ay, Sy) consists of atomic sub-expressions
only.

If (Bx,Ax,Sy) contains no summations on line 9 then the atomic expressions contained
in this expression do not require an additional expression to contain them, but can instead
be transferred to be a part of the expression above the current one in the recursive stack.
On line 6 we lift the atomic expressions contained in the atomic sub-expressions up to the
current recursion stage.

There is no guarantee, that the resulting atomic expression is still m-consistent after
this procedure. The function DECONSTRUCT operates on the principle of simplifying as
many atomic expressions as possible, combining the results into new atomic expressions
and simplifying them once more. We do not claim that this procedure is complete in a
sense that Algorithm 4 would always find the simplest representation for a given expression.
This method in nonetheless sound and finds drastically simpler expressions in almost every
situation where such an expression exists.

We may also consider quotients often formed by deriving conditional distributions. For
this purpose we need a subroutine to extract terms from atomic sub-expression that are
independent of the summation index, that is V; ¢ S and C; NS = (.

The procedure of Algorithm 5 is rather straightforward. First, we attempt to simplify
B by using DECONSTRUCT on line 2. Next, we simply recurse as deep as possible without
encountering a sum in an expression. If a sum is encountered, extraction is attempted.
On any stage where a sum was not encountered, we may still have atomic sub-expression

12
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Algorithm 5 Extraction of terms independent of the summation indices from a expression
B = (B, A,S) given graph GG and topological ordering .

1: function EXTRACT(B, G, )

2 B < DECONSTRUCT(B, G, )

3 if S=10 then

4 for X € B do

5: X < EXTRACT(X, G, )

6 for (T4,S,) € A do

7 if S, # () then

8 Ap 0

9: R+« 0

10: for (V,C) € T, do

11: if V¢S, and CNSy =0 then
12: Ap <+ ApU{{{{V.C)},0)}
13: R+~ RU{(V,C)}
14: A—AUAg

15: Ty« T4 \R

16: else

17: Ap <0

18: R« 10

19: for (T4,S,) € A do

20: if Sy =0 then

21: T ¢

22: T ¢

23: for (V,C) € T, do

24: T(Al) — T(Al) u{v}

25: Tf) — Tff) ucC

26: if TV NS =0and TV NS =0 then
27: AE<—AEU{<TA,SA>}
28: RFRU{(TA,S/Q}
29: A+~ A\R

30: By + {B}

31: return (Bg, Ay, ()

that contain sums. Because the recursion had reached this far, we know that there are no
summations above them in the stack, so we can attempt extraction on them as well.

Algorithm 6 takes two expressions, B; and By, and removes any sub-expressions and
atomic sub-expressions that are shared by B; and By. This is of course only feasible when
the summation sets are empty for both By and B,. This condition is checked on line 4.

13
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Algorithm 6 Simplification of a quotient Pp /Pp, given by the values of two expressions
By = (B1,A,S;) and By, = (By, Ay, S,) given graph G and topological ordering .

1: function ¢-SIMPLIFY (B, By, G, )
2 B; < EXTRACT(Bq,G, )
3 B, < EXTRACT(B,, G, )
4: if S #0 or S, # () then
5: return (B, By)
6 141
7 while i < |B;| and |B;| > 0 and |B;| > 0 do
8 for j =1:|By| do
9: if By; = By; then
10: B, + By \ {By;}
11: B, «+ By \ {By;}
12: 140
13: break
14: 1—1+1
15: 241
16: while i < |A;| and |A;| >0 and |A,| > 0 do
17: for j =1:|A,| do
18: if Aj; = Ay; then
19: Ay A\ {4y}
20: Ay < Ao\ {4y}
21: 140
22: break
23: 141+ 1
24: return (B, By)
5. Examples

In this section we present examples of applying the algorithms of the previous sections. We
denote line number y of algorithm x with Az:y. We begin with a simple example on the
necessity of the INSERT procedure in graph G of Figure 3.

Figure 3: A graph G for the example on the necessity of the insertion procedure.

14
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The causal effect of W on X is identifiable in this graph, and expression

S P(Y)P(Z|Y)P(X|W,Z,Y)
ZY

is obtained by direct application of the ID algorithm or by the truncated factorization
formula for causal effects in Markovian models (Pearl, 2009). We let A be this atomic
expression. The topological ordering 7 is X > W > Z > Y and M = {W}. The call to
SIMPLIFY (A, G, ) will first attempt simplification in terms of Z, by calling

JOIN(D, 0, X, {W, Z, Y}, Z,{W},G, ),
which results in (X, {W, Z,Y},0). At the second call
JON{X},{W,Z, Y}, Z,Y, Z, {W} G,)

we already run into trouble since we cannot find a conditioning set that would allow Z to be
joined with {X}. However, since M is non-empty and W € {W, Z, Y} and W ¢ {Z} this
means that the next call is

INSERT({ X },{W, Z, Y}, W, Z,G, ).

Insertion fails in this case, as one can see from the fact that no conditioning set exists that
would make W conditionally independent of Z. Thus we recurse back to JOIN and back to
SIMPLIFY and end up on line A1:15 which breaks out of the while-loop. Thus A cannot be
simplified in terms of Z. Simplification is attempted next in terms of Y. The first two calls
are in this case

JOIN(D, 0, X, {W, Z, Y}, Y, {W},G,7),
JOIN({X}, {W, Z,Y}, Z,{Y},Y, {W}, G, ),

and in the second call we run into trouble again and have to attempt insertion
seRT({X}, (W, Z,Y}, W, Y, G, 7).

This time we find that we can add a term for W which is P(W|Z,Y") because (W L Y|Z)s.
The other calls to JOIN also succeed and we can write the value of A as
Y2y PY)P(ZIY)P(WIY, Z)P(X|W, Z,Y)
P(W|Z)

and complete the summation in terms of Y. After the call to FACTORIZE we are left with
the final expression

> P(X|W,Z)P(Z).
Z

We continue by considering again graph G depicted in Figure 1. The topological ordering
misY > Zy > Z3 > X > Z5. Atomic expression A; given by

> P(Y|Zy, X, Zs, Z1)P(Z3]Zo, X ) P(X| Z5) P(Zs),
XY
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is a part of the expression to be simplified.

We will first simplify A; and take a closer look at how the function JOIN operates. The
call to SIMPLIFY(A;, G, ) will attempt simplification in terms of the set {X,Y} in the
ordering that agrees with the topological ordering 7, which is (Y, X). After initializing the
required sets, we find the index of the term with Y as a variable on line 10. There is one
missing variable, Z;, so M = {Z;} as returned by GET.MISSING on line Al:11. The first
call to JOIN results in (Y, {Zy, X, Z3, Z; },0), because line A2:3 is triggered. Condition on
line A1:15 is not satisfied since J ., = {Y'} € 0 = J. Thus we update the status of J and D
on lines A1:18 and A1:19. Since R, ., = 0 on line A1:20 we do not have to update the status
of R,I and M on lines A1:21, A1:22 and A1:23. The innermost while-loop is now complete
and we call FACTORIZE on line A1:27 which succeeds in removing the term P(Y'|Z,, X, Z3, Z1)
by completing the sum. Now we update the status of the atomic expression on line A1:31
and remove Y from the set of variables to be summed over on line A1:32. The resulting
value of the expression at this point is

> P(Z5]Zy, X)P(X|Z5) P(Zs).
X

Next, the summation in terms of X is attempted. JOIN is once again successful, because
Z5 is the first variable to be joined and line A2:3 is triggered. Next we attempt to join the
terms P(Z3|Zy, X) and P(X|Z,). Computation of the set G on line A2:4 results in

{Z5}"\ An"(X)g = {X, Zo} \{X, Z} = 0.
The power set computed on line A2:5 contains only the empty set. For P; = () we have
A= (An(X)gUP)AD = ({X, Z, UD)A{X, Zy} =0
on line 8, and
B = (An(X)gUP)AC = ({Z} UD)A{Zy} =0

on line 9. The condition on line A2:10 evaluates to true and we return with ({Z3, X}, {Z5}, 0).
The innermost while-loop terminates allowing the summation over X to be performed. The
function FACTORIZE provides us with the final expression

P(Z3]Z,)P(Zs). (4)

Next, we will consider the full example and see how ¢-SIMPLIFY is applied. Using the ID
algorithm we obtain the causal effect of X on Z;, Zy, Z3 and Y in graph G of Figure 1 and
it is

Yx P(Y|2y, X, Z3, Z1) P(Z3]Z5, X)P(X|Z5) P(Z5)
Yxy P2y, X, Z3, 2,) P(Z3| Zy, X)P(X|Z3) P(Z5)
Y P(Y|Zy, X, Zs, 2,)P(Zs] 2y, X)P(X|Zy) P(Z,).
X,Z3,Y

P(Z,|Zy, X)P(Z5|Z5)

We will represent this as a quotient of expression using Definition 2. Let A; be the atomic
expression of the previous example and let A, also be an atomic expression given by

ZP(Y’Z%Xv Z37ZI)P(Z?)’Z%X)P(X’Z2)P(Z2)a
X
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which is essentially the same as A, but with the variable Y removed from the summation
set S. Similarly, we let A3 be an atomic expression given by

> P(Y|Zy, X, Z3, Z1)P(Z3| Zy, X)P(X|Z3) P(Zy).

X,Z5,Y

We also define the atomic expressions A4 with the value P(Z3]|Z,) and A5 with the value
P(Z,]Z,, X). Now, we define two expressions By and B, for the quotient Pp /Pg, as follows:

Bl = <@7 {AQ’A3’A47A5}7®>7 B2 = <®7 {Al}’®>

We now call ¢-SIMPLIFY (B, By, G, 7). First, we must trace the calls to EXTRACT for both
expressions on lines A6:2 and A6:3. For By and B, this immediately results in a call to
DECONSTRUCT on line A5:2. First, the function applies SIMPLIFY to each atomic expression
contained in the expressions on line A4:4.

Let us first consider the simplification of Ay. As before with A;, we have that JOIN first
succeeds in forming (Y, {Z,, X, Z3, Z; }, (), but this time Y is not in the summation set, so
we continue. Next, the algorithm attempts to join P(Y|Zy, X, Z3, Z;) with P(Z3|Z,, X).
The set G is defined as

YY"\ An*(Zs)a = {Zs, 21, X, Zo} \{Z3, 2y} = {Z,, X}
and its subsets are {Z1, X}, {Z}, {X} and (). For the first subset Py = () we have that

A= (An"(Z3) UP)AD = {Zy, Z3} N Zy, X, Z3, 71} = {X, Z4}
and since (Y L X, Z,|Z3, Z5)q the condition on line A2:10 is not satisfied. We continue
with P, = {X} and obtain

A= (An*(Z3) U PZ)AD = {X? ZQ’ ZS}A{Z% Xa ZSa Zl} = {Zl}
and since (Y L Z|X, Z3, Z,) the condition on line A2:10 is still not satisfied. Next, for
P; ={Z;} we have

A= (An*(Z3> U P3)AD - {Z27 Z37 ZI}A{227 X7 Z37 Zl} = {X}

and since (Y A X|Zy, Z3, Zy)q the condition on line A2:10 is again, not satisfied. Finally,
for Py, = {Z,, X} we have

A= (An"(Z3) UPY)AD = {Zy, X, Z3, Z1 } N{Zy, X, Z3, Z1 } = {X }
and
B = (An(Z5) UP)AC = {Zy, X, 21} N{Zy, X} = {Z,}.

Both conditions on line A2:10 are now satisfied ny noting that (Z3 L Z|X, Z)q. Afterwards
we obtain

P(Y|Zy, X, Z3, Z,)P(Z3|Z4, X) = P(Y, Z3| 2y, Z3, X)
and continue in an attempt to join the term P(X|Z,) with this result. The set G is now
defined as

{Y, Z3}" \ An*(X)g = {21, X, 2o} \{X, Z,} = {Z1}
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and its subsets are {Z;} and (). Starting with P; = () we have that
A= (An*(X) U Pl)AD = {X7 ZQ}A{ZD ZQaX} = {Zl}

and since (Y, Z3 L Z,|X, Zy)q the condition on line A2:10 is not satisfied. Continuing with
Py, ={Z,} we have

B = (An(X)UP)AC ={2y, 21} A{Zy} = {Z,}.

Again, the condition on line A2:10 is not satisfied by noting that (X L Z;|Z5)s. We have
exhausted the possible subsets, which means that we enter the loop on line A2:13 since the
set M = {Z,} is not empty of line A2:12.

In this case INSERT is called to bring Z; into the expression because Z; € D = {Z;, Z,, X'}
and Z; ¢ C = {Z,}. The set G is constructed on line A3:2 and it is

I\ An™(Z))q ={Y. Z3}" \{X. 21, Z,} = 0.
For the only subset P; = () we have
B = (An(Z1)c UP,) ={X, Zo}

on line A3:6, and since (Z; L X|Z3)q the condition on line A3:7 is not satisfied and we
return with (J, D, ()) unchanged on line 9 of Algorithm 3, which causes JOIN to also return
with the same output on line A3:18. The condition on line A1:15 is now satisfied and we
cannot simplify A,.

The atomic expression A3 can be simplified. First, Y is eliminated exactly as it was
removed from A;. Following the same principle we can see that whenever a variable in the
summation set is the largest one in the topological order of the variables contained in the
atomic expression, it will be removed successfully. From this we obtain that the value of
Az is in fact simply P(Z5). Let us call the atomic expression with this value E, that is
Pp = P(Z;). The atomic expression A; can also be simplified, and its value is given by
(4). Furthermore, since this value is made of two product terms, it is split into two atomic
expressions respectively. Let these be called D, and D, such that Pp = P(Z3]|Z;) and
Pp, = P(Z,).

Applying SIMPLIFY to A4 and Ay simply returns the original expressions, since they do
not contain any summations and the loop on line A1:3 is never entered. The set of atomic
expressions is afterwards updated on line A4:6. Neither By nor By contain any sub-expressions
or summations on line A4:9, so DECONSTRUCT(By, G, ) returns (0, { Ay, E, Ay, A5}, 0) and
DECONSTRUCT(By, G, ) returns (0, {Dy, Dy}, 0). The lack of summations on line A5:3 of
causes EXTRACT to iterate through the atomic expression contained in By and B, directly
on line A5:6, since neither of them have any sub-expressions of their own.

Only A, contains a sum at this point. The iteration over the terms of A, on line A5:10
finds that the only term that does not contain X is P(Z;) on line A5:11. Let us denote the
atomic expression with the value P(Z,) as C and the atomic expression resulting from the
extraction as Cy which now has the value

ZP(Y’Z27X7 Z37Z1)P<Z3’Z27X)P(X’Z2)
X
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This completes the extraction and results in an expression B] such that
Bi - <®7 {ClacQaE7A47A5}7®>'

The expression By remains unchanged.

¢-SIMPLIFY is now able to proceed. Neither Bj nor B, contain sub-expression so the loop
on line A6:7 is not entered, and we are only subtracting their common atomic expressions in
the loop on line A6:16. It is easy to see that A, = D; and C| = D, so they are removed from
both B} and B,. Finally, the expressions corresponding to the numerator and denominator
are returned.

To summarize, we began with the expression

Yox P(Y|Zy, X, Zs, Z,) P(Z3| Zy, X) P(X|Z5) P(Z5) »
Yoxy P(Y 2y, X, Z3, Z,) P(Z3| Zy, X)P(X|Z3) P(Z5)

> P(Y|Zy, X, Z3, Z1)P(Z3| Zo, X)P(X|Z3) P(Zy).
X,Z3,Y

P(Zy|Zy, X)P(Z5|Zs)

and successfully simplified it into

P(Zl‘Z27X)P<Z2)ZP(Y‘Z%Xv Z37Z1)P(Z3‘Z27X)P<X‘Z2)
X

6. Discussion

We have presented a formal definition of topologically consistent atomic expressions and
simplification sets and provided a sound and complete algorithm to find these sets for a
given expression. We also discussed some general techniques that apply to a more general
class of these expressions. Algorithm 7 and Algorithm 8, presented in Appendix A, have
been previously implemented in the R package causaleffect (Tikka and Karvanen, 2017). We
have updated the package to include all of the simplification procedures presented in this
paper and they can be applied to all causal effect and conditional causal effect expressions
derived from identification procedures. Our definition of topologically consistent atomic
expressions is similar to g-functionals that can be used to characterize identifiability results
under special conditions (Shpitser and Tchetgen Tchetgen, 2016).

It is plausible that these procedures could also be extended into other causal inference
results, such as formulas for z-identifiability, transportability and meta-transportability
of causal effects. The extensions are non-trivial however, since transportability formulas
contain terms with distributions from multiple domains and z-identifiable causal effects
contain do-operators in the conditioning sets which would require the implementation of the
rules of do-calculus into Algorithm 1. Do-calculus consists of three inference rules that can
be used to manipulate probabilities involving the do-operator (Pearl, 2009). Currently, we
operate only on expressions that do not involve the do-operator. In fact, in our procedure it
is not required to know the original causal query that produced the result.

Simpler expressions have many useful properties. They can help in understanding and
communicating results and evaluating them saves computational resources. Estimation
accuracy can also be improved in some cases when variables that are present in the original
expression suffer from missing data or measurement error. One example where the benefits

19



TIKKA AND KARVANEN

Figure 4: A graph G for a situation where simplification fails

of simplification are realized can be found in (Hyttinen et al., 2015), where expressions of
causal effects are derived and repeatedly evaluated for a large number of causal models.

Our approach to simplification stems from the nature of causal effect expressions. In
our setting, a question still remains whether simplification sets completely characterize all
situations where a variable can be eliminated from an atomic expression. One might also
consider simplification in a general setting, where we do not assume topological consistency
or any other constraints for the atomic expressions. In this case a ’black box’ definition
for simplification could be considered, where we simply require that when the sum over a
variable of interest is completed we are again left with another atomic expression without
this variable in the summation set. This framework is theoretically interesting but we are
not aware of any potential applications.

The worst case time complexity of Algorithm 1 is difficult to gauge and is a topic
for further research. One can observe that the performance of the algorithm is highly
dependent on the size of the differences of the conditioning sets between adjacent terms.
Both Algorithm 2 and Algorithm 3 iterate through the subsets of these differences and
check d-separation criteria for each subset. Thus dynamic programming solutions could
be implemented to further improve performance by collecting the results of these checks.
Previously determined conditional independences would not need to be checked again and
could be retrieved from memory instead.

In some cases, simplification has some apparent connections to identifiability. Consider
the graph G of Figure 4. In this graph the causal effect of X on Y is identifiable, and its
expression is

Y P(Y|Z,X)P(Z).
Z

If we let Z be an unobserved variable instead, then GG depicts the well-known bow-arc graph,
where the same causal effect is unidentifiable. This corresponds to an unsuccessful attempt
to remove Z from the expression of the causal effect. However, we cannot know beforehand
whether an expression for a causal effect is going to be atomic or not, so we cannot use our
algorithm to derive identifiability in general.

A reviewer suggested a simplification algorithm where the ID algorithm would be applied
to latent projections (Pearl and Verma, 1991) onto the variables to be marginalized. This
algorithm would be able to solve many, but not all, simplification tasks. Importantly, in the
example presented in Figure 1, we cannot make any variables latent, as we are interested in
the causal effect of X on all of the other variables. A reviewer also suggested that simplified
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expressions could be categorized into those that are obtained through latent projections and
those that are not. This categorization might give additional insight into the topic.
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Appendix A. Topological Consistency of Causal Effect Formulas

We prove the statement that every causal effect formula returned by the algorithms of Shpitser
and Pearl (2006a,b) can be represented by using products and quotients of w-consistent
atomic expressions such that « is a topological ordering of G.

We use the notation G[X] to denote an induced subgraph, which is obtained from G
by removing all vertices not in X and by keeping all edges between the vertices of X in G.
Here G'g , means the graph that is obtained from G' by removing all incoming edges of X
and all o{l_tgoing edges of Z. We say that G is an I-map of P if P admits the causal Markov
factorization with respect to G = (V, E), which is

n

k
P =[PP (V))e) [T P(U;),

i=1 j=1
where Pa”(-) contains unobserved parents as well.

Consider first lines 2, 3, 4 and 7 of Algorithm 7 where recursive calls occur and let m,
be the topological ordering of the graph in the previous recursion step. Line 2 limits the
identification procedure to the ancestors of Y so we can still obtain an expression that
topologically consistent with respect to a topological ordering obtained from , by removing
non-ancestors. Lines 3 and 4 make no changes to the distribution P and the graph G. On
line 7 the induced subgraph G[S'] in the next call is a C-component, but the joint distribution
in this case is a m,-consistent expression

pP(s) = T[ PV NS, v\ s,
v,es'

since every conditioning set is of the form V" when we only consider variables instead of
their values, so we obtain
(s =TI PVIV™),
v;es’

Furthermore, any expression returned from line 7 will now be m,-consistent. Thus all
recursive calls retain topological consistency with respect to .

Consider now the non-recursive terminating calls on lines 1 and 6. Consider line 1 first.
If line two was triggered previously, we can factorize P(V) in such a way that each variable is
conditioned by its ancestors, since the ancestors of ancestors of Y are by definition ancestors
of Y. If line 7 was triggered previously we already know that the joint distribution was
previously factorized in a m,-consistent fashion. If line 3 or 4 was triggered previously, we
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know that they have not imposed any changes on P of G. Line 6 clearly produces a m,
consistent end result. Lines 4, 6 and 7 can only produce either products of quotients. By
noting that m,-consistency implies m-consistency, we have that the result of the algorithm can
always be represented by using products and quotients of m-consistent atomic expressions.

Algorithm 7 The causal effect of intervention do(X = x) on Y (Shpitser and Pearl, 2006a).

INPUT: Value assignments x and y, joint distribution P(v) and a DAG G = (V,E). G is
an [-map of P.
OUTPUT: Expression for P(y) in terms of P(v) or FAIL(F, F').

function ID(y,x, P, G)
1: if x = (), then
return 3, c\, P(V).
2: if V.# An(Y)g, then
return ID(y,x N An(Y)q, P(An(Y)q), G[An(Y)g)]
3: Let W= (V\X)\ An(Y)G)_(.
if W # (), then
return ID(y,x Uw, P,G).
4: if C(G[V\ X]) = {G[Sll, ..., G[S;]}, then
return -, e\ (yux) [i=1 ID(s;,v \s;, P, G).
if C(G[V\ X]) = {C[S]}, then

5. if C(G) = {G}, then
throw FAIL(G, G[S]).
6: if G[S] € C(G), then
return Y-, cq\y [Ty es P(vilv]).
7. if (38')S c §' such that G[S'] € C(G), then

return ID(y,x Ns', T],, .o P(V;|Vi" NS, 0]\ §), GIS')).

The claim is now apparent for Algorithm 8 since line 2 is eventually called for every
conditional causal effect.

Algorithm 8 The causal effect of intervention do(X = x) on Y given Z (Shpitser and Pearl,

2006b).

INPUT: Value assignments x, y and z, joint distribution P(v) and a DAG G = (V,E).
G is an I-map of P.

OUTPUT: Expression for P(y|z) in terms of P(v) or FAIL(F, F').

function IDC(y, x,z, P,G)
1. if 37 € Z such that (Y L Z|X,Z\ {Z})G)_( then

Z
return IDC(y,xU{z},z\ {z}, P,G).

2: else let P’ =ID(yUzx,P,G).
/ /
return P'/> P
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Appendix B. Proof of Theorem 6

Proof By direct calculation we obtain

P =S [[ PVIIC)

v, i=1
= [ Ppwilc)Y. [ PwiIC)
Vi<V V; Viz2V;
P(Vyiys- . Vag)|D)
= P(V|C;)
Vil;[\/j %: HUGMP(U’EU)
PV, .. D
AL o
Vi<V, HUeM (UlEy)
Vi<Vj V>V

where the sets D, are obtained from the factorization of the joint term such that A’ is a
7 -consistent where 7 is obtained from 7 by removing V; from the ordering. To justify
the equalities, we first note that terms of variables V; < V; do not contain V; and can be
brought outside the sum.

To obtain the third equality, we multiply by [[Tyen P(UIEQ)]/ I Tyem P(U|Ey)] and
apply condition (2) of Definition 5 on the right-hand side as licensed by condition (3) of the
definition. To obtain the fourth equality, we simply carry out the summation in terms of
V;. Conditions (2) and (3) of Definition 5 make it possible to refactorize the joint term into
product terms so that the terms corresponding to variables U € M remain unchanged and
can be divided out once more. Thus we obtain the last equality, and an expression that no
longer contains V; and has the same value as A. |

Appendix C. Derivation of the Causal Effect in the Introductory
Example

We present the derivation of the causal effect of X on Y, Z3, Z5, Z; in the graph G of Figure 1
using Algorithm 7. We fix topological ordering of G as Z5 < X < Z; < Z3 < Y. The
original call ID({Y, Zy, Zy, Z3},{X }, P(V), G) fires line 4 and results in three new recursive
calls. We have

Px (Y, Z3,Z1,2Z5) = Py,z, x,2,(Z1) Py,z, x,2,(Z3) Pz, 7, x (Y, Z3), (5)

as the graph G[V \ { X }| has three C-components formed by the sets {Z;}, {Z3} and {Y, Z,},
respectively.

The first recursive call ID({Z,},{Y, Z3, X, Z5}, P(V), G) fires line 2 because Z3 and Y’
are not ancestors of Z;. The next call ID({Z},{X, Z5}, P(Z1, X, Z,),G[{Z, X, Z5}]) fires
line 6 because C(G[{Z;}]) contains only one C-component and it is not part of a larger
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C-component in the graph of the current recursion stage. We have

Py 7. x,2,(Z1) = Px z,(Z1) = P(Z1|X, Z3). (6)

To obtain Py, z x z,(Z3) we call ID({Z3},{Y, Z1, X, Zy}, P(V),G) which also fires line 2
because X, Z; and Y and not ancestors of Z3. Calling ID({Z3},{Zs}, P(Z3, Z5), G{Z3, Z5}])
fires line 6 C(G[{Z3}]) contains only one C-component and it is not part of a larger C-
component in the graph of the current recursion stage. We have

Py 7, x,2,(Z3) = Py,(Z3) = P(Z3|Zs). (7)

To obtain the last term we call ID({Y, Z,},{Z3, Z;, X}, P(V),G). The subgraph G[V \
{Z3,7,,X}| = GI{Y, Z5}] has only one C-component, but it is part of a larger C-component
formed by the set S’ = {Y, Z3, X, Z,} in the current graph G. Line 7 is fired resulting in

ID({Y, Zo},{Z3, X}, P(Y|Z3, Zy, X, Z3) P(Z3| Zo, X) P(X| Zy) P(Z5), G[S']). (8)

This call fires line 2 since X is not an ancestor of Y in the graph G[S']. Letting T =
S'\{X} ={Y, Z;, Z,} the next call is

ID({Y, Zo},{Z3}. Y P(Y|Z3, Z1, X, Z3) P(Z3] Zy, X ) P(X| Z3) P(Z5), G[T)). 9)
X

This time we trigger line 6 because G[T \ {Z3}] has only one C-component and there is no
larger C-component of G[T] that would contain it. We obtain

Py 2, x(Y,Z5) = Py, 7 x (Y, Z)
= Py, x(Y, Z,)
= Pz, (Y, Z,)
= P (Y|Z3, Z3) P*(Z),

where P* is the distribution of the current recursion stage, that is

PY(Y. Z3,Zy) =y P(Y|Z3, 2y, X, Zy)P(Zs] Zy, X)P(X|Z3) P(Zs).
X

In order to represent the conditional probability on the last line of (10), we write

P (Z37Z2)

P Y, Z5. 2
_ (*7 3 2) Z P*(Y, Z37Z2)

ZYP (Yaz?)vZQ) Y, Z4 (11)
_ >x P2y, X, Zy, 2,)P(Z3] 25, X) P(X|Z5) P(Z5)

SYoxy P(Y|Zy, X, Zs, Z,) P(Z3| Zy, X)P(X|Z3) P(Z5)

Z P(Y|Z27X7 ZS?Zl)P(Z3|227X)P(X|ZQ)P(Z2)
X,Z3Y

PY(Y|Z3, Zy) P*(Zy) =
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Finally, we gather the results of our subproblems in (6), (7) and (11), and insert them back
into the equation in (5) which yields

Px(Y, Zs, Zy, Zy) = P(Zy|Zy, X)P(Z3]Z5) %
Yox P(Y|Zy, X, Z3, Z1) P(Z3| Zy, X) P(X|Z5) P(Z5) o
Yoxy P2y, X, Z3, Z1) P(Z3| Zy, X)P(X|Z3) P(Z5)

> P(Y|Zy, X, Z3, Z1) P(Z3] 22, X)P(X|Z,) P(Zs)
X,Z5,Y

as the formula for the causal effect.

Appendix D. Proof of Theorem 7

Proof (i) Suppose that SIMPLIFY(A, G, 7) has returned an expression with variable V;
eliminated. Because the computation completed successfully, we have that each application
of JOIN and INSERT succeed. We can rewrite the value of A as

II rpvicyd_ II PGy,

Vi<V v, VizV;

where the terms P(V;|C;) such that V; < V; can be brought outside the sum over V}, because
they cannot contain V;. The functions JOIN and INSERT use only standard rules of probability
calculus, which can be seen on line 10 of Algorithm 2 and line 7 of Algorithm 3, and thus
every new formation of a joint distribution P(J|D) has been valid. Once again we rewrite

the value of A as
II PWvilc,) > PID),
Vi<V Vi

which means that condition (2) of Definition 5 is now satisfied, as we have obtained a joint
term from the original product terms.Because V; € J we can carry out the summation which
yields

[ PViICi)- P\ {V;}|D),
Vi<V,

Because Algorithm 1 succeeds, we know that every insertion is canceled out by FACTORIZE.
To complete the procedure we obtain a new factorization without V; resulting in an atomic
expression A’ that no longer contains V;. Condition (3) of Definition 5 is satisfied by the
definition of INSERT, because the function always checks the conditional independence with
the current summation variable on line 7. Both conditions for simplification sets have been
satisfied by construction.

(ii) Suppose that there exists a collection of simplification sets of A with respect to V;.
For the sake of clarity, assume further that V,, = V. This assumption lets us only consider
those terms that are relevant to the simplification of V}, as we can always move conditionally
independent terms outside the summation and consider only the expression remaining inside
the sum. Let us first assume that M = (). In this case condition (2) simply reads

V2V,
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and that the product terms are a factorization of the joint term. However, we want to show
that they also provide a factorization that agrees with the topological ordering. Because A
is m—consistent, for any two variables V' > W we have that Cy; C V" which enables us to

consider the summations from V;, up to V; for k= 1,...,5 — 1, which results in
> I] PviC) = Y P(V;,....i|D) = P(V;,...,V;1|D).
Vk:"'7V1 ‘/7,2V7 Vkr“’Vl

We obtain for k=35 —1,...,1

P(V;|Cy) = P(V;|D)
P(V;|C;)P(V;_1|Cj_y) = P(V},V;_1|D)
: (12)
P(V;|Cj) - P(V5|Cy) = P(Vj,..., V3|D)
P(V;|Cj) - P(V5|Cy) P(V1|Cy) = P(V}, ..., V;|D).

From the last and second to last equation we can obtain
P(Vj.....Va|D)P(V|Cy) = P(V},....Vy|D),
and by dividing with the first term from the left hand side we obtain
P(W|Cy) = P(Vl\vgv--sz:D)-
In fact, we can do this for any two subsequent equations in (12) to obtain
P(VIC;) = P(Vi|Vj,..., Vi1, D), i=1,....j—1

Algorithm 1 operates by starting from V;, so we still have to show it succeeds in
constructing the joint term. Using the previous results we can rewrite the original equation
as

[I PviIC) = ]I PWIC)),

VsV VsV,
where C; = DU{V},...,V;;;} for i < j and C; = D. From this we obtain

P(V4|Cy) = P(V4|Cy)

P(V1|CT)P(V5|Cy) = P(Vy, V5|C3)
(13)

P(Vi,....V; 1|C;_1) P(V;|C;) = P(Vj.... . |C]).

The function JOIN will succeed every time since the for-loop starting on line 7 of Algorithm 2
will discover the conditional independence properties allowing the previous equalities in
(13) to take place. Thus Algorithm 1 will return an atomic expression with the variable V;
eliminated from the summation set.
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Assume now that M # () and let V = V[A] and. In this case condition (2) allows us to

write
II PWIEY) J] P(ViICi) = P(V,MD),
UeM Vi>V;

and furthermore, we have that these product terms are a factorization of the joint term.
First, we aim to reduce the number of variables in M to be considered. This is done because
Algorithm 1 always starts and finishes the construction of the joint term with a variable in
V. We categorize each U € M into three disjoint sets. We define

J J
M ={UeM|U¢|JCy} M " :={UeM|UE€ () Cs} and
k=1 k=1

M =M\ (M uM™").

First, we show that we can ignore variables in M~ by obtaining a new factorization without
them. It follows from the definition of M~ and (2) that we can compute the marginalization
as follows

P(V.M\M D)= > P(V,MD)

UeM

= Y ] pwiEy) [] PWVIC)
vem~ UEM VizV;

= [ pwic) Y. [ PWUIEy)
Vi2V; vem~ UeM

= [I PWEy [[ PWviICy).
UeM\M™~ VizV;

We have a new factorization without any variables in M. Similarly, we can eliminate the
variables in M from our factorization. It follows from the definition of M that for all
U € M" we have that Ey € D. From this we obtain
[ PUEy) =PMT D).
UeM™
We can now write
P(V,M\M")
P(M'|D)
[yen PUIEY)
= [I PWIEY) T PViIC)).

UeM* Vi2V;

P(V,M*D,M") =

Thus it suffices to consider the factorization given by

I PUIEY) T] P(V;ICy) = P(V,M"|D"), (14)
UeM* VizV;
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where D* = DUM™.

Next, we will order the variables in M*. For each U € M" we find the largest index
uwe{l,...,j— 1} such that U € C,. This choice is well defined, since by definition at least
one such index exists. Furthermore, as the product terms in (14) are a factorization of the
joint term, the conditioning sets are increasing and we have that U ¢ C; for all i > u + 1.
In the case that multiple variables U; € M"™ for some set of indices i € I share the same
index u, we may redefine M™ such that U;,i € I are replaced by a single variable U; such
that [[,c; P(U;|Ey,) = P(Ur|Ey, ), where Eyy, = NjcfEy,. Thus we can assume that for any
two variables Uy, Uy € M™ we have that u; # uy. We can now order the variables in M™ by
their respective indices w such that Uy > Uy > ... > U, and u; < ug < ... < Up,.

Nest we will extend the ordering to include all of the variables in the set V. We let
Q := VUM" and find an ordering of this set such that it agrees with induced ordering w
of the variables in V and with the ordering of the indices uq,...,u,,. A new factorization
given by this ordering can be defined as follows:

Vk—m k> Wi Ck—m k> U5

Vier  w <k <y, Cr  w <k <wupyy,
Qr = Dy =

Vk: k< Uy, Ck k< Uy,

Ul k= uy. EU k= uy.

We can now rewrite the factorization of (14) as

n+m

[I P(QxDy) = P(QID"), (15)
k=1

We can now apply the same procedures as in the case of M = () with the exception that
INSERT succeeds where JOIN fails with terms containing (), and ;4 when k£ =1 — 1 for all
[ =1,...,m. The success of INSERT is guaranteed by condition (3), as the function will find
this conditional independence on line 10 of Algorithm 3. Also, FACTORIZE will remove all
additional terms that were introduced in the process, which is made possible by condition (3)
and the definition of the factorization of P(Q[D"). After the summation over V; is carried
out, the conditional independence between V; and the variables U € M™ ensures that their
respective terms are equal to the original factorization before the summation was carried
out when the new factorization is constructed so that it agrees with the ordering of the set
Q. Thus an atomic expression is returned with the variable V; eliminated with the same
value as the original atomic expression. |
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Abstract

Causal models communicate our assumptions about causes and effects in real-world phe-
nomena. Often the interest lies in the identification of the effect of an action which means
deriving an expression from the observed probability distribution for the interventional
distribution resulting from the action. In many cases an identifiability algorithm may
return a complicated expression that contains variables that are in fact unnecessary. In
practice this can lead to additional computational burden and increased bias or inefficiency
of estimates when dealing with measurement error or missing data. We present graphical
criteria to detect variables which are redundant in identifying causal effects. We also provide
an improved version of a well-known identifiability algorithm that implements these criteria.

Keywords: causal inference, identifiability, causal model, pruning, algorithm

1. Introduction

A formal framework for causal inference is provided by the probabilistic causal model (Pearl,
2009) that encodes our knowledge of the variables of interest and their mutual relationships.
In observational studies experimentation is not available, but through the causal model
framework we can still symbolically intervene on variables, forcing them to take certain
values as if an experiment had taken place. The question is whether we can make inferences
about the effect of the intervention in the post-intervention model using only the observed
probability distribution of the variables in the model before the intervention took place.
This question is formally defined as identifiability of causal effects, and it has received
considerable attention in literature, including a number of algorithmic solutions (Huang and
Valtorta, 2006; Shpitser and Pearl, 2006; Tian and Pearl, 2002).

A causal model can be associated with a directed acyclic graph (DAG) that represents the
functional relationships of the variables included in the model. The graphical representation
provides us with the concept of d-separation (Geiger et al., 1990), that can be used to
infer conditional independences between variables from the graph. If the distribution of the
variables implies no conditional independence statements other than those already encoded
in the graph, we say that the distribution is faithful (Spirtes et al., 2000).

The use of d-separation in the post-intervention model is the basis of do-calculus (Pearl,
1995), which consists of a set of inference rules for manipulating interventional distributions.
The purpose of do-calculus is to derive formulas for causal effects and other causal queries,
and it has been shown to be complete with respect to the identifiability of causal effects

(©2018 Santtu Tikka and Juha Karvanen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/17-563.html.
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(Huang and Valtorta, 2006; Shpitser and Pearl, 2006). The derived formulas provide recipes
for estimating the causal effects from observational data.

When computing causal effect formulas, we often apply an identifiability algorithm, such
as the ID algorithm by Shpitser and Pearl (2006). Criteria for identifiability such as the
back-door criterion and front-door criterion are available for manual derivations (Pearl, 2009)
but the ID algorithm is more general and thus more suitable for automated processing. The
ID algorithm splits the original problem into smaller subproblems which are then solved and
aggregated as the final expression for the causal effect.

Complicated expressions are likely to arise in situations where we have included variables
in our model that do not provide further benefit for the identification of the causal effect of
interest. It is often the case that these variables nonetheless appear in the resulting formula,
and deriving a simpler expression with the variable eliminated can be non-trivial. It is hard
to specify what makes one expression simpler than another, but we can consider a number
of criteria to evaluate simplicity. For example, we can compare the number of sums and
fractions and the number of variables present in the expression.

In this paper we propose a number of graphical criteria to infer which variables in our
causal model are in fact not necessary for identification. These criteria allow us to prune
the graph, which in practice means removing specific vertices and considering identification
in a latent projection. A significantly simpler expression can be obtained by pruning alone,
but we may also combine pruning with simplification procedures that operate symbolically
on the interventional distribution as presented in (Tikka and Karvanen, 2017b). Applying
these methods in conjunction often provides additional benefits.

We present an identifiability algorithm that is able to recognize and eliminate unnecessary
variables from the graph based on our criteria resulting in a simpler expression. When a large
number of graphs and identifiability queries are processed, evaluating simpler expressions has
apparent computational benefits. First, it is more efficient to evaluate a simpler expression
repeatedly especially when some variables have been completely removed which further
reduces the complexity of the task. Second, in practical applications that involve real-world
data, variables often contain missing data or are affected by bias. Obtaining expression
that do not involve such variables can be of great benefit in estimation. Third, a simpler
expression is easier to communicate.

An introductory example motivates the use of the improved algorithm. We are interested
in the causal effect of X on Y in graph G of Figure 1(a). Here, open circles denote unobserved
variables. A more in-depth overview of graph theoretic concepts used in this paper is provided
in Section 2. The causal effect is identifiable and the output of the ID algorithm is
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(b) Graph G after pruning.

Figure 1: Graph G before and after pruning for the introductory example.

Z Z P(y‘wlaZ27247w27237:1:/7ZI)P(x/‘w17227Z47w2723) X
/

22524123571 Wy W, T

P(zg|wy, 29, 24, we) P(wa|wy, 29, 24) P(22]wy ) P(wy) /

Z P(y/’w17227z47w27237xlvzl)P($/’w17Z27z47w2723> X

!
Wy ,W2,T ,Y

P(z3|wy, 29, 24, wa) P(walwy, 29, 24) P(25|wy ) P(wy) | X

Z P(y/\w1,22,24,w2,zé,x',zl)P(x’\wl,zQ,z4,w2,zé) X
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UJI,'LUQ,Z:;,I' )
P(z§|w1,22,z4,w2)P(w2]w1,zg,z4)P(22\w1)P(w1) X

P(21|wy, 29, 24, we, ) P(23]22) P(24)-

This expression is very cumbersome and complicated. However, it turns out that a simpler
expression exists for the causal effect. By exploiting the structure of the graph and using
standard probability calculus the following expression can be obtained

Z ZP(?J\Zzy2’1737/)P(95/\Z2)P(Z2) P(z1]22, ).

22,21

This expression is simpler in every regard compared to the original output. It contains fewer
terms and no fractions. Also, we have completely removed the variables w;, wq and z, from
the expression. It can be shown that identifying the causal effect in the original graph is
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equivalent to identifying it in the graph depicted in Figure 1(b). By running our improved
algorithm we are able to prune the original graph and obtain this simpler expression directly.
The algorithm works recursively and the pruning is carried out at each stage of the recursion.
The recursive pruning provides significant benefits over pruning as a pre-processing step as
demonstrated later.

The paper is structured as follows. In Section 2 we review crucial definitions and concepts
related to graph theory and causal models. In Section 3 we focus on semi-Markovian causal
models and present the original formulation of the ID algorithm. Our main results are
presented in Section 4 and they are implemented into an improved identifiability algorithm in
Section 5. Examples on the benefits of recursive pruning are provided in Section 6. Section 7
concludes with a discussion.

2. Definitions

We assume the reader to be familiar with a number of graph theoretic concepts and refer
them to works such as (Koller and Friedman, 2009). We use capital letters to denote vertices
and the respective variables, and small letters to denote their values. Bold letters are used
to denote sets. A directed graph with a vertex set V and an edge set E is denoted by (V, E).
For a graph G = (V,E) and a set of vertices W C V the sets Pa(W)g, Ch(W)qg, An(W)g
and De(W)q denote a set that contains W in addition to its parents, children, ancestors and
descendants in G, respectively. We also define the set Co(W) to denote the set of vertices
that are connected to W in G via paths where the directionality of the edges is ignored,
including W. The root set of a graph G is the set of vertices without any descendants
{X eV |De(X)g \ {X} =0}, where \ denotes the set difference. A subgraph of a graph
G = (V,E) induced by a set of vertices W C V is denoted by G[W]. This subgraph retains
all edges V' — W of G such that V., W € W. The graph obtained from G by removing all
incoming edges of X and all outgoing edges of Z is written as G)—(’Z. To facilitate analysis of

causal effects we must first define the probabilistic causal model (Pearl, 2009).

Definition 1 (Probabilistic Causal Model) A probabilistic causal model is a quadruple
M = (U, V,F, P(u)),
where

1. U is a set of unobserved (exogenous) variables that are determined by factors outside
the model.

2. Vs aset {Vi,Vy,...,V,} of observed (endogenous) variables that are determined by
variables in U U V.

3. F is a set of functions {fy,, fv,, ..., fv, } such that each fy. is a mapping from (the
respective domains of) U U (V \{V;}) to V;, and such that the entire set F forms a
mapping from U to V.

4. P(u) is a joint probability distribution of the variables in the set U.
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Each causal model induces a causal diagram which is a directed graph that provides a
graphical means to convey our assumptions of the causal mechanisms involved. The induced
graph is constructed by adding a vertex for each variable in UUV and a directed edge from
V; e UUV into V; € V whenever fvj is defined in terms of V.

Causal inference often focuses on a sub-class of models that satisfy additional assumptions:
each U € U appears in at most two functions of F, the variables in U are mutually
independent and the induced graph of the model is acyclic. Models that satisfy these
additional assumptions are called semi-Markovian causal models. A graph associated with
a semi-Markovian model is called a semi-Markovian graph (SMG). In SMGs every U € U
has at most two children. When semi-Markovian models are considered it is common not
to depict background variables in the induced graph explicitly. Unobserved variables with
exactly two children are not denoted as V; <~ U — V; but as a bidirected edge V; +> V;
instead. Furthermore, unobserved variables with only one or no children are omitted entirely.
We also adopt these abbreviations. For SMGs the sets Pa(-)g, Ch(+)q, An(+)q, De(+) g and
Co(+)g contain only observed vertices. Additionally, a subgraph G[W] of an SMG G will
also retain any bidirected edges between vertices in W.

Any DAG can be associated with an SMG by constructing its latent projection (Verma,
1993).

Definition 2 (latent projection) Let G = (VUL,E) be a DAG such that the vertices in
V are observed and the vertices in L are latent. The latent projection L(G,V) is a DAG
(V,Er), where for every pair of distinct vertices Z,W € V it holds that:

1. L(G,V) contains an edge Z — W if there exists a directed path Z — -+ — W in G
on which every vertex except Z and W is in L.

2. L(G,V) contains an edge Z <> W if there exists a path from Z to W in G that does
not contain the pattern Z — M < W (a collider) and on which every vertex except Z
and W is in L and the first edge has an arrowhead pointing into W and the last edge
has an arrowhead pointing into Z.

From the construction it is easy to see that a latent projection is in fact an SMG. The induced
graph of a probabilistic causal model can also be used to derive conditional independences
among the variables in the model using a concept known as d-separation. We provide a
definition for d-separation (Shpitser and Pearl, 2008) which takes into account the presence
of bidirected edges and is thus suitable for SMGs.

Definition 3 (d-separation) A path P in an SMG G is said to be d-separated by a set Z
if and only if either
1. P contains one of the following three patterns of edges: I — M — J, I <+ M — J or
I <+ M — J, such that M € Z, or

2. P contains one of the following three patterns of edges: I — M < J, I <+ M + J,
I+ M « J, such that De(M)sNZ = 0.

Disjoint sets X and Y are said to be d-separated by Z in G if every path from X toY is
d-separated by Z in G.
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Whenever we can decompose the joint distribution of the observed variables V and the
unobserved variables U as P(v,u) = [[yyevuu P(w|Pa®(w)g), where Pa®(+) also contains
the unobserved parents but not the argument itself, we say that G is an I-map of P(v,u)
(Pearl, 2009). If sets X and Y are d-separated by Z in G, then X is independent of Y given
Z in every P for which G is an I-map (Pearl, 1988). We use the notation of (Dawid, 1979)
to denote this d-separation and conditional independence statement as (X 1L Y|Z)qg. It is
clear that the graph induced by any semi-Markovian causal model is an I-map for the joint
distribution P(v,u) induced by the model.

Our interest lies in the effects of actions imposing changes to the model. An action that
forces X to take a specific value x is called an intervention and it is denoted by do(x) (Pearl,
2009). An intervention do(x) on a model M creates a new sub-model, denoted by M,, where
the functions in F that determine the value of X have been replaced with constant functions.
The interventional distribution of a set of variables Y in the model M, is denoted by Py(y).
This distribution is also known as the causal effect of X on Y.

Multiple causal models can share the same graph, and thus the same sub-model resulting
from an intervention. The question is, are our assumptions encoded in the causal model
sufficient to uniquely specify an interventional distribution of interest. This notion is captured
by the following definition (Shpitser and Pearl, 2006).

Definition 4 (identifiability) Let G = (V,E) be an SMG and let X and Y be disjoint
sets of variables such that X, Y C V. The causal effect of X on'Y is said to be identifiable
from P in G if Pc(y) is uniquely computable from P(V) in any causal model that induces G.

In order to show the identifiability of a given effect we have to express the interventional
distribution in terms of observed probabilities only. The link between observed probabilities
and interventional distributions is provided by three inference rules known as do-calculus
(Pearl, 1995):

1. Insertion and deletion of observations:

Pi(ylz, w) = Pe(ylw), if (Y L Z|X, W)¢_.

2. Exchanging actions and observations:

P,

X,z

(Y|W) = PX(Y|Z7W)7 if (Y 1 Z|X7W)G)—(

Z
3. Insertion and deletion of actions:

Pya(ylw) = P(ylw), if (Y L Z|X, W)q_

X,zwW)’

where Z(W) =7Z\ An(W)G)_(.

Completeness of do-calculus was established independently by Huang and Valtorta (2006)
and Shpitser and Pearl (2006). In this paper we focus on the solution provided by Shpitser
and Pearl (2006). They constructed an identifiability algorithm called ID, which in essence
applies the rules of do-calculus and breaks the problem into smaller sub-problems repeatedly.
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3. ID Algorithm

In order to present the ID algorithm, we first need some additional definitions that are used
to construct the graphical criterion for non-identifiability (Shpitser and Pearl, 2006).

Definition 5 (C-component) Let G be an SMG and let C C G. If every pair of vertices in
C' is connected by a bidirected path, that is a path consisting entirely of bidirected edges, then
C' is a C-component (confounded component). Furthermore, C is a maximal C-component

if C' contains every vertex connected to C' via bidirected paths in G and C is an induced
subgraph of G.

No restrictions are imposed on the directed edges of a C-component. The same is not
true for the maximal C-components (also known as districts) of an SMG G, which are
assumed to be induced subgraphs of GG. This requirement guarantees the uniqueness of the
maximal C-components.

Maximal C-components are an important tool for identifying causal effects. The set of
maximal C-components of a semi-Markovian graph G is denoted by C(G). A result in (Tian,
2002) states that if C' = (C,E) is a maximal C-component and C' C G then the causal
effect P\ c(c) is identifiable from P in G. A distribution P of a semi-Markovian model also
factorizes with respect to the maximal C-components of the induced graph G such that
P(v) =TIlic,p)cc(c) Poe(c) (Shpitser and Pearl, 2006). It is precisely this factorization that
the ID algorithm takes advantage of. A specific type of C-component is used to characterize
problematic structures for identifiability.

Definition 6 (C-forest) Let G be an SMG and let Y be the root set of G. If G is a
C-component and all observed vertices have at most one child, then G is a Y —rooted
C-forest.

The complete criterion for non-identifiability uses a structure formed by two C-forests:

Definition 7 (hedge) Let X,Y C V be disjoint sets of variables and let G be an SMG.
Let F = (Vp,Ep) and F' = (Vr, E) be R-rooted C-forests in G such that VN X # 0,
VonX =19, F'CF, and R C An(Y)G)_(. Then F and F' form a hedge for Py(y) in G.

Intuitively hedges are a difficult concept. Whenever a hedge is present, there exists
two causal models with the same probability distribution over V but their interventional
distributions do not agree. Observational data can not be used to estimate causal effects in
this scenario. We are now ready to present the ID algorithm.

Shpitser and Pearl (2006) showed that whenever Algorithm 1 returns an expression for a
causal effect, it is correct. Additionally whenever line 5 is triggered there exists a hedge for
the causal effect currently being identified. This result establishes the completeness of the
algorithm and also the completeness of do-calculus, since the soundness of each line of the
algorithm can be shown with do-calculus and standard probability calculus alone.
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Algorithm 1 The causal effect of intervention do(X = x) on Y (ID).

INPUT: Value assignments x and y, joint distribution P(v) and an SMG G = (V,E). G
is an I-map of P.
OUTPUT: Expression for P(y) in terms of P(v) or FAIL(F, F').

function ID(y,x, P, G)
1. if x = (D,
return >, c\y
2: if V # An(Y)g,
return ID(y,x N An(y)g, P(An(Y)qg), G[An(Y)g)).
3: let W= (V\X)\ An(Y)q..
if W #£0,
return ID(y,xUw, P,G).
4: if C(G[V\ X]) ={G[S{],...,G[Si]},
return 3, c.\ (yux) Hle ID(s;,v \s;, P, G).
if C(G[V\X]) ={G[S]},

P(v).

5 if C(G) ={G},
throw FAIL(G, G[S)).
6. if G[S] € C(G),
return 3, cq\y [v.cs P(vl-]v,(f_l)).
7. if (38")S ¢ 8 such that G[S'] € C(G),

return ID(y,x s, [, . PV 080l '), G[ST)).

4. Pruning of Variables

In this section we present a number of results that deal with variables that are not necessary
for identification either by removing them from the graph or by considering them latent.
When the causal effect P,(y) is considered in an SMG we can present an outline of the
pruning process:

1. Removal of non-ancestors of Y.
2. Removal of ancestors of X that are connected to Y only via X under certain conditions.
3. Removal of vertices connected to other vertices only through a single vertex.

4. Identification in a latent projection under certain conditions.

Steps 2—4 are new and they are based on the results of this section. Step 1 is derived from a
useful result by Shpitser and Pearl (2006) which states that for a causal effect Py(y) we can
always ignore non-ancestors of Y.

Lemma 8 Let X' = X N An(Y)q. Then Py(y) obtained from P in G is equal to P;/ (y)
obtained from P' = P(An(Y)¢q) in G[An(Y)¢].

Lemma 8 is implemented on line 2 of Algorithm 1. Not all ancestors of Y are always
necessary for identification. The next result states that we may sometimes remove ancestors
of X that are connected to Y only through X.
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Theorem 9 Let G be an SMG and let Z C 'V be the set of all vertices such that X
intercepts all paths from Z to Y. Then the causal effect Py(y) obtained from P in G is equal
to Py(y) obtained from P' = P(V \ Z) in G[V \ Z] if Z contains no members of X and if
G[V\Z]=L(G,V\Z).

Proof Let G' = G[V \ Z] and assume that G' = L(G,V \ Z). Let Uy, Uy\z and Ux
be sets of unobserved variables such that for all U € Ug it holds that Ch(U )G)_( C Z,
for all U € Uy\z it holds that Ch(U)G)_( C V\ Z and for all U € Ux it holds that
Ch(U)¢ € X. The sets Uz, Uynz and Ux partition U because X intercepts all paths from
Z to Y. According to the third rule of do-calculus Py (y) = Px ,(y) because the condition
(Y L Z|X)G}_( holds as removing the edges incoming to X separates X from its ancestors.
Applying the truncated factorization formula (Pearl, 2009) we have that

=> > I[I P@lPa)e\ {vi}) [T P(w)
U

U V\(YUXUZ) V\(XUZ)

Since variables in Uy can only be parents of variables in Z or X in GG, we can sum them out
from the previous expression and obtain

Pe,(y)= Y, > II PwlPaw)e\{v:}) [I Plw).

Uy\zUUx V\(YUXUZ) V\(XUZ) Uv\zUUx

Similarly, variables in Ux can only be parents of variables in X in G, so we can also sum
them out of the expression to obtain

= > I[I PilPaw)e\{v}) [] Plw)

Uy\z V\(YUXUZ) V\(XUZ) Uy\z

We let V' =V \ Z. Verma (1993) showed that a graph and its latent projection have the
same set of conditional independence relations among the observed variables. Because we
have assumed that G' = L(G,V \ Z) every conditional independence between variables
in V' and Uy, applies in both G and G'. We have that for all V; € V'\ X it holds that
P(v;|Pa(v;)g\{v;}) = P'(vi|Pa(Ui)G/\{vi}) and for all U; € Uy, it holds that P(u;) = P'(u;).
Finally we obtain

=> > I PlPa)g \{v}) [T P'(w) = Pe(y).

U,/ v\ (YUX) V\X Uy

Theorem 9 can also be applied in a more general setting where a subset of X intercepts all
paths from a set Z to Y

Corollary 10 Let G be an SMG and let Z C 'V be the set of all vertices such that a set
W C X intercepts all paths from Z to Y and no member of X \ W is a descendant of
W. Then the causal effect Py(y) obtained from P in G is equal to P;(\z(y) obtained from

P'=P(V\Z)in GV \Z] if Z contains no members of W and if G[V \ Z] = L(G,V \ Z).
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Proof Since W intercepts all paths from Z to Y and no member of X \ W is a descendant
of W it follows that no member of W is in Z. According to the third rule of do-calculus
we have that (Y 1L Z|X\ Z)GT\Z and Py(y) = Py\,(y). The claim now follows by applying

Theorem 9 to Py ,(y)- [ ]

Corollary 11 When the causal effect Py(y) is considered in graph G, a set of vertices
Z=An(Y)g \ CO(Y)G)_( can be removed from G if GIV \ Z] = L(G,V \ Z).

Proof The set An(Y)q contains Y in addition to the ancestors of Y, and the set CO(Y)G)_(
contains Y and all vertices that are connected to Y via a path that does not contain edges
incoming to X. Therefore, Z contains such ancestors of Y that all paths from Z to Y contain
X. The removal of Z from G is now licensed by Corollary 10. |

Corollary 11 provides a constructive criterion for the set Z described in Corollary 10 when
G consists only of Y and its ancestors. If a vertex Z; is a member of An(Y)q \ Co(Y)G)_(
then it must be connected to Y only through paths containing some W, C X. We can
always choose the sets W in such a way that the union W = UW . over the members Z;
of An(Y)g \ CO(Y)G)_( has no descendants in X \ W. The set W intercepts all paths from
Z = U{Z;} to Y. Conversely, if Z; is a vertex such that a set W C X intercepts all paths
from Z; to Y, then Z; cannot be connected to Y in G. If we assume that G = G[An(Y)¢]
it follows that Z; is a member of An(Y)q \ CO(Y)G;(-

We present a simple example to motivate the usefulness of Corollary 11. We apply the
ID algorithm to identify the causal effect of X on Y in graph G of Figure 2(a). Applying

(a) Graph G. (b) Subgraph G[{X,Y, Z}].

Figure 2: A graph for an example where Corollary 11 allows us to remove vertices W; and
Wy when the causal effect of X on Y is considered.

the ID algorithm results in the following expression for the causal effect

ZP(Z|U}1,’UJ2,1‘) Z P(y|w1,w2,x',z)P(x/|w1,wQ)P(w2|w1)P(w1)
z

’
Wy, Wa,T

Applying Corollary 11 in this case would result in the removal of the vertices W; and W,
from the graph, since they are ancestors of Y in G' but not connected to Y in G 5 and the
corresponding latent projection is the subgraph G[{X,Y, Z}| of Figure 2(b). Running the

10
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ID algorithm in this subgraph provides us the following expression

Z P(z|x) (Z P(yl|a', z)P(x/)) .

We may consider this expression simpler compared to the previous output by noting that W
and Wy do not appear in the expression and it has fewer unique terms. The same expression
can also be obtained manually by applying the front-door criterion (Pearl, 2009).

Often the question of identifiability can not be answered directly by neither the back-
door nor the front-door criterion which leads us to more general methods, such as the ID
algorithm. We are interested in the causal effect of Wy, X; and X, on Y] and Y5 in the
graph of Figure 3(a).

Wl ’,—--\\ Xl Yl X1 Yl
/f’u =\ AN . N
\\\ X2 /’: \ X2 /’:
A 2 . - -
W2 .7 \\\ Z ///’ Y2 \\\ Z /// Y2
(a) Gra‘ph G. (b) SU‘bgraph G[{X17X27 Z75/1aY2}]

Figure 3: A graph for an example where the back-door and front-door criteria are unavailable,
but Corollary 11 allows us to remove vertices W; and W5 even when W is part
of the intervention.

Direct application of the ID algorithm provides us with the following expression

Zp(yl\w%w17$2,x1,Z)P(z|w27$2) Z P(Z/z’w%l‘/z’Z)P(fclz’w2)P(w2)
z

’
Wy, To

Corollary 11 licenses the removal of W; and Wy from the graph. By running ID again in
the resulting subgraph G[{ X, X5, Z,Y7,Y5}] as shown in Figure 3(b) we obtain a simpler
expression for the causal effect

Zp@l‘xl,x%Z)P(Z’xz) ZP(yZlez,z)P(xlz)
z $/2

The next example illustrates the necessity of the assumption G[V \ Z] = L(G, V' \ Z) of
Theorem 9 and Corollary 10. We are interested in the causal effect of X; and X5 on Y in
graph G of Figure 4(a). In this graph W is connected to Y only through X; and X5, but
the corresponding latent projection does not match the subgraph with W removed as seen
in Figures 4(b) and 4(c). In G the causal effect is identifiable, but it is not identifiable in
the latent projection G' = L(G,{X;, X5, Z,Y'}). In this latent projection a bidirected edge
exists between X; and X, and a hedge is formed by the C-forests G and G[{Y'}].

11
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(b) Subgraph G[{ X, X5, Z,Y}]. (¢) Latent projection L(G, {X, X5, Z,Y}).

Figure 4: An example where the assumptions of Corollary 10 are not met because the
subgraph in panel (b) and the latent projection in panel (¢) differ from each other.

We may also remove sets of vertices that are connected to the rest of the graph only
through a single vertex even when no intervention on the corresponding variable has taken
place.

Theorem 12 Let G be an SMG such that G = G[An(Y)g]| for a set of vertices Y and let
W be a vertex of G. If there exists a set Z such that ZN (Y UX) =0 and Z is connected to
V\ Z only through W. Then the causal effect P(y) obtained from P in G is equal to Py(y)
obtained from P' = P(V\ Z) in G[V \ Z].

Proof Let G' = G[V \ Z] and let Uz and Uy z be sets of unobserved variables such
that for all U € Ug it holds that Ch(U)g € Z U {W} and for all U € Uy z it holds that
Ch(U)g € (V\Z)U{W}. Sets Uz and Uy z partition U because Z is connected to V' \ Z
only through W. Applying the truncated factorization formula yields

Py)=>_ Y PwPaw)g\{w}) [ PlPa(v)e\ {v}) []Pw).
U

U V\(YUX) V\(XU{W})

Since variables in Uy and Z can be connected to the other vertices of G' only through W we
can complete the marginalization over Z and Uy

Py)=>. Y PwlPawe\(zu{w}) [  PlPa()c\{v}) [T Plu).

Uy\z V\(YUXUZ) V\(XUZU{W}) Uy z

Because we have assumed that Z is disconnected from V'\ Z in G5, we have that G[V \ Z] =
L(G,V\Z). Therefore, just as in the proof of Theorem 9, we have that P(v;|Pa(v;)g\{v;}) =

12
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P'(v;[Pa(v;) v \ {v;}) for all V; € V\ (X UZU{W}) and P(u;) = P'(u;) for all U; € Uy z.
Additionally, we have P(w|Pa(w)¢ \ (zU{w})) = P(w|Pa(w), \ {w}). Finally we obtain

P(y)= >, > PwPa(w)y \ {w}) 11 P(v;[Pa(v;) v \ {v;}) [] P(u;)

Uy\z V\(YUXUZ) V\(XUZU{W}) Uwnz
=> > I[I PwilPa)e \{vh) TI Plw)

Uy z V\(YUXUZ) V\(XUZ) Uv\z
= Py (y).

Corollary 13 Let W be a vertex of an SMG G and let R = An(W)G;( \ De(X)g. When
the causal effect Py(y) is considered in graph G, the set of vertices T =R\ Co(V \ R)GVT/
can be removed from the graph if G = G[An(Y)g].

Proof No descendant of X can be removed via theorem 12 since they are connected to X
and the set to be removed cannot itself contain X. By removing descendants of X and X
itself, and assuming that G = G[An(Y)g|, we have that TN (X UY) = ). Thus it remains
to remove those vertices from R that are connected to V \ R through a path that does not
contain W. Removal of the resulting set T from the graph is now licensed by theorem 12. B

In the following example we consider the causal effect of X on Y in graph G of Figure 5(a)
and show how Corollary 13 can be applied. The ID algorithm succeeds in identifying the

(a) Graph G. (b) Subgraph G{X,Y, Z}].

Figure 5: First example of Corollary 13.

causal effect and returns following expression for it

> P(elz, wi,wo) Pwslw, wi) P(wy|x) (Z P(ylw',wl,wz,Z)P(x')) :

Wy,Wq,2 T

We apply Corollary 13 which allows us to remove W; and W, from the graph, since they
are connected to other vertices of the graph through a single vertex Z. Applying the 1D

13
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algorithm in the resulting subgraph G[{X,Y, Z}] of Figure 5(b) provides us the following
expression

Z P(z|z) (Z P(ylz, z)P(:c’)) .

The same expression can be obtained manually by applying the front-door criterion.
We provide another example on Corollary 13 with a slightly more complicated graph.
We are interested in the causal effect of X on Y in graph G of Figure 6(a) We obtain a

(a) Graph G. (b) Subgraph G[{X.,Y, Z,,Z,}.

Figure 6: Second example of Corollary 13.

formula for the causal effect using the ID algorithm

Zw2,22 P(ylwy, ws, 29, 21, ) P(x|wy, wy, 22, 21) P(22|wy, wy) P(we|wy)

(EwQ,zz,yP(y|w17w2a22aZ17x)P(x’w17w27227Zl)P(z2|w17w2>P(w2’wl))

Vertices Wy and W, are connected to other vertices only through Z, which allows us to
remove them from the graph. We obtain a simpler formula for the causal effect from the
subgraph G[{X,Y, Z;, Z,}] of Figure 6(b)

>z P(y|zg, 21, @) P(x|29, 21) P(22)
Dy P(y|2g, 21, 2) P(x|29, 21) P(23)

The previous results have allowed us to completely remove specific vertices from the
graph. Next we will consider cases where a vertex is present in the graph, but it is not
necessary to observe it. This means that instead of the original graph we may consider
identifiability in the corresponding latent projection, as characterized by the following lemma.

Lemma 14 Let G = (V,E) be an SMG and let X,Y and Z be disjoint sets of variables.
Let P(V) be the joint distribution of V. Then the causal effect of X onY is identifiable from
P’ in the latent projection L(G,V \ Z) where P' = P(V \ Z), if and only if it is identifiable
from P’ in G.

Proof Tian (2002) showed that the latent projection has the same topological relations
over the observables and that it has the same set of maximal C-components. Thus if Py (y)

14
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is identifiable from P’ in G it is also identifiable from P’ in L(G,V \ Z) with the same
expression and vice versa. |

In situations where X is a singleton we can exploit the following sufficient condition for
identifiability by Tian and Pearl (2002).

Theorem 15 The causal effect P,(y) is identifiable if there is no bidirected path between
X and any of its children in G[An(Y)q].

We can regard any variable as latent when X is a singleton if the respective latent projection
does not induce such a bidirected path.

Corollary 16 Let G be an SMG and let Y be a set of vertices. Let X,W € V such that
X#W, W &Y and X,W € An(Y)qg. The causal effect P,(y) obtained from P in G is
equal to P, (y) obtained from P' = P(An(Y)g\{w}) and G' = L(G[An(Y)¢], An(Y)c\{W})
if there is no bidirected path from X to any of its children in G’ .

Proof By Theorem 15 the causal effect P, (y) is identifiable from P’ in G'. By Lemma 14
P.(y) is now identifiable from P’ in G. P,(y) obtained from P in G is equal to P} (y)
obtained from P* = P(An(Y)¢) in G[An(Y)] since identifiability from P’ implies identifi-
ability from P. Finally, P, (y) obtained from P* = P(An(Y)¢) in G[An(Y)g] is equal to
P,(y) obtained from P in G. [ |

We continue with an example on how Corollary 16 can be applied in practice. We
consider the causal effect of X on Y in the graph G of Figure 7(a). The causal effect is

(b) Latent projection L(G,{X,Y, Z, Z,}).
Figure 7: A graph for an example where Corollary 16 allows us to make variable Z3 latent.
identifiable and the output of the ID algorithm is
(X, Pz, 25, 21) P(zs]20, ') P2l 22) P(22) )
> P(az,2) P P x
22,23,%1 (Ex’,y’P(y 22,2, 23, 21) P (23] 22, @) P( |Z2>P(32)>

Z P(?J/|Z279€,,Z3a21)P(Z3\Z27wl)P(x/\Zz)P(@) P(23]2).

/ /
T ,23,Y
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We may apply Corollary 16 by noting that G = G[An(Y)s] and that there is no bidirected
path between X and its only child Z; in the latent projection L(G,V \ {Z3}) as depicted in
Figure 7(b).

Running the ID algorithm in L(G, V' \ {Z3}) results in the following expression

22,21

Z (ZP(?ﬂZz,ﬂ?/,Zl)P(95/|22)P(Z2)) P(z1]22, 7).

5. Pruning Identifiability Algorithm

Corollaries 11, 13 and 16 can be implemented as additional steps for the ID algorithm. For
Algorithm 2, line 3 implements Corollary 11, line 4 implements Corollary 13 and line 5
implements Corollary 16. Other lines are identical to the ID algorithm. This algorithm is
provided by the R package causaleffect which implements various causal inference algorithms
such as the original ID algorithm (Tikka and Karvanen, 2017a).

The ordering of the variables in the loop on line 4 has no effect on the resulting expression,
but the ordering does matter on line 5. Choosing a different ordering may lead to a different
expression. For example, when identifying the causal effect of X on Y in graph G of Figure 8
one may obtain either the back-door formula or the front-door formula by proceeding in
either the topological ordering or the reverse-topological ordering of the vertices, respectively.

w
.@.
X A Y

Figure 8: Graph G where different latent projections lead to different expressions for P,(y).

16
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Algorithm 2 A pruning identifiability algorithm (PID) for causal effects.

INPUT: Value assignments x and y, joint distribution P(v) and an SMG G = (V,E). G
is an I-map of P.
OUTPUT: Expression for P(y) in terms of P(v) or FAIL(F, F').

function PID(y,x, P, G)
1. if x = (D,
return >, c\y
2. if 'V # An(Y)g,
return PID(y,x N An(y)g, P(An(Y)g), G[An(Y)g])
3: let Z = AH(Y)G \ CO(Y)G)_(
if Z#0 and G[V\Z] = L(G,V\ Z),
return PID(y,x \ z, P(V\ Z),G[V \ Z])
4: for W e V\X do
let R = AH(W)G)_( \DG(X)G
let T=TU(R\Co(V\ R)Gﬁz)'

if T#0,
return PID(y,x, P(V\ T),G[V \ T))
5. if X = {X},
let G[Sx]| € C(G),
if Ch(X)gs, \ X
for W e V\ (Y ) do
let G' = L(G,V\ {W}).
let G'[S] € C(G'), X € Sk.
if Ch(X)G/[S/X] \ X =0,
P+ P(V\{W}).
G+ G
V<« V\{W}
6: let W = (V\X)\ An(Y)q
if W # 0,
return PID(y,xUw, P,G).
7. if C(GIV\ X]) ={G[S4],...,G[S;]},
return 3, c\ (yux) [, PID(s;,v\s;, P,G).
if C(GIV\ X)) = {CIS]},

P(v).

Xes
=0,
uX

s if C(Q) = {G),
throw FAIL(G, G[S]).

9: if G[S] S C(G), .
return ZUES\y [Tv.es P( vl ).

10: if (3S")S C S’ such that G[S'] € (G)

return PID(y,xNs ’HWGS’ P(V;|V7r g i \s"),G[S)).

On line 5 we first check whether the set X is a singleton. If so, we determine whether any
children of X belong the same C-component as X. If no such children exist, we iterate over

17
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the possible latent projections in an attempt to find one that does not induce a bidirected
path between X and any of its children in the projection. After the new pruning steps
have been carried out, we attempt identification using the original formulation of the ID
algorithm.

We return to the example presented in the introduction and show how Algorithm 2
operates to derive the expression for P,(y) in the graph of Figure 1(a). We choose the
topological ordering to be Y > 21 > X > Z3 > Wy > Z, > Zy > W;. We begin on line
3, since Z = An(Y)g \ CO(Y)G)? =V \ {W;, W5} and continue by calling PID(y, z, P(V \
{Wy,Wa}), GIV\ {W;, W5}]). In the presentation below, V and G refer to the set of vertices
and graph in the current call of PID, respectively.

Next we enter the loop on line 4. When W = Z; we obtain R = An(Zl)G)_( \ De(X)g =
{Z5,Z,} and R\ Co(V \ R)GZ_ = {Zy,Z,} \ {Z3} = {Z,} since Z, is an ancestor of
Z1 and it is disconnected from 1other vertices in G 7, Other choices of W result in an
empty set. When the loop is completed we have T = {Z,} and we continue by calling
PID(y, 2, P(V\ {Z1}), GIV \ {Z,}]).

Since X is a singleton we end up on line 5 and find no children of X in the same
C-component as X. We assume a reverse-topological ordering for the loop and begin with
the latent projection L(G,V \ {Z5}). This projection creates a bidirected edge between X
and Z; bringing them into the same C-component in the projection. Thus we continue with
L(G,V \ {Z;}). This projection is also unsuitable, since Y is a child of X in the projection
and there is a bidirected arc connecting them. We continue with L(G,V \ {Z3}) and find
that X is not connected to its children via bidirected paths in the projection. Thus we set
P+« P(V\{Z3}), G+ L(G,V\{Z3}) and V < V \ {Z3}. This projection is identical to
the graph depicted in Figure 7(b). After these steps, only lines of the original ID algorithm
are called, which results in the expression

Z (ZP(?AZQ,217$/)P(13/|22)P(22)) P(z]29, ).

22,21

6. Examples on Recursive Pruning

Corollaries 10, 13 and 16 often provide direct benefits when applied before the ID algorithm.
The following examples show why they are also useful as recursive steps as implemented in
the PID algorithm.

We are tasked with identifying the causal effect of X on Y in graph G depicted in
Figure 9(a)
Initially there are no vertices that are connected to other vertices only through X. As a
recursive step of the ID algorithm, we are tasked with identifying PZ/S’m(y) from P’, where

P = ZP(ZAZS?227Zla:L‘)P(:L“ZB’Zszl)P(22|z3)P(z3)7

22

in the subgraph G[{Z3, X,Y}| shown in Figure 9(b). In this graph Z3 is connected to
other vertices only through X and it can be removed according to Corollary 11, since the
corresponding latent projection is the subgraph G[{X,Y}]. Thus we sum out Zs from P’

18
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(b) Subgraph G[{Z3, X,Y'}].

(a) Graph G.
Figure 9: A graph for the example of recursive application of Corollary 11 within the 1D

algorithm.

and the resulting expression for the causal effect is
Z 22272'3 P(y|z37Z2aZla:E724)P(Z4‘Z37z27Z17$)P($|23722>21)P(z2|z3)P(’Z3)
ZZQ,z;,»,y' P(y'|z3, 22, 21, %, 24) P (24|23, 2, 21, ) P (| 23, 29, 21) P(2|23) P(23)

24

If Corollary 11 is not applied at this stage, the final expression is instead

3 >z, Plzs, 20, 21, T, 24) P24 23, 29, 21, ®) P (|23, 29, 21) P(22]23) P(23)
ZZZ,Z/’ P(y/|23,22,zl,x, Z4)P(z4’z3a227217x)P(x‘z?n22721)P(Z2’Z3)P(23)

24

Sy PO |28, 20, 210, 0, 20) P24 23, 29, 21, @) P23, 29, 21) P25 23) P(23)

ZZQ,yl,Z4 P(y/|z3,z2,zl,x,z4)P(z4]23,z2,zl,x)P(x!zg,22,21)P(22|z3)P(23)

Using Corollary 11 provides us with a simpler expression in this situation by completely

removing the second term from the product inside the summation.
Next we show how Corollary 13 can also be applied at a recursive step. Our interest lies

in the causal effect of X on Y in graph G of Figure 10(a)

(b) Subgraph G[{Z,, Z5, X, Y }].

(a) Graph G.
Figure 10: A graph for the example of recursive application of Corollary 13 within the ID

algorithm.

There are no vertices that are connected to other vertices in the graph via a single vertex.
When the ID algorithm is applied we eventually reach a step where the causal effect of
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P! .(y) is to be identified from P’, where

Z9,X
P = P(ylzg, 23, 21, ) P(2|2, 23, 21) P (23] 20) P(22);
in the subgraph G[{Zs, Z3, X, Y }] which is depicted in Figure 10(b).
In this graph Z35 can be removed according to Corollary 13, since Z3 is connected to

other vertices of the subgraph only through Y. The resulting distribution is obtained by
summing out Zs from P’. The final expression for the causal effect is now

Zz2,z3 P(y‘z%Z3>z17x)P(x|227Z37Zl)P(23’z2)P(Z2>
Z P(y/|227237Zl?‘r)P(x’ZQaZSaZI)P(Z3|Z2)P(22)

If Corollary 13 is not applied, the resulting expression is instead

5 ( 3., P(yla, 23, 21, 2) P20, 23, 21) P(23]20) P(22)

(1)

/
22,23,Y

Z /P(yl|22,Z3,217$)P($|2’2,Z3,Zl)P(Z3‘22)P(2’2)

23 22,y

Z P(y/|2’272’3,Zl,l')P(.%"ZQ,Zg,Zl>P(23‘2’2)P(22>
z21'7;7y/
As in the previous example, the benefit of applying Corollary 13 is apparent.

We can also take advantage of latent projections recursively via Corollary 16 as shown in
the next example. Our interest lies in the causal effect of X on Y in graph G of Figure 11.

Zy Lo Tl
\ PR N PR
Z X w Y X w Y
(a) Graph G. (b) Subgraph G[{X,W,Y}].

Figure 11: A graph for the example of recursive application of Corollary 16 within the ID
algorithm.

Here X is connected to its child W via a bidirected path and thus they belong to the same
C-component rendering Corollary 16 unusable at this time. However, as a recursive step of
the ID algorithm we have to identify P, (y) from P’, where

Pl = ZP(ZIAZ’Q,Zl,x,'U})P(UJ‘ZQ,21,$)P($‘Z2,21)P(2’2>
%2

in the subgraph G[{X,W,Y}]. In this subgraph X is not connected to its child W via a
bidirected path. We also find that the latent projection L(G[{X, W,Y}],{X,Y}) does not
induce such a path between X and Y. We can now continue identification in this latent
projection and sum out W from P’. The resulting expression for the causal effect is

Zzz,w P(y’Z%21737,w)P(w|zQ,zl,x)P(x]z27zl)P(zz)
Syt P 1220 20,0, w) Pwl, 20, 2) Pl 21) P22)
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whereas the expression without applying the corollary is instead

222 P(y’ZQ,Zl,CE,U})P(w|2’2,ZI,IL')P<IZ"ZQ,21)P<22)
2 >

w

' Py |29, 21, 2, w) P(w| 29, 21, ) P(2| 29, 21 ) P(25)

ZY

222’1/ P(y/’227 21,7, w)P(w‘ZZ, Z171')P(x|z2’ Zl)P(Z2)
2.

zow' P(y/’227 21 L, ’LU)P(U)/’ZQ, 215 [L‘)P(CC|22, ZI)P(ZQ)
Additional examples are provided as an R script (R Core Team, 2017) at the JMLR online
paper repository. The script also includes all of the examples presented in this paper.

An interesting question is how pruning works together with simplification presented in
(Tikka and Karvanen, 2017b). We return to the example on identifying the causal effect
of X on Y in the graph of Figure 10. If we apply the ID algorithm without pruning and
perform simplification as a post-processing step, then the resulting expression is

Z 222 P(y"sz237Zlax)P(x‘z%23721)P(Z3|22>P(Z2)
222 P('x‘ZQ?Z3721)P(23’z2)P(22)

23

P(z3]22). (2)

This expression is in some aspects simpler than expression (1) obtained using pruning alone,
but does contain a sum over Z5 that was not originally present.

When pruning is introduced to the ID algorithm and simplification is again applied, the
resulting expression is instead

Zzg,zg P(y‘z%z&zl:x)P(w‘ZQ?237Z1)P(Z3’z2)P(22)
222 P($|Z2721)P(Z2) ’

which is noticeably simpler than expressions (1) and (2). This example shows, that when
pruning methods are employed together with simplification, a simpler expression can be
reached than what is possible with either pruning or simplification alone.

7. Discussion

We have presented criteria for removing variables from causal models that are not necessary
to achieve identifiability for a given causal effect, and showed how these criteria can be
applied in practice. We integrated our results into a new version of the ID algorithm called
PID as presented in Algorithm 2 to facilitate automatic processing of identifiability queries.
It should be noted that the ID algorithm already performs some pruning such as removing
non-ancestors of Y.

The pruning operations carried out by Algorithm 2 can significantly simplify the resulting
expression compared to the traditional ID algorithm. Benefits of simplification can be realized
in various settings. A simpler expression is easier to understand and to evaluate, since the
dimensionality of the problem has been reduced. This is especially true for settings where
the expression has to be evaluated repeatedly. Simplification can also help dealing with data
where some variables are affected by bias or contain missing data. Obtaining an expression
that does not contain these variables has clear advantages. It may also be of interest to
obtain a different expression for the same causal effect.
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The choice of variable ordering on line 5 of Algorithm 2 is not arbitrary. However,
available external knowledge may guide our selection to prefer certain orderings. For
example, in a situation where two latent projections are mutually exclusive, we may prefer
an ordering where the variable that is associated with the smallest cost, or of which we have
the most accurate measurements is not considered latent.

When PID is applied in conjunction with simplification methods described in (Tikka
and Karvanen, 2017b), various situations that lead to complex expressions can be taken
into account. These methods complement each other, since the results in this paper deal
with completely removing variables from the resulting expression, whereas the simplification
methods focus on symbolic summation of so-called atomic expressions, which are expression
consisting of a single sum and a number of product terms. An expression for a causal effect
may consist of multiple atomic expressions, some of which can be simplified and some of
which can not.

We showed via examples that our improvements are not simply pre-processing steps to
be carried out before calling the ID algorithm, but actually provide significant benefits when
applied recursively. As the ID algorithm manipulates the original graph it often enables
the application of our results as well. As hedges characterize identifiability, it is possible to
consider latent projections in a more general manner, but this is not necessarily beneficial
for simplification. One could construct an algorithm that performs a search over the possible
subsets of V, and checks whether identifiability is retained in the corresponding latent
projection. However, as we have shown via examples, this may not be enough to obtain
a simpler expression, and the recursive structure of the ID algorithm needs to be taken
advantage of. Instead, we could consider a variant of the PID algorithm, where line 5 is
replaced by this procedure. However, one must be careful when applying this method, so
that the computation does not become intractable when the number of vertices increases
due to the complexity of the search.
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