
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Exponential transients in continuous-time symmetric Hopfield nets

© Springer-Verlag Berlin Heidelberg 2001

Accepted version (Final draft)

Sima, Jiri; Orponen, Pekka

Sima, J., & Orponen, P. (2001). Exponential transients in continuous-time symmetric Hopfield
nets.  In G. Dorffner, H. Bischof, & K. Hornik (Eds.), ICANN 2001 : Artificial Neural Networks.
Proceedings of the International Conference Vienna, Austria, August 21-25, 2001 (pp. 806-813).
Springer-Verlag. Lecture Notes in Computer Science, 2130. https://doi.org/10.1007/3-540-
44668-0_112

2001



Exponential TYansients in Continuous-Time
Symmetric Hopfield Nets

Jiií Símal* and Pekka Orponen2
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P.O. Box 5t 182 07 Prague 8, Czech Republic, sima@cs.cas.cz

2 Department of Mathematics, University of Jyvåiskylä,
P.O, Box 35, FIN-403õ1 Jyväskylä, Finla,nd, orponen@math.jyu.fr

,A,bstract. We establish a fundamental result in the theory of con-
tinuous-time neural computation, by showing that so called continuous-
time symmetric Hopfield nets, whose asymptotic convergence is always
guara,nteed by the existence of a Liapunov function may, in the worst
case, possess a transient period that is exponential in the network size.
The result stands in contrast to e.g, the use of such network models in
combinatorial optimization applications.

L Introduction

Continuous-time recurrent neural networks are an attractive class of computa-
tional models with applications in, e.g., control, optimization, and signal pro-
cessing (cf. [1,5]). Recently there has also been increasing theoretical interest
towards achieving a general understanding of the capabilities and limitations
of these ar¡d other continuous-time computation models. (For overviews of this
work, see e.g. [6,7].)

Probably the best-known, and most widely-used continuous-time recurrent
network model is that popularized by John Hopfield in 1984 [4], and known as

the "continuous-time Hopfield model".l A fundamental property of this model
is that if a given netv/ork has a symmetric coupling weight matrix, then its dy-
namics is governed by a L'i,øpunou, or energy functionl2r4l.In particular, such a
symmetric network always converges from any initial state towards some stable
equilibrium state. This is a very useful property for obtaining guaranteed be-
havior in practical applications, but would at first sight seem to severely limit
the networks' general dynamical capabilities. For instance, nondamping oscilla-
tions of the network state obviously cannot be created under this constraint,
whereas such oscillations are easily obtained in networks with asymmetric col-
pling weights.

* Research supported by grants GA AS CR 82030007, GA ÕR No. 201/01/1192, and
by a personal grant from the University of Jyvåiskylä.

1 Although in fact the dynamics of this model were already analyzed earlier by Cohen
and Grossberg in a more general setting [2].



Because of the apparent simplicity of symmetric Hopfield network dynamics,
one might also assume that they always converge rapiãly-an assumption that
seems to often be implicitly made in e.g. discussing the potentiat of sucñ networks
as "fast analog solvers" for optimization problemJ. contrary to this expectation,
we shall in this paper construcü for every r¿ a Hopfield network cn'of.6n+t
units with a s¡'rnmetric coupling weight matrix a¡rd a saturated-[nãar (,activa-
tion function" that simulates an (n + l)-bit binary counter a¡rd thus produces a
sequence of.2' - I well-controlled oscillations before it converges. Bãsides sug-
gesting some caution in applying neural networks to optimization problems, thîs
result provides to our knowledge the first known example of a continuous-time,
Liapunov-function controlled dynamical system with an exponential transient
period. such an exponential-transient oscillator can also bsused to support a
general r\rring machine simulation by symmetric Hopfield networks [g].In terms of bit representations, our convergence time lower bound ca,n be
compared to a general upper bound for discrete Hopfietd networks [10]. It turns
out that the continuous-time system c, converges iater than arry dìsc.ete sy*-
metric Hopfield network of the same description length, assuming that the time
interval between two subsequent discrete updates corresponds tã a continuous
time unit. This suggests that continuous-time analog models of computation may
be worth investigating mgre for their gains in represãntational efficiãncy than for
their (theoretical) capability for arbitrary-precision real number compuiation þ].

2 A Simulated Binary Counter

Ã (symmetric) Hopfield, networl& consists of rn computational unitsor,,neurons,,
p = '1, 

. . . ,rn) whose sú¿úes are. represented by real variables Ut¡ . . , ¡Um € [0, 1].
The d¡mamics of such a network is given by a system of - sy*"rrrát.icaiiy coupred
ordinary differential equations:

dap tr,
dir")=-ap(t)+ø({r(t))t p=!,...,rn, (t)

where €o(t) = DLou(p,
the real cóupling coefficient u(p,q) = o(q,p) corresponds to lhe wei,ght

Here,
ùAqQ) is the real-valted. euc'itatior¿ for unit P= Lr..'rffi.

on an edge connecting unit p to unit q whereas u(O,p) is a local bias u(0,p),
associated with a formal constant variable yo(t) = 1. Further, o is some nonlinear
actiuation function, which we fix to be the saturated, linear map: o({) 1 for
{>t,ø(6¡= { for 0 ( d ( 1, and a({) = 0 for È ( 0. The ,initial networlc statey(0) e [0,1]- determines the boundary condition for the system (1).

A Hopfield network C Cnwithm 6r¿* 1 neurons will now be constructed
which simulates an (n + l)-bit binary counter, a¡rd thus has a transient period
that is exponential in the parameter m. The original idea for a corresponding
discretetime counter network stems from [3]. In our simulation , the binary states
of the counter will be represented by excitations of the corresponding real-valued
2 We shall henceforth discuss only symmetric networks.



units in C that are either above the upper saturation threshold of 1 or below the
lower saturation threshold of0 for the activation function ø. For brevit¡ we shall
simply say that a unit p is saturated, at 0 or 1 at time ú if its excitation satisfies
(o(¿) S 0 or {o(ú) ) 1, respectively. We also say that p is unsaturated when
0 < {o(ú) < 1. (Note that we use the encitations, not the actual staúes of the
units to represent binary values.) The following theorem summarizes the result:

Theorem L. For euery integer n ) 0 there enists a continuous-t'ime symmetric
Hopf,eld, net C with m = 6n * \ neurons whose global state transition from
saturation at 0 to saturat'ion at 1 requires cont'inuous time Q(2n'/a f e), for any
0 ( e < 0.05 such that 2 /2 < e2L/u. Th'is conuergence bound translates to
zakjuI)) time units, where M represents the number of bits that are sufficient

for encoding the weights 'in C and g(M) is an arbitrarg cont'inuous function such
that g(M) = o(M), S(M) : A(Mz/s\, and M lg(M) 'is 'increasing.

Prool. (Sketch.) The construction of symmetric Hopfield nel C = Cn with m:
6n * 1 units and zero initial state y(0) : 0- simulating an (n + l)-bit binary
counter will be describe<l by induction on r¿. The operation of the network will
first be discussed intuitively, a¡rd its correctness will then be formally verified.
The induction sta¡ts with a network C¡ containing only a single unit c¡, with
bias tr(O, co) = e and feedback coupling u(co,co) = L +e. This represents the first
counter bit of "order 0". Because of its positive feedback the state of ca graduaily
grows from initial 0 towards 1. Eventually c0 saturates at 1, at which point we

say that the unit co becomes actiueor 7Íres. This trick ofgradual transition from
0 to 1 (see Lemma 3 below) is used repeatedly throughout our construction of C.

For the induction step depicted in Figure 1 (the edges in this graph drawn
without an originating unit correspond to the biases), assume that an "order
(k - 1)" counter network C n-t (1 < h < n) has been constructed' containing the
first k counter units cot... tc¡-1, together with auxiliary units a,¿,r¿,b¿,d,¿,21
((. : Ir. . . ,lc-!), for a total of m¡, - 6k - 5 units. Then the next counter unit c¡.

is connected to all the ruft units p € Cx-t via unit weights which, together with
c¡'s bias, make c¡ to fire shortly after all these units are active, i.e. when the
simulated counting from 0 to 2k -L has been accomplished. In addition, unit c¡ is
connected to a sequence of five auxiliary units Qk¡frk¡b¡a,d,¡,2¡, which are being,
one by one, activated after c¿ fires (Lemma 3). The purpose of the auxiliary
units a¡, bn,dx is only to slow down the continuous-time state flow. The unit rr
is used to reset all the lower-order units in Cn-t back to values nea,r 0 a,fter c/c fires
(Lemma 2.2b). To achieve this effect, r¡ is linked with each p € Cn-t via a large
negative weight u(rn,p) - -lu("n,p) *DqeCn_rio(q,e)>ou(e,P)l that exceeds

the mutual positive influence of units in Cnt U {c¿}. The value of parameter
Vn :L-Ðpe¿^_ru(rxrp) is determined so that the state of rr is independent of
the states of p e. C¡"-1. Finall¡ unií z¡, balances the negative influence of ør on

C*-r so thai the first & counter bits can again count from 0 to 2k -I but now with
c¡ being active. This is achieved by exact weights u(zx,p) : -u(u*,P) - 1 for
p e Cn¡ in which the -1 compensates for u(c¡,p): 1. Clearly, units p e Cx-t
cannot reversely afrect z¡, since their maximal contribution DpeC^_ru(p,z¡r) :
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Fig. 1. Inductive construction of C¡

-mk -DpeC^_ru(rnrp) : Vn - m* - 1 to the excitation of a¡ cannot overcome

its bias. This completes the inductive step of the counter network construction'
Now the correct state evolution of the Hopfield network C described above

needs to be verified. Thus, a sequence of lemmas analyzing the corresponding
system (1) is presented. Due to lack of space, the proofs are only sketched here.
Lemma 1 first upper bounds the maximum sum of absolute values of weights
incident on âny unit in C. Lemma 2 then describes explicitly the continuous-time
state evolution for saturated units. An analysis ofhow the decreasing defects,i.e'
distances from limit values in the states of saturated units, affect the excitation
of any other unit reveals that the units in C actually approúmate the discrete
update rule of corresponding threshold gates af,ter a certain tra¡rsient time. The
proof of Lemma 2 follows from the dynamics equations (1) and Lemma 1. Fur-
thermore, the transfer of the activity in C from a unit to a subsequent one, when
all the incident units are saturated, will be analyzed explicitly and its duration
time will be calculated in Lemma 3. (But note that the analysis for cs at f : 0

slightly differs.) The result is also generalized to the case when some of the
incident units may become unsaturated.

Lemma l. For any un'it p e C in the Hopfield, networlc constructed aboue, the
sum oJ absolute ualues of its 'incident wei,ghts (encluding its local bias) i,s upper
bound,ed, by E, = Ði=rlu(q,p)l 1 e2r/' ,

Prool. (Sketch.) The maximum value of .ão among p e C is reached by unit r,, of
the highest order n, that is E*. :2Vn*l*e. Parameter Vn = 2(1I,7"-r -5)13
is computed by induction on n, in which recursive formula u(rn,p) = 2u(rn-t,p)
for p € Cn-z (k > 1), and Figure 1 are employed. Hence, Ep S 4(\t'7n-r -
5)/3 + 1 + e < e2L/' by assumptions on e in Theorem 1. E

-t *å -1 +e mo- vo+e



Lernrna 2.
l. Letp eC be aunit so,turl,ted atb € {0,1} with adefeú õe(t):lAoþ)-bl'
for the duration of a continuous time interual r = lto,t¡l for some ts ) 0. Then
tke state d,ynamics of p conuerging toward,s ual,ue b can be erplicitly solued, as

yp(t) : lb - 6os-{t-to)l for t €. r, where 6p = õp(to) ,í,s p's i,nitial defect.
2a. Let 8 ç C be a subset of units saturated for the d,uration of ti,me interual
r : lto,t¡1. Then the d,ynamics oÍ €r(t) for ang unit p Ç. C can be d,escribed as

4oþ) : u(l'p) * 
o.oär-ru(s'p) 

+p*u(n'ù'o{t) + a'oe-Q-to) Q)

for t € r, where Ape = Do.ç,6o1ro¡. ou(q,p)õp - Xqee; €n(úo ¡¿ru(ø,tr)õo is the

ini,tial total weighted defect o/ Q affecti,ng {o (úo ) .

2!o. In add'ition, let t¡ ) to * h where h : (ln2)le, and assume the respect'iue

weights inC sati,sfy eitheru(0,p)*Ðq€qi€o(ro)> tu(q,p)*DqØe;u(q,p)>ou(S,p) <

-e oru(0,p)+Do.q,€o(ro)rtu(q,p)*ÐqØe;a(q,p)<au(s,p) > l+e. Thenp'i,s sat-

urated, at either 0 or l, respectiuely, for the d,uration of ti,me interual lto *h,t¡1.

Lemma 3.
l. Consid,er a situation where a unit p e C (".5.cûtch,Qk,b¡¿,d'¡ç,2¡x for I 1
k < n) with frøctional pørt ol bi,as et e {e,el}) and feedback weight u(p,F) :
L* e is suytposed to act'iuate and transfer a signal to the subsequent unitr (i.e'
ck1o,krrk1dk,zk,co, respectiuely) withbias fracti,one ønd,u(r,r) : 1*e uia we'ight

u(p,r) > L Let all the units incid,ent on p)r ercludi,ng p,r be satura,ted, for the
duration of some suffici,ently large t'ime interual ¡ = lts,t¡l k.S. tt ) to * tz
where tz is defined, below), starting at a time ús ) 0 when {o(ts) :0. Assume
that the initial defects õo + A,q 1 e for Q = C \ {p} are bounded'. Further
assurne that the respectiue weights satisfy u(O,p) * Do.q,6o1ro¡ttu(q,p) = e'

and, u (0, r) * D qee; €n (¿o 7> r u (e, r) = e - u (p, r) . Then p is uns aturated with the
støte d,ynamics

ut 1"e(t-to) - 1) e, * Aoqe-(t-to)
(3)ap(t) = €(1 + €) 1*e

eractlg for the durat'ion of time interual (ús, úe * t\) , where ú/t = (ln(l + e I e')) le
(notettt=h lor €t=e andtl:2h for 6¡=el\), whiler is saturated at0. In
add,iti,on, p is saturøted at l for the durat'ion oÍ lto + ttr,tÍ1, while r unsaturates

from 0 at time to * t z where tz = In((u (p, r)do (¿o + úi ) (1 + e f e' )1 
/' - 4,q) I e) 2 tl.

2. Cons'ider a situation ,in C where unit r¡ (1 S k < n) is supposed to receiue

a signal from preceding unit a,k, actiuate 'itself, and, further transfer the signal
to subsequent uwit b* while units in C¡r-1 incident on rk maA unsaturate from L

øfter r¡ unsaturates from 0. Let all the other units incident on r¡x,b¡, erclud''ing

rx,bn anil Cn-t be saturøted, for the duration of a sufficiently large t'ime i'nterual
r =lto,t¡l (",5. at least unti,lb¡, unsaturates from0) start'ing at atime úo ) 0
wnen üJ1is¡ = 0. Assume that the initial defects m,eet 66n,Aone, 1€2-t/€ lor
Q' : c\(cn-r u{r¡}), and, also (1+6)ð,å -Dpecn-,u(p,r¡)õ, S e2-t/e outs'ide



Qt, are bounded. Further, assurne that the respectiue weights sati,sfy u(0,re) *
Dq€g,i €q(¿o)> tu(q,rn) * Ðpecn-ru(P,rrc) = € and Ðqee,i €q(úo)>r u(q, b¡) = 0'

Then tx' sa, urates at I 'i,n t'ime at most to * 2h, rema'ining then saturated, until
t'ime at leøst t¡, an¿l bh unsa,turates þom 0 only after rn 'is saturated at l.

Prool, (Sketch.)
1. Excitation \o(t) : €' + (1 + e)yo(t) * Arqe-Q-to) of P for ú € fts,ts * t2l
is obtained from (2) which determines p's state dynamics (1) by differential
equation (d,aoldt)(t) : -yr(t) + e' + (L + e)ar$) -f Aoqe-G-Úo) when p is unsat-
urated. The corresponding initial condition Ae(to) = (-e'- Apq)lQ *e) = 6o

comes from 1o(úo) = 0 which also bounds the initial defect as -t - e - e' 1
Apq S -6' ( 0, due to I 4 6, _) 0. Hence solution (3) follows, which pro-
vides dynamics {o(ú) - e'(ee(t-to) -t)le ) 0, ensuring that p is unsaturated
exactly for the duration of (ús,ús * ú/1), even though its state yr(t) is initially
decreasingfor ú € (ts,ts*tò where ún = (ln(-Aoqle'))l$+e) <t'L' Excitation

{r(ú) = e-u(p,r)+u(p,r)yr(t)* A,qe-G-to) should prove to be nonpositive for
all f € (ú0, úo *¿i). Bv using u(p, r) ) L, 6r+ Arq ( e, and dynamics (3) in which

-ape : e'+ (1+e )ðo, this reduces to €(€t+€(1+e))e-(t-ro).us'1ee(t-to) - 1) -e <
e(e' -e2). For ú € lto,to*t,l where úu = In((e' +e(l+e))l@'-r')), r"t- 

"e(Ú-Úo)reaches its maximum at úo * ú, which implies the underlying inequality. For
t e þo * t,to* t'1], term e (e' + e (1 * e))e-(t-to¡ achieves its maximum e(e' - e2)

at to *te while e/(e"(r-Úo) - 1) - e ( 0. Hence, r is saturated for the duration of
(ú0,úo * úi). Furthermore, {o(¿) = 1 * (e * €')(1 - "-(t-to-t\)) 

) 1 of saturated
p derived from Lemma 2.1 ensures that p stays saturated at 1 at least for the
duration of þo + tl,to* ú2], where tz comes from ('(ús +t2) = 0. It must also
be checked that {r(t) =e'*L*e*uQt,r)y.(¿) -(1*e)ôo(t6 +t2)e-Q-to-tz) 4
(Apq-u(p,r)õ)e-(¿-to) 21 for all ú e [ú6 *tz,t¡]. Here, uþ,r)A,ft) > 0

whereas the respective defect terms having the least value at tsit2 can be lower
bounded by -e' - e when the explicit formulas are substituted for ôo(t¡ * ú2),

t2, Ape, and inequalities ôo f A,e 1ê,6, 11, u(p,r) ) L, et 2 e13 arc applied.
2. Notice that unit e/c saturates at 1 before ¿r is unsaturated from 0 according to
Lemma 3.1. Excitation 4r, (Ð > e * (1 + e)grn(t) * A*t"e, s-(t-to) of. r¡ for t €. r
is lower bounded from formula (2) and u(p, nn) ( 0 for all p € C6-1 , which gives
(darhldt)(t) ) earo(t) * e * Arnq, u-Q-to) for r¡ unsaturated, according to (1).
In the beginning of interval r, state g,n(ú) is determined by (3) before the first
p € C*-t unsaturates, since the assumption of Lemma 3.1 concerning the weights
incident on r¡, coincides with that of Lemma 3.2 due to 6' = e a.nd dp(ú6) ) I for
all p e C¡-1. Hence, A*ne, 

"un 
appropriately be expressed in terms of Arnq:

-6 - (1 * e)ô,, f.or Q - C \ {rri from Lemma 3.1 so that the bound assumed on
the initial defect outsid e Q' can be used to lower bound A¡oq, )- -e(1 + 2-r/ e)

which gives (da*t"ldt)(t) ) ea,*(t) * e - e(l * 2-r/e¡¿-(t-¿o). It follows that
(d,A,, I d,t)(t) ) e - e2 ) 0 for t ) to + ú¿ where ú¿ = ln((l + 2-r/') I e), provided
that ø¡ is still unsaturated. This implies that y,u(t) grows at least as fast as the
straight line with equation (e -e2)(t-ts-ta)-A = 0 until ør saturates at 1. Thus,
rk saturates at 1 certainly before úe *t¿*t" 1to*2h where ú" = l/(e -e2) be:
cause {rn (ú) > A*o(t) from (1) due to its state derivative is positive for ú ) to*t¿.



Similarl¡ €¡u (ú) = -l * e l3 * a,o(t) * A6nq, 
"-(t-to) 

for b¿ saturated at 0. Let
ú, > 0 be the least local time instant at which Urn(ts¡¡r¡ = L-e13- Ab¡oq, s-tu
when b¡ is still saturated at 0 since {60(ús +ta) = 0. Excitation €rn(úo *fs) )
r + (1 +€)(1 - ef\ - A6nq, 

"-tu) 
* Aaoq, e-to of. r¡, at ts * te ca¡r be lower

bounded by l from A*,"e, 2 -e(1 * 2-r/e) and Au*e, 1ez-r/", ensuring ø¡
is already saturated at l at ts*ty. Finall¡ it must be checked that {"o(ú) à
€ + (1 + €) (1 - (e I 3 * A6oq, s-ta ) ¿- (t-ts -t") ¡ ¡ y 6n þ) * (Arn e, - ôuu )e- 

(t-to) > 1

for all ú € [úo + tn,t¡f when ô¡ ma] unsaturate, which follows from abuþ) > 0
and the respective defect bounds for ð'6n, Abue, , and Arnq' . tr

The correct timing of the counter simulation must ensure a sufficiently fast
decrea^se of the defects as assumed in Lemma 3. According to Lemma 2,2b, the
absolute value ofthe total weighted defect affecting any unit in C is bounded by
e after time ú1, decreasing further to e2-r/" by time 2h. On the other ha,nd, ú1

lower bounds the time necessary for activating unit p in Lemma 3.1. Hence, the
subsequent unit r has always time at least úr for decreasing the defect induced
by its incident saturated units below I even before unit p starts its activation.
Similarl¡ the stronger defect bounds in Lemma 3.2 are met since time 2úr is
guaranteed before unit rfr unsaturates. The lower bound AQn le) : Q()m/6 le)
on the total simulation time follows immediately from the previous time analysis.

From the proof of Lemma 1, the maximum integer weight parameter in C is
of order 2o(^) . This corresponds to O(rn) bits per weight that is repeated O(*')
times, and thus yields at most O(m") bits in the representation. In addition, the
biases and feedbacks of the rn units include fraction e (or e/3), and taking this
into account requires A(mbg(Lle)) additional bits, say at least rcrnlog(l/e)bits
for some constant rc ) 0. By choosing u - 2-r(nt)/("-) in which / is a continuous
increasing function whose inverse is defined as /-1(¿¿) : t"r/50.1), where g satisfies

SQù = njt'/3) (implying l(m): A@\) and s(p) = o(tù, it follows that M :
O(l(*)), especially M 2 l(m) from M 2 nmlog(Ile). The convergence time
nQ*/6 le) can be translated b A(zr@)/(nm)+m/6) - 2aff@)/m) which can be

rewritten as 2e(M/f-l(u\ - 2a@Qø)) since Í(m): A(M) from M : O(l@))
and f -t (M) ) rn from M 2 f (m).This completes the proof of the theorem. tr

3 A Simulation Example

A computer program HCOUNT has been created to automate the construction
from Theorem 1. For input n ) 0, the program generates system (1) describing
the Hopfield net dynamics in the form of a FORiIRAN subroutine corresponding
to the (rz + 1)-bit binary counter to be simulated. This FORTRAN procedure is
then presented to a solver from the NAG library that provides a numerical solu-
tion for the system. For example, implementing a 4-bit counter on the HCOUNT
generator results in a continuous-time symmetric Hopfield net C3 with 19 vari-
ables. Figure 2 shows the state evolution of counter units c0, c1 , c2, ca for a period
of23 - 1 :7 simulated discrete steps confirming the correctness ofthe construc-
tion. A parameter value of e = 0.1 was used in this numerical simulation, showing
that the theoretical estimate of e in Theorem 1 is actually quite conservative.
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Fig.2. Continuous-time simulâ,tion of 4-bit binary counter for e = 0.L
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