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Designmimetics is an importantmethod of creation in technology design. Here, we review designmimetics as a plausible approach
to address the problemof how to design generally intelligent technology.We argue that designmimetics can be conceptually divided
into three levels based on the source of imitation. Biomimetics focuses on the structural similarities between systems in nature and
technical solutions for solving design problems. In robotics, the sensory-motor systems of humans and animals are a source of
design solutions. At the highest level, we introduce the concept of cognitive mimetics, in which the source for imitation is human
information processing. We review and discuss some historical examples of cognitive mimetics, its potential uses, methods, levels,
and current applications, and how to test its success. We conclude by a practical example showing how cognitive mimetics can be
a highly valuable complimentary approach for pattern matching and machine learning based design of artificial intelligence (AI)
for solving specific human-AI interaction design problems.

1. Introduction

Mimetic design is an important designmethodology. It refers
to technology design in which designers imitate some exist-
ing phenomenon or system to generate new technological
solutions. The paragons can be anything, but often they are
phenomena or systems of nature [1]. Yet, mimicking is not
necessarily a simple concept. Design mimetics have often
focused on structural and physical similarity between entities
of nature and technical solutions. However, the structural
and physical similarity between the source and idea may not
be sufficient for getting the best out of mimicking. There
are classes of design problems, which are not structural or
physical but still could be of real use, if designers could find
new ideas by studying possible solutions via mimicry. In this
paper, our goal is to reanalyze designmimetics at a conceptual
level in order to explicate the ways it can serve as an approach
for addressing the problem of how to design technological
solutions with artificial general intelligence [2].

Designing intelligent systems is becoming a core area in
developing modern technologies [3]. Machine translation,
image and speech recognition systems, self-driving cars, chat-
bots, and robot help desks are examples of current technolog-
ical trends. All of these intelligent (or “smart”) technologies

are enabled by artificial intelligence (AI) based on neural
networks, pattern recognition, and machine learning. The
consequence of these new developments is that computers
are becoming more relevant in replacing or reallocating
people in tasks, in which so far it has been necessary to use
people in order to get the systems to work. Nevertheless, true
progress in this area presupposes in-depth understanding of
the human cognitive processes that should be replaced by
machines.Therefore, it makes sense to rethink the conceptual
foundations of designmimetics in this new technological era.

A näıve but intuitive example might help to clarify our
position. Consider the way in which design mimetics could
be used in designing a cyborg pianist. The first problem is to
create the hands that play the piano.Theymust be like human
hands with respect to size and elasticity of movement. They
should have the right pressure, timing, and tempo to play like
Lang Lang (a well-known Chinese concert pianist). Pianist
robots’ coordination should be able to mimic the sensory-
motor processes of a human pianist. It should be able to hear
the notes and respond accordingly.

A critical question here is whether the imitation of
the human hands and eye-hand coordination processes are
sufficient in expressing all human skills in piano playing.
Skilled pianists often use their hands to play the keyboard
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in a routine manner but they also have to solve unique
and complex problems. They have to rely on higher cortical
processes such as categorization, inference, decision making,
problem solving, and constructive thinking in order to be able
to create new artistic visions and interpretations [4].

In building intelligent systems such as autonomous
robots, it is thus not necessarily sufficient to mimic biological
structures but it is also necessary to mimic sensory-motoric
and even different levels of higher intellectual processes. To
explain and to mimic a human expert’s skills, one has to go
beyond mere mechanical and sensory-motor levels towards
even emotional modeling to be able to comprehend and
model a creative and skilled pianist. Here, our common sense
example could have been about any human expert at work.
The keymessage is that, to replace activities of human experts
withmachine intelligence, it is necessary tomodel andmimic
many levels of physical and intellectual work.

In this paper, we will argue for a three-level conceptual
model of design mimetics and introduce a novel concept of
cognitivemimetics to refer to themimicry of higher cognitive
processes for designing intelligent technology.Themain goal
of the paper is to review and argue for the need of cognitive
mimetics in order to design artificial general intelligence [2]
and intelligent human-AI interactions. In a world overrun
with pattern recognition and machine learning approaches
to AI, we suggest that mimicking actual cognitive processes
in AI design is a matter for further consideration. Cognitive
mimetics may prove to be an increasingly important design
approach as it is expected that, in the near future, we will
encounter novel interaction challenges in our confrontations
with ubiquitous AI [3].

2. Three Levels of Mimetic Design

New design ideas often utilize existing solutions for problems
of similar types. The main attribute of mimicry is that
the solution for a design problem is found by imitating
some existing object or system. The phenomenon that is the
paragon for the design solution can be called the source
and outcome idea. Mimicry has always been a component
of engineering thinking [5, 6]. The Wright brothers as well
as Leonardo da Vinci observed how birds flied and imitated
these to design an airplane [7]. One can easily find numerous
examples of respective design processes in which some aspect
of nature has been mimicked to create new technological
solutions. In the 1950s, this kind of design was attributed the
label “design mimetics.” As the source was often nature, the
design approach was coined biomimetics by Otto Schmitt
[8]. Ever since, it has had a solid role in engineering. We
argue that there are three main levels of design mimetics
that can be utilized when designing intelligent technology.
In the following chapters, we will briefly discuss each level
of mimetic design.

2.1. Mimicking Structural Similarities. An effective way of
approaching the problems of replacing human capacities in
work has been biomimetics (also biomimicry or bionics). It
is an engineering paradigm, which is based on the imitation
of the models, systems, and elements of nature for the

purpose of solving complex technological problems [1, 6, 7].
A traditional part of biomimetics is based on imitating the
processes of nature on the physical level. For example, bird
wings were models and inspiration for designing airplane
wings, which could enable airplanes to fly and thus enabling
people to fly. The focus of biomimetics is thus more on
designing a physical object than on replacing people with
machines.

Biomimetics has been a very successful way to ideate new
technological solutions from nanometric levels to large tech-
nical structures.The way evolution has “solved” construction
problems can be applied to the technological sphere, though
the solutions need not be identical. For example, the wings
of any man-made flying technical artifact are not exactly
bird wings, but still one can find many analogical properties.
There are numerous examples of working technical solutions,
of which design processes have been based on biomimetics.
Robots may resemble ants or tortoises. Many fabrics have
their origins in studies on biological organisms. Connec-
tionist computational models of artificial intelligence have
been inspired by neural networks [9]. Even recently, designers
have learned more by studying the wings of the birds when
designing airplanes and drones [10]. In photonics, engineers
were inspired by the reflecting properties of butterfly wings,
when they invented new display technologies [11].

Biomimetics illustrates some important properties of
mimicry in design. Firstly, imitation is an important source
of ideas in design thinking. Secondly, the source and idea are
not identical. Rather, they exist in dialogue with one another.
Consequently, much of the information required to generate
the final solution is not directly related to the source. Thus,
metals and rivets in airplane wings have little to do with
bird wings. Furthermore, the solution does not need to be
as equally efficient as the source. Instead, it may improve the
original performance. Caterpillars are muchmore efficient in
working with soil than human hands. The focus of mimicry
is to advance forward in design thinking by finding key
solutions.

In a closer look, it is problematic as to howwell biomimet-
ics suit the purposes of designing intelligent technologies. It
rather concentrates on the structural and physical solutions
for design problems such as the structures of robots, archi-
tectural solutions, or properties of materials and molecules.
Structural similarities are not necessarily sufficient for inno-
vating modern intelligent technologies.

2.2. Mimicking Sensory-Motor Processes. The story of indus-
trial robotics is mostly very different from that of mimicking
structural similarities. The goal of robots is to replace people
in tasks, in situations where, for instance, people are not
necessary, or in situations that are dangerous for humans. A
substantial amount of industrial robotics, from a mimicry
perspective, models the sensory-motor systems of human.
Today, for instance, dexterity is one of the key problems in
robotics as it would give robots new application areas [12].

A welding robot recognizes the metal body of a car,
moves to the right welding spot, and finally welds the pieces
together. Actually, the robot does everything that a welder
would do and for this reason, it is possible to free people
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from many routine welding tasks. There are a large number
of robots in similar tasks.They can pack things, they can take
mail parcels, or they can operate in harbors, to take some
examples. People have earlier carried out these tasks, as it was
not possible to build sufficiently accurate robots. Computers
have made it possible to reach sufficient accuracy in sensory-
motor processing and get these kinds of robots to work.

The first robotic arms were created to replace human
arms. Therefore, in this sense, they are imitating a human
arm. However, there is more in them. They have sensors and
programs, which control their behavior. Wiener’s [13] theo-
ries of cybernetics and control were important in creating the
first-generation automation robots in the sixties. They had
sensors and some versions, such as Grey Walter’s tortoises,
could even wander around in one’s apartment [14]. From the
mimicking point of view, they had new kinds of properties.
They could process information.

Early industrial robots carried out tasks, in which human
operators relied on their sensory-motor information pro-
cessing. In welding cars on conveyer belts, the robots are
not supposed to think. They just carefully inspect the parts
they need to join and then weld them together. Only in
fault situations are more complex actions required, but these
are typically rare and are often handled by people. Thus,
one only needs to coordinate sensory information with
movements to carry out these kinds of tasks. Nevertheless, in
order to construct robots, one needs to additionally imitate
human sensory-motor information processing in addition to
biological structures. This kind of mimicry is qualitatively
different in comparison to traditional biomimetics.

Imitation of sensory-motor processes only represents the
lowest level of information processing mimetics. Machine
vision is not only about enabling the machine to see things
but also about actively recognizing objects. The recent devel-
opments in artificial intelligence and the rise of autonomous
technologies call attention to yet another kind of information
processing mimetics. This is based on imitating higher
cognitive processes such as thinking.

2.3. Mimicking Higher Cognitive Processes. Human informa-
tion processing is an interesting source for imitation. It is
clearly different from structural biomimetics and also from
sensory-motor mimetics, although the notion of embodied
cognition [15] somewhat blurs the distinction between these
levels of mimetics. There are many possibilities for naming
this level of design mimetics. Perhaps the most logical term
is cognitive mimetics as the source is human information
processing. Human information processing has traditionally
been called cognition [16]. Thus, all types of mimetics
which are built on the idea of imitating human information
processing can be called cognitive mimetics. This is in order
to distinguish this form of mimetics from the lower levels of
design mimetics.

As far as designers will improve physical and physiolog-
ical properties of traditional human work such as sensory-
motor processes on assembly lines by means of industrial
robotics, they can rely on imitating and improving biological
sensors and body movements. However, moving the scope
of traditional biomimetics to the design of autonomous,

Table 1: A three-level conceptual model of design mimetics.

Level Source of imitation in nature
Cognitive mimetics Higher cognitive processes
Sensory-motor mimetics Perception and motor functions
Biomimetics Physical structure

intelligent technologies means an essential change of focus.
This change of focus entails the shift frommimicking physical
structures or sensory-motor processes to the higher cognitive
processes. Instead of mimicking the physical movement of
body limbs, which is common in assembly line robots, it
has already become increasingly more important to mimic
human intelligence and higher cognitive processes. Mental
processes such as language comprehension and production,
categorization, decision making, inference, problem solving,
and constructive thinking will become more important in
design mimetics.

Cognitive processes are important for human survival
and they make it possible for people to behave in a flexible
and creative manner. People can respond selectively and
rationally to situations in which they have never been before
(i.e., general intelligence).Thismeans that people are different
from many animals, as they are able to adapt more efficiently
to new environmental conditions in an intentional manner
and they can invent new ways of meeting the environmental
demands. Thus, cognitive processes give people much more
independence as regards variation in environment as com-
pared to other animals.

When the goal of technology is to replace human intellec-
tual performance, the understanding of cognitive processes
and using this knowledge become important in design. In
particular, artificial intelligence and robots can benefit from
understanding human cognition and information processing
as these will be cooperating more and more with peo-
ple in novel sociotechnical systems. Generally, intelligent
autonomous systems are technical devices that can flexibly
and rationally respond to stimuli and environmental situa-
tions that they have not met before or which have not been
programmed in advance. Thus, the stimulus-independence
typical to the humanmind should be one of the main criteria
of (human-like) intelligence of autonomous systems (i.e.,
artificial general intelligence [2]). In contrast to biomimetics,
cognitive mimetics concentrates on analyzing the human
information processes and building intelligent systems on the
grounds of modeling how people process information.

The three levels of designmimetics based on the source of
imitation are presented in Table 1. Next, we will take a closer
look on cognitivemimetics and arguemore for its importance
in designing intelligent technology.

3. Cognitive Mimetics

3.1. The Brief History of Mimicking Human Cognition. Cog-
nitive mimetics is a unique design conception. However, it
is based on the very core knowledge of modern cognitive
science. The first example of mimicking human information
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processing is perhaps Turing’s [17, 18] model of a mathe-
matician, that is, the Turing machine. The idea led to the
birth of computers and information technology. The core
of Turing’s idea was to construct a model or imitation of
how mathematicians solve mathematical problems. Thus,
his focus was not on structural aspects or sensory-motor
processes of people but on how they process information.
Turing’s insights led to a number of important prototypical
ways of thinking, which can be seen as the first examples of
cognitive mimetics.

An excellent early example of cognitive mimetics can be
found in game playing algorithms. Game playing became one
of the first challenges for designing technical systems, which
had some resemblance to the humanmind [19].The challenge
was set in the early fifties by Turing [17] and Shannon [19]. De
Groot [20] collected chess players’ thinking-aloud protocols
and noticed how they used pruned tree searches. Similarly,
earlyAI researchers suggested that heuristic tree searchmight
be a solution to be used by machines in solving search
problems [21]. Consequently, through heuristic search, chess
was used for forty years as a context for developing human-
like artificial intelligence. In this example, the way human
chess players processed information became the model of
machine information processing.Thus, it was not any feature
of a machine or any biological property of a human brain but
the way people process information that became the model
of this class of AI systems. Tree search was a suitably similar
process between chess-playing computers and chess players,
rendering it possible to use cognitive mimicry to develop
machines capable of intellectual tasks possible only for people
beforehand [22]. As is well known, a computer chess program
could finally beat a chess world champion in 1997. More
recently, examples can be seen in IBM Watson’s [23] victory
over two human experts in the Jeopardy game show in 2011
and also in Google’s Deep Mind’s victory over a grandmaster
player in the Chinese game Go in 2016 [24].

A few years after Turing and Shannon’s game-playing pro-
grams, in 1958, John McCarthy developed the term artificial
intelligence (AI) to describe a new field of engineering [25].
At that time, one could find a number of important systems,
which to somedegreemimickedhuman information process-
ing. Logic theories, Checkers, transformation grammar, and
related computational linguistics can be taken as examples
[26].

In early 1940s, another important line of cognitive
mimicry began. McCullough and Pitts developed an AI
system later known as Perceptron, which finally led to the
fields of neurocomputing and connectionism [9, 27, 28].
These approaches to AI were developed on the ground of
mimicking (at a highly reduced level) how human nerve cells
and neural networks operate [27].

Later, symbolic production systems known as cognitive
architectures, such as SOAR [29, 30] and ACT-R [31], were
developed based on the General Problem Solver by Newell
and Simon [22]. The cognitive models built on these systems
tried tomimic the symbolic (representational) level of human
information processing in the constraints given by the general
cognitive architecture. In the 1970s, production systems were
considered to be the key to modeling cognition, whereas in

the 1980s and 1990s, connectionist approaches once again
gained popularity in attempts to create AI and expert systems
due to observed limitations in the production systems’
capabilities to create AI. Since the 1990s, probabilistic models
of human cognition based on Bayesian modeling have been
replacing both the connectionist and production models
among cognitive scientists due to their ability to significantly
increase representational complexity [8]. Recently, the rapid
successes of deep learning systems in several application
domains (e.g., [2, 23, 24]) have brought neural networks
that are capable of impressive pattern recognition capacity
superior to humans back into the public spotlight.This is due
to the advances in computing power, big data, and algorithms.
However, these approaches are currently very different from
the way human cognition operates [2, 32].

3.2. Goals. AI is a central concept in designing new intel-
ligent technologies. However, cognitive mimetics and AI
are not one and the same concept. Cognitive mimetics
is one approach for designing and innovating intelligent
technologies. AI can but it does not need to be based on
cognitive mimetics. Analogously, all technology design does
not rely on biomimetics, although it has been proven to be an
important aid in design.

Cognitive mimetics presupposes the understanding of
how both higher cognitive processes operate in human mind
and how these processes can be imitated by computers. This
problem belongs to the very core of cognitive science. The
problem is the property of multiple realizability [33], which
means that cognitive processes can be realized in human
minds as well as in animals and technical systems.

However, the goal of cognitivemimetics is not to slavishly
imitate human cognitive processes nor is it to construct
devices that can perform tasks as effectively as people. The
goal should rather be to produce technical systems that
surpass human levels so that they can be of real help for
improving human life. A pocket calculator that would make
the same number of errors as people would not serve its
purpose as well as they do today. Yet, a design is based on
cognitive mimicry when the system has elements that can be
identified and ideated on the grounds of human information
processing.

Thus, a chessmachine need not exactly search in the same
way as people do. Indeed, these machines do not work in a
similar manner to people. The machines consider hundreds
of millions of moves, while people often do not generate
more than fifty mental moves. Computer chess programs are
similar to people in that they use very similar tree search
process. Yet, they vary in their inability to distinguish between
essential and inessential alternatives. The programs have to
replace the selectivity by brute force. Their performance is as
effective as that of any human being and if needed, they could
replace people in chess competitions. Current mainstream
approaches to the design of intelligent systems rely mostly on
the enormous data crunching capacity of modern computers,
machine learning, and pattern recognition in big data [2, 32,
34]. Cognitive mimetics can be a complementing approach
to the design of generally intelligent autonomous systems
that could better communicate, interact, and cooperate with
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humans. For instance, Strabala et al. [35] have shown that it is
possible to model the way in which people hand over objects
to each other (what, when, and where information) and to
utilize the procedure in improving human-robot handovers.
This is an example of a task that is trivial for humans, while it
has been proven difficult to implement for robots.

3.3. Methods. Human capabilities exceed machine capabil-
ities in certain tasks and vice versa. Thus, a critical target
design task for cognitive mimetics is to find the optimal
division of work between the AI and the human operator
(see, e.g., [36]). One of the general tasks in which the
human mind is (still) supreme over the machine is the
finding of situationally relevant information and subgoals
out of large amounts of available situational and dynamic
data. Other critical tasks for cognitive mimetics include the
modeling of optimal information sharing and control shifts
in order to guarantee the highest level of situation awareness
regarding the task-relevant information for both the human
cooperator/supervisor and AI systems.

In addition, domain-specific expert behaviors can be
modeled in order to find situation-specific goal prioritization
and goal selection rules for each task of an AI system in the
domain. For instance, Soh and Demiris [37] have developed
an expert model that is capable of learning a human expert’s
tacit knowledge from demonstration. Their study indicates
that it is both possible and useful to use algorithms to learn
shared control policies by observing a human expert in the
domain of smart wheelchair assistance for the disabled (i.e.,
how and when to assist).

Themethods used in cognitivemimetics can also be based
on computational modeling approaches such as ACT-R [31],
which are capable of modeling the constraints of human
information processing. However, the applicable methods
are not limited to existing cognitive architectures. Recent
computational design approaches for interaction design (e.g.,
[27]) try to optimize user interfaces by modeling users’
behaviors with reinforcement learning and other machine
learning algorithms. Compared to the modeling of average
human behavior that has been of main focus since the 1980s
with cognitive architectures (e.g., ACT-R [31]), the main goal
in cognitive mimetics is to understand and model expert
human behavior at such a level of detail that the behavior
could be replicated by a computer. This is in line with the
original idea behind cognitive modeling as introduced by
Newell and Simon [22]. However, this approach necessitates
understanding and modeling human error as well, as exper-
tise is typically gained by significant experience on exposure
to various kinds of even exceptional trial and error situations.
The observation of only perfect task behavior and imitation
of these by a machine would only lead to an unintelligent
machine that would not be capable of adjusting its behaviors
to unexpected, even minor, changes in situation parameters
[32]. Reinforcement learning [38] is a machine learning
method that has been found to be highly useful in teaching
machines “bounded rationality” [39] similar (or superior)
to expert humans in a given task, with given goals, con-
straints, and rewards, after a large number of task simulations
[40].

The ultimate key to success in cognitive mimetics would
be to create systems that are able to rapidly modify and learn
to adjust their behaviors in a similar fashion to a human
expert according to the recognition of ameaningful change in
situation parameters [2, 32]. As plausible key solutions, Lake
et al. [32] have suggested that generally intelligent artificial
systems should have the same capacities as those of a human
infant (innate or learned [34]) to

(1) build causal models of the world which support
explanation and understanding (rather than mere
pattern recognition),

(2) ground learning in intuitive theories of physics (e.g.,
persistence and continuity of objects) and psychology
(e.g., human agents having intentions, beliefs, and
goals),

(3) harness construction of new representations through
the combination of primitive elements and learning-
to-learn (i.e., learning a new task or concept can be
accelerated through previous or parallel learning of
other related tasks or other related concepts).

These capacities enable humans to rapidly acquire and gener-
alize knowledge for novel tasks and situations.

The ideas of brains as an embodied prediction machine
(e.g., [41]) may well offer cognitive science the grand unified
theory of themind.When these predictive processingmodels
are coupled with Bayesian models of learning and inference
[8], they may be the most promising current approach in
this respect (1.-3. above). Other recent candidates for a
grand unified theory of cognition (e.g., [42]) have considered
analogical thinking as the core feature of human cognition
(likewise it is the core of designmimetics). How to implement
these kinds of innate capacities, structures, and mechanisms
in AI remains an open question, but if it is solved, the
consequences for the development of AI could be immense.

3.4. Levels. So far, utilization of cognitive mimetics in the
design of AI has been fairly limited. As reviewed earlier, bio-
logical neural networkswere the early inspiration for artificial
neural networks. Tree search similar to human search has
been used since 1950s in a number of AI solutions. These
solutions range fromdifferent games to logic, fifth-generation
computers, and, most recently, in Google’s AlphaGo variants
beating the best human experts in the game of Go [24,
40]. Reinforcement learning was a key to the superhuman
performance of the AlphaGo Zero in the same game [40].
Reinforcement learning can be seen as highly similar to the
behaviorist view of human learning, which was found to be
significantly deficient for explaining human learning in the
so-called cognitive revolution of the 1950s [38, 43].

There may well be many other examples of the success
of cognitive mimetics in the design of intelligent technology.
However, one can ask if cognitive mimetics has been utilized
sufficiently in the design of AI for achieving artificial general
intelligence [2, 34]. From this point of view, Marcus [2]
has argued for the necessity of hybrid AI systems, which
would more closely resemble the organization of human
cognition. A hybrid AI system could have various parallel
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subsystems, maybe similar to deep learning networks, but
that are orchestrated by higher-level mechanisms similar
to reinforcement learning, as well as by central executive
processes working at an even higher symbolic level. AlphaGo
Zero [40] is a recent example of how a hybrid system
(combining deep learning, reinforcement learning, and tree
search) can be superior to pure deep learning systems. Yet, the
symbolic level of processing is still absent from systems such
as AlphaGo Zero, which may limit its intelligence to certain
domains (e.g., gaming).

3.5. Tests of Success. There are a number of suggested means
that could be applied to test the success of cognitivemimetics,
of which the most famous is Turing’s test [41]. It can be used
to assess whether the performance of an intelligent program
is as good as the performance of a human being. Turing’s
test does not evaluate if a system processes information like
people but it evaluates whether it can perform as well as
people in an intellectual task. This is important when the
replacement or reallocation of human work by technical
systems is considered [31].

The original goal of Turing’s [17] test was to answer one
question: Canmachines think (i.e., are machines intelligent)?
The Turing test is an imitation game.The decisive criterion in
these experiments is the capacity of the human interrogator to
say whether the answer to a question was given by human or
machine. If the interrogator cannot do this, then the machine
has passed the test. Turing argued that ifmachines can imitate
human thinking perfectly, they are intelligent. Therefore, the
outcome of the experiment is that machines can think if they
can perform human tasks in such a way that it is impossible
for a competent observer to see the difference betweenhuman
and machine.

Turing’s imitation game gives an explicit (behavioristic)
form of how to compare human and machine behaviors
in intelligent tasks. Since the discussion on the intelligence
of machines underpins much of modern cognitive science,
psychology, and philosophy of themind and it is also essential
in developing AI robots and autonomous systems, it makes
sense to consider the true value of Turing’s test for both
theoretical and practical purposes [44, 45]. To pass this test
can be argued to be the ultimate goal for optimal interaction
and communication between humans and an AI system in
several practical domains, even if the pass would not imply
strong AI in the sense of Searle [46].

However, one could ask as to whether or not it is
enough for a system to pass the Turing test in a particular
task in order to be as (generally) intelligent as a human.
Does it matter how the system has reached this level in
performance and if it is able to pass the test also in other tasks
(i.e., generalizability of the skills)? The question dates back
to a long-standing, but unsolved, debate between machine
learning researchers (including statisticians) and linguists
(including psychologists) [47].

Lake et al. [32] have recently published an extensive
literature review comparing the current high-end pattern
recognition systems’ (i.e., neural networks’) performance to
human performance. They have also discussed what may be
lacking in these systems preventing them from reaching the

level of human skills. They argue that, despite the biological
inspiration and performance achievements, the deep learning
pattern recognition systems differ from human intelligence
in crucial ways. They put forward strong arguments for
cognitive mimetics without using the concept explicitly.
Nowadays, pattern recognition system may be taught to
reach a comparable, or higher, level of performance than
a human in a specific task (e.g., a video game). However,
the difference in the required amount of training between
a human child and the system to achieve a comparable
level of performance can be calculated in hundreds or even
thousands of hours. Furthermore, a child can learn and
handle a small change in game dynamics easily. A pattern
recognition system may require full reconfiguration and a
significant amount of training before reaching again a high
level of performance. These observations suggest (at least)
three criteria for a system to be as intelligent as a human
cooperator:

(1) Pass in Turing’s test
(2) Comparable level of performance with a comparable

amount of training
(3) Generalizability of the acquired skills and knowledge

to other tasks

AlphaGo Zero, as described by Silver et al. [40], may be
argued to be able to pass easily 1. and to an extent also
2. in the game of Go. AlphaGo Zero has demonstrated
not only human-level performance but also “superhuman
proficiency” in the game. In addition, Silver et al. [40] argue
that it achieved human level of performance without human
(move) data only by reinforcement learning from self-play
over less than 40 hours of self-training. Inarguably, these
amazing results indicate the efficiency of the reinforcement
learning approach for achieving superior performance in
one particularly challenging domain for human cognition.
However, as Marcus [34] points out, it remains a question
as to how well and easily AlphaGo Zero’s intelligence in this
particular board game generalizes beyond gaming and even
to other types of games, such as video games. Marcus [34]
further argues that, despite Silver et al. [40] claiming that
AlphaGo Zero was able to achieve superhuman proficiency
“tabula rasa” without any knowledge of humanGo games and
moves, a critical aspect of its success was the tree search and
reward logic of the reinforcement learning, which were built-
in by its human creators. These critical aspects are highly
similar to the mechanisms human players utilize in the game
ofGo. For the generalizability of theAI produced by cognitive
mimetics, it is not sufficient that the AI design is able to
produce seemingly intelligent behavior (i.e., pass Turing’s
test), but the types of processes that produce this behavior and
how generalizable the artificial intelligence is across different
tasks are what matters.

4. Application Example: Interactions with
Autonomous Vehicles

The utility of cognitive mimetics for the design of intelli-
gent technology can be illustrated by a practical example.
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Autonomous vehicles (i.e., self-driving cars) are expected to
be one of the megatrends of autonomous AI technologies
in the near future. However, according to an analysis by
the University of Michigan Transportation Research Institute
[48], unexpectedly an autonomous car may be statistically
more likely to be involved in an accident than a car with a
human driver per million miles traveled. The severity of the
accidents seems to be lower, the cars were not considered to
be at fault in any accident, and most of the accidents were
rear-end crashes (the autonomous car was hit from the back
by a human driver). However, the findings seem to suggest
that there could be something unexpected in the behavior
of an autonomous car which can lead human drivers to be
misinterpreted by the car’s behaviors.

At intersections and junctions in particular, a common
rhythm by the vehicles in a queue is highly important for
the flow and safety of the traffic. A major advantage of an
autonomous vehicle over a human driver is its ability to detect
potentially risky situations well ahead of the human and
react to these at a much higher intensity. The downside can
be unexpectedly hard braking behaviors in situations where
there is a false positive detection. For instance, a bicyclist
approaching a crossing but who gives a sign of eye contact
and yielding that is efficiently recognizable by a human driver,
but not by an autonomous vehicle, can lead to unexpected
behaviors. As long as there are human pedestrians, cyclists,
or drivers in the traffic among the autonomous vehicles,
the problem is real. The issue is even more pronounced in
highly unstructured traffic environments, such as crowded
city centers. In these environments, the human driver is
able to take the own space even by aggressive gestures
and other ways of human communication with fellow road
users. Meanwhile, an autonomous vehicle can simply cease
to move because it detects continuous possibility of crossing
objects.

A recent study by Brown and Laurier [49] demon-
strates how current autopilot systems (Tesla autopilot and
Google self-driving car) are highly inefficient in detecting
the intentions of the fellow human drivers and signaling the
intentions of the car to other road users. They stress the
importance of social interactions on the road: how human
drivers are capable of coping in traffic with the fellow drivers
by communicating and interpreting the subtle gestures in the
movements of cars. Traffic, while there are humans involved,
is a sociotechnical system.

Full automation and replacement of the human operators
at once would be the optimal, although impossible, lowest-
risk option in this domain. Those sociotechnical systems
where the autonomous systems will be introduced to coop-
erate with humans at a fast pace or in safety-critical tasks
will be the high-risk environments as there are still imperfect
human operators involved in the same tasks. In these types of
contexts, turbulence in cooperation due to the introduction
of autonomous systems in human-operated ecosystems can
be expected partly because human operators tend to satisfice
[39], whereas autonomous systems may be designed for
optimal performance. Furthermore, autonomous systems are
often unaware of the limitations and constraints of human
behavior and human information processing [32, 50]. This

makes it impossible for them to take these into account in
their own behavior and communications.

In the automotive context, the SAE-J3016 [51] levels of
vehicle automation of two to four are the challenging ones
as the responsibility of driving is not fully on the driver
(Levels 0-1) and not fully on the vehicle (Level 5). The
shared responsibility on the control of a vehicle can lead to
greater problems than giving the whole responsibility for the
human (or machine) driver, if the task-relevant information
and handovers are not communicated properly within a
few seconds’ timeframe from the machine to the human
and back again. The findings of Itoh et al. [52] in a study
on an assistance system for emergency collision avoidance
aptly illustrate that the human drivers’ choice of direction
for an avoidance maneuver can well be different from the
one selected by the system. Problems can be expected if the
natural human tendencies and decision making processes
are not taken into account in the development of these
types of assistance systems. This can happen, for instance,
when a system makes the decision to steer the vehicle in an
emergency situation on the behalf of the driver, while the
driver can still override the system by steering to another
direction.

Cognitive mimetics could be utilized to solve all of
these particular problems, among many other similar inter-
action problems in different application domains. Lake et
al. [32] suggest that perfect autonomous vehicles should
have intuitive psychology similar to humans and use this
psychological reasoning in order to enable fluent cooperation
in traffic with human codrivers. They argue that this kind
of reasoning would be especially valuable in unexpected,
challenging, and novel driving circumstances for which there
is little relevant training data available. These circumstances
include, for instance, navigating through highly unstructured
construction zones. Another great research question for the
near future is how much intelligent technologies require
mimicry and understanding of human emotions in order to
interact fluently with humans.

In a similar fashion, yet on a more technical level,
autonomous vehicles’ machine vision systems’ classification
performance could be improved by incorporating a form
of intuitive physics similar to human (as discussed briefly
earlier), for improved object recognition in unexpected con-
ditions.These conditions include, for instance, poor visibility
or objects disappearing behind other objects and suddenly
appearing again. These kinds of anticipation capacities could
provide the vehicle with a human-like ability to “see beyond
the lead car.” Even if the autonomous vehicles already
outperform human drivers in a great many ways, people
are expecting the autonomous car to rapidly recognize, for
example, a tractor-trailer that is pulling in front of the
vehicle. This looming effect is something that is immediately
recognizable even to a human infant. Even if autonomous
vehicles may statistically decrease the overall accident risk,
the autonomous vehicle should not perform worse than
a human driver in any safety-critical subtask. The exact
mechanisms of how AI could be given intuitive psychology
and intuitive physics engines similar to humans are still
unclear. Yet, as argued, these are important topics of study.
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There is still a great need to understand and replicate how
humans mentally model situations for solving various AI-
interaction problems.

Trafton et al. [50] provide various examples on how
ACT-R/E (ACT-R/Embodied) cognitive architecture can be
utilized to provide robots with a better understanding of the
constraints in human information processing and behavior
and, thus, to enable more fluent interactions with their
human cooperators. This is a two-way street; the human
cooperators could also be made aware of the limitations of
machine thinking [53] and maybe to prepare for unexpected
behaviors of the robot cooperators. As it is probable that, at
least during the early stages of development, an AI system is
atmost capable of animal-level communicationwith humans,
Phillips et al. [54] have suggested human-animal interactions
as an analogy for designing human-robot interactions.This is
yet another example of mimicking cognitive behavior found
in nature.

5. Conclusions

Designmimetics can be conceptually divided into three levels
based on the source of imitation. Firstly, biomimetics focuses
on the physical and structural similarity between the source
of imitation and the technical solution. Secondly, sensory-
motormimetics pay attention to the sensory-motor processes
that can be found in nature for enabling technical solutions
for perceptual and motoric tasks. Thirdly, the highest level
of design mimetics relates to mimicking the higher cogni-
tive processes of human experts in a task, that is, cogni-
tive mimetics. The three-level conceptual model of design
mimetics was introduced in order to clarify the difference
between designing, for instance, a neural network (structural
mimetics), machine vision (sensory-motor mimetics), and
higher decisionmaking processes (cognitivemimetics). All of
these can be design goals for an artificially intelligent system
but to imitate the structure of human vision system is far
from sufficient for reaching a human level of intelligence in
recognizing visual objects.

Current AI systems try to mimic intelligent human
behavior on limited application areas, but in order to pro-
duce AI systems that can adapt to changes and possess
generic solutions to unexpected and untrained situations,
the processes behind the seemingly intelligent behaviors
should better mimic the higher cognitive processes of human
experts. For instance, human-to-human communication is
full of unexpected and untrained situations. AI systems
should manage these at a similar level to humans in order to
produce as fluent human-to-AI communications as human-
to-human communications as possible. These points are well
known in AI literature but our critical point is that we should
not stop working towards solving these problems, if we want
to achieve AI that is capable of similar general intelligence
as human experts are. Instead, we have suggested that more
research should be devoted to what we have labeled here as
cognitive mimetics.

Here, cognitive mimetics has been introduced as a hyper-
nym for different design approaches using higher (human)
cognitive processes as a source of imitation in design. The

explication is important in order to make this significant
approach for designing intelligent systems visible and better
known as a viable path to autonomous systems with artificial
general intelligence. We have shown that the approach may
enable and complement the development of AI solutions
that can efficiently and pleasantly understand, communicate,
cooperate, and interact with their fellow human cooperators.
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