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a b s t r a c t

Objectives: Telomere length is associated with aging-related pathologies. Although the association be-
tween telomere length and frailty has been studied previously, only a few studies assessing longitudinal
changes in telomere length and frailty exist.
Design: Longitudinal cohort study.
Setting and participants: A subpopulation of the Helsinki Birth Cohort Study consisting of 1078 older
adults aged 67 to 79 years born in Helsinki, Finland, between 1934 and 1944.
Measures: Relative leukocyte telomere length (LTL) was measured using quantitative real-time poly-
merase chain reaction at the average ages of 61 and 71 years, and at the latter the participants were
assessed for frailty according to Fried criteria.
Results: The mean � SD relative LTLs were 1.40 � 0.29 (average age 61 years) and 0.86 � 0.30 (average
age 71 years) for the cohort. A trend of shorter mean relative LTL across frailty groups was observed at
61 years (P ¼ .016) and at 71 years (P ¼ .057). Relative LTL at age 61 years was significantly associated
with frailty: per 1-unit increase in relative LTL, the corresponding relative risk ratio (RRR) of frailty was
0.28 (95% confidence interval [CI] 0.08e0.97), adjusting for several confounders. Also, LTL at age 71 years
was associated with frailty (RRR 0.18, 95% CI 0.04e0.81) after adjustment for sex, age, and adult socio-
economic status, but further adjustment attenuated the association. No associations between telomere
shortening and frailty were observed during the 10-year follow-up.
Conclusions: Shorter relative LTL was associated with frailty in cross-sectional and longitudinal analyses,
but telomere shortening was not, suggesting that short LTL may be a biomarker of frailty.
� 2018 AMDA e The Society for Post-Acute and Long-Term Care Medicine. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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explained by chronological age alone.3 To account for this variation,
knowledge of the aging process has been applied to identify markers
of biological aging.4

Telomeres consist of tandem DNA repeats located at the ends of
eukaryotic chromosomes and function to maintain chromosomal
integrity.5 Progressive shortening of telomeres occurs at each somatic
cell division, unless their length is maintained by the enzyme telo-
merase.5 Because the number of cell divisions is expected to increase
with age, shorter leukocyte telomere length (LTL) has been associated
with aging-related markers of inflammation6 and oxidative stress,7 as
well as pathologies including cardiovascular disease,8 type 2 dia-
betes,9 and dementia,10 as critically short telomeres may compromise
chromosomal stability and predispose the cell to senescence and
apoptosis.5 Furthermore, in some but not all studies, LTL has been
found to predict all-cause mortality.11,12 As a result, telomere length
has been proposed to act as a marker for biological aging.13

Seven previous studies have failed at demonstrating associations
between telomere length and frailty.14e20 However, with the excep-
tion of a longitudinal study15 on telomere length measured at one
time point in relation to changes in frailty status in 2006 older Chinese
adults, these previous studies have been cross-sectional in design. Our
aim was to explore cross-sectional and longitudinal associations be-
tween LTLmeasured at 2 time points over a 10-year interval and frailty
according to the criteria of Fried et al.1 in a cohort of 1078 older in-
dividuals born in Helsinki, Finland, between 1934 and 1944.

Methods

Study Design

The present study is a substudy of the Helsinki Birth Cohort Study
that includes a subpopulation of 8760 individuals whowere all born in
Helsinki between1934and1944, hadvisitedchildwelfare clinics at that
time, and lived in Finland in 1971when auniquepersonal identification
numberwas assigned to all Finnish residents.21 Random-number tables
were used to select a subset of people who attended a clinical exami-
nationbetween2001and2004.Of the2902 invited subjects, 2003were
examined clinically. From this clinical study cohort, 1094 of the invited
1404 cohortmembers participated in a clinical follow-upbetween2011
and 2013. Of these, 1078 individuals had information on frailty.22 LTL
wasmeasured at the clinical examination (n¼ 1042) in 2001e2004 and
at follow-up (n ¼ 1061) in 2011e2013. A total of 1037 participants had
both LTL measurements available, and for these participants telomere
shortening was calculated.23 The clinical study protocol was approved
by the Coordinating Ethics Committee of The Hospital District of Hel-
sinki and Uusimaa. Written informed consent was obtained from each
participant before initiating any study procedures.

DNA Extraction and Telomere Length

Relative LTL was measured twice: at the baseline clinical exami-
nation between 2001 and 2004 and at the 10-year follow-up between
2011 and 2014. In brief, DNA was extracted from peripheral whole
blood using a commercially available kit and then assessed for purity
and integrity using detailed methodology described previously.23 Us-
ing slightly different methods, a real-time quantitative polymerase
chain reaction (PCR) approach was applied at both time points to
measure relative LTL. First in 2001e2004, the ratio of telomere DNA
to hemoglobin beta single-copy gene signal intensities was used to
determine relative LTL, as previously described.24e26 Later in
2011e2014, relative LTL was measured using a multiplex quantitative
real-time PCR method, described previously by Cawthon27 and Guz-
zardi et al.23 Four genomic DNA control samples were included in all
plates to calibrate the plate effect and for monitoring the coefficient of
variation (CV), which was 21.0% and 6.2% at the first and second time
points, respectively. Telomere measurements are expressed as T/S ra-
tios, which equals the ratio of telomere repeat copy number to single
gene copies in experimental samples compared with a reference
sample. Significant correlationwas observedbetween the2 relative LTL
measurements (r ¼ 0.254, P < .001). Telomere shortening during the
10-year period was calculated adjusting for the baseline relative LTL
measurement (relative change in LTL ¼ [(LTL at 71) e (LTL at 61)]/[LTL
at 61] � 100) to avoid error due to different methodology used.

Frailty

Frailty was defined as the sum of 5 criteria, including weight loss,
exhaustion, low physical activity, slowness, and weakness, at the
clinical examination in 2011e2013.1 A question from the Beck
Depression Inventory28 was used to assess recent weight loss. Those
who reported losing at least 5 kg met the criterion. Exhaustion was
assessed using the following question: “How many times during the
last week have you felt unusually tired or weak?” The criterion was
met if the response was “On 3 days or more.” The validated Kuopio
Ischemic Heart Disease Risk Study (KIHD) questionnaire was used to
evaluate leisure time physical activity (LTPA).29 Those whose total
LTPA time (including walking, resistance training, and gardening) was
1 hour or less per week met the criterion of low physical activity. In
case of missing KIHD LTPA data (n¼ 37), physical activity was assessed
using the question: “In total, how many hours a week do you do the
following sports (walking, jogging, cycling, swimming, gymnastics,
group exercise)?” The criterion was met if the total duration of
physical activity was 1 hour or less per week. Slowness was assessed
based on maximal walking speed over a 4.57-m distance. For walking
speed, sex-specific cutoffs for medium height (for men �175.9 cm
cutoff was 1.65 m/s and >175.9 cm 1.83 m/s, and for women
�162.2 cm cutoff was 1.47 m/s and >162.2 cm 1.55 m/s) were used to
identify the slowest 20% who met the criterion. Weakness was
assessed by measuring isometric grip strength of the dominant hand
with an adjustable dynamometer chair (Good Strength; Metitur Ltd,
Jyväskylä, Finland). For grip strength, sex-specific quartiles of body
mass index were used to identify the weakest 20% who met the cri-
terion. Cohort members were classified as frail if they met 3 or more,
prefrail if they met 1 or 2, and nonfrail if none of the criteria were met.

Covariates

Body composition was assessed in 2001e2004 using bioelectrical
impedance by the InBody 3.0 8-polar tactile electrode system (Bio-
space Co. Ltd, Seoul, Korea). Segmental multifrequency analyses (5, 50,
250, and 500 kHz) were performed separately for each limb and trunk
to estimate body fat percentage.30,31 Smoking status (smoker, former
smoker, never smoked) and self-reported diabetes and cardiovascular
disease were assessed using questionnaires at the clinical examina-
tion. Data on adult socioeconomic status (SES), which was obtained
from Statistics Finland, was coded based on occupational status
attained at 5-year intervals between 1970 and 2000 as follows: upper
and lower middle class, self-employed, and manual workers.

Statistics

Results for continuous variables are expressed as means and SDs
and as proportions for dichotomous or categorical values. Significance
between groups was evaluated using 1-way analysis of variance and
cross tabulation, respectively for continuous and categorical values.
Multinomial logistic regression analysis was used to study the asso-
ciation between telomere length and frailty. The analyses were first
adjusted for age and sex and then additionally for adult SES, adult
body fat percentage, smoking, and the prevalence of cardiovascular
disease and diabetes. Because no significant interactions were



Table 1
Characteristics of the Study Population

Whole Cohort Men Women P*

n Mean (SD) n Mean (SD) n Mean (SD)

Adult Characteristics at 61 y
Body fat, % 1039 28.7 (8.0) 454 22.9 (5.5) 585 33.2 (6.6) <.001
Current smoker, % 1071 19.1 471 20.8 600 17.8 <.001
Cardiovascular disease, % 1075 5.6 473 4.7 602 6.3 .239
Diabetes, % 1075 5.2 473 6.8 602 4.0 .042

Adult socioeconomic status 1078 475 603 <.001
Upper middle class, % 16.8 23.6 11.4
Lower middle class, % 46.0 28.0 60.2
Self-employed, % 8.5 9.3 8.0
Manual workers, % 28.7 39.2 20.4

Telomere measurements
LTL at 61 y, T/S ratio 1042 1.40 (0.29) 458 1.37 (0.29) 584 1.42 (0.29) .029
LTL at 71 y, T/S ratio 1061 0.86 (0.30) 465 0.81 (0.27) 596 0.90 (0.32) <.001

Telomere shortening rate
Between 61 and 71 y, change T/S ratio 1037 �0.54 (0.36) 455 �0.57 (0.35) 582 �0.52 (0.37) .047
Between 61 and 71 y, change T/S ratio percent 1037 �37.1 (24.5) 455 �39.5 (23.2) 582 �35.3 (25.3) .006

Frailty classification at 71 y 1078 475 603 .383
Nonfrail, % 56.4 56.6 56.2
Prefrail, % 40.0 40.6 39.5
Frail, % 3.6 2.7 4.3

LTL, leukocyte telomere length; T/S ratio, ratio of telomere repeat copy number to single gene copies in experimental samples compared with a reference sample.
*Difference between men and women.
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observed between sex and relative telomere measurements on frailty
(all P > .05), we report results pooled by sex. The analyses were
2-tailed, the level of significance was set at P < .05, and analyses were
carried out with SPSS (IBM SPSS Statistics for Windows, version 23.0
released 2015; IBM Corp, Armonk, NY).
Table 2
Means (SD) of Telomere Measurements According to Frailty Classification in the
Whole Cohort

Telomere
Measurement

Nonfrail Prefrail Frail P*

Mean (SD) Mean (SD) Mean (SD)

Mean LTL at 61 y
(T/S ratio)

1.42 (0.28) 1.38 (0.30) 1.31 (0.25) .016

Mean LTL at 71 y
(T/S ratio)

0.87 (0.32) 0.85 (0.28) 0.76 (0.22) .057

T/S shortening rate
(change T/S ratio)

�0.55 (0.36) �0.53 (0.37) �0.55 (0.22) .740
Results

Characteristics of the 1078 men and women included in the study
are presented in Table 1. In addition to having longer telomeres at
baseline and at follow-up, women experienced a slower rate of telo-
mere shortening than the men in the cohort over a 10-year period (all
P< .05). The prevalence of frailty was 2.7% and 4.3% at the mean age of
70.9 years, respectively, for men and women. No significant sex dif-
ferences in frailty were observed.

In Table 2, those who were classified as frail at the follow-up had
the lowest mean T/S ratios at baseline and follow-up. This graded
decrease in the T/S ratio was significant at baseline (P ¼ .016) and
borderline significant at follow-up (P ¼ .057).

Relative LTL was associated with frailty in cross-sectional and
longitudinal analyses, shown in Table 3. At the average age of 71 years,
the age- and sex-adjusted relative risk ratio (RRR) of frailty was 0.16
(95% confidence interval [CI] 0.04e0.73) per 1-unit increase in the T/S
ratio compared with the nonfrail. The association persisted after
adjusting for adult SES, but was attenuated when adjusted further for
adulthood body fat percentage, smoking, prevalence of cardiovascular
disease, and diabetes and relative LTL at the mean age of 61 years.
Longitudinally, relative LTL at a mean age of 61 years was associated
with frailty after a 10-year follow-up; per 1-unit increase in the T/S
ratio, the age and sex-adjusted RRR for frailty was 0.24 (95% CI
0.07e0.83) compared with the nonfrail. The association changed little
after additional adjustments (RRR 0.28, 95% CI 0.08e0.97). No signif-
icant associations were observed between telomere shortening and
frailty.
T/S shortening rate
(change T/S ratio
percent)

�37.32 (25.36) �36.48 (23.94) �41.15 (16.00) .523

LTL, leukocyte telomere length; T/S ratio, ratio of telomere repeat copy number to
single gene copies in experimental samples compared with a reference sample.

*Trend across frailty classes.
Discussion

Short LTL, which is a potential marker of biological age, is associ-
atedwith aging-related chronic diseases8e10; however, no associations
between LTL and frailty have been reported previously.14e20 To the
best of our knowledge, this study is the first to provide evidence of an
inverse association between LTL and frailty, and furthermore, to study
longitudinal associations between LTL measured at 2 time points and
frailty.

The absence of previous cross-sectional and longitudinal
evidence14e20 may be the result of 3 things. First, the sample sizes of
these studies may have been lacking in statistical power to detect
significant associations. Second, although sample sizes may have been
adequate, participants might present a rather large age spectrum,
which could be a problem because telomere length may vary signifi-
cantly at different ages, leading to a more general sample than could
be expected with participants of similar age. Third, the use of only a
single LTL measurement may not be sufficient in measuring a multi-
dimensional syndrome such as frailty because LTL has been suggested
to be dynamic in nature so that neither its length nor shortening rate
is fixed at a given point in time.32

Despite previously found associations between telomere short-
ening and grip strength,33 a subcomponent of frailty, no associations
between telomere shortening over a 10-year period and frailty were
observed. Although considerable shortening of telomere length may
occur during a given period, relative changes in LTL may not result in



Table 3
Relative Risk Ratios (RRRs) of Frailty at Average Age of 71 Years According to Telomere Measurements Compared With the Nonfrail Individuals

Model 1 Model 2 Model 3

RRR (95% CI) P RRR (95% CI) P RRR (95% CI) P

LTL at age 61 y
Nonfrail ref. ref. ref.
Prefrail 0.65 (0.42 to 1.01) .057 0.65 (0.42 to 1.01) .055 0.69 (0.43 to 1.10) .117
Frail 0.24 (0.07 to 0.83) .024 0.26 (0.07 to 0.91) .036 0.28 (0.08 to 0.97) .045

LTL at age 71 y
Nonfrail ref. ref. ref.
Prefrail 0.82 (0.54e1.26) .371 0.81 (0.53e1.23) .320 0.87 (0.56e1.36) .549
Frail 0.16 (0.04e0.73) .018 0.18 (0.04e0.81) .025 0.25 (0.06e1.10) .067

LTL at age 71 y*
Nonfrail ref. ref. ref.
Prefrail 0.92 (0.59e1.43) .710 0.89 (0.58e1.39) .615 0.95 (0.60e1.51) .824
Frail 0.27 (0.06e1.26) .096 0.29 (0.07e1.30) .106 0.39 (0.09e1.78) .138

T/S ratio percent change between 61 and 71 y*
Nonfrail ref. ref. ref.
Prefrail 1.00 (0.99e1.01) .963 1.00 (0.99e1.01) .884 1.00 (0.99e1.01) .890
Frail 0.98 (0.96e1.00) .075 0.98 (0.96e1.00) .086 0.99 (0.97e1.01) .188

LTL, leukocyte telomere length; T/S ratio, ratio of telomere repeat copy number to single gene copies in experimental samples compared with a reference sample.
Model 1 adjusted for sex and age.
Model 2 adjusted for Model 1 plus adulthood socioeconomic status.
Model 3 adjusted for Model 2 plus adult body fat percentage, smoking, cardiovascular disease, and diabetes.

*Adjusted additionally for LTL at age 61 years.
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critically short telomeres, and again a clinically significant reduction in
function and reserve that characterize frailty. In fact, telomere short-
ening has been observed to be greater in individuals with longer LTL at
baseline34; however, the results of the present study remained
essentially unchanged after additional adjustment for baseline LTL.

Because telomere length has been suggested to be a marker of
biological age,13 individuals with shorter telomeres can be expected to
be at increased risk of aging-related pathologies such as frailty, which
has been proposed as a clinical representation of biological age.3 The
absence of telomerase, which is an enzyme that promotes telomere
elongation and the function of which is often impaired in individuals
with critically short telomeres, may promote the loss of telomere
integrity.5 As a result, activation of the p53-pathway may lead to
impaired mitochondrial function and promote cell dysfunction.35 Se-
nescent cells are more likely to secrete aging-related markers of
inflammation6 and oxidative stress,7 which may underlie the decline
of muscle mass characteristic of sarcopenia, a major risk factor for
frailty.19 In fact, increased levels of inflammatory markers36 and
oxidative stress37 also have been observed among frail older adults.

The notion of little variance in telomere length at birth stresses
the importance of genetic and environmental factors in determining
later telomere length and shortening.38 Associations between shorter
telomeres and, for example, a less active lifestyle,39 proinflammatory
nutritional agents,40 and a less healthy cardio-metabolic profile23

may give insight to the reported associations between LTL and
several chronic diseases.8e10 Greater simultaneous presence of these
diseases may predispose an individual to disturbances in homeo-
stasis, and consequently frailty, as illustrated by the concept of
comorbidity.41

A key strength of the present study is its longitudinal design; we
were able to study cross-sectional and longitudinal associations be-
tween LTL and frailty in a well-characterized population in excess of
1000 individuals through a period of 10 years. Relative LTL was
measured twice, which enabled us to study associations between
telomere shortening and frailty according to the criteria put forward
by Fried et al.1

The study has some limitations. Frailty was measured only at
follow-up, which limits our capability of understandingwhether short
LTL is actually a cause or a consequence of frailty. Although the 2 LTL
measurements correlated significantly (P < .001), relatively high
interassay variability (CV 21.0%) was observed at baseline. Although
several confounding factors were accounted for, no information on the
participants’ nutritional status was available, resulting in limited
ability to control for the effects of dietary factors on LTL. Selective
survival at the clinical follow-up may have led to relatively longer
telomeres and an underrepresentation of frailty among the study
participants. As we studied only white individuals aged 67e79 years
born in Helsinki in 1934 to 1944 and who attended child welfare
clinics at the time, the results may not be generalizable to other
populations or age groups.

Conclusions

In conclusion, in this longitudinal study of older Finnish persons,
relative LTL was observed to be inversely associated with frailty, after
adjusting for potential confounders. The findings support the role of
short LTL as a predictor of frailty in that it can detect processes that will
eventually lead to frailty, and therefore act as a possible biomarker of
frailty. Future longitudinal studies with several telomere and frailty
measurements are needed to address these associations inmore detail.
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