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Tutkielman tarkoitus on arvioida autonomisen teknologian ja keinoälyn taustalle 
vallitsevia olettamuksia perusteanalyyttisestä näkökulmasta käyttäen autonomi-
sia laivoja kontekstina. Teoreettinen tutkielma on kriittinen, mutta motiiveiltaan 
rakentava: mikäli olettamuksien taustalla vallitsevia konseptuaalisia ongelmia 
kyetään tunnistamaan, niitä voidaan myös pyrkiä paikkaamaan. Tämä tavoite on 
oletettavasti pitkän tähtäimen kehitystä ja tavoitteena sellaisenaan tutkielman 
ulkopuolella. Siitä huolimatta teknologian perustavaa laatua olevien rajoitteiden 
tunnistaminen on ensiarvoisen tärkeää aikana, jolloin kehitys on nopeaa ja riskit 
todellisia. Tämä mahdollistaa ihmisen ja autonomisen teknologian vuorovai-
kutukseen liittyvien kysymyksien asemoimisen rationaaliselle pohjalle ja auttaa 
tunnistamaan molempien vahvoja ja heikkoja puolia. Tiivistettynä tutkielman 
tavoite on kuvata niitä vaatimuksia, joita autonominen teknologia asettaa 
pyrkiessään korvaamaan inhimillistä tiedonkäsittelyä teknisessä järjestelmässä. 
Tämä pyritään kytkemään kriittiseen keskusteluun tietokoneiden ja laskennallis-
ten toimenpiteiden perustavaa laatua olevien ominaisuuksien kyvystä saavuttaa 
näitä vaatimuksia. Kriittisestä keskustelusta seuraa kaksi keskeistä johtopäätöstä. 
1. Inhimillisen tiedonkäsittelyn korvaaminen kokonaisuutena on nykyisten 
teknisten järjestelmien mahdollisuuksien ulkopuolella. Tekniset järjestelmät 
pystyvät korvaamaan ja tukemaan inhimillistä tiedonkäsittelyä hyvin määritel-
lyissä ja spesifeissä tehtävissä, kuten nytkin, mutta toistaiseksi erilaisen tiedon 
integroiminen merkityksellisiksi kokonaisuuksiksi ja sen pohjalta kumpuava 
tavoitteellinen toiminta ei vaikuta teknisten järjestelmien toimintaperiaatteiden 
valossa realistiselta tavoitteelta. 2. Näin ollen miehittämättömien ja 
etäohjauksessa toimivien laivajärjestelmien kehittämisessä tulisi kiinnittää er-
ityisesti huomiota siihen, miten etäohjauskeskuksen operaattorit saavat käyt-
töönsä kaiken sen (tiedostamattoman ja tiedostetun) tiedon jonka pohjalta he 
tekevät päätöksiä perinteisten laivojen kannella, sikäli kun inhimillinen tiedon-
käsittely tulee säilymään välttämättömänä osana laivan toimintaa, ainakin 
kriittisissä ja haastavissa olosuhteissa. 
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ABSTRACT 

Karvonen, Antero 
Forms of determination in natural and artificial systems 
Jyväskylä: University of Jyväskylä, 2018, 93 p. 
Cognitive Science, Master’s Thesis 
Supervisor: Saariluoma, Pertti 
 
This thesis is a theoretical review of a few of the central issues pertaining to au-
tonomous technical artefacts, using ships as a context, and by extension artificial 
intelligence and cognitive science. The approach is critical on the one hand, and 
constructive on the other, in that it proceeds from the idea that the central strug-
gles facing AI are not merely technical but conceptual. It is thus an analysis of 
some of the presuppositions that underlie AI and an attempt at turning attention 
towards questions that need to be addressed if proper autonomy and intelligence 
are to be achieved in artefacts. If the conceptual problems identified are true, it 
means we may also attempt to address them. This fix as such is beyond the scope 
of this thesis, but at a time of rapid change and real risks, understanding the 
foundational limitations of technology is of paramount importance. This should 
also serve to position questions relating to human-technology interaction on a 
rational basis, and help to identify strengths and weaknesses of both. In brief, the 
goal of this thesis is to outline the requirements posed by autonomous technology 
insofar as it seeks to, or must, replace human information-processing from a tech-
nical system. We seek to connect this into a critical and foundational discussion 
on the limitations of computers and computations in fulfilling those require-
ments. Two main conclusions flow from the critical discussion. First, in settings 
that include dynamic and unpredictable characteristics, the replacement human 
information-processing as whole is beyond the capacities of current technical so-
lutions. They can, as they are now, be used to support and even replace some 
facets of human cognition in specific and well-defined tasks. But so far the inte-
gration of different information into meaningful wholes, that goal-directed and 
context-sensitive action requires, are seen as an unrealistic goal for technical ar-
tefacts in light of the operating principles of computers. In our view, this is not 
yet a mere technical problem, but a conceptual and analytical one. Second, given 
that humans will remain a necessary component for quasi-autonomous ship op-
erations in the near future, extreme care should be put into the design of the un-
manned operations and specifically the remote operation centers, such that the 
necessary information (tacit or explicit) by which decisions are made on the 
ship’s bridge will translate into the remote operation center. 
 
Keywords: autonomous ships, autonomous technology, artificial intelligence, 
foundational analysis 
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1 PREFACE 

Ours is a time of tremendous excitement over intelligent technology, as anyone 
following the news, academia, or industry is likely to admit. Artificial intelligence, 
robotics, or machine learning of some sort or another are seen as the next big 
thing. But for anyone knowledgeable on the history of AI, excitement is nothing 
new, and neither are correspondingly large disappointments. Whether or not this 
time we have the right concrete and conceptual tools to make truly intelligent 
technology a reality is, at the moment, an open question. But history as our guide, 
there is certain cause for consideration. This thesis represents one attempt at 
mapping some parts of a complex and controversial landscape by way of a foun-
dational analysis of the presuppositions, concepts, and principles from which AI 
in its’ various forms emerges, and to extend the discourse towards broader topics 
of multiple realizability and forms of determination, and back to engineering de-
sign. It is thus intended as a general theoretical review of the requirements of 
autonomy vis-à-vis human information-processing and the corresponding chal-
lenges this poses for technical systems. This means that much detail is left out, as 
well as some regions of the landscape. If some of the critiques hold, however, it 
means that truly intelligent machines remain more than a mere technical chal-
lenge. It means that there are analytical and conceptual problems which need to 
be addressed. These questions in turn begin approaching the very core and foun-
dations of not only AI, but cognitive science and beyond.  
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2 INTRODUCTION 

Spearheaded in the public imagination by self-driving cars, and riding on a more 
general wave of excitement over intelligent technology, there is a proliferation of 
attempts to create autonomous technology. The latest in this wave are autono-
mous maritime vessels (Levander, 2017; Rolls-Royce, 2016). The technical, legal, 
social, security, and business -related problems and requirements the quest for 
autonomous ships present are significant and intertwined. As an example, 
whether the technical solutions to problems presented by the task environment 
of the ship are secure and reliable enough has direct ramifications for the legal 
and business dimensions of the whole enterprise. An unreliable autonomous 
ship may not be legally allowed to sail or a high-profile failure may become a PR 
disaster sinking the business possibilities of such ships, to name a few examples. 
Such multi-dimensional problems must be tackled from correspondingly varied 
domains of human understanding. Recently, Luciano Floridi (2017) articulated 
this in the language of levels of abstraction. It simply means that experts from 
different domains pick up different patterns of information from the same set of 
observables1 - a legal scholar sees very different types of problems than a soft-
ware engineer, a cognitive scientist yet others. Given that those of us in the en-
terprise are involved in a quintessentially future-oriented exploration of possibil-
ities, rather than establishing or contributing only facts about an existing domain, 
we could say that what different experts most robustly contribute are not (only) 
answers but questions. Questions that both guide and shape the design process 
and products. Indeed, by identifying the question-solution structure of design 
activities, Saariluoma, Cañas, and Leikas (2016) suggested a question-structure -
oriented approach to design. This approach, Life-Based Design, is predicated on 
the idea that many different technical solutions can satisfy a functional require-
ment. Thus, an LBD ontology for design is characterized by sets of relevant ques-
tions that point to bodies of knowledge and discourse, rather than as a repository 
of formal facts and relationships.  

This thesis is organized around the basic question whether the concepts and 
principles of artificial intelligence and computer science suffice for proper auton-
omy. We seek to examine the foundational questions around autonomy, and to 
critically examine the presuppositions of AI against those requirements. Our at-
tempt is thus critical on the one hand, and constructive on the other. Within the 
limits of this thesis, we seek to explore the limitations of current conceptualiza-
tions in AI by way of a foundational examination of the presuppositions under-
lying it (Saariluoma, 1997). This is a different approach to a typical approach in 
AI, namely pure performance in some test or another (for a classic test see Turing, 
1950). 

Of course, this is not to argue against operational tests of autonomy or intel-
ligence. Pure performance is a practical method for measurement, and certainly 

                                                 
1 Given that autonomous ships do not exist yet, we might more accurately say that they co-

create the observables, rather than simply observe them. 
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necessary from the perspective of actual systems to be deployed. However, given 
that machines that could generalize beyond whatever domain they were pro-
grammed to perform in and not suffer dramatic breakdowns in performance un-
der modified situations have not been achieved (Shoham, Perrault, Brynjolfsson, 
& Clark, 2017), and even expert opinion is divided on the issue of general ma-
chine intelligence (Müller & Bostrom, 2016), the assessment of the foundational 
issues remains fruitful. Arguably even if an AI system were to be developed that 
matched all human benchmarks in performance, the foundational issues would 
remain open for investigation. But here, given that the central practical issues, 
such as common-sense reasoning (Lake, Ullman, Tenenbaum, & Gershman, 2017; 
Marcus, 2018; McCarthy, 2007), remain unsolved, we have justification beyond 
the “merely philosophical” in evaluating the foundational issues. 

If we can connect the notion of autonomy with mental determination, intel-
ligence, and cognition, and cast serious doubt on the ability of the fundamental 
principles of computers in achieving those, then we are in a position to re-evalu-
ate the first principles from which AI should proceed. This has relevance for the 
philosophy of cognitive science as well. It should be noted, that we are not going 
to make the case that human beings could not possess the ingenuity to cast down 
into a causal mechanism certain forms of human information-processing. Human 
ingenuity is not the target of this thesis, but the limits of the fundamental working 
principles of computers in intrinsically embodying something like human inge-
nuity.  

What questions from various levels of abstraction (in the sense of Floridi 
2017) and different bodies of human understanding contribute are ways in which 
the problem can be defined more precisely or more widely. Clarifying and ex-
tending the problem of autonomy from the perspective of cognitive science and 
the rich discourse around artificial intelligence (among other topics) is one of the 
main goals for this thesis. What follows from such a clarification, should be a 
tentative mapping of the distance or mismatch between the goal of autonomy 
and the prevailing state (of technical systems) (Leppänen, 2005). Our results 
should serve the design processes around autonomous ships from two perspec-
tives. First, identifying limitations of artefacts in achieving human-level perfor-
mance in certain tasks should inform how the sharing of duties between man and 
machine should be laid out in the near future. It seems likely that both have their 
virtues and failings. Second, if the former is done from a foundational, “deep” 
perspective, it may provide ideas and contribute to the design of intelligent tech-
nology itself. Such results are of course highly tentative, and subject not only to 
the veracity of the findings but also their applicability for practical concerns – 
there is no doubt that practical life and engineering design will proceed in its’ 
own way regardless. But it should be borne in mind, that if the fundamental prin-
ciples are ill-conceived for the task at hand then there is no hope for achieving 
ultimate success. 

Essentially the question before us is to examine the fundamental presuppo-
sitions, concepts, and argumentation that surround artificial intelligence. What is 
important is to place the questions marks deep enough, so that the questions and 
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(possible) answers approach the heart of the matter – only in this way can we 
avoid getting lost in the foggy details and technical arguments that will inevita-
bly crop up. Thus, we shall not be, other than by way of example, asking whether 
deep neural nets or more traditional methods of AI are the most suitable for arti-
ficial intelligence, nor about the extent to which the systems should learn by ex-
ample or have pre-built innate mechanisms (Marcus, 2018; Pearl, 2018). We want 
to ask is the computer and computations a suitable platform for mentality – and 
thus autonomy proper - to emerge, or is there something to life itself (Rosen, 1999) 
and the forms of determination it embodies (Bunge, 1979) that are a necessary 
precondition for proper autonomy, mentality, and intelligence?  

2.1 Context and Rationale 

This work proceeds within and is partly funded by the Tekes-funded DIMECC 
Design for value program that seeks to “enable the best possible use of digital 
disruption in supply chains” (DIMECC, 2017). One central aspect of the digital 
supply chains is envisaged to be unmanned autonomous ships. Some reports 
place such ships in 2025 (Levander, 2017), a mere seven years away at the time of 
writing. In the D4value program, research is being conducted from multiple 
points of view simultaneously. The task of Jyväskylä University in the program 
is to study human-work interaction in this changing context.  

The rationale for the thesis is to provide a foundational viewpoint for the 
discourse. This extends the thesis beyond autonomous ships and towards auton-
omous technology in general, and in the way we shall proceed, towards the very 
core questions of cognitive science and artificial intelligence. Examination of 
these questions is crucial for the development of technology and understanding 
its’ limitations, perhaps even transcending them. Furthermore, by understanding, 
or at least raising the crucial questions surrounding the limitations of technical 
artefacts in approximating human thinking feeds directly into the way in which 
future human-work interaction in an ecosystem of quasi-autonomous artefacts 
and human operators should be structured.  

2.2 Method 

Issuing from the author’s interests on the one hand, and the seeming lack of clar-
ity in the foundations of what autonomy entails on the other (Boden, 2008), this 
thesis is of rather broad scope, made even more so by the inclusion of artificial 
intelligence (which is itself  foundationally unclear, see Saariluoma & Rauterberg, 
2015; 2016) as a necessary corollary for autonomy. As a kind of excavation of pre-
suppositions, the research process itself was a recursive circling around the four 
main topics reflected by the four main sections: autonomy; artificial intelligence; 



11 

multiple realizability; and engineering design. We can’t hope to exhaustively ex-
amine or describe each of the domains, but offer a particular set of ideas gleaned 
from each of the domains, and hope that the results have coherence and illustrate 
some of the difficulties inherent in the quest for truly autonomous technology.   
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3 AUTONOMY IN SHIPS 

The purpose of this section is to orient ourselves around the topic of autonomy 
in the context of maritime vessels, and in general. We will attempt to define some 
key terms, to illustrate some of the ways autonomy has been measured, identify 
some its’ key dimensions, and explore the relationships between system, auton-
omy, and environment. The goal of the section is to somewhat clarify the problem 
of autonomy and establish a link between human autonomy and mental capaci-
ties, and correspondingly, artefact autonomy and artificial intelligence. 

3.1 General Introduction 

This work proceeds within the general framework of the Tekes-funded DIMECC 
Design for value program that seeks to enable the best possible use of digital dis-
ruption in supply chains (DIMECC, 2017). One central aspect of the digital sup-
ply chains is envisaged to be unmanned autonomous ships (Levander, 2017; 
Rolls-Royce, 2016), and it is around this topic we will proceed. In the Design for 
value program, research is being conducted from multiple points of view simul-
taneously. A legal scholar sees an autonomous ship from a different perspective 
than an engineer or a business person. The observations of this thesis will emerge 
from an interdisciplinary framework which seeks to advance understanding of 
mind and intelligence in humans and in general: cognitive science (Frankish & 
Ramsey, 2012; Thagard, 2005). The task of Jyväskylä University in the program 
is to study human-work interaction. This thesis contributes to this question 
through the following logic:  

1. Correctly formulated general requirements for autonomy define the 
research space. This is identical to the current situation because the 
man-ship system is autonomous in the sense relevant here;  

2. Given the goal of autonomy, the limitations of technological solu-
tions in solving for those requirements define how that space is 
carved up or shared between humans and artefacts;  

3. This defines the roles of man and machine, and ultimately allows for 
research into human-work interaction to proceed in a principled 
manner. This part is obviously subject to change as technology pro-
gresses. 

4. However, understanding the foundational limitations of (current) 
technical artefacts, if any, may point the way towards transcending 
them and thus contribute to the design ontology of autonomous 
technology. 

The precursor for the Design4Value program was the AAWA (Advanced 
Autonomous Waterborne Applications) project (Rolls-Royce, 2016). This will be 
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our starting point. The vision for autonomous ships that emerged from the pro-
ject was a system of systems in which autonomy is gradually approached by roll-
ing out autonomous functionalities in ships while simultaneously having the 
possibility of placing the ships under remote control from a shore control center 
when the situation demands it. The vision is relatively modest and realistic which 
means the assumption is not that the ship has the capacity to deal with even par-
ticularly many or complex situations. Indeed, such moments may be relatively 
few in the timespan of a navigation from port-to-port if significant parts of the 
journey take place over the open ocean. To concretize the vision a bit, let us par-
aphrase a typical journey for an unmanned containership under remote control 
as the AAWA report saw it (Rolls-Royce, 2016, p. 8-12). 

3.1.1 An Example Journey 

In this example journey, the ship is unmanned with the ability to perform certain 
tasks such as follow a navigational path and avoid simple collisions. It is tethered 
via data link to a remote operator who can monitor the ship and assist and take 
control as needed. The ship is a containership and will travel from one port to 
another via an open sea route. 

3.1.1.1 Voyage Planning and Initiation 
 
From the AAWA perspective, this aspect will be mostly under the control 

and discretion of the operator. The operator will plan the journey, perhaps with 
technological assistance, and set beforehand which legs of the journey will be in 
autonomous mode (such as long stretches of open ocean) and which will be un-
der remote control (such as departure from a congested port). The operator will 
set navigational strategies for each leg. They will include fallback strategies 
which determine how the ship is to proceed if, for example, it encounters a situ-
ation which is unexpected and contact the operator, if failing that, proceeding to 
a next waypoint, failing that holding position, or navigating to previous way-
point. This sequence of fallback strategies would only be implemented if connec-
tivity breaks down and the ship encounters an unexpected situation. 

3.1.1.2 Unmooring and Manouvering out of the Harbor 
 
Departure from a harbor will likely require human operators for the time 

being, especially if the harbor is congested and contains a mixture of different 
vessel types and enough dynamic and complex characteristics to render safe au-
tonomous operations difficult. This will depend strongly on the systems availa-
ble at the harbor, for example if they have a mooring and unmooring systems 
that can be automated and are suitable for the particular ship in question. The 
control of the ship may be either quasi-direct, meaning the joystick and throttle 
commands from the remote center will directly control the actuators in the ship, 
or once-removed so that and the ship is only given manual waypoints, taking 
care of movements autonomously.  
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3.1.1.3 Operating in the Open Sea 
 
Once the harbor area is cleared and the shipping lanes are relatively traffic-

free, the journey begins according to the plan set by the operator prior to depar-
ture. In this mode, the ship makes its way from waypoint to waypoint, while 
monitoring its’ local environment through its “sensory” systems such as radar, 
lidar, or cameras. The systems interpreting the local environment should alert the 
remote operator if situations demanding attention arise. In normal operations, as 
the journey is proceeding according to the plan, the ship is quite autonomous. 
Thus, the autonomy-level is adjusted according to situation, it is not a feature 
which applies to the ship as a constant property. Interaction with the remote op-
erator is of different types. If the ship if executing a maneuver between two way-
points in a manner which does not exceed some pre-specified margins, it may 
only notify the operator which then can veto if the situation demands it. Of course, 
sometimes situations are likely to arise where the path planning and collision 
avoidance modules are unable to unambiguously solve a certain situation, or 
may contradict each other in terms of goals. Such complex situations demand 
much from the ship and by extension the programmers, because it requires dy-
namic conflict-resolution between different goals and weighted criteria. Below is 
a capture from the AAWA report, illustrating different ship-operator interaction 
scenarios. 

 

 
Figure 1 Illustration of different navigational scenarios from the perspective of the remote 
operator (Rolls-Royce, 2016) 

3.1.1.4 Port Approach and Docking 
 
The last part is largely a reverse of the departure. It should be noted that 

pilotage systems and the profession will require modification with the arrival of 
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autonomous ships. In general, much work is required from the perspective of 
harbors as well including infrastructure and personnel training.  

3.1.2 General Architecture for Autonomous Artefacts 

When it comes to architectures for autonomous vehicles, a 2011 review of the 
state of the art in decision-making identified challenges for any systematic review 
(Veres, Molnar, Lincoln, & Morice, 2011). For example, there are almost as many 
architectures as there are vehicles, and hundreds of sub-problems in navigation 
and control of all kinds. See also Siegwart, Nourbakhsh, & Scaramuzza (2011). 
The following is a general breakdown of a typical architecture for a mobile au-
tonomous artefact, based on Siegwart et al. (2011), Veres et al. (2011), Schiaretti, 
Chen, & Negenborn (2017a, 2017b), which is capitulated in spirit in the AAWA 
(Advanced Autonomous Waterborne Applications) whitepaper (Rolls-Royce, 
2016) and its’ Autonomous Navigation System (ANS).  

The four fundamental layers of sensory, perceptual, motor, and cognitive 
capacities form a necessary unity for the achievement of autonomy in an artefact 
(Siegwart et al., 2011). Without sensors the artefact is blind; without perception it 
can’t make sense of its environment; without motor capacities it is immobile; and 
without cognition it can’t make decisions or solve problems. These functional ne-
cessities are to a degree commensurate with the functions identified by 
Parasuraman, Sheridan, & Wickens (2000): information acquisition; information 
analysis; decision and action selection; and action implementation - or sensory, 
perceptual, cognitive, and motor in our analysis. The figure below summarizes 
the key aspects. 

 
Figure 2 General Architecture for an Autonomous Artefact 

 
 

 

Sensors

Perception

Cognition

Action

Environment
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3.1.2.1 Techniques and Implementation Methods 
 
The task of navigating from one point to another can be broken down to 

local and global path planning problems and methods. A review by Polvara, 
Sharma, Wan, Manning, & Sutton (2017) concluded that while global path plan-
ning is hardly a technical problem assuming accurate cartographic information, 
the same is not true for local problems: i.e. obstacle detection and avoidance. On 
the one hand, obstacle detection depends on robust and reliable sensor-systems. 
On the other, avoidance of obstacles, especially if there are many and they are 
moving, requires complex decision-making and evaluation, while taking into ac-
count  vessel dynamics, weather conditions, and the maritime rules of the road 
(COLREGS) (Polvara et al., 2017). Perhaps most concerning of all, many solutions 
have only been tested in computer simulations, which, while appropriate for test-
ing and development, will always lack the actual complexity potential in mari-
time situations.  

3.1.3 Autonomous Navigation System  

The architecture of the autonomous navigation system (ANS) as planned in the 
AAWA project (Rolls Royce, 2016, p.20) follows the general architecture outlined 
before to a large degree. See figure below. 

  

The basic elements that are required for all autonomous mobile artefacts are 
there: the dynamic positioning system and the propulsion control system account 
for motor capacities; situation awareness sensors and sensor fusion account for 
sensory and perception layers; and the autonomous navigation system with 
route planning, situation awareness, collision avoidance, and ship state defini-
tion modules accounts (to some extent) for cognition. The devil is of course in the 
details and whether the functional breakdown matches actual systems is an open 

Figure 3 Architecture of the Autonomous Navigation System (ANS) (Rolls-Royce, 2016) 
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question, and of course this schematic is merely an illustrative plan. This will our 
reference point as to the perceptual and cognitive systems of the autonomous 
ship. Let us now examine the key modules in more detail.  

 

3.1.3.1 Situation Awareness 
 
The purpose of the situation awareness (SA) module is to monitor and ex-

tract relevant information from the environment via sensory systems for use by 
the collision avoidance (CA) module. Its’ job is to supply a local map of the im-
mediate environment and show obstacles around the ship. The sensors by which 
it makes sense of the environment may include LIDAR (short range radar), which 
can provide accurate range and velocity information. Cameras work better for 
classification of objects. The key, for the AAWA project, has been sensor fusion, 
which essentially means the transformation of data obtained from various sen-
sors into a representation usable both for the ship’s internal systems, but also for 
the remote human operator. Situation awareness thus goes two ways, into the 
ship and into the operation center. The SA module is the eyes of the ship, meta-
phorically speaking. 

3.1.3.2 Collision Avoidance 
 
Collision Avoidance (CA) is tasked with dealing with situations in the local 

environment, and is thus intimate with the SA module described before. It takes 
the view from the bridge of the ship, metaphorically speaking. In the ANS archi-
tecture, it ties in with the DP (dynamic positioning) module (which is already in 
use on ships) which acts as the last link between the ANS and the actuators of the 
ship. The CA module is perhaps misleadingly called that, because it’s role is to 
also navigate the ship under normal conditions, following the route delivered by 
the path planning module which we will discuss next. As said, the CA module 
assesses the risks presented by obstacles and objects in the environment and ex-
ecutes manouvers within suitable parameters (while consulting with the ship 
state definition module which is the integrator of all ship information). 

 

3.1.3.3 Route Planning 
 
Route planning (RP) takes the bird’s eye view of the whole journey. Even if 

the operator has set the waypoints manually, the planned path is located in the 
RP module. The route follows shipping lanes when available, and avoids known 
obstacles based on electronic chart data. It consists of waypoints, headings, and 
speeds for the ship. The route is the strategic level of the journey, containing as 
mentioned before, multiple fallback strategies for particular legs of the journey. 
The tactical manouvers are made by the CA module and the remote operator.  
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3.1.3.4 Ship State Definition Module or “Virtual Captain” 
 
The highest level in the module hierarchy is the ship state definition (SSD) 

module or “virtual captain”. This module gathers information from all other 
modules, and informs the remote operator of the state of the ship. It also controls 
which mode the ship is in, semi-autonomous, full-autonomous, or under remote 
control. It is thus a meta-awareness module for the entire ship. 

3.1.4 Possible Future Development Pattern 

As the previous illustrations have made clear, the human “recedes”, as it were, 
from the ship (see figure below). More generally speaking, the word ship is here 
co-extensive with the technical artefacts that make up the immediate ship, and 
includes all such aspects of the ship such as radars, sonars, LIDARs, and in a 
sense most importantly, the computer systems that are seeking to replace human 
thought and intentionality from the equation: essentially the ANS and its’ mod-
ules in the description before.  
 

 
Figure 4 Three phases of autonomous ship development 

The figure above seeks to illustrate one way of conceptualizing the possible 
future development of autonomous ships.  

We start with phase one, the current situation. Here, the humans on the ship, 
the ship and its subsystems, and the environment form a spatially intimate whole 
and all three domains have immediate interaction among each other.  

The second phase entails the removal of man from the immediate ship and 
into a Remote Operation Center (ROC) or Shore Control Center (SCC). This pre-
supposes that the ship has both adequate mastery over many typical maritime 
situations, or at least the capacity to stop and wait for human intervention, and 
that the necessary certainty has been achieved in the connectivity between the 
ROC and the ship, and that the ROC has been properly designed and manned.  

Finally, in phase three the ship has mastered the capacity to deal with almost 
all maritime situations, and the remote operation center is used to take over only 
in very rare circumstances, and is used rather to supervise and manage a larger 
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fleet of autonomous ships. Our focus in this thesis will be to look ahead into this 
phase. 

From this we can see that there are two central technological lines of devel-
opment. The first is the building up of capacities in the ship to autonomously 
handle situations. The second is the development of principles, practices, usabil-
ity, and controllability of the ships from the remote operation center. We will 
proceed from the idea that the space circumscribed by the capacities of the cur-
rent man-ship system is populated by requirements from the perspective of de-
sign. How, and how well the requirements are met currently set the standards 
that a future autonomous ship must equal or surpass. What the requirements 
should do is act as goals to guide design and innovation. The idea is that all shifts 
within the space of requirements for autonomous ships are the transfers of func-
tions and capacities from the human to the ship’s domain, probably through in-
termediate stages – a gradient of autonomy if you will. The types of requirements 
we will focus on are of the kind marked by intelligence, and mostly identifiable 
with the bridge of the ship. This is not to say that the maintenance of the ship 
engines, electronic systems, or the responsibilities of the steward do not require 
intelligence, indeed they may be much harder tasks to automate than others. But 
the chief aim of autonomous ships, as the discussion before illustrated, is to re-
place humans in the tasks most pertinent to the navigation, steering, and corre-
sponding decision-making, and those are largely identifiable with the bridge of 
the ship, and specifically with the first, second, and third mates, and ultimately 
the captain. 

In the AAWA project, a realistic and relatively modest starting point has 
been assumed, which seems smart given that no fully robust solution exists for 
autonomous navigation, especially in the local aspect of it (Polvara et al., 2017). 
In this thesis, we will “look ahead” into future scenarios for two reasons. First, 
we are interested in limitations of technology, given that it feeds directly into the 
primary research question of Jyväskylä University in the program, human-work 
interaction. Second, of more significance to the field of cognitive science and AI 
in general is a discussion on such foundational limitations. Thus, we seek to con-
tribute both to the research questions for our institution, as well as to the field at 
large, and of course to the future development of autonomous shipping and au-
tonomous technology in general. 

3.1.5 The Automatic Steering of Ships 

The automatic steering of ships is hardly a new phenomenon. It’s root trace 
back at least to the seminal work by Nicolas Minorsky (1922) in the early 20th 
century. By observing the behavior of experienced helmsmen in maintaining a 
heading, Minorsky (1922) was able to capture its’ essential features in a mathe-
matical formulation, which today forms the basis of a common class of industrial 
control, the PID controller (Bennett, 1984). A PID controller works by a feedback 
loop where a setpoint, a desired value, is compared against the actual perfor-
mance value of the system in question. The latter value is the sum of proportional, 
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integrative, and derivative terms (hence PID), which correspond to the error be-
tween the setpoint and the desired point, the integration of past error values over 
time, and the derivation of a best guess for the future based on current rate of 
change.  

What makes Minorsky’s work interesting from our perspective is, on the 
one hand, the method of observation of actual helmsmen by which he arrived at 
his conclusion, and on the other, his keen awareness of nonlinearities in systems 
(a ship with six degrees of freedom influenced by complex environmental fac-
tors), which allowed him to abstract out the variables that were general enough, 
and relevant for the problem he was attempting to solve (Bennett, 1984). By ab-
stracting out the nonlinear forces that act on a ship that form the cause of the 
disturbance in most cases, and anchoring his solution to two known variables, a 
setpoint and an actual point, he was able to form a causally closed loop between 
two known variables that as a result is a general solution to the problem of main-
taining a course in a relatively universal way. What is further captured by his 
formula is history and anticipation. Essentially Minorsky’s (1922; Bennett, 1984) 
solution is a part of what might now be called control theory, and its’ precursor, 
cybernetics (Wiener, 1985; Checkland, 1994). Indeed, the term cybernetics comes 
from the Greek word meaning steersman, and taking as its’ subject matter all 
possible machines or systems that require control of some sort, seeks to abstract 
out the general principles by which forms of control are possible (Checkland, 
1994). 

The example is fascinating on multiple levels. First, it is a brilliant example 
of human ingenuity, of capturing in a formal system the cross-contextual aspects 
of some recurring situation, and turning it into a viable solution for a problem in 
human life. Second, his keen observation of actual human helmsmen allowed 
him to note a triadic temporal structure in their behavior: the past, the present, 
and the future and incorporate them into a single technical system. But notice, by 
abstracting the relevant parameters of the situation and formalizing it into a sys-
tem is in no way, now, a mark of intelligence in the mechanism, but in the human 
designer (and to an extent the experienced helmsmen that were being copied). 
Thus, when seeking real autonomy in artefacts, what needs to be recapitulated in 
the machine is not the superficial form or pattern, but the capacity that grounds the 
ability in the first place. This crucial distinction will crop up also in the distinction 
between automatic and autonomous. To say that a thermostat, for example, is 
intelligent in its behavior is surely to stretch what we mean by intelligent. To say 
that it is goal-directed intrinsically, is a mistake of the similar kind (Deacon, 2013). 
What the PID controller and the thermostat are, are ingenious examples of hu-
man intelligence, whose goal-directedness is a function of their embeddedness in 
human life: intrinsically they have neither intelligence nor goals.  
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3.2 Definition of Key Terms and Concepts 

To launch us into the issues, what needs to be distinguished and understood in 
relationship to one another are the closely related terms unmanned, automatic, and 
autonomous (Williams, 2015).  

Unmanned simply means that there is no human on board the vessel. The 
vessel itself may be autonomous, automatic, or under remote control. Unmanned 
is in the context of maritime vessels the goal of autonomy. The idea is that if the 
human element is not needed on board the ship, there will be significant reduc-
tions in the costs of maritime traffic and thus competitive advantage for shipping 
companies that adopt autonomy. The AAWA project (Rolls-Royce, 2016, pp. 81) 
cited the more efficient use of space and fuel, as well as the general optimization 
of shipping issuing from digitalization as the main drivers. Being unmanned fur-
ther means that accidents involving unmanned ships carry no immediate human 
casualties. Finally, given that human error, sometimes fatigue, is a major cause 
of maritime accidents (Chauvin & Lardjane, 2008), if the remote operation centers 
and/or autonomous systems in the ships would be advanced enough, perhaps 
there would a reduction in maritime accidents. Of course, the conclusion that re-
moving the human factor from the immediate ship would make human (or other) 
errors disappear altogether certainly does not follow – rather it recedes from the 
immediate situation (Ahvenjärvi, 2016). 

Automatic is a closely related concept to autonomy, but there are certain dis-
tinctions which need to be fleshed out, and which will shed light on what auton-
omy entails. An automatic process or a system is in our definition one that has 
certain fixed and predetermined event flows that take it in predictable ways from 
one state to another. There may be some limited sensitivity to context or other 
environmental factors, but the defining feature is its’ predetermined character 
and the fact that the environmental factors have been taken into account in detail 
beforehand. Examples of automatic processes abound in the natural and artificial 
worlds. A traditional machine, say for making paper clips, is automatic. The pro-
cess runs along the same tracks every time, even if human ingenuity has built in 
mechanisms like sorting or detecting faulty items. Of course, if a sufficient 
amount of sorting, fault detection, or similar mechanisms are built in, the system 
begins to shade into a kind of autonomy insofar as those are tasks previously car-
ried out by humans (Saariluoma, 2015). In the animal kingdom, some organisms 
seem to “run” quite rigid programs and seem slaves to their biological program-
ming. Dennett (1990) describes the behavior of the Sphex wasp, whose reproduc-
tion strategy includes digging a burrow for eggs, finding a cricket and paralyzing 
it with a sting, bringing the cricket to the burrow, checking the burrow, dragging 
the cricket in and laying the eggs, never to return. When the behavior was studied, 
it was noted that if the paralyzed cricket is moved between it having been 
brought to the burrow’s edge and the wasp going in to check the burrow, the 
wasp would seem to get caught in a loop. It would bring back the cricket to the 
edge and go in to check the burrow. This process would loop so long as the cricket 
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was moved after the wasp entered the burrow. Even human cognitive systems, 
such as perception, is to a large extent automatic. For example, certain illusions 
will persist no matter if we are informed as to the nature of the phenomenon 
(Fodor, 1985). We have no control over certain processes, or certain aspects of 
those processes, and the same applies for reflexes and the like. Indeed, it would 
hardly make sense for us to have volitional control over the faculties as such that 
tirelessly serve to build many central aspects of our experience. In cognitive sci-
ence terminology, many domains of cognition are encapsulated in modules and 
are cognitively impenetrable (Fodor, 1985). The same goes for many of our organs: 
the heart goes on pumping without personal effort, the liver and the kidneys per-
form their functions, the pupils dilate, the hair grows, and so forth.  

In the context of technological development, automation is the forerunner to 
autonomy. They have the similar goal of creating systems and artefacts that can 
manage tasks without human intervention, but autonomy seeks to expand those 
borders to encompass dynamic situations, and in a way that the autonomous sys-
tem could manage for extended periods of time without human intervention 
(Endsley, 2017). Krogmann (1999) decomposed an autonomous systems’ interac-
tions with its’ environment to five stages: monitoring (recognize the actual state 
of the world and compare it to the desired state); diagnosis (analyze the devia-
tions from actual to desired states); plan generation (think about actions to mod-
ify the state of the world); plan selection (decide the necessary actions to reach a 
desired state); plan execution (take the necessary actions).  

What is the role of the human on a ship? The answer seems straight-forward: 
human beings contribute mental processes to the operations of the technical system. 
That is, what is crucial is not that it is a human hand that turns the wheel that turns 
the rudder, but that those behaviors are instantiated in a rational manner, within 
a general awareness of the situation, and in terms of a goal. Explanations of this 
sort are perhaps best captured, as von Wright noted (2004), via practical syllo-
gisms. Namely, the major premise of the syllogism is some envisaged end state, 
the minor premise relates some action as a means to that end and the conclusion 
is simply to use the means to reach the end. The role of human beings, especially 
on a ship’s bridge, is to perceive, to think, to make decisions, set goals, and per-
form actions. All of this, in one way or another, needs to be instantiated in the 
artefact, or somehow circumvented, if the goal of autonomy is to be achieved. As 
Krogmann (1999) notes, a program that controls the behavior of a ship (for exam-
ple) is not intelligent in the sense required if the software “injects” them with 
what to do and how to react to certain pre-specified situations. Rather what is 
needed is that the program has a structure that allows it to organize itself, and to 
learn and adapt to changing circumstances (Krogmann, 1999). This “self-organi-
zation” is akin to how a human agent “gathers” behaviors in the service of inten-
tional action in a situation. We will address this question in more detail later. 
Notice however, that the previous discussion on the vision of the AAWA project 
(Rolls-Royce, 2016) is much more akin in spirit to automation than autonomy, 
although this is a question of definition rather than objective fact. 
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Autonomy refers to a systems capacity to act according to its own goals, per-
cepts, internal states, and knowledge (Williams, 2015). It is, as the etymology of 
the word suggests, a form of self-determination. Autonomy comes from the 
Greek term autos (self) and nomos (law) and means control of the self (Bateson, 
2002). To keep our eyes on the proper topic, we shall define autonomy to refer to 
the capacity of a causally semi-integrated system with a reasonably clearly defin-
able inner environment to reflectively apply rational control over its’ overt (and 
perhaps covert) behavior (Metzinger, 2017). Such a system would typically have 
mobility and some ways through which it can physically manipulate or negotiate 
its’ way through the environment, and the environment itself has dynamic and 
unpredictable characteristic, such that the acting in it is not amenable to simple 
pre-programmed automation. In philosophical parlance, an autonomous system 
needs to have the capacity for action (Davidson, 2001; Metzinger, 2017; Taylor, 
1965; von Wright 2004). We will return to the notion of action in more detail later. 
What is crucial to intuit at this point, is that autonomy as we are defining it leads 
us towards a requirement for the system to have what might in the human con-
text be identifiable with volition, cognition, and perception. Another crucial point 
is that automatic or determined processes and autonomous agency, “free will”, 
may seem like opposing concepts, but in actual practice they form a necessary 
unity: no volitional cognition without automatic processes, no autonomy without 
determination within constraints (Deacon, 2013; Wilden, 1987). The mark of au-
tonomy is the self-imposition of constraints on behavior, characterized by sense-
making and rational selectivity. It is a form of determination (Bunge, 1979) whose 
characteristic property is perhaps most generally captured by the term infor-
mation.  

Another way the nebulous term autonomy is relevant for our exploration is 
the with respect to the (quasi)autonomy of different levels of reality. Using the 
experience and neuroanatomy of pain as an example, Daniel Dennett (1986), dis-
cusses the irreducibility of the one to the other. It is important to note, that while 
Dennett (1986) certainly acknowledges the necessary connection pain has with 
neural networks that, for example, connect the location of the pain with the brain, 
he essentially treats it as an analytical question, and concludes that no mechanical 
explanation suffices to capture the experience of pain as such (see also Saariluoma, 
1999). That is, the explanatory level of the person (our experiences, psychological 
states, intentions and so on) is autonomous with respect to the sub-personal neu-
roanatomical level: if we abandon the personal level and descend to its’ (neces-
sary) physical substrate, we in a very real sense abandon the sense of pain as such. 
And this is not a question of whether or how the two interact, they obviously do, 
but that the problem between the levels is analytic in the sense that they refer to 
levels that have real autonomy with respect to each other: we can’t think or ex-
perience our pain away, but we can attend to other sensations, and perhaps most 
importantly consciously move away, eliminate, and avoid the source of pain 
(outside our bodies). The acknowledgement of the autonomy of the special sci-
ences does not, however, preclude asking questions as to the reasons for their 
autonomy. If viewed from a systems perspective, any system save for the most 
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simplest, is liable to behave in ways that necessitate new conceptual tools. Music, 
for example, is a wholly artificial system that is nonetheless has its’ own laws and 
theory language. Yet it is rational to ask how it comes about and having done so 
exhibit autonomous lawful attributes.  

There is a further way in which we may exploit the term autonomy in a 
different context but relevant for our purposes, and which is closely tied with the 
preceding discussion on levels of reality. This is the autonomy of different bodies 
and practices of knowledge. Often this distinction is fleshed out in relationship 
to science, such as by Fodor (1974, 1997) with respect to sciences of the mind or 
by Vincenti (1990) with respect to engineering. Both argue against the proposi-
tion that the “special sciences” are nothing but applied science. That is, there is 
nothing within the body of knowledge that couldn’t be reduced to the basic sci-
ences: often physics and mathematics. In the context of engineering design, one 
might further argue against the practical sense of such a reduction, even if it were 
possible in principle. If one views the history of ideas metaphorically as a branch-
ing river system in which different streams of human understanding diverge and 
occasionally converge, we can sense that perhaps the advancement of human un-
derstanding is to some significant degree a collision of different forms of under-
standing (and perhaps a function of the maturity of the respective streams). To 
take a Kuhnian (1970) perspective, even science itself is largely a conceptual ad-
vance. It is, as is characteristic of human beings, creative but also conservative: 
we want new inventions and new concepts, but we do not want to lose what is 
valuable in the old. The collision of different communities of knowledge and cul-
tures can yield results that transcend what could be conceived by either alone. If 
one is familiar with the history of cognitive science, for example, it is rather easy 
to see that the intellectual advance it facilitated was the result of the convergence 
of many different streams of thought: computer science and mathematics, psy-
chology and the philosophy of mind, linguistics, neurosciences, to name a few 
(Abrahamsen & Bechtel, 2012). The point is that the mapping of different 
knowledge patterns unto each other is a rich source of conceptual advance, but 
it is certainly not a simple, obvious, or easy task to achieve. Indeed, many people 
have a distaste for such loose borders among conceptual structures. But this is 
the nature of cognitive science as an interdisciplinary endeavor. That there has 
always been a rich connection between computer science, cognitive science, and 
artificial intelligence, and the success these fields have in many ways enjoyed, 
speaks to the potential within the interdisciplinary approach. Insofar as auton-
omy, as has been implied, involves something like the instantiation of intelli-
gence in the artefact, we will do well to keep this approach in sight.  

3.3 Aspects of Autonomy 

Autonomy, much like intelligence, is not some single variable for which we could 
devise an instrument and point it towards an artefact or an organism and expect 



25 

to find an answer (McDermott, 2007). Let’s examine some ways by which at-
tempts to get a grip on this elusive term have been tried. 

3.3.1 Autonomy Levels or Scales 

A common strategy to get a handle on autonomy has been to stratify it into levels 
both in the maritime context (Blanke, Henriques, & Bang, 2017; Lloyd’s Register, 
2016; Schiaretti et al., 2017a, 2017b) and more generally (Endsley, 2017; Parasura-
man et al., 2000), see also (Insaurralde & Lane, 2014). Schiaretti et al. (2017a) have 
argued that assigning an artefact’s level of autonomy to a single variable on a 
leveled hierarchy is not fine-grained enough, given that there are several sub-
systems and classes of functions that together are thought to yield autonomy, but 
which may have different levels of development in different embodiments, mak-
ing simple arithmetic possibly misleading (see also Williams, 2015). This is likely 
to be true, but we shall bracket it from consideration for now, and approach the 
relatively simple autonomy levels outlined by Blanke et al. (2017). 

 
Table 1 Autonomy Levels in the Maritime Context according to Blanke et al., (2017) 
 

Description Operator role 

AL 0: Manual steering. Steering controls or 
set points for course, etc. are  
operated manually. 
 

The operator is on board or performs re-
mote control via radio link. 

AL 1: Decision-support on board. Auto-
matic steering of course and speed in ac-
cordance with the references and route plan 
given. The course and speed are measured 
by sensors on board. 

The operator inserts the route in the form of  
"waypoints" and the desired speed. The  
operator monitors and changes the course 
and speed, if necessary. 

AL 2: On-board or shore-based decision 
support. Steering of route through a se-
quence of desired positions. The route is 
calculated so as to observe a wanted plan. 
An external system is capable of uploading 
a new route plan. 

Monitoring operation and surroundings.  
Changing course and speed if a situation  
necessitates this. Proposals for interven-
tions can be given by algorithms. 

AL 3: Execution with human being who 
monitors and approves. Navigation deci-
sions are proposed by the system based on 
sensor information from the vessel and its 
surroundings. 

Monitoring the system's function and ap-
proving actions before they are executed. 

AL 4: Execution with human being who 
monitors and can intervene. Decisions on 
navigation and operational actions are cal-
culated by the system which executes what 
has been calculated according to the opera-
tor's approval. 

An operator monitors the system's func-
tioning and intervenes if considered neces-
sary. Monitoring can be shore-based. 

                 (continued) 
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Table 2 Autonomy Levels in the Maritime Context according to Blanke et al., (2017) (contin-
ued) 

 
AL 5: Monitored autonomy. Overall deci-
sions on navigation and operation are cal-
culated by the system. The consequences 
and risks are countered insofar as possible. 
Sensors detect relevant elements in the sur-
roundings and the system interprets the sit-
uation. The system calculates its own ac-
tions and performs these. The operator is 
contacted in case of uncertainty about the 
interpretation of the situation. 

The system executes the actions calculated 
by itself. The operator is contacted unless 
the system is very certain of its interpreta-
tion of the surroundings and of its own con-
dition and of the thus calculated actions. 
Overall goals have been determined by an 
operator. Monitoring may be shore-based. 

AL 6: Full autonomy. Overall decisions on 
navigation and operation are calculated by 
the system. Consequences and risks are cal-
culated. The system acts based on its anal-
yses and calculations of its own capability 
and the surroundings' reaction. Knowledge 
about the surroundings and previous and 
typical events are included at a "machine in-
telligent" level. 

The system makes its own decisions and 
decides on its own actions. Calculations of 
own capability and prediction of surround-
ing traffic's expected reaction. The operator 
is involved in decisions if the system is un-
certain. Overall goals may have been estab-
lished by the system. Shore-based monitor-
ing. 

                
 

What we are ultimately interested in in this thesis is the level of full auton-
omy, and its’ possibility from current technological solutions from a foundational 
perspective. This level comes surprisingly fast in the hierarchy above: already on 
level four there is an expectation that the technical system has in principle the 
capacity to make and implement decisions, and the human is already receding 
from the immediate artefact to a supervisory role. It is true, however, as Schiaretti 
et al. (2017a) argued, that different subsystems in an autonomous ship are likely 
to have and develop at different speeds in terms of autonomous capacity (see 
also Williams, 2015). Furthermore, different subsystems may have different lev-
els of autonomy at different times, as when the task environment becomes too 
challenging for the system to handle, and it should relinquish autonomy to hu-
man operators in shore control centers. How the system will be built such that it 
can identify those situations is an important question by itself. At any rate, what 
the scale above combines in a rough way are on the one hand the sharing of du-
ties, or more precisely when the human operator should assume control of the 
vessel, and the corresponding capacity of the technical system to handle certain 
tasks and/or situations. But giving a categorical answer seems difficult. For ex-
ample, certain routine tasks to do with collision avoidance are quite different in 
terms of difficulty when the potential encounter is between two ships in the open 
ocean as opposed to a congested shipping lane with several ships (Rolls-Royce, 
2016). Thus, the capacity of a system to perform autonomously should be evalu-
ated against multiple dimensions simultaneously and with respect to rigorously 
specified scenarios. We should ask, for example:  
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For technical system S in scenario X: characterized by environmental complex-
ity c(E) and task complexity c(T), where c(E) refers to the unpredictability and number 
of relevant elements and variables in the environment with respect to the task, c(T) refers 
to the decision-tree complexity that results from the available moves or actions the suc-
cessful completion of the task requires as evaluated against c(E),  

the system is capable of autonomy only if the system has the sufficient capacity in 
autonomy dimensions d1 – dn (for example goals, sensing, perceiving, apperceiving, act-
ing, decision-making, etc.) which are required to complete the task in accordance to crite-
ria c1 - cn (for example safety, efficiency, rationality, higher-order goals and constraints, 
etc.). 

 
Thus, autonomy is a relative term that is subject to variation (in time and 

across contexts) based on a complex interplay between the environment, the task, 
and the system’s capacities (Williams, 2015). The benchmark and reference point 
for the capacities is, of course, the experienced human seafarer and the system in 
which he or she is embedded in.  As it is the human who is being replaced from 
the immediate vessel, it is rational for us to ask what capacities underlie the hu-
man ability to deal with particular scenarios, and how those capacities function. 
For example, it is only as a reference number that the complexity of chess is 
brought up in analyses of human thinking as they play the game, far more im-
portant and interesting is how that potential complexity is narrowed down in 
mental representations through apperception, for example (Saariluoma, 1992). 
That is, in human affairs, it is the contents of our experience that guide behavior 
and action, but that content is only partly available in the stimulus “as such”, and 
indeed in chess the colors and placement of the pieces only give a snapshot for 
the player, the point of the game being to test the player’s ability to plan, imagine, 
and apperceive to a significant degree “in their heads”. Furthermore, it is quite a 
different exercise to take one form of human activity, say the game of chess, and 
attempt to coax a mechanical system to perform well in it, than to attempt to rec-
reate the general capacity of humans to adapt and learn some rule-based form of 
life such as chess in the machine (Lake et al., 2017). Such general ability is still, 
according to expert opinion (Müller & Bostrom, 2016), at least decades in the fu-
ture. 

The question of how human beings manage the tasks they do is of course a 
difficult one to answer even if the target were only human capacities, let alone 
here where as one descends down levels of analysis with regards to a single ca-
pacity, one is likely to discover a disconnect between the ways human beings and 
artefacts fundamentally operate2. In addition, the human operator is not an iso-
lated individual but embedded in a social practice which extends the analytic 
space outside the individual to the crew, other ships, and so on. There is no guar-
antee that a reconciliation is possible in the constitutive sense, although a perfor-

                                                 
2 Opinions as to this point vary and such a “descent” is tied to one’s conceptual assump-

tions. See for example Shanker (1998) for a discussion on the “continuum picture” of human men-
tal ability vis-à-vis information processing in computers. We will address this in detail later. 
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mance-based approach is possible, and indeed typical and traditional for artifi-
cial intelligence (see for example Turing, 1950). Should we, however, find that 
the constitutive gap is unbridgeable, and that the constitution makes a difference 
with respect to the system being able to reach a certain level of performance or 
satisfy some criteria, then that would call for a re-evaluation and re-orientation 
of the principles that guide the attempt. We shall not anticipate this, but merely 
flag it as a possibility. It is nonetheless important to recognize at which level of 
abstraction the requirements translated from human capacities should be pro-
vided for engineering design. For immediate practical purposes an intermediary 
language that strikes the right balance between generality and detail is likely to 
be most useful for engineers. For longer term purposes both with respect to cog-
nitive science and artificial intelligence, the deep questions as to the differences 
and similarities between machines and organisms, the questions of what mental-
ity is, all unresolved philosophical and practical questions, need to be addressed. 
We will attempt in this thesis to take a stab at both directions.  

This brings us to a crucial distinction between constitutive and ascriptive au-
tonomy (Rohde & Stewart, 2008). Turing’s approach, with regards to intelligence, 
which can still be seen to be a guiding method in AI, was the latter. Turing (1950) 
wanted explicitly to bypass the problem of (other) minds in the sense of looking 
for constitutive characteristics of the mind or processes by which it emerges or 
the physical properties of the substrate upon which it is instantiated. His method, 
the imitation game, was to essentially allow for a level playing field between ma-
chine and man in the evaluation of intelligence given the assumption that the 
ascription of intelligence even to other humans is essentially a leap of faith itself. 
It could be said, that Turing (1950), quite rightly, felt that our ascription of intel-
ligence to a system depended, or was influenced by, the knowledge we have of 
its’ constitution. In other words, one might say that we would be biased in as-
cribing, if not intelligence, then at least mentality to a computer given the deep 
connection between life and mind that we generally intuit, see Thompson (2010) 
for a discussion on this concept. It should be said, in this connection, that Turing 
(1950) assumed that this manner or thinking was something that would be sub-
ject to change as technology progressed and the adoption of intelligent machines 
would become more commonplace. It is indeed a clear possibility that insofar as 
technology obtains human-like characteristic such as speech and naturalistic 
body movements, we humans are liable to begin ascribing mentality to them. But 
it could be argued that it is precisely at this juncture that our understanding of 
the constitutive aspects of mentality or intelligence, insofar as they connect with 
autonomy, will become a moral and pragmatic imperative. More interesting for 
our purposes, however, is the question whether even the performance of smart 
machines can cross some threshold without our understanding of the constitutive 
aspects of mentality.  
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3.3.2 Dimensions of Autonomy 

As has been indicated, there are distinct problems with assigning autonomy as a 
single property of a system. As Williams (2015) notes, no system – human or oth-
erwise – is completely autonomous with respect to its environment or even its’ 
own subsystems. Autonomy is a term that used in various ways, with various 
meanings and senses. What can generally be accepted is that in the context of 
maritime vessels, autonomy refers mostly to the attempt of replacing what was 
previously human action with artefact action. An autonomous system refers in 
this sense to technologies that have the capacity to perform tasks that previously 
required the higher cognitive abilities associated with human thinking 
(Saariluoma, 2015). The way towards this goal will likely proceed by identifying 
specific tasks and problems in the maritime context as it relates to the decision-
making and implementation on the ship’s bridge, and seeking technical solutions 
to them one by one. Our task is to map out the problem-space on a general level. 
Thus, we want to know what are the general dimensions of human cognitive 
ability that correspond to the tasks and problems which the technical solutions 
are seeking to replace. Williams (2015, 54) summarizes the key dimensions of au-
tonomy for technical systems as follows. 

 
Table 3: Key dimension of Autonomy (Williams, 2015) 
 

Autonomy dimension Definition 
Goals An autonomous agent has goals that drive its behaviour. 

Sensing An autonomous agent senses both its internal state and the 
external world by taking in information (e.g., electromag-
netic waves, sound waves). 

Interpreting An autonomous agent interprets information by translat-
ing raw inputs into a form usable for decision making. 

Rationalising An autonomous agent rationalises information against its 
current internal state, external environment, and goals us-
ing a defined logic (e.g. optimisation, random search, heu-
ristic search), and generates courses of action to meet goals. 

Decision making An autonomous agent selects courses of action to meet its 
goals. 

Evaluating An autonomous agent evaluates the consequences of its ac-
tions in reference to goals and external constraints. 

Adapting An autonomous agent adapts its internal state and func-
tions of sensing, interpreting, rationalising, decision mak-
ing, and evaluating to improve its goal attainment. 

 
Saariluoma (2015) includes in the list of human cognitive abilities pertinent 

for autonomy processes such as categorization, concept formation, learning, 
judgement and inference, decision-making, and problem-solving. Such a dimen-
sioned account clearly gives us more grasp over what autonomy entails from the 
cognitive and AI perspectives. These accord well with the general architecture of 
the ANS system described before (Rolls-Royce, 2016). It should be noted, how-
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ever, that we are now simply projecting the necessary dimensions on the archi-
tecture, without any real ground for expecting to find such “cognitive” dimen-
sions in the artefact. But if the ship is to be more than automatic, and thus neces-
sarily under human supervision, there should be some principled projection that 
takes place from these dimensions or capacities onto the ANS system or some of 
its modules.  

To deepen our understanding of what such autonomy dimensions may en-
tail, let’s turn our discussion towards a general assessment of what autonomous 
artefacts are up against from the perspective of the environment as evaluated 
against perception and cognition.  

3.4 Reality From the Perspective of Perception and Action 

One justification for the attempt of creating unmanned ships is, in addition to 
economic or ecological considerations, that it could result in an overall safer mar-
itime ecosystem. First, any disaster involving only unmanned vessels would 
cause no human casualties, and second, since human error is a major cause of 
maritime disasters (Chauvin & Lardjane, 2008), the hope is that perhaps a well-
enough designed autonomous ship could avoid such disasters. But whereas hu-
man error, resulting perhaps from fatigue, incorrect situational awareness, in-
complete or false information, or the limits of perceptual and cognitive systems, 
is a well-studied phenomenon (Endsley, 1995, 2015), the types of errors resulting 
from the decisions made by an artificial intelligence are less well understood3. 
This would be doubly the case if the ship’s intelligence would be the result of a 
neural network, whose complexity and inscrutability rises as a function of their 
effectiveness. Indeed, according to MIT professor Patrick Henry Winston, “no 
one knows what the neural nets are doing”, and “a cottage industry has emerged 
where researchers try to fool neural nets” (Winston, 2016). See figure below for 
an illustrative example. 

 

                                                 
3 Or perhaps more accurately, they are more alien to us. Take perception for instance. Alt-

hough machines have surpassed human accuracy in image classification tasks (Shoham, Perrault, 
Brynjolfsson, & Clark, 2017), the types of errors they make are rather telling. A small ant on a 
blade of grass, or a human face put through effects gives humans no trouble – but a neural net-
work simply can’t recognize the forms under these unfamiliar distortions. See also Nguyen, 
Yosinski, & Clune (2015). 
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Figure 5 High confidence predictions from DNNs in images unrecognizable to humans. 
From (Nguyen, Yosinski, & Clune, 2015). 
 

On the other hand, control algorithms of a simple deterministic nature (automatic 
in our language) are unlikely to be effective in a complex-enough environment, 
such as the sea, and more sophisticated systems, even traditional software, can 
easily become inscrutable and thus may carry the possibility of disastrous hidden 
error.  It would be wrong to assume that the automation process of ships moving 
and interacting with the environment would be solvable from the paradigm of, 
say, factory automation where the process can be well-defined and broken into 
distinct phases, and the environment closely controlled. Indeed, the machines 
operate often in complete darkness and humans are not allowed into the factory 
floor. Nor would such be anything like autonomy in the sense we are investigat-
ing. The devil, as is often said, is in the details, but it may also be within the nature 
of the system. Any system used to implement autonomous decision-making and 
steering on a ship needs to be scrutinized down to its’ minute details, and its’ 
decision-making processes made explicit, but since no such system exists in im-
plementation, we will approach the question from a broader angle, and in the 
process re-state age-old foundational questions that lay at the roots of AI (Artifi-
cial Intelligence). 

From the perspective of environment and action, what are autonomous 
technical artefacts up against, generally speaking? It can be argued that a central 
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aspect of human cognition that sets it apart from machines, and to some extent 
other animals, is its’ selectivity (Saariluoma, 1992; Saariluoma & Rauterberg, 
2016). This selection is achieved against a reality that is in principle inexhaustible 
in terms of interpretations (Peterson, 2013; Saariluoma, 1992). Consider the exam-
ple before of high-confidence interpretations by neural nets. The nets are picking 
up some pattern in the image but they clearly have no understanding of what they 
are seeing from a human perspective. They do not see. Our perception is tuned to 
a level of reality roughly corresponding to our biological inheritance, that is 
graspable objects, other beings, places of shelter, sources of food, often referred 
to as affordances (Gibson, 1966). We easily take for granted how much we con-
tribute in terms of innate organizing principles, for example causality (Lake et al., 
2017; Marcus, 2018).  

But the patterns which we can identify are to some extent malleable, and in 
certain cases seemingly arbitrary, such as chess (Saariluoma 1992, 1999). We can’t 
perceptually tune in to the patterns active at the atomic, chemical, or cosmic 
scales, but we can think about and apperceive such patterns and build instru-
ments that can perceive or seek to establish if such patterns exist in reality. Per-
ception is intimately tied up with action (goal-directed behavior). But action com-
plexifies the picture even further. For example, given twenty possible moves to 
be executed over a series of ten actions the exhaustive examination of all possible 
combinations would correspond to a number with thirteen zeroes (Saariluoma 
1992). This is nowhere near the processing capacity of human beings, and yet 
such series of actions are hardly uncommon. What this means is that human in-
formation processing is heavily selective and can capture larger swathes of real-
ity within manageable limits, in service of actions and goals. Indeed, it is our very 
capacity to perceive the world in different ways depending on our goals that, so 
far, marks man apart from machine.  

The relevance from the perspective of the design of autonomous artefacts is 
clear. However human beings manage this feat of selection is likely to be informa-
tive for the design of intelligent artefacts. But consider a classic benchmark in 
artificial intelligence, when Deep Blue won against Garry Kasparov in chess. 
From the perspective of the task (of playing chess) the result is undeniable. But 
from the perspective of AI, the solution to the problem was not even close to the 
methods of human problem-solving. The way human beings capture relevant 
patterns in a board of chess (Saariluoma, 1992), is rather different than the meth-
ods employed by Deep Blue. This is not to deny the feat as remarkable. But one 
should bear in mind that chess is in terms of rules is a constrained space that can 
be absolutely determined. The relatively few moves and pieces, still, yield a com-
plexity (of variations) for the game on the order of 10120 (Shannon, 1950). What 
about close encounters among multiple ships in congested settings? We shall not 
attempt a precise calculation here, if such is even possible in principle (which is 
a part of the problem). But if we account for the ships possible movements 
through six degrees of freedom and hypothesize an encounter between say four 
ships, some of which are autonomous, others human experts, and some amateur 
sailors that may (or may not) follow the maritime rules of the road, COLREGS, 
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themselves somewhat ambiguous, we can quickly intuit that the problem space 
from a machine perspective tends towards the complex. Complexity is almost by 
definition outside what can be decided by calculations, and one is therefore 
tempted to say outside the capacity of computers, insofar as the central require-
ment for algorithms is unambiguity. A fundamental concept for computer sci-
ence is that a set of rules (the program) unambiguously specifies certain processes 
which can be carried out by a machine processor built in such a way as to accept 
these rules as instructions determining its operations (Boden 1987, 7).  

The central issue at stake is not that human beings have more “calculating 
power” “in their brains”, but that the immense selectivity of human thought is 
qualitatively different from a formal model by which a machine must operate. 
Human beings, especially experts, can quickly narrow a situation to a few relevant 
patterns, and act based on that (Saariluoma, 1992, 1997). The fact that we can tune 
in to a system as artificial as chess, speaks to the flexibility and hence non-pro-
grammatic quality of our thinking, not to mention our capacity to create such ar-
bitrary games. The human capacity to create and follow rules needs to be appreci-
ated and understood as a crucial difference between us and machines (Shanker, 
1998). Post-hoc, we may identify those patterns and (in principle) construct pro-
grams built around them, yielding software somewhat capable of dealing with 
the exact same situation. But what if the situation changes, and how much can it 
change for the same program to still yield satisfactory results? This is an empiri-
cal question to be settled on a case by case basis, but the relevance for our larger 
discussion is that the capacity that should be instantiated in the machine is not a 
rigid behavior pattern only, which is automation in our definition, but a selection 
and an adaptive application of a general pattern in a rational manner. The latter 
is the mark of autonomy, and the distinction between automatic (rigid, pre-spec-
ified) and autonomous – linked as though they may be – becomes apparent once 
again. 

3.5 Summary 

The attempt of this section is to orient ourselves around the topic of autonomy in 
general, and in the context of maritime vessels. We began with a relatively prag-
matic and descriptive assessment of the vision for autonomous ships, as laid out 
in the AAWA project (Rolls-Royce, 2016). The vision for the project was seen as 
relatively modest and realistic given current state of technology. Our discussion 
of the themes of autonomy in general lead us however to consider what the lim-
itations of a grander vision of autonomy might entail given that it may feed into 
our desire to understand the way human-work interaction or sharing of duties 
should be laid out in the foreseeable future.  

The main message was to establish a link between cognitive processes in 
man and autonomy in the sense we define the term: as the capacity of a system 
to self-determine its’ behaviors in accordance with goals and the state of the en-
vironment. Insofar as autonomy entails the replacement of human thinking from 
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the technical system, it becomes inextricably linked with artificial intelligence. As 
soon as this move is introduced, it opens up many difficult problems in cognitive 
science and artificial intelligence as they pertain to the unique characteristics of 
the mental.  
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4 ARTIFICIAL INTELLIGENCE 

In the last section, we concluded that autonomy proper, as opposed to merely 
unmanned and automatic, requires the instantiation of certain key dimensions in 
the artefact. These, in turn, have a distinct cognitive, mental, and intentional char-
acteristics. Thus, proper autonomy requires something like artificial intelligence. 
The purpose of this section is to examine foundational issues around machines, 
computers, and artificial intelligence to get a better grasp on the operating prin-
ciples and concepts upon which AI is building.  

4.1 General Introduction 

The original question, 'Can machines think? ' I believe to be too meaningless to deserve 
discussion. (Turing 1950, 442) 

These lines are from a seminal paper on artificial intelligence, Alan Turing’s 
“Computing machinery and intelligence” from 1950. Yet Turing continues, 

Nevertheless, I believe that at the end of the century the use of words and general 
educated opinion will have altered so much that one will be able to speak of machines 
thinking without expecting to be contradicted. I believe further that no useful purpose 
is served by concealing these beliefs. The popular view that scientists proceed inexo-
rably from well- established fact to well-established fact, never being influenced by 
any unproved conjecture, is quite mistaken. Provided it is made clear which are 
proved facts and which are conjectures, no harm can result. Conjectures are of great 
importance since they suggest useful lines of research. (Turing 1950, 442) 

According to Poole and Mackworth (2010) the field of artificial intelligence is “the 
synthesis and analysis of computational agents that act intelligently”. Agent here 
simply means an actor, someone or something which does something in an envi-
ronment, but such that its actions can be characterized as intelligent: its’ behavior 
is appropriate with respect to the environment and its’ goals, it learns from expe-
rience and adjusts its goals and behavior flexibly. The computational part means 
that AI builds on the fundamental operating principles of computers, while also 
expanding those principles to include human information-processing, much like 
the mainstream of cognitive science (Thagard, 2005). The engineering goal of AI 
is to design and build intelligent systems for human purposes (Boden, 1987). The 
scientific goal of AI is to be a kind of science of intelligence in general (Boden, 
1990): to understand the principles that make intelligent behavior possible in nat-
ural or artificial systems (Poole & Mackworth, 2010). As Drew McDermott (2007) 
put it, AI and cognitive science get their ideas from fields like computer science, 
psychology, linguistics, neuroscience, and philosophy and give back systems and 
models of information-processing that indicate whether those ideas work. In a 
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way, you could say that AI is in an interesting sense the empirical part of cogni-
tive science, at least insofar as we refer to the (traditional) part of cognitive sci-
ence that posits computations and representations as the fundamental operating 
principles of mind (Frankish & Ramsay, 2012;  Newell & Simon, 1961; Thagard, 
2005). To grossly overgeneralize to make a point, the fundamental approach of 
cognitive science, if it to be taken as more than a metaphor or method of modeling, 
is at stake in AI – or at least the limitations thereof.  

The posing of the problem of intelligence in the context of actually attempt-
ing to achieve it by modeling, testing, and implementing it in computational sys-
tems lead to an exciting time in the science of mind and intelligence (Abrahamsen 
& Bechtel, 2012). Concurrently with AI a new discipline called cognitive science 
took the same core ideas of information-processing and computations towards 
understanding mentality in humans. 

The history of AI that followed is one of high ambition and exaggerated 
expectation, followed by disappointment and increased appreciation (in a gener-
ation) of the magnitude and difficulty of creating human (or even animal) level 
intelligence in a machine (Dreyfus, 2012). But the wheel turns, and it seems that 
this time, we have the right ideas and tools to make for that final last mile towards 
genuine AI. Anyone following the press and media over the last couple of years 
can’t have failed to note that we seem to be in such an age once again (Lewis-
Kraus, 2016). Being in this age feeds into many different attempts, importantly 
for us into the attempt at creating autonomous technology, such as unmanned 
ships. There are three advances which have led and fueled current enthusiasm 
over AI: the availability of big data; improved machine learning approaches and 
algorithms; and more powerful computers (National Science and Technology 
Council, 2016). 

The roots of AI can in part be traced to a seminal paper by Warren McCul-
loch and Walter Pitts (1990), which introduced the idea of formal neurons based 
on the principles of Boolean models4. This, in turn, directly influenced von Neu-
mann and subsequently became the basis for the logical design of digital com-
puters (Boden, 1990). Indeed, the common birthright of both so-called traditional 
symbol-processing models and connectionistic (neural network) models in AI are 
to be found in the McCulloch and Pitts paper (Boden, 1990).  

The term artificial intelligence was coined by John McCarthy in a proposal 
for a research project to take place during the summer of 1956 at Dartmouth Col-
lege in New Hampshire, USA (McCarthy, Minsky, Rochester, & Shannon, 1955). 
The study was “to proceed on the basis of the conjecture that every aspect of 
learning or any other feature of intelligence can in principle be so precisely de-
scribed that a machine can be made to simulate it.” Some 60 years later, this con-
jecture remains a conjecture and the ambitions set forth by McCarthy and his 
colleagues remain unfulfilled. Indeed, McCarthy (2007) later noted in a review of 

                                                 
4 It is less well known however, that the roots of neural nets trace back further to Nicolas 

Rashevsky, the founder of the journal, Bulletin of Mathematical Biophysics, in which the original 
article was published (Cull, 2007).  
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problems towards genuine AI how common-sense informatic situations charac-
terized by ambiguity and vagueness presented the greatest challenge for AI. A 
perhaps reasonable modification of the (satisfyingly, one might add) bold state-
ment given what has been achieved might go something like: “some aspects of 
learning or intelligence can be so precisely described that a machine can be made 
to simulate them”. The question that looms is which aspects, and therefore what 
are the limits of machines? For even as our understanding of the problems of AI 
have been brought into sharper focus (see McCarthy, 2007), the fundamental op-
erating principles of computers have not changed.  

4.2 Shared history of AI and Cognitive Science 

It may not be obvious to all readers that cognitive science, computer science, 
and artificial intelligence all share a common and intertwined history. The clas-
sical computational-representational view of cognition is derived from the pio-
neering work on computers by Turing and Von Neumann (Fodor & Pylyshyn, 
1988). A.I based on rule-governed manipulation of formal symbols as exempli-
fied in classical computers is often (rather derogatorily) referred as GOFAI, short 
for good old-fashioned artificial intelligence (Boden, 1990). According to Boden 
(1990) both GOFAI and connectionism (or neural nets) trace their lineage to a 
seminal 1943 paper by Warren McCulloch and Walter Pitts (McCulloch & Pitts, 
1990) which synthesized ideas from the neurons of the brain, the computable 
numbers of Turing, and the work on propositional calculus by Russell and White-
head (Boden 1990, 3). The significance is that both GOFAI and connectionism are 
theoretically grounded in Turing’s paper on computable numbers, which defined 
computation as the formal manipulation of symbols, by an application of formal 
rules (Boden 1990, 4). While perhaps not representative of cognitive science today, 
fractured and diverse as it is, in the early days AI was seen as “the glue that 
would bind together such diverse fields as psychology, linguistics, anthropology, 
neuroscience, and philosophy under the umbrella of cognitive science” (Shanker, 
1998). 

Cognitive science arose as a response to two things: behaviorism as a para-
digm in psychology and computers as an invention. Cognitive science reacted 
against the mindlessness of behaviorism, and took the principles behind comput-
ers as the implementation method for mind: logic, data, and algorithms that were 
realizable on any physical platform. Generally speaking, cognitive science at-
tempts to explain our mental life by positing mental representations that have se-
mantic contents and computational processes that operate on them (Frankish & Ramsay 
2012, 34). By seeing the mind as a computational system, an idea derived from 
the structure of Turing and Von Neumann machines (Fodor & Pylyshyn, 1988) 
cognitive science is ready to equivocate, on a general level, computers and brains 
in the sense that both of them are systems that process information. A bold example 



38 

of this idea is found in Newell and Simon (1976): for them the mind is a compu-
tational system; the brain literally performs computations; and these are identical 
to those that could occur in computers.   

It is important to note, that cognitive science is attempting to penetrate un-
der the surface of what we would call our folk-psychological notions of say, cats, 
dogs, or mathematical equations. It is precisely to do this that the field posits 
mental representations and information processes under the “surface” of our ex-
perience, since it is at that level that we may discover the impersonal, non-idio-
syncratic, or in other words scientific processes that underlie our experiences 
(Von Eckardt, 2012). This level of analysis should then be able to do two things: 
first, connect with our personal experiences in some principled manner, and two, 
be analyzable as the atomic structure of mental life which operates by simple, 
perhaps even mechanical, rules that lack the intelligence which we attribute to 
ourselves as a whole (Shanker, 1998).  

The way AI fits into the picture (as a theory of mind) is by positing simple, 
mechanical steps which lack intelligence in themselves, combining them into 
modules, programs, and software which each stand for the mind-brain at some 
level of abstraction. Thus, the steps in the program become the interface between 
the mind and the brain, and the program as a whole becomes the mind, or at least 
a theory of its architecture. What AI can then offer is a precise description of the 
sub-personal processes that cognitive science is seeking to understand —given, 
of course, that the assumptions are true.  

The basic assumption shared by both AI and cognitive science is this: once 
you drill down beneath the surface of everyday folk-psychological concepts and 
indeed our experiences, you will find vast and fast moving arrays of simple, me-
chanical computations that are in themselves meaningless and unintelligent. Ac-
cording to this view, mental life is characterized by a sort of continuum which 
extends downwards into simple mechanisms and which we share among other 
animals (and machines), ours being simply a more sophisticated form of the same 
fundamental principles. According to Shanker (1998, 50) in this view the follow-
ing statements would share the same lineage: the thermostat clicked on; the 
leaves of the plant turned towards the sun; the pigeon pecked the yellow key in 
order to get a food pellet; Kanzi pressed the drink lexigram in order to get a drink; 
S has learned to play the Toccata and Fugue in D-minor. They are all similar in 
kind, and only distinguished by their ascending mechanical complexity. In an 
illustrative example of the continuum picture, it has been said (Shanker 1998, 135) 
that “the psychologists goal must be to deliver a complete (literally gapless) de-
scription of the causal connections that govern the total course of intellectual 
and/or motor processes in problem solving.” Thus, the gaps that human beings 
exhibit as they describe their own thought processes in verbal protocols are taken 
to be evidence for the hidden, underlying, subconscious processes that underlie 
thought. Thus,"the epistemological framework underpinning the mechanist the-
sis is the premise that there is a gap between input and action in the exercise of 
an ability which must be bridged by a series of internal operations" (Shanker 1998, 
59). In other words, “if the agents brain is seen as some sort of a computational 
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information-processing device, then the fragmentary evidence presented in the 
subjects verbal protocol must be treated as the conscious elements of a mental 
program whose underlying operations are pre-conscious, ie inaccesible to intro-
spection, but inferrable from the corresponding steps in a computer program that 
is mapped onto the protocol.” (Shanker 1998, 71, emphasis added). Thus Turing’s 
question, “can machines think?” actually becomes whether “thought can be me-
chanically explained”. To the extent cognitive science follows this assumption, it 
will eventually have to deal with how mechanical explanations can be combined 
in such a way that it can explain (not explain away) all facets of mental life, and 
ground them in a robust manner. The emphasis on “pre-conscious computations 
and information processes” almost by definition turns conscious intentional 
mental life into a problem to be explained by the methods outlined before. This is 
a serious handicap, given that it is perhaps the central aspect of (mental life). As 
Fodor (1985) noted, it may be that whenever semantic (as opposed to syntactic) 
or global (whole integrated information) features of mental processes appear, the 
limits of Turing-style computational rationality become apparent – and what lies 
beyond those limits is not a problem, but a mystery, given current state of under-
standing. 

4.3 The Computer 

It can be said without much speculation that the most viable artificial system for 
implementing intelligent or quasi-intelligent behavior is the computer. We will 
focus on digital computers, given that they are the kinds of computers usually 
used and most widespread.  

Computer science is, as Aho and Ullman (1994) put it, the mechanization of 
abstraction: the attempt to model certain information-processing problems and 
devising mechanizable techniques to solve them. While computers are often said 
to process information, it is perhaps more accurate to approach their operating 
principles from the perspective of data and algorithms. The term information is 
used in many senses and it is not exactly wrong depending on context to say that 
the computer processes information, but it should be noted that information in-
sofar as it connects with meaning is better reserved for systems that can without 
a doubt be said to have capacity for meaning, namely human beings in this con-
text. The processes of the computer are information-processing only to the extent 
that the process and results thereof make sense within the context of human af-
fairs: a computer churning out calculations in a dead universe exhibits only or-
derly physical change as specified by its’ mechanisms. This is more than mere 
semantic conservatism (or atavism as one might have it). The operating princi-
ples and essential nature of the computer can get lost in the fog if certain onto-
logical commitments are not adhered to. As we will see, mechanization, abstrac-
tion, data, and algorithms are extremely useful terms to get a handle on what the 
computer is and what it does. Furthermore, the mold into which intelligence is 
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to fit, if it is to fit in a computer, may be leaving out parts that are essential for 
the whole endeavor. 

The particular kind of machine used in AI is the digital computer. The elec-
tric operations of the computer are directed by a binary machine code that is fur-
ther abstracted into algorithms and functions in programming languages, which 
help humans operate and write programs for computers. The computer only ‘un-
derstands’ machine language - programming languages are collections of short-
hands and abstractions that have been developed for human convenience. An 
algorithm consists of a set of rules, which are all of the same, trivial, complexity 
which together yield a specific output from a specific input (Dym & Brown, 2012; 
Shanker, 1998). Programs tell computers what to do: A fundamental concept for 
computer science is that a set of rules (the program) unambiguously specifies 
certain processes which can be carried out by a machine processor built in such 
a way as to accept these rules as instructions determining its operations (Boden 
1987, 7). Thus, computers exhibit a hierarchical and modular structure: the foun-
dational electro-logical operations are both interpreted and directed by the pro-
grams, which in turn have different levels of abstraction. The computer hardware 
is also modular, with different components taking on various roles and functions 
in the operations of the whole: the hard-drives store long-term data, RAM acts as 
the short-term “memory”, the central processor directs and computes the various 
strands of computations, etc. Computers are not exactly calculators, rather they 
manipulate symbols. A symbol is an inherently meaningless cipher that becomes 
meaningful by having meaning assigned to it by a user (Boden 1987). The differ-
ences among computers, say a Mac and a PC, lie in the specifics of the machine 
language, architecture, and hardware. They do not however differ in their fun-
damental operating principles.  

4.3.1 The Mechanization of Abstraction 

The jig is essentially up from the perspective of strong AI (Searle 1980, 1984, 1990) 
already with our first definition, the mechanization of abstraction. Many would 
cling to the word mechanic and might argue against the proposal that human 
thought predicated on biological functioning is essentially non-mechanistic at 
least to a considerable degree. We will focus rather on the term abstraction, be-
cause something like mechanisms are clearly found in biological systems, and 
furthermore mechanism need not be conceived of as exactly mechanistic or deter-
ministic (Bunge, 2004). According to Bunge, a mechanism can be conceived of 
simply as that which makes some system “tick” be it an economic, social, mental, 
or metabolic. Abstraction, on the other hand, reveals more clearly the role of hu-
man beings in the operations. It is important to understand that the weakness 
and power of computations are one and the same: they are achieved by a process 
of abstraction that leaves only the algorithmic processes in place (Saariluoma & 
Rautenberg, 2015) and jettisons the contents. To the extent a process of human 
thought can be described precisely as a token-manipulation process, it can in the-
ory be simulated on a computer. The computer does not understand the meaning 
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at any stage of the process, but upon human evaluation we can judge the end-
result to be correct or the steps in the computation to be plausible as a psycho-
logical model. The problem is, of course, that human thought can’t be fully de-
scribed as a formal system, because a formal system is predicated on the idea that 
given a set of axioms, one can “reason” within the formal system purely mechan-
ically, and no intelligence or understanding is needed (Shanker, 1998). Even if 
you would have a multitude of different formal systems (frames or scripts) for 
different situations, you would still need some way of deciding which one is rel-
evant for a given occasion, and such a procedure would imply infinite regress if 
your only method for the decision are more formal rules (Dreyfus, 1972). Thus, 
the question of relevance and even truth always seems to move at right angles in 
regards to formal systems, it seems to imply “a view from the outside” (Penrose, 
1990). Thus, the question is whether the ideas of AI (and cognitivism) can be used 
to ground mental life as a whole and be derived from those premises? Or are for-
mal systems just a footnote to the list of capacities of human minds – irrespective 
of whatever intrinsic properties they may have outside of human psychology? 

The powerful advantage (powerful enough to be a shortcoming in some 
contexts) of attempting to instantiate intelligent behavior in computers is the ab-
solute rigor and lack of vagueness demanded by the platform (Dym & Brown, 
2012). The set of rules must be unambiguously defined for the machine processor. 
Thus, you can’t really fool your way with computers, a thorough understanding 
is needed of the requirements of a particular class of required behavior, and also 
the constraints imposed by the computer by its’ very operating principles. An-
other powerful advantage (and shortcoming) of using the computer is that forces 
“banal information”, information we take for granted phenomenologically, to the 
surface (Dennett, 1990). This is due to the simple reason that the computer starts 
at-zero, it has no knowledge of the world and every required item must be some-
how impressed upon the computer either by a prescient programmer or a learn-
ing algorithm of some sort. It is truly a tabula rasa. This is far from being a trivial 
problem, perhaps easily disguised as such due to the seeming ease with which 
we make us of “banal information” in certain contexts. We easily take abstrac-
tions such as events, actions, objects, and properties for granted (Veres, Molnar, 
Lincoln, & Morice, 2011) and wrongly assume that such boundaries are given by 
the environment or the stimuli thereof. The problem of how goals and context 
narrow and define our perceptual world and guides our action, comes home to 
roost in AI, precisely because nothing can be taken for granted without inviting 
trouble down the line. In a recent critique (of deep learning, a technique in AI) 
Gary Marcus (2018) pointed out how even our most sophisticated pattern recog-
nition software has trouble generalizing beyond the dataset on which they’ve 
been trained. But with a human being, we can be at least in some sense sure that 
if they are given some instructions, the mistakes they would make would more 
likely be a case of fatigue or misguided attention, rather than some completely 
for us alien mistake such as not recognizing an object as a person only because 
the angle is such that we have never seen it before. The analytical problem is that 
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computers can’t make mistakes due to their deterministic nature. Computer pro-
grams may have bugs, unexpected results issuing from perhaps mistakes by the 
programmers or having overlooked some aspects of the context of the computa-
tions, but it is not strictly speaking correct to speak of the machine as making a 
mistake. This presupposes a flexibility that is afforded to human mental proper-
ties, such as rule-following and mental representations (Shanker, 1998).  

To put the problem succinctly, a computer or a computer program do not, 
as a formal-syntactic system, determine the extension (the contents) of the sym-
bols over which the operations are defined (Shagrir, 2005). This requires an ob-
server who can assign meaning to the symbols. This assignment can’t be made 
from within the formal-syntactic system (Rosen, 1999), as there are no system 
internal methods of escaping “the Chinese room” (Searle, 1980).  

4.3.1.1 John Searle, the Chinese Room, and Hubert Dreyfus 
 
Along with Turing’s (1950) imitation game, perhaps the most famous 

thought experiment in AI is John Searle’s Chinese room (1980, 1990). Searle 
sought to criticize what he called the Strong AI thesis. In contrast to Weak AI, 
which was the philosophically relatively unproblematic task of seeking under-
standing of mental processes by modeling them on a computer, or building 
quasi-intelligent software to fulfill human needs, Strong AI proceeded from the 
thesis that there was literally no difference between a computer and a brain. Con-
sequently, the right program backed with sufficient computing power would be 
literally a mind, no different in essence from the human mind. Searle’s argument 
was, however, not based on any limitations of algorithms or computing power, 
but on the conceptual difference between syntax and semantics. Syntax refers to 
the form and the rules that govern a language. Semantics refers to the study of 
the meanings and systems thereof corresponding to language. In the Chinese 
Room, a human being without knowledge or understanding of the Chinese lan-
guage sits before a bowl of Chinese symbols and a complicated rulebook. From 
outside the room, native Chinese speakers are asking questions by passing Chi-
nese symbols into the room. The task of the person in the room is to match the 
incoming symbols, based on the rulebook, to other symbols in the bowl in front 
of him. Supposing the rulebook is sufficiently complex and thorough, and the 
Chinese people outside the room are satisfied with the answers, are we now in 
the position to say that the person in the room understands Chinese? Searle re-
plies that it would be absurd to make such a claim. The whole process was simply 
matching meaningless symbols to equally meaningless rules without any seman-
tic understanding of the contents of the language. Now comes the crux of the 
argument from the perspective of AI. For Searle, a computer operates solely on 
syntax. It is nothing but a complicated rulebook. Therefore, if syntax is not 
enough to explain semantics, and if the computer is a syntactic system, it follows 
that the computer doesn’t experience meaning, and strong AI is impossible (see 
also Harnad, 1990).  

A typical response to Searle has been to say that while the thought experi-
ment may show that the central processor does not understand Chinese, the 
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whole room, including the Chinese people outside does (Searle, 1980). But this 
does not reduce the force of the argument which predicated on the question 
whether syntactic operations suffice for semantics. Identifying meaning in the 
whole room simply displaces the location of the meaning, but does not provide 
an explanation as to how meaning comes about, and given that computers func-
tion by syntactic operations, there is no way to circumvent the argument by these 
means. One can’t escape from a formal-syntactic system by applying more formal 
rules (Rosen, 1999), as it this implies an infinite regress (Dreyfus 1972, 2012) or 
else a positing of a homunculus at the end of interpretation, which will not do as 
an explanation of the semantics of the system.  

Hubert Dreyfus was one of the original (1972) and, along with John Searle, 
most famous critics of AI. A Heidegger scholar and a phenomenologist, Dreyfus 
presciently identified certain tacit philosophical assumptions underlying the AI 
attempt, which according to Dreyfus the AI community was importing without 
the corresponding historical critique, and thus dooming the attempt to a failure. 
Dreyfus identified four corollaries stemming from the assumption that man func-
tions like a general-purpose symbol-manipulating device (1972, 68): 

1. The biological assumption that the brain processes information in dis-
crete operations by way of a biological equivalent of on/off switches. 

2. The psychological assumption that the mind can be viewed as a device 
operating on bits of information according to formal rules. 

3. The epistemological assumption that all knowledge can be formalized 
such that whatever can be understood can be expressed in terms of log-
ical relations. 

4. The ontological assumption that what there is, is a set of facts logically 
independent of each other. 

The core problem, according to Dreyfus, is that the attempt to build a sys-
tem that acts meaningfully up from a ground of some primitive units, sense-da-
tums, bits, or independent logical facts will eventually run aground if they thus 
attempt to construct the world of meaning from those atomic facts. The problem 
is that meanings are not in those objects nor in the assembly of those objects. For 
Dreyfus, meaning was prior.  

The crucial aspect of the argument for this thesis, is that syntax, rules, com-
putations, or atomic facts do not ground mentality. The ground of mental life is 
in meaning, however dim in the beginning of organic life (Jonas, 2001), which is 
subsequently elaborated into forms that acquire syntactic properties. How it is 
grounded in organic life is by integration that subsequently differentiates, not 
differentiation that subsequently integrates. Thus, there are reasonable ground 
for saying that the quest of AI is approaching the problem the wrong way around. 
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4.3.2 Algorithms 

An algorithm is “a precise and unambiguous specification of a sequence of steps 
that can be carried out mechanically” (Aho & Ullmann, 1994, 5). As Deacon (2013) 
notes, and as we have implied, the power of algorithms and by extension com-
puters in the inherent agnosticism towards meaning it has. The power of mathe-
matics or logic is in the fact that the syntactic properties of some kinds of reason-
ing processes are enough to describe it. The contents can be changed and injected 
into the framework and the algorithm will churn out the correct answer. Of 
course, a world without semantic contents is quite impoverished, but based on 
the operating principles of computers, such is the world they inhabit, indeed must 
inhabit (Rosen, 1999). One might argue with some reason that computers do ex-
hibit a kind of semantics when, for example, a neural network is trained to rec-
ognize some patterns in datasets which we associate with contents, dogs and cats 
for example. Such quasi-semanticity can suffice for some tasks, to be sure, but it 
is not an argument from first principles as we have attempted. Furthermore, the 
limitations of such systems become apparent not only as technical, but as foun-
dational problems, in the kinds of mistakes made by so-called deep neural net-
works. Indeed, according to MIT professor Patrick Henry Winston, “no one 
knows what the neural nets are doing”, and “a cottage industry has emerged 
where researchers try to fool neural nets” (Winston, 2016). See figure 5 on page 
30 for an illustrative example.The limitations of computer systems in what might 
be called meaning or semantics needs to be taken very seriously. We have made 
the argument here that the problems are not only technical, but go deeper into 
the foundations.  

To take a view from “a believer”, and as the reader will recall the person 
who coined the term artificial intelligence, let us turn to a sober review John 
McCarthy penned in 2007. According to the paper, the major obstacle between 
technology at the time and human-level AI could be captured under general ca-
pacity to succeed in common sense informatic situations. Such situations are dis-
tinguished from bounded informatics situations by the impossibility of determin-
ing beforehand what counts as relevant fact, and that the facts themselves may 
be incomplete (McCarthy, 2007). The formalization of situations such that tradi-
tional approaches in AI and computer science yield satisfactory results is prob-
lematic, given that real-world situations are not often bound by rules. Rather, 
rules in a domain constrain behaviors and afford regularity and predictability, 
but it is not correct to say that human behavior is determined by the rules, as the 
case would be for the machine. Preliminary studies (forthcoming) conducted on 
the thinking of experienced ship captains seems to indicate that rule-based be-
havior is ascribed to others and adhered by the seafarers based on extremely con-
text-sensitive understanding, and the rules are there to provide some structure 
and tools for decision-making, but hardly fix it. Thus, as opposed to a bounded 
information situation like chess (Saariluoma, 1992) which can be turned into a 
computational exercise, it seems possible that autonomous ships determined by 
ironclad algorithms are liable to be worse than stupid in dynamic common sense 
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demanding situations. Of course, it may be that it will be the human understand-
ing which will simply incorporate understanding of the behavior of autonomous 
ships, but this seems to argue for turning the artefact into “not even stupid”, 
given the predictability the would then entail. 

The basic problem is this: computer science requires a formal blueprint of 
what is to be achieved (a function) in order to be implementable at all. This means 
that the designers abstract out a form of human life of regular action and then 
cast it down, so to speak, into a causal mechanism. What is left outside is the 
middle level, the contents and senses from which the abstraction took place. Be-
cause there are no actual contents guiding the behavior of the machine, there is 
an extraordinary pressure and need for fine detail in the other levels. It seems 
both obvious and unsatisfactory to say that our behavior is guided by the con-
tents of our experience. It is obvious to us, but it seems unsatisfactory from a 
scientific perspective to take them as givens. As Dennett (1990) noted, the so-
called frame problem of how certain patterns acquire relevance for the system is 
due to the fact that a computer “starts at zero”, with no intrinsic understanding 
of relevance in the world, the achievement of AI rests on the ingenuity and atten-
tion to detail from the human programmer. Ultimately this displacement of “real 
intelligence” to the human creator in this sense makes the systems brittle, but also 
even at best merely clever software. These kinds of methods cannot yield intrinsic 
intelligence, and by extension, autonomy. 

An understandable rebuttal against our discussion is, as Boden (1989, p. 50) 
notes, is that an algorithmic picture of intelligence need not imply anything like 
a simple sequential process. The differences, in this view, are in the various 
higher-level techniques employed, such as connectionistic architectures as op-
posed to more traditional AI approaches (such as Newell & Simon, 1961; 1976). 
But which technique is best for computing a particular function is a different, 
technical discussion, than the foundational issue we are targeting. Indeed, many 
algorithms, some more efficient than others, can be devised to implement a 
particular computation (Marr, 1990), indicating how content and algorithm are 
somewhat irrelevant for each other. But there is no principled argument, other 
than by assumption, of how from unambiguous mechanical steps emerge 
meaning and significance if those are not parasitic on human understanding. 

4.4 The Cognitivist Inversion 

In order to contextualize the presuppositions outlined before, let us now turn to 
how the computational-representational picture of intelligence has played out in 
cognitive science. In the cognitive sciences, mental processes are often defined as 
computations over mental representations (Frankish & Ramsay, 2012; Thagard, 
2005). That is, rather than considering computations as a sub-set of mental pro-
cesses, the cognitivist inversion places computations as the foundation of mental 
processes (Kary & Mahner, 2002; Searle 1990b). This view has deep roots going 
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back to Turing (1950, see also, Shanker 1998), and beyond to the ideas of Des-
cartes, Hobbes, Leibniz, Frege, and Russell (Dreyfus 1972, 2012). As articulated 
by Thagard (2005), the conglomeration of these views leads to a complex three-
way analogy between the mind, the brain, and the computer. If the mind is to the 
brain as software is to computer, and if both are at bottom doing computations, 
a specific case of the thesis of multiple realizability (for an overview see Bickle, 2016) 
follows. That is, it is possible to fully recreate mental processes on computers, 
and therefore that strong AI (Searle 1980, 1984) is possible in principle by the 
methods afforded by Turing-machines.  The notion that ties these concepts to-
gether is that computers and mind-brains are similar in the sense that both are 
systems that process information.  

But are we justified in saying that mind-brains are at bottom computing? 
And is “information processing” anything but a “suitcase term”, designed to 
hold and package somewhat disjointed notions together? Searle (1990b) has ar-
gued that cognitive science seems to posit a computational-representational level 
somewhere between the physiological processes of the brain, and the subjective 
experiences we all seem to have, and that this new level seem arbitrary and con-
fusing. How would we differentiate between the computational processes of the 
brain as a biological organ on the on hand, and that of say, digestion on the other? 
Any process can be described as a computation, but that does not mean that it is a 
computation. The reason why foundational assumptions behind the attempt to 
instantiate intelligence in machines were not clearly seen was that they matched, 
and still do perhaps, so perfectly with the syntactic formalism that underlies 
modern science (Heinämaa & Tuomi, 1989). 

We have sought to make the case that it is unlikely that human intelligence 
is founded on computations, but that computations are a subset of the capacities 
of the human mind, and indeed, mind-dependent. Thus, it is unfeasible to take 
such a highly abstract form of human thought, cast it down into a regular mech-
anisms such as a computer, and expect all facets of the mental, especially the se-
mantic, to miraculously appear.  

4.5 Functionalism 

According to Revonsuo (2001) the thesis of functionalism forms the hard core of 
(classical) cognitive science, and according to Bechtel and Mundale (1999) has 
become orthodoxy in the philosophy of mind. The claim, originating with Hilary 
Putnam (1960, 1967), sought to stake out a purpose for mental states in between 
the material processes in the brain on the one hand, and against logical behavior-
ism on the other, both of which in their own way seek to deny if not the existence, 
then at least the explanatory power of mental phenomena. The claim of function-
alism is essentially this: mental states exist by virtue of their causal roles among 
themselves, and in relation to sensory and motor processes. That is, mental states 
can cause other mental states, and influence behavior, but are not reducible to 
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particular configurations in the underlying neurological structures. That is, men-
tal states have functional roles in economy of the organism. By introducing the 
notion of computation, namely that mental states are computational states, a line 
can be drawn between the physical aspects of an organism and the logical aspects 
of the program it is running in an exact analogue to a Turing machine, making it 
possible to describe the system from both the physical and logical laws that gov-
ern its’ behavior (Shagrir, 2005).  

An argument for this, according to Putnam (1960), is in the idea that it seems 
like mental states, such as pain, seem to be realizable in multiple different types 
of animals and thus unlikely to be identical with the particular nervous systems 
as such. Thus, if many kinds of nervous systems can realize the same function, it 
follows that (at least to some degree) mental states are multiply realizable. In 
other words, the brain states of different species or even different individuals of 
the same species are unlikely to be the same as they experience pain, and yet we 
should think that they are all experiencing the same mental state (of pain) whose 
role is to trigger certain behaviors, such as avoidance of the source of pain in the 
short- and long-term. The former might be an immediate action, and the latter a 
more general avoidance of the source. Thus, Putnam argued (and later argued 
against) that we could be made of “swiss cheese and it wouldn’t matter”, as long 
as the functional characteristics would be instantiated (Shagrir, 2005). 

By describing mental states as functional, one could say functionalism 
simply moves behaviorism, the matching of inputs to outputs without regard for 
intervening mental activities, inside the organism in the guise of programs. Or 
identifies mentality with those programs. The metaphor of program is perhaps 
apt to describe certain animals, and of course computers from where it originates, 
but merely complexifying the program does not obviously or logically conclude 
with what we want to identify with the mental. It remains on the side of the fence 
which we call automatic as opposed to autonomous. The cold fact that mental 
states are intentional and have representational content means, as John Searle 
(1980, 1984, 1990) has argued, that mere functional specifications by syntactic 
rules do not account for the arguably key feature of the mental. The abstraction 
entailed in such a formal specification has its’ uses, but its’ power is its’ handicap: 
it leaves the mental contents behind (Saariluoma & Rauterberg, 2015).  

This is not to say that mental states shouldn’t be characterized by their func-
tional roles, but that this does not exhaust their nature. It is likely true to say that 
mental states are characterized by the relations among each other and connec-
tions to sensory inputs and motor outputs. But there is something more, and that 
something more is absolutely central and it is intentionality, meaning, and men-
tal contents. As Shagrir (2005) points out, the formal syntactic operations of a 
program run over a finite set of symbols, but symbols attain their power in com-
putational terms from their arbitrariness: the extension of the symbol “1” is the 
number one, but it is by way of convention and our ascribing it the content “num-
ber one” that it has the extension it does. Formal programs that do not ascribe 
contents to symbols lack semantics, and therefore meaning, intentionality, sense, 
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and so forth and thus can’t be properly conceived of as mental (Searle 1980, 1984, 
1990). 

Our discussion is constantly running up to the necessity of understanding 
the role meaning and contents play in our mental life and consequently the im-
portance of instantiating similar abilities in machines for AI to reach its’ goal. It 
is also running towards a trap that has long been considered a fallacy: the ho-
munculus, or little man in the head (Deacon, 2013). For now, let us say that it is 
only a fallacy if posited as an unexplained explainer to prop up some other theory. 
Here we are indeed running directly towards it, but with the attitude that it is 
precisely what needs to be explained, rather than explained away or ignored, be-
cause as the history of psychology and cognitive science have shown, it will not 
go away by ignoring it. As the history of AI has shown, our inability to concep-
tualize how to even begin conceptualizing how matter in motion leads to mean-
ing and significance (Dennett 1986; Fodor 1985) is limiting practical success, in-
sofar as those are tied to common sense (McCarthy, 2007) and therefore proper 
intelligence and autonomy. 

4.6 Computations are Multiply Realizable, but are Mental Pro-
cesses? 

Given the vast variety of different systems that can be used as computational 
devices, it seems clear that computation is multiply realizable. A Turing machine 
can be constructed out of wood (Ridel, 2015). A person can count “in their heads” 
or by using their fingers or the abacus or on a piece of paper. The only thing that 
is required is that the system in question can assume discrete states in an orderly 
fashion. Your fingers can be of many lengths and sizes, but raising two fingers 
can for an observer be sufficiently well discriminated to reach the conclusion 
“two”. Of course, and this is more than humorous, the observer must understand 
that the fingers are raised in the context of calculation, lest the gesture be inter-
preted as signifying something else. Clearly, the human mind can assume dis-
crete enough states to implement computations. But there is a clear difference 
‘between being able to assume’ and ‘being constituted by’. It is plausible, as 
Fodor (1985) suggested, that the limits of “Turing style rationality” are rather 
narrow indeed, despite the power they entail. In other words, it is likely that 
while computations are multiply realizable, mental processes as a whole may not. 
Or put another way, it may be that computations are only a subset within a far 
more expansive landscape, and computations, in minds, fingers, or machines, 
only make sense within that vast landscape. There may be orderly change, and 
orderly change has some similarity with computations or what might be called 
physical laws, but for them to mean anything, they have to occur within a frame-
work of human understanding. Thus for properly informational processes, the 
physical substrate that can assume certain regularity is necessary, but not suffi-
cient. 
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In fact, it may be more plausible to say that brains, much like computers, 
are being hijacked by properly informational, i.e. mental, processes. This is not to 
say that they descend from outside, but that the mental emerges somehow from 
concrete physical system typified by humans, and once it emerges it can, occa-
sionally, hijack the physical substrate from which it emerges, and by extension 
many others in the external world. 

4.7 Summary 

The purpose of this section was to bring the endeavor called artificial intelligence 
(AI) into focus as the most natural waypoint after connecting autonomy and in-
telligence in the first section. We have tried to make clear the most basic operating 
principles of the computer as it relates to the question whether it appears as a 
suitable platform for the instantiation of intelligence. The answer has been mixed, 
in that it seems clear, already from current machines, that some tasks that previ-
ously required human intelligence can indeed be mechanized and implemented 
on a computer. It does not, however, follow that all tasks fall into this category. 
It does seem, that AI struggles with precisely the aspects that one would expect 
it would, given the operating principles of computers: the mechanization of ab-
stractions. Thus, we feel justified in exploring whether AI, as predicated on the 
computer, can be a field that studies the principles that make intelligent behavior 
possible in natural or artificial systems (Poole & Mackworth, 2010). This is not a 
wholesale dismissal, but an intuition to examine more closely the difference be-
tween computer models of intelligence and the “real thing”, judging it not from 
a prescriptivist point of view, but from deeper operating principles.  

The story of artificial intelligence has been one of booms and busts (Dreyfus, 
2012). The community has a tendency to get excited over various techniques from 
rule-based systems to neural nets, and back again. Such techniques are of course 
meaningless without contents over which the techniques are to operate 
(Chandrasekaran, Josephson, & Benjamins, 1999). However, a formal ontology 
specifying a taxonomy of categories and items within them is but an abstraction 
without a principled explanation of how the contents fill the system (other than 
by human operators). 

Our conclusion has been that there is no system-internal methods in com-
puters by which those contents can arise, precisely due to the operating princi-
ples of computers: the mechanization of abstractions. Furthermore, it is thus no 
surprise that where AI systems most struggle with are with situations where the 
appreciation of contents is required. A formal system can be approximated by 
machine techniques given sufficient computational power. Informal, so called 
common-sense informatic situations (McCarthy, 2007) are far more difficult, be-
cause due to the unavailability of actual semantic contents, an extraordinary 
pressure is placed on fine adjustment on the formal side of things. Even when 
successful, it can be argued that it still remains essentially brittle and thus funda-
mentally unreliable. But there is further significance. We brought out how even 
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theories of the mental have trafficked with some of the same presuppositions as 
AI. If computations and functional explanations of mental contents are to be de-
moted as only facets of the mental, it follows that theories built on those founda-
tions must go as mostly descriptive and essentially pseudo-causal (Saariluoma, 
1997). 
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5 MULTIPLE REALIZABILITY 

In cognitive science and AI, multiple realizability refers to the contention that a 
mental kind can be realized by many distinct physical kinds (Bickle 2016). For 
example, an extreme version, such as what John Searle (1980, 1990) has referred 
to as “strong AI”, contends that one could in principle fully recreate mental phe-
nomena on a computer. A less bold version might say that some mental processes 
are such that they are at least on a superficial level capable of being replicated on 
a computer. An obvious example might be the calculation processes in a pocket 
calculator. At least judging by the result, we could say that given a task of calcu-
lation, the pocket calculator by far exceeds human speed and accuracy. Indeed, 
understood in highly abstract way, from the perspective of the task, one could 
say that the same capacities are being realized in the machine and in man. The 
crucial task, especially in the context of autonomous technical artefacts, is to de-
scribe the extent to which, and what kinds of, mental processes that currently go 
on in vivo can be reproduced in silico (Bunge, 2004).  In other words, what are 
limits of multiple realizability. 

Two primary questions relating to multiple realizability are 1) what (our 
conceptualization of) is being realized and 2) how (what are the laws and imma-
nent forms of determination by which) it is realized. To follow Bunge (1979), it is 
important to distinguish between laws and law statements: the former being the 
actual patterns of being themselves, and the latter being our conceptual and epis-
temological attempts to grasp those patterns in the forms of scientific laws, for 
example. The important question is whether it is necessary for the instantiation 
of intelligence in artefacts to grasp its’ lawful antecedents in natural systems: is 
it necessary to discover the (antecedent) laws of the mental before they can be 
invented? Given the counter-intuitiveness of scientific discoveries, it is hardly to 
be expected that the so far occult principles by which mentality emerges with life, 
or life itself for that matter (Rosen, 1999), will obey the intuitions with which we 
make our ordinary way through daily life such as simple causality or intentional 
language. Insofar as the mental is both determined by some antecedent condi-
tions and levels or scales but also capable of to some extent being a cause unto 
itself and directing the behavior of the organism, we come upon tricky territory, 
but one that lines quite closely with the questions of autonomy and automaticity. 
That is, insofar as we discover or invent an autonomous system it creates along 
with it ipso facto an autonomous science. This has been the case even with com-
puter science, that is, it seems we can discover certain things about computers 
and their capacities and limitations even though they are wholly artificial phe-
nomena.  

Furthermore, as design and science has important epistemological charac-
teristics the conceptualizations, characterizations, and representations they em-
ploy make all the difference. Changes in representations and representational 
languages can make certain problems less vexing; the ways in which we concep-
tualize problems afford different approaches to solving them (Simon, 1981). All 
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concepts have some limits in their scope of expression (Saariluoma, 1997; 1999). 
Accordingly, some problems may not be hard as a consequence of our inability 
to solve them, but our inability to articulate them in a manner that makes them 
solvable, or less vexing, or disappear altogether. It is at least plausible that our 
inability to account for key features of the mental such as subjectivity, semantics, 
and meaning reflects necessary consequences from our assumptions and repre-
sentational languages and concepts. And furthermore, this may be connected 
with how we struggle to instantiate such features in artifacts. 

5.1 Pluralism before Emergence or Reduction 

Philosopher Karl Popper (1979), perhaps best known for his examinations of sci-
ence, held the view that any ad hoc reduction by linguistic means of a plurality 
to some monism is dangerous for the advancement of knowledge. Quoting Imre 
Lakatos, he warned against ‘degenerative problem shifts’, which eliminate pos-
sibilities on making advancement on genuine problems by eliminating them by 
fiat. Case in point is the reduction of human thinking to the processes of the brain 
by a wrong-headed application of Occam’s Razor by positing only material pro-
cesses to account for psychic processes. A reduction between different fields, 
most notably chemistry and physics, is sometimes possible, but it should not be 
assumed. A naturalism, for Popper, should proceed from a pluralism.  

The kind of reduction most applicable to AI is one of reducing the mental 
to computations, and posit thus their multi-realizability in computers and in man. 
We have seen however, that this position seems doubtful.  

The mental or the psychic occupies a distinct level of reality, signified by 
the different sciences that grapple with phenomena that appear at that level; by 
the way we ordinarily talk and explain human behavior; and of course by our 
own subjective experience. The fundamental tension is in how we should con-
ceptualize this level of reality in a manner continuous with a broadly naturalistic 
perspective while retaining and explaining its’ curious characteristic. 

5.2 Pluralism and Modularity 

Taking a step forward after acknowledging pluralism in the sense here that the 
mental is one real category among the ontology of reality, we may consider plu-
rality within the domain itself. This is the question of modularity versus holistic 
or central (information-processing). The idea of modularity was perhaps most 
famously introduced to the discourse of cognitive science by Jerry Fodor (1985). 
For Fodor, a mental module had certain key characteristics: Domain specificity; 
Mandatory operation; Limited central accessibility; Fast processing; Informa-
tional encapsulation; ‘Shallow’ outputs; Fixed neural architecture; Characteristic 
and specific breakdown patterns; Characteristic ontogenetic pace and sequencing. 
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Indeed, such an account lines up rather well with what computers do, and indeed 
how some “modules” in our mental ecosystem function. When combined with 
the idea of (near-)decomposability of a physical system, introduced by Simon 
(1981), the idea follows that mentality (as modular) can be identified in a similarly 
modular brain, composed of complicated but ultimately simple smaller special-
ized information-processing mechanisms. It further follows, that perhaps equally 
such simple processing units could be instantiated in a computer, yielding intel-
ligence in the machine. The fundamental presupposition, as identified by 
Schierwagen (2012) is thus one of decomposition and localization: particular, say, 
capacities of a system can be localized, and the system can be decomposed 
roughly along those lines and the (relatively) weak interconnections among the 
modules. But as Fodor (1985) acknowledges, these kinds of mental processes are 
but one part of the whole story. What he calls “global” integrated processes that 
can integrate various streams of information and assign meaning and content to 
them are arguably more important as far as special qualities of human minds are 
concerned. That is not to say that the “global” processes would not depend in 
some sense on the simpler modular processes, any less than all of these depend 
on more basic metabolic processes that sustain life, but that while explanations 
targeted at these simple modules are useful and interesting, they should not be 
allowed to take over the entire explanatory framework. The mind may be mod-
ular, in the sense that it is differentiated both in structure and in experience, but 
the far more important and neglected facet is its integration. Even “organic logic” 
attests to this: life differentiates from a simple unity both per individual organism 
and over evolutionary history. Thus, by naturalistic assumption, the same ap-
plies for mentality.  

5.3 Supervenience and Emergence 

Supervenience is a conceptual tool for grappling with issues that emerge from 
the apparent multi-leveledness of reality, most specifically to grapple with the 
problems that emanate from the distinction between mind and matter and their 
relationship. It has a family resemblance to the concept of emergence in that both 
attempt to deal with levels of reality, but typically supervenience seems to hold 
that there is a strict dependence (a supervenience) of the lower levels to the 
higher levels such that changes in the lower level always mean changes in the 
upper level (and vice versa), but such that the arrows of causality flow upward 
from the physical base (and within it), rather than downwards from the upper 
levels (Jaworski, 2016). With emergence, the focus is more on how the emergent 
properties, here the mind, can have causal efficacy in the world. We could say 
that higher-order phenomena emerge from lower levels and their relations are 
supervenient on one another either in the strong or weak sense of the term.  The 
term has a checkered history, but its’ introduction to contemporary philosophy 
can be credited to Donald Davidson (2005) (see also McLaughlin & Bennett, 2018): 
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[M]ental characteristics are in some sense dependent, or supervenient, on physical 
characteristics. Such supervenience might be taken to mean that there cannot be two 
events alike in all physical respects but differing in some mental respect, or that an 
object cannot alter in some mental respect without altering in some physical respect. 
(Davidson 2005, 116). 

The relevance of the notion of supervenience for our thesis should be clear. 
It seems like strong AI (the idea that it is possible to recreate minds on computers) 
must also take a very qualified stance towards supervenience. It must hold that, 
yes, mental properties (understood as information-processing) supervene on the 
physical substrate but only in a relatively weak sense given the obvious distance 
between computers and human beings as physical systems. This leads directly 
into the problem that since almost anything, such as strings and coke cans,  or 
wooden contraptions (Ridel, 2015), can be assumed for the function of computa-
tion, it would follow that any physical substrate will do for the mental. But as our 
discussion illustrated in the previous section, such a view is implausible and is-
sues from the mistaken identification of the ground of mentality with computa-
tions, whereas we argued for the reverse.  

In the context of information, the problem of supervenience becomes clear. 
We can take it to be the case that there is some necessary connection between the 
physical substrate on which the information is instantiated: the words on the 
screen have multiple layers of physical processes which supervene on each other, 
if the computer malfunctions or the battery runs dead, the physical substrate on 
which the letters are founded will momentarily cease to exist. On the other hand, 
that the words mean something, that they can inform the reader or articulate a 
thought is dependent on an observer. Thus, in order to be something more than 
physical marks on a screen or a piece of paper, they entail a particular kind of 
relationship to an observer which makes them information. Is this relationship 
one of supervenience? It is in the sense that the specific information they are in-
tended to convey or articulate will not be available if the letters disappear. But 
there is no necessary connection with the information and the letters and sen-
tences, indeed, especially in the context of this thesis, grappling as it is with 
highly abstract and complicated issues, it is quite likely that the reader will inter-
pret different information from the text, based on his or her knowledge and dis-
positions. There are more patterns in the implications available than either the 
reader or the writer is likely to identify. Thus, there is no strict one-to-one corre-
spondence between the physical medium and the information it can convey. Fur-
thermore, we could say that the information could be within certain limits be 
conveyed by quite different sorts of media: they could be printed with ink, read 
on a digital screen, written by hand on a piece of paper, conveyed in spoken lan-
guage, or written in the sky with a stunt plane without changing the essential 
properties of the message. Does this then mean that similarly mental properties 
are multiply realizable? Only if one could show that the crucial part of the equa-
tion, the interpretation of the information, which makes it information, is itself 
multiply realizable. It is precisely here that the concept of information with its’ 
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possibility of multiple interpretations as part of its’ nature problematizes super-
venience, or any simple and strong correspondence between the mental and the 
physical. Furthermore, it is in this sense that indeed information and infor-
mation-processing is multiply realizable, but dependent on an observer. The 
question is thus whether the observer as such is multiply realizable, and in what 
sense? This is a most difficult question, but it seems from the preceding discus-
sion to be a vital component. As a reader familiar with these lines of thought may 
recognize, what we are here identifying with information is traditionally identi-
fied in the discourse with intentionality, the way in which mind seems to be pro-
jected towards, or about things (Brentano, 2009; Jacob, 2014). The reason we are 
conflating or merging the terms is that it brings out a certain irreducibility be-
tween intention and information which furthermore shows that the problems fac-
ing AI and cognitive science are not so distant from each other, and the task may 
be more than devising ever more complex programs or clever algorithms to 
model mental phenomena. 

Emergence is a concept that describes when interactions at a lower level 
give rise to phenomena that obeys its’ own laws (Bechtel, 1994). Here the im-
portant question is whether those emergent properties can be considered real en-
tities, or simply convenient shorthands – reducible to the interactions of elements 
at a lower level and without any intrinsic causal capacities. In the context of cog-
nitive science, if the mental is an emergent phenomenon that comes about from 
the interactions within the brain in interaction with the environment, does it have 
a status as a semi-autonomous entity or is it, in principle, completely reducible 
to brain states without residue?  

One may approach the question with an analogy to temperature. Tempera-
ture is a measurable property of a whole, which is the result of mean kinetic en-
ergy at the level of molecules that compose the whole. It is thus a property that 
emerges from well-known interactions at a lower level, but retains a certain au-
tonomy given that it can be attributed as a property of a system (Bunge, 1977). 
Indeed, there is no temperature apart from its’ macroscopic manifestation, even 
though its’ emergence is explainable by microscopic interactions.  

This is important in relation to the autonomy of the special sciences. It 
means that there may be an explanatory story to be told how macroscopic prop-
erties emerge from lower level interactions, and yet the macroscopic level may 
have an autonomous existence, indeed the being of the phenomenon is to be 
found only on that level, irrespective of any explanations of how it came about.  

Now, one may ask if this would imply that, for example, intelligence and 
mental life could be explained by microscopic interactions among some logical 
units, neurons for example, that add up to make “more” or “higher forms” of the 
same basic operations? The most simple way this does not “add up” is that while 
in some regards more neurons (or more interactions) do mean more intelligence, 
it is clearly not the whole story even if we would attribute intelligence only to the 
brain, simply because far more important that numbers seems to be structure and 
dynamics, as far as brain function is concerned. Far more crucial for intelligence 
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seems, even from the perspective of brain science, seems to be structure and form 
which directs or captures certain forms of determination.  

The essential problem of supervenience and emergence was put succinctly 
by Jaworski (2016) in the context of action: 

1. Actions have mental causes. 
2. Actions have physical causes. 
3. The mental and physical causes of actions are distinct. 
4. If action have multiple causes, then they are overdetermined. 
5. Actions are not overdetermined. 

The essential point is that if one posits a distinct mental cause for an event, 
say my hand going up, and a distinct physical cause for the same event, it seems 
like one is overdetermining the event. This follows from an overly simplistic no-
tion of causality, of which more presently, but the way in which Jaworski (2016) 
seeks to resolve this tension is interesting from the perspective of this thesis. He 
seeks to conceptualize the mental causes of an event as structures that constrain 
causal events closer to the immediate behavior, say, of raising an arm. Thus, if 
the causal efficacy of the mental is seen not as of a different kind of substance 
somehow causing physical events, but through the lens of orders or levels of 
complexity which constrain, rather than directly cause, physical events to occur 
in a certain manner, we may have a method of escaping from the problem. Con-
straints offer a kind of gestalt switch from doing as in causing every detail, to-
wards orders of constraints on possible behavior. How information, which we 
understand less well than often thought (Checkland, 1994), can constrain behav-
ior or have semantic properties is an open question (Deacon, 2013). 

We will next turn to a discussion on different forms of determination, one 
of them mental. The crucial terms are indeed form and determination.  

5.4 Forms of Determination 

Recall that autonomy comes from the greek term autos (self) and nomos (law) 
and means control of the self (Bateson, 2002), or more literally having its’ own laws. 
Its’ antonym is heteronomy, which means other-governed (Thompson, 2007). 
Metzinger (2017) defines autonomy as the “capacity for rational self-control of 
overt behavior”, while using the term M-Autonomy to refer to the capacity to ap-
ply self-control over one’s mental functions, a kind of second-order autonomy. In 
a similar vein, for Margaret Boden (2008), an individual’s autonomy is the greater 
the more it controls its own behavior via self-generated inner mechanisms that 
are available for reflection and modification by the individual itself. Thus, an au-
tonomous system is both responsive to particular problem-situations and reflex-
ive in terms of the mechanisms that control the responses and in terms of the 
wider context (Boden, 2008). In the context of maritime vessels, Insaurralde and 
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Lane (2013) define autonomy as “the ability of a system to govern itself by mak-
ing decisions, implementing the choice made, and checking the evolution of such 
actions taken.”  

In biological systems, one can plausibly make the case that cognition has 
emerged in evolutionary history as an adaptation predicated on the biological au-
tonomy of living systems that need to maintain a precarious existence via meta-
bolical exchange with the environment (Jonas, 2001). Thus, cognition increases 
the range of possibilities and autonomy of the organism in order to extend its’ 
possibility of maintaining biological, lower level, autonomy (Jonas, 2001). The 
point here is not to argue for a necessary connection between lower and higher-
level autonomies, but simply to note that, certainly in humans, cognition and au-
tonomy are overlapping and complementary systems (Vernon 2014). Equally 
judging by Insaurralde and Lane’s (2013) definition (see also Williams, 2015), in-
sofar as autonomy entails self-control and decision-making, the same applies for 
ships. In short, in the context of ships autonomously sailing the oceans and straits 
of the world, no autonomy without intelligence.  

In this section, we wish to address the question from a different perspective 
and attempt to connect intelligent self-control with forms of determination oper-
ating with increasing orders of constraints. 

5.4.1 Forms of Determination 

We ought then to regard the present state of the universe as the effect of its anterior 
state and as the cause of the one which is to follow. Given for one instant an intelligence 
which could comprehend all the forces by which nature is animated and the respective 
situation of the beings who compose it – an intelligence sufficiently vast to submit 
these data to analysis – it would embrace in the same formula the movements of the 
greatest bodies of the universe and those of the lightest atom; for it, nothing would be 
uncertain and the future, as the past, would be present to its eyes. 

    — Pierre Simon Laplace, (1902, p. 4) 

Laplace’s example succinctly captures what might be called the doctrine of causal 
determinism (Bunge, 1979). What makes mental causation a problem, is arguably 
the view that the universe contains only one form of causation, physical, and into 
such a closed, gapless, world of causal chains no mental (or arguably informa-
tional) forms of determination can intervene (Burge, 2007). This leads to the po-
sition of dismissing the mental as a distinct ontological kind or perhaps of posi-
tioning it as epiphenomenal without any causal powers to intervene with affairs 
in the world, even the body itself. We shall not argue for the attribution of any 
soul-like properties to the mental, but neither shall we dismiss its’ causal efficacy 
in the world. This efficacy is limited, and acts by proxy with the environment or 
by quasi-logical connections within itself, but its’ nature is “no more” mysterious 
than that of information. Neither information nor the mental have only physical 
properties, but few (cognitive or computer scientist at least) would argue against 
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the proposition that information can’t play a causal role in the world. The ques-
tion is not when and where mind emerges (distinguished for example by con-
sciousness and mental representations), but when does information? That some 
deep, even fundamental connection exists between information and the mental 
has been known for a while (Wiener, 1985), but one may yet question if we have 
a thorough grasp on what information is? What marks informational kinds apart 
from, say, energy and matter, and what are the connections between them? Fur-
thermore, even the example by Laplace is essentially about a knowing subject, 
and one would surely be tempted to say that if such a being were to exist and 
have all the information at its’ disposal, it would ipso facto be able to intervene 
on some causal chain of events and thereby altering the course of the vast clock-
work. Thus, Laplace’s universe is valid only in a universe without a knowing 
subject, rendering the whole thought experiment paradoxical. 

A crucial concept that is buried in the notion of forms of determination 
(Bunge, 1979) is that of form. Namely, no one within a broadly naturalistic 
worldview is looking to deny the penetrating presence of natural laws in some 
pockets or regions of space. But within such a framework, one can still move to-
wards understanding the forms and structures within which causal, even wholly 
deterministic processes can be channeled. Isn’t this much the whole ethos of en-
gineering design to begin with: the organization of matter, energy, and signals to 
perform some function (Pahl, Beitz, Feldhusen, & Grote, 2007)? In broad terms, 
it is the imposition of constraints on the flows and patterns of matter-energy-in-
formation.  

This is the key concept. In artificial systems, these constraints are imposed 
from the outside by the human mind and hands. In the subset of natural system 
that we call living, those constraints are imposed and maintained by the operat-
ing principles of the system itself. In the advanced organisms, especially humans, 
there is a meta-level of constraint-imposition that is achieved by what we can 
generally call information and processing thereof: mental and cognitive forms of 
determination.  

5.4.1.1 Autonomy as a Form of Determination 
 
Determination and autonomy form a unity. Autonomy, broadly defined as an 
agent’s capacity for rational self-control of behavior (Metzinger 2017), can’t be 
instantiated in a universe without reliability, and therefore determination within 
constraints, which forms a prerequisite for a system or mechanism to do work 
(Deacon, 2013). From this perspective, pitting determinism and autonomy (a 
form of “freedom”) against each other is a false dichotomy. Rather, determinism 
and autonomy are different levels on a dependent hierarchy (Wilden, 1987) with 
the latter emerging from the former. This idea is echoed in Bunge (1979, 20) as 
well: various forms of determination form a hierarchy of increasing complexity 
where all but the first two (quantitative self-determination and causation) are 
grounded in the lower types. Here we wish to draw attention to the need to make 
distinction between autonomy and causal determinism, using biological auton-
omy as the exemplar (arguably the only exemplar in the natural world). Bunge 
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(1979) sought to distinguish among different forms of determination, essentially 
arguing against the idea that all phenomena could be collapsed under the rubric 
of causal determination. For Bunge, causal determination was but one (he identifies 
at least eight) form of determination on a hierarchy where the higher types, such 
as statistical or teleological, depend on the lower types, but are not entirely reduc-
ible to them. 
 
Table 4: (some) Forms of Determination according to Bunge (1979) 
 

Form of Determina-
tion 

Definition and illustrations 

Quantitative self-de-
termination 

The determination of the consequent by the antecedent. Illustra-
tions: a) the successive positions of a freely moving macroscopic 
body are uniquely determined by its position and velocity at any 
prescribed instant of time.  

Causal determination Determination of the effect by the efficient (external) cause. Illus-
trations a) If a bullet is fired against a window, the glass is broken. 
b) If an electro-motive force is applied to the ends of a piece of 
metal, an electric current is set up in the metal in accordance with 
Ohm’s law. 

Interaction (or reciprocal, or functional interdependence): determination of 
the consequent by mutual action. Illustrations: a) The orbits of 
components of a double star are determined by their gravitational 
interaction. B) The functioning of every gland in the human body 
depends on that of the remaining glands. 

Mechanical determi-
nation 

of the consequent by the antecedent, usually with the addition of 
efficient causes and mutual actions. Illustrations: a) Forces mod-
ify the state of motion of bodies (but motion may exist before the 
application of the forces). B) The streamlines in a fluid are deter-
mined by the latter’s previous state, by the external forces acting 
upon it, by internal friction (viscosity), and by internal pressure 
differences.  

Statistical determina-
tion 

Of the end result by the joint action of independent or quasi-in-
dependent entities. Illustrations: a) In the game of dice, the long-
run frequency of the event “throwing two aces in succession” is 
1:36 b) about one-half of newborn children are females. As in the 
case of other categories of determination, statistical determinacy 
may emerge from processes on deeper levels, in which still other 
categories of determination are involved. 

Structural (or wholis-
tic) determination 

Of the parts by the whole. Illustrations: a) the behavior of an in-
dividual (a molecule in a fluid, a person in a social group) is de-
termined by the over-all structure of the collection to which it be-
longs. B) the functioning of an organ is partially determined by 
the needs of the whole organism. But, of course, the whole, far 
from being prior to its members, is in turn determined by them. 

Teleological determi-
nation 

Of the means by the ends, or goals. Illustrations: a) Birds build 
their nests “in order to” safeguard their young. B) Standardiza-
tion is adopted in industry in order to lower production costs. 
Needless to say, goal-directed structures, functions, and behav-
iors need not be purposefully planned by anybody. 

            (continued) 
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Table 5: (some) Forms of Determination according to Bunge (1979) (continued). 

 
Dialectical determina-
tion (or qualitative 
self-determination) 

Of the whole process by the inner “strife” and eventual subse-
quent synthesis of its essential opposite components. Illustra-
tions: a) Changes of state in matter in bulk are produced by the 
interplay and final predominance of one of the two opposite 
trends: thermal agitation and molecular attraction. B) the con-
trasting economic interests of social groups determine changes in 
the very social structure of such groups. In opposition to quanti-
tative self-determination, internal dialectics involves qualitative 
changes. And, needless to say, it has nothing to do with logical 
contradiction. 

 
 
The similarity between computations and the operating principles of ma-

chines and computers and the doctrine of causal determinism should not evade 
us. This is again pointing directly at what we have identified as the difference 
between automatic and autonomous. An automatic process is from a conceptual 
perspective a causal-deterministic process. But as Bunge (1979) noted, that is but 
one form of determination in a hierarchy of types. All of them have a reality, and 
it may be that what is constraining progress in autonomous technology, artificial 
intelligence, and, conceptually, cognitive science is the way in which we think 
and conceptualize the issues. 

Note how Bunge’s (1979) hierarchy implies how the higher types are 
grounded in the lower types. It is important to note that being grounded does 
not mean that it can be reduced (to the lower types). There is no need to consider 
monism as equivalent to clarity - on the contrary. Davidson’s anomalous monism 
is a position that allows for a monistic view of being, but also plurality in its em-
bodiments (Davidson, 2005). We simply need to be clear of the properties (of say, 
an agent) we are examining and apply the appropriate tools for that level. As 
Saariluoma (1997) noted, just because causal explanations are proper for almost 
all questions asked in science, we can’t deduce from that that it is appropriate 
everywhere, and the problem is that since there are no assumption-free theories, 
when we take causalism as a given we tend towards asking questions that have 
causal explanations, which may limit our understanding. Indeed, to quote Ken-
neth Burke, it may be that “much what we take to be observation is simply the 
spinning out of possibilities implicit in our particular choice of terms” (quoted in 
Anton, 2011). As mentioned previously, causal determinism seems inappropriate 
to deal with mental contents (Saariluoma, 1997), intentionality, and therefore 
agency. Agency is a form of goal-directed behavior, which can be subsumed un-
der the general category of teleonomy. Next, we must turn to some distinctions 
between forms of teleonomy, itself a part of the category of forms of determina-
tion. 
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5.4.2 Teleonomy 

 
The Greek word telos means end or goal, and teleological means end-directed 
(Mayr, 1974). The word teleonomy was adopted by Ernst Mayr (1974) in his at-
tempt to establish a middle-ground between mere mechanism and purpose in 
biology, implied by the word teleology (Deacon, 2013). Merriam-Webster defines 
teleonomy as “the quality of apparent purposefulness of structure or function in 
living organisms due to evolutionary adaptation” (emphasis added). Thus, the 
term was designed to account for seeming purposefulness in life and evolution 
without recourse to any grand designer, or the assignment of actual telos to the 
processes of nature which teleology implied. The greek combining word –nomy 
implies mere lawlike behavior and thus it could be used to describe behavior that 
were oriented towards a particular target state, even without any explicit goal-
representation (Deacon, 2013). Von Wright (2004) used the term quasi-teleologi-
cal to address the exact same issue, to capture and distinguish teleonomic from 
teleological explanations. Notice here, again, the seeming implication that the ori-
entation towards a particular state of the thermostat and corresponding behavior 
is now easily treated as similar in kind to a person learning to play the Toccata 
and Fugue in D minor (Shanker 1998, 50). But Mayr (1974) was more subtle than 
that. For him, a new distinction was needed. He distinguished between processes 
which reach an end-state caused by natural laws as teleomatic, and processes 
whose goal-directedness was controlled by a program as teleonomic. The problem 
with this explanatory schema is again the (rather explicit) causalism entailed in 
the programs by which teleonomic processes are deemed to operate. It reduces 
the question of human agency and mental contents to an explication of the pro-
grams that run in our nervous systems, with the position of the programmer now 
relegated to natural selection. But isn’t it the case that to some limited, but cru-
cially important, extent human agency is characterized by the capacity to “pro-
gram itself”? Hasn’t the person who has mastered the Toccata and Fugue in D 
Minor “programmed” him or herself in some sense (Shanker 1998)? The natural 
reply which comes to mind is that while that may be true, it is also just a program 
among others, one capable of programming other parts by controlling behavior: 
its programs all the way up. This of course explains nothing, just states an ex-
planatory schema: find the programs in the nervous system that can constrain 
and direct an organisms behavior towards some goal-states. But such an expla-
nation has the danger of being woefully unsatisfactory, and somewhat descrip-
tive, rather than explanatory – and worse than that, implies an infinite regress if 
programs are interpreted as rules (Dreyfus, 1972). The basic problem is that while 
a program is as a metaphor suitable as an explanation for certain kinds of behav-
ior, it does not follow that it is a suitable metaphor for all mental phenomena.  

What we should now have in view is a rough description that seems to sup-
port the idea that reality consists of various forms of determination, which can 
be arranged in a hierarchy of sorts, whereby the lower types of determination 
ground the higher types. The higher types we have now identified within the 
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broad category of teleonomy: the lawful behavior towards some end-state. What 
is crucial now is how we can distinguish between the lowest type of teleonomy, 
mere mechanical tendency towards some state, and highest type of teleology, 
which we have identified with autonomy and agency – a phenomenon whose 
instantiation in machines is the ultimate target of this thesis. While keeping in 
mind that we still consider each form of determination to arise from the types 
below and thus the relationship between the two must also be addressed.  

Consider the classic example of the thermostat. It’s behavior is teleonomic 
insofar as it “aims” to keep the temperature steady by a process of feedback, in 
which if the temperature of the room dips below some point, a bimetallic strip’s 
reaction to the temperature is exploited in such a manner that it closes the circuit 
which turns the heat on, which causes a raise in temperature that eventually 
opens the circuit again, and the cycle is ready to repeat. The behavior of the sys-
tem is fully causally manifest, and explainable in language of cybernetics or sys-
tems-thinking (Churchland, 1994). Here, of course, an attentive reader will note 
that the reason a thermostat exists in the first place is due to human ingenuity 
and intention and thus its’ regular law-like behavior is hardly anything but the 
displaced intentions of the designer (and the user). Consider now an example 
from the animal kingdom which nicely illustrates the differences between human 
intentions and capacities from seemingly complex, but ultimately dumb behavior. 
Dennett (1990) describes the behavior of the Sphex wasp, whose reproduction 
strategy includes digging a burrow for eggs, finding a cricket and paralyzing it 
with a sting, bringing the cricket to the burrow, checking the burrow, dragging 
the cricket in and laying the eggs, never to return. The cricket acts as fresh food 
for the hatchlings as they emerge. When the behavior was studied, it was noted 
that if the paralyzed cricket is moved between it having been brought to the bur-
row’s edge and the wasp going in to check the burrow, the wasp would seem to 
get caught in a loop. It would bring back the cricket to the edge and go in to check 
the burrow. This process would loop as long as the cricket was moved after the 
wasp entered the burrow. In this instance, it would seem appropriate to use the 
term program to describe the wasp’s behavior, a goal-directed, rather complex 
behavior that nonetheless can with mild but crucial environmental modification 
get caught in an endless loop. But consider now the human experimenter who 
has deemed it interesting to manipulate and probe the wasp’s mental life. Even 
if we extend the metaphor of the program to insects, we certainly see here a 
breakdown of the same explanatory method. Again, we notice that what marks 
the difference between human teleological behavior and the teleomatic or tele-
onomic processes of nature is some kind of access to and awareness of our “men-
tal programs”, and the capacity to “self-program” to some extent - if we wish to 
use the term. It is the capacity impose higher-order constraints on behavior, and 
also to learn, sometimes highly arbitrary new behavior patterns. Following von 
Wright (2004) we may now distinguish, crudely, between the actions of man and 
the behavior of (perhaps not all) animals (and even physical processes or man-
made tools). 
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5.4.3 Action 

 
It is often said that human behavior or that of living organisms in general is fun-
damentally different from the processes of nature as conceived in the natural sci-
ences such as physics (Taylor, 1965).  We say that a non-living system behaves in 
accordance to some causal or statistical laws, but that living organisms, especially 
humans and higher mammals, act in a goal-seeking manner. We say that the rea-
son for a certain behavior is a goal that may have various causes (such as dehy-
dration as a cause for thirst), but that thirst as such does not specify how it is to 
be satisfied. Sometimes a distinction is drawn (Dretske ,1988, p. 5) between be-
havior and action to delineate those behaviors that do not require or involve ex-
plicit goals and intentions from actions that do. For instance, the growth of hair 
or the pumping of the heart would be considered behavior, similarly perhaps 
even reflexes. But walking to the music store to buy new strings for guitar, re-
placing them, and practicing “Smoke on the Water” is a series of actions that the 
agent does voluntarily, deliberately, and intentionally. In other words (Metzinger 
2017), actions can be distinguished from behaviors by having conscious goal-rep-
resentation play a central causal role which we apprehend subjectively through 
qualities such as the sense of agency, effort, goal-directedness, self-control, and 
ownership. Furthermore, actions carry with them conditions of satisfaction 
(Searle 1980). In other words, an agent may fail to achieve the goal implied by the 
action. Actions often have therefore a wider temporal and spatial “reach” as they 
string together behaviors (characterized usually by automaticity and decreased 
context-sensitivity) which act as the building blocks of a process that is deemed 
to approximate the reaching of a goal. Von Wright (2004, 86) terms behavior 
which has a genuine teleological explanation as action-like. For von Wright, such 
an action normally presents two aspects: and “inner” and an “outer”. The inner 
aspect corresponds to the intention or will behind the action. The outer part can 
be divided into two phases, immediate and remote. The immediate outer part of 
actions are for example the muscular movements that are the proximate cause of, 
say, a window opening, which is the remote phase of the action. It is interesting 
to note, that the intentions usually correspond to the remote part of the action, 
and indeed the bodily muscular movements that are necessary for the action are 
often quite transparent to us. In skilled action, our awareness, so to speak, trans-
cends the bodily aspects necessary.  

But notice here that the intentional arc which we assume directs our behav-
iors does not seem to be connected within itself by causal laws, but by something 
like logical, functional, and senseful attributes. Thus, as noted by Saariluoma 
(1997) the contents of mental representations have senseful or functional expla-
nations. The overt behaviors of which the process of opening a window consists 
may indeed have a corresponding causal train within the nervous system, but 
notice again that the way we would explain the process of opening a window is 
usually in terms of some senseful logical connection, for example to cool down 
the room or refresh the air. As such the reasons for our behavior are in these 
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illustrative cases not hidden from us within some occult neural program. People 
managed to get about just fine before any real understanding of the underlying 
neural processes were scientifically explicated, precisely because behaviors are 
not strung together into actions by causal, but by logical and functional connec-
tions which have causal connections only by way of us thinking they do. Thus, 
the relationships between pieces of behavior can be said to have a logical connec-
tion, but this connection is not exactly causal, but abstract and logical. In other 
words, the intentional arc that corresponds (somehow) with overt behavior is in-
formational, not (only) physico-electro-chemical. For only through the term in-
formation does it make sense to say that “things” have logical, senseful, or func-
tional connections. This is not a question of which, but how the two connect. If 
we accept this step in the investigation, we must now turn to a better understand-
ing of the concept of information. 

5.4.4 Information 

Information is in colloquial use a rather nebulous term. In this thesis, we will 
follow Norbert Wiener’s (1985) original intuition and seek to recognize it as a 
third domain, in addition to matter and energy. See also Popper (1979).  

Information, from this perspective, is not simply order and pattern in phys-
ical medium, nor is it something wholly ineffable. It occupies, as noted by Gibson 
(1966), a curious position in-between. The ecological psychology debate over 
how much the information is in the medium that conveys it is neither here or 
there for this thesis, although very interesting. What is important here is to rec-
ognize that information is not something intrinsic to the signal medium, nor is it 
completely removed from it. Information occurs in a relationship, but between 
what? If we look to the signal medium for anchorage, we run into trouble given 
that coded variety, such as a written language, is only a typical form of infor-
mation. For a captain on a ship the absence of something can be informational. 
The radio signal not received, or the sound not heard from the engines can both 
be a reason for attention and action for the experienced seafarer. And even noting 
that information exists in a relationship, it yet seems to retain a curious autono-
mous status. As Popper (1979) noted there is a sense in which information has its’ 
own laws. Information, unlike energy-matter, can be destroyed and created (An-
ton, 2012). Information, properly conceptualized, marks the difference between 
mental determination and causal determinism. But information is like the word 
animal, without some taxonomical categorization the term is too broad for spe-
cific discussion. 

To get a grip on the diversity of facets on the notion of information, consider 
Winning and Bechtel’s (2016) identification of five dimensions along which inter-
pretations of information may vary: type of intensional content; type of vehicle; 
content tokening scheme; potential truth/satisfaction values; and type of exten-
sional content.  
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Table 6: Winning & Bechtel's (2016) five dimensions of interpretation of information 
 

Facet of information Examples 

Type of intensional content Conceptual / non-conceptual, linguistic, 
experiential, propositional, imagistic, sym-
bolic/non-symbolic, analog / digital 

Type of vehicle Representation (understood various ways), 
affordance, mere carrier, brute storage 

Content tokening scheme Causal covariation; statistical; bioseman-
tics; teleosemantics; conceptual role seman-
tics; Kantian categorical imposition; con-
vention/stipulation; gestalt structuring; 
natural vs nonnatural 

Potential truth/satisfaction values None; true only; true or false; satisfaction 
(understood various ways); other possibili-
ties 

Type of extensional content Actual objects; possible objects; rigidly des-
ignated objects; real patterns; facts; rela-
tions; events; property instances; tropes; 
states of affairs; abstracta 

 
What is more important here than the contents of the table, is to recognize 

that the variety information offers, is precisely its key strength. That it can in 
principle be directed towards actual or possible objects, be about relations, events, 
or states of affairs, or have different kinds of truth or satisfaction values, and so 
on, is what makes it the only possible vehicle for experience. And even noting 
that information exists in a relationship, it yet seems to retain a curious autono-
mous status. The crucial thing to understand about information, is that it seems 
to arise in interaction (Roederer, 2003) in a way such that there is a peculiar gap 
between the information and the matter-energy that acts as its necessary sub-
strate. 

Anthony Wilden (1987, 71) defines information by contrasting it to simple 
matter-energy. For him, “Energy is the capacity of a system to do physical work. 
Information is the capacity of a system to do logical or structural work – its ca-
pacity to organize matter, energy, and/or information in ways not found in or-
dinary physical or chemical systems”. Further, he writes, “Information in the 
simplest sense is a pattern of variety carried by a matter-energy marker or me-
dium … [this] Variety has no intrinsic sense, meaning, or signification. For a pat-
tern of variety or diversity to be acted on as information, it must form part of a 
coding system in a context. It must be part of a sender-receiver relationship or-
ganized by a goal or goals”. In the context of this thesis, this definition is one that 
can really do work for us in advancing our understanding of the relationship 
between matter-energy, information, goals and by extension, agency. First, notice 
how this decouples the term information from its’ material substrate. Information 
can’t be thought of purely in terms of order and entropy, as in Shannon’s (1948) 
model, simply because even pure noise, noisily distributed, can turn out to be 
information about something, as Deacon (2013, 382-382) notes through the exam-
ple of the discovery of the cosmic background noise thought now to be evidence 
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for the Big Bang. Thus, information isn’t necessarily in the signal, but in its’ mean-
ing within a context – for example theories and goals – of an observer. This is the 
critical point: the information being about something need not be based on any 
intrinsic properties of the signal medium (Deacon, 2013). 

In colloquial use, the term information is used as a mass-noun to indicate 
for example the stuff that runs through our computers and smartphones, but also 
that which informs us, in the sense of “John gave me a vital piece of information 
for my thesis” (Adriaans, 2013). Gregory Bateson (2002) defined information as 
the “difference that makes a difference”. Another way to put it might be that in-
formation has the character of “aboutness” to it. The vital piece of information 
for my thesis is about something which makes particular sense within the context 
of the thesis. A gene in a DNA molecule is “about” coding for a protein, or regu-
lating other genes, which makes sense within the context of the organism. In this 
sense information is intimately tied in with teleonomic and teleological systems. 
On the other hand, our information age is grounded in Claude Shannon’s 1948 
mathematical theory of communication, but it should be noted that the theory 
was aimed at the engineering problem of noise: “The fundamental problem of 
communication is that of reproducing at one point either exactly or approxi-
mately a message selected at another point. Frequently the messages have mean-
ing; that is they refer to or are correlated according to some system with certain physical 
or conceptual entities. These semantic aspects of communication are irrelevant to the en-
gineering problem.” (Shannon 1948, 1, emphasis added). Notice here that the se-
mantic aspects are irrelevant given that the communication occurs between hu-
man beings, but as we move towards autonomous artefacts, the semantic aspects 
can no longer be treated as irrelevant to the engineering problem. They must 
somehow be turned into engineering problems that can be solved, not just as-
sumed or removed from the equation. 

5.5 Summary 

The purpose of this section was to broaden the discussion to include the philo-
sophical discourse around multiple realizability, supervenience, emergence, and 
forms of determination. Here we took a different approach to intelligence from 
computations. We tried both to affirm the autonomous existence and peculiar 
characteristics of the mental. But we also took a naturalistic perspective on intel-
ligence and autonomy as particular forms of determination, predicated on infor-
mation and exhibited in action. The key term was, as both cognitive science and 
AI would surely admit, information. But information as we conceptualized it was 
far wider and more complex category than what mere computations over repre-
sentations might suggest. It is indeed the key, but information, specifically the 
semantic aspects of it, which we are ready to call informational proper, remains 
somewhat elusive. What is particularly problematic is whether semantic expla-
nations (as causes of behavior) can be subsumed under a causal-formal explana-
tion. 
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Nonetheless, the foregoing discussion has sharpened for us the need to clar-
ify and connect the notion of information, emergent but distinct from concrete 
physical systems, as a necessary requirement for the instantiation of proper au-
tonomy and intelligence in an artefact.  

For the final section of this thesis, we turn to design in order to return the 
discussion back to technical artefacts and contextualize the discussion within the 
general theme of this thesis. 
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6 DESIGN 

This thesis is ultimately about the design of autonomous technical artefacts in 
general. This means that the questions we ask and requirements and functions we 
define will be aimed at informing and supporting any similar pursuit. The pur-
pose of this section is to first outline some characteristics of design, and second 
to try and tie some of the ideas presented in the previous sections into design 
thinking.  

The general problem of this thesis is to characterize the problem, defined as 
the “distance or mismatch of the prevailing state and the state reflected by the goal” 
(Leppänen, 2005), in the attempt to design autonomous technical artefacts. The 
previous section was about identifying a mismatch between the concepts and 
tools afforded by AI and the goal of genuine autonomy. This section will be about 
taking constructive steps towards the general direction from which more suitable 
concepts might be developed. 

6.1 Autonomous Ships as a Design Problem 

Engineering design problems typically have two notable characteristics: they are 
open-ended and ill-structured. This means there are many possible solutions and 
the process by which solutions can be found is not always amenable to structured 
routine methods (Dym & Brown, 2012). Given some requirement, there is a space 
of reasonable technical solutions, but this space is difficult to circumscribe in any 
exact way. The space of possible objects can be quite large, some of which might 
not even satisfice as a solution and thus strategies of reducing this space are re-
quired (Chandrasekaran, 1990). Given the task of hammering a nail, things like 
hammers and shaped rocks occupy this space, televisions and chicken eggs do 
not. Given the task of attaching two pieces of wood, nails, hammers, but also 
glues and ropes enter the scene. This means that a significant part of the design 
process is the specification of requirements, functions, criteria, constraints and 
transformation of those into design problems. This is important, because without 
the right understanding of what is to be achieved, the fundamental open-ended-
ness and ill-structured nature of design problems can emerge and cause havoc 
for the design process. This is a question also of quality: the more rigorously, 
widely, and specifically the requirements are represented, the less likely it is that 
corners will be cut or old solutions applied where new solutions are needed. Fur-
thermore, proper identification and conceptualization of requirements shows the 
extent to which the design problem is either structured (solvable using standard 
techniques), semi-structured (standard solutions are available only to an extent); 
or unstructured (or wicked problem, which does not fit a standard model) 
(Leppänen, 2005).  
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As we have seen, perhaps the most significant aspect of the design problem 
of autonomous ships can be captured by saying that task for engineers is to re-
place human cognitive, perceptual, and motoric processes (thought of as semi-
integrated in action) from the immediate vessel. This task can be approached 
from either the direction of devising technical solutions to particular scenarios, 
hoping to that they scale up with moderate amounts of tweaking, or by attempt-
ing to actually mimic or create artificial intelligence of a more general kind. Of 
course these are not necessarily opposed but complementary approaches. Our 
view is that proper autonomy entails the instantiation of general capacities in the 
artefact. This further means that the problem is essentially a wicked one, or at 
best semi-structured, meaning that we are still at a level of understanding 
whereby we do not necessarily know even what the right questions should be 
(Fodor, 1985).  

Having stated the problem in a general way we can ask the question of the 
kinds of systems that can satisfy those requirements. Following our analogy be-
fore, what kinds of systems can conceivably occupy the space circumscribed by 
the requirements for proper autonomy? An approach closely aligned with this is 
more explicitly about concepts and theory languages. Namely, are we under-
standing the problem correctly such that a solution is, while perhaps difficult, 
still at least in the direction the questions point to? Do we have the conceptual 
tools by which to begin approach or even formulate the problems? Or taking an-
other perspective, are the concepts currently available misguiding the search for 
solutions, or misrepresenting the problem? 

6.2 General Introduction 

Design, in the general sense of tool-creation and art, is a human universal. Along 
with language, it is what distinguishes man from other animals. The capacity for 
abstract thought, which they all presuppose, or perhaps enable, or are facets of, 
is what has enabled man to colonize essentially the entire terrestrial planet, with 
relatively small hard-wired biological adaptation to different environments. The 
ability to craft artefacts like clothing, weapons, and shelter enabled even early 
man to survive in quite different types of environments.  

But what is design, exactly? In addition to being an adjective, design is often 
used both as a noun and a verb, to denote both the design artefact and the process 
by which it is created. To clarify this distinction, we will use the terms ‘design 
processes’ and ‘artefacts’ to separate the two. As our general topic is autonomous 
technical artefacts, our focus here will be on engineering design and here, an ar-
tefact or a description of it is the typical outcome of a design process (Kroese, 2013). 
What we call ‘a design’ is, to use Kroese’s (2013) “thick sense”: a “description of a 
teleological arrangement of physical parts that together realize a function”. That 
is to say, to achieve something, to realize some end, is why we create artefacts. 
Put another way, if an ontology is a way of carving up the world at its joints and 
an attempt to identify what Mario Bunge called “the furniture of the world” 



70 

(Bunge 1977), then what design does in a sense, it changes the ontology of the 
world: the proper furniture of it (Kerr, 2014).  

Artefacts can be characterized by their functions and purposes, as well as 
the organization of their inner environment (Simon, 1981). A classic thermostat 
can be characterized by the function of maintaining a steady temperature within 
a room, and its’ inner organization consists of a bimetallic strip that expand and 
contracts in response to temperature, which either closes or opens a circuit, which 
turns the heat on. As the temperature rises, the strip contracts which turns the 
heat off, which barring any other circumstances, most likely returns to a temper-
ature which causes the strip to expand again, and the process repeats. This recur-
sive feedback loop between the artefact and the environment in its relationship 
to human needs defines the artefact. The thermostat could also be digital, con-
nected to a temperature gauge, without losing its’ essential functionality – per-
haps even enhancing it. Thus, a given design goal (such as maintaining the tem-
perature in a room), can be reached by many different types of design. Typically, 
this kind of design thinking falls within the domain of engineering design. In the 
case of the thermostat, the variable of the environment to which the artefact is 
designed in relation to is the temperature. 

But it would be a mistake to assume that in human use, a function is some-
thing static. In some sense, the function of a ladder might be to enable a person 
to climb up vertically, and this function may be what the designer has in mind. 
But when used, a ladder might equally well be used to cross a horizontal space, 
say over a stream of water, or two buildings. On the other hand, you couldn’t 
very well steer a ship with a ladder, or at least expect the ladder to react dynam-
ically to situations. Indeed, it is this very capacity of all human beings to see ob-
jects in terms of some goal that makes design, as a human capacity, possible at all 
- while at the same time making functional descriptions somewhat slippery. 
Nonetheless, function can’t be dispensed with, since it is what makes objects ob-
jects at all, let alone tools, rather just physical things (Peterson, 2013). In fact, even 
that is a stretch, since something like a “purely physical” description of a hammer 
already presupposes a representation for some end, to strip it of its’ functional 
connotations for example. As far as human thought is concerned, there are no 
‘pure’ descriptions, only silence. The object’s participation in a human mental 
representation, characterized by both negative and positive selectivity 
(Saariluoma, 1992), is what grants it object-status. This is more pronounced in the 
case of artefacts, fashioned and used as they are within the domain of human 
affairs, social and cultural.  

A further difficulty in nailing down a formal description of design is that 
form (or structure) does not strictly logically speaking follow function (Kroese 
2013). This is because of the shifting possibilities of functions in human use, and 
because many different forms can achieve a single function. What this shows is 
the somewhat open-ended and creative nature of design and especially novel de-
sign or innovation, but also the possibility for re-appropriation of existing tech-
nology. Indeed, an innovation is often a confluence of other innovations 
(Saariluoma, Hautamäki, Väyrynen, Pärttö, & Kannisto, 2011). That many forms 
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can achieve a single function is clear, but it does not mean anything goes. In the 
ladder example, what both functions presuppose is a certain rigidity, the ability 
to withstand the weight of a person. That this is the case is what the user will at 
least tacitly assume or hope, although of course such assumptions may turn out 
fatal. On the other hand, we would hardly assume a ladder to be able to perform 
the function of a pocket calculator. The form of a ladder has in typical human use 
a tacit range of possibilities, which we can in some sense intuit. 

A design process is typically a long series of questions covering (tacitly or 
explicitly) all the aspects that make up the final product (Saariluoma 2009). The 
first questions a designer must ask are about what is required to achieve the func-
tionalities that are being sought. This, as mentioned previously, is in our case the 
transfer of all relevant tasks, functions, and capacities from the domain of man to 
the domain of the vessel. This in turn is transformed into a design problem. 

The formal definition of a problem is to reduce the difference between the 
current state and goal-state of the system (Newell & Simon, 1976; Leppänen, 
2005). One way designers attempt to reduce this difference is by generating alter-
natives and evaluating/testing them against requirements and constraints 
(Hevner, March, Park, & Ram, 2004; Lawson ,1990). The generation of alterna-
tives does not, however, come from nowhere. It is presupposed by the require-
ments and functionalities being sought for on the one hand, and on the other, the 
tacit and explicit knowledge and skills of the designers. In other words, both 
problems and solutions are constrained and made visible by the concepts em-
ployed by the practitioner (Saariluoma, 2009). A programmer, an engineer, a psy-
chologist, or a lawyer (ap)perceive a thing under consideration quite differently 
based on their conceptual structures and learning (Floridi, 2017).  

In addition to their characteristic artificiality, all design processes are the 
result of human thinking. According to Lawson (1990) all design involves “a 
highly organized mental process capable of manipulating many kinds of infor-
mation, blending them all into a coherent set of ideas and finally generating some 
realization of those ideas.” (see also Dym & Brown 2012). It is strictly speaking 
wrong to assume that design can, or should, be divided into sharp categories 
without interaction and overlap. Most obviously, a technical artefact consists of 
many facets which require different sets of understanding: a car has a motor and 
it has an aesthetic, but an aesthetic should usually accord with the laws of aero-
dynamics: many forms of understanding converge in engineering design (Vin-
centi, 1990). On the other hand, many innovative ideas have not come from peo-
ple deeply vested in the domain of the invention. For example, Lawson (1990) 
lists some: the ballpoint pen was invented by a sculptor, the parking meter by a 
journalist, and the automatic telephone by an undertaker. From this he draws the 
obvious conclusion that we shouldn’t classify design by its end-product lest we 
wish to unnecessarily straightjacket designers, and direct their mental processes 
towards predefined goals, if what is needed is innovative design. Yet, design is 
not, nor should it be, completely open-ended. The trick is how to define require-
ments in such a way that ingenious designers can connect the dots with whatever 
means and concepts they have available. 
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This is the meta-justification for the attempt of this thesis – to provide a 
contribution to the design of autonomous technical artefacts from the perspective 
cognitive science (broadly understood). 

6.2.1 Science and Technology 

In the early 1960s, authors began to articulate the nature of technology and tech-
nological progress, specifically with respect to its’ relationship with science 
(Franssen 2013). Henryk Skolimowski (1966) and Herbert Simon (1981) noted 
how the essential difference between science and technology is roughly one of 
values: science wants to understand existing phenomena and advance under-
standing of them; engineering design seeks to fashion artefacts that accomplish 
some defined purpose. The two domains of human endeavor have obvious con-
nections. Sometimes scientific discoveries find application in technology, some-
times the goals of technology advance scientific understanding. Indeed, as Bunge 
(1966) notes in the same issue as Skolimowski (1966) (while defending the notion 
of technology as applied science), technology is differentiated from craft precisely 
by the application of scientific knowledge in solving technical problems and find-
ing solutions. Yet, as Franssen (2013) notes, there is a danger of missing the most 
central distinguishing element of technology if one focuses on its’ scientific as-
pects, namely design.  

Design brings in the notion of possibilities. We might say that the physical 
laws underpinning nuclear bombs would have existed irrespective of the human 
goal of creating weapons of mass destruction, but the objects themselves would 
not. Nor, for that matter would Plutonium, as it is not an element found in nature 
(Skolimowski, 1966). Thus, technology and design are areas of life where forms 
of logic such as modal, praxeological, and deontic apply (Saariluoma, Canas, & 
Leikas, 2016). What is important to note, is that while design as an activity is 
through and through teleological in nature, the concepts by which it operates, or 
attains its goals may not, indeed often are not teleological as such.  Explanations 
of this sort, as we have discussed before, are perhaps best captured, as von 
Wright noted (2004), via practical syllogisms. Namely, the major premise of the 
syllogism is some envisaged end state, the minor premise relates some action as 
a means to that end and the conclusion is simply to use the means to reach the 
end. It is hardly any surprise that in normal human affairs the stability afforded 
by causalistic and simple-mechanical approaches is very useful. Perhaps it is no 
surprise either, that they are unable to approximate the capacity in service of 
which they are used: the higher cognitive processes of man. 

6.3 Design Phases 

Quoting the American Institute of Architects, Floridi (2017) outlined a rather un-
controversial, phased account of design: 
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Phase 1: Originate This is the thinking phase in which one realises that something new (in 
our terminology, a new system) needs to be built in order to satisfy a particular purpose. It 
is the “needing” moment of the project. 

Phase 2: Focus This is the phase in which one defines the system’s requirements (these are 
broadly understood as scope, features, purpose, or functionality, more on this presently) that 
the system must have in order to satisfy the purpose. It is the “vision” moment for the project. 

Phase 3: Design This is the phase in which one models the system’s requirements. It is the 
“shaping” moment of the project. 

Phase 4: Build This is the phase in which one constructs the system. It is the “making” mo-
ment of the project. 

Phase 5: Use This is the last phase in which the system is finally available and starts satisfying 
its purpose. It is the “testing” moment of the project. 

Of course, the reality is far less linear, as Floridi (2017) himself notes, and this 
account but one among many (Lawson 1990), but it satisfies its’ purpose for now. 
It seems like at present, autonomous ships are somewhere between phases 2 and 
4. Our interest in this thesis can be anchored between phases 2 and 3, namely, the 
identification and discussion around requirements entailed by autonomy, as we 
have defined it. Furthermore, to consider the conditions of feasibility and possi-
bility implied by the requirements vis-à-vis machine intelligence. This line of 
thinking was outlined by Floridi (2017) in his notion of the logic of design as a 
logic of requirements. 

6.4 Logic of Requirements 

Luciano Floridi (2017) has outlined a logic for design built around requirements 
and conditions of feasibility. The requirements come out the view of design as more 
or less open-ended, with many different systems being capable of serving a single 
requirement (Dym & Brown 2012, Simon 1981). Thus, through the language of 
requirements, the approach does not unecessarily or unrealistically constrict the 
design processes. This he contrasts with conditions of possibility which he traces to 
Kant’s transcendental logic. This approach looks at systems and tries to under-
stand what brought them about. As such, it is close to the methods of natural 
science. Thus, Floridi’s logic for design is oriented towards the future, towards 
feasible possibilities, whereas the scientific stance is oriented towards what is, 
and more generally or ideally, that which is all-encompassing and eternal, such 
as natural laws. The difference between these two approaches is what Saariluoma 
(2010) identified with the scientific and design stances (see also Skolimowski 1966 
and Simon 1981). These two stances are by no means contradictory, but comple-
mentary. The search for a solution to a design requirement can be associated with 
the relevant scientific understanding. This is likely to be the case in any design 
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goal that is challenging enough and which likely does possess conditions of pos-
sibility that are at least not straight-forward and obvious. Autonomous ships as 
a case certainly qualifies. However, before a design problem can be “enriched” 
by scientific understanding, it needs to be identified, and these emerge ultimately 
from the requirements placed on the artefact, which in turn must be properly 
conceptualized. 

Let us now recall the vision set out for autonomous ships in the AAWA 
project. Recall that we noted that the goals are relatively realistic and modest 
compared to what full autonomy actually entails. Indeed, the project’s idea of 
ship autonomy as a variable depending on context and tasks rather than as a con-
stant leaves the development somewhat open and places the most important re-
quirement on how this variable is handled in real-life situations. In other words, 
how the shore control center can reliably and knows when to take over. Thus, the 
functionalities of the shore-ship link and center itself forms the superordinate re-
quirement for the system at this stage whose importance will vary as a function 
of the level of autonomy achieved in the artefact (as a constant). Of course, this is 
still far from autonomous, rather more like unmanned & remote controlled com-
bined with some capacities for sensing the environment, avoiding simple colli-
sions, and maintaining a preset course.  

Given that our interests are in the long-term (20-50 years) prospects of au-
tonomy, we must however look beyond what is currently envisaged.  

6.4.1 Dimensions of Autonomy as Requirements 

In the first section, we presented the dimensions of autonomy as identified by 
Williams (2015). Let us consider now them as requirements. Williams (2015, 54) 
summarized the key dimensions of autonomy for technical systems as follows. 

 
Table 7: Key dimensions of autonomy (Williams, 2015) 
 

Autonomy dimension Definition 
Goals An autonomous agent has goals that drive its behaviour. 

Sensing An autonomous agent senses both its internal state and the 
external world by taking in information (e.g., electromag-
netic waves, sound waves). 

Interpreting An autonomous agent interprets information by translat-
ing raw inputs into a form usable for decision making. 

Rationalising An autonomous agent rationalises information against its 
current internal state, external environment, and goals us-
ing a defined logic (e.g. optimisation, random search, heu-
ristic search), and generates courses of action to meet goals. 

Decision making An autonomous agent selects courses of action to meet its 
goals. 

Evaluating An autonomous agent evaluates the consequences of its ac-
tions in reference to goals and external constraints. 

                  
             (continued) 
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Table 8: Key dimensions of autonomy (Williams, 2015) (continued) 

 
Adapting An autonomous agent adapts its internal state and func-

tions of sensing, interpreting, rationalising, decision 
making, and evaluating to improve its goal attainment. 

 
What is key to note, is that the dimensions form a whole. They may be 

thought of as “layers” or “modules”, and indeed are likely be so construed given 
the way machines are constructed and operate, but as far as autonomy is con-
cerned there is, for example, no decision-making without rationalizing or inter-
preting, or without goals.  

What is needed, is an ontology for the design of technical systems that can 
achieve a mapping between the domain of man and the domain of technical ar-
tefacts, and this quest may involve a reconceptualization of how this mapping is 
to be achieved, if we are to follow the critiques outlined in the previous sections. 

6.5 The Artificial 

What all design shares in common, from furniture to intercontinental ballistic 
missiles, is their characteristic artificiality (Simon, 1981). The basic difference be-
tween a natural and an artificial system is that the latter is the result of human 
intentions. As articulated by Herbert Simon in his “Sciences of the Artificial” 
(Simon, 1981), the peculiar characteristic of the artificial is that it embodies both 
human intentions (goals, needs, functions) and the laws that govern the natural 
world which are, of course, nowhere absent. For Simon (1981), the natural is 
marked by a sense of necessity, whereas the artificial has an air of contingency5. 
The operating principles of cars for example are not removed from general laws 
of nature but the laws are, so to speak, contained and directed within a structure 
developed by human ingenuity to serve human purposes, i.e. locomotion. It is 
the harnessing of the regularities in nature within a form that satisfies some pur-
pose. A machine for example is often a system by which energy can be trans-
formed to do work. A chair has very different kinds of purposes, but nevertheless 
it remains embedded in human needs and thinking. 

This definition of the artificial ties in interestingly with artificial intelligence. 
Given Simon’s (1981) acknowledgement that artificial systems are the result of 
human intentionality, it follows that such systems have by default no intrinsic 
intentionality. There is no clear sense in which the sense of striving which we 
associate with life could issue from a machine if we admit to a fundamental dif-
ference between the two (Rosen, 1999; Thompson, 2010).  In other words, even 
seemingly intelligent software is basically just the displaced intentions of the 
prescient programmer (Deacon 2013, 100). The operative word is “by default”. 

                                                 
5 It might be added, that life itself is marked to some degree with an air of contingency, 

given the sense of finitude and precarious striving between life and death of the individual life 
forms that constitute the whole. 
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Human beings are “by default” intentional agents. Machines are “by default” the 
displaced intentionality of human beings, and have no intrinsic intentionality. 
But, of course, the goal of autonomy and perhaps indeed a requirement for gen-
eral AI is to create systems that do have intrinsic intentionality. Although biolo-
gists (Mayr, 1974, 2014) have long since expunged their field of teleology and 
essences, it may be that some of the most interesting properties (such as teleology 
and intentionality) and the way in which they may connect with not essences, 
but shared properties in common to all life, are thus left unattended (Jonas, 2001; 
Rosen, 1999). It may be of interest to note, that the primary tool by which 
teleology was ousted from nature was the theory of evolution (Mayr, 2014), but 
that it provides exactly zero insight into the emergence of life from inorganic mat-
ter, only its subsequent variations (Deacon, 2013, p. 138), and the cold fact re-
mains that while theoretical advances have been made, so far no one has suc-
ceeded in creating life in a laboratory (Mayr, 2014). 

6.6 Concepts and Languages 

Two forms of human life, and the differences and connections between them, are 
relevant to understand in the context of this thesis: science and engineering de-
sign. More specifically, the science of mind and intelligence, but it requires a sep-
arate treatment after the initial clarification is done. The difference, as noted by 
Checkland (1994) is roughly one of values: science wants to understand existing 
phenomena and advance understanding of them; engineering design seeks to 
fashion artefacts that accomplish some defined purpose. Technology, understood 
as a merger of science and engineering, is a very powerful technique indeed, and 
is perhaps a central prerequisite for modern civilization. The fact that they can 
have such an interplay is predicated on the fundamental similarity of the lan-
guages by which they explain and accomplish their respective tasks: causal ex-
planations. Scientific explanation, as defined by Hempel (1942) in the deductive-
nomological model (for its’ applicability to human affairs see Saariluoma, 1997; 
von Wright, 2004), has two major constituents: the explanandum and the explan-
ans. The essential task is to map on the target phenomenon to be explained (ex-
planandum) some laws, sentences, or equations that account for the phenomenon 
(the explanans). It is deductive in that the explanandum should follow as conclu-
sion from the explanans. It is nomological because the explanans should have, or 
contain, lawlike regularities (greek expression -nomos means lawlike). An expla-
nation of this form combined with engineering design can be called technology: 
the artefact is not a product simply of craft, but we understand why it works, and 
also why it does not based on general laws of nature. It should be noted, of course, 
that this connection should not prompt us to discard the important difference 
illustrated before, and the fact that both purposes for engineering design and 
purposes for science do not land in the explanatory methods they employ, but in 
human needs, culture, social practice, and individual minds (Saariluoma, Canas 
& Leikas, 2016). Some science and some engineering can enjoy a rich dialogue. 
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But it is not clear whether the language in the sciences of mind, and engineering 
design can enjoy similar interplay if the critiques of AI outlined before hold any 
truth. It should be noted, that it is precisely this interplay, or the attempt thereof 
where engineering design meets cognitive science and artificial intelligence. But 
what has vexed cognitive science, artificial intelligence, and communication the-
ory has always been meaning and significance. It is not clear how the translation 
from meaning and significance to matter in motion (Dennett, 1986) should pro-
ceed without something essential getting lost in the way such that it needs to be 
injected to the theoretical or physical edifice from the outside, ad hoc so to speak. 
Again, this marks the difference between autonomous and automatic. Now it is 
not necessarily the purpose here to argue in some general sense against the pos-
sibility or efficacy of causal explanations as explanations for some facets of the 
mental. The point, as a distinction borrowed from Burge (2007) points towards, 
is that there is a difference between causal antecedents and causal consequents. In 
the sense relevant here, this is not to be thought of as some kind of input-mecha-
nism-output system in the flat sense which easily collapses into mere automation, 
but by thinking about the causal antecedents, the necessary conditions for mind 
to emerge from matter in motion, but which thereafter is peculiar characteristics 
of its’ own – even as it remains firmly tethered to its’ causal ground, call it the 
body or the brain. The way to think about this is via the special qualities of minds 
and informational structures in general: their connections are best described as 
logical, or syntactic, and sometimes meaningful or semantic. The problem that 
vexes the causal picture of psychology, is that there seem to be no “gaps” into 
which some non-physical or non-physiological aspects might inject themselves 
(Burge, 2007), the causal picture is complete and gapless. What is the weight and 
dimensions of thought such that it can bear weight and cause events in the brain? 
What of information? Such questions sound non-sensical, like asking of the color 
of number three (Wittgenstein, 1994).  

Insofar as we acknowledge actionistic language as a valid theoretical con-
struct in its’ own domain (most human affairs, the philosophy of action, much of 
psychological explanation), and insofar as we grant it as pointing towards some-
thing essential for the attainment of autonomy, we come upon a deep chasm be-
tween two theory languages: the causal language of engineering (Pahl et al., 2007) 
and the language of action, with its’ teleological and intentional characteristics. 
To be implementable, a function needs to be rigorously defined for the engineer. 
We can simply ask a person to fix breakfast tomorrow morning because we our-
selves will be busy replacing the tire on our bike, but such a description, while 
perfectly functional in human affairs, simply can’t do work in engineering terms. 
An engineer might translate such language to some materially-causally feasible 
form, but in and of itself it will not be sufficient. The question becomes then how 
to achieve a mapping between two distinct knowledge patterns? The general ap-
proach of cognitive science has been to map mental processes to general descrip-
tions of information processing which acts as the abstraction and bridge between 
man and computer.  
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The tension between the intentional actionistic language of everyday hu-
man affairs, and the language of engineering design is telling of a more general 
tension to do with any translations of phenomena into a theoretical framework: 
the case of phenomenological phenomena simply makes the point more vivid. 
Insofar as the advance of scientific understanding is a conceptual affair (Kuhn, 
1970; Saariluoma, 1997), it is an attempt to map, or translate, some source phe-
nomenon into some logical framework. Insofar as no map is the territory it rep-
resents, nor should it, there are always patterns that get left out, either by design 
or by other reasons. The triumphant mapping of maps to yet more maps, landing 
perhaps in physics, would the goal of a reductionistic analysis. This may be with 
regards to any topic, but here we are of course thinking about the mapping of 
mental processes to physical events in the body and in the environment. The au-
tonomy of a science (of the mental, say) turns on the possibility of such a reduc-
tion. Or one might even turn the tables and ask whether the physical can in some 
sense reduce to the mental, although this is perhaps a less typical direction of 
reduction. Two central problems posed by the apparent qualities of the mental 
pose a significant challenge to a reductionistic analysis. One is the holistic nature 
of the mental. The other is the wholesale disappearance of subjective qualities, 
arguably the mental, that ensues from reduction to a causal theory language. It 
seems in no trivial sense that something essential is lost during such a translation. 
It may follow, that if something essential is lost along the way, the return trip 
from matter in motion to meaning and significance (Dennett, 1986) will not rein-
stantiate the central features of the mental, but mere simulacra. This, if true, is a 
severe limitation on artificial intelligence, and on any cognitive theories that re-
semble the approach for that matter.  

We are ready to admit both the validity of mental, viz. actionistic, inten-
tional, and teleological, explanations in human affairs, and also ready to admit 
its’ insufficiency with regards to engineering science and therefore artificial in-
telligence (understood as the attempt to recreate the phenomenon of the mental). 
We will also note, that cognitive science was and is the attempt to postulate ex-
planations of the former kind (often called folk-psychological) into an intermedi-
ary, cognitive, theory language that would be more amenable to a scientific treat-
ment (Frankish & Ramsay, 2012). But just as the language of ordinary human 
affairs will not suffice or by itself do work in the context of engineering design, a 
different, perhaps more pernicious kind of error is one which seems to, kind of, do 
such work – especially if it is at least biased, or prepared to, eject meaning and 
semantics from the explanatory framework as meaningless. The wrong type of ex-
planation can’t hope to recreate the causal entailments which we will assume ex-
ist as antecedents of the mental. While descriptive models can be harnessed to do 
some work in the context of artificial intelligence, it is reasonable to ask whether 
such a model has any real hope of advancing beyond empty mimicry or expand-
ing our understanding of the mental in general. It is precisely in the context of 
artificial intelligence or genuine autonomy that explanations akin to Ptolemaic 
epicycles of planetary motions that are only descriptive but do not penetrate 
deeper into the reasons why (Bunge, 1979) will not do the work required.  
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Our position is therefore quite a conservative one. We simply acknowledge 
the existence of the mental with its’ peculiar abilities and characteristics and com-
bine that with the traditional view that the existence of things have reasons, viz. 
causes, or forms of determination (Bunge, 1979). Our position here is that a mark 
of a science of the mental would either be able to show a principled way towards 
recreating it, or a principled reason against that possibility: it would turn the 
mental into a technological object rather than the current folk-psychological con-
ceptions currently dominating the field of AI. Would it not be the case that in the 
event that humans succeed in creating actual minds in machines, there would at 
that very instant be born a need for an autonomous science of “machine psychol-
ogy”? The difference would be that unless the thinking machines came about by 
some strange accident, then here we would know the causal antecedents of the 
mental in the machine, and yet, the actual subsequent psychological space would 
be in some sense unexplored territory.  

6.7 Models and Modeling 

The tacit assumption with any attempt to model a phenomenon is that it can cap-
ture in an inferential structure some parts of the causal structure (Rosen, 1999). Yet, 
the more autonomous and/or complex the target phenomenon the less possible 
it becomes to capture the actual entailments within a (typically) computer model. 
This is not necessarily a reflection of our ignorance of the causal connections as 
such, although it is also that, but of the limits of formal models, and by extension 
traditional machines including computers and therefore AI. As noted by Rosen 
(1999) and reiterated by Schierwagen (2012), the essential relation between a 
model (or a blueprint) is to capture the causal (broadly understood) relations in 
a natural system within a formal system in the form of inferences. See image be-
low (from Schierwagen, 2012): 
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The relationship between models and natural system (Schierwagen, 2012) 

The relationship between the two systems are of encoding (b) and decoding (d). 
The fundamental problem is that only the simplest natural systems and the most 
general patterns afford such analysis. Autonomy, and indeed the mental and its’ 
living substrate are far more complex. The problem with this is two-fold. 
Computers function by way of formal systems. This foundational limitation, 
which we have identified before, means that they can, at best, approximate in 
simulation any process that has complexity as its’ characteristic (Checkland, 
1994). This problem relates both to the operating principles of computers vis-à-
vis natural organic systems, but also to the situations and environments in which 
the AI system is to manage (Rosen, 1999). These two aspects, complexity in the 
environment and complexity in the system, may be related. On a general level, 
Simon’s (1981) insight that the apparent complexity of man is but a reflection of 
the situations in which he finds himself rather than an intrinsic quality of the 
system itself is both right and may be wrong, or traffic within a notion of 
complexity that refers to complicatedness rather than complexity (Rosen, 1999). 
To be sure, the idea of a complex system, while important in many fields, seems 
to lack a concise definition applicable and accepted across different disciplines 
(Ladyman, Lambert, & Wiesner, 2013). Mathematical biologist Robert Rosen 
(1999) defined a system as simple if all its’ models are simulable. Accordingly, a 
complex system is one which must have a nonsimulable model. Importantly, for 
Rosen, a simple system can be complicated without crossing the threshold to com-
plexity.  Furthermore, he held that the neat, tidy, orderly world of mechanisms 
is the world of the simple. This he further identifies with the formal system, nice 
and clean, but impossible to get out of via methods internal to the system. This is 
a fascinating insight, that has a direct family resemblance to the critiques of ma-
chine intelligence put forth by Dreyfus (1976, 2007) and Searle (1980, 1984, 1990). 
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Namely, the formal system is for Rosen, as it is for Dreyfus and Searle, a closed 
circle and an entity in it can’t reason its’ way out (consider also Wittgenstein, 
1922). It is a purely syntactic system, without meaning and without relevance. 
And, it is the world of the machine, fully determined, only syntactic. Finally, 
whether systems that have hybrid characteristics, some neat and simulable and 
others not, and how those line up with properties we are interested in is a ques-
tion difficult to prejudge (see Marr, 1990). 

Simon (1981) saw clearly that human thinking is governed by heuristics and 
rules-of-thumb which sacrifice precision for usefulness and speed (see also 
Kahnemann, 2011). A typical heuristic for human thinking in the context of 
design is the so-called mereological and decompositional strategies that perhaps 
clearest in engineering design. Mereology is the study of parts, and 
decomposition is a related strategy of carving a system by its joints and analyzing 
them as separate components or modules (Bechtel & Richardson, 2010). Whether 
it is a viable strategy depends on what Simon (1981) called either near or full 
decomposability, which means essentially that the interactions within 
subsystems or modules are stronger than those between them. The problem is 
that this is the only way we can build systems and artefacts, we don’t copy the 
bird in building an aeroplane because we can’t copy a bird (Rosen, 1999). This is, 
of course, a problem only if the function we are attempting to capture resists 
mereological or compositional strategies and the property depends on such 
interactions as to make progress impossible without different conceptual tools. 
Recall for example our discussion on the modularity of mind (Fodor, 1985), 
which seems to indicate that even if some parts of the cognitive system may fall 
for a decompositional analysis, some of the most important and interesting may 
not, and furthermore, those may be absolutely crucial for true intelligence, and 
therefore autonomy. As the difficulties but also successes yielded by attempts at 
carving the cognitive at its joints seem to suggest (Janssen, Klein, & Slors, 2017) 
there is reason to believe that there is truth in both viewpoints.  

Finally, we should keep in mind that a very basic problem lurks within the 
idea that a formal model could capture in an inferential structure the causal 
structures that underpin the mental. This is a slippery point, for isn’t the mental, 
as we have suggested, precisely inferential and not causal, and shouldn’t it 
therefore follow that the causal structure is not important? In the Artificial Gen-
eral Intelligence (AGI) community, for example, the received view is that creating 
AGI is “just an engineering problem” given that humans, that do display AGI, 
are just “particular configurations of atoms” and an exact copy, down to the 
atomic level, or the human brain in a digital simulation would be “an almost sure 
way to create AGI” (Goertzel & Pennachin 2007, pp 17). But this is too 
disembodied (Clark, 1997) a perspective for our taste. It seems likely that 
precisely by only projecting our imaginations on artefacts we fall short of 
achieving anything resembling intrinsic intelligence in the system, if we take 
seriously what our experience and common sense tells us, and take seriously the 
self-experience of life (Jonas, 2001) as an phenomenon curiously tethered to the 
body, emergent from it, and yet open to an informational aspect of reality which 



82 

one is tempted to acknowledge genuinely as ’a third realm’ (Popper, 1979; 
Wiener, 1985). It is possible that no amount of simulation, without the right 
mechanisms that turn on the mental lights, will ever yield much more than 
complicated, but ultimately (not even) dumb software. The moral dimensions of 
even wanting to turn on mental lights in artefacts will have to wait for another 
occasion. 

6.8 Summary 

We have arrived at the limits of what this thesis can achieve. Our discussion has 
sought to identify that the requirements for full autonomy as predicated on gen-
uine intelligence in the artefact require more than current understanding can 
achieve. This fundamental tension is thus at this stage of understanding a con-
ceptual one, not yet a technical one. In order to have a chance at instantiating true 
intelligence, or true autonomy in a technical artefact, we must have the proper 
conceptual tools for that endeavor. What such concepts might entail one can only 
guess. What is obvious, is that mental contents and meaning are real fixtures of 
reality. So far, we have only the slightest glimpse of how we might properly ex-
plain how they come about from mere matter in motion. If such an explanation 
is to be found, it needs to take seriously the various properties of reality, and seek 
to identify how higher-order constraints, information, come about in physical 
systems, and how to properly conceptualize it. What is needed is an ontology for 
the design of autonomous technical artefacts that could, without losing what is 
essential on the way, achieve a mapping from the broadly cognitive domain into 
the technical domain, and may entail a reconceptualization of how the artificial 
is to be built, if built is even the operative word.  

In the meantime of course, we need not despair. The technical systems have 
an autonomous mental component: human beings. Before a much deeper under-
standing of how autonomy comes about in us has been achieved, the human will 
remain a necessary component of technical systems.  
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7 CONCLUSIONS AND DISCUSSION 

We began this thesis by approaching the question of autonomy in the context of 
maritime vessels. We noted that if autonomy is the requirement, then intelligence 
of one form or another is the solution. Intelligence understood as a catch-all term 
here, and including perceptual capacities. It therefore follows that the level of 
autonomy is in some sense a function of the intelligence embedded in the tech-
nical system. Our brief overview of the various problems involved vis-à-vis the 
technical systems on offer concluded that, first, the level of ambition in the De-
sign for value project is at a realistic level, and that given that anything like full 
autonomy is still somewhere in the future, the primary term should be un-
manned, and the primary solution should be a shore control center. Ship auton-
omy is a variable rather than a constant, and it will likely remain that way for 
some time. Significant focus should be placed on how, for now, the capacities 
formerly exercised on the bridge and the deck can and should be transposed into 
the shore control center, and presents a necessary research field for the upcoming 
years. The development of autonomy in ships can proceed in parallel, but should 
not be deployed or relied upon before the remote control issues are settled. Of 
course, if the ship if unmanned, it needs to have robust solutions for handling 
situations if the link is severed or uncertainty exceeds some threshold. Much 
work remains to be done.  

The technical difficulties involved open up the path towards a discussion 
on conceptual issues buried within the question of autonomy, insofar as it relates 
to intelligence or what we might associate with higher cognitive processes in man. 
Namely, while there is no question as to the technical difficulty of achieving an-
ything like general human intelligence in an artefact, it is also possible that those 
technical difficulties, in part, result from conceptual confusion. These questions 
are what preoccupied us over the latter parts of the thesis. The problems and 
questions that these questions opened up are many and interweaving and our 
discussion could but illustrate one possible path through this vexing territory.  

We began with a discussion on the very nature of the digital computer, the 
most usual suspect as the platform on which artificial intelligence is to be instan-
tiated. Following quite classical critiques of AI, we concluded that the question 
of meaning and semantic contents remains conceptually, in principle, outside the 
grasp of computers – understood as formal-syntactic systems – and that therefore, 
even their fundamental operational principles, namely computations, are to a 
non-trivial extent observer-relative. The problem can be conceptualized as issu-
ing from a mapping of abstractions, which by definition leave contents behind, 
into a regular mechanism. There is no obvious way how such a procedure, espe-
cially given that it presupposes the jettisoning of contents, could by miracle come 
to intrinsically exhibit them.  

This began to turn our discussion towards broader issues given that if com-
puters do not suffice, but apparently we do, what is it about us that grounds this 
potential? This we attempted to approach via the notion of multiple realizability 
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by acknowledging the special qualities of the mental vis-à-vis the physical, and 
that the question is really about how we are to conceptualize the mental and the 
physical such that a justified plurality would be the starting point before any sort 
of reduction would even be envisaged. Our approach was a kind of scientific re-
alism, namely, the very existence of the autonomous science of cognitive science 
and psychology, not to mention our ordinary experience and communication, 
affirms an autonomous status to mental events and causes. They are real and ef-
ficacious. This opened up the possibility of examining the questions from two 
different points of view: the operating principles of the mental as a form of de-
termination on the one hand, and on the other, its’ causal antecedents. That is, by 
acknowledging a plurality we can avoid any foregone reductions and yet exam-
ine the antecedent, roughly speaking physical, causes of the mental which are 
admittedly its’ sine qua non. This led us towards an assessment of information 
as indeed the crucial notion, but that our understanding of it is on par with our 
understanding of how semantic contents come about in natural systems, let alone 
artificial ones.  

What our discussion sought illustrate, is that a plausible conceptualization 
of mentality should take seriously the forms of determination by which it 
emerges from physical substrates, and its’ subsequent qualities as a form of de-
termination itself. One approach is to think of information and the mental as 
ways in which lower level forms of determination are captured and constrained 
within patterns and structure. The major question remains, and is not obviously 
explained by the ways sketched in this discussion, of how mental contents come 
about. It is possible however, that to seek answers to these questions one should 
go down to the very nature and origins of life itself with the assumption that 
something like meaning, dim as it may be in the beginning, is a necessary corol-
lary to life. 

For the final section we sought to land these abstract considerations in the 
design of autonomous technology, the general topic of this thesis. Understanding 
the nature of design as an exploration of possibilities, we sought to anchor the 
discussion in a framework of requirements, namely, that the dimensions of au-
tonomy illustrated in the first section are indeed the requirements for it. The 
problem, as the middle part of this thesis sought to show, is that they are some-
what descriptive of what it entails, and do not as such translate into a language 
useful for engineering design. Thus the discussion around AI and multiple real-
izability can be seen as a more broad illustration of a requirement for new con-
ceptual tools and language that genuinely tackle the problems that proper auton-
omy entails. Here engineering design, AI, and cognitive science enter common 
ground, and a genuine solution from any direction should benefit each. It is pos-
sible however, that an engineering design that actually achieves proper auton-
omy would require a major conceptual shift away from the typical mereological 
summing of parts and modules towards a deep integration and forms of holistic 
determination. But as the history of AI and computer science show, placing these 
theoretical considerations in the context of actually attempting to achieve them 
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has immense potential for the advancement of human understanding. The im-
portance of negative results should not be underestimated.   
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