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MAPPINGS OF FINITE DISTORTION: SIZE OF THE BRANCH
SET

CHANG-YU GUO, STANISLAV HENCL, AND VILLE TENGVALL

Abstract. We study the branch set of a mapping between subsets of Rn, i.e., the
set where a given mapping is not defining a local homeomorphism. We construct
several sharp examples showing that the branch set or its image can have positive
measure.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a domain and let us consider a continuous mapping
f : Ω → Rn. In many applications it is important to know when this mapping is
invertible (see e.g. [5] and [33]) or at least locally invertible in many places (see e.g.
[31], [12]) as the invertibility is the important key tool for the study of topological
properties of the mapping. The usual proof of invertibility is to first show that the
mapping is discrete (preimage f−1(y) of every point y ∈ Rn is a discrete set, i.e., does
not have an accumulation point in Ω) and open (image of each open set is an open set),
as each discrete and open mapping is invertible in many points as we mention below
(see e.g. [21], [12], [22] and [16] for results in this direction). Moreover, openness and
discreteness together with reasonable conditions around ∂Ω imply that the mapping
is invertible.

However, every continuous, discrete and open mapping f : Ω→ Rn is not necessar-
ily injective or invertible in a neighborhood of each point in Ω. The simplest example
is the winding mapping ω : Rn → Rn defined as

ω(r cos(θ), r sin(θ), x3, . . . , xn) = (r cos(2θ), r sin(2θ), x3, . . . , xn),

where r =
√
x2

1 + x2
2 ≥ 0 and θ ∈ R for x = (x1, x2, . . . , xn) ∈ Rn. This mapping will

wind the space twice around the (n− 2)-dimensional hyperplane Hn−2 := {(0, 0)} ×
Rn−2 and therefore it is not defining a local homeomorphism in a neighborhood of any
point which lies in Hn−2. This kind of behavior of a mapping where the injectivity
is destroyed is usually called branching and the set of points where a mapping f is
not defining a local homeomorphism is called the branch set of f . We will denote
the branch set and its image of a mapping f by Bf and f(Bf ), respectively. These
sets have very rich and complex topological and geometrical structures both of which
have been studied in a variety of different contexts, see e.g. [1, 2, 12, 13, 14, 25, 35]
and references there.
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In the case of the winding mapping we see that even if there is some branching
occurring it is only happening in a very small set. Namely, the branch set Bω and
its image ω(Bω) both have topological and Hausdorff dimensions equal to n− 2 and
so have Lebesgue n-measure zero. By the theorem of Chernavskĭı [7, 8], see also the
work by Väisälä [35] for a shorter proof, for the topological dimension of these sets
we have

(1.1) dimT Bf = dimT f(Bf ) ≤ n− 2

for every continuous, discrete and open mapping f . Therefore, the size of the branch
set and its image in the sense of the topological dimension are the maximal ones
for the winding map. Moreover, in the case n = 2 the branch set and its image for
continuous, discrete and open mapping contain only isolated points and hence (1.1)
holds in this case also for the Hausdorff dimension. However, when n ≥ 3 there are no
topological obstacles to make the branch set very large with respect to the (Lebesgue)
measure and Hausdorff dimension. To see this, we simply choose a homeomorphism
g : Rn → Rn which sends a given Cantor set of positive measure to a subset of the
hyperplane Hn−2 (see e.g. [10]) and then define

f := g−1 ◦ ω ◦ g,

which gives us a continuous, discrete and open mapping with both sets Bf and f(Bf )
having positive measure. Therefore, we need to have some additional assumptions in
order to control the measure of the branch set and its image for continuous, discrete
and open mappings. In this paper these additional assumptions will be given in
terms of mappings of finite distortion as it is natural in many applications (see e.g.
[21, 22, 16, 19, 15]):

Definition 1.1 (Mapping of finite distortion). Let Ω ⊂ Rn be a domain with n ≥ 2.
We say that a mapping f ∈ W 1,1

loc (Ω,Rn) is a mapping of finite distortion if

(FD-1) Jf ∈ L1
loc(Ω),

(FD-2) Jf (x) > 0 a.e. on the set where |Df(x)| > 0.

For each such a mapping we associate an outer distortion function KO(·, f) : Ω →
[1,∞] and an inner distortion function KI(·, f) : Ω→ [1,∞] defined as

KO(x, f) =

{
|Df(x)|n
Jf (x)

, if Jf (x) > 0

1, otherwise
and KI(x, f) =

{
|D]f(x)|n
Jf (x)n−1 , if Jf (x) > 0

1, otherwise.

Above, and in what follows Jf (x) := detDf(x) stands for the pointwise Jacobian
and D]f(x) for the pointwise adjugate matrix of the differential matrix Df(x). We
will refer by |A| the operator norm of a matrix A. Moreover, we point out that
for the distortion functions described above we have the following useful pointwise
inequalities

KI(x, f) ≤ Kn−1
O (x, f) and KO(x, f) ≤ Kn−1

I (x, f)

for almost every x ∈ Ω, see e.g. [19]. For the readers who are not familiar with
mappings of finite distortion we recommend the monographs [4, 15, 19].

In order to study the size of the branch set and its image for mappings of finite
distortion we first recall that when KO(·, f) ∈ L∞(Ω) in Definition 1.1 we recover
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the well studied class of mappings of bounded distortion, also known as quasiregu-
lar mappings. Furthermore, if a mapping of bounded distortion is injective we call it
quasiconformal. By the fundamental theorem of Reshetnyak (see e.g. [31]) every non-
constant mapping of bounded distortion is continuous, discrete and open. Moreover
(see e.g. [32]), nonconstant mappings of bounded distortion

(1) are differentiable almost everywhere,
(2) have positive Jacobian almost everywhere, and
(3) satisfy Lusin’s conditions (N) (i.e. every set of measure zero is mapped to a

set of measure zero).

The properties listed above play an important role in the study of the size of the
branch set and its image. Indeed, by [32, Lemma I.4.11] every continuous, discrete
and open Sobolev mapping which is differentiable almost everywhere and has almost
everywhere nonvanishing Jacobian determinant defines a local homeomorphism in a
neighborhood of almost every point. In addition, if the mapping satisfies Lusin’s
condition (N) then the image of the branch set will have measure zero as well. In
particular, it follows that both the branch set of a nonconstant mapping of bounded
distortion and its image are of measure zero. Therefore, it is natural to ask if this is
the case even when the boundedness of the distortion is relaxed. The first result of
this paper gives sharp conformality conditions under which continuous, discrete and
open mappings of finite distortion may have branch set of positive measure. We give
these conditions in terms of the inner distortion function:

Theorem 1.2. Let n ≥ 3 and Ω ⊂ Rn be open. Then we have the following:

(i) Suppose f ∈ W 1,n−1
loc (Ω,Rn) is a continuous, discrete and open mapping of

finite distortion with
KI(·, f) ∈ L1

loc(Ω).

Then f is an almost everywhere differentiable mapping with positive Jacobian
determinant almost everywhere. Especially, we have Ln(Bf ) = 0.

(ii) On the other hand, there exists a continuous, discrete and open Lipschitz
mapping f ∈ W 1,∞

loc (Rn,Rn) of finite distortion with

KI(·, f) ∈ Lploc(R
n)

for every 0 < p < 1 such that Ln(Bf ) > 0.

We should point out that the conformality and Sobolev assumptions in Theorem
1.2 are too weak to guarantee continuity, discreteness and openness of the mapping,
see e.g. [16]. Because of this we will assume these conditions, in addition, to stay in
the right class of mappings. The positive statement in Theorem 1.2 follows directly
from the results in [25, 34]. Moreover, the local integrability assumption of the inner
distortion function is sharp for the differentiability almost everywhere even in the
class of W 1,n−1-homeomorphisms of finite distortion, see [17]. It is well-known that
this is also the right integrability class for the inner distortion function to guarantee
that the zero set of the Jacobian has null measure.

In some sense it is surprising that after we lose local integrability of the inner
distortion we may find, not only W 1,n−1-mappings, but even Lipschitz mappings with
the branch set of positive measure. Especially, we may see that differentiability almost
everywhere is not a sufficient condition for the local invertibility almost everywhere as
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every Lipschitz mapping is differentiable at almost every point. In addition, Theorem
1.2 shows the necessity of nonvanishing Jacobian almost everywhere for the local
invertibility. Thus, we may ask if this is also a sufficient condition for this property.
Notice that by [25] every continuous, discrete and open mapping of finite distortion
with positive Jacobian almost everywhere satisfies Lusin’s condition (N−1), i.e., the
set f−1(E) has measure zero for every set E ⊂ Rn of measure zero. Therefore, to
construct a continuous, discrete and open mapping of finite distortion with a positive
Jacobian almost everywhere and with the branch set of positive measure it is necessary
to have the measure of the image of the branch positive as well. In the main result
of this paper we will construct such a mapping showing that the condition Jf > 0 is
not sufficient for the local invertibility:

Theorem 1.3. Let n = 3. There exists a continuous, discrete and open mapping of
finite distortion such that f ∈ W 1,p((−1, 1)3, (−1, 1)3) for all p ∈ [1, 2), Jf > 0 almost
everywhere, but

Ln(Bf ) > 0 and Ln(f(Bf )) > 0.

We would like to remark that the mapping f as in Theorem 1.3 cannot be differ-
entiable almost everywhere. Recall that by the differentiability result of Väisälä [37]
every continuous and open mapping in W 1,p, p > n−1, is differentiable almost every-
where, and on the other hand differentiability might fail for mappings in W 1,n−1 even
if they are assumed to be homeomorphisms of finite distortion with positive Jacobian
almost everywhere, see e.g. [9]. Hence, it would be interesting to know what happens
for the size of the branch set in Theorem 1.3 in the borderline case where f ∈ W 1,n−1

as it could also reveal if the differentiability almost everywhere is a necessary condi-
tion for the local invertibility. It is possible to slightly improve the Sobolev regularity
of the mapping in Theorem 1.3 on logarithmic scale, and to derive some level of inte-
grability for the distortion functions of this mapping, see section 7. However, we do
not know what are the sharp Lorentz conditions and distortion assumptions under
which a continuous, discrete and open mapping of finite distortion with positive Jaco-
bian almost everywhere will have branch set of zero measure. For the sharp Lorentz
condition for the differentiability without any additional conformality conditions we
refer to [29].

There are several reasons to study the branch set of mappings of finite distor-
tion. One such a reason can be seen when we try to generalize the well-known
Poletsky’s [30] and Väisälä’s [36] moduli inequalities of quasiregular mappings, or
the corresponding capacity inequalities, see e.g. [27, 28, 35], for mappings of finite
distortion. These inequalities were generalized for mappings of finite distortion in
W 1,n

loc with locally integrable inner distortion by Koskela and Onninen [26]. The opti-
mal assumptions for these inequalities with lower regularity assumptions were further
studied in [11, 17, 34]. As it was observed in [11], these inequalities would follow for
a continuous, discrete and open mapping f of finite distortion with even lower regu-
larity assumptions by following the standard arguments in the theory of quasiregular
mappings whenever

(1) the mapping f is differentiable almost everywhere,
(2) the Jacobian determinant is positive almost everywhere,
(3) the branch set Bf has measure zero, and
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(4) the image f(Bf ) has measure zero as well.

It follows from [25, 34] that the conditions (1)–(3) hold whenever we have a contin-
uous, discrete and open mapping f ∈ W 1,n−1

loc (Ω,Rn) of finite distortion with locally
integrable inner distortion. However, we need to have much stronger assumptions if
we want (4) to hold:

Theorem 1.4. Let Ω ⊂ Rn be an open set with n ≥ 3 and let λ > 0. Then we have
the following:

(i) If f : Ω→ Rn is a nonconstant mapping of finite distortion with

exp
(
λKO(·, f)

)
∈ L1

loc(Ω),

then f is continuous, discrete and open. Moreover, f satisfies Lusin’s condi-
tion (N) and Ln(f(Bf )) = 0.

(ii) On the other hand, for each 0 < ε < 1 there is a continuous, discrete and
open mapping f ∈ W 1,p

loc (Rn,Rn), for all 1 ≤ p < n, of finite distortion such
that

exp
(
K1−ε
O (·, f)

)
∈ L1

loc(Rn)

and Ln(f(Bf )) > 0.

Theorem 1.4 shows the necessity of Lusin’s condition (N) for the condition Ln(f(Bf )) =
0. We will see in section 3 that Theorem 1.4 (ii) follows from an even stronger result,
Theorem 3.2. For the positive statement in Theorem 1.4, see [18, 22, 23, 24]. For the
reader interested in the positive statement in the planar case, we also refer to [20].

2. Preliminaries

2.1. Notation. A point x ∈ Rn in coordinates is denoted as (x1, x2, . . . , xn) and its

Euclidean and supremum norms are denoted by |x| :=
√∑n

i=1 x
2
i and ‖x‖ := supi|xi|.

Furthermore, we will denote by

Q(a, r) := (a1 − r, a1 + r)× · · · × (an − r, an + r)

an open cube centered at a ∈ Rn with edge length 2r > 0, i.e., the set {x ∈ Rn :
‖x−a‖ < r}. The interior of a set A ⊂ Rn is denoted by A◦ and the symbol Ln refers
to the Lebesgue n-measure. When we write

C := C(p1, . . . , pk)

we mean a positive constant which depends only on the given parameters p1, . . . pk.
The constant C might change from line to line. Furthermore, for given functions f and
g we denote f . g if there exists a positive constant C > 0 such that f(x) ≤ Cg(x)
for almost every x. In the case when both conditions f . g and g . f are satisfied
we denote f ∼ g.

2.2. Sobolev spaces. Let Ω ⊂ Rn be an open set. The Sobolev space W 1,p(Ω,Rm),
1 ≤ p ≤ ∞, will consist of all the mappings

f := (f1, . . . , fm) : Ω→ Rm
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such that for the real-valued coordinate functions and for their distributional partial
derivatives we have

fi ∈ Lp(Ω) and
∂fi
∂xj
∈ Lp(Ω)

for all i = 1, . . . ,m and for every j = 1, . . . , n. If f ∈ W 1,p(Ω′,Rm) for every subdo-
main Ω′ ⊂⊂ Ω we denote f ∈ W 1,p

loc (Ω,Rm).

2.3. ACL condition. Let i ∈ {1, 2, . . . , n} and denote by πi the projection on the
given hyperplane Hi = {x ∈ Rm : xi = 0} perpendicular to the xi-axis. We say that
a mapping f ∈ L1

loc(Ω,Rm) is absolutely continuous (on lines) if the following ACL
condition holds:

(ACL) For every cube Q(a, r) = (a1− r, a1 + r)× · · · × (an− r, an + r) ⊂⊂ Ω and for
every i ∈ {1, 2, . . . , n} the coordinate functions

f i(t;x) := f(x1, . . . , xi−1, t, xi+1, . . . , xn)

are absolutely continuous (with variable t) on (ai − r, ai + r) for Ln−1-almost
every x ∈ πi(Q(a, r)).

The following characterization of Sobolev spaces is classical and can be found e.g. in
[3, Section 3.11] and [15, Theorem A.15]:

Proposition 2.1. Let Ω ⊂ Rn be an open set and f ∈ Lploc(Ω,Rm) for some 1 ≤ p <

∞. Then f ∈ W 1,p
loc (Ω,Rm) if and only if there is a representative of f which is an

ACL(Ω,Rm) mapping with locally Lp-integrable partial derivatives on Ω.

2.4. Conditions (N) and (N−1), and the area formula. Suppose f : Ω→ Rn is
a mapping defined on an open set Ω ⊂ Rn with n ≥ 1.

(1) We say that f satisfies Lusin’s condition (N) if for each set E ⊂ Ω such that
Ln(E) = 0 we have Ln(f(E)) = 0.

(2) We say that f satisfies Lusin’s condition (N−1) if for each set F ⊂ Rn such
that Ln(F ) = 0 we have Ln(f−1(F )) = 0.

We will need the following well-known area formula for Sobolev mappings (see e.g.
[15, Theorem A.12]):

Proposition 2.2. Let f ∈ W 1,1
loc (Ω,Rn) and let η be a nonnegative Borel measurable

function on Rn. Then∫
Ω

η(f(x))|J(x, f)| dx ≤
∫
Rn

η(y)N(y, f,Ω) dy,(2.1)

where the multiplicity function N(y, f,Ω) is defined as the number of points in the
set f−1(y) ∩ Ω for y ∈ Rn. Moreover, there is an equality in (2.1) if we assume in
addition that f satisfies Lusin’s condition (N).

2.5. Constructing Cantor sets. Suppose [−1, 1]n ⊂ Rn, and denote by V the set
of 2n vertices of the cube [−1, 1]n. The sets

Vk = V× · · · × V, k ∈ N ,
will serve as the set of indices for our construction.
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Next, suppose {ak}∞k=0 is a decreasing sequence such that 1 = a0 ≥ a1 ≥ · · · > 0,
and define

rk = 2−kak .

Set z0 = 0. Then it follows that Q(z0, r0) = (−1, 1)n and we proceed further by
induction. For v(k) = (v1, . . . , vk) ∈ Vk we denote w(k) = (v1, . . . , vk−1) and define
(see Fig. 1)

zv(k) = zw(k) +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj,

Q′v(k) = Q(zv(k), 2
−kak−1) and Qv(k) = Q(zv(k), 2

−kak) .

Then for the measure of the k-th frame Q′v(k)\Qv(k) we have

Ln(Q′v(k)\Qv(k)) = 2−kn(ank−1 − ank) .(2.2)

Formally we should write w(v(k)) instead of w(k) but for the simplification of the
notation we will avoid this.

Fig. 1 Cubes Qv(k) and Q′v(k) for k = 1, 2.

It is not difficult to find out that the resulting Cantor set
∞⋂
k=1

⋃
v(k)∈Vk

Qv(k) =: C[{ak}∞k=0] = Ca × · · · × Ca

is a product of n Cantor sets Ca in R, and the number of the cubes {Qv(k) : v(k) ∈ Vk}
is 2nk. Therefore, the measure of the Cantor set CA := C[{ak}k] can be calculated as

Ln(CA) = lim
k→∞

2nk(2ak2
−k)n = lim

k→∞
2nank .(2.3)

2.6. Homeomorphism that maps a Cantor set onto another one. Let us first
recall [15, Lemma 2.1].

Lemma 2.3. Let ρ : (0,∞) → (0,∞) be a strictly monotone function and ρ ∈
C1((0,∞)). Then for the mapping

f(x) =
x

‖x‖
ρ(‖x‖), x 6= 0

we have for almost every x

|Df(x)| ∼ max
{ρ(‖x‖)
‖x‖

, |ρ′(‖x‖)|
}

and Jf (x) ∼ ρ′(‖x‖)
(ρ(‖x‖)
‖x‖

)n−1

.
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In fact, this lemma is shown in [15] for the Euclidean norm |x| but by a bi-Lipschitz
change of variables it it easy to see that the same formula holds also for the supremum
norm ‖x‖ = maxi=1,...,n |xi| analogously to [15, Chapter 4.3].

Suppose

CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0]

are two Cantor sets which we get by applying the algorithm in section 2.5 to the
sequences {ak}∞k=0 and {bk}∞k=0. Following section 2.5 we define

rk = 2−kak, r′k = 2−kak−1, r̃k = 2−kbk, r̃′k = 2−kbk−1,

zv(k) = zw(k) +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj and

z̃v(k) = z̃w(k) +
1

2
r̃k−1vk = z̃0 +

1

2

k∑
j=1

r̃j−1vj.

Furthermore, we also define

Q′v(k) = Q(zv(k), r
′
k), Qv(k) = Q(zv(k), rk)

Q̃′v(k) = Q(z̃v(k), r̃
′
k), Q̃v(k) = Q(z̃v(k), r̃k).

�
�

@
@

@
@

�
�

Q′v

Qv

-gk

�
�

@
@

@
@

�
�

Q̃′v
Q̃v

Fig. 2 The transformation of Q′v \Q◦v onto Q̃′v \ Q̃◦v

It remains to find a homeomorphism g which maps CA onto CB. We will find a
sequence of homeomorphisms gk : (−1, 1)n → (−1, 1)n. Set g0(x) = x and we proceed
by induction. We will give a mapping g1 which stretches each cube Qv, v ∈ V1,
homogeneously so that g1(Qv) equals Q̃v. On the annulus Q′v \ Qv, g1 is defined to
be an appropriate radial map (with respect to the supremum norm) with respect to
zv and z̃v in the image in order to make g1 a homeomorphism. The general step
is the following: If k > 1, gk is defined as gk−1 outside the union of all cubes Qw,
w ∈ Vk−1. Further, gk remains equal to gk−1 at the centers of cubes Qv, v ∈ Vk.
Then gk stretches each cube Qv, v ∈ Vk, homogeneously so that gk(Qv) equals Q̃v.
On the annulus Q′v \Qv, gk is defined to be an appropriate radial map (with respect
to the supremum norm) with respect to zv in the preimage and z̃v in the image to
make gk a homeomorphism (see Fig. 2). Notice that the Jacobian determinant Jgk(x)
will be strictly positive almost everywhere in (−1, 1)n.
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In this construction we use the notation ‖x‖ for the supremum norm of x ∈ Rn.
The mappings gk, k ∈ N, are formally defined as

(2.4) gk(x) =


gk−1(x) for x /∈

⋃
v∈Vk Q′v

gk−1(zv) + (αk‖x− zv‖+ βk)
x−zv
‖x−zv‖ for x ∈ Q′v \Qv, v ∈ Vk

gk−1(zv) + r̃k
rk

(x− zv) for x ∈ Qv, v ∈ Vk

where the constants αk and βk are given by

(2.5) αkrk + βk = r̃k and αk
rk−1

2
+ βk = r̃k−1

2
.

It is not difficult to find out that each gk is a homeomorphism and maps⋃
v∈Vk

Qv onto
⋃

v∈Vk

Q̃v.

The mapping g(x) = limk→∞ gk(x) is clearly one to one and continuous and therefore
it is a homeomorphism. Moreover, it is not difficult to see that g is differentiable
almost everywhere, absolutely continuous on almost all lines parallel to coordinate
axes and maps CA onto CB (see [15, Chapter 4.3] for details).

Let k ∈ N and v ∈ Vk. We need to estimate Dg(x) in the interior of the annulus
Q′v \Qv. Since

g(x) = g(zv) + (αk‖x− zv‖+ βk)
x− zv
‖x− zv‖

we obtain from Lemma 2.3 and (2.5) that

(2.6) Dg(x) ∼ max
{ r̃k
rk
, αk

}
= max

{ r̃k
rk
,
r̃k−1

2
− r̃k

rk−1

2
− rk

}
and

(2.7) Jg(x) ∼ αk

( r̃k
rk

)n−1

=
r̃k−1

2
− r̃k

rk−1

2
− rk

( r̃k
rk

)n−1

.

2.7. Constructing Cantor’s tower. Suppose n ≥ 2 and denote by V̂ the set of
points (

0, 0, . . . , 0,−1 + 2j
2n

)
where j = 1, 2, . . . , 2n. The sets

V̂k := V̂× · · · × V̂, k ∈ N,

will serve as the set of indices in the construction of Cantor’s tower.
Suppose next {ck}∞k=0 is a decreasing sequence such that 1 = c0 ≥ c1 ≥ c2 ≥ · · · > 0,

and define

r̂k := 2−nkck.

Set ẑ0 = 0. Then it follows that Q(ẑ0, r̂0) = (−1, 1)n and we proceed further by

induction. For v̂(k) := (v̂1, v̂2, . . . , v̂k) ∈ V̂k we denote ŵ(k) := (v̂1, v̂2, . . . , v̂k−1) and
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define (see Fig. 3)

ẑv(k) := ẑŵ(k) + r̂k−1v̂k = ẑ0 +
k∑
j=1

r̂j−1v̂j

Q̂′v(k) := Q(ẑv̂(k), 2
−nkck−1) and Q̂v(k) := Q(ẑv̂(k), 2

−nkck)

Fig. 3 Cubes Q̂v(k) and Q̂′v(k) for k = 1, 2 in the construction of the Cantor’s tower.

2.8. Bi-Lipschitz mapping which takes a Cantor set onto a Cantor’s tower.
Let us now define the Cantor set CB in section 2.5 by choosing

bk = 2−kβ,

where β ≥ n+1. Similarly, we define the Cantor’s tower CT
C in section 2.7 by choosing

ck = 2−kβ.

As β ≥ n+ 1, we see that

(2.8) Q̂v(k) = Q(ẑv̂(k), 2
−knck) ⊂ Q(ẑv̂(k), 2

−1−nkck−1) =
1

2
Q̂′v(k)

and thus we have enough empty space in Q̂′v(k) \ Q̂v(k) to move the cubes of the next
generation into a tower formation.

The following proposition will give us a bi-Lipschitz mapping F : Rn → Rn which
maps the Cantor set CB onto Cantor’s tower CT

B . We refer to this mapping as a tower
mapping and it is applied to prove theorems 1.2 and 1.4. Later we need to refine this
mapping further in order to prove Theorem 1.3.

Proposition 2.4. Suppose that CB is the Cantor set and CT
B the Cantor’s tower in

Rn defined by the sequence

bk = 2−kβ ,

where β ≥ n+ 1. Then there is a bi-Lipschitz mapping L : Rn → Rn which takes CB
onto CT

B.

Proof. We construct bi-Lipschitz mappings Lj which take the j-th step of the con-
struction of CB onto the j-th step of the construction of CT

B . All Lj are bi-Lipschitz
with the same constant and the limit F = limj→∞ Lj is thus bi-Lipschitz as well.
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Q4

Q3

Q2

Q1

-
L1

Q̂4

Q̂3

Q̂2

Q̂1

Fig. 4 Construction of L1 which translates Qi onto Q̂i.

We claim that there is a bi-Lipschitz mapping L1 : [−1, 1]n → [−1, 1]n such that
(see Fig. 4)

L1(x) = x for every x ∈ ∂[−1, 1]n and

L1(x) = x− zv(1) + ẑv(1) for every x ∈ Qv(1).

This means that L1 fixes the boundary and it is a just a translation of each of the 2n

cubes Qv(1) onto Q̂v(1). As β ≥ n+ 1 we have enough space for doing this (see (2.8))
and it is not difficult to see that such a homeomorphism exists (see Fig. 4) and it can
be constructed as a bi-Lipschitz mapping. Formally we should give the exact formula
for the mapping which would not be difficult but it would be extremely lengthy. We
skip this as the construction of such F1 is trustworthy and not difficult to see from the
picture. More details and the construction of admissible F1 for n = 3 can be found in
Section 7. In fact the construction there is slightly different as we map cubes Qv(1)

onto Q̂v(1) but the mapping is not necessarily just a translation there.
We continue by constructing L2 as a scaled copy of L1 into each Qv(1). Formally,

we set

L2(x) =

{
L1(x) for x ∈ [−1, 1]n \

⋃
v(1)∈V1 Qv(1),

ẑv(1) + 2−1−βL1

(
21+β(x− zv(1))

)
for x ∈ Qv(1).

As the constructions of CB and CT
B are self-similar it is not difficult to see that F2

translates each Qv(2) onto the corresponding Q̂v(2). We claim that L2 has the same
bi-Lipschitz constant L > 0 as L1. For x, y ∈ Qv(1) we can estimate

|L2(x)− L2(y)| ≤ 2−1−β∣∣L1

(
21+β(x− zv(1))− L1

(
21+β(y − zv(1))

∣∣
≤ 2−1−βL21+β|x− y| = L|x− y|

and a similar estimate holds from below. If x ∈ Qv(1) and y /∈ Qv(1) we can connect x
and y by a segment, divide this segment by points on the boundaries of

⋃
v(1)∈V1 Qv(1),

use the estimate on each part of the segment separately and sum up. Thus F2 is also
L-bi-Lipschitz.

We continue by induction and we set

Lk+1(x) =

{
Lk(x) for x ∈ [−1, 1]n \

⋃
v(k)∈Vk Qv(k),

ẑv(k) + 2(−1−β)kL1

(
2k(1+β)(x− zv(k))

)
for x ∈ Qv(k).

Similarly as for L2 we obtain that Lk+1 is L-bi-Lipschitz and it maps each Qv(k+1)

onto the corresponding Q̂v(k+1) affinely. The limiting map F (x) = limj→∞ Lj(x) is
thus L-bi-Lipschitz and maps CB onto CT

B . �
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3. Proof of Theorem 1.4: the size of f(Bf )

We have already noted in the introduction that if f has“reasonably nice”properties
then the set f(Bf ) has measure zero. The next lemma specifies these reasonably nice
properties.

Lemma 3.1. Suppose f is a continuous, sense-preserving, discrete and open mapping
which is differentiable almost everywhere and satisfies Lusin’s condition (N). Then
Ln(f(Bf )) = 0.

Proof. Since the issue is local, we may assume that f has bounded multiplicity [32,
Proposition I.4.10 (3)]. Let us denote

A := {x ∈ Bf : f is not differentiable at x} and

B := {x ∈ Bf : f is differentiable at x} .
Then we may write Bf = A ∪ B. Because f is differentiable almost everywhere we
have Ln(A) = 0 and hence it follows from Lusin’s condition (N) that

Ln(f(A)) = 0 .(3.1)

On the other hand, by [32, Lemma I.4.11] we have Jf (x) = 0 for every x ∈ B, and
thus the area formula (see Proposition 2.2) implies∫

f(B)

N(y, f, f(B)) dx =

∫
B

|Jf |(x) dx = 0 .(3.2)

As N(y, f, f(B)) ≥ 1 on f(B) we obtain that Ln(f(B)) = 0 and it follows from (3.1)
that

Ln(f(Bf )) ≤ Ln(f(A)) + Ln(f(B)) = 0 .

�

The following theorem stresses the importance of Lusin’s condition (N). Namely,
without the condition (N) we cannot assure that the set f(Bf ) has measure zero even
when the branch set Bf has measure zero.

Theorem 3.2. Let Ψ : (0,∞) → (0,∞) be a strictly increasing continuous function
such that ∫ ∞

1

Ψ′(t)

t
dt <∞.

Then there exists a discrete and open mapping f : Rn → Rn, n ≥ 3, with the following
properties:

1) f ∈ W 1,p
loc (Rn,Rn) for all 1 ≤ p < n,

2) f is a mapping of finite distortion, and the outer distortion KO(·, f) satisfies

exp
(
Ψ(KO(x, f))

)
∈ L1

loc(Rn),

3) the inner distortion KI(·, f) satisfies

exp
(
Ψ∗(KI(x, f))

)
∈ L1

loc(Rn),

where Ψ∗(t) = Ψ
(
t1/(n−1)

)
,

4) the mapping f is differentiable almost everywhere, the Jacobian of f is strictly
positive almost everywhere and f satisfies Lusin’s condition (N−1), and
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5) Ln
(
Bf
)

= 0, but Ln
(
f(Bf )

)
> 0.

Proof. Suppose that ω : Rn → Rn is the winding mapping defined as in the introduc-
tion. Then ω is a quasiregular mapping with the branch set Bω = {(0, 0)} × Rn−2.

Let us define Cantor sets CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0] (see section 2.5)
by setting

ak :=
1

2

(
1 + 2−2k

)
and bk = 2−2k.

Then it follows that

Ln(CA) > 1 and Ln(CB) = 0.

Let g : Rn → Rn be a bi-Lipschitz mapping (obtained as the inverse of the tower
mapping from section 2.8) such that CB ⊂ g({0}n−1 × [−1, 1]), where {0}n−1 stands
for the origin in Rn−1.

Suppose next Ψ and Ψ∗ are defined as in the theorem. Then by [23, Corollary
C] there exists a homeomorphism F : [−1, 1]n → [−1, 1]n that fixes the boundary
∂Q(0, 1) and has the following properties:

(a) F ∈ W 1,1((−1, 1)n,Rn), F is differentiable almost everywhere, and

F ∈ W 1,q((−1, 1)n,Rn) for every 1 ≤ q < n.

This follows from |DF (x)|n ≤ KO(x, F )JF (x), JF ∈ L1 and KO(x, F ) ∈ La

for every a <∞.
(b) The Jacobian determinant JF (x) is positive almost everywhere, and∫

(−1,1)n
JF (x) dx <∞ .

(c) The distortion KO(x, F ) is finite almost everywhere, and for every λ > 0∫
(−1,1)n

exp
(
λΨ(KO(x, F ))

)
dx <∞ ,

where Ψ is given as in the statement (2) of the Theorem 3.2.
(d) The mapping F maps a Cantor set CB of zero measure onto a Cantor set CA

of positive measure.

All the properties listed above remain valid locally for F̂ : Rn → Rn defined by

F̂ (x) =

{
F (x), if x ∈ [−1, 1]n

x, if x ∈ Rn\[−1, 1]n.

Finally, we define f : Rn → Rn by

f := F̂ ◦ g ◦ ω .

Then it is easy to see that f is a continuous, discrete and open mapping such that

f(Bf ) = F̂ ◦ g((0, 0)× Rn−2) ⊃ F̂ (CB) = CA.

Therefore it suffices to show that f has finite distortion and satisfies the conditions
(1)–(4):
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Condition (1): Set h := F ◦ g. Since g is bi-Lipschitz, h has the same regularity
as F . For the winding mapping ω, it is locally bi-Lipschitz outside the set A :=
{(0, 0)}×Rn−2 of zero measure, and thus we know that f is ACL and that the chain
rule applies outside the set A. Note also that Jω(x) = 2 = |Dω(x)| for all x. Suppose
now that E ⊂ Rn is a bounded open set. Then by applying the chain rule on the set
E\A we get ∫

E

|Df |pdx =

∫
E\A
|Df |pdx ≤

∫
E\A
|D(h ◦ ω)|p|Dω|pdx

=

∫
E\A
|Dh(ω(x))|p Jω(x)

|Dω(x)|p

Jω(x)
dx

= 2p−1

∫
E\A
|Dh(ω(x))|p Jω(x) dx

≤ 2p
∫
ω(E\A)

|Dh(x)|pdx <∞,

which implies that f ∈ W 1,p
loc (Rn,Rn).

Condition (2): We show next that f has finite distortion. Firstly by applying the
chain rule we find out that

Df(x) = Dh(ω(x))Dω(x) and Jf (x) = Jh(ω(x)) Jω(x)(3.3)

for all x ∈ Rn\A. Since ω is a quasiregular mapping, it satisfies Lusin’s condition
(N−1) and it follows from (3.3) and from the fact that h = F ◦g is a mapping of finite
distortion that Jf (x) > 0 almost everywhere in the set |Df(x)| > 0. Moreover,∫

E

Jf =

∫
E\A

Jf =

∫
E\A

Jh(ω(x))Jω(x) dx ≤ 2

∫
h(E\A)

Jh <∞ .

Thus, f is a mapping of finite distortion.
Moreover, we have∫

U

exp(Ψ(KO(x, f))) dx ≤
∫
U

exp(Ψ(KO(ω(x), h)Kω))
Jω(x)

Jω(x)
dx

≤
∫
U

exp
(
Ψ(2n−1KO(ω(x), h))

)
Jω(x) dx

≤ 2

∫
ω(U)

exp
(
Ψ(2n−1KO(y, h))

)
dy <∞ ,

for every U ⊂⊂ Rn.

Condition (3): Next, set Ψ∗(t) := Ψ
(
t1/(n−1)

)
. Then by the pointwise inequality

KI(x, f) ≤ KO(x, f)n−1 and by Condition (2) we get∫
U

exp
(
Ψ∗(KI(x, f))

)
dx ≤

∫
U

exp
(
Ψ(KO(x, f))

)
dx <∞ ,

as desired.
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Condition (4): We know that ω is differentiable almost everywhere, h is differen-
tiable almost everywhere and that ω satisfies Lusin (N−1) condition. It thus follows
from (3.3) that f is differentiable almost everywhere. Similarly we obtain from (3.3)
that Jf > 0 almost everywhere as this holds for both ω and h.

Condition (5): Now we observe that Bf = {(0, 0)} × Rn−2 and thus

Ln(Bf ) = Ln({(0, 0)} × Rn−2) = 0 .

On the other hand, it holds that f(Bf ) ⊃ CA, and therefore

Ln(f(Bf )) ≥ Ln(CA) > 0 ,

which ends the proof. �

Proof of Theorem 1.4. It is well-known that assumptions of (i) imply that f is con-
tinuous, sense-preserving, discrete and open, differentiable almost everywhere and
satisfies Lusin’s condition (N), see [18, 22, 23, 24]. It follows from Lemma 3.1 that
Ln(f(Bf )) = 0.

The statement of (ii) follows from Theorem 3.2 if we choose Ψ(t) = t
log1+ε(e+t)

for t

large enough. �

4. Proof of Theorem 1.2: the size of Bf
Proof of Theorem 1.2. As we have already pointed out, if a continuous, discrete and
open mapping is both

(1) differentiable almost everywhere, and
(2) has non-vanishing Jacobian almost everywhere

then the branch set of the mapping has measure zero (see [32, Lemma I.4.11]). The
claim of (i) follows as we know from [25] that KI(·, f) ∈ L1

loc(Ω) implies Jf > 0 almost
everywhere and from [34] we know that every continuous, discrete and open mapping
of finite distortion f ∈ W 1,n−1

loc (Ω,Rn) with locally integrable inner distortion function
is differentiable almost everywhere.

To prove part (ii) let us define Cantor sets CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0]
by setting

ak :=
1

2

(
1 + 2−kβ

)
and bk = 2−kβ ,

where β ≥ n+ 1 (see Section 2.8 for such choice of β). Then it follows that

Ln(CA) = 1 and Ln(CB) = 0.

Suppose that F is the homeomorphism which maps CA onto CB and takes each
annulus Q′v \Qv radially onto the corresponding annulus Q̃′v \ Q̃v (see section 2.6 for
details). Then in the interior of each annulus Q′v \ Qv we get by applying (2.6) and
(2.7) that

|DF (x)| ∼ max

{
bk
ak
,
bk−1 − bk
ak−1 − ak

}
∼ max

{
2−kβ, 1

}
= 1 and |D]F (x)| ∼ 2−kβ(n−2).

In addition, we also have

JF (x) ∼
(
bk
ak

)n−1
bk−1 − bk
ak−1 − ak

∼ (2−kβ)n−1 .
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Hence

KO(x, F ) =
|Df(x)|n

Jf (x)
∼ (2kβ)n−1 and KI(x, F ) =

|D]f(x)|n

Jf (x)n−1
∼ 2kβ.

It follows that F is Lipschitz and if 0 < p < 1
n−1

then

(4.1)

∫
Q0

KO(x, F )p dx =

∫
CA

KO(x, F )p dx+

∫
Q0\CA

KO(x, F )p dx

≤ Ln(CA) + C

∞∑
k=1

2kn2−knan−1
k (ak − ak+1)(2kβ)(n−1)p

≤ Ln(CA) + C
∞∑
k=1

2kn2−kn1n−12−kβ(2kβ)(n−1)p <∞ ,

and similarly for every 0 < q < 1 we get

(4.2)

∫
Q0

KI(x, F )q dx =

∫
CA

KI(x, F )q dx+

∫
Q0\CA

KI(x, F )q dx

≤ Ln(CA) + C
∞∑
k=1

2kn2−knan−1
k (ak − ak+1)(2kβ)q

≤ Ln(CA) + C
∞∑
k=1

2kn2−kn1n−12−kβ(2kβ)q <∞ .

Above we have used the fact that KO(x, f) = KI(x, f) = 1 for almost every x ∈ CA.
Suppose next that g : Rn → Rn is the bi-Lipschitz mapping (defined in section

2.8) which takes the Cantor set CB onto the Cantor’s tower CT
B . Furthermore, let

ω : Rn → Rn be the winding map. Then both mappings g and ω are quasiregular
and therefore there exist constants Kg ≥ 1 and Kω ≥ 1 such that

|Dg(x)|n ≤ KgJg(x) and |Dω(x)|n ≤ KωJω(x)(4.3)

for almost every x. We also have

|D]g(x)|n ≤ Kn−1
g Jg(x)n−1 and |D]ω(x)|n ≤ Kn−1

ω Jω(x)n−1(4.4)

for almost every x.
Now we define the mapping f : Rn → Rn as

f := ω ◦ g ◦ F .

Then F maps CA onto CB which is mapped by g into the segment {0}n−1 × [−1, 1].
Since ω is winding around this segment, all points on this segment belong to the branch
set. The branch set of f thus contains the whole set CA and we get Ln(Bf ) > 0.

Furthermore, f is a Lipschitz mapping as a composition of three Lipschitz map-
pings. It is easy to see that |DF (x)| = 0 and JF (x) = 0 for almost every x ∈ CA and
the composition with Lipschitz mapping cannot change this. Hence |Df(x)| = 0 and
Jf (x) = 0 for almost every x ∈ CA and consequently

KO(x, f) = 1 for almost every x ∈ CA.(4.5)
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With a similar way we may also show that

KI(x, f) = 1 for almost every x ∈ CA.(4.6)

Moreover, F is locally bi-Lipschitz outside of CA and hence preimages of sets (out-
side of CA) of zero measure have zero measure. It follows that g has classical de-
rivative at F (x) for almost every x /∈ CA (as the preimage under F of points of
non-differentiability of g has zero measure). As g is bi-Lipschitz we can argue sim-
ilarly to deduce that the derivative of ω exists at a point g(F (x)) for almost every
x /∈ CA. By the chain rule we obtain that for almost every x /∈ CA we have

|Df(x)| = |Dω(g(F (x)))| |Dg(F (x))| |DF (x)|, and(4.7)

|D]f(x)| = |D]ω(g(F (x)))| |D]g(F (x))| |D]F (x)|.(4.8)

In addition, we also get

Jf (x) = Jω(g(F (x))) Jg(F (x)) JF (x) .(4.9)

It follows from (4.3)–(4.9) that

KO(x, f) ≤ |Df(x)|n

Jf (x)
≤ KωKg

|DF (x)|n

JF (x)
, and(4.10)

KI(x, f) ≤ |D
]f(x)|n

Jf (x)n−1
≤ Kn−1

ω Kn−1
g

|D]F (x)|n

JF (x)n−1
(4.11)

for almost every x ∈ Q0\CA. Finally, by (4.5), (4.10) and (4.1) we conclude KO(·, f) ∈
Lploc(Q0) for all 0 < p < 1

n−1
. Similarly, by (4.6), (4.10) and (4.2) we conclude that

KI(·, f) ∈ Lqloc(Q0) for all 0 < q < 1. �

5. A mapping which maps a Cantor set onto a Cantor set and
corners onto corners

5.1. Strategy of the proof. Before the proof of Theorem 1.3 we explain the overall
strategy. We start with a naive approach of how to construct a counterexample and
explain why it fails. Let us start with a mapping g (as in section 2.6) which maps a
Cantor type set CA of positive measure onto a Cantor type set CB of zero measure
and assume that these Cantor sets are defined using sequences

ak =
1

2

(
1 +

1

2k

)
and bk = 2−kβ where β is big enough.

Then we apply the mapping L (defined in subsection 2.8) which takes a Cantor type
set of zero measure onto a Cantor’s tower. After this we apply the winding mapping
ω and then we return the mapping back, i.e., we have

f = g−1 ◦ L−1 ◦ ω ◦ L ◦ g.

It is clear that both Bf and f(Bf ) contain the Cantor type set of positive measure
CA. However, this mapping f does not belong to W 1,1. Indeed, let us estimate its
derivative. As before we have on the k-th frame by (2.6) that

|Dg| ∼ max{2−βk, 2k−βk} and |Dg−1| ∼ max{2βk, 2βk−k}
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and the derivatives of L, ω, and L−1 are bounded as these mapping are Lipchitz.
Hence we can estimate

|Df | ≤ C2βk2k−βk = C2k

there as in general the “radial” and “nonradial” part of the derivative of Dg and Dg−1

can meet as the Lipschitz mappings between them change the directions. The measure
of the k-frame is comparable to 2−k and hence∫

|Df | ≤ C
∞∑
k=1

2−k2k =∞.

The last sum will diverge for any change of parameters in the construction of the
Cantor sets.

It follows that we have to do something more subtle. We divide the k-th frame
into corners (=parts close to the edges) and non-corners - see Fig. 16. The measure
of the corners in the construction of CA is comparable to 2−2k. In this section we
construct an analogy of the mapping g that maps CA onto CB while mapping corners
of CA (quite a small set) onto corners of CB (quite a big set). In the next section we
construct an analogy of the bi-Lipschitz tower mapping in a more delicate manner
and we control the position of the image of the corners. In fact, we can achieve that
there is a sector of a small but fixed angle θ (see Fig. 17) around the central line of
the rotation which is inside the image of the corners. Instead of the usual winding
mapping ω we consider a sectorial winding ωθ which winds the sector with an opening
angle θ once aroud the z-axis in such a way that the angle θ is mapped to angle 2π+θ.
In addition, we define ωθ as the identity map outside the sector. This ωθ is still a
local bi-Lipschitz map outside the z-axis and now our mapping

g−1 ◦ L−1 ◦ ωθ ◦ L ◦ g

is identity outside of the corners and the big derivative can happen only inside the
union of the corners. As the measure of corners is bounded by C2−2k we obtain∫

|Df |p ≤ C
∞∑
k=1

2−2k2pk <∞ for every 1 ≤ p < 2.

5.2. Mapping corners onto corners. To prove Theorem 1.3 we need to construct
a special homeomorphism which maps a Cantor set of positive measure onto a Cantor
set of zero measure in such a way that the corners of the first construction are mapped
close to the corners of the second construction. Here by corners we mean those parts
of the annulus Q′v(k) \ Qv(k) that are close to the edges and vertices (see Fig. 16 in

section 5.5), the formal definition is given later. As we pointed out in section 5.1,
the standard construction (see the mapping g in section 2.6) is not good for us as
the (relatively small) corners of the first Cantor construction are not mapped onto
the (relatively big) corners of the second Cantor construction. We have to define the
mapping close to the vertices so that it is stretching much more there.

Let us define the Cantor sets CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0] by setting

(5.1) ak =
1

2

(
1 +

1

2k

)
and bk = 2−kβ,
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where β ≥ n+ 1. Then

Ln(CA) = lim
k→∞

2nk(2ak2
−k)n = lim

k→∞

(
1 +

1

2k

)n
= 1

and

Ln(CB) = lim
k→∞

2nk(2bk2
−k)n = lim

k→∞
2−knβ = 0 .

5.3. Planar case. For simplicity and comprehensibility we give the details of the
construction first for n = 2 and then we generalize this construction to the case
n = 3. Set

(5.2) rk = 2−kak and r̃k = 2−kbk ,

and recall that the cubes in the definition of the Cantor sets CA and CB (see section
2.5) are defined as

Q′v(k) = Q
(
zv(k),

rk−1

2

)
and Qv(k) = Q(zv(k), rk),

and

Q̃′v(k) = Q
(
z̃v(k),

r̃k−1

2

)
and Q̃v(k) = Q(z̃v(k), r̃k).

g

Fig. 5 Homeomorphism g which maps the corners and the sides of Q′v(k) \Qv(k)

onto corresponing corners and sides of Q̃′v(k) \ Q̃v(k) when n = 2

The mapping which we have in mind is similar to the one in Fig. 5. However,
before giving the explicit construction of this mapping we need to divide each frame
Q′v(k)\Qv(k) into suitable regions. In each of these regions we then define the mapping
separately. For this purpose, we first introduce the definitions of the admissible lattice
points and adjacent (admissible) lattice points:
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Admissible lattice points: We define the set of admissible lattice points of the
frame Q′v(k) \Qv(k) as follows. First we define the set of outer lattice points of Q′v(k) \
Qv(k) as PO = P 1

O ∪ P 2
O, where

P 1
O :=

{
x ∈ ∂Q′v(k) : |x1 − (zv(k))1| = rk−1

2
and |x2 − (zv(k))2| ∈

{ rk−1

2
, rk, 0

}}
,

P 2
O :=

{
x ∈ ∂Q′v(k) : |x2 − (zv(k))2| = rk−1

2
and |x1 − (zv(k))1| ∈

{ rk−1

2
, rk, 0

}}
.

Similarly, we define the set of inner lattice points of Q′v(k) \ Qv(k) as PI = P 1
I ∪ P 2

I ,
where

P 1
I :=

{
x ∈ ∂Qv(k) : |x1 − (zv(k))1| = rk and |x2 − (zv(k))2| ∈

{
rk,

rk
2
± rk+1, 0

}}
,

P 2
I :=

{
x ∈ ∂Qv(k) : |x2 − (zv(k))2| = rk and |x1 − (zv(k))1| ∈

{
rk,

rk
2
± rk+1, 0

}}
.

We define the set of admissible lattice points as the union

P = PO ∪ PI ,

see the left picture in Fig 6.

Adjacent lattice points: We say that two admissible lattice points p1 ∈ P and
p2 ∈ P are adjacent if they satisfy the following three conditions

(Ã1) the line segment I := [p1, p2] is parallel to one of the coordinate axes,

(Ã2) I ⊂ Q′v(k) \Qv(k), and

(Ã3) there is no third lattice point p ∈ L such that p ∈ [p1, p2]

or the condition

(A4) up to a relabelling of the points we have p1 ∈ PO, p2 ∈ PI , and in addition

min
i
|(p1 − p2)i| = rk

2
− rk+1 and max

i
|(p1 − p2)i| = rk−1

2
− rk.

In other words, points p1 and p2 are adjacent if they are connected by a line segment
in Q′v(k) \Qv(k) in the picture on the right-hand side in Fig. 6.

Dividing the frame into regions: Next, we define the following collection of line
segments

L := {[p1, p2] : p1 ∈ PO and p2 ∈ PI are adjacent lattice points}.

The pair (P,L) can be considered as a planar graph which has 28 components (4

squares, 16 right triangles and 8 isosceles trapezoids) inside Q′v(k) \Qv(k), see the

picture on the righ-hand side in Fig. 6.
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Fig. 6 The set P of admissible lattice points (the left picture) and
the graph (P,L) (the right picture)

We call the four squares the vertices of the frame, the 16 triangles the subvertices of
the frame and the 8 isosceles trapezoids the sides of the frame. In addition, the union
of all the vertices and subvertices of Q′v(k) \ Qv(k) are called the (two dimensional)

corners of Q′v(k)\Qv(k). We may define similar kind of graph (P̃ , L̃) also for the frame

Q̃′v(k) \ Q̃v(k) and define the vertices, the subvertices, the sides, and the corners of this
frame as well.

Definition of g at the vertices: Suppose that

V = Q
(
c, 1

2

( rk−1

2
− rk

))
is one of the vertices of the frame Q′v(k) \Qv(k) and suppose that

Ṽ = Q
(
c̃, 1

2

( r̃k−1

2
− r̃k

))
is the corresponding vertex of the frame Q̃′v(k) \ Q̃v(k). Then we map V onto corre-

sponding Ṽ linearly by setting

g(x) =

(
x− c

rk−1

2
− rk

)( r̃k−1

2
− r̃k

)
+ c̃

for every x ∈ V .

g

c

V

rk−1

2
− rk c̃

Ṽ

r̃k−1

2
− r̃k

Fig. 7 Homeomorphism g mapping V onto corresponding Ṽ
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Then for every x ∈ V we have the following estimates

|Dg(x)| ∼ r̃k−1 − 2r̃k
rk−1 − 2rk

∼ 2−βk − 2−β(k+1)

2−k − 2−(k+1)
∼ 2k−βk, Jg(x) ∼ 22(k−βk) and

KO(x, g) ∼ 1.

Definition of g at the subvertices: Let us next consider one of the subvertices V ∗

of the frameQ′v(k)\Qv(k) and the corresponding subvertex Ṽ ∗ of the frame Q̃′v(k)\Q̃v(k).
We may consider the subvertex V ∗ as a right triangle with a right angle at a point
b = (b1, b2) ∈ R2 and with both sides parallel to coordinate axis. Respectively, we

may consider Ṽ ∗ as a right triangle with a right angle at a point b̃ ∈ R2 and with
both sides parallel to coordinate axis. We say that V ∗ is

(1) of type 1 if the lenght of the side of V ∗ which is parallel to x1-axis equals
rk−1

2
− rk.

(2) of type 2 if the lenght of the side of V ∗ which is parallel to x2-axis equals
rk−1

2
− rk.

g

V ∗ is of type 1

rk−1

2
− rk

rk
2
− rk+1

V ∗ b

r̃k−1

2
− r̃k

r̃k
2
− r̃k+1

Ṽ ∗ b̃

g

V ∗ is of type 2

rk−1

2
− rk

rk
2
− rk+1

V ∗

b

r̃k−1

2
− r̃k

r̃k
2
− r̃k+1

b̃

Ṽ ∗

Fig. 8 Homeomorphism g mapping V ∗ onto corresponding Ṽ ∗

For every x ∈ V ∗ we define

g(x) =


((

x1−b1
rk−1

2
−rk

)( r̃k−1

2
− r̃k

)
,
(

x2−b2
rk
2
−rk+1

)(
r̃k
2
− r̃k+1

))
+ b̃, if V ∗ is of type 1((

x1−b1
rk
2
−rk+1

)(
r̃k
2
− r̃k+1

)
,
(

x2−b2
rk−1

2
−rk

)( r̃k−1

2
− r̃k

))
+ b̃, if V ∗ is of type 2.
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Then for every x ∈ V ∗ we have the following estimates

|Dg(x)| ∼ max

{
r̃k − 2r̃k+1

rk − 2rk+1

,
r̃k−1 − 2r̃k
rk−1 − 2rk

}
∼ max

{
2k−βk, 2k−βk

}
∼ 2k−βk,

Jg(x) ∼ 22(k−βk) and KO(x, g) ∼ 1.

Definition of g at the sides: Let us next consider one of the sides S of the frame
Q′v(k) \ Qv(k) and the corresponding side S̃ of the frame Q̃′v(k) \ Q̃v(k). We may
consider the side S as a isosceles trapezoid with bottom and top sides of lenght
l1 = rk and l2 = 2rk+1, respectively. Let us denote the midpoint of the side of length
l1 by d = (d1, d2) ∈ ∂Q′v(k). Respectively, we may consider the side S̃ as a isosceles

trapezoid with bottom and top sides of lenght l̃1 = r̃k and l̃2 = 2r̃k+1. Let us denote
the midpoint of the side of length l̃1 by d̃ ∈ ∂Q̃′v(k). We say that S is

(1) of type 1 if the parallel sides of S are parallel to x1-axis.
(2) of type 2 if the parallel sides of S are parallel to x2-axis.

Then we map S onto corresponding S̃ as follows: we set

s1(t) =
t− d1

rk−1

2
− rk

and s2(t) =
t− d2

rk−1

2
− rk

,

and for every x ∈ S we define

g(x) =

(
(1− s2(x2))

(x1 − d1

rk

)
r̃k + s2(x2)

(x1 − d1

rk+1

)
r̃k+1, s2(x2)

( r̃k−1

2
− r̃k

))
+ d̃

if S is of type 1, and similarly if S is of type 2 we define

g(x) =

(
s1(x1)

( r̃k−1

2
− r̃k

)
, (1− s1(x1))

(x2 − d2

rk

)
r̃k + s1(x1)

(x2 − d2

rk+1

)
r̃k+1

)
+ d̃.

g

S is of type 1

S is of type 2

rk

2rk+1

d

S
r̃k

2r̃k+1

d̃

S̃

g
rk 2rk+1

d

S

r̃k 2r̃k+1
d̃

S̃
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Fig. 9 Homeomorphism g mapping S onto corresponding S̃

Then we have the following estimates

|Dg(x)| ∼ max

{
r̃k
rk
,
r̃k−1 − 2r̃k
rk−1 − 2rk

}
∼
{

2−βk, 2k−βk
}

= 2k−βk, Jg(x) ∼ 2−βk2k−βk

and KO(x, g) ∼ 2k.

5.4. Three dimensional case. Next we give the construction of the homeomor-
phism g in the case n = 3. Again, we start the construction by dividing the frame
Q′v(k) \Qv(k) into different regions:

Admissible lattice points (in three dimensions): We define the set PO of outer
lattice points of Q′v(k) \Qv(k) as the union

PO = P 1,2
O ∪ P

1,3
O ∪ P

2,3
O ,

where

P i,j
O =

{
x ∈ ∂Q′v(k) :|(x− zv(k))i|, |(x− zv(k))j| ∈

{
0, rk,

rk−1

2

}
and

|(x− zv(k))l| = rk−1

2
when l ∈ {1, 2, 3} \ {i, j}

}
.

Similarly, we define the set of inner lattice points as the union

PI = P 1,2
I ∪ P

1,3
I ∪ P

2,3
I ,

where

P i,j
I =

{
x ∈ ∂Qv(k) : |(x− zv(k))i|, |(x− zv(k))j| ∈

{
0, rk

2
± rk+1, rk

}
and

|(x− zv(k))l| = rk when l ∈ {1, 2, 3} \ {i, j}
}
.

Then we define the set of admissible lattice points as the union

P = PO ∪ PI .

Adjacent lattice points (in three dimensions): We say that two admissible
lattice points p1 ∈ P and p2 ∈ P are adjacent if they satisfy the following three
conditions

(Ã1) the line segment I := [p1, p2] is parallel to one of the coordinate axes,

(Ã2) I ⊂ Q′v(k) \Qv(k), and

(Ã3) there is no third lattice point p ∈ L such that p ∈ [p1, p2]

or the condition

(A4) up to a relabelling of the points we have p1 ∈ PO and p2 ∈ PI , and in addition

min
i
|(p1 − p2)i| = rk

2
− rk+1 and max

i
|(p1 − p2)i| = rk−1

2
− rk.

Then we may define the following collection of line segments

L := {[p1, p2] : p1 ∈ P and p2 are adjacent lattice points}.
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Admissible loops and tiles: Let us consider a sequence p1, p2, . . . , pm, pm+1 of
points in P such that

(1) pi and pi+1 are adjacent lattice points for all i = 1, . . . ,m,
(2) p1 = pm+1, and
(3) pi 6= pj for all distinct indeces i, j ∈ {1, 2, . . . ,m}.

Then the polyline [p1, p2, . . . , pm, pm+1] defines a closed Jordan curve which we call an
m-loop. In addition, all the 3-loops and 4-loops are called admissible loops. We may
notice that for every admissible loop J there is a unique 2-dimensional hyperplane
H such that J ⊂ H. In addition, J divides the plane H into exactly two connected
components of H. One of these components is bounded and another one unbounded
in H. We call the closure of the bounded component of H \ J as a tile. The set of
all tiles of the frame Q′v(k) \Qv(k) we denote by Fv(k). We may observe that up to a
translation and a three dimensional rotation there are 12 different type of tiles. More
precisely, every tile in Fv(k) is either

(1) one of the following four squares

T1

rk

rk

T2

2rk+1

2rk+1

T3

rk−1

2
− rk

rk−1

2
− rk

T4

rk
2
− rk+1

rk
2
− rk+1

Fig. 10 Tiles T1–T4 are squares

(2) or one of the following two rectangles

T5

rk−1

2
− rk

rk

T6

rk
2
− rk+1

2rk+1

Fig. 11 Tiles T5–T6 are rectangles

(3) or one of the following three triangles
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T7

rk
2
− rk+1

√( rk−1

2
− rk

)2
+
( rk

2
− rk+1

)2

T8

rk−1

2
− rk

√( rk−1

2
− rk

)2
+
( rk

2
− rk+1

)2

T9

rk−1

2
− rk

rk
2
− rk+1

Fig. 12 Tiles T7–T9 are right triangles

(4) or one of the following three isosceles trapezoids

T10

rk

2rk+1

√( rk−1

2
− rk

)2
+
( rk

2
− rk+1

)2
T11
2rk+1

rk−1

2
− rk

rk

T12

rk

2rk+1

√( rk−1

2
− rk

)2
+
( rk−1

2
− rk

)2

Fig. 13 Tiles T10–T12 are isosceles trapezoids

We define the set F̃v(k) of all filled admissible loops of the frame Q̃′v(k)\Q̃v(k) similarly.
It is easy to see that there is a natural one-to-one correspondence between the elements
of Fv(k) and F̃v(k).
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Fig. 14 Some of the T3-tiles (blue slabs) and T4-tiles (green slabs) of the frame
Q′v(k) \Qv(k). One may count that for each frame the total numbers of T3-tiles
and T4-tiles equals 60 and 96

Dividing the frame into regions: One may observe that the set

(Q′v(k) \Qv(k)) \
( ⋃
F∈Fv(k)

F
)

has exactly 320 connected components. We denote the set of these 320 components by
Vv(k). Then we may observe that the set Vv(k) has six different type of elements. More
precisely, the elements of Vv(k) consist of 8 vertices, 48 subvertices, 96 sub-subvertices,
48 edges, 96 subedges, and 24 faces which can be defined as follows:

(1) We call a set V ∈ Vv(k) a vertex if its boundary consists of six T3-tiles (see
Fig. 15). Each frame has 8 vertices. Four of these vertices (the four blue
cubes) can be found in Fig. 14.

(2) We call a set V ∗ ∈ Vv(k) a subvertex if its boundary consists of one T3-tile,
two T8-tiles, and two T9-tiles (see Fig. 15). These subvertices are located as
follows:
(2a) For each vertex V ∈ Vv(k) there are 3 subvertices each of which is lying

on one of the 3 faces of V that are not contained in ∂Q′v(k). The total
number of this type of subvertices equals 3× 8 = 24.

(2b) In addition, there are 2 subvertices (pointing at opposite directions) lo-
cated close to the midpoint of each of the 12 edges of the big cube in Fig.
16. Each of these subvertices lies on a square similar to the four isolated
blue squares in Fig. 14. The total number of this type of subvertices
equals 2× 12 = 24.

We call two distinct subvertices V ∗1 and V ∗2 neighbors if there is a line segment
parallel to coordinate axis which connects one of the triangular faces of V ∗1 to
one of the triangular faces of V ∗2 without intersecting any other tile. We point
out that for every subvertex there exists exactly one neighboring subvertex.

(3) We call a set V ∗∗ ∈ Vv(k) a sub-subvertex if its boundary consists of one T4-tile,
two T7-tiles, and two T9-tiles (see Fig. 15). Every frame contains 16×6 = 96
sub-subvertices, and each of these sub-subvertices lies on a square similar to
the green squares in Fig. 14. We call two distinct sub-subvertices V ∗∗1 and V ∗∗2

neighbors if there is a line segment parallel to coordinate axis which connects
one of the triangular faces of V ∗∗1 to one of the triangular faces of V ∗∗2 without
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intersecting any other tile. We point out that every sub-subvertex has exactly
two neighbors.

(4) We call a set E ∈ Vv(k) an edge if its boundary consists of one T5-tile, two
T8-tiles, one T11-tile, and one T12-tile (see Fig. 15). There are two edges
connecting every two neighboring subvertices, and there are no other type of
edges. Therefore, the total number of edges equals 48, which can be easily
seen from Fig. 14.

(5) We call a set E∗ ∈ Vv(k) a subedge if its boundary consists of one T6-tile, two
T7-tiles, one T10-tile, and one T11-tile (see Fig 15). There is one subedge
connecting every two neighboring sub-subvertices, and there are no other type
of subedges. Therefore, the total number of subedges equals 6 × 16 = 96,
which can be easily seen from Fig. 14.

(6) We call a set F ∈ Vv(k) a face if its boundary consists of one T1-tile, one
T2-tile, and four T10-tiles (see Fig. 15). These sets correspond the 4 empty
pieces on each of the 6 sides of the cube in Fig. 16.

Up to a rotation and a translation each of these elements is equivalent to one of the
sets in Fig. 15. Respectively, we may define the set Ṽv(k) as a set of the components
of

(Q̃′v(k) \ Q̃v(k)) \
( ⋃
F̃∈F̃v(k)

F̃
)
.

There is also a natural one-to-one correspondence between the elements of Vv(k) and

Ṽv(k).

Vertex:

rk−1

2
− rk

rk−1

2
− rk

rk−1

2
− rk

Subvertex:

rk
2
− rk+1

rk−1

2
− rk

rk−1

2
− rk

Sub-subvertex:

rk−1

2
− rk

rk
2
− rk+1

rk
2
− rk+1

Edge:

rk−1

2
− rk

2rk+1

rk

rk−1

2
− rk

Subedge:

rk

2rk+1

rk−1

2
− rk

rk
2
− rk+1

Face:

rk−1

2
− rk

2rk+1

rk

2rk+1

rk

Fig. 15 A Vertex, a subvertex, a sub-subvertex, an edge,
a subedge and a face of the frame Q′v(k) \Qv(k)
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From now on we denote the union of all the vertices, the subvertices and the sub-
subvertices of Q′v(k) \ Qv(k) by Vv(k), the union of all the edges and the subedges

of Q′v(k) \ Qv(k) by Ev(k), and the union of all the faces of Q′v(k) \ Qv(k) by Fv(k).

The corresponding sets Ṽv(k), Ẽv(k) and F̃v(k) of the frame Q̃′v(k) \ Q̃v(k) are defined
respectively.

Defining the homeomorphism g in three dimensions: The definition of the
homeomorphism g : [−1, 1]3 → [−1, 1]3 is analogical to the two dimensional case and
therefore we leave the explicit formulation of the mapping for the reader. The main
idea of the construction is to map each element of Vv(k) onto corresponding element of

Ṽv(k) in a natural way. More precisely, on each vertex, subvertex and sub-subvertex
we define g as a suitable affine mapping. In addition, on each edge, subedge and face
the coordinate functions of g can be defined as variable convex combinations of some
affine functions. More precisely, up to some translations and rotations of the space
on each edge, subedge and face we may write g as

g(x) = (g1(x1, x3), g2(x2, x3), g3(x3)) ,(5.3)

where g3 is an affine function, and for each fixed x3 the functions g1(·, x3) and g2(·, x3)
are affine with respect to the first variable. Moreover, as the formula (5.3) suggests,
it is possible to define g so that up to a change of orthogonal coordinate systems
Dg(x) will define an upper diagonal matrix at each point of these sets. This makes
estimating the Jacobian easy at each point of the sets. It is easy to check that we
may construct g such a way that it defines a homeomorphism. If we construct g this
way it will lead us to the following estimates:

|Dg(x)| ∼

 2k−βk, if x ∈ Vv(k)

2k−βk, if x ∈ Ev(k)

2k−βk, if x ∈ Fv(k)

, Jg(x) ∼

 23(k−βk), if x ∈ Vv(k)

22(k−βk)2−βk, if x ∈ Ev(k)

2k−βk2−2βk, if x ∈ Fv(k)

and

(5.4)

|D]g(x)| ∼

 22(k−βk), if x ∈ Vv(k)

22(k−βk), if x ∈ Ev(k)

2k−βk2−βk, if x ∈ Fv(k),

and also

KO(x, g) ∼

 1, if x ∈ Vv(k)

2k, if x ∈ Ev(k)

22k, if x ∈ Fv(k)

and KI(x, g) ∼

 1, if x ∈ Vv(k)

22k, if x ∈ Ev(k)

2k, if x ∈ Fv(k).
(5.5)

Similarly it is possible to estimate the derivative of the inverse as follows:

|Dg−1(y)| ∼


2βk−k, if y ∈ Ṽv(k)

2βk, if y ∈ Ẽv(k)

2βk, if y ∈ F̃v(k)

, Jg−1(y) ∼


23(βk−k), if y ∈ Ṽv(k)

22(βk−k)2βk, if y ∈ Ẽv(k)

2(βk−k)22βk, if y ∈ F̃v(k)

and

(5.6)

|D]g−1(y)| ∼


22(βk−k), if y ∈ Ṽv(k)

2(βk−k)2βk, if y ∈ Ẽv(k)

22βk, if y ∈ F̃v(k),
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and then for the distortions we have

KO(y, g−1) ∼


1, if y ∈ Ṽv(k)

22k, if y ∈ Ẽv(k)

2k, if y ∈ F̃v(k)

and KI(y, g
−1) ∼


1, if y ∈ Ṽv(k)

2k, if y ∈ Ẽv(k)

22k, if y ∈ F̃v(k).

(5.7)

5.5. Definition of the corners in three dimensions. Recall from section 5.4
the definitions of the sets Vv(k) (union of all the vertices, the subvertices and the
sub-subvertices of the frame) and Ev(k) (union of all the edges and subedges of the
frame). We define the (three dimensional) corners of the frame Q′v(k) \ Qv(k) as the
union

Cv(k) := Vv(k) ∪ Ev(k),(5.8)

see Fig. 16. The corners C̃v(k) of the frame Q̃′v(k) \ Q̃v(k) can be defined similarly.

Fig. 16 Three dimensional corners Cv(k) of Q′v(k) \Qv(k)

It is easy to see that we can use (5.1) and (5.2) to estimate the size of the set Cv(k)

as follows

L3(Cv(k)) ≤ Crk−1(
rk−1

2
− rk)2 ≤ C2−5k

and hence

(5.9) L3(
⋃

v(k)∈Vk

Cv(k)) ≤ 23kL3(Cv(k)) ≤ C2−2k.

6. Explicit construction of the bi-Lipschitz map in three dimensions

Let us now consider the Cantor set CB := C[{bk}∞k=0] of zero measure defined by
the sequence

bk = 2−10k,

and suppose the Cantor set CA := CA[{ak}∞k=0] is defined as in section 5.
We express points in coordinates as (x, y, z).
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sxyθ

Fig. 17 Definition of sector Sθ.

Let θ > 0 be small enough (we give the exact condition later) but fixed. We use Sθ
to denote a specific “sector” of with an opening angle θ:

Sθ := {x ∈ Rn : 1− θ
2
≤ arctan(y/x) ≤ 1 + θ

2
} ,

i.e., Sθ = {(x, y, z) ∈ [−1, 1]3 : (x, y) ∈ sxyθ } where the set sxyθ can be seen in Fig. 17.
Suppose L : [−1, 1]3 → [−1, 1]3 is a given bi-Lipschitz map which takes the Cantor

set CB onto corresponding Cantor’s tower CT
B , and let g be the homeomorphism

defined in section 5. Then we define the set of bad points (related to mapping L) as

BAD :=
{
x ∈ (−1, 1)3 : L(g(x)) ∈ Sθ

}
,

and for each k ∈ {1, 2, . . .} we define the set of bad points in k-th step as

BADk :=
{
x ∈

⋃
v(k)∈Vk

Q′v(k) \Qv(k) : L(g(x)) ∈ Sθ
}

=
{
x ∈

⋃
v(k)∈Vk

Q′v(k) \Qv(k) : x ∈ BAD
}
.

Our goal is to find a bi-Lipschitz map L : [−1, 1]3 → [−1, 1]3 such that the following
conditions hold:

(1) Mapping L takes CB onto CT
B .

(2) We have

(6.1) (L ◦ g)−1

(
Sθ ∩

(
Q̃′v(k) \

⋃
v(k+1)∈Vk+1

Q̃′v(k+1)

))
⊂

⋃
v(k)∈Vk

Cv(k).

In other words, the preimage (L ◦ g)−1(Sθ) is contained in the union of the
corners. This can be written equivalently as follows:

BADk ⊂ Cv(k).

(3) Mapping L maps Q̃v(k) onto the cube L(Q̃v(k)) of the same size.

We know that the corners of CA are mapped onto the corners of CB by g. Hence
our mapping L has to map the corners of CB onto a set which contains Sθ. Recall that
corners are defined in (5.8) (see also Fig. 16) and hence we require that the images
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of the red pipes (in the Fig. 18 below) under mapping L do not intersect Sθ. We will
also prescribe the values of L on the boundaries of Q̃v so it is easy to glue mappings
together.

Fig. 18 The sets Ẽv(k) (yellow slabs), the sets F̃v(k) (red pipes) and the sets Ṽv(k)

(empty space between the slabs) when we are close to the center of the cube Q̃v(k)

To define the bi-Lipschitz map L : [−1, 1]3 → [−1, 1]3 we first define a bi-Lipschitz
map L1 : [−1, 1]3 → [−1, 1]3 satisfying the conditions (1)–(3) above for k = 1. After
this we iterate this procedure in the following steps and check that the bi-Lipschitz
constant stays the same in all steps of the iteration. Moreover, we also need to check
that the boundary values of all the iterations Lk will coincide. We briefly outline this
below:

Outline of the construction of the mapping L. Our mapping will be a compo-
sition of four bi-Lipschitz mappings

L1 := Lx ◦ Ly ◦ Lz ◦ Lp.

The mapping Lp prepares the correct boundary values and it is identity in most places

(6.2) Lp(x, y, z) = (x, y, z) for every (x, y, z) ∈ [−1, 1]2 × [−1 + 1
20
, 1− 1

20
],

especially it is identity on the cubes Q̃v(1) and in their neighborhood. Furthermore,
it moves the small two dimensional red squares on top and bottom of Fig. 18 (corre-
sponding to z = ±1) to other places so that their image does not intersect Sθ∩∂[−1, 1]3

(more details are given below). Then, we define a mapping Lz which moves the 8
cubes Q̃v(1) in the z-direction so that their z-coordinate becomes

(6.3)
{
−7

8
,−5

8
,−3

8
,−1

8
,
1

8
,
3

8
,
5

8
,
7

8

}
,

so they correspond to the z-coordinates of the tower formation (see Fig. 3 and Fig. 4)
in dimension n = 3. The image under Lz of Q̃v(1) and the red pipes from Fig. 18 is
shown in Fig. 19 below (we show the projection to xz-plane). It is easy to see that
the projections of Lz(Q̃v(1)) to z-coordinate are disjoint and far away (their size is in
fact much smaller than on this sketch).
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Lz

Fig. 19 Lz maps z coordinates of Q̃v(1) to tower formation (projection to xz-plane)

Then the mapping Ly moves the cubes Lz(Q̃v(1)) in the y-direction to the center
so that their y-coordinate becomes roughly 0. Then the mapping Lx moves the cubes
Ly
(
Lz(Q̃v(1))

)
in the x-direction to the center. In this way we map Q̃v(1) into the

tower formation.

Explicit construction of the mapping L. Let us now show in detail that we can
do the construction, described above, by using bi-Lipschitz maps and that (6.1) will
be satisfied at the end if we do this construction in a suitable way.

Let

t ∈ [−2
3

+ 1
100
, 2

3
− 1

100
] and s ∈ [− 7

16
+ 1

100
, 7

16
− 1

100
].

We define piecewise linear functions ht, gt : [−1, 1] → [−1, 1] such that ht(−1) =
gt(−1) = −1, ht(1) = gt(1) = 1,

hs(x) = x+ s for s > 0 and x ∈ [−1
2
− 1

16
,−1

2
+ 1

16
],

hs(x) = x+ s for s < 0 and x ∈ [1
2
− 1

16
, 1

2
+ 1

16
],

gt(x) = x+ t for t > 0 and x ∈ [−1 + 1
10
, 1− 2

3
],

gt(x) = x+ t for t < 0 and x ∈ [−1 + 2
3
, 1− 1

10
],

and hs, gt are linear on the remaining intervals (see Fig. 20).

gt(x) for t > 0 gt(x) for t < 0ht(x) for t > 0ht(x) for t < 0

Fig. 20 Graphs of ht(x) and gt(x)

It is easy to see that hs(x) and gt(x) are bi-Lipschitz functions. We would like to
shift point x = −1

2
close to 0 with gt, t > 0, and point x = 1

2
close to 0 with gt,

t < 0. Moreover, by hs, s > 0, we would like to shift point x = −1
2

to points with

coordinates {−3
8
,−1

8
, 5

8
, 7

8
} and by hs, s < 0, point x = 1

2
to points with coordinates

{−7
8
,−5

8
, 1

8
, 3

8
} (see (6.3) and Fig. 19).

Let

sz, sy, sx : [−1, 1]2 → [−2
3

+ 1
100
, 2

3
− 1

100
]
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be fixed Lipschitz mappings such that

(6.4) sa(x, y) = 0 for every (x, y) ∈ ∂[−1, 1]2 and a ∈ {x, y, z}.

Let us define

Lz(x, y, z) = (x, y, hsz(x,y)(z)),

Ly(x, y, z) = (x, gsy(x,z)(y), z) and

Lx(x, y, z) = (gsx(y,z)(x), y, z).

It is not difficult to see that these mappings are Lipschitz, they map [−1, 1]3 onto
[−1, 1]3 and using (6.4) we obtain that they are identity on the boundary ∂[−1, 1]3.
Moreover, the inverses are given by similar formula, e.g.

(Lz)
−1(x, y, z) = (x, y, h−1

sz(x,y)(z)),

and it is straightforward to verify that these maps are in fact bi-Lipschitz.
Let us denote by πx, πy and πz the projections to the corresponding coordinates,

e.g. πx(x, y, z) = x. By πx,y, πx,z, πy,z we denote the projection to corresponding
planes, e.g. πx,y(x, y, z) = (x, y). Our aim is to construct mappings sz, sy, sx such
that the following is true.

First of all, Lz takes the eight cubes Q̃v(1) and shifts their z-coordinate to (6.3)
as in Fig. 19. This can be clearly done using a suitable Lipschitz mapping sz which
has constant value on each πxy(Q̃v(1)). Then Ly takes the cubes Lz(Q̃v(1)) and moves
them in the y-direction so that it maps their centers (with y-coordinate 1

2
or −1

2
) to

points with y-coordinate 0 , i.e.,

for every (x, z) ∈ πx,z
(
Lz(Q̃v(1))

)
we have sy(x, z) = ±1

2
.

It is clear that we can select such a Lipschitz map sy. In the end Lx takes cubes

Ly(Lz(Q̃v(1))) and moves them in the x-direction so that it maps their centers (with
x-coordinate 1

2
or −1

2
) to points with x-coordinate 0, i.e.,

for every (y, z) ∈ πy,z
(
Ly(Lz(Q̃v(1)))

)
we have sx(y, z) = ±1

2
.

Again we can choose such a Lipschitz map sx. At the end we have that the centers of
the cubes L(Q̃v(1)) have both x and y coordinates 0 and hence they are in the tower
formation.

It remains to show that (6.1) holds for carefully chosen sz, sy and sx as above.
We do not give the exact formulas for sz, sy and sx as it would be lengthy and non-
transparent. Instead we explain on a series of pictures that we can achieve that the
images of the red pipes from Fig. 18 do not intersect Sθ from Fig. 17. Let us start
with those red tubes that are “parallel” to x and y coordinates and connect Q̃v(1) to
∂[−1, 1]3. By (6.2) the mapping Lp is just the identity on them. We draw projection
to xy-plane of images of these tubes under each mapping Lz, Ly and then Lx.
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Lz

Ly

Lx

sxyθ

Fig. 21 L(red tubes parallel to x and y) does not

intersect Sθ (projection to xy-plane)

The definition of corners (see Fig. 16) and Sθ (see Fig. 17) guarantees that the
projection of the red tubes (“parallel” to x and y coordinates) is really as in the last
picture (bottom-left one) and hence it does not intersect Sθ if θ is chosen sufficiently
small (but fixed). Moreover, it is not difficult to see from these pictures that this can
be done using Lipschitz functions sz, sy and sx with the properties required above.

Now, let us consider the red tubes that are “parallel” to x and y axis and connect
Q̃v(1) together. By (6.2) the mapping Lp is identity on them. Again we draw projec-
tions to xy-plane of images of these tubes under the mappings Lz, Ly and then Lx
- see Fig. 22 below. The mapping Lz just maps Q̃v(1) to different z coordinates but
their xy-projection remains the same. Then Ly maps the red tubes (originally parallel
to y-axis) to some S shaped tubes (in the yz-projection) - the red object above and
below the black cubes on the bottom-right picture. Then Lx maps those S shapes left
to the black cube on the bottom-left picture. The red tubes parallel to x are mapped
below the black cubes by Ly and then it remains below when we map by Lx. Again
the image of the red tubes does not intersect Sθ and it is not difficult to see from
these pictures that this can be done using Lipschitz functions sz, sy and sx with the
properties required above.
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Lz

Ly

Lx

sxyθ

Fig. 22 L(red tubes parallel to x and y) does not

intersect Sθ (projection to xy-plane)

It remains to consider the image of the red tubes that are “parallel” to z-axis. The
situation is not as simple as in the previous case here, and we cannot simply use the
mapping Lx ◦ Ly ◦ Lz. Therefore, we need to consider also a fourth mapping, which
we denote by Lp. There are two reasons for this. First of all, the red tubes intersect
∂[−1, 1]3 and Lx ◦ Ly ◦ Lz is the identity on ∂[−1, 1]3. Thus we have two squares

from πx,y(Q̃v(1)) × {−1, 1} that intersect Sθ (those in the upper-left corner, i.e. for
v(1) = (1, 1, 1)) and we have to move these two squares away using the mapping
Lp. Secondly, Lx ◦ Ly ◦ Lz is just a translation on ∂Q̃v(1) but the red tubes intersect

∂Q̃v(1). On the two faces of ∂Q̃v(1) parallel to xy-plane we have two big red squares

(intersection of red pipes and ∂Q̃v(1)) that are moved by Lx ◦ Ly ◦ Lz so that the
center of the image becomes (0, 0) in the xy-plane. Therefore these squares clearly
intersect Sθ. We correct this by applying Lp of the second generation (corresponding
to the definition of L2) and shift these red squares elsewhere.

Let us now explain how to define the mapping Lp : [−1, 1]3 → [−1, 1]3. Recall
that Lp is just an identity on a big part, see (6.2). Firstly, we define a mapping
`tp : [−1, 1]2 → [−1, 1]2 for t ∈ (0, 1] that shrinks the red square t-times and moves
it outside of the first quadrant (see Fig. 23) for small values of t. More precisely, let
0 < a < 1 be a fixed number such that the red square is [−1 + a, 1− a]2. We define

`tp(x) = tx− (1, 1) + (t, t) for x ∈ [−1 + a, 1− a]2.

It is clear that

`tp
(
[−1 + a, 1− a]2

)
= [−1 + ta,−1 + 2t− ta]2
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and hence it moves the red square outside of the first quadrant for t = 1
2
. Moreover,

we define `tp on [−1, 1]2\ [−1+a, 1−a]2 (similarly to (2.4)) so that the whole mapping

is bi-Lipschitz (with constant C 1
t
) and it is identity on ∂[−1, 1]2.

`p

Fig. 23 Definition of the mapping `tp

We define

(6.5) Lp(x, y, z) =


(x, y, z), for z ∈ [−1 + 1

20
, 1− 1

20
],(

`
−40

3
z+

41
3

p (x, y), z
)
, for z ∈ [1− 1

20
, 1],(

`
40
3
z+

41
3

p (x, y), z
)
, for z ∈ [−1,−1 + 1

20
].

It is easy to see that this mapping is bi-Lipschitz and maps [−1, 1]3 onto [−1, 1]3.
Moreover, it maps the red square on the planes z = 1 and z = −1 outside of the first
quadrant and it does a similar thing for nearby values of z. Now, we can define

L1 := Lx ◦ Ly ◦ Lz ◦ Lp.
Let us now briefly explain how to define L2 and glue things together. Then we

show the key property (6.1) for red tubes parallel to z-axis. We know that L1(Q̃v(1))
are cubes of side-length 2r̃1. Let us denote their centers as sv(1), i.e.,

L1(Q̃v(1)) = Q(sv(1), r̃1).

We define

L2
z(x) = sv(1) + r̃1Lz

( 1

r̃1

(x− sv(1))
)

for x ∈ Q(sv(1), r̃1).

It is easy to check that L2
z are bi-Lipschitz (with the same bi-Lipschitz constant as

Lz) and they map Q(sv(1), r̃1) onto Q(sv(1), r̃1). In a similar spirit we define

(6.6) L2
p(x) = sv(1) + r̃1Lp

( 1

r̃1

(x− sv(1))
)

for x ∈ Q(sv(1), r̃1)

but we would like to define it also on Q(sv(1) +2r̃1e3, r̃1) and Q(sv(1)−2r̃1e3, r̃1) (here
e3 = (0, 0, 1)) so we connect it with the identity mapping outside of these three cubes.
Formally we define (compare with (6.5))

Lp(x, y, z) =


(
`

1
3
z

p (x, y), z
)
, for (x, y, z) ∈ Q((0, 0, 2), 1),(

`
−1

3
z

p (x, y), z
)
, for (x, y, z) ∈ Q((0, 0,−2), 1),
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and it is easy to see that Lp is now identity on ∂
(
[−1, 1]2×[−3, 3]

)
. The definition (6.6)

now defines L2
p also on Q(sv(1) + 2r̃1e3, r̃1) and Q(sv(1) − 2r̃1e3, r̃1). It is not difficult

to see that L2
p shifts the red squares on the z boundaries of ∂Q(sv(1), r̃1) “outside of

the first quadrant” similarly as Lp does for [−1, 1]3. Similarly we define L2
y (resp. L2

x)

on the cubes L2
z(L

2
p(Q(sv(1), r̃1))) (respectively on L2

y(L
2
z(L

2
p(Q(sv(1), r̃1))))).

Finally, we show that (6.1) holds for the red tubes from Fig. 18 parallel to z-axis
for the mapping L2

p ◦ Lx ◦ Ly ◦ Lz ◦ Lp. Again we show a series of pictures for the
projections to xy-plane. The red squares correspond to intersection of the red pipes
with ∂[−1, 1]2 (respectively Q̃v(1) on the last two pictures).

Lp Lz

Ly

LxL2
p

sxyθ

Fig. 24 L(red tubes parallel to z) does not intersect Sθ (projection to xy-plane)

Our definition of Sθ (see Fig. 17) guarantees that the projection of the red tubes
(“parallel” to z-coordinate) does not intersect Sθ. Again it is not difficult to see from
these pictures that this can be done using Lipschitz functions sz, sy and sx with the
properties required above. This finishes the proof of (6.1) and also the construction
of L1.

7. Proof of Theorem 1.3

Proof of Theorem 1.3. Recall that the Cantor sets CA and CB are defined at the
beginning of section 5 and that the set Sθ is defined at the beginning of previous
section. Suppose that:

(1) Mapping g : R3 → R3 is the homeomorphism (defined in section 5) which maps
the Cantor set CA onto the Cantor set CB and maps each set Q′v(k) \ Qv(k)

onto the corresponding set Q̃′v(k) \ Q̃v(k) radially and maps corners to corners.

(2) Mapping L : R3 → R3 is the bi-Lipschitz map (defined in section 6) which
takes the Cantor set CB onto the Cantor’s tower CT

B and for which the preim-
age (L ◦ g)−1(Sθ) is contained in the union of the corners (see (6.1)).
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(3) Let ωθ be the mapping which is the identity on R3 \ Sθ and winds Sθ in such
a way that the angle θ is stretched to the angle 2π + θ, so that the glued
mapping is continuous.

We need to wind ωθ not radially but in supremum norm. Formally let
S : R3 → R3 be a bi-Lipschitz mapping which maps the unit cube (−1, 1)3

onto a cylinder B2(0, 1)×(−1, 1) naturally (so that S(Sθ) corresponds to angle
ϕ ∈ [π

4
− θ

2
, π

4
+ θ

2
]). Let (r, ϕ) be the polar coordinates of a point (x1, x2) and

define ω̃θ : R3 → R3 as the winding map (the radial one)

ω̃θ(x) =


(
r cos

(
a(θ, ϕ) + π

4
− θ

2

)
, r sin

(
a(θ, ϕ) + π

4
− θ

2

)
, x3

)
, if x ∈ Sθ

x, otherwise,

where a(θ, ϕ) := θ+2π
θ

(ϕ− π
4

+ θ
2
). Then we set

ωθ = S−1 ◦ ω̃θ ◦ S.

Now we define the mapping f : (−1, 1)3 → (−1, 1)3 by

f := g−1 ◦ L−1 ◦ ωθ ◦ L ◦ g .

This composition maps CA onto CB, then CB onto Cantor tower CT
B ⊂ (0, 0)× [−1, 1],

then winds twice around (0, 0) × [−1, 1] and then maps everything back to CA. In
this way CA ⊂ Bf and CA ⊂ f(Bf ).

Step 1: First we need to show that f is absolutely continuous on almost every line
parallel to coordinate axis. Because f is obviously a locally Lipschitz map outside
the set CA (as it is a composition of locally Lipschitz maps there) it suffices to show
that f is absolutely continuous along those line segments I parallel to coordinate axes
for which I ∩ CA 6= ∅. For this purpose, suppose that Ii is a line segment parallel to
xi-axis, such that Ii ∩ CA 6= ∅. We claim that actually

f(x) = x for all x ∈ Ii.

To show this, we first recall the following definitions from section 6:

BAD :=
{
x ∈ (−1, 1)3 : L(g(x)) ∈ Sθ

}
and

BADk :=
{
x ∈

⋃
v(k)∈Vk

Q′v(k) \Qv(k) : L(g(x)) ∈ Sθ
}

=
{
x ∈

⋃
v(k)∈Vk

Q′v(k) \Qv(k) : x ∈ BAD
}
.

It follows from (6.1) in the construction of the bi-Lipschitz map L that

BADk ⊂
⋃

v(k)∈Vk

Cv(k),

and hence using (5.9) we have

(7.1) L3(BADk) . 2−2k.
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On the other hand, it follows from the definition of the sets Cv(k) that Ii ∩ Cv(k) = ∅
for every v(k) (since Ii ∩ CA 6= ∅) which implies

Ii ∩ BAD = ∅.
Thus, for every x ∈ Ii we have

(7.2)
f(x) = (g−1 ◦ L−1 ◦ ωθ ◦ L ◦ g)(x)

= (g−1 ◦ L−1 ◦ id ◦L ◦ g)(x) = x,

and the claim follows.

Step 2: Next we will show that∫
(−1,1)3

|Df(x)|2 logα(e+ |Df(x)|) dx <∞

for every α < −1. For this purpose we observe first that ωθ(x) = x for all x ∈
(0, 0) × [−1, 1], and that L(g(CA)) ⊂ (0, 0) × [−1, 1]. Then, as in (7.2), we obtain
f = id on CA. Therefore

|Df(x)| = 1 for almost every x ∈ CA.

Thus, it suffices to estimate |Df(x)| on (−1, 1)3 \CA. For this purpose, we point out
that

(i) g is a locally bi-Lipschitz map on (−1, 1)3 \ CA and

g((−1, 1)3 \ CA) = (−1, 1)3 \ CB.
(ii) h := L−1 ◦ ωθ ◦ L is a Lipschitz map on (−1, 1)3 \ CB and

h((−1, 1)3 \ CB) = (−1, 1)3 \ CB
and h satisfies Lusin’s (N−1) condition.

(iii) g−1 is a locally Lipschitz map on (−1, 1)3 \ CB.

Analogously to the reasoning in the paragraph before (4.7) we obtain from (i)–(iii)
that the chain rule applies to the mapping f = g−1 ◦ h ◦ g almost everywhere outside
the set CA, and therefore

|Df(x)| ≤ |Dg−1(h(g(x)))| · |Dh(g(x))| · |Dg(x)|(7.3)

≤ Lip(h) |Dg−1(h(g(x)))| · |Dg(x)|

for almost every x ∈ (−1, 1)3 \ CA. Next we recall that f = id outside the set BAD
(see (7.2)) and therefore it suffices to show that∫

BAD
|Df |2 logα(e+ |Df |) =

∞∑
k=1

∫
BADk

|Df |2 logα(e+ |Df |) <∞

for every α < −1. By (5.4) we have

|Dg(x)| ∼ 2k−βk,(7.4)

for almost every x ∈ BADk. Moreover, we also have

(h ◦ g)
(
Q′v(k) \Qv(k)

)
= Q̃′v(k) \ Q̃v(k),
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and thus by (5.6)

|Dg−1(g(h(x)))| . 2kβ,(7.5)

for almost every x ∈ BADk. If we now combine (7.1), (7.3), (7.4) and (7.5) we get

∞∑
k=1

∫
BADk

|Df |2 logα(e+ |Df |) ∼
∞∑
k=0

2−2k22k logα(e+ 2k) ∼
∞∑
k=1

kα <∞

for every α < −1, and the claim follows. This is already enough to prove Theorem
1.3. However, it is interesting to know what level of integrability we may obtain for
the distortion functions KO(·, f) and KI(·, f) in the construction. Therefore, we will
add one additional step in the proof to estimate the distortions as well.

Step 3: Recall again that f = id on (−1, 1)3 \ BAD and therefore

KI(x, f) = 1 for almost every x ∈ (−1, 1)3 \ BAD, and

KO(x, f) = 1 for almost every x ∈ (−1, 1)3 \ BAD.

As before we can apply the chain rule almost everywhere outside of CA and we get

KO(x, f) =
|Df(x)|n

Jf (x)
≤ |Dg

−1(h(g(x)))|n Lipn(h)|Dg(x)|n

Jg−1(h(g(x)))Jh(g(x))Jg(x)

≤ CKO(h(g(x)), g−1)KO(x, g).

Analogously we obtain for adjugate matrices | adj(AB)| ≤ adj(A) adj(B) and hence

KI(x, f) ≤ CKI(h(g(x)), g−1)KI(x, g).

From the estimates (5.5) and (5.7) in section 5.4 and from the fact BADk ⊂ Gk ∪Ek
(see (6.1)) it follows that

KI(x, f) ≤ C24k and KO(x, f) ≤ C23k

for almost every x ∈ BADk. Using this and (5.9) we get∫
(−1,1)3

KI(x, f)p dx =

∫
(−1,1)3\BAD

KI(x, f)p dx+
∞∑
k=1

∫
BADk

KI(x, f)p dx

≤ 23 +
∞∑
k=1

2−2k24kp <∞

for every p < 1
2
. Similarly, we get∫

(−1,1)3
KO(x, f)q dx =

∫
(−1,1)3\BAD

KO(x, f)q dx+
∞∑
k=1

∫
BADk

KO(x, f)q dx

≤ 23 +
∞∑
k=1

2−2k23kq <∞

for every q < 2
3
. �



42 CHANG-YU GUO, STANISLAV HENCL, AND VILLE TENGVALL

Remark 7.1. As it was pointed out in the introduction, we do not know what
happens for the size of the branch set of continuous, discrete and open mappings
with positive Jacobian almost everywhere in the borderline space W 1,n−1. However,
it is possible to slightly improve the integrability of the distortions in Theorem 1.3 by
modifying the construction of the mapping f in the proof:

Proposition 7.2. Denote Q0 := (−1, 1)3, and suppose that

0 < q < 2/3 and 0 < r < 2/3.

Then there exists a continuous, discrete and open mapping of finite distortion f ∈
W 1,p(Q0, Q0), for all p ∈ [1, 2), with

KI(·, f) ∈ Lq(Q0) and KO(·, f) ∈ Lr(Q0)

such that Jf > 0 almost everywhere and

L3(Bf ) > 0 and L3(f(Bf )) > 0.

We will only sketch the proof of the proposition above and highlight the differences
with the construction in Theorem 1.3:

Sketch of the proof of Proposition 7.2. Instead of considering only two Cantor sets we
will work now with three different Cantor sets

CA := C[{ak}∞k=1], CB := C[{bk}∞k=1] and CC := C[{ck}∞k=1]

defined by the sequences

ak =
1

2

(
1 +

1

2k

)
, bk = 2−βk and ck =

1

2

(
1 +

1

2kγ

)
,

where β > 0 can be chosen with a similar way as in the proof of Theorem 1.3, and
the exponent 0 < γ < 1 is defined later. In addition, suppose that the mappings
g, L, and ωθ are defined similarly as in the proof of Theorem 1.3. We also consider
a new homeomorphism h : (−1, 1)3 → (−1, 1)3 which maps the Cantor set CC onto
CB. The mapping h can be defined with a similar fashion as the homeomorphism g
in section 5. Then we set

f := h−1 ◦ L−1 ◦ ωθ ◦ L ◦ g.
One may check that this will give us a Sobolev mapping with positive Jacobian almost
everywhere. Moreover, by calculating similarly as in the proof of Theorem 1.3 we get
the following estimates:

(1) First we estimate the Sobolev norm in the set BAD simply by applying the
chain rule similarly as in the proof of Theorem 1.3. This gives us the following
estimate: ∫

BAD
|Df(x)|p dx .

∞∑
k=1

2−2k(2k · 1)p.

The sum above converges for all 0 < p < 2.
(2) To estimate the Sobolev norm of the mapping outside the set BAD we observe

by analyzing the map

f = h−1 ◦ id ◦g
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in each of the sets Sk more carefully (for the definition of the set Sk, see section
5) that

Df(x) ∼

 1 0 0
0 1 0
0 0 2αk2−γk

 for every x ∈ Sk

up to some permutation of the column vectors. This will give us the following
estimate:

∫
(−1,1)3\BAD

|Df(x)|p dx .
∞∑
k=1

2−k(2k2−γk)p.

The sum above converges whenever γ > p−1
p

.

(3) We estimate the integral of Kq
I in the set BAD by applying the chain rule,

which gives us: ∫
BAD

KI(x, f)q dx .
∞∑
k=1

2−2k(22k22γk)q.

This sum converges whenever 0 < γ < 1−q
q

.

(4) Next, by applying the representation for the matrix Df(x) in (2) we may
estimate the integral of Kq

I in the set (−1, 1)3 \ BAD as follows:∫
(−1,1)3\BAD

KI(x, f)q dx .
∞∑
k=1

2−k(22k2−2γk)q.

This sum converges whenever γ > 2q−1
2q

.

(5) We estimate the integral of Kr
O in the set BAD by simply applying the chain

rule. This gives us the following estimate:∫
BAD

KO(x, f)r dx .
∞∑
k=1

2−2k(22k22γk)r.

This sum converges whenever 0 < γ < 1−r
r

.
(6) Again, by applying the representation of Df(x) in (2), we may estimate the

integral of Kr
O in the set (−1, 1)3 \ BAD as follows:∫

(−1,1)3\BAD
KO(x, f)r dx .

∞∑
k=1

2−k(2k2−γk)r.

This sum converges whenever γ > r−1
r

.

Suppose now that the parameters 1 ≤ p < 2, 0 < q < 2/3 and 0 < r < 2/3 are
fixed. Then we may choose the parameter γ such a way that it satisfies the following
condition

max
{p− 1

p
,
r − 1

r
,
2q − 1

2q

}
< γ < min

{1− r
r

,
1− q
q

}
.
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More precisely, it is enough to choose γ such that

1

2
< γ <

1

2
+ ε,

where ε > 0 is some sufficiently small number depending only on the values of the
parameters q and r. With such a parameter γ we may see that the mapping f satisfies
all the estimates (1)–(6) above. Other parts of the proof we leave for the reader.
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30. E. A. Poletskǐı, The modulus method for non-homeomorphic quasiregular mappings (Russian),

Mat. Sb. 83 (1970), 261–273.
31. Y. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical

Monographs, 73. American Mathematical Society, Providence, RI, 1989.
32. S. Rickman, Quasiregular mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete (3)

[Results in Mathematics and Related Areas (3)], 26. Springer-Verlag, Berlin, 1993.
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35. J. Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. 392

(1966), 1–10.
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83, 186 00 Prague 8, Czech Republic

E-mail address: hencl@karlin.mff.cuni.cz

(Ville Tengvall) Department of Mathematics and Statistics, University of Jyväskylä,
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