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a b s t r a c t 

Light scattering by particles large compared to the wavelength of incident light is traditionally solved us- 

ing ray optics which considers absorption inside the particle approximately, along the ray paths. To study 

the effects rising from this simplification, we have updated the ray-optics code SIRIS to take into account 

the propagation of light as inhomogeneous plane waves inside an absorbing particle. We investigate the 

impact of this correction on traditional ray-optics computations in the example case of light scatter- 

ing by ice crystals through the extended near-infrared (NIR) wavelength regime. In this spectral range, 

ice changes from nearly transparent to opaque, and therefore provides an interesting test case with di- 

rect connection and applicability to atmospheric remote-sensing measurements at NIR wavelengths. We 

find that the correction for inhomogeneous waves systematically increases the single-scattering albedo 

throughout the NIR spectrum for both randomly-oriented, column-like hexagonal crystals and ice crys- 

tals shaped like Gaussian random spheres. The largest increase in the single-scattering albedo is 0.042 for 

hexagonal crystals and 0.044 for Gaussian random spheres, both at λ = 2 . 725 μm. Although the effects on 

the 4 × 4 scattering-matrix elements are generally small, the largest differences are seen at 2.0 μm and 

3.969 μm wavelengths where the correction for inhomogeneous waves affects mostly the backscatter- 

ing hemisphere of the depolarization-connected P 22 / P 11 , P 33 / P 11 , and P 44 / P 11 . We evaluated the correction 

for inhomogeneous waves through comparisons against the discrete exterior calculus (DEC) method. We 

computed scattering by hexagonal ice crystals using the DEC, a traditional ray-optics code (SIRIS3), and 

a ray-optics code with inhomogeneous waves (SIRIS4). Comparisons of the scattering-matrix elements 

from SIRIS3 and SIRIS4 against those from the DEC suggest that consideration of the inhomogeneous 

waves brings the ray-optics solution generally closer to the exact result and, therefore, should be taken 

into account in scattering by absorbing particles large compared to the wavelength of incident light. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Geometric optics and its descriptive concept of light rays of-

ers a straightforward yet approximate methodology for various

ptics applications that consider reflections by surfaces and light

cattering by small particles. In the latter case, specifically, the

eometric-optics approximation combined with diffraction form

he ray-optics solution. Despite recent exploding development in

omputational light scattering in both availability of resources and
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ore advanced methods, most notably those based on physical op-

ics [1,2] , ray optics continues to be a frequently used method for

olving scattering by particles much larger than the wavelength of

ncident light. 

An important example of such scatterers are atmospheric ice

rystals. These particles are continuously present in the atmo-

phere as constituents of tropospheric cirrus clouds, which cover

pproximately one third of the surface of the Earth at any given

ime, based on satellite observations [3,4] . The majority of the

adiative effects originating from these clouds (multiple scatter-

ng of sunlight and thermal radiation) ultimately depends on the

ingle-scattering properties of the ice crystals [5] , in addition to

heir size and shape distributions within the cloud. These single-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Spectral dependence of the complex refractive index m of ice at near-infrared wavelengths, using data from Warren and Brandt [36] . 
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scattering properties have most frequently been solved using ray

optics. Therefore, the evolution and advancements in the ray-optics

methodology intertwine with the history of solving light scattering

by ice crystals. Studies on scattering by hexagonal and rectangular

parallelepiped crystals in the geometric-optics approximation were

initially carried out by Jacobowitz [6] , Wendling et al. [7] , Cai and

Liou [8] , as well as Liou et al. [9,10] and Takano and Jayaweera [11] .

These studies mainly focused on randomly oriented crystals and

the angular characteristics of scattered intensity and linear polar-

ization for natural incident light. Takano and Jayaweera provided,

however, a full 4 × 4 Mueller scattering matrix for hexagonal ice

crystals. 

The aforedescribed geometric-optics treatments were ex-

tended to parallelepiped crystals with interfacial angles differ-

ent from right angles, that is, to monoclinic and triclinic crys-

tals, by Muinonen et al. [12] . Peltoniemi et al. [13] provided a

Markov-chain ray-tracing method for stochastically rough particles.

Muinonen et al. [14] , in their studies for scattering by Gaussian

random particles, provided a general geometric-optics treatment

for arbitrary shapes specified in three-dimensional space. At the

same time, Macke et al. [15] devised a geometric-optics treatment

for crystal particles described as a Koch fractal. The largely inde-

pendent geometric-optics ray tracers by Muinonen et al. [14] and

Macke et al. [15] were compared in detail for the Koch fractal [16] .

The ray tracers were found to agree well. More recent work on the

geometric-optics approximation has been carried out using gen-

eral triangular discretization of the particle shapes (e.g., [17,18] ).

Beyond geometric optics, there is promising progress in establish-

ing the physical optics approximation as a practical computational

tool for light scattering by nonspherical particles (e.g., [1,19,20] ). 

There are large numbers of applications of the geometric-optics

method. For example, first, Nousiainen and Muinonen assessed the

scattering characteristics of randomly oscillating raindrops in the

visible range of wavelengths [21] . Second, Muinonen and Erkkilä

( [22] ; see also [23] ) studied the effect of large-scale surface rough-

ness on the scattering characteristics, with the help of a con-

cave hull of an arbitrary irregular particle shape. Third, Virkki and

Muinonen [24] studied microwave scattering by boulders, in their

quest for understanding the radar backscattering characteristics of

asteroids and other small Solar System bodies. Fourth, the tradi-

tional geometric-optics treatment has been combined with radia-

tive transfer for particles including internal or external diffuse scat-

terers (e.g., [18,25,26] ). 

The geometric-optics method can be applied to absorbing me-

dia; however, traditionally absorption within the particle has been

solved approximately, neglecting the inhomogeneity of the waves
n the medium. Already in 1930, Epstein [27] pointed out that

aves in absorbing media propagate as inhomogeneous waves, i.e.,

ave planes of constant amplitude and constant phase, which do

ot generally coincide. This has two consequences in geometric op-

ics: (1) Snel’s law and the Fresnel equations that determine the

eflections and refractions at the interfaces should not be used in

heir traditional forms that only account for real-valued variables,

nd (2) attenuation of radiation inside the medium should not be

alculated using a simple exponential attenuation along the ray

ath, as this does not take into account the inhomogeneous na-

ure of the plane waves. These issues have been briefly recognized

ut not conclusively addressed in otherwise extensive textbooks

n light scattering (e.g., [28–31] ). The work by Dupertuis et al.

32] on geometric optics in absorbing media introduces the con-

ept of a “deflection angle”, i.e., an angle between the planes of

ncidence and refraction, which serves as an example on the unre-

olved questions surrounding the topic. Chang et al. [33] have de-

ived concise expressions for Snel’s law and the Fresnel equations

n an absorbing medium based on [32] , and showed analytical ray-

racing results for a two-dimensional wedge of absorbing medium

nd Monte Carlo computations for an absorbing rough surface. Par-

llel formalisms that consider inhomogeneous waves in geometric-

ptics approximation have been presented by Yang et al. [34] and

ang and Liou [35] . However, the implications of the correction

ave not been quantified with respect to the traditional geometric-

ptics computations for scattering by ice crystals. 

In this paper, we update the ray-tracing code SIRIS [18] to con-

ider inhomogeneous plane waves by implementing the method-

logy presented in [33] , and then apply the updated SIRIS4 code

o quantify the effects of inhomogeneous waves on light scatter-

ng by ice crystals. For visible light, ice crystals are in practice

early transparent with an imaginary part of the refractive index

m( m ) ≈ 10 −8 [36] . However, in the extended near-infrared (NIR)

pectral region from 0.75 μm to 4.0 μm, both Re( m ) and Im( m )

hange significantly as depicted in Fig. 1 . Therefore, this spectral

egion provides an interesting sensitivity test environment with

 direct connection and applicability to a variety of atmospheric

emote-sensing measurements at the NIR wavelengths — including

ot only instruments measuring cirrus clouds but also atmospheric

omposition retrievals with high accuracy requirements, such as

etrievals of trace gases (e.g., carbon dioxide, methane). We eval-

ate the ray-optics results through comparisons to exact scattering

omputations from the discrete exterior calculus (DEC) [37–39] . 
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. Ray optics with inhomogeneous plane waves 

Traditional ray-optics approximation is based on the plane wave

olution to the Maxwell equations, where the phases of the waves

an be omitted based on particle size being much larger than the

avelength λ of incident light. Incident wave is thus treated as a

ollection of parallel rays that propagate in the direction of the

ormal to the plane of constant phase. The interaction of these

ays with a medium is modeled as a sequence of reflections and

efractions at the interfaces, determined by Snel’s law and the Fres-

el equations. The plane wave E ( r , t ) is of the form 

 (r , t) = E 0 exp (i k · r − i ωt) . (1)

n an absorbing medium, k is the complex wave vector, k =
 0 (N ̂  e + i K ̂

 f ) , where k 0 = ω/c, and N and K are interpreted as

edium-specific, apparent refractive indices [33] . Substituting k ,

e can further express Eq. (1) as 

 (r , t) = E 0 exp (−k 0 K ̂

 f · r ) exp (i k 0 N ̂  e · r − i ωt) , (2)

hich describes inhomogeneous plane waves where the surfaces

f constant amplitude are perpendicular to ˆ f and the surfaces of

onstant phase are perpendicular to ˆ e . The angle between these

ectors is α, and thus cos α = ̂  e · ˆ f . In traditional geometric-optics

onsiderations, it is generally assumed that α = 0 ◦, ˆ e ‖ ̂  f , i.e., the

lane waves are homogeneous and absorption is considered in the

irection of wave propagation. 

The generalized Snel’s law for waves in absorbing media can be

erived from the boundary conditions for the phases of the plane

aves at the interface of two media (subscripts 1 and 2) [33] : 

 1 sin ϑ i = N 2 sin ϑ t , K 1 sin ψ i = K 2 sin ψ t . (3)

ere, ϑ and ψ are real-valued angles of ˆ e and 

ˆ f from the normal

f the surface, respectively, for incident (i) and transmitted (t) rays.

he propagation directions ˆ e t and 

ˆ f t for the refracted waves are

olved using Eqs. (3) . 

The Stokes vectors for incident and scattered light, I inc and I sca ,

escribe the polarization state of radiation and are related through

he 4 × 4 scattering phase matrix P , 

 sca = 

σsca 

4 π r 2 
P · I inc . (4)

ere, P is normalized according to the phase function, P 11 : 
 

4 π
P 11 d	 = 4 π. (5) 

he scattering cross section σ sca describes the total scattered

ower. In the ray-optics approximation, it can be divided into com-

onents that are solved through geometric optics ( σ G 
sca ) and for-

ard diffraction ( σ D 
sca ): 

sca = σ G 
sca + σ D 

sca . (6) 

onversely, absorption σ abs originates from the geometric-optics

omponent only. The extinction cross section σ ext describes the to-

al power removed from the incident radiation through scattering

nd absorption, 

ext = σsca + σabs . (7) 

he relative contributions of scattering and absorption can be char-

cterized by the single-scattering albedo ϖ, 

 = 

σsca 

σext 
= 

σ G 
sca + σ D 

sca 

σext 
. (8) 

In the geometric-optics component, we follow the treatment by

uinonen et al. [14] , where a 4 × 4 Mueller matrix M is related to

very ray. At an interface, we solve for the Mueller matrices of the

eflected and refracted rays using the Fresnel reflection and trans-

ission matrices, R and T : 

 r = R · K · M (9) 
i 
 t = T · K · M i . (10) 

ere, K is the rotation to the plane of incidence. To solve for K , we

rst define a set of complex, orthogonal basis vectors 

ˆ 
 1 = 

k × n √ 

(k × n ) 2 
, ˆ h 2 = 

ˆ h 1 × k 

k 0 m 

. (11) 

 describes the rotation of the field vectors from the basis ( ̂  h 1 , ˆ h 2 )

o ( ̂  h 

′ 
1 
, ˆ h 

′ 
2 
): 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 
(J 1 J 

∗
1 + J 2 J 

∗
2 + J 3 J 

∗
3 + J 4 J 

∗
4 ) 

1 
2 
(−J 1 J 

∗
1 + J 2 J 

∗
2 + J 3 J 

∗
3 − J 4 J 

∗
4 ) 

1 
2 
(−J 1 J 

∗
1 + J 2 J 

∗
2 − J 3 J 

∗
3 + J 4 J 

∗
4 ) 

1 
2 
(J 1 J 

∗
1 + J 2 J 

∗
2 − J 3 J 

∗
3 − J 4 J 

∗
4 ) 

Re (J 1 J 
∗
4 + J 3 J 

∗
2 ) Re (−J 1 J 

∗
4 + J 3 J 

∗
2 ) 

Im (J ∗1 J 4 + J ∗3 J 2 ) Im (−J ∗1 J 4 + J ∗3 J 2 ) 

Re (J 1 J 
∗
3 + J 4 J 

∗
2 ) −Im (J ∗1 J 3 + J ∗4 J 2 ) 

Re (−J 1 J 
∗
3 + J 4 J 

∗
2 ) −Im (−J ∗1 J 3 + J ∗4 J 2 ) 

Re (J 1 J 
∗
2 + J 3 J 

∗
4 ) −Im (J ∗1 J 2 − J ∗3 J 4 ) 

Im (J ∗1 J 2 + J ∗3 J 4 ) Re (J 1 J 
∗
2 − J 3 J 

∗
4 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (12) 

here J 1 = 

ˆ h 1 · ˆ h 

′ 
1 
, J 2 = 

ˆ h 2 · ˆ h 

′ 
2 
, J 3 = 

ˆ h 2 · ˆ h 

′ 
1 
, and J 4 = 

ˆ h 1 · ˆ h 

′ 
2 
. The

resnel reflection and transmission matrices in Eqs. (9) –(10) are 

 = 

1 

2 

⎡ 

⎢ ⎢ ⎢ ⎣ 

r ‖ r ∗‖ + r ⊥ r ∗⊥ r ‖ r ∗‖ − r ⊥ r ∗⊥ 0 0 

r ‖ r ∗‖ − r ⊥ r ∗⊥ r ‖ r ∗‖ + r ⊥ r ∗⊥ 0 0 

0 0 2 Re 
(
r ‖ r ∗⊥ 

)
2 Im 

(
r ‖ r ∗⊥ 

)
0 0 −2 Im 

(
r ‖ r ∗⊥ 

)
2 Re 

(
r ‖ r ∗⊥ 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (13) 

 = 

1 

2 

⎡ 

⎢ ⎢ ⎢ ⎣ 

t ‖ t ∗‖ + t ⊥ t ∗⊥ t ‖ t ∗‖ − t ⊥ t ∗⊥ 0 0 

t ‖ t ∗‖ − t ⊥ t ∗⊥ t ‖ t ∗‖ + t ⊥ t ∗⊥ 0 0 

0 0 2 Re 
(
t ‖ t ∗⊥ 

)
2 Im 

(
t ‖ t ∗⊥ 

)
0 0 −2 Im 

(
t ‖ t ∗⊥ 

)
2 Re 

(
t ‖ t ∗⊥ 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (14) 

here r ‖ , r ⊥ , t ‖ , and t ⊥ are the Fresnel coefficients (a minor typo

orrected from [33, Eq. (14)] ) 

 ‖ = 

m 

2 
2 k i − m 

2 
1 k t 

m 

2 
2 
k i + m 

2 
1 
k t 

, r ⊥ = 

k i − k t 

k i + k t 

t ‖ = 

2 m 1 m 2 k i 

m 

2 
2 
k i + m 

2 
1 
k t 

, t ⊥ = 

2 k i 
k i + k t 

. 

ere, m 1 and m 2 are the complex refractive indices of the two me-

ia, and 

k i = k 0 (N 1 cos ϑ i + i K 1 cos ψ i ) and k t = k 0 (N 2 cos ϑ t +
 K 2 cos ψ t ) . 

For the diffraction component of the ray-optics solution, we

ollow the treatment by Muinonen et al. [14] and apply it to

oth Gaussian random spheres and hexagonal crystals. The forward

iffraction is calculated using the Kirchhoff approximation, where

he ensemble-averaged diffraction phase matrix is 
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i  

P  

m  

t  

e  
〈 P D (θ ) 〉 ∝ 

k 2 

4 π〈 A 〉 〈| u (θ, ϕ) | 2 〉 (1 + cos θ ) 2 1 , (15)

u (θ, ϕ) = 

∫ 2 π

0 

d ϕ 

′ 
∫ r(ϕ ′ ) 

0 

d r ′ exp [ −i kr ′ sin θ cos (ϕ − ϕ 

′ )] . (16)

Here, 1 is the 4 × 4 identity matrix, θ is the scattering angle (i.e.,

the angle between the incident and scattered radiation) and r ( ϕ′ )
describes the silhouette perimeter of a sample ice crystal in polar

coordinates. 

Finally, the phase matrix from the ray-optics solution is 

P (θ ) = 

1 

σsca 
(σ G 

sca P G (θ ) + σ D 
sca P D (θ )) . (17)

3. Computational aspects 

3.1. Ray-optics code SIRIS4 

We implemented the appropriate treatment of inhomogeneous

plane waves presented in Section 2 in a traditional ray-optics code

SIRIS [14] and, with these updates, thus introduce the version

SIRIS4. As for the geometric-optics part, SIRIS4 is built to follow

and update the changes in the 4 × 4 Mueller matrix instead of the

Stokes parameters associated with each ray, which was the method

in the preceding version, SIRIS3 [18] . In the code, the surface of

the particle is presented with a triangle mesh. In principle, this al-

lows the consideration of arbitrary shapes, provided that the gen-

eral limitations set by the geometric-optics method are satisfied.

Thus far, we have implemented the shapes of a hexagonal prism

and the Gaussian random sphere [14] . While the former is a con-

vex shape, the latter is generally non-convex; thus, rays that are

reflected (or twice transmitted) may re-enter the surface of the

non-convex particle. 

For the computations, we included 1,0 0 0,0 0 0 rays, which were

traced through multiple sequences of reflections and refractions

branching the ray until the relative flux of the branch was below

10 −4 . Another criterion was to allow a maximum of 20 internal re-

flections. These values were found sufficient through multiple test

runs. 

3.2. Discrete exterior calculus (DEC) 

Evaluation computations for the hexagonal ice crystals were

performed with a code employing discrete exterior calculus

(DEC) [37–39] . The solution method is a generalization of the finite

difference techniques such as the finite-difference time-domain

(FDTD) [40,41] or finite integration techniques (FIT) [42] . 

The integrated values of electric and magnetic fields (denoted

by column vectors e and h ) are assigned on edge elements of 3-

dimensional primal and dual meshes, respectively. The counter-

parts of the curl operators are denoted by discrete exterior deriva-

tives d 1 and d 

T 
1 
, where the incidence matrix d 1 consists of the

relative orientations ( +1 or −1 ) of each connected pair of edge

and face. The material relations are described by diagonal matrices


ε, 
σ , and 
μ. These discrete Hodge operators are the only source

for numerical error. The Maxwell equations after spatial DEC dis-

cretization are 


ε∂ t e + 
σe − d 

T 
1 h = j , 


μ∂ t h + d 1 e = 0 . 

The ice crystals are large compared to the wavelength λ, so the

solution is highly dependent on numerical dispersion. With appro-

priate mesh structure and discrete Hodge terms, the numerical dis-

persion is nearly eliminated [38,39] . Due to the hexagonal base,

we discretize the ice crystals using the Z-grid, which is one of the
etrahedrally close-packed structures. The object is surrounded by

ne wavelength thick perfectly matched layer (PML). Discretization

evel is tuned such that there exist at least 60 0 0 unknowns per λ3 .

The time-harmonic solution is obtained using time-harmonic

ource terms and performing forward-in-time integration with

on-uniform leapfrog strategy. From the near-field solution, we

ompute the far-field Mueller matrices. Averaged Mueller matrices

re calculated using 110 0–320 0 wave propagation directions and

28 azimuth orientations for each direction. The solution method

arallelizes nearly perfectly. Thus, we simultaneously exploited

76–2400 parallel CPUs (Intel Xeon E5-2670 at 2.60 GHz). In to-

al, the computations of this paper took tens of CPU years. 

. Results and discussion 

We demonstrate the effect of inhomogeneous plane waves on

ay-optics computations through scattering by ice crystals in the

IR wavelengths. In the following demonstration, two ice crys-

al shape models are considered: hexagonal columns and Gaussian

andom spheres. These example computations cover the extended

ear-infrared spectral region, namely wavelengths from 0.75 μm to

.969 μm, in intervals of approximately 0.02 μm because, in this

egion, the complex refractive index of ice has a strong spectral

ariability, as shown in Fig. 1 . In our computations, we used the re-

ractive index of ice tabulated and published by Warren and Brandt

36] . 

.1. Hexagonal column ice crystals 

We studied scattering by randomly oriented hexagonal column

ce crystals that are common constituents of tropospheric cirrus

louds [e.g., 43] . The length of the crystal was set to 100 μm and,

ollowing the column ice crystal aspect ratio used by [44] , the

idth of one hexagonal edge was 34.8 μm. 

The correction for inhomogeneous plane waves implemented

n SIRIS4 was first evaluated through comparisons of SIRIS3 and

IRIS4 computations against the results from the DEC, which can

e considered as an exact computational light-scattering method.

e limited these computations to two wavelengths, λ = 2 . 0 0 0 μm

nd λ = 3 . 969 μm. At these wavelengths, the differences between

he scattering matrices from SIRIS3 and SIRIS4 were maximal to

acilitate evaluation. The SIRIS3, SIRIS4, and the DEC results for

exagonal column ice crystals are shown in Figs. 2 and 3 . For quan-

itative evaluation, the root-mean-square errors (RMSE) were cal-

ulated following 

MSE = 

√ 

1 

n θ

160 ◦∑ 

θ=20 ◦
(P R − P DEC ) 2 , (18)

here n θ is the number of the scattering angle bins in the inter-

al, and P R refers to ray-optics computations and is P R = P i j /P 11 ex-

ept for the phase function P R = P 11 , and similarly for P DEC which

enotes the DEC computations. Due to the computational chal-

enges near the direct forward and backscattering directions, we

onsidered scattering angles θ ∈ [20 °, 160 °] in the comparisons. The

MSE results are listed in Table 1 . At λ = 2 . 0 μm, the RMSE val-

es were smaller for SIRIS4 than SIRIS3 except for P 22 / P 11 , sug-

esting that the correction for inhomogeneous plane waves brings

he ray-optics computations closer to the exact result. At λ =
 . 969 μm, SIRIS4 agreed better with DEC results for the follow-

ng four scattering-matrix elements: P 21 / P 11 , P 22 / P 11 , P 33 / P 11 and

 44 / P 11 . As the ray-optics methods (SIRIS3 and SIRIS4) are funda-

entally approximate and different from exact methods such as

he DEC, a perfect agreement cannot be expected. Nevertheless,

valuation of the RMSE at these two wavelengths suggests that



H. Lindqvist et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 217 (2018) 329–337 333 

Fig. 2. Angular dependence of scattering by hexagonal ice crystals at λ = 2 . 00 μm computed using traditional ray optics (SIRIS3), ray optics with inhomogeneous waves 

(SIRIS4), and an exact method (DEC). 

Table 1 

The root-mean-square errors (RMSE) for traditional ray optics (SIRIS3) and ray op- 

tics with inhomogeneous waves (SIRIS4) with respect to the DEC. 

RMSE, λ = 2 . 0 μm RMSE, λ = 3 . 969 μm 

SIRIS3 SIRIS4 SIRIS3 SIRIS4 

P 11 1731.8 1222.0 180.1 191.4 

P 21 / P 11 0.032 0.028 0.11 0.092 

P 22 / P 11 0.045 0.057 0.054 0.025 

P 33 / P 11 0.070 0.067 0.12 0.054 

P 34 / P 11 0.056 0.050 0.040 0.057 

P 44 / P 11 0.089 0.076 0.18 0.058 
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〈  
IRIS4 with inhomogeneous waves agrees generally better with the

EC than the traditional ray optics (SIRIS3). 

After evaluation, we investigated the sensitivity of scattering

y ice crystals to the inhomogeneous waves throughout the ex-

ended NIR spectral region. The changes in the angular-dependent

cattering-matrix elements were generally very small. Differences

ccurred around λ = 1 . 5 μm and λ = 2 . 0 μm which coincided with

wo separate absorption maxima for ice ( Fig. 1 ). The most sensi-

ive elements were P 22 / P 11 , P 33 / P 11 , and P 44 / P 11 , mainly at large

cattering angles. Ice has also a broad absorption feature peak-

ng at λ = 3 . 07 μm; however, this does not cause differences be-

ween SIRIS3 and SIRIS4 results because most of the scattered ra-

iation originates from surface reflection as the refracted rays are

ttenuated due to the strong absorption inside the particle. When

pproaching the longer-wave end of the NIR region, scattering is

gain more sensitive to the treatment of inhomogeneous waves,
hich can be seen in Fig. 3 where all scattering-matrix elements

re affected, including the phase function and the intensity of the

alo phenomena. Thus, it appears that a sensitivity region for in-

omogeneous waves in scattering can be identified between neg-

igible absorption and surface reflection (where the correction is

inimal in both cases); this is roughly at the wavelengths where

m (m ) ∈ [2 . 0 · 10 −4 , 1 . 0 · 10 −2 ] but depends on Re( m ) as well as on

he size of the particle. 

In addition to the angular dependence on scattering through

he NIR wavelengths, we evaluated the impact of the inhomoge-

eous waves on the single-scattering albedo ϖ. We found a small

ut systematic increase in ϖ throughout the NIR region ( Fig. 4 ,

eft). The largest absolute increase was 0.042 at λ = 2 . 725 μm, and

he largest relative increase was 6.3% at λ = 2 . 778 μm. The system-

tic increase of ϖ can be explained by the effectively shorter path

ength of the rays in the absorbing medium when inhomogeneous

aves are considered. 

.2. Gaussian-random-sphere ice particles 

We investigated light scattering by randomly oriented Gaussian-

andom-sphere ice particles large compared to the wavelength of

he incident light. The Gaussian random sphere is parameterized

y the mean radius a and coefficients C l which are further param-

terized by the power-law index ν and the standard deviation of

he radius σ . The average volume depends on σ and a [45] : 

 V 〉 = 

4 

πa 3 (1 + σ 2 ) 3 . (19)

3 
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Fig. 3. Angular dependence of scattering by hexagonal ice crystals at λ = 3 . 969 μm computed using traditional ray optics (SIRIS3), ray optics with inhomogeneous waves 

(SIRIS4), and an exact method (DEC). 

Fig. 4. Spectral dependence of the single-scattering albedo ϖ for hexagonal ice crystals (left) and Gaussian-random-sphere ice particles (right) in the NIR region using 

traditional ray optics (SIRIS3) and ray optics with inhomogeneous plane waves (SIRIS4). 
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The detailed mathematical presentation for the shape of the Gaus-

sian random sphere is described in [18] , and the shape model has

been previously applied to atmospheric ice crystals by, e.g., [26] . 

For the computations, we used ν = 3 . 0 and σ = 0 . 17 . The mean

radius a for the Gaussian random spheres was set to 41.674 μm,

which was obtained by utilizing Eq. (19) and setting the volume

of the Gaussian random sphere and the volume of the hexagonal
olumn ice crystal (see Section 4.1 ) equal. Fig. 5 shows illustrations

f the different shapes used in the computations. 

We carried out computations at the NIR wavelength region with

he SIRIS4 code, which accounts for inhomogeneous waves, and the

raditional ray-optics code SIRIS3 [18] . We then compared the dif-

erences of the computed scattering matrices and single-scattering

lbedos ϖ. As shown in Fig. 4 (right), the ϖ calculated using in-
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Fig. 5. Example shapes of the computed Gaussian-random-sphere ice particles. 

Fig. 6. Angular dependence of scattering by an ensemble of Gaussian-random-sphere ice particles at λ = 2 . 0 μm computed with traditional ray optics (SIRIS3) and ray optics 

with inhomogeneous plane waves (SIRIS4). 
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omogeneous waves is systematically higher than the ϖ calculated

ithout taking inhomogeneous waves into account. The largest ab-

olute increase was 0.044 at λ = 2 . 725 μm, which coincided with

he largest relative increase, 6.4%. The differences between the ϖ
alues computed with SIRIS3 and SIRIS4 are very similar for both

exagonal and Gaussian-random-sphere ice particles. Furthermore,

e investigated the changes in the angular-dependent scattering-

atrix elements. These are shown for λ = 2 . 0 μm in Fig. 6 and

or λ = 3 . 969 μm in Fig. 7 . When compared to the hexagonal ice

rystals, the angular-dependent features of the scattering-matrix

lements were largely different and smoother overall. However,

he differences between SIRIS3 and SIRIS4 results were generally

mall, largest of them occurring at λ = 1 . 5 μm, λ = 2 . 0 μm and

= 3 . 969 μm, similarly to the hexagonal ice crystals. Again, when

pproaching longer wavelengths, scattering is more sensitive to the

reatment of inhomogeneous waves (see Fig. 7 ). P 22 / P 11 , P 33 / P 11 ,
nd P 44 / P 11 are the most sensitive elements, especially at large

cattering angles. 

Inspired by the similarities in the differences between SIRIS3

nd SIRIS4 results for the two particle shapes, we calculated the

ifference in the single-scattering albedo, �
 = 
 SIRIS4 − 
 SIRIS3 ,

or each shape and compared it to Im( m ). The result in Fig. 8 high-

ights the Im( m ) region of the largest sensitivity to the considera-

ion of inhomogeneous waves in light scattering, almost regardless

f particle shape in this case. 

. Conclusions 

Ray optics has numerous applications, including single-

cattering computations for particles much larger than the wave-

ength of incident light. For absorbing particles, the waves inside a

article propagate as inhomogeneous plane waves, which has pro-
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Fig. 7. Angular dependence of scattering by an ensemble of Gaussian-random-sphere ice particles at λ = 3 . 969 μm computed with traditional ray optics (SIRIS3) and ray 

optics with inhomogeneous plane waves (SIRIS4). 

Fig. 8. The dependence of the single-scattering albedo difference, �
 = 
 SIRIS4 −

 SIRIS3 , on Im( m ) for both hexagonal and Gaussian-random-sphere ice particles. 
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found consequences to the fundamental concepts of the ray-optics

approximation, including the formulation of the Snel and Fresnel

equations. In this paper, we have derived the ray-optics solution

that takes into account the inhomogeneous nature of the inter-

nal waves. We followed the treatment of [33] but expanded it to

ray optics in three dimensions, with full 4 × 4 scattering matrices.

We have implemented the solution for the inhomogeneous waves

to the ray-optics code SIRIS [18] , thus updating it to the version

SIRIS4. 
For the first evaluations of the magnitude of the inhomoge-

eous wave correction, we applied SIRIS4 to light scattering by

arge atmospheric ice crystals in the near-infrared wavelengths

rom λ = 0 . 75 μm to λ = 4 . 0 μm. We considered two randomly

riented particle shape ensembles: hexagonal ice crystals and

aussian-random-sphere ice particles. We discovered a systematic

ncrease in the single-scattering albedo ϖ following the ray-optics

ormulation based on the inhomogeneous waves. The magnitude of

his increase was found to depend on Im( m ), and thus, the wave-

ength of incident light. The largest difference was identified for

oth shapes at λ = 2 . 725 μm, and was �
 = 0 . 042 for hexag-

nal ice crystals and �
 = 0 . 044 for Gaussian random spheres.

cattering-matrix elements were found to be generally little af-

ected by the inhomogeneous waves, although some differences

ere seen at local spectral absorption maxima: the most sensitive

lements were P 22 / P 11 , P 33 / P 11 , and P 44 / P 11 , and the effects were

he strongest at large scattering angles. 

Finally, SIRIS4 was evaluated against the discrete exterior calcu-

us (DEC), which is an exact computational light scattering method.

e found that SIRIS4 seems to agree slightly better with the DEC

han its preceding version, SIRIS3. This indicates that the inhomo-

eneous waves are important to consider in scattering by absorb-

ng particles large compared to the wavelength of incident light.

evertheless, further studies and additional metrics are required

o establish the conclusion. 
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