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1 Introduction
Coupled map lattices (CML's) are locally-coupled
discrete-time, discrete-space, continuous-state dynami-
cal systems. This cellular-automata.like discretization
of PDE's was introduced in the early 1980's in studies
of spatiotemporal cha.os and other phenomena arising in
reaction-diffusion processes. Since then CML's have been
applied as models for problems in, e.g. solid-state physics,
population biology, neurophysiology, and information pro-
cessing (for an overview, see þ]).

The question of the general computational power of the
CML model is rather interesting, both from the point of
view of obtaining an understanding of the dynamical pos-

sibilities of the model, and with a view towards possi-
ble computational applications. Indeed in the concluding
phrases of his survey article on CML's[6], Kaneko states:
*A CML with chaotic behavior must have higher compu-
tational ability than a CA, since the former can create
information. It, will be important to clarify what a CML
ca¡r do that the conventional computer cannot."

Kaneko's aim is actually set too high, as it is rather
easy to see that given a finitely described initial state, and
with effectively computable response functions, a finite
CML can always be simulated on a Turing machine, i.e.
a digital computer. In this paper we establish, however,
that there are no other limitations to the computational
power of the model: a universal Turing machine can be
simulated on a two-dimensional CML with 74580 scalar
lattice sites, and thus CML's are in principle capable of
doing anything that a digital computer can do.

The local response functions of our CML model are sim-
ple piecewise-linear, unimodal maps similar to the tent
map[2]. T]re sites in the lattice are interconnected in a
symmetric von Neuma¡rn pattern (i.e., each site is con-
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nected to its two vertical and two horizontal neighbors),
with homogeneous and symmetric diffusion coefficients.
However, in terms of the local response functions our lat-
tice is strongly anisotropic: each site has its own response
function. We leave it as an open question whether also
completely isotropic lattices can be computationally uni-
versal.

2 Preliminaries
A coupled map lattice is a discrete-time dynamical sys-

tem defined on a finite set of sites lc = 1,.. .,.ô/. (We only
consider finite systems in this paper.) We are mainly in-
terested in systems where the instantaneous states of the
sites are scalars n¡,(t) e 7è, but for technical reasons we
shall also consider systems where the states may be vec-
torc r¡(t) ek2.

Each site k has an associated local responsie function
/6, which maps site states to site states. A typical choice
in dynamical system studies of CML's (see, e.g. [4, 5, 6])
is the logistic map /(r) = ar(l - ø), for some control
parameter a. A piecewiselinear version of this is the tent
map:

2r, if0<n<tf2,
2(r-n), if.tf2<r<1,
0, otherwise.

Í(r):

Flom a dynamical systems perspective[2], the important
common property of both the logistic and the tent map
is that they are unimodal, i.e. downwards concave with
a unique maximum. For our purposes, we shall need to
consider a broader class of unimodal maps of the form:

¡/..\ ( ar*þ, if ø1r1b,
/(") : t ö, orherwise. (1)

As a special ca,ser a site may also have the identity re.
sponse function-although even this may be made to for-
mally conform to condition (1) by defining:

l@) = {
11 if.01r1p,,
0, otherwise,
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where p is the maximum value of a stàte.
Most of the maps described by (1) are of course dis-

continuous. However, our constructions are in fact not
sensitive to the behavior of the maps in smaÌl ranges be-

yond the discontinuities, and so all the maps considered

could be made continuous by linear interpolation over

small ranges of the form la - e, a) and [b, b * e] . Neverthe-
less, for simplicity we prefer to discuss our constructions
in terms of the formally discontinuous maps of form (1).

The sites in a CML are interconnected according to
some regular pattern, which v¡e take to be the von Neu-
mann neighborhood structure: in a one-dimensional
Iattice, each site k is connected to sites k-1 and k+l (\4'ith

a periodic boundary condition, so that the neighbors are

actually determined mod lf); in a two-dimensional sys-

tem the sites are indexed by pairs (i',i) e -lf x Iü, and
each site (i,j) has four neighbors (i + 1,j) and (ø'j + 1)

(mod N). In our constructions, \rye use "punctured"
neighborhoods, i.e. a site is not a member of its own neigh-
borhood.

The strength of the coupling between two neighboring
sites k and I is indicated by a diffusion coefficient e¡¿.

In our case alt the difrusion coefficients will be equal and
can be normalized to unit¡ so that the state update rule
forasitekbecomes:

ûk(t+r) =/¡(f ø¿(f)),
l€N¡'

where /¡ denotes the response function ât site k, and.lf¡
denotes the (1-D or 2-D) punctured von Neumann neigh-
borhoocl of site k.

For technical reasons, we shall in our intermediate con-
structions discuss also lattices with asymmetric intercon-
nections, where the diffusion coefficient from site k to site
I is unity, and in the opposite direction zero. Exten<ling
the update rule to cover also this possibility is straight-
forward.

3 The construction

\il'e start from the simulation of a universal Turing ma.
chine by a two-drmensional, piecewiseJinear iterated func-
tion system described by Koiran et aJ. l7l. (For our pur-
poses, this is the most useful one from a family of re-
lated constructions presented by, e.g. Asalin and ivlaler[l],
Moore[9], and Siegelmann and Soniag[l0].)

In the Koiran eú aJ. construction (a^s in all the above
mentioned simulations), the tape of a T\ring machine M
to be simulated is represented as two opposing stacks,
whose contents are then encocled as two real numbers in
the unit interval, using an appropriate Cantor encoding.
(To be precise, also the state of the finite control of. M is
encoded on top of the stacks, and hence in the first few

bits of their real-number encodings.) Thus, each config-
uration of M is represented as a point (u,rz) € [0, 1]2,

and moreover in such a manner that the first few bits of
Ør and ø2 determine how the point is to be mapped by
the iterated function o¡¡ :10,1]2 -+ [0,1]2 corresponding
to the state transition function of M.

In fact, it turns out that the function ø¡a is piecewise-

linear, mapping each subsquare of the form I,!oro, Ç
[0,1]2, determined by a state q of. M and top-of-stack
symbols ør and 42, affinely into the set lJrru, Io16,6r,têp-
resenting the possible configurations of. M after it has

moved from state g to state q' and shifted material from
one stack to another according to its single-step transition
rule.

In order to simulate a T\rring machine with n states and
k tape symbols, one thus obtains a 2-D iterated function
composed of nlc2 affine pieces. Applying this construction
to Minsky's[8, pp. 277-280] 7-state, 4symbol universal
T\rring machine yields a function with 112 components.
(In fact, in order to extend the function from the sub-
squares of the form lqoro to all of [0,1-]2, one needs an

additional 6nk2 interpolating triangles, bringing the to-
tal number of a,ffine components up to 784 in the case of
Minsky's machine.)

Summarizing, Koiran eú al. thus obtain a computation-
ally universal iterated function o : l0,ll2 -+ [0, 1]2, com-
posed oul of 112 affine components

o¡x z I¡ -+ l0,Lf2, on(r) = Anr * Àn,

where the 1¡ are disjoint subsquares of [0, 1]2, the A¡ are

real 2 x 2 -matrices, and the À¿ are real 2-vectors. (We
are consistently ignoring the triangular components inter-
polating between the squares 1¿.)

Our goal is to implement the map ø as a 2-D scalar-
state CML, with symmetric diffusion coefficients between
neighboring sites. As a first step, we observe that the
map is easy to implement as a l.-D periodic CML chain
with 113 asymmetrically interconnectecl, /ù2-valued sites
(Fie. 1).

Figure 1: A l-D CML simulation of a universal T\rring ma-
chine.

The obvious idea here is to have each CML site k
compute the component map okl associated to square
th C [0, 1]2. The response function /p transforms non-
trivially only the vectors r in Ip, and on those computes
the correct affine mapping r è Apfi * À¡; elsewhere the
response of site /c is the identity.

We make one modification to this straightforward
scheme, in order to keep the computations at different

2

frrrl. IÍt Í,



sites over one period of the chain from interfering with
each other.l For this purpose, we have each /p map the
vectors it responds to out of the domains -I7 of the other

"f¡; and then have the response function g at site 113 map
the transformed vectors back to the usual range. Pre-
cisely, we define the local response functions as follows:

f,.(r\ : I or"*Àr + (P,l")r, if.r Ç I*,
I r, ot]rerwise, Q)

andg(ø) =x-(ttrtt)r, wherep > 0 is some sufficiently
large constant. (In the present situation, any p > 1 suf-
fices, but later we shall need bigger shifts.) We note that
the vector-valued response functions J6 a,re not unimodal;
this defect will be corrected in the scalar versions.

We now proceed to show how to simulate the vector-
state L-D CML of Fig. 1 on a sca,lar-state 2-D CML. Al-
though our eventual goal is to obtain a lattice with sym-
metric interconnections, it will be convenient to present
the construction as if the interconnections rilere asymmet-
ric. Thus, we first observe that an asymmetric connection
from scalar site i to scalar site j, whose states are con-
strained to some interval [0,p], may be simulated by in-
terposing between sites i and j three additional sites o,
b, and c, with states in the interval [0,3p], and with the
unimodal response functions (cf. Fig. 2):

f"(a) =

fo@) :

l"@) :

2lt, if0(ø(¡r,
otherwise,

þ, if 2p, < r 13¡.r,,

otherwise,

þ, if p, < r 52p,,
otherwise.

1æ*õy+u+p,

a,

with a,b,c,d € [0, 1].
Let us concentrate on the computation of ø* from r

and g. In the construction of equation (2), let us choose
the constant p so large that for all x,g € [0,1],

(a - t)r + À+ p]2 <
þa+plz <

(a-I)n+þa+À+p, >

Since in the case of the Koiran et al. simulation, it is
always the case that aa-l þA 1-À e [0, 1], it in fact suffices
to choose here p ) 6.

We shall separate the variables in computing r+ by first
computing independently two unimodal scalar functions

ÍÁr) and.fs(g), whose results are then combined via a
third unimodal function lç(z) to obtain the va,lue Ar =
æ* - r: Íc(Í¡(r) + /r(g)). This value is then simply
summed with ø to obtain ø+. The functions f ¡, f B, and
/ç are defined as follows:

(a - 1)r * À* p,12, if a1r 1b,
0, otherwise,

þa+plZ, ifc1g1d,
0, otherwise.

0, if z < 2p,f 3,
z1 ifz>2p,13.

It can be verified that if the value of p satisfies the con-
ditions (3), one then obtains as Ar = lc$¿,(r) + ln(ù)
the value:

a+
if ø1r1b,

c1y1d,,
otherwise,

I.q@)

lB(a)

lcþ)

Aø:

:{

={

={{ ä,*

{ ä,-

{ ä,-
(a-t)n*þai\ttt,

0,

if. a 1r 1b,
c 1y 1d,

otherwise,

Figure 2: Symmetric simulation of an asymmetric connection.

It can be verified that with this construction, informa-
tion can only flow from left to right; the influence of site
j back on site i is always zero.

Consider then a site rvith a vector-valued state (ø,gr) e
R2 and response function f (*,g): (r+,g+), where

i.e, Læ = r* * ø, as desired.
The computation of g+ from ø and g may be similarly

decomposed into four scalar steps as g* = le(Ín(A) +
Ía(r)) + y, with analogously defined functions lo, lø,
æd /r'

This computation scheme can be implemented as atwo-
dimensional scalar CML 5 x 9 -site module with asym-
metric interconnections, as indicated in Fig. 3. (Sy--
metrizing the connections with the construction of Fig. 2
then yields a 20 x 33 -site symmetric module.) The up-
per and lower halves of the module are mirror images of
each other, except for the response functions at sites .4
through E, which are /¿ through Ín, respectively. The
response functions at sites with no special markinç are
the identity, except for the dash-marked sites, whose re-
sponses are identically zero. The upper half of the module
computes the value ø+ and the lower half computes g+.
Let us concentrate on the former computation.

a b c J

r+

lActually, interference is not â problem, if we don't mind the
CML simulating several steps of the Thring maclúne over one period.
However we shall need the construction also for another purpose
later, so it is convenient to introduce it here.

or-t l3A+À+p, íf. ø 1r 1b,
c1g1d,

r, otherwise,
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a

Figure 3: Scalar simulation of a vector-valued site,

Here the sites -4 and B receive as input at time f = 0

the values of r and y from the preceding module. At
time2 ú = 1 these sites compute the values /¿(ø) and

/¡(g), which are then combine<l at time t = 2 irúo L,æ =
lc(Í.q(r)+ f e(g)) at site C. This value is then propagated
to site G, where it is summed at time ú = 5 with another
copy of value ø, delayed for 3 time units in the previous
module, to obtain the new value ø*.

A similar computation is performed at sites D-Il in the
lower half of the module to obtain the new value g+. The
purpose of the remaining sites is then simply to propagate
the new values r* and g+ so that they appear as inputs
to the following module at the correct locations and with
the correct relative delays (specificall¡ at times ú : 11

and ú' = 11 * 3 = 14). Due to the local connectivity
restriction, even this simple task requires some care.

A particularly delicate arrangement occurs at sites -I

and ,.I, where a copy of the value ø* is trar¡smitted from
the upper to the lower half of the module, simultaneously
as a copy of the value g+ is transmitted in the opposite
direction. Here we may again apply the basic construction
of Fig. 2, but in this case in the extended form of Fig. 4,
in order to arhieve the simultaneous exchange with the

2The delay times are here indicated in terms of the asymmetric
lattice. Because of the corìstruction of Fig. 2, the delays in the
symmetric lattice are four times longer.

correct time delays

I

Figure 4: A symmetric state-exchange lattice.

Elsewhere, the correctness ofthe construction in Fig. 3

can be verified by inspection. One should note, though,
that besides the correct values of r+ and g+ with the
appropriate time delays, also some superfluous intermedi-
ate results will emerge from the output sites of the mod-
ules. For instance, because of the branching at site f,
the value ø+ appears, superfluousl¡ at time ú = 9 at the
same upper-half site that is assigned as the output site for
value gr+ at time ú = 11. However, because of the thresh-
olding at the C and F sites in the following module, these
superfluous activations will not propagate further in the
lattice.

4 Conclusions

Starting from the iterated-map simulation by Koiran eú

al.lfl of Minsky'sþ] small universal T\ring machine, we
have presented three constructions of CML's capable of
universal computation. The simplest construction (Fig. 1)

is an asymmetric 1-D CML of 113 perioclically connected
sites with states from 712. This lattice simulates one
step of the universal T[ring machine per 113 time units.
The second construction (Fig. 3) implements each vector-
valued site of this l-D CML on a 2-D sublattice of 5 x I
scalar-valued sites, resulting in a scalar asymmetric CML
of 565 x 9 = 5085 sites that simulates one Thring machine
step per 11x565 = 62L5 time units. Finally, the asymmet-
ric connections in the 2-D CML may each be simulated by
a sequence of four symmetric connections (Fig. 2), yield-
ing a scalar 2-D CML with 2260 x 33 = 74580 symmetri-
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cally interconnected sites, and with a time dilation factor
of 24860 as compared to the original T\rring machine.

All our lattices a,re strongly anisotropic in the sense of
having site-dependent response functions---on the other
hand, the couplings between sites are purely local, sym-
metric, and homogeneous.s

It remains an open question whether also completely
isotropic CML's are capable of universal computation.
Also, one should try to improve the efficiency of the cur-
rent simulation in the direction of making better use of
the inherent pa,rallelism of the CML model.
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