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Abstract. The ecological assessment of freshwaters is currently primarily based on biological com-
munities and the reference condition approach (RCA). In the RCA, the communities in streams and
lakes disturbed by humans are compared with communities in reference conditions with no or minimal
anthropogenic influence. The currently favored rationale is using selected community metrics for
which the expected values (E) for each site are typically estimated from environmental variables using
a predictive model based on the reference data. The proportional differences between the observed val-
ues (O) and E are then derived, and the decision rules for status assessment are based on fixed (typi-
cally 10th or 25th) percentiles of the O/E ratios among reference sites. Based on mathematical
formulations, illustrations by simulated data and real case studies representing such an assessment
approach, we demonstrate that the use of a common quantile of O/E ratios will, under certain condi-
tions, cause severe bias in decision making even if the predictive model would be unbiased. This is
because the variance of O/E under these conditions, which seem to be quite common among the pub-
lished applications, varies systematically with E. We propose a correction method for the bias and
compare the novel approach to the conventional one in our case studies, with data from both reference
and impacted sites. The results highlight a conceptual issue of employing ratios in the status assess-
ment. In some cases using the absolute deviations instead provides a simple solution for the bias iden-
tified and might also be more ecologically relevant and defensible.

Key words: bioassessment; classification error; ecological status; freshwaters; predictive models; reference
condition approach.

INTRODUCTION

Modern bioassessment and monitoring of aquatic ecosys-
tems, partially stipulated by legislation (e.g., European
Commission 2000), is increasingly grounded on the Refer-
ence Condition Approach (RCA; Bailey et al. 2004). In the
RCA, biotic communities of ecosystems disturbed by
humans are compared with a range of communities expected
in similar ecosystems undisturbed or minimally disturbed by
humans. In practice, the assessments are, again partially dri-
ven by legislative guidelines, based on selected metrics typi-
cally measuring structural characteristics of particular
communities or assemblages of organisms. An ecosystem is
considered impacted, and its ecological quality deteriorated,
if the observed community metric values are not within the
estimated natural variation or fall beyond a specified range
of values among reference systems.
Reliable estimation of the expected (reference) values and

their variability is an essential requirement for the RCA.
There are several associated problems, some of which are
conceptual and others more technical in nature (Bowman
and Somers 2005, Stoddard et al. 2006, Hawkins et al.
2010a, Cao and Hawkins 2011, Nichols and Dyer 2013). In
this contribution, we will draw attention to an apparently
previously neglected technical problem, which is inherent in

RCA assessments using ratios of observed (O) to expected
(E) values of metrics or relative differences for measuring
the condition of biota. The problem can potentially lead to
severe bias in decision making and hence losses of either
economic or natural resources in the management of indi-
vidual ecosystems and at a more global scale.
The use of ratios for measuring deviance between observed

and expected values is explicitly required by European legisla-
tion (European Commission 2000) and is integral in the now
globally widely used assessments of proportion of observed
to expected species (Clarke et al. 1996) or “taxonomic com-
pleteness” as a measure of biotic integrity of freshwaters
(Hawkins 2006). Typically the expected values for metrics are
estimated by models based on data from a representative
sample of reference sites and using environmental predictor
variables that are not affected by anthropogenic activities,
thereby allowing estimation of E for sites that are subject to
human disturbance and that differ in their natural character-
istics (e.g., Clarke et al. 1996, Hawkins 2006). A predictive
model for a continuous variable can be partially validated or
checked for bias by regressing (preferably a set of new and
independent) observed values (O) on the predicted values
(here E) as follows (e.g., Mayer and Butler 1993)

O ¼ aþ bE þ e

An ideal model should yield unbiased predictions (E) of val-
ues observed (O) in undisturbed conditions (b = 1, a = 0)
and a random error (e) independent of E:
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O ¼ E þ e

This outcome (assuming reasonable e, encompassing
observation error) should be fully acceptable. When applied
to new cases representing ecosystems subject to human dis-
turbance, deviation of observed values O from E beyond
some percentile of distribution of e could hence be justifi-
ably considered a human effect. Indeed, Linke et al. (2005)
used O on E regression to validate predictive models for
assessing taxonomic completeness, and proposed acceptabil-
ity ranges of 1.00 � 0.15 and 0.00 � 1.5 for the slope (b)
and intercept (a), respectively. These criteria might well be
reasonable for this particular case, although the exact ranges
proposed were by no means justified and seem arbitrary.
Even though these specific benchmarks have been used or
referred to by several authors since then (e.g., Chessman
et al. 2008, Feio et al. 2014a, b, Rose et al. 2016a, b), or the
approach applied apparently independently (e.g., Hargett
et al. 2007), the common rationale still has been largely to
neglect the actual O on E relationship and to relying mainly
on the overall mean (bias) and variance or standard devia-
tion (random error) of the O/E ratio in model validation
(e.g., Clarke et al. 1996, Aroviita et al. 2009).
Nevertheless, even if a model would fully satisfy the crite-

ria suggested by Linke et al. (2005), or if the overall mean
O/E ratio would be close to 1, or both, there remains a risk
of bias, which stems from using proportions (O/E) instead
of actual e in decision making. For an ideal model (the latter
equation) characterized above (Fig. 1a), average O to E
ratio is (necessarily and as is desirable) constant (O/E = 1)
across the full range of E. However, in the case of constant
e, dispersion of proportional error (eO/E) is no longer con-
stant, but instead decreases with increasing E (Fig. 1b). This
is simply because e is proportionally smaller relative to E
(and O) with increasing E. As a consequence, the present
rationale of using a fixed (e.g., 10th or 25th) percentile of
the overall eO/E distribution as a common threshold inde-
pendent of E (e.g., Clarke et al. 1996, Aroviita et al. 2010),
would lead to a systematic error or bias in detecting
deviance from natural variation. Sites that have naturally
small metric values (small E) would be more likely than sites
with large E to be (incorrectly) judged impaired, whereas for
sites with large E, a deviation of O from E greater than the
actual reference variation would be required to indicate
impact (Fig. 1c). This bias would be fully avoided only if the
relative error or O/E was constant for all sites, independent
of E. This in turn would require variance of O given E to
increase proportionally to E2, that is, var(O) = E2r2. Then
the variance of O/E is var(O/E) = 1/E2 9 var(O) = r2 (a
constant) (Fig. 2a, b). Deviation from a slope of unity and/
or zero intercept in the O on E regression could also lead to
error varying with E and hence to differences between local
and global error. These biases, alone or in variable combina-
tions, might result in increased risk of mistaken decisions
and thereby either to needless management actions and eco-
nomical losses, or to unnecessary deprivation of natural
resources, depending on the case.
In this contribution, we used simulated data together with

selected real example data of our own case studies and from
the literature to illustrate how the variability of proportional
error (O/E) with E and the resulting bias in detecting

deterioration vary among models, depending on their prop-
erties. We then propose a unifying solution to correct the
bias, also encompassing the bias that concerned Linke et al.
(2005) when it exists. Using data from sites disturbed by
humans, we illustrate the differences between classification
outcomes based on the conventional and suggested novel
decision rules for each of our sample model. We also draw
attention to a conceptual issue related to using ratios instead
of actual differences in assessments.

METHODS

To demonstrate how the described bias varies with the
properties of O on E relationship and to test the suggested
novel method, we used simulated data. For the data simula-
tions and all analyses that follow, we used R software (R
Core Team 2017). We first generated a realization from a O
on E regression model with coefficients a = 0 and b = 1,
and a constant variance, var(e) = r2 = 32, by using the R
function rnorm. We selected the value 3 to represent a typi-
cal r among the published models for the estimation of tax-
onomic completeness. We assumed that O ~ N(a + bE, r2).
In practice, we used a set of fixed E values from the interval
[10, 40] with the frequency of 0.50. For each E value, we sim-
ulated five observed values (O) from a normal distribution
with expectation a + bE = E and variance var(e) = 32,
resulting in 305 observations. When the true parameters a,
b, and r2 are known, as here, a new observation O/E given
E as a linear transformation follows the normal distribution
N((a + bE)/E, r2/E) (Davison 2003, Hocking 2013). Then,
the lower limit of a classical (1�2p) prediction interval, that
is the p quantile, can be given by

aþ bEð Þ=E þ zp � 1=Eð Þ � p var eð Þ½ � ¼ 1þ zp � 1=Eð Þ � p½r2�

where zp is the p quantile of a standard normal distribution
(e.g., Hocking 2013, R function qnorm). Here the selected
probability p is 0.10 or 0.25, corresponding to 10% and 25%
decision curves, respectively. We consider this curve the the-
oretical (true) p decision curve (Fig. 1b), to serve in testing
the correction method we suggest.
Second, to illustrate the (lack of) bias and to test the per-

formance of the method with a different variance structure,
we simulated similarly a realization from a regression model
with coefficients a = 0 and b = 1, but a variance var(e) =
E2r2 = E20.22, where the value 0.2 corresponds to values
obtained for real data. The lower limit of a classical predic-
tion interval is now a constant

aþ bEð Þ=E þ zp � 1=Eð Þ � p½varðeÞ�¼ 1þ zp � p½r2�:

For this simulation set-up, the theoretical curves of the novel
method are lines at y value 0.744, when p = 0.10, and at y
value 0.865, when p = 0.25, respectively (Fig. 2b).
Furthermore, we used data from five representative case

studies (CS) to illustrate the biases and then the effect of the
suggested correction. The first data set (CS1) comprises the
observed (O) numbers of macroinvertebrate taxa and expected
numbers (E) estimated by a multivariate RIVPACS-type
(Clarke et al. 1996) model predicting macroinvertebrate fauna
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of Finnish streams (Aroviita et al. 2009). Of several alternative
models we used the best ranking version (SD of O/E = 0.17)
based on the greater spatial scale, catchment characters and
location as the predictors, and the threshold probability of
species capture Pt = 0.4 (see Aroviita et al. [2009] for further
details). The data set contains 96 reference (REF) stream sites
and 134 non-reference or impacted (IMP) sites, subject to var-
ious human disturbances. The second data set (CS2) includes
observed values of a lake profundal macroinvertebrate assess-
ment metric PICMDCA and those predicted from sampling
(lake maximum) depth by a simple linear regression model
(Jyv€asj€arvi et al. 2014) for 79 Finnish REF lakes and 535
IMP lakes. For illustrative purposes, we polished these origi-
nal data slightly by removing the most strongly deviating shal-
low (mean depth < 10 m) lakes (see Jyv€asj€arvi et al. 2012),
retaining 68 and 431 REF and IMP lakes, respectively. The
SD of O/E for these reference data is 0.21. The third example
(CS3) is similar to CS1, but for littoral invertebrates of Fin-
nish lakes (J. Aroviita, H. H€am€al€ainen, J. Jyv€asj€arvi, H.
Mykr€a, and K.T. Tolonen, unpublished manuscript). A RIV-
PACS type model using a random forest approach (Breiman
2001, Hawkins et al. 2010a) based on data from 118 REF
lakes (SD of O/E = 0.16) was developed to predict fauna
(with Pt = 0.5) from climate (annual maximum air tempera-
ture) and lake size (volume). There were also data from 142
IMP lakes. Furthermore, we selected two additional typical
case studies from the literature on the taxonomic completeness
of stream macroinvertebrates, with published statistics and

graphs of the O on E regression. Based on the statistics and
visual inspection of the graphs, these case studies, CS4 (Tsang
et al. 2011) and CS5 (Hargett et al. 2007), represent near to
constant and heteroscedastic variance of O relative to E,
respectively. They both also had a reasonable number of
observations to allow modeling of the variance structure. As
we took the data from graphs (fig. 4c in Tsang et al. 2011, fig.
3 in Hargett et al. 2007), some overlying data points are miss-
ing, but the calculated statistics differ minimally from the pub-
lished. These minor differences do not have any influence on
the main results and conclusions. More generally, these
selected models and their outputs represent realistic assess-
ment applications comparable to others found from the litera-
ture, and are used to illustrate generalizable problems in
interpreting O/E ratios; and hence their specific details are
unimportant in the present context.
The conventional approach to differentiate impacted sites

from the reference sites is based on a given (typically 25% or
10%) overall quantile of O/E values among the reference
data (Clarke et al. 1996, Kilgour et al. 1998, Aroviita et al.
2010). In that case, and in order to treat all sites equally, the
variance of O/E should be constant and independent of the
E value. We expect this to be seldom, if ever, exactly true. To
evaluate each example model in this respect, we plotted the
O to E ratios and their 25% and 10% quantiles together with
95% confidence intervals on the E gradient. The confidence
intervals for the quantiles were obtained by a non-para-
metric bootstrap technique (Efron and Tibshirani 1993), for

FIG. 1. (a) A simulated realization of a O (observed metric value) on E (expected metric value) regression model with coefficients a = 0
and b = 1, and variance var(ɛ) = 32, and the estimated regression line with values a = 0.219, b = 1.009, var(ɛ) = E�0.2754.5582; (b) theoreti-
cal 10% (dashed lower) and 25% decision curves (dotted upper); (c,d) the 10% decision line at 0.872 (thick solid) and 25% decision line at
0.936 (thin solid) with 95% confidence intervals (dashed) when conventional method and (d) the estimated 10% and 25% decision curves
with 95% confidence intervals when the proposed method are used; and (e) the actual 25% (thin solid curve) and 10% (thick solid curve)
quantiles based on the conventional method, when the assumed ones are 25% (thin dashed line) and 10% (thick dashed line) quantiles.
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which we drew 10,000 bootstrap replications from the rows
of original data (R function sample).
For models with inconstant O/E variance, we propose

a novel approach, which takes into account the variability in
O/E ratio with E, and concomitantly the possible bias in O on
E relationship, the concern of Linke et al. (2005). For simplic-
ity we assume a linear regression ofO on E such that it follows
approximately a Gaussian distribution with mean a + bE and
variance var(e), later being constant or depending on the E
value. Furthermore, for simplicity, we assume each E value to
be fixed, as has been the convention in the previous related
studies and as is a common practice in the evaluation of pre-
dictive models (e.g., Mayer and Butler 1993).
In the simplest case, let us assume that a = 0, b = 1, and

var(ɛ) = r2, from which it follows that var(O) = r2. The dis-
tributions of O and O/E, given E, are then

Nðaþ b � E;r2Þ (1a)

and

N ðaþ b � EÞ=E; r=Eð Þ2
� �

(1b)

respectively. The latter distribution is based on the result of
a linear transformation for a random Gaussian variable
(e.g., Davison 2003).

For more complex cases, we consider the regression model
with an inconstant variance given E, var(O) = E2d 9 r2,
where d can be fixed (var(O) = E2r2 with d = 1, for exam-
ple), or non-fixed and unknown. The corresponding models
of O and O/E given E are Gaussian models

Nðaþ b � E;E2d � r2Þ (2a)

and

N
�
ðaþ b � EÞ=E; ðE2d � r2Þ=E2

�
(2b)

respectively.
For d = 1, the theoretical variance of O/E is constant r2

and, with d = 0, we obtain the first models (1a and 1b).
Therefore, the most important part is the structure of the
variance of O/E values. In the models 1b and 2b, the vari-
ance of O/E depends on the E value if d is not equal to 1.
Furthermore, the mean of O/E is not always 1 but can vary
with E.
In our solution to obtain a corrected decision rule, taking

into account the dependence of O/E variation on E, we first
estimate the model 1a or 2a, that is, the regression model from
O and E values in order to have estimates to be used in form-
ing the latter model in 1b or 2b, the model ofO/E values.

FIG. 2. (a) A simulated realization of a O (observed metric value) on E (expected metric value) regression model with coefficients a = 0 and
b = 1, and variance var(ɛ) = E2 9 0.22, and the estimated regression line with values a = 0.152, b = 0.976, var(ɛ) = E1.9200.2402; (b) theoretical
10% decision line at 0.744 (dashed lower) and 25% decision line at 0.865 (dotted upper); (c) estimated 10% decision line at 0.713 (thick solid)
and 25% decision line at 0.843 (thin solid) with 95% confidence intervals (dashed) when conventional method and (d) similarly the 10% and 25%
decision curves with 95% confidence intervals when the proposed method are used, and (e) the actual 25% (thin solid curve) and 10% (thick solid
curve) quantiles based on the conventional method, when the assumed ones are 25% (thin dashed line) and 10% (thick dashed line) quantiles.
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For the simulated data and for each case study, we first fit-
ted separately three models with fixed d values (0, 0.5, and
1.0) by using the R function gls (based on generalized least
squares function, e.g., Pinheiro and Bates 2000). The model
with constant variance (1a, d = 0) is obtained with gls func-
tion. The 2a models with fixed d values are obtained by
updating the gls object with an option weights = varFixed
(~e) (d = 0.5) or weights = varFixed(~e 9 e) (d = 1), respec-
tively. We further used gls function with weights = varPower
(~e), which also gives the estimate for the d of the general
model (2a) above. Due to the non-nestedness of the models
with fixed d, they were compared using the log-likelihood
(loglik, the greater, the better) and the Akaike Information
Criterion (AIC, the smaller, the better)

AIC ¼ �2Loglikþ 2npar

where npar is the number of estimated parameters. We also
compared the best model with fixed d (three parameters) to
the model with an estimated d (four parameters) by using v2

test. In the diagnostics part, we further checked the plot of
fitted values vs. standardized residuals by using plot func-
tion for the output object of gls function.
Second, using results of the selected, best fitting regres-

sion model, we formulated the p decision curve from the
classical prediction interval formula constructed such that
the variance-covariance structure of regression coefficients
and variance of the error are taken into account (e.g.,
Davison 2003, Gelman and Hill 2007, Hocking 2013), as fol-
lows. To construct the classical prediction interval, the
variance of the predicted observation Ô given E is needed,
that is

varðÔÞ ¼ var eð Þ þ varðaþ b � EÞ
¼ var eð Þ þ ET � covða; bÞ � E (3)

where a and b are the estimated regression coefficients,
ET = [1E] is the vector of one and the value E, T stands for
the transpose, and the matrix cov(a,b) is the covariance
matrix of the estimated regression coefficients a and b. Con-
sequently, the variance var(a + bE) = ET 9 cov(a,b) 9 E is
needed due to estimation of a and b.
Then, in the case of constant variance (Eq. 1a), the lower

limit of a classical (1�2p) prediction interval (p = 0.10 or
p = 0.25), that is the p quantile (10% or 25%) for a new
observation O given E can be formulated (e.g., Davison
2003) as

aþ b � E þ tn�2 pð Þ � p½s2 þ ET �dcovða; bÞ � E� (4)

where a + bE is the point prediction, s is the estimate of r,
and cov(a,b) is replaced by its estimate dcov(a,b). The latter
term forms the standard deviation of the prediction Ô,
tn�2(p) is the p quantile of the t distribution with degrees of
freedom n � 2, and n is the number of observations in the
data. Due to the estimation of r, a t distribution (R function
qt) is used instead of a normal distribution.
When considering the ratios O/E, instead of O, the vari-

ance of the predicted observation Ô/E given E is obtained
from Eq. 3 after some small modifications

varðÔ=EÞ ¼ var e=Eð Þ þ varððaþ b � EÞ=EÞ
¼ ð1=E2Þ � ½var eð Þ þ ET � covða; bÞ � E�

(5)

and expression 4 is updated as follows

ðaþ b �EÞ=Eþ tn�2 pð Þ � 1=Eð Þ �p½s2 þET �dcovða;bÞ �E�: (6)

The latter formula forms the estimated p decision curve as a
function of E values, when variance of e is constant.
In the case of inconstant variance, var(e) = E2dr2, equa-

tion 6 is slightly modified such that the term s2 is replaced
by E2ds2 as follows

ðaþ b � EÞ=E þ tn�2 pð Þ � 1=Eð Þ � p E2ds2 þ ET �dcovða; bÞ � E� �
(7)

where d is either fixed or estimated. If absolute differences
(O � E) were used in the assessment, instead of O/E ratios,
the formula 7 could be easily updated as follows

ðaþ b � E �EÞ þ tn�2 pð Þ � p E2ds2 þ ET �dcovða; bÞ � E� �
: (8)

For each simulation and CS, based on the fitted Gaussian
model 2a with non-fixed d, we plotted the p decision curve
formed by p quantiles of O/E values given E, as calculated
from the reference data. That is, we used equation 7, allow-
ing the variance to be inconstant and we used both p = 0.10
and p = 0.25.
In addition, we plotted the 95% confidence intervals for

the p decision curves, based on 10,000 bootstrap replicates,
from the real data, as follows. For each bootstrap replicate,
we first estimated the regression model (2a) and using the
results of that model, p quantiles of O/E values were calcu-
lated for each E value with the equation 7. From the distri-
butions of these percentage quantiles, we obtained their
2.5% and 97.5% quantiles, and thereby the 95% confidence
intervals for each unknown p decision curve.
To quantify the potential bias or difference in decisions

made by the conventional and the novel method, we calcu-
lated the proportion of IMP sites with differing classifica-
tions for the case studies 1–3. However, as these proportions
are fully data specific and cannot be generalized or applied
to any new observation or other data, we additionally evalu-
ated and demonstrated the size of bias in a more generaliz-
able way. For each simulation and CS, we first calculated the
nominal p (overall 25% or 10%) quantile qn from the data.
Using the inverse of our approach, we were able to estimate
and then plot the actual decision rule (quantile) given E, in
comparison with the assumed (25% or 10%) quantile qn.
The actual q (and p) to be used, conditional to E, instead of
qn, (and pn) is solved as follows. Utilizing the general for-
mula 7, the quantile of the t distribution tn�2(p) is first
solved from the expression

ðaþ b � EÞ=E þ tn�2 pð Þ � 1=Eð Þ�
p

E2ds2 þ ET �dcovða; bÞ � E� � ¼ qn;
(9)

where qn is the overall p (25% or 10%) quantile of the O/E
values (conventional approach). Using n � 2 as the degrees
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of freedom of t distribution, the corresponding probability p
related to the quantile tn�2(p) can be obtained using the pt
function of the R software.

RESULTS

For the simulated data with constant variance, the esti-
mated parameter values of the regression line were
a = 0.224, b = 1.009, var(e) = 2.9632, when using known
d = 0 (1a) and a = 0.219, b = 1.009, var(e) = E�0.2754.5582,
when using the estimated d = �0.138 (2a) (Fig. 1a). The
model with four parameters (with the estimated d) has only
marginally (and not significantly, P = 0.191) greater log-
likelihood, and as a more complex model, also higher AIC,
when compared to the model with constant variance with
d = 0 (Table 1). As mathematically necessary in these speci-
fic conditions, the variation in O/E varies with E, obviously
increasing with decreasing E (Fig. 1b). We chose the model
with estimated d to calculate the decision curves, but the

curves obtained from the model with fixed d (not shown)
are quite similar. The main difference is that the confidence
intervals are wider when the d parameter of the variance is
estimated. The calculated overall 10th and 25th percentiles
for O/E were 0.872 and 0.936, respectively (Fig. 1c). These
values differ substantially from the theoretical and esti-
mated decision curves given E (Fig. 1b, d), and are largely
beyond their calculated 95% confidence intervals (Fig. 1d).
As a result of these patterns, if the conventional method
was used, the actual probability of judging reference sites
as impacted would vary greatly with E and differ substan-
tially from the nominal probability for both 10th and 25th
percentiles, at the ends of the E gradient in particular
(Fig. 1e).
For the simulated data with inconstant variance var(e) =

E20.22, the estimated parameter values were a = 0.138,
b = 0.977, var(e) = E20.2112 when using known d = 1 and
a = 0.152, b = 0.976, var(e) = E1.9200.2402 when using esti-
mated d = 0.960. The model with four parameters (with the
estimated d) had minimally (and not significantly) greater
log-likelihood, but higher AIC when compared to the model
with the fixed d = 1 (Table 1). We chose the model with the
estimated d for further calculations, but the decision curves
are quite similar to the model with fixed d (not shown). As
theoretically expected for this error structure, variation of
O/E values does not depend on E (Fig. 2b) and the esti-
mated overall 10% and 25% tile decision lines (0.713 and
0.843; Fig. 2c) are almost identical to curves as estimated by
the novel method (Fig. 2d). Accordingly, in this simulated
case, there would be practically no difference in the proba-
bility of judging reference sites as impacted, independent of
E (Fig. 2e).
The best-fitting regression model type or error structure

varied among the five case studies, but with some consis-
tency (Table 2). For each CS the best model with a fixed d
(0, 0.5 or 1) (Table 3) fitted almost as well as the option with
an estimated d (Table 4) according to the Loglik (Table 2).

TABLE 1. Akaike information criterion (AIC) and log-likelihood
values (Loglik) of the estimated models with differing alternative
error variance structures (Eqs 1a and 2a) for the two simulated data.

Model

Simulation 1 Simulation 2

AIC Loglik AIC Loglik

r2 1539.84 �766.92 1917.11 �955.55
Er2 1575.82 �784.91 1864.44 �929.22
E2r2 1657.45 �825.72 1846.74 �920.37
E2dr2 1540.13 �766.06 1848.60 �920.30
d �0.138 0.960
P 0.191 0.702

Notes: The fixed d was used in the three first models and the non-
fixed, estimated d in the fourth model. Also shown are the estimated
d and the P of the v2 test for the comparison of the loglik values in
boldface type.

TABLE 2. AIC and log-likelihood of the three different models with fixed d and with estimated d for the CS1–5 data sets.

Model

CS1 CS2 CS3 CS4 CS5

AIC Loglik AIC Loglik AIC Loglik AIC Loglik AIC Loglik

r2 525.64 �259.82 121.78 �57.89 601.72 �297.86 496.75 �245.38 709.49 �351.75
Er2 518.15 �256.08 124.12 �59.06 594.89 �294.45 496.17 �245.09 689.54 �341.77
E2r2 513.84 �253.92 128.48 �61.24 593.01 �293.50 519.70 �256.85 679.75 �336.88
E2dr2 515.03 �253.51 123.34 �57.67 594.95 �293.47 495.75 �243.88 681.18 �336.59
d 1.317 �0.355 0.926 0.269 1.147
P 0.366 0.506 0.805 0.120 0.451

Note: Also shown are the estimated d and the P values of the v2 test for the comparison of the loglik values in boldface type.

TABLE 3. The estimated regression parameter values (a and b) and variance, var(e), for CS1–5 with fixed d when the model with boldface
AIC in Table 2 was chosen. Also shown are the number of reference sites (Nref) and impact sites (Nimp) for each CS.

Parameters CS1 CS2 CS3 CS4 CS4 CS5

a 1.498 �0.456 �0.237 0.625 0.452 0.170
b 0.882 1.233 1.019 0.987 1.008 1.001
var(ɛ) E 20.1792 0.5502 E 20.1612 1.7782 E0.6552 E 20.1832

Nref 96 68 118 122 122 143
Nimp 134 431 142

Note: CS4 has two columns for two competing models, since AICs (Table 2) are almost the same.
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However, for CS4, the best fitting model had the estimated d
between the fixed d:s of two alternatives, which were almost
as good. From that, we noticed that the shape of the deci-
sion curves is sensitive to d. Therefore, for each CS, we here
selected the model with the greatest log-likelihood for plot-
ting confidence intervals of decision curves, in order to take
into account the uncertainty in the estimation of d.
For the CS1, despite the apparently rather constant r

(Fig. 3a), the model with fixed d = 1 fitted better than the
other two options (greatest loglik) and was sufficient when
compared to the model with an estimated d = 1.317
(Table 2). Nonetheless, variance of O/E did not vary greatly
with E (Fig. 3b). For the CS2 with apparently constant vari-
ance (Fig. 4a), the corresponding model with the fixed d = 0
fitted the best among the three options, as expected, and
was sufficient when compared to the model with estimated
d = �0.355 (Table 2). Also for the CS4 with apparently

similar error pattern, a model with d = 0 fitted well, but the
model with d = 0.5 was marginally better. The estimated
d = 0.269 was in between of these fixed values and by both
AIC and Loglik, the corresponding model was the best
(Table 2). For both CS2 and CS4, there was a strong trend
of decreasing variance of O/E with increasing E (Figs 4b,
6b). For the CS3 and CS5 showing increasing error variance
with increasing E (Figs. 3a, 5a), the model with d = 1 fitted
the best (Table 2), as could be expected, and for them, there
was no apparent trend in O/E variation on the E gradient
(Figs 3b, 5b).
For the CS1, there is only a relatively small difference in

the decision curves between the conventional (Fig. 3b) and
novel (Fig. 3c) approaches. For small E, the modeled values,
conditional to E, however, are slightly greater than the over-
all values for both quantiles. In contrast, for the CS2
(Fig. 4b, c) and CS4 (Fig. 6b, c), there is a remarkable

TABLE 4. The estimated parameter values for CS1–5, when the model with non-fixed d was chosen.

Parameters CS1 CS2 CS3 CS4 CS5

a 1.431 �0.420 �0.175 0.511 0.180
b 0.886 1.221 1.016 1.000 1.000
var(ɛ) E2.6340.0702 E�0.6700.7702 E1.8520.1992 E0.5381.0272 E2.2940.1242

FIG. 3. For the first data set, CS1: (a) the estimated relationship of the observed metric value (O) to the expected value (E) with all
points (upper), and without two outliers (lower); (b,c,d) the O/E ratio in relation to E for with decision curves of 25% (thin solid line) and
10% (thick solid line) quantiles, and their bootstrap 95% confidence intervals (dashed lines) for the reference data as based on the conven-
tional method (b) and the novel method (c), and with the decision curves of both methods for the IMP data (d); (e) the actual 25% (thin
solid curve) and 10% (thick solid curve) quantiles based on the conventional method, when the assumed ones are 25% (thin dashed line) and
10% (thick dashed line) quantiles.
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difference in the decision curves. For both case studies, the
modeled percentiles are substantially smaller than the over-
all percentiles for small E and in addition, the reverse is also
true; for greater E, the modeled percentiles are greater than
the conventional percentiles. For the CS3 and CS5 with
more inconstant variance, the conventional method corre-
sponds quite well with the novel approach for both the 25%
and 10% quantiles (Figs 5b, c, 7b, c), even though, for the
CS5, there is a similar type of slight difference as in the CS1.
The precision of the classical prediction formula (a + bE) is
known to be greatest at the mean of E values, and lower at
small and high E values. Therefore the confidence intervals
form a shape of an hourglass around the regression line.
This is reflected in the confidence intervals of decision
curves (Figs. 1d, 2d, 3–7c).
For each case study and percentile, the area between the

two decision curves depicts the potential bias as within these
regions the sites would be differently classified by the two
approaches. For the particular set of IMP sites in the CS2
the proportion of sites differently classified was 12.5% and
9.5% for the 10% and 25% quantiles, respectively (Fig. 4d).
For CS1 (Fig. 3d), the corresponding figures are 8% and 6%
and for CS3 (Fig. 5d) only 2% and 1%.
Assuming the modeled O/E variance is even approxi-

mately correct as our simulations suggest, the actual 25%
and 10% quantiles can differ greatly from the assumed
quantiles in real case studies, depending on the E (Fig. 4e,
6d). For instance, for CS2 with E = 2 and using the

traditional method and 25th percentile rule, broadly 45% of
the reference sites (instead of the assumed 25%) would actu-
ally be judged impaired. In contrast, for the sites with high
E greater than 4, the corresponding figure is even less than
10% (Fig. 4e). Thus, for such sites, a 10% decision rule
would actually be used instead of the notional 25% rule. For
the CS4, there is a similar difference for the 10th percentile,
but less distinctive for the 25% percentile (Fig. 6d). For the
other case studies the differences are much smaller, and for
the 10% quantile for CS3 there is no difference at all
(Fig. 5e).

DISCUSSION

We have shown that using predictive models to estimate
expected values (E) for biotic variables and then a constant
(e.g., 10th or 25th) percentile of overall observed (O) to
expected ratio (O/E) distribution to differentiate impacted
sites can lead to biased assessments. Even though we have
here elaborated and exemplified the bias only for two per-
centiles commonly used as decision rules, the problem can
be generalized to any others and to differing quality class
boundaries based on percentiles of the overall O/E distribu-
tion. This bias will occur even for otherwise unbiased predic-
tive models, if they show a constant prediction error (O�E)
for all values of E, a condition that should normally be con-
sidered optimal. In such cases, however, the variance of O/E
ratio will not be constant but will decrease with increasing

FIG. 4. For the second data set, CS2: (a) the estimated relationship of the observed metric value (O) to the expected value (E); (b,c,d)
the O/E ratio in relation to E for with decision curves of 25% (thin solid line) and 10% (thick solid line) quantiles, and their bootstrap 95%
confidence intervals (dashed lines) for the reference data as based on the conventional method (b) and the novel method (c), and with the
decision curves of both methods for the IMP data (d); (e) the actual 25% (thin solid curve) and 10% (thick solid curve) quantiles based on
the conventional method, when the assumed ones are 25% (thin dashed line) and 10% (thick dashed line) quantiles.
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E. This, in turn, will lead to a greater propensity of sites with
small E to have O/E values falling beyond the critical per-
centile of overall O/E distribution, and hence being mistak-
enly judged as impacted. For sites with a large E in turn,
there will mostly be a contrasting bias. The significance of
this bias varies depending on the intercept, slope, and error
parameters of the O on E relationship, but can be alarming,
as shown for our CS2 and CS4 in particular. For the CS2
the intercept smaller than 0 and slope greater than 1,
together making the small O to be over-predicted and high
O under-predicted, actually strengthens the bias at the O/E
scale. Contrasting bias in the O–E relationship (a > 1 and
b < 1) would alleviate the bias at the O/E scale, as perhaps
for the CS1. In CS3 and CS5, error increased with E and
retained the relative error quite stable with E. In such cases,
the bias can even be negligible.
We suggested a relatively simple method to check and

overcome the described bias stemming from variable distri-
bution of O/E on E, and hence to produce more credible
assessments of biotic condition in streams and lakes, when
O/E is used in decision making. Actually, this approach cor-
rects not only the bias of our original primary interest, but
also the bias related to deviation from a 1:1 relationship in
O on E regression, about which Linke et al. (2005) were con-
cerned. Given that the O/E variance depends on E, the over-
all distribution of O/E, and thereby the critical percentiles of
this distribution used in the traditional method, will be sen-
sitive to the distribution of E in the modeling data. For

instance, if in the simplest case of O on E relationship with
constant error, observations with high E (and therefore
smaller O/E variance) would be more frequent than those
with low E in the data, it would increase the critical overall
O/E percentiles. This, in turn, would increase the likelihood
of sites with lower E values (and greater O/E variance), to
be in the lower tail of the O/E distribution, and judged
impaired, even if the original predictive model would
suggest they were not. Hence, the severity of bias also
depends on the sample distribution of E in the modeling
data. Our suggested correction, based on the modeled error
distribution conditional to E, at least alleviates this potential
problem.
In effect, in the case of constant variance in the O on E

relationship, our bias correction broadly equates to decision
rules based on fixed overall percentiles of actual deviations
from the expectation or O�E. In such a case, a simple and
straightforward approximate solution to overcome the
described bias is to use a fixed overall percentile of actual,
rather than relative difference as a decision rule, and to
replace values of E with the fitted values (Ô = a + bE) from
the estimated O on E regression model, when needed (a 6¼ 0
and/or b 6¼ 1). For instance, if this simple approach was
applied to our simulation with constant error (Appendix S1:
Fig. S1), and to CS4 with similar error pattern
(Appendix S1: Fig. S3), nearly the same exact sites would
fall beyond the 10th and 25th percentiles in the modeling
data, as with the method we suggested for using O/E. The

FIG. 5. For the third data set, CS3: (a) the estimated relationship of the observed metric value (O) to the expected value (E); (b,c,d) the
O/E ratio in relation to E for with decision curves of 25% (thin solid line) and 10% (thick solid line) quantiles, and their bootstrap 95% confi-
dence intervals (dashed lines) for the reference data as based on the conventional method (b) and the novel method (c), and with the decision
curves of both methods for the IMP data (d); (e) the actual 25% (thin solid curve) and 10% (thick solid curve) quantiles based on the con-
ventional method, when the assumed ones are 25% (thin dashed line) and 10% (thick dashed line) quantiles.
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percentages of cases classified differently were 1.3 and 1.6
for the simulated data and 0.8 and 0.8 for CS4 for 10th and
25th percentiles, respectively. Hence, the classification out-
comes for independent data would also likely to be quite
similar with these two methods. For CS2 with error pattern
of the same type, classification based on fixed percentiles of
O � Ô (Appendix S1: Fig. S2) showed 94% and 98% match
(for 10th and 25th percentiles, respectively) with our sug-
gested general method for O/E ratio in the classification of
the IMP sites. For the simulation data, the decision curves
based on Eqs. 7 and 8 applied for O/E and O � E, respec-
tively, yielded identical classifications, as theoretically
expected (results not shown). However, it might be argued,
that similar proportional species loss (ratio of observed to
expected species) for example, instead of absolute decrease
in species richness should have similar ecological or societal
significance and hence should be acceptable for all sites,
independent of the number of expected species (E). This
position is intuitively justifiable, but, as we have shown,
might come at the expense of increased risk of erroneously
classifying sites that do not differ from undisturbed sites as
impacted, and classifying others actually deviating from the
reference range as non-impacted. Moreover, it remains
uncertain how closely the O/E ratio or taxonomic complete-
ness (sensu Hawkins 2006) correlates with the actual species

loss (Hawkins et al. 2010b), and whether this depends on
the E; or on the other hand, conceptually, whether indeed
greater absolute (equal proportional) loss of species should
be acceptable for more diverse ecosystems than for species
poor. For instance, it is possible that a given absolute species
loss reflects similar likelihood that a functionally important
species is lost, independent of the total richness. The PICM
metric of our second case study strongly and linearly corre-
lates with the first axis of detrended correspondence analysis
(DCA) on the macroinvertebrate community data among
lakes (Jyv€asj€arvi et al. 2014). As the first DCA axis is pro-
portional to the main gradient of b-diversity or species over-
turn (Gauch 1982), this suggests that each unit change in
the metric value corresponds to a fixed degree of change in
community composition. Thereby, to rely on the actual
rather than proportional PICM change or on the correc-
tions as we suggest, might be justified even on purely ecolog-
ical grounds. This is likely to be true for many other biotic
indices or metrics.
One should also recall that predictive modeling is not the

only method to derive E values. Another, widely used
approach is estimating the expected values for groups of
water bodies sharing similar natural features (e.g., Aroviita
et al. 2008). Establishing reference values for such categori-
cal types of streams and lakes currently is the widely used

FIG. 6. For the fourth data set, CS4: (a) the estimated relationship of the observed metric value (O) to the expected value (E); (b,c) the
O/E ratio in relation to E for with decision curves of 25% (thin solid line) and 10% (thick solid line) quantiles, and their bootstrap 95% confi-
dence intervals (dashed lines) for the reference data as based on the conventional method (b) and the novel method (c), and (e) the actual
25% (thin solid curve) and 10% (thick solid curve) quantiles based on the conventional method, when the assumed ones are 25% (thin
dashed line) and 10% (thick dashed line) quantiles.
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default in the European legislation (e.g., Hering et al. 2010,
Birk et al. 2012). In this approach, the O/E variation is trea-
ted and decision rules typically set group-wisely (instead of
using global variance across all types) and thereby the
potential dependence of variance of E, as here suggested for
modeling approaches, is controlled for. However, this
approach does not solve the conceptual issue of using ratios,
has many other problems (Bowman and Somers 2005, Haw-
kins et al. 2010a, Hering et al. 2010) and when explicitly
compared is inferior to modeling in performance (e.g.,
Aroviita et al. 2009).
A literature search showed that relatively few studies have

reported the O on E regressions (Appendix S2: Table S1).
Therefore it is impossible to assess how prevalent and severe
the described biases might be in the proposed assessment
systems and in those currently used. However, the reported
estimates, including those in Linke et al. (2005), for the
intercept and slope parameters are mostly close to and do
not significantly deviate (when statistically tested) from 0
and 1, respectively, albeit there are some apparent excep-
tions (Appendix S1). None of the studies considered the
error structure, but when the data were also presented
graphically, the error variation appeared to increase, to be
constant, or even to show a decreasing trend or curvature

pattern along the E range. Hence, even though error increas-
ing with E, a condition at least alleviating the bias, seems to
be common for the taxonomic completeness or O/E metric
in particular, other types of error structure and therefore
some degree of bias are frequent, and should require careful
attention. To our knowledge, only Mazor et al. (2016) have
previously specifically addressed the dependence of O/E dis-
tribution on E. Interestingly, they reported a decreasing
accuracy (proportion of reference sites with O/E > 10% per-
centile value) and decreasing precision (increasing SD of ref-
erence O/E) with decreasing E. These trends might actually
be explainable by the phenomena we have described here.
For the developers of predictive models for the RCA

assessments, we advocate at least, in addition to reporting
the overall mean and variability of the O/E as presently
habitual in model validation, also communicating statistics
and preferably graphs of the O on E or O/E on E relation-
ship, or both. This will allow both the authors and the audi-
ence to evaluate the risk of bias and need for correction.
Even though the possible bias, as described, might often be
relatively small compared to other sources of uncertainties,
we consider it worth taking into account. Also, the use of
either absolute or relative deviation from the expected to
assess the biotic condition should preferably be explicitly

FIG. 7. For the fifth data set, CS5: (a) the estimated relationship of the observed metric value (O) to the expected value (E); (b,c) the O/
E ratio in relation to E for with decision curves of 25% (thin solid line) and 10% (thick solid line) quantiles, and their bootstrap 95% confi-
dence intervals (dashed lines) for the reference data as based on the conventional method (b) and the novel method (c), and (e) the actual
25% (thin solid curve) and 10% (thick solid curve) quantiles based on the conventional method, when the assumed ones are 25% (thin
dashed line) and 10% (thick dashed line) quantiles.
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justified. However, when ratios are used for legislative
requirements or for other reasons and the O/E ratio varies
with E, we strongly recommend decision curves estimated
by the approach suggested (Eqs. 6–7) to be compared with
the conventional decision lines. Also alternative methods
can be developed. A simple approximate approach for at
least detecting the possible bias and also partially solving it,
might be calculating and using piecewise O/E percentiles,
separately for different intervals of E (see Mazor et al.
2016), or by using a “moving E window,” when there are
enough data to get credible estimates. More sophisticated
(and perhaps more appropriate) statistical approaches
directly modeling the uncertainty in E by using joint distri-
bution models of O on E should also be considered.
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