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Abstract

We consider an analytical model of a permanent magnet synchronous generator and for-
mulate a mixed-integer constrained multiobjective optimization problem with six objective
functions. We demonstrate the usefulness of solving such a problem by applying an interac-
tive multiobjective optimization method called NIMBUS. In the NIMBUS method, a decision
is iteratively involved in the optimization process and directs the solution process in order
to find her/his most preferred Pareto optimal solution for the problem. We also employ a
commonly used noninteractive evolutionary multiobjective optimization method NSGA-II to
generate a set of solutions that approximates the Pareto set and demonstrate the advantages
of using an interactive method. This study is the first one to consider an interactive approach
for the design of a permanent magnet synchronous generator. Thus, we promote the further
usage of interactive multiobjective optimization methods in the design. Further, we see that
these methods could also be very useful in the teaching of electrical machines.

1 Introduction
Permanent magnet synchronous generators (PMSGs) are typically used for example in wind power
systems, because they have a high efficiency and energy yield. No additional power supply is
needed for the magnetic field excitation, because it is created by the permanent magnets (PMs).
Due to the absence of the excitation winding in the rotor, rotor losses are reduced, improving also
the thermal characteristics of the generator [LC08].

For a wind power turbine system, the following criteria are important: reliability and ease of
maintenance, total mass of the nacelle, cost and energy yield and grid integration issues [TABD12].
The reliability can be greatly improved by choosing a direct-drive generator system, where the
generator is directly connected to the hub, and a gearbox is not needed. However, this means that
the rotation speed of the generator is low, which in turn means that a high torque is required,
thus, leading to a larger size of generators [LC08]. Consequently, mass minimization becomes an
important part of the generator design.

The cost of the generator is a non-negligible part of the wind power system. According to
[Dub04], the cost of the generator of a 1.5 MW direct-drive wind turbine system was 36% of the
total cost. The price of the rare earth magnets has been changing quite a lot during the past
10 years. A reason for this is that almost 95% of rare earth materials are mined in China and
the prices vary according to the needs of the Chinese industry [TABD12]. When it comes to the
energy yield and grid integration, the direct-drive PMSG is the best choice, because of its high
efficiency and fault tolerance [TABD12]. The grid integration is mainly taken care of by the power
electronics converter (which is not in the scope of this work). The size of the converter naturally
depends on the characteristics of the PMSG, particularly, on its power factor.
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There are several different PM machine topologies that can be used in wind power generators.
In this paper, we focus on the radial flux surface mounted PMSG for the following reasons. First, it
has a good performance over a wide range of speeds. Secondly, surface mounted magnet rotors are
simple to manufacture. According to [Gra96], radial flux generators can be slightly more efficient
and need slightly less active material than axial flux generators do. In [Dub04], optimized radial-
flux machine designs had lower costs and masses than optimized axial flux designs for a given
average nominal torque.

Designing any electrical machine involves coping with several conflicting objectives. Therefore,
there arises a need for multiobjective optimization. Multiobjective optimization problems usually
have several optimal solutions called Pareto optimal solutions with different trade-offs among the
objectives. Often, a decision maker (DM) who is an expert in the domain of the problem is involved
and provides her/his preference information to choose one among several possible Pareto optimal
solutions for implementation. There are different multiobjective optimization methods to support
the DM to find her/his preferred solution, see e.g., [Mie99, BDMSe08].

In PMSGs, the most typical optimization objectives are to minimize the cost [DJT16, VSD10,
BCW15, ERN15], to maximize energy yield [DJT16, BCW15], to maximize the efficiency [TA14,
VSD10], to minimize the mass [PK15, BVB08], to maximize the power density [TA14], or to
maximize the power factor of the generator [BVB08]. However, in the literature, typically only one
[PK15, ERN15, VSD10] or two objectives [TA14, BVB08, DJT16] are optimized at the same time.
Often, when there are multiple objectives, a weighted sum of the objective functions is applied,
thus, forming a single objective optimization problem [BCW15, VZI06].

Typically, global optimization techniques are required for electrical machines. During the past
years, genetic algorithms (GA) have been used e.g. in [TA14, ERN15, VSD10], sequential quadratic
programming algorithms in [BVB08, BCW15], and particle swarm optimization (PSO) in [DJT16,
ERN15]. In [ERN15] both GA and PSO were combined with a gradient based solver to produce two
hybrid solvers. In [VSD10], GA was used with an analytical model to find the global optimum, and
after that, a constrained nonlinear optimization algorithm was used with a finite element model
to improve the obtained solution even further. In [DI13], a comparative benchmark study was
done between response surface (RS) and differential evolution (DE) algorithms in multiobjective
optimization of a surface mounted permanent magnet synchronous machine. The optimization
process had two objectives, a weight function, which was a combination of the total mass and the
PM mass, and a goodness function, which took into account the torque and power losses. The
result showed the DE algorithms to be superior over the RS methods.

Studies involving multiobjective optimization in the design of permanent magnet synchronous
machine reveal that often a) the number of design objectives is limited to at most three, b) a
weighted sum is often considered where the DM provides her/his preference information a priori,
c) evolutionary multiobjective optimization algorithms are used to generate a representative set
of Pareto optimal solutions, and d) no support is given for the DM to learn about the problem
considered and find her/his preferred Pareto optimal solution. At this point we wish to emphasize
that unlike the usual practice of considering up to three objectives in the design optimization
problems, it is important to consider all the necessary objectives that define the problem. This
is because the DM must understand the trade-offs between all relevant objectives to ultimately
obtain a practically usable preferred Pareto optimal solution. We suspect that the main reason for
the restriction on the number of objectives considered in the literature is the limited knowledge of
methods available to solve multiobjective optimization problems.

On one hand, even though the weighted sum of objectives is simple to use, it has several
deficiencies [Mie99] such as it cannot generate all Pareto optimal solutions when the optimization
problem has nonconvex functions and bigger weights do not necessarily imply higher importance
to objectives.

One way to alleviate some of the problems with the currently used methods in the design of
is to use an interactive multiobjective optimization method. In a typical interactive method, the
DM iteratively directs the solution process towards her/his preferred Pareto optimal solution by
investigating a small subset of Pareto optimal solutions during every iteration. In each iteration,
the preference information provided by the DM is used to formulate single objective optimization
subproblem(s), which is/are solved to yield Pareto optimal solution(s) reflecting the preferences.
Among interactive methods, the synchronous NIMBUS method [MM06] has been used to find
preferred Pareto optimal solutions in several industrial problems, e.g., in [HMN06] and [HMS11].
The main advantages of using the synchronous NIMBUS method are that a) it can generate any
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Figure 1: An example of a PMSG cross-section and the main geometrical parameters of the PMSG model.

Pareto optimal solution, b) it introduces only a low cognitive load on the DM as only a maximum
of four solutions are shown to the DM at a time (and the DM can specify the number), c) it has a
low computational overhead as only solutions desirable to the DM are generated, and d) it provides
decision support to the DM when using the IND-NIMBUS software (implementing the method) to
learn about the trade-offs among the objectives.

Evolutionary multiobjective optimization (EMO) methods have been used in designing PMSGs.
They aim at finding a well distributed set of solutions that are as close as possible to Pareto optimal
solutions. When using this well distributed set of solutions, the DM often encounters a laborious
task of choosing her/his preferred solution with limited support. Furthermore, EMO methods face
significant challenges with a large number of objectives such as a slow rate of convergence, the
requirement of a large number of solutions to represent a high-dimensional Pareto optimal set and
a lack of efficient methods to visualize a large number of solutions representing high-dimensional
Pareto optimal solutions showing the trade-offs between the objectives.

We compare the interactive approach to the NSGA-II algorithm [DPAM02], which is one of
the most commonly used EMO methods. NSGA-II is an elitist algorithm, where a set of solutions
is subjected to selection, crossover and mutation and evolved to find a diverse set of solutions.
The selection operation chooses elite solutions with respect to both fitness and diversity, thereby
leading to a diverse set of solutions approximating the entire Pareto optimal set.

In this study, the main focus is on demonstrating the potential of applying an interactive multi-
objective optimization method in the design of PMSGs involving several relevant objectives against
a widely used EMO algorithm. We first formulate a mixed-integer multiobjective optimization
problem involving six objective functions for the design and then apply the IND-NIMBUS soft-
ware [Mie06, OML14] (http://ind-nimbus.it.jyu.fi/) to support the DM in finding her/his most
preferred Pareto optimal solution. To our best knowledge, this study is the first one considering
an interactive multiobjective optimization method in the design of electrical machines.

2 Design of permanent magnet synchronous generators
The analytical model for the PMSG [PJH08] used in the optimization is presented in this section.
Our implementation of the model has previously been validated in [Man12]. Fig. 1 shows an
example cross-section of a PMSG with main geometrical parameters. The flowchart of the design
of a PMSG is shown in Fig. 2. After the initial parameters shown in Table 1 are chosen, a suitable
stator winding is designed. The number of stator slots and the number of conductors in a slot
are defined so that the winding produces a suitable linear current density, which is calculated as
A = 2mNphI/(πD), where m is the number of phases, Nph the number of coil turns in a phase,
I the stator current and D the stator inner diameter. The dimensions of the stator teeth and the
slots are defined so that the stator winding can be fitted into the slots. The yoke size is defined
using the relative stator outer diameter Dse/Dsy.

A magnetic equivalent circuit is used to obtain the magnetic flux in the air-gap [Hei02]. The
reluctances of the magnets, air-gap and iron parts are calculated from Rm = l/(µ0µrA), where
l and A are the length and the cross-sectional area of the magnetic flux path, respectively, µr is
the relative permeability of the material and µ0 is the permeability of free space. The relative
permeability of iron is defined iteratively from a BH curve. Using the magnetic equivalent circuit,
the magnetic flux in the air-gap is obtained from

Φδ,PM =
ΘPM

RPM +Rδ +RFe +RPM/Rδ2(Rδ +RFe)
, (1)

where Rδ, RPM, RFe, and Rδ2 denote the reluctances of the air-gap, PMs, iron and leakage reluc-
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Figure 2: Flowchart of the design process.

tances, respectively. The magnetomotive force ΘPM is in ampere-turns.
When the magnetic flux produced by the magnets is known, the back induced electromotive

force (EMF) can be calculated

EPM =
2πfkw1NphΦδ,PM√

2
, (2)

where f is the frequency, kw1 is the winding factor and Φδ,PM is the magnetic flux in the air gap
produced by the PMs. If the back-EMF is less than 1.05 times the phase voltage, the height of the
PMs is increased, and the magnetic equivalent circuit is solved again. This sequence is repeated
until the required back-EMF is produced.

After the dimensioning, the resistance and the inductances of the stator winding, shaft power,
losses, efficiency and power factor are evaluated. The heat transfer in the machine is also estimated
to ensure that especially the PMs are not overheated. A simple thermal resistance network which
is described in [Lin99], is used as the thermal model.

3 Multiobjective optimization problem formulation
Multiobjective optimization problems are typically of the form

minimize/maximize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S, (3)

with k ≥ 2 conflicting objective functions fi : S → R. The vector of (design) variables x =
(x1, x2, . . . , xn)T belongs to the feasible set S ⊂ Rn. Usually, problem (3) has several optimal
solutions called Pareto optimal solutions and we denote the set of Pareto optimal solutions by
P . For simplicity, we present the definition for a case where all the objective functions are to be
minimized. A vector x1 is Pareto optimal if there does not exist any x ∈ S such that fi(x) ≤ fi(x1)
for all i = 1, . . . , k and fj(x) < fj(x

1) for at least one index j. The ranges of the objective function
values in the Pareto optimal set are defined by the ideal and the nadir vectors, which represent
the best and the worst values that each objective function can achieve in the Pareto optimal set,
respectively. A pay-off table [Mie99] is commonly used to find an approximation of the nadir
vector. However there exists other approaches for its estimation, see, e.g. [DMC10].

Next, we present the mixed-integer multiobjective optimization problem formulation for the
design of a PMSG. There are a total of 14 design variables, 2 of which have discrete values and
the other 12 are continuous. The variables, their types and lower and upper bounds are shown in
Table 1. The six objective functions are the output power Pout, torque density ρtorq, mass mtot,
efficiency η, power factor cos(φ) and cost. Output power, torque density, efficiency and power
factor should be maximised, whereas mass and cost should be minimized. The objectives are
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calculated, respectively, as,

Pout = 3Uph(Iq cos(δa)− Id sin(δa))

ρtorq =
T

mtot

mtot = mFe +mCu +mPM

η =
Pout

Pin

cos(φ) =
Pout

3UphI

cost = klossPloss + kCumCu + kFemFe + kPMmPM,

(4)

where T is the torque, Iq and Id are the d- and q-components of the stator current, respectively,

I =
√
I2d + I2q , δa is the load angle and Uph is the phase voltage. Furthermore mFe, mCu, and

mPM are the masses of iron, copper and PM material in the machine, respectively, Pout is the
output power, Pin is the input power, kFe, kCu and kPM are the material prices of iron, copper
and magnets, respectively, and kloss is the cost coefficient for power losses Ploss. The costs of the
different materials and losses are here estimated to be kFe = 4 e/kg, kCu = 12 e/kg, kPM = 60
e/kg and kloss = 2 e/kg.

There are also two constraints that have to be satisfied. First, the stator slot pitch should not
be less than 7 mm: τu > 7 mm. The stator slot pitch depends on the total number of stator slots
Q and the stator inner diameter D: τu = (πD)/Q. The selection of the number of stator slots
is associated with the winding design during phase 2 [PJH08, Man12]. The stator inner diameter
is defined as D = Dre + 2δ, where Dre denotes the rotor outer diameter that is obtained based
on the chosen tangential stress [PJH08]. Furthermore, δ denotes the air gap length. Also, the
temperature of the PM should not be higher than 100 ◦C, that is, TPM < 100 ◦C, in which TPM

denotes the temperature of the PMs. This temperature was estimated using a thermal network.

Table 1: Design variables

Symbol Description Type Lower Upper
p Pole pair number integer 20 80
A Linear current density (A/m) real 35000 65000
J Current density (A/m2) real 2000000 6000000
δ Air gap length (m) real 0.001 0.05
Dre/lstk Rotor outer diameter/stack length real 0.8 5
wPM/τp Magnet width, relative real 0.6 0.95
σFtan Tangential stress (Pa) real 21000 48000
Byr Rotor yoke flux density (T) real 1.3 1.6
q Number of slots per pole per phase integer 1 3
Dse/Dsy Stator outer diameter, relative real 0.8 0.99
bs1/τu Slot opening, relative real 0.25 0.75
bs2/bs1 Slot width, relative real 0.75 0.95
h1/h3

Slot height 1, relative real 0.01 0.1
h2/h3

Slot height 2, relative real 0.01 0.1

4 Synchronous NIMBUS method
The synchronous NIMBUS method [MM06] has been implemented as the IND-NIMBUS software
used in this study. In this section, we briefly outline the method and a pseudo code involves the
following steps:

1. Initialization: Calculate and show to the DM the ranges of the objective functions in the
Pareto optimal set i.e., ideal and nadir vectors.

2. Starting solution: Calculate a starting Pareto optimal solution (e.g. a neutral compromise
solution [MM06]) and show it to the DM.

3. Preference information: Let the DM investigate the Pareto optimal solution and express
her/his preference information.
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4. Generation of new solutions: Once the DM has provided preference information, use
it to generate 1-4 new Pareto optimal solution(s) and show them to the DM (the DM can
determine how many solutions (s)he wants to see).

5. Iterative decision: Let the DM choose a preferred Pareto optimal solution among the
solutions presented to her/him and if (s)he wishes to stop, terminate the solution process.
Otherwise, go to step 3.

In step 3, the DM provides her/his preference information as a classification of objectives upon
investigating a Pareto optimal solution. With the classification, the DM indicates how the current
objective function values should be changed to get a more preferred Pareto optimal solution and
classifies the objective functions into up to five classes, i.e.

• Improve: functions whose values should be improved as much as possible,

• Improve to value: functions whose values should be improved to a given value,

• Satisfactory: functions whose values are satisfactory at the moment,

• Impair: functions whose values are allowed to impair till a given bound, and

• Change: functions whose values are allowed to change freely.

Because of the definition of Pareto optimality, the classification is feasible only if some of the
objectives are to be improved and some are allowed to impair. By utilizing the classification
information, up to four different single objective optimization subproblems are formulated and
solved to generate Pareto optimal solutions reflecting the preferences. (It must be noted that
if single objective optimization problems are solved using evolutionary algorithms such as GA,
the optimality of the solutions generated cannot be guaranteed.) The method also contains an
option of generating intermediate solutions between any two Pareto optimal solutions. For further
information about the NIMBUS methods, see [MM06].

5 Interactive solution process
In this section, we demonstrate the advantages of an interactive method in solving the problem
formulated in Section 3. First, we describe the numerical setting and then the interactive solution
process using the synchronous NIMBUS method. The DM involved in the decision making process
was an expert in the design of PM generators and she was interested in investigating the trade-offs
to ultimately design a PMSG. The DM initially mentioned that she was mainly interested in a
generator with a minimum mass and cost and maximum efficiency.

As mentioned, in the synchronous NIMBUS method, in each iteration, up to four single ob-
jective optimization subproblems are formulated and solved using an appropriate single objective
optimization method. In our study, we used a real coded genetic algorithm (GA). Our choice is
based on the literature [Hau07, Mie07], where the efficacy of real coded GA in handling nonlinear
objective functions with mixed-integer variables has been demonstrated. The parameter setting
used was the following: population size = 101, elitism = 1, tournament size = 3, crossover rate
= 0.8, mutation rate = 0.1 and degree of mutation = 4. The GA was set to terminate when the
difference between the best individuals in the populations in the past 25 generations was smaller
than 0.01. Constraints were handled using the adaptive penalty approach [MMT03, MS03].

A summary of the interactive decision making process, i.e., the preference information and the
solutions shown to and selected by the DM is given in Table 2, where the latter are denoted in
bold face. In this table, the solutions shown to the DM are referred to as zi,j , where i refers to
the iteration number and j the solution number. The preference information provided by the DM
is given in the second column.

The interactive solution process was started by showing the ideal and nadir vectors, (0, 16.9,
132000, 0.98, 1, 894000) and (224e+08, 6.01, 289000, 0.7, 0.87, 3910000), respectively, to the DM
(to give an idea of the ranges of the objectives) along with the starting solution z1,1 given in Table
2.

The DM thought that the starting solution had a reasonable output power and torque density
and the mass and cost were not very good, but not really bad, either. The efficiency was quite
good (0.92). However, the power factor was very poor, only 0.79. The DM wished to improve the
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efficiency and the power factor to 0.94 and 0.9, respectively. The efficiency is important, because
it affects the energy yield of the generator, and the power factor is also important, because a
low power factor means a large reactive power, which in turn increases the size of the frequency
converter. At this point, the DM was not interested in the output power, because it was already
close to the desired value. Regarding the torque density, the DM decided not to consider it in
the first iteration, but to return to it later on. Therefore, the output power and torque density
were classified as satisfactory. Because all the solutions considered are Pareto optimal, in every
iteration round, something has to be allowed to impair in order to enable an improvement of other
objectives. So, for the first iteration, the DM decided to allow the cost and mass to impair.

After the first iteration, three solutions were produced as shown in Table 2. None of them was
capable to meet the requirements set by the DM. The power factor was still too low, only 0.87.
The efficiency was a little bit higher, but not very high (0.93). This was probably due to the fact
that the DM had asked to improve the efficiency to 0.94 and the power factor to 0.9, which are
not that high values. Therefore, the DM wanted to see, whether it was possible to further improve
especially the power factor and also the efficiency. The DM asked to improve the power factor and
the efficiency as much as possible, and allowed everything else to impair without limits.

As a result, four solutions were generated with a very high power factor and efficiency. In all
four solutions, the efficiency was around 0.97 and the power factor between 0.97 and 1. However,
the mass of the generator was now very large. This result is understandable, because when the
mass is increased, the losses are decreased, and, therefore, the efficiency is high. However, a large
mass is undesirable in wind power generators. The cost had also impaired a lot, as no limits were
set to both mass or cost by the DM. When the mass increases, also the usage of material increases,
and this affects the cost as well. The solution z2,1 had the smallest cost, but z2,2, on the other
hand, had the smallest mass (165000 kg), when all other solutions had a mass of over 200000
kg. The solution z2,2 had also a lower efficiency and power factor than the other three solutions,
but because all solutions had nevertheless a high efficiency and power factor, the DM decided to
continue from z2,2 because of its lower mass. For the next iteration, the DM wished to improve
the mass as much as possible, and allowed the efficiency and the power factor to impair to 0.92
for both objectives. The cost was also allowed to impair a little. The torque density was asked
to improve, because decreasing the mass should increase the torque density, if the torque is not
decreased at the same time.

Four solutions were generated of which z3,3 had a very high output power (5.33 MW). However,
the DM was aiming at around 3 MW, and thus considered 5.33 MW unnecessarily high. The
solution z3,3 also had too low an efficiency and power factor, so this solution was discarded by the
DM. Solutions z3,1, z3,2 and z3,4 had a very small mass, between 135000 and 136000 kg, which
is the minimum mass that can be obtained. The mass was greatly improved from the previous
iteration, and the DM was very happy with this. The solution z3,1 had a higher cost than solutions
z3,2 and z3,4, and z3,4 had a lower cost and mass and better efficiency than solution z3,2, so the
DM preferred z3,4. Next, the DM wished to aim for a lower cost and to get the output power closer
to 3 MW. Therefore, the DM asked to impair the output power to 3 MW and allowed the torque
density to impair, as a lower torque was needed to produce the same power. So the DM chose to
impair the output power to 3 MW and the torque density to 12.8 Nm/kg. The mass was kept at
136000 kg, the efficiency at 0.92, the power factor at 0.93 and the cost was asked to improve to
1320000 e.

Now three solutions were produced, which can be seen in Table 2. Of them, z4,1 had a small
mass, a good accuracy in the output power and a good torque density. The efficiency and the
power factor were above the target and the cost was not as low as expected, but still acceptable.
The solution z4,2 had a little bit more difference in the output power. The efficiency and the
power factor were again better than what the DM had asked for, but the cost was higher than in
z4,1. The solution z4,3 again had a little bit larger output power than z4,1 and the torque density
close to the target. The efficiency was high (0.96) and the power factor 0.94, which was above the
limit. The cost was below the target value (1290000 e). From these three solutions, the DM was
happiest with z4,3, because of the low cost, and nevertheless a small mass and a good efficiency
and power factor. Even though z4,3 was already very good, the DM still wanted to see whether
it would be possible to improve the power factor as it affects the price of the power electronics
converter needed. So, the DM asked to improve the power factor and allowed to impair the mass
a little, while the cost should not change.

Three solutions were produced. The efficiency and the power factor were improved but the cost
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and the mass were impaired. The increase in the mass was rather large, which also affected the cost
by increasing it. The increase in the mass was larger than the improvement in the power factor,
relatively. Therefore, the DM decided that none of the generated solutions was good enough and
concluded that z4,3 was the best that could be obtained according to the DM’s preferences.

To summarize, we studied the design of a PMSG and formulated our problem setup in a manner
that the resulting designs would be fit for the use in a megawatt range wind turbine. The energy
efficiency of such a machine cannot be heavily compromised in order to maximize the produced
electrical power. Besides being energy efficient, the machine must be compact to be installed in
the turbine. Also, the use of the PM material needs to be balanced to avoid too high material
costs. When interacting with the optimization method, the DM therefore was mainly interested
in the efficiency, power factor, mass and cost of the generator, although also output power and
torque density were taken into account. It became evident that these contradicting objectives must
be assessed simultaneously and that the interactive multiobjective optimization method is a very
useful tool for this purpose. It was clearly seen that if the best possible efficiency and/or power
factor is aimed at, it will increase the machine size. A larger torque density could be obtained by
adding more PM material, which would increase the cost. With the iterative solution process, the
DM could learn about the trade-offs between the objectives, learn about what kinds of preferences
are feasible and, eventually, find the most preferred solution. Thanks to the insight gained, she
could get convinced of the goodness and justify the choice of the final solution well.

From the starting point, the generator design was greatly improved, the mass was decreased
from 140000 kg to 135000 kg, the efficiency was improved from 0.9 to 0.96, and the power factor
was improved from 0.79 to 0.94. The output power changed from 3.66 MW to 3.13 MW, and the
torque density decreased from 15.6 Nm/kg to 13.6 Nm/kg. The cost decreased from 1700000 e to
1300000 e. So, by decreasing the torque density and the output power, a very good improvement
was made in the efficiency, the power factor and also in the mass. The cost was also improved.
The cost is highly affected by the usage of materials, and especially the PM material is expensive.
Therefore, because the DM required a good efficiency and power factor, the cost had to be sacrificed
in order to get a good performance. However, during the last iteration, it became evident that
obtaining a very good power factor will also increase the mass of the PMSG. The DM at this point
decided that the mass increased too much, as can be seen from the last three results, and decided
that it was better to compromise in the power factor.

Besides the interactive method, an implementation of the NSGA-II algorithm in MATLAB
called NPGM [Lin] was used to solve the same problem. A population of 200 individuals and a
stopping criterion of 150 generations were used in addition to standard parameter settings described
in the software. The final set of solution obtained was provided to the DM. Among the 200 solutions
obtained, only 15 had a power factor and an efficiency greater than 0.9, which were of interest to
the DM. All the 15 solutions have a larger mass and a larger cost than those found using the
interactive method. In addition, the output power in all of the solutions was close to the 3 MW
value and the torque density was smaller than what was obtained by the interactive method. It
was not easy for the DM to compare many solutions with six components. However, specifically,
two solutions (3030000, 8.0922, 216000, 0.9770, 0.9515, 1980000) and (3180000, 9.7854, 191000,
0.9574, 0.9919, 2110000) were considered to be preferred among the 15 solutions. However, z4,3
= (3126584.68, 13.62735299, 134523.237, 0.95916683, 0.943504748, 1285583.22) obtained using the
interactive method was still the most preferred solution as the preferred NPGM solutions had an
approximately 30% to 35% higher mass and a 35% to 39% higher cost, respectively.

When compared to widely used, noninteractive methods, the DM found several advantages
in using the interactive method. First, because of having as many as six objectives, the Pareto
optimal set is extremely difficult to be represented well and to visualize in an informative way. So,
for the DM, handling the 6-dimensional vectors so that she could clearly see the contradictions
between the objectives was very challenging. The interactive method offered the DM a comfortable
way to handle a small amount of Pareto optimal solutions at a time, and offered a tool to help
her to conveniently gain insight about the interdependencies among the objectives and find her
preferred solution. Secondly, as in this case (which is rather typical), the DM was more interested
in certain areas of the Pareto optimal set, and it is beneficial to get more solutions in those areas
and avoid others that are not seen so crucial for the DM. Thus, in that case, not so many solutions
are needed in those areas of the Pareto optimal set. By using the interactive method, the DM
could, during the optimization process, target the optimization to those areas that she found more
important, which is something that cannot be so easily done with noninteractive methods. This
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also saves computational resources.

6 Conclusions
In this work, we identified six different objective functions pertaining to the design of a permanent
magnet synchronous generator and formulated a corresponding mixed-integer multiobjective opti-
mization problem. With this, we demonstrated the benefits of formulation all relevant objectives
in the problem. Methods such as weighted sum, evolutionary algorithms etc. are commonly used in
the literature. However, they are not that well suited to consider preference information of a DM
or a large number of objectives. Furthermore, they do not support learning about the problem and
the trade-offs involved. Hence, in this article we demonstrated the advantages of applying an inter-
active method, i.e., the synchronous NIMBUS method in solving the multiobjective optimization
problem of electrical machines.

As a result, an optimal design for a permanent magnet synchronous generator was produced
based on the DM’s preferences. During each iteration of the interactive solution process, the DM
was given three or four different Pareto optimal solutions. She then chose one according to her
preferences, and also decided how the solution should be modified to become more preferred in
the next iteration. Because all solutions produced by NIMBUS are Pareto optimal, the DM also
had to allow impairment of some objectives while hoping to improve others. In this case, the DM
decided to sacrifice the torque density in order to get a better performance of the machine with a
reasonable cost and a small mass.

During the optimization process, the DM noticed that compared to widely used noninterac-
tive multiobjective optimization methods, the interactive method offers a way to handle several
objectives in a very useful and informative way. It also allowed the DM to learn about how the
choices between the different objectives affect the generated solutions, and offered a possibility to
learn about the interdependencies among the objectives and the trade-offs that have to be made as
well as to adjust the preferences. With as many as six objectives, handling the Pareto optimal set
without any tools would be extremely difficult for the DM. The interactive optimization method
is a good approach, as it offers a way to better understand what kind of solutions are possible to
achieve and what are not. Another advantage is that it allows the DM to target the search of the
most preferred solution to certain areas of the Pareto optimal set of solutions, meaning that more
resources can be devoted to certain areas of the design space. This in turn may help to reduce the
amount of computation time used for the optimization, which may enable using more accurate but
computationally heavy models for the electrical machines, such as finite element methods.

To conclude, the entire solution process using the interactive method proved out to be extremely
interesting and informative to the DM, and an optimal solution which satisfied the DM was found
and thanks to learning, she could get convinced of the goodness of the final solution. In the future,
interactive multiobjective optimization methods could be used with different electrical machine
topologies, or different types of models. This study forms a basis for further, more extensive use
of interactive methods in the field of electrical machine design.
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