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CEA, CNRS, F-91191 Gif-sur-Yvette, France
bDepartment of Physics,

P.O. Box 35, FI-40014 University of Jyväskylä, Finland
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1 Introduction

Heavy quarkonia, bound states of charm or bottom quarks, constitute a prominent probe

of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions, and are the

object of many investigations, both theoretically and experimentally. Recent data from

the LHC provide evidence for a sequential suppresion, with the most fragile (less bound)

states being more strongly suppressed [1], while there are indications that charm quarks are

sufficiently numerous to recombine, an effect that is seen to counterbalance the expected

suppression [2]. These findings are in line with general expectations. The dissociation

of quarkonium was suggested long ago [3] as resulting from the screening of the binding

forces by the quark gluon plasma. Recombination is a natural phenomenon to expect [4, 5]

whenever the number of heavy quarks is sufficiently large, which seems to be the case of

charm quarks at the LHC. However, in order to go beyond these qualitative remarks, and

extract precise information about the dynamics, we have to address a rather complicated

many-body problem.

Even leaving aside the production mechanisms of heavy quarkonia in hadronic colli-

sions, which are not fully understood yet (see e.g. [6]), the description of the interactions of

heavy quarks with an expanding quark-gluon plasma is indeed complicated for a number

of reasons. Many effects can contribute, among which: screening affecting the binding

potential, collisions with the plasma constituents, absorption of gluons of the plasma by

the bound states. It should be added to this that the bound states do not exist as objects

“deposited” in the plasma: it takes time before a newly created quark-antiquark pair can

be considered as a bound state, and during this time it is interacting with the plasma. This

is a feature that is often forgotten in many models that attempts to describe the data (for

representatives of recent phenomenological analyses, see e.g. [7–9] and references therein).

Thus, most models emphasize static or stationary aspects (even when the expansion of the

plasma is taken into account): this is the case of potential models [10], spectral function

calculations [11], or kinetic approaches based on rate equations [9, 12]. Clearly a fully

time-dependent, out of equilibrium treatment is called for. Such a treatment should also

establish contact between the dynamics of heavy quark-antiquark pairs and their bound

states, and that of isolated heavy quarks in a quark-gluon plasma (see e.g. [13, 14]). In

short, there is a need for a general, simple, and robust formalism, where all the relevant

effects can be treated within the same framework. In this respect, the observation that the

collisions could be taken into account by an imaginary potential is a significant one [15–19].

In recent years it has been recognized that techniques from the theory of open quantum

systems (see e.g. [20, 21]) could offer a fruitful perspective on this problem. A system of

heavy quarks in a quark gluon plasma falls indeed in the category of typical problems

– 1 –
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addressed by this theory: a small system, weakly interacting with a large “reservoir”, the

quark-gluon plasma. This point of view has emerged explicitly or implicitly in a number of

recent works: derivation of a master equation, and corresponding rate equations [22], use of

the influence functional method [23, 24], solution of a stochastic Schrödinger equation [25–

27], or direct computation of the evolution of the density matrix [28, 29].

The present work follows similar lines. Its initial motivation was to generalize the

results of [24] to the non-Abelian case (QCD). Part of that generalization is straightforward,

and relies on the same approximations as those used in the case of the abelian plasma. To

some extent, this program has already been considered in the recent work by Akamatsu [30],

albeit using a formalism slightly different from that used in [24] and in the present paper.

However, color degrees of freedom modifies the picture in a very substantial way. The

reason is that, in a collision involving one gluon exchange for instance, color changes in a

discrete way, in contrast to position or momentum which vary continuously. Thus, while

we can treat the motion of the heavy quarks within a semi-classical approximation, there is

no such semi-classical limit for the color dynamics (except perhaps in the large Nc limit).

It follows that the derivation of Fokker-Planck or Langevin equations made in the abelian

case needs to be reconsidered, which we do in this paper. We shall see that the complete

dynamics, including the color degrees of freedom, can still be described by Fokker-Plack

and Langevin equations, but only in very specific circumstances.

This paper focusses on conceptual issues. It is organized as follows. In section 2 we

derive the quantum master equation for the reduced density matrix of a system of heavy

quarks and antiquarks immersed in a quark-gluon plasma, in thermal equilibrium. This

equation, whose structure is close to that of a Lindblad equation, is used as a starting point

of all later developments. In section 3 we rederive from it the results that we had previously

obtained for the abelian plasma [24] using a path integral formalism. In particular we

recover, after performing a semi-classical approximation, the Fokker-Planck and Langevin

equations that describe the random walks of center of mass and relative coordinates of a

quark-antiquark pair. This section on the abelian plasma paves the way for the treatment

of the non abelian case discussed in section 4. The equations that we present there, before

we do the semi-classical approximation, are fully quantum equations. But they are difficult

to solve in general. Thus, in section 5 we look for additional approximations that allow

us to obtain solutions in some particular regimes, in order to start getting insight into the

general solution. In particular, we explore two ways of implementing the semi-classical

approximation. In the first case, we restrict the dynamics to stay close to a maximum

entropy color state, where the colors of the heavy quarks are random. In this case the

dynamics is described by a Langevin equation with a new random color force. The method

used in this case is easily extended to the case of an arbitrary number of quark-antiquark

pairs, and allows us to address the question of recombination. However, it is based on

a perturbative approach that breaks down for some values of the parameters. Another

strategy focuses on the case of a single quark-antiquark pair. The transition between

singlets and octets are treated as “collisions” in a kinetic equation that we solve using

Monte Carlo techniques. The last section summarizes our main results, and presents a

brief outlook. Several appendices at the end gather various technical material.
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2 Equation for the density matrix of heavy quarks in a quark-gluon

plasma

Our description of the heavy quark dynamics in a quark-gluon plasma is based on the

assumption that the interaction between the heavy quarks and the quark-gluon plasma is

weak, and can be treated in perturbation theory (with appropriate resummations). The

generic hamiltonian for such a system reads

H = HQ +H1 +Hpl, (2.1)

where HQ describes the dynamics of the heavy quarks in the absence of the plasma, Hpl is

the hamiltonian of the plasma in the absence of the heavy quarks, and H1 is the interaction

between the heavy quarks and the plasma constituents. The heavy quarks are treated as

non relativistic particles, and the spin degree of freedom is ignored: the state of a heavy

quark is then entirely specified by its position and color. As we have mentioned already,

we shall consider H1 to be small and treat it as a perturbation. In Coulomb gauge, and

neglecting magnetic interactions, this interaction takes the form

H1 = −g
∫
r
Aa0(r)na(r), (2.2)

where na denotes the color charge density of the heavy particles. For a quark-antiquark

pair, for instance, this is given by1

na(x) = δ(x− r̂) ta ⊗ I− I⊗ δ(x− r̂) t̃a, (2.3)

where we use the first quantization to describe the heavy quark and antiquark, and the

two components of the tensor product refer respectively to the Hilbert spaces of the heavy

quark (for the first component) and the heavy antiquark (for the second component). In

eq. (2.3), ta is a color matrix in the fundamental representation of SU(3) and describes the

coupling between the heavy quark and the gluon. The coupling of the heavy antiquark and

the gluon is described by −t̃a, with t̃a the transpose of ta.

We are looking for an effective theory for the heavy quark dynamics, obtained by elim-

inating the plasma degrees of freedom. In previous works, this was achieved explicitly by

constructing the Feynman-Vernon influence functional [31], using the path integral formal-

ism (see e.g. [24, 30]). In the present paper, we shall proceed differently, by writing directly

the equations of motion for the reduced density matrix of the heavy quarks. Although the

derivations presented here are self-contained, we emphasize that the main approximations

that are implemented in the present section are quite common in various fields, and belong

to what is commonly referred to as the theory of open quantum systems (see e.g. [20]).

We assume that the system contains a fixed number, NQ, of heavy quarks (and, in

general, an equal number of antiquarks). We call D the density matrix of the full system,

1We denote here the position operator by r̂, but most often the symbol ˆ will be omitted, the context

being enough to recognize the operators.
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and DQ the reduced density matrix for the heavy quarks. The latter is defined as the

partial trace of the full density matrix over the plasma degrees of freedom, that is

DQ = TrplD. (2.4)

In order to make contact with the work of ref. [24], we recall that a typical question ad-

dressed there was the following: given a set of heavy quarks at position Xi at time ti, where

X denotes collectively the set of coordinates of the quarks and antiquarks (temporarily

ignoring color), what is the probability P (Xf , tf |Xi, ti) to find them at position Xf at

time tf? This probability is given by

P (Xf , tf |Xi, ti) = |〈Xf , tf |Xi, ti〉|2 = 〈Xf |DQ(tf )|Xf 〉, (2.5)

that is, it can be obtained as a specific element of the reduced density matrix. In [24] a

representation of this quantity was obtained in terms of a path integral which is difficult to

evaluate in general.2 However, in the regime where a semi-classical approximation is valid,

the dynamics that it describes is equivalent to that of a Fokker-Planck equation which can

be easily solved numerically, in particular by solving the associated Langevin equation.

Two approximations are involved in the construction of the influence functional such as

presented in [24, 30]. The first one is the weak coupling approximation for the interaction

of the heavy quarks with the plasma, the second assumes that the response of the plasma

to the perturbation caused by the heavy quarks is fast compared to the characteristic time

scales of the heavy quark motion. An additional approximation, to which we refer to as

a semi-classical approximation, leads, as we have just mentioned, to Fokker Planck and

Langevin equations.

The last two approximations exploit the fact that the mass of the heavy quark is large,

i.e., M � T . Thus, when the heavy quark is not too far from thermal equilibrium, its

thermal wavelength λth ∼ 1/
√
MT is small compared to the typical microscopic length scale

∼ 1/T . Under such condition, the density matrix can be considered as nearly diagonal (in

position space), motivating a semi-classical approximation: indeed the off-diagonal matrix

elements 〈X|DQ|X ′〉 die off when |X −X ′| & λth. The typical heavy quark velocity is of

the order of the thermal velocity ∼
√
T/M � 1, and the dynamics of the heavy fermions

is much slower than that of the plasma. The typical frequency for the plasma dynamics

is the plasma frequency which, for ultra-relativistic plasmas, is of the order of the Debye

screening mass mD. During a time t ∼ m−1
D , the heavy quark moves a distance which

is small compared to the size of the screening cloud, ∼ m−1
D . Thus, over a time scale

characteristic of the plasma collective dynamics, the heavy quark positions are almost

frozen (they are completely frozen in the limit M → ∞). One can also recognize that

the collisions of the heavy particles with the light constituents of the plasma involve the

exchange of soft gluons, with typical momenta q . mD � M . The corresponding energy

transfer ∼ q2/M ∼ m2
D/M is small on the scale of the plasma frequency, m2

D/M � mD.

2The analogous path integral for a single heavy quark in an abelian plasma has been evaluated in [32].

However, this evaluation was performed in Euclidean space. An analytic continuation is needed to recover

the real time information, and procedures to do so numerically are not without ambiguities.
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Figure 1. The Schwinger-Keldysh contour.

2.1 Equation for the density matrix

The density matrix obeys the general equation of motion

i
dD
dt

= [H,D]. (2.6)

In order to treat the interaction between the plasma and the heavy particles using per-

turbation theory, we move to the interaction representation. We set H = H0 + H1, with

H0 = HQ +Hpl and define

D(t) = U0(t, t0)DI(t)U †0(t, t0), (2.7)

where DI(t), the interaction representation of the density matrix, satisfies the equation

dDI

dt
= −i[H1(t),DI(t)], H1(t) = U0(t, t0)†H1U0(t, t0). (2.8)

Here, H1(t) denotes the interaction representation of H1. The evolution operator in the

interaction representation, UI(t0, t) = U †0(t, t0)U(t, t0), can be expanded in powers of H1(t)

in the usual way

UI(t, t0) = T exp

{
− i
∫ t

t0

dt′H1(t′)

}
, (2.9)

where the symbol T denotes time ordering. Similarly, eq. (2.8) can be integrated formally

using the Schwinger-Keldysh contour [33, 34]:

DI(t) = UI(t, t0)D(t0)U †I (t, t0)

= TC

[
exp

{
−i
∫
C

dtCH1(tC)

}
D(t0)

]
, (2.10)

where the operator TC orders the operators H1(tC) along the contour parameterized by

the contour time tC , with the operators carrying the largest tC coming before those with

smaller tC (see figure 1). The upper branch of the contour, with time running from t0 to

t, represents the evolution operator UI(t, t0), the lower branch of the contour, with time

running from t to t0, represents the operator U †I (t, t0). As can be seen in eq. (2.10), in the

expansion of DI(t) in powers of H1(t), the operators H1(t) that sit on the left of D(t0) live

on the upper branch of the contour, while those that appear on the right of D(t0) live on

the lower branch (they come later along the contour).

To proceed further, we assume that, at the initial time t0, the density matrix factorizes

DI(t0) = DIQ(t0)⊗DIpl(t0). (2.11)

– 5 –
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We also assume that at time t0, the plasma is in a state of thermal equilibrium, so that its

density matrix DIpl(t0) = Dpl(t0) is a canonical density matrix,

Dpl(t0) =
1

Zpl

∑
m

e−βEm , (2.12)

where β = 1/T , with T the equilibrium temperature. This factorization of the density

matrix allows for a simple calculation of the trace over the plasma degrees of freedom.

Let us then examine perturbation theory at second order in H1, with H1 given by

eq. (2.2). Performing the trace over the plasma degrees of freedom is immediate, thanks

to the specific structure of H1 and the factorization of the density matrix at t = t0.

One obtains

DIQ(t) = DQ(t0)− i
∫ t

t0

dt′
∫
x
〈Aa0(x)〉[na(x, t),DQ(t0)]

−1

2

∫ t

t0

dt1

∫ t

t0

dt′1

∫
xx′

T[na(t1,x)nb(t′1,x
′)]DQ(t0) 〈T[Aa0(t1,x)Ab0(t′1,x

′)]〉0

−1

2

∫ t

t0

dt2

∫ t

t0

dt′2

∫
xx′
DQ(t0)T̃[na(t2,x)nb(t′2,x

′)] 〈T̃[Aa0(t2,x)Ab0(t′2,x
′)]〉0

+

∫ t

t0

dt1

∫ t

t0

dt2

∫
xx′

[na(t1,x)DQ(t0)nb(t2,x
′)] 〈Aa0(t2,x

′)Ab0(t1,x)〉0, (2.13)

where, in the last three lines, we have used the convention that t1, t
′
1 run on the upper part

of the contour, while t2, t
′
2 run on the lower branch. Note that the linear term vanishes

since the plasma is color neutral (so that 〈Aa0(x)〉0 = 0). Here the notation 〈· · · 〉0 stands

for the average with the plasma equilibrium density matrix, that is

〈· · · 〉0 = Trpl

[
1

Zpl
e−βHpl · · ·

]
. (2.14)

Similarly the correlators of the gauge fields are diagonal in color, i.e. they are propor-

tional to δab. These correlators are the exact correlators in the plasma (the fields are in

the interaction representation, which corresponds to the Heisenberg representation when

considering the plasma alone). They are written as

〈T[Aa0(t1,x)Ab0(t′1,x
′)]〉0 = −iδab∆(t1 − t′1,x− x′)

〈T̃[Aa0(t2,x)Ab0(t′2,x
′)]〉0 = −iδab∆̃(t2 − t′2,x− x′)

〈TCA
a
0(t2,x

′)Ab0(t1,x)〉0 = δab∆>(t2 − t1,x′ − x)

= δab∆<(t1 − t2,x− x′). (2.15)

The apparent inversion of the order of times in the last correlator results from the rela-

tion TrplA
b
0(t1,x)Dpl(t0)Aa0(t2,x

′) = 〈Aa0(t2,x
′)Ab0(t1,x)〉0 which follows from the cyclic

invariance of the trace.

It is convenient to represent the evolution of the density matrix by a diagram such

as that in figure 2, where the upper and lower parts of the diagram may be associated to

– 6 –
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↵i ↵ f

� f�i

t0 t
UI(t, t0)

U†
I (t, t0)

DQ(t)DQ(t0)

Figure 2. Graphical representation of the evolution of the density matrix from t0 to t. The hori-

zontal lines represent the evolution operators UI(t, t0) (upper branch) or U †I (t, t0) (lower branch).

When DQ is the density matrix of a single heavy quark, these horizontal lines may be interpreted

as the associated propagators of the heavy particle. When DQ is the density matrix of a heavy

quark-antiquark pair, a single horizontal line is replaced by a pair of lines, associated with the

propagator of the pair (see figure 6 below).

Figure 3. These diagrams are in one-to-one correspondence with the terms in the last three lines

of the right-hand side of eq. (2.13) for the single particle density matrix DI
Q(t).

the corresponding upper and lower parts of the Schwinger-Keldysh contour. The explicit

expression that this diagram represents is

〈αf |DQ(t)|βf 〉 =
∑
αiβi

〈αf |UI(t, t0)|αi〉〈αi|DQ(t0)|βi〉〈βi|U †I (t, t0)|βf 〉, (2.16)

where α of β represent the set of quantum numbers that are necessary to specify the state

of the heavy particles (essentially the position and color).

The diagrammatic interpretation of eq. (2.13) is then given in figure 3 (for the case of

a single particle density matrix).

In order to implement our further approximations, it is convenient to consider the time

derivative of the density matrix. This can be obtained by taking the derivative of eq. (2.13)

above (see eq. (B.1) in appendix B). But it is more instructive to return to eq. (2.8), and

– 7 –
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rewrite it as

dDI

dt
= −i[H1(t),DI(t0)]−

∫ t

t0

dt′[H1(t), [H1(t′),DI(t′)]]. (2.17)

This exact equation is obtained by formally integrating eq. (2.8) and inserting the solution

back into the equation. Perturbation theory at second order in H1 is recovered by replacing

DI(t′) by DI(t0) in the double commutator in the right hand side. One may then proceed

to the average over the plasma degrees of freedom, as we did before, and get the following

equation for the reduced density matrix DQ

dDIQ(t)

dt
= −

∫ t

t0

dt′
∫
xx′

(
[na(t,x), na(t′,x′)DIQ(t0)]∆>(t− t′,x− x′) (2.18)

+[DIQ(t0)na(t′,x′), na(t,x)]∆<(t− t′,x− x′)
)
.

We have used the fact that the linear term vanishes in a neutral plasma, and the sum over

the color index a is implicit.

At this point, we can improve on strict perturbation theory. To do so we notice that the

integral over t′ in eq. (2.17) is in fact limited to a region near t′ . t: this is because ∆(t−t′)
dies out when t − t′ & m−1

D , and we are interested in the evolution of the density matrix

over time scales that are much larger than m−1
D . Thus, noticing also that the difference

DI(t)−DI(t′) involves in any case an extra power of H1, we replace DI(t′) by DI(t) in the

right hand side of eq. (2.17),3 turning the equation into an equation for D(t) which is now

local in time. We shall furthermore exploit the fact that the density matrix approximately

factorizes at all times, as does the density matrix at the initial time t0. Again, this is

consistent with the weak coupling approximation since the correction to the factorized

form necessarily involves additional powers of H1. The latter approximation allows us to

perform the trace over the plasma degree of freedom, in the same way as we did earlier

for strict perturbation theory. The resulting equation is in fact identical to eq. (2.18) in

which we replace in the right hand side DIQ(t0)by DIQ(t). It is convenient for the following

to write this equation in the Schrödinger picture. A simple calculation yields

dDQ
dt

+ i[HQ,DQ(t)] = −
∫
xx′

∫ t−t0

0
dτ [nax, UQ(τ)nax′U

†
Q(τ)DQ(t)] ∆>(τ ;x− x′))

−
∫
xx′

∫ t−t0

0
dτ [DQ(t)UQ(τ)nax′U

†
Q(τ), nax] ∆<(τ ;x− x′).

(2.19)

where we have set t− t′ = τ . This equation has the same physical content as the influence

functional derived in [24], and it is based on analogous approximations. It relies on a

weak coupling approximation, but goes beyond strict second order perturbation theory, in

particular by implementing partial resummations.

This equation contains in its right hand side a time integral that we shall simplify

thanks to our last approximation: in line with the fact that only small values of τ are

3An alternative procedure, which leads to slightly different equations, is presented in appendix B.
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relevant, it consists in replacing e−iHQτ ' 1− iHQτ , and keep terms up to linear order in

τ in the integrals. More precisely, we write

UQ(τ)nax′U
†
Q(τ) = U †Q(−τ)nax′UQ(−τ) = nax′(−τ) (2.20)

and

nax′(−τ) = nax′ − τ ṅax′ , ṅax′ = i [HQ, n
a
x′ ] , (2.21)

the time-dependence of nx′(t) being given by the Heisenberg representation, nax′(t) =

eiHQtnax′e−iHQt. We get

dDQ
dt

+ i[HQ,DQ(t)] ≈ −
∫
xx′

[nax, n
a
x′DQ]

∫ ∞
0

dτ∆>(τ ;x− x′))

−
∫
xx′

[DQnax′ , nax]

∫ ∞
0

dτ ∆<(τ ;x− x′)

+

∫
xx′

[nax, ṅ
a
x′DQ]

∫ ∞
0

dτ τ ∆>(τ ;x− x′))

+

∫
xx′

[DQṅax′ , nax]

∫ ∞
0

dτ τ ∆<(τ ;x− x′). (2.22)

At this point we use the values of the time integrals given in appendix A. These involve

the zero frequency part of the time-order propagator ∆(ω = 0) = ∆R(ω = 0, r) + i∆<(ω =

0, r), which we identify with the real and imaginary part of a “potential”. More precisely,

we set

V (r) = −∆R(ω = 0, r), W (r) = −∆<(ω = 0, r). (2.23)

This terminology stems from the fact that V (r) + iW (r) plays the role of a complex

potential in a Schrödinger equation describing the relative motion of a quark-antiquark

pair: the real part represents the screening corrections, and adds to the familiar interaction

arising in leading order from one-gluon exchange, the imaginary part accounts effectively

for the collisions between the heavy quarks and the plasma constituents [15, 16].

After a simple calculation that uses the properties V (x−x′) = V (x′−x) and W (x−
x′) = W (x′ − x), we get

dDQ
dt

+ i[HQ,DQ(t)] ≈ − i
2

∫
xx′

V (x− x′)[naxnax′ ,DQ],

+
1

2

∫
xx′

W (x− x′) ({naxnax′ ,DQ} − 2naxDQnax′)

+
i

4T

∫
xx′

W (x− x′) ([nax, ṅ
a
x′DQ] + [nax,DQṅax′ ]) (2.24)

The first line of the right hand side of this equation describes a hamiltonian evolution,

that is, it can be written as the commutator on the left hand side, with HQ replaced

by 1
2

∫
xx′ V (x − x′)naxnax′ . It follows that we can shift the “direct”, one-gluon exchange

potential initially contained in HQ into V , and keep in HQ only the kinetic energy of the
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heavy quarks. This is the strategy that was followed in [24] and that we shall adopt in

this paper. In this way the potential V (r) becomes the screened Coulomb potential, and

HQ represents only the kinetic energy of the heavy particles (see also the discussion after

eq. (3.29) below).

The equation (2.24) is our main equation. It is a fully quantum mechanical equation.

It is a Markovian equation for the reduced density matrix DQ(t). We shall write this

equation in the following way

dDQ
dt

= LDQ, (2.25)

with L = L0 + L1 + L2 + L3, and

L0DQ ≡ −i[HQ,DQ],

L1DQ ≡ −
i

2

∫
xx′

V (x− x′)[naxnax′ ,DQ],

L2DQ ≡
1

2

∫
xx′

W (x− x′) ({naxnax′ ,DQ} − 2naxDQnax′) ,

L3DQ ≡
i

4T

∫
xx′

W (x− x′) ([nax, ṅ
a
x′DQ] + [nax,DQṅax′ ]) . (2.26)

The structure of eq. (2.25) is close to that of a Lindblad equation [35], but eq. (2.25) is not

quite a Lindblad equation: while the operator L2 can be put in the Lindblad form, this

is not so of the operator L3, unless one adds extra, subleading terms (see the discussion

in appendix B). For a recent discussion of the Lindblad equation for an abelian plasma,

in a formalism not too different from the present one, see [29]). The notation is, at this

stage, symbolic and just expresses the fact that the right hand side of eq. (2.24) is a linear

functional of the density matrix. It will acquire a more precise meaning as we proceed.

We may however make the following observation. When taking matrix elements between

localized states, specified by the coordinates of the heavy particles, the density operators

nx play the role of projection operators, and are diagonal in the coordinate representation.

Thus the same matrix elements, as far as the coordinates are concerned, will appear on

the left and the right. The operator L will then appear as a differential operator acting on

this matrix element (in fact L1 and L2 are simply multiplicative, as we shall see).

It is convenient to associate a diagrammatic representation to the various contributions

that we shall calculate. The relevant diagrams will preserve the topological structures of

those already introduced, but because of the various approximations that we have per-

formed, they cannot be calculated with standard rules. As an illustration, we display in

figure 4 diagrams corresponding to the time derivative of the single particle density matrix

(diagrams corresponding to the two particle density matrix are displayed in figure 6 below).

All interactions in eq. (2.24) have become instantaneous. For this reason, we draw these

as vertical gluon lines, or as tadpole insertions, located anywhere between t − τ and t.

Note that terms where the two densities sit close together in eq. (2.26), like in [naxn
a
x′ ,DQ],

correspond to diagrams where the two ends of the gluon is hooked on the upper (or lower)

part of the diagram, while a term such as naxDQnax′ corresponds to a gluon joining the
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Figure 4. These diagrams illustrate generic processes taken into account in eq. (2.26), in the case

of the single particle density matrix. Note that there is another diagram with a tadpole insertion,

on the lower line, not drawn. Depending on the operator considered, the propagator of the gluon

corresponds to V , W or involves spatial derivatives of W . Note that since we treat the heavy quarks

and antiquarks as non relativistic particles, the direction of the arrows in such a diagram does not

refer to the nature (quark or antiquark) of the heavy particle: rather, it is correlated to the SK

contour time, forward (to the right) in the upper branch, backward (to the left) in the lower branch.

upper and lower parts of the diagram. Since, as we shall see, in QCD these two types of

terms correspond also to different color structures, we shall find it convenient to split the

operators Li into two components, Li = Lia + Lib, with for instance L2a ∝ {naxnax′ ,DQ}
and L2b ∝ naxDQnax′ . Note that L1 has only contributions of type a, i.e., L1 = L1a.

In the rest of this paper, we shall deal only with the heavy quark reduced density

matrix. We shall then drop the subscript Q in order to simplify the notation and write

simply D in place of DQ.

3 Semi-classical approximation for abelian plasmas

The equation (2.24) is quite general. It holds for any system of heavy quarks and antiquarks.

Depending on the system considered, the color density na(x) and the density matrix D take

different forms. In this section, we study the specific form of eq. (2.24), and the associated

operators Li in eq. (2.26), for the single particle and the two particle density matrices,

in the case of an electromagnetic (abelian) plasma. For simplicity, we shall continue to

refer to the charged particles as quarks (positive charge) and antiquarks (negative charge).

The interaction hamiltonian reads as in eq. (2.2), with na(x) replaced by the density of

charged particles.

Our goal here is twofold: i) This section is a preparation for the more complicated case

of non abelian plasmas presented in the next section. Some of the results obtained here

will indeed extend trivially to QCD, to within multiplicative color factors. ii) We wish to

establish the relation with results obtained previously for the influence functional obtained

in the path integral formalism. In particular, we shall show that we obtain, after a semi-
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classical approximation, the same Fokker-Planck equations, and the associated Langevin

equations, as derived earlier in the path integral formalism in ref. [24].

3.1 Single particle density matrix

In first quantization, the charge density n(x) of a single heavy quark is the operator

n(x) = δ(x− r̂), with matrix elements

〈r|n(x)|r′〉 = δ(x− r)δ(r − r′). (3.1)

We also need the matrix elements of the time derivative of the density. These can be easily

obtained from the continuity equation, ṅ(x) = −∇x · j(x), where the matrix elements of

the current j(x) are given by

〈r|j(x)|r′〉 =
1

2iM
[∇rδ(r − r′)][δ(x− r′) + δ(x− r)]. (3.2)

One then gets

〈r|ṅ(x)|r′〉 = − 1

2iM

{[
∇rδ(r − r′)

]
·∇x[δ(x− r′) + δ(x− r)]

}
. (3.3)

We can then proceed to the evaluation of the various contributions Li in eq. (2.26),

first in the case of the single particle density matrix. It is easy to show that the first line

of eq. (2.26) yields

〈r|L1D|r′〉 = − i
2

∫
x,x′

V (x− x′)〈r|
[
n(x)n(x′),D

]
|r′〉 = 0. (3.4)

Thus, the real part of the potential does not contribute to the evolution of the single

particle density matrix. In terms of diagrams, this results from the cancellation of the

tadpole insertions in the upper and lower branches (see the second diagram in figure 4),

which represent here (unphysical) self-interactions.

Taking the matrix element of the second line of eq. (2.26), one obtains

〈r|L2D|r′〉 = [W (0)−W (r − r′)]〈r|D|r′〉 = −Γ(r − r′)〈r|D|r′〉, (3.5)

where we have set

Γ(r) ≡W (r)−W (0). (3.6)

This equation illustrates the role of the collisions, captured here by the imaginary part of

the potential, in the phenomenon of decoherence (the damping of the off-diagonal matrix

elements of the density matrix). In contrast to what happens with the real part of the

potential that we have just discussed, in the present case the two tadpole contributions

add up, instead of cancelling. They are in fact needed to properly define the damping rate

Γ, and insure in particular that it cancels when r → 0, so that the density (the diagonal

part of the density matrix) is not affected by the collisions.
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A useful estimate of Γ(r) is obtained in the Hard Thermal Loop approximation [36–38]

which gives

Γ(r) = αTφ(mDr), (3.7)

where T is the temperature, and φ(x) a monotonously increasing function such that φ(x =

0) = 0 and φ(x → ∞) = 1 [15]. The same formula holds in the case of QCD, with α

replaced by αs, the strong coupling constant, and the multiplication by appropriate color

factors (see section 5). In the limit of a large separation, Γ(r) ' 2γQ, where γQ = αsT/2

is the so-called damping factor of a heavy quark (or antiquark) [39]. At small separation,

interferences cancel the effect of collisions: the heavy quark pair is seen then as a small

electric dipole, i.e., an electrically neutral object on the scale of the wavelengths of the

typical modes of the plasma. Note that at large separation, the imaginary part of the

potential itself vanishes, so that W (0) = −2γQ.

Considering finally the third line of eq. (2.26) one gets4

〈r|L3D|r′〉 =
1

4MT

[
∇2W (0)−∇2W (r − r′)

]
〈r|D|r′〉

− 1

4MT
∇rW (r − r′) · (∇r −∇r′)〈r|D|r′〉. (3.8)

The spatial derivatives originate from the time derivatives of the density (see eq. (3.3)),

which involve the velocity of the heavy quark (hence the factor 1/M). In fact, there is a

close correspondence between L3 and L2. Observe indeed that L3 can be obtained from

L2 by multiplying the latter by the overall factor 1/(4MT ), and performing the following

substitutions: W (0) → ∇2W (0), W (r − r′) → ∇rW (r − r′) · (∇r − ∇r′). We shall see

that analogous correspondences also exist in the more complicated case of the 2 particle

density matrix.

At this point, we make the following change of variables

R =
r + r′

2
, y = r − r′, (3.9)

and set

〈r|D(t)|r′〉 = D(R,y, t). (3.10)

The equation (2.24) becomes then d
dtD(R,y, t) = LD(R,y, t), with L appearing now

explicitly as a differential operator acting on the function D(R,y, t):

L =
i

M
∇R · ∇y − Γ(y) +

1

4MT

[
∇2W (0)−∇2

yW (y)− 2∇yW (y) · ∇y

]
. (3.11)

The first term arises from the kinetic energy, i.e., it represents L0. Note that the other

terms, which represent the effect of the collisions, vanish for y = 0, in particular thanks to

the property ∇W (0) = 0. As already mentioned, this reflects the fact that the collisions

do not change the local density of heavy quarks.

4Here, and throughout this paper, we use the shorthand ∇W (0) for ∇xW (x)|x=0, and similarly

for ∇2W (0).
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Equation (3.11) above represents the explicit form of the operators Li in eq. (2.26)

for the density matrix of a single heavy quark (in the abelian case). It has been obtained

without any additional approximation beyond those leading to eq. (2.26). We may proceed

further and simplify eq. (3.11) by performing a small y expansion. The variable y measures

by how much the density matrix deviates from a diagonal matrix, a situation which is

reached in the classical limit. Thus, the small y expansion may be viewed as a semi-

classical expansion. We have

W (y) = W (0) +
1

2
y · H(0) · y + · · · (3.12)

where H(0) is the (positive definite) Hessian matrix of W ,

Hij(y) ≡ ∂2W (y)

∂yi∂yj
, (3.13)

evaluated at y = 0, and we have used ∂yW (y)|y=0 = 0. Note that if we stop the expansion

of W (y) at quadratic order, ∇2W (0) − ∇2
yW (y) = 0. The differential operator (3.11)

reads then

L =
i

M
∇R · ∇y −

1

2
y · H(0) · y − 1

2MT
y · H(0) · ∇y. (3.14)

At this point some comments on the order of magnitude of the various terms are

appropriate. It is convenient to measure the time in terms of the inverse temperature,

setting for instance τ = T t. Dividing both sides of the equation by T , on gets on the

left hand side ∂τ , and the operator L/T on the right hand side is dimensionless. We shall

assume in this paper that the heavy particles are initially close to rest. In interacting with

the medium they ultimately thermalize, their velocity reaching values of order
√
T/M , so

that ∇R .
√
MT . The variable y measures the non locality of the density matrix. When

the heavy quark is not too far from equilibrium, this non locality is of the order of the

thermal wavelength, that is D(R,y, t) dies out when y & λth ∼ 1/
√
MT . Thus in the first

term, typically ∇y ∼
√
MT , so that ∇R · ∇y ∼MT . It follows that the term L0/T , where

L0 represents the kinetic energy of the heavy quark, is of order unity, while the other two

terms are both of order Γ(y). The range of variation of Γ(y) is controlled by the Debye

mass, i.e., it varies little on the scale of the thermal wavelength of the heavy particles. More

precisely, using the HTL estimate Γ(r) ≈ αT (mDr)
2, we get Γ(y)/T ≈ αm2

D/(MT ) � 1,

the inequality following from our assumption M � T , and the fact that mD . T (in strict

weak coupling m2
D ≈ αT 2). In summary, the ratio of the last two terms in eq. (3.14) to

the kinetic term is of order αm2
D/(MT )� 1, which justifies the semi-classical expansion.

To see better the physical content of eq. (3.14), we take its Wigner transform with

respect to y. We define, with a slight abuse of notation,

D(R,p, t) =

∫
d3y e−ip·y D(R,y, t), (3.15)

and obtain

L = − p
M
·∇R +

1

2
∇p · H(0) ·∇p +

1

2MT
∇p · H(0) · p. (3.16)
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The corresponding equation for D(R,p, t) may be interpreted as a Fokker-Planck equation.

The second term in eq. (3.16), proportional to ∇2
p can be viewed as a diffusion term (in

momentum space), and is associated with a noise term in the corresponding Langevin

equation (see below). It originates from the contribution L2. The last term, steming from

the opeartor L3, can be associated with friction. This can be made more transparent by

introducing the following definitions

Hij(0) =
1

3
∇2W (0) δij ≡ η δij , η = 2γT. (3.17)

Then we operator above yields the following Fokker-Planck equation(
∂

∂t
+ v ·∇R

)
D(R,p, t) =

1

2
η∇2

pD(R,p, t) + γ∇p · (vD(R,p, t)) , (3.18)

where v ≡ p/M is the velocity of the particle. It is easily shown that this equation can be

obtained from the following Langevin equation

MR̈ = −γṘ + ξ(t), 〈ξi(t)ξj(t′)〉 = η δijδ(t− t′). (3.19)

The relation η = 2γT between the diffusion constant η and the friction coefficient γ can

be viewed as an Einstein equation and expresses the fact that both noise and friction have

the same origin, as can be made obvious by rewriting eq. (3.16) as follows

L = −v ·∇R +
1

2
∇p · H(0) ·

(
∇p +

v

T

)
. (3.20)

3.2 The two particle density matrix

We consider now a heavy quark-antiquark pair. The charge density operator is written as

n(x) = δ(x− r̂)⊗ I− I⊗ δ(x− r̂), (3.21)

where the first term refers to the quark and the second to the antiquark, the minus sign

reflecting the fact that the antiquark has a charge opposite to that of the quark. The

matrix elements of n(x) are given by

〈r1r2|n(x)|r′1r′2〉 = δ(r1 − r′1)δ(r2 − r′2) [δ(x− r1)− δ(x− r2)] . (3.22)

Similarly, the matrix elements of the time derivative of the density are given by

〈r1, r2|ṅ(x)|r3, r4〉 = − 1

2iM
[∇r1δ(r13)] ·∇x[δ(x− r3) + δ(x− r1)]δ(r24)

+
1

2iM
[∇r2δ(r24)] ·∇x[δ(x− r4) + δ(x− r2)]δ(r13), (3.23)

which is easily obtained from eq. (3.3). Note that we have introduced here a short notation,

rij ≡ ri−rj , that will be used often in the following. We shall also occasionally write ∇1 for

∇r1 , and introduce similar other shorthands, in order to reduce the size of some formulae.
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Figure 5. The various coordinates that are used in the evaluation of the two particle density

matrix elements 〈r1r2|DQ|r′1r′2〉.

It will be also convenient at a later stage to change variables. Thus, we define the

center of mass and relative coordinates,

R =
r1 + r2

2
, s = r1 − r2, R′ =

r′1 + r′2
2

, s′ = r′1 − r′2, (3.24)

as well as the set of coordinates that generalize those introduced in eq. (3.9) for the single

particle case,

R =
R+R′

2
, Y = R−R′, y = s− s′, r =

s+ s′

2
. (3.25)

The latter are useful to derive the semi-classical approximation. In this approximation,

Y → 0, y → 0, and R and r become respectively the center of mass and the relative

coordinates. These various coordinates are illustrated in figure 5.

We now turn to the specific evaluation of the matrix elements of eq. (2.24) in the case

of a quark-antiquark pair. Consider first the matrix element of the free evolution, governed

by the hamiltonian

HQ =
p2

1

2M
+

p2
2

2M
. (3.26)

We have

−i〈r1r2|[HQ,D]|r′1r′2〉 = i

(
∇R · ∇Y

2M
+

2∇r · ∇y

M

)
〈r1r2|D|r′1r′2〉, (3.27)

that is

L0 = i

(
∇R · ∇Y

2M
+

2∇r · ∇y

M

)
. (3.28)

Turning now to the operator L1, a simple calculation yields

〈r1r2|L1D|r′1r′2〉 = i[V (r12)− V (r1′2′)]〈r1r2|D|r′1r′2〉. (3.29)
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Figure 6. Graphical illustrations for typical contributions to the operators Li for the two-particle

density matrix. In the first two diagrams, the gluon line represents either V or W , while in the

last two, only W and its spatial derivatives are involved (the hamiltonian evolution, involving the

real part of the potential, does not connect the upper and lower parts of the diagrams). In the last

diagram, the gluon line connects two particles with the same charge, and contribute to the quantity

called Wa. In the third diagram, the gluon line connects two particles with opposite charges, and

contributes to the quantity called Wa. When W is involved in the first diagram, it represents a

contribution to Wc, and finally the tadpole insertion in the second diagram is associated to V (0),

or to W (0) and its spatial drivatives. The defiitions of Wa,b,c are given in eq. (3.32).

Note the cancellation of the self-interaction terms, as was the case for the single particle

density matrix. The real part of the potential produces just a phase in the evolution of

the density matrix. This can be understood as a hamiltonian evolution, LD = −i[H,D],

with here H → −V , the minus sign resulting from the fact that the two interacting heavy

particles have opposite charges. As we have mentioned earlier (see the discussion after

eq. (2.24)), the structure of the equation makes it possible to include in the potential V

both the “direct” interaction between the heavy quarks, by which we mean the interaction

that exists in the absence of the plasma, as well as the “induced” interaction that results

from the interaction of the heavy quarks with the plasma constituents. The latter is

responsible for the screening phenomenon. In the HTL approximation, we have

V (r) = αmD + α
e−mDr

r
, (3.30)

where the first term cancels the constant contribution hidden in the screened Coulomb

potential (the second term) at short distance. Thus as r → 0, V (r) reduces to the Coulomb

potential, V (r) ∼ α/r. Note that the function V (r) thus defined corresponds to the

interaction potential of two particles with identical charges.

By taking the matrix element of the second line of eq. (2.26), we obtain

〈r1r2|L2D|r′1r′2〉 = [2W (0)−W12 −W1′2′ −W−]〈r1r2|D|r′1r′2〉. (3.31)

The various terms in this expression correspond to the various ways the exchanged gluon

can be hooked on the upper and lower lines. To simplify the bookkeeping of the various

contributions, and the writing of the equations, we define the following quantities, which
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will often appear in forthcoming formulae:

Wa ≡W11′ +W22′ , Wb ≡W21′ +W12′

Wc ≡W12 +W1′2′ , W± ≡Wa ±Wb (3.32)

These quantities correspond to the diagrams in figure 6, where W plays the role of the

propagator: Wa connects particles with the same charge in the bra and the ket in eq. (3.31),

while Wb connects particles with opposite charges; Wc connects particles within the bra,

or within the ket. In the infinite mass limit, r1 = r′1, r2 = r′2 and Wa = 2W (0), Wb =

Wc = 2W (r), and W−(r) = −2Γ(r).

Note that 2W (0)−W12−W1′2′ = −Γ12−Γ1′2′ , where Γ(r) is defined in eq. (3.6). As was

the case for the single particle density matrix, the collisions tend to equalize the coordinates

(here the relative coordinates) in the ket and in the bra, bringing the density matrix to

the diagonal form. The structure of the entire damping factor takes actually a form more

complicated than in the case of the single particle density matrix. The combination of

terms in the right hand side of eq. (3.31) can indeed be written

2W (0)−W12 −W1′2′ −W− = − (Γ12 + Γ1′2′ + Γ11′ + Γ22′ − Γ12′ − Γ21′) . (3.33)

Note that the entire contribution vanishes when r′1 = r1 and r′2 = r2: Γ11′ → Γ(0) = 0,

and similarly for Γ22′ while the other terms mutually cancel. This is of course related to

the fact that the collisions do not change the local density of heavy particles, as we have

already discussed. For future reference, we write L2 as a sum of two contributions (as

explained at the end of section 2), and write

LQED
2a = 2W (0)−Wc, LQED

2b = −W−. (3.34)

The diagonal elements (r′1 = r1, r
′
2 = r2) of L2a and L2b mutually cancel, as we have seen.

Finally, we turn to the 1/M corrections, which are more involved. The calculations

are straightforward, but lengthy. However, as we shall see, the results are simply related

to those obtained for L2. Again, we split L3 into two contributions, L3 = L3a + L3b.

We obtain

LQED
3a = − i

8T

∫
xx′

W (x− x′) (2Dṅx′nx − 2nxṅx′D)

=
1

4MT
[2∇2W (0)−∇2Wc −∇Wc ·∇c], (3.35)

where we have used ∇W (0) = 0, and introduced the following shorthand notation

∇Wc ·∇c ≡∇1W12 ·∇12 + ∇1′W1′2′ ·∇1′2′ . (3.36)

with analogous definitions for Wa, Wb, W± (to be used later). In this formula,

∇12 ≡∇1 −∇2, (3.37)

and recall that ∇1 stands for ∇r1 and W11′ for W (r1 − r1′).
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The second contribution to L3 reads

LQED
3b = − i

4T

∫
x,x′

W (x− x′)
[
ṅ(x)Dn(x′)− n(x)Dṅ(x′)

]
= − 1

4MT

{
∇2Wa + ∇Wa ·∇a −∇2Wb −∇Wb ·∇b

}
= − 1

4MT

{
∇2W− + ∇W− ·∇−

}
. (3.38)

Note the analogy between eqs. (3.34) and eqs. (3.35) and (3.38). The latter follow from the

former after the replacements W (0)→ ∇2W (0), Wc → ∇2Wc+∇Wc ·∇c, W− → ∇2W−+

∇W− ·∇−, and the multiplication by the overall factor 1/(4MT ). This correspondence is

analogous to that already observed after eq. (3.8), and its origin is the same.

Until now, the expressions that we have obtained are an exact transcription of the

operators Li in eq. (2.26) to the case of a (abelian) quark-antiquark pair. At this point it

is useful to go to the coordinates (3.25), i.e., 〈r1r2|D|r′1r′2〉 → D(R,Y , r,y), and perform

a semi-classical expansion similar to that which leads to eq. (3.14) for the single particle

density matrix. We obtain then

d

dt
D(R,Y , r,y) = [L0 + L1 + L2 + L3]D(R,Y , r,y), (3.39)

where

L1 ≈ iy ·∇V (r),

L2 ≈ Y · (H(r)−H(0)) · Y − 1

4
y (H(r) +H(0))y,

L3 ≈ −
1

2MT
{Y · (H(0)−H(r)) · ∇Y + y · (H(0) +H(r)) · ∇y} . (3.40)

After performing the Wigner transform with respect to the variables Y and y,

D(R,P , r,p) =

∫
Y

∫
y

e−iP ·Y e−ip·y D(R,Y , r,y), (3.41)

we obtain

L0 = −
(
P ·∇R

4M
+

2p ·∇r

M

)
,

L1 = −∇V (r) ·∇p,

L2 =

[
∇P · (H(0)−H(r)) ·∇P +

1

4
∇p · (H(r) +H(0)) · ∇p

]
,

L3 =
1

2MT
∇P · (H(0)−H(r)) · P +

1

2MT
∇p · [H(r) +H(0)] · p. (3.42)

We note that the operators for the relative coordinates are independent of the center

of mass coordinates. It is then easy to identify the operators for the relative coordinates,
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and determine the elements of the corresponding Langevin equation. The relative velocity

is given by 2p/M = p/(M/2). Thus

Lrel
0 = −2p ·∇r

M
= −v ·∇r. (3.43)

Similarly,

Lrel
1 = −∇V (r) ·∇p = − 2

M
∇V (r) ·∇v. (3.44)

The term L2 corresponds to the noise term. We write it as

Lrel
2 =

1

4
∇p · (H(r) +H(0)) · ∇p =

2

M2
ηij(r)∇iv∇jv, (3.45)

with

ηij(r) =
1

2
(Hij(r) +Hij(0)) . (3.46)

Finally L3 corresponds to the friction, and we write it as

Lrel
3 =

1

2MT
(Hij(0) +Hij(r))∇ippj =

2

M
γij(r)∇ivvj . (3.47)

Friction and noise are related by an Einstein relation

γij(r) =
1

2T
ηij(r). (3.48)

The Langevin equation associated with the relative motion is then of the form

M

2
r̈i = −γijvj −∇iV (r) + ξi(r, t), 〈ξi(r, t)ξi(r, t′)〉 = ηij(r)δ(t− t′). (3.49)

Note that for an isotropic plasma, we have (cf. eq. (3.17))

ηij(r) = δijη(r), η(r) =
1

6

(
∇2W (0) +∇2W (r)

)
. (3.50)

One can repeat the same for the center of mass coordinates. Here we set v = P /(2M).

We get

LCM
0 = −P ·∇R

2M
= −v ·∇R

LCM
1 = 0

LCM
2 = ∇P · (H(0)−H(r)) · ∇P =

1

8M2
ηij(r)∇iv∇jv

LCM
3 =

1

2MT
(Hij(0)−Hij(r))∇iPP j =

1

2M
γij(r)∇ivvj , (3.51)

with

ηij(r) = 2 (Hij(0)−Hij(r)) (3.52)
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and the Einstein relation

γij(r) =
1

2T
ηij(r). (3.53)

The Langevin equation associated with the center of mass motion is then

2MR̈i = −γijvj + ξi(r, t) (3.54)

These two equations (3.49) and (3.54) are identical to those obtained in [24] (see

eqs. (4.69) there). Note that while the Langevin equation for the relative motion does

not depend on the center of mass, this is not so for the Langevin equation describing the

center of mass motion, which depends on the relative coordinate: this is because, as we

have already emphasized, the effect of the collisions on the system depends on its size, with

small size dipoles being little affected by the typical plasma field fluctuations.

4 QCD

We turn now to QCD. Much of the calculations are similar to those of the QED case, with

however the obvious additional complications related to the color algebra. As we did in

QED, we shall consider successively the case of the single particle density matrix, and that

of a quark-antiquark pair.

4.1 Single quark density matrix

For a single quark, the color charge density can be written as (see eq. (2.3))

na(x) = δ(x− r̂) ta, (4.1)

with matrix elements

〈r, α|na(x)|r′, α′〉 = δ(r − r′)n(r)〈α|ta|α′〉, (4.2)

where n(r) is the density of heavy quarks, that is, the number of heavy quarks located at

point r irrespective of their color state.

The reduced density matrix of a single quark can be written as follows (see appendix D)

D = D0 I +D1 · t. (4.3)

It depends on 9 real parameters, and contains a scalar as well as a vector (octet) contribu-

tions. In fact, since we assume the plasma to be color neutral, we need consider only the

scalar part of the density matrix (see however appendix G), that is the quantity 〈r|D0|r′〉.
With D having only a scalar component, i.e., D = D0 I, one can perform immediately

the sum over the color indices in eq. (2.24), using

tata = CF =
N2
c − 1

2Nc
. (4.4)

The result is then identical to that obtained in QED, to within the multiplicative factor CF :

there is no specific effect of the color degree of freedom on the color singlet component of

the density matrix, aside from this multiplicative color factor. The resulting Fokker-Planck

equation is then essentially identical to that first derived by Svetitsky long ago [40], which

has been used in numerous phenomenological applications.
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4.2 Density matrix of a quark-antiquark pair

The color density of a quark-antiquark pair is given by eq. (2.3). The color structure

of the reduced density matrix D is discussed in appendix D. We shall use two convenient

representations. In the first one, to which we refer as the (D0, D8) basis, the density matrix

takes the form

D = D0 I⊗ I +D8 t
a ⊗ t̃a, (4.5)

where D0 and D8 are matrices in coordinate space (product of coordinate spaces of the

quark and the antiquark), e.g. 〈r1, r2|D0|r′1, r′2〉, and similarly for D8. The second repre-

sentation is in terms of components Ds and Do defined by (see appendix D)

D = Ds|s〉〈s|+ Do

∑
c

|oc〉〈oc| (4.6)

where |s〉〈s| denotes a projector on a color singlet state, and |oc〉〈oc| a projector on a color

octet state with given projection c. We shall refer to this basis as the (Ds, Do) basis, or

as the singlet-octet basis. The relation between the two basis is given by the following

equations

Ds = D0 + CFD8, Do = D0 −
1

2Nc
D8

D0 =
1

N2
c

(Ds + (N2
c − 1)Do), D8 =

2

Nc
(Ds −Do). (4.7)

The advantage of the singlet-octet basis is that it involves states of the quark-antiquark

pair with well defined color (singlet or octet), which is not the case in the (D0, D8) basis.

The latter will play a role when we address the issue of equilibration of color. Then the

matrix D0, which represents a completely unpolarized color state, or a maximum (color)

entropy state, plays an essential role.

Because of the existence of two independent functions of the coordinates to describe

the density matrix of the quark-antiquark pair, the equation of motion for D takes the

form of a matrix equation

∂

∂t
D = LD, (4.8)

where D can be viewed as a two dimensional vector, e.g.

D =

(
D0

D8

)
, or D =

(
Ds

Do

)
, (4.9)

and L is a 2× 2 matrix in the corresponding space.

The derivation of the equations for the various components of the reduced density

matrix in the two basis is straightforward, but lengthy. The results are listed in appendix F.

In this section we shall give brief indications on how to obtain the equations in the singlet-

octet basis: the color algebra is then transparent, and most of the equations can be related

to the corresponding ones of the abelian case.
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4.3 The equations in the singlet-octet basis

The contribution to L1. When written in terms of Ds and Do the two equations

decouple. This is because the product naxn
a
x′ is a scalar in color space, and hence does not

change the color state of the pair. In other terms, the one-gluon exchange does not change

the color state (singlet or octet) of the heavy quark-antiquark pair. The color algebra is

then trivial, and yields

dDs

dt
= iCF [V12 − V1′2′ ]Ds

dDo

dt
= − i

2Nc
[V12 − V1′2′ ]Do. (4.10)

The diagrams contributing here are the first two diagrams in figure 6, and the equations

above are analog to that obtained in QED. In fact we have

Lss
1 = CFLQED

1 , Loo
1 = − 1

2Nc
LQED

1 , (4.11)

where LQED
1 is given by eq. (3.29). Note the well known property that the interaction is

attractive (and proportional to CF ) in the singlet channel, and repulsive (and proportional

to 1/(2Nc)) in the octet channel.

The contribution to L2. In this case we have two types of contributions. The first

ones involve products of the color charges, making up a color scalar. These contribute to

L2a, which is diagonal in color. The second type of contribution involves transitions from

singlet to octet or from octet to octet. We denote these contributions by L2b.

Consider first L2a. We have, for the singlet

Lss
2a = CF [2W (0)−Wc]Ds = CFLQED

2a . (4.12)

with LQED
2a given in eqs. (3.34). For the octet

Loo
2a = 2CFW (0) +

1

2Nc
Wc. (4.13)

Consider next L2b. The corresponding contributions involve transitions from singlet to

octet intermediate states, or, when considering the octet density matrix, transitions from

octet to singlet and also octet to octet transitions that generate an additional diagonal

contribution. We have

Lso
2b = −CFW− = CF LQED

2b , Los
2b = − 1

2Nc
W− =

1

2Nc
LQED

2 , (4.14)

where LQED
2b is given in eqs. (3.34). Similarly, for the octet to octet transition, we have

Loo
2b = −

(
N2
c − 4

4Nc
W− +

Nc

4
W+

)
= −

(
N2
c − 2

2Nc
Wa +

1

Nc
Wb

)
, (4.15)

which has no counterpart in QED.
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The contribution to L3. The calculation of these contributions is more involved, but

we can relate simply the results to those obtained earlier for the operators L2. Let us first

list the results. We have

Lss
3a =

CF
4MT

[2∇2W (0)−∇2Wc −∇Wc ·∇c] = CFLQED
3a , (4.16)

Loo
3a =

CF
2MT

[∇2W (0)] +
1

4MT

1

2Nc

(
∇2Wc + ∇Wc ·∇c

)
, (4.17)

Lso
3b = CF LQED

3b , Los
3b =

1

2Nc
LQED

3b , (4.18)

with

LQED
3b = − 1

4MT

{
∇2W− + ∇W− ·∇−

}
, (4.19)

and

Loo
3b = − 1

4MT

{
N2
c − 4

4Nc

[
∇2W− + ∇W− · ∇−

]
+
Nc

4

[
∇2W+ + ∇W+ · ∇+

]}
(4.20)

It is easy to verify that the equations giving L2 and the corresponding equations for L3 are

related via the same substitutions that are discussed after eq. (3.38).

4.3.1 Semiclassical approximation

The formulae listed in the previous subsection are an exact transcription of the main

equation, eq. (2.24) for a quark-antiquark pair. Analogous formulae can be written for a

pair of quarks. They are given in appendix H. We shall be mostly concerned in this paper,

in particular for the numerical studies presented in the next section, by the semi-classical

limits of these equations. These can be obtained easily by using the formulae given in

appendix F.3. In this subsection, we just reproduce the few equations that will be used in

the next section.

We consider first the equation for the component Ds, which we write as

dDs

dt
= (Ds|L|D). (4.21)

We obtain

(Ds|L|D) =

(
2i
∇r · ∇y

M
+ i
∇R · ∇Y

2M
+ iCFy ·∇V (r)

)
Ds

−2CFΓ(r)(Ds −Do)

−CF
4

(y · H(r) · yDs + y · H(0) · yDo)

−CFY · [H(0)−H(r)] · Y Do

+
CF

2MT

[
∇2W (0)−∇2W (r)−∇W (r) ·∇r

]
(Ds −Do)

− CF
2MT

(y · H(r) ·∇yDs + y · H(0) ·∇yDo)

− CF
2MT

Y · [H(0)−H(r)] ·∇YDo. (4.22)
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One reason why we display this equation is that it reduces to the QED equation when

Ds = Do. Thus, if color quickly equilibrates, an assumption that we shall exploit in the

next section, the dynamics becomes analogous to that of the abelian case. In this case,

color degrees of freedom play a minor role, and the motion of the heavy particles can be

described by a Fokker-Planck equation or the associated Langevin equation.

As we have already emphasized, the component D0 corresponds to the maximum

(color) entropy state, where all colors are equally probable. This state plays an important

role in the calculations to be presented in the next section. Thus, it is useful to write the

corresponding equations of motion, or equivalently the operators L of the (D0, D8) basis,

in the semi-classical limit. We have:

L00 = −CF
{
Y · H(0) · Y +

1

4
y · H(0) · y

}
− CF

2MT
{Y · H(0) ·∇Y + y · H(0) ·∇y} , (4.23)

and

L08 = i
CF
2Nc

y ·∇V (r)

− CF
2Nc

{
1

4
y · H(r) · y − Y · H(r) · Y

}
− CF

2Nc

1

2MT
{y · H(r) ·∇y − Y · H(r) ·∇Y } . (4.24)

We shall also need the operators L08 and L88 at leading order in y. These are given by

L80 = i y ·∇V (r), L88 = −NcΓ(r). (4.25)

5 Numerical studies

The equations for the time evolution of the reduced density matrix that we have obtained

in the previous sections are difficult to solve in their original form, that is, for the operator

L given in section 4.3, or appendix F, for a quark-antiquark pair. We shall not attempt

to solve them directly in the present paper. In the case of QED, we have seen that an

additional approximation, the semi-classical approximation, allows us to transform these

equations into Fokker-Planck, or equivalently, Langevin equations, describing the relative

and center of mass motions of the heavy particles as simple random walks. In QCD,

the presence of transitions between singlet and octet color states complicates the situation,

since such transitions are a priori not amenable to a semi-classical description. The purpose

of this section is to present numerical studies that illustrate two possible strategies to cope

with this problem, namely preserve as much as possible the simplicity of the semi-classical

description of the heavy particle motions, while taking into account the effects of color

transitions. To simplify the discussion we shall ignore the center of mass motion in most

of this section.

The new feature in QCD, as compared to QED, namely the transitions between distinct

color states, is best seen in the infinite mass limit, where the relative motion is entirely
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frozen. Then the only dynamics is that of color: as a result of the collisions with the

plasma constituents the colors of the heavy quarks and antiquarks can change in time.

The corresponding equations of motion for the density matrix are easily obtained from the

formulae listed in appendix F. They read, for a quark-antiquark pair,

dDs

dt
= −2CFΓ(r)(Ds −Do),

dDo

dt
= − 1

Nc
Γ(r)(Do −Ds), (5.1)

where r is the (fixed) relative coordinate. These equations exhibit the decay widths in the

singlet (2CFΓ(r)) and the octet ((1/Nc)Γ(r)) channels, respectively. These two coupled

equations acquire a more transparent physical interpretation in the (D0, D8) basis, where

they take a diagonal form

∂D0

∂t
= 0,

∂D8

∂t
= −NcΓ(r)D8. (5.2)

The first equation merely reflects the conservation of the trace of the density matrix.

Recall also that D0 is associated with the maximum color entropy state, where all colors

are equally probable (see eq. (D.13)): this component of the density matrix represents an

equilibrium state that remains unaffected by the collisions. The second equation indicates

that D8 ∝ Ds − Do decays on a time scale (NcΓ(r))−1. Thus, at large times only D0

survives, that is, the collisions drive the system to the maximum entropy state. Note

that the distance between the quark and the antiquark enters the rate ∝ Γ(r) at which

equilibrium is reached. When |r| & mD, Γ(r) ≈ 2γQ, where γQ is the damping factor of one

heavy quark (or antiquark): at large separation, the quark and the antiquark equilibrate

their color independently (with a rate NcγQ — see appendix G). On the other hand, when

|r| . mD the two quarks screen their respective colors, hindering the effect of collisions in

equilibrating color.

The first strategy that we shall explore in order to treat the relative motion of the

heavy quarks semi-classically and at the same time take into account the color transitions

just discussed, rests on the following observation. There is one instance where one can

recover a situation analogous to that of QED: this is the regime where the color exchanges

are fast enough to equilibrate the color on a short time scale (short compared to the

typical time scale of the relative motion). We have for instance observed in the previous

section that the component Ds of the density matrix, eq. (4.22), obeys the same equation

as the QED density matrix when Do = Ds (to within the multiplicative color factor CF ),

which corresponds indeed to the maximum entropy state. In this case, one can explore

the dynamics in the vicinity of this particular color state, treating the color transitions in

perturbation theory. One can then derive Langevin equations which contain an additional

random force arising from the fluctuations of the color force between the heavy particles.

This perturbative approach is easily generalized to the case of a large number of quark-

antiquark pairs.
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The second strategy is based on an analogy between the equations (5.1), and their

generalizations to include the semi-classical corrections, and a Boltzmann equation, with

the right hand side being viewed as a collision term. That is, the changes of color that

accompany the singlet-octet transitions are then treated as collisions rather than an addi-

tional random force in a Langevin equation. This strategy allows us to overcome some of

the limitations of the perturbative approach.

5.1 Langevin equation with a random color force: single quark-antiquark pair

We shall now examine the corrections to eq. (5.2) that arise in the semi-classical approx-

imation, i.e. taking into account corrections to the infinite mass limit. Note first that the

kinetic energy of the heavy quarks leaves L as a diagonal operator. In the (D0, D8) basis,

this operator reads

L = L0 + Γ(r)

(
0 0

0 −Nc

)
, L0 =

2i

M
∇r ·∇y. (5.3)

The semi-classical corrections brings L to the form

∂t

(
D0

D8

)
=

(
L0 + ya

(1)
00 + y2a

(2)
00 ya

(1)
08 + y2a

(2)
08

ya
(1)
80 + y2a

(2)
80 L0 + a

(0)
88 + ya

(1)
88 + y2a

(2)
88

)(
D0

D8

)
, (5.4)

where the various coefficients can be read off the equations recalled in the previous section

(see eqs. (4.23) and (4.24)):

a
(1)
00 = 0, a

(2)
00 = −CF

4
y · H(0) · y − CF

2MT
y · H(0) ·∇y,

a
(1)
08 = −i CF

2Nc
y · F (r), a

(1)
80 = −iy · F (r), a

(0)
88 = −NcΓ(r), (5.5)

and we have set

F (r) ≡ −∇V (r). (5.6)

One can diagonalize this new operator L, and in particular find the eigenvalue that cor-

responds to the maximum entropy state in the limit where y → 0. This is given by usual

perturbation theory

L′ = L0 + ya
(1)
00 + y2

(
a

(2)
00 −

a
(1)
08 a

(1)
80

a
(0)
88

)
. (5.7)

By using the explicit expressions given above for the various coefficients, one deduces that

the corresponding eigenvector, D′0, fulfills the equation

∂tD
′
0 =

(
2i

M
∇r ·∇y −

CF
4
y · H(0) · y − CF (y · F (r))2

2N2
c Γ(r)

− CF
2MT

y · H(0) ·∇y

)
D′0 ≡ L′D′0. (5.8)
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Performing the Wigner transform we obtain

L′ = −2p ·∇r

M
+
CF
4

∇p · H(0) ·∇p +
CF (F (r) ·∇p)2

2N2
c Γ(r)

+
CF

2MT
∇p · H(0) · p. (5.9)

The comparison with the Fokker-Planck operators given in eqs. (3.43) to (3.47), allows us

to write the corresponding Langevin equation:

v = ṙ =
2p

M
,

M

2
r̈ = −γijvj + ξi(t) + Θi(t, r) , (5.10)

where

〈ξi(t)ξj(t′)〉 = δ(t− t′)ηij , ηij =
CF
2
Hij(0) = 2Tγij , (5.11)

and

〈Θi(t, r)Θj(t′, r)〉 = δ(t− t′)CFF
i(r)F j(r)

N2
c Γ(r)

. (5.12)

As compared to the QED case, eq. (3.49), we note a number of new features. The most

noteworthy is the presence of two random forces. The force ξ is the familiar stochastic

force and is related to the drag force as indicated in eq. (5.11). The second random force,

Θ, has a different nature: it originates from the fact that the force between a quark and

an antiquark is a function of their color state. Now, D′0 represents a state close to the

maximum entropy state, that is, a state in which the probability to find the pair in an

octet is approximately N2
c − 1 times bigger than the probability to find it in a singlet. At

the same time, the force between heavy quarks in a singlet state is N2
c − 1 times bigger

than that in an octet state, and it has opposite sign. The net result is that, on average,

the force between the heavy quark and the heavy antiquark is zero. But this is true only

in average. There are fluctuations, and these give rise to Θ. The vanishing of the average

force between the quark and the antiquark explains the absence of the force term in the

Langevin equation, as compared to the QED case. Note that this picture is valid as long

as transitions between singlet and octet states are fast compared with the rest of the

dynamics. This is no longer the case when the size of the pair becomes too small: then,

Γ(r) becomes small, reducing the energy denominator in eq. (5.12), i.e., amplifying the

effect of the random color force. This, as we shall see, can lead to unphysical behavior.

5.2 Many heavy quarks and antiquarks

The discussion of the previous subsection can be generalized to a system containing many

heavy quarks and antiquarks. We call NQ the number of heavy quarks, and for simplicity

we assume that it is equal to the number of heavy antiquarks. The density matrix can

be written as a product of density matrices of the individual quarks and antiquarks, gen-

eralizing the construction of eq. (D.4) for the quark-antiquark density matrix. One can

then write

D = D0 (I)2NQ + · · · (5.13)

where the dots represent all the scalar combinations that can be formed with products of

n ≤ 2NQ color matrices ta, with coefficients corresponding to the components of D. We
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shall not need the explicit form of these extra components. As for D0, this is clearly the

maximum entropy state, where all colors of individual quarks and antiquarks are equally

probable and uncorrelated. It corresponds to the following density matrix (cp. eq. (D.13)):

D =
∑
αi,ᾱi

|α1, · · · ᾱNQ
〉〈α1, · · · , ᾱNQ

|, (5.14)

where the sum runs over all the colors of the quarks (α1, · · ·αNQ
) and the antiquarks

(ᾱ1, · · · , ᾱNQ
). We want to construct for this system the analog of eq. (5.8) which describes

how the maximum entropy state is modified by the semiclassical corrections.

Our starting point is the main equation, eq. (2.24). To proceed, it is useful to have

in mind the diagrammatic representation of the density matrix that we have introduced

earlier. As compared to the diagrams displayed in figure 6, in the present case, the dia-

grams will contain 2NQ lines in the upper part, and 2NQ lines in the lower part. All the

interactions that we are dealing with involve a single gluon exchange, represented by one

gluon line joining quark or antiquark lines in various ways. The evolution equation for D
is still described by an operator L, which is a matrix in the space of all the independent

components. For our perturbative calculation, we need only to consider diagonal (to or-

der y2) and non diagonal (to order y) elements of this matrix, the non diagonal elements

involving the maximum entropy state as one of their entries.

Consider first the diagonal elements. We have first the kinetic energy, trivially given by∑
j∈{NQ,NQ̄}

(
2i

M
∇rj ·∇pj

)
. (5.15)

The leading order diagonal element that involves the interaction can be obtained in the

infinite mass limit. It represents the decay of the components of D that are connected to

D0 by one gluon exchange. It is given by

−NcΓ(rkl) . (5.16)

where rkl = rk − rl, rk and rl denoting the coordinates of the quark or the antiquarks to

which the gluon is attached. The factor Nc can be understood from the same argument

as that given after eq. (5.2): when the separation rkl is large, the color of the quark (or

antiquark) at rk and rl relax independently at a rate NcγQ. At the order of interest, we

need also the diagonal element for the maximum entropy state, including the semi-classical

corrections up to order y2 and y
M . This is given by

− CF
4

∑
j∈{NQ,NQ̄}

(
yj · H(0) ·

(
yj +

2∇yj

MT

))
. (5.17)

We turn now to the non-diagonal elements. To leading order, these involve solely the

real part of the potential. Diagrammatically, the corresponding exchanged gluon connects

only either the upper or the lower lines among themselves, but does not connect upper

with lower lines.
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Consider first the non-diagonal elements that bring the maximum entropy state to

another state. If the pair connected by the exchanged gluon is formed by quark k and

antiquark l then the element is (cp. eq. (5.5))

− iCF
2Nc

ykl · F (rkl) , (5.18)

while if it is formed by quark (antiquark) l and quark (antiquark) k then it is (cp. eq. (H.9))

iCF
2Nc

ykl · F (rkl) . (5.19)

We also need the non-diagonal elements that bring the system back to the maximum

entropy state. If this pair is formed by quark k and antiquark l then the element is (cp.

eq. (5.5))

− iykl · F (rkl) , (5.20)

while if it is formed by quark (antiquark) l and quark (antiquark) k then it is (cp.

eq. (H.10))

iykl · F (rkl) . (5.21)

With this information, it is straightforward to construct the generalization of eq. (5.8)

for an arbitrary number of quark-antiquark pairs. The corresponding equations will be

presented later.

5.3 Simulation of a Langevin equation with a random color

In this subsection we present numerical results obtained by simulating the equations of

the previous subsections. We examine successively the evolution of the relative coordinate

of a single heavy quark-antiquark pair, and then that of fifty pairs initially produced

in a thin layer. The first case will help us to understand the range of applicability of

the perturbative method, while the second will illustrate how the Langevin equation may

account for recombination.

In these calculations, we use the standard QCD running coupling constant αs deter-

mined at one loop order for Nf = 3 massless flavors and ΛQCD = 250 MeV. The screening

Debye mass is given by its HTL approximation, m2
D = (2π/3)(6 +Nf )αsT

2, with αs eval-

uated at the scale 2πT , with T the temperature. Further details on the parameters of the

calculation will be given as we proceed.

We should emphasize here that the numerical simulations to be presented in this section

are meant to illustrate the main physical content, as well as the limitations, of the equations

obtained in this paper. Although the numbers that go into the calculations are appropriate

for the physics of quarkonia in a quark-gluon plasma, we make no attempt to develop a

phenomenological discussion.

5.3.1 A single heavy quark-antiquark pair

The Langevin equation for the relative motion is given in eq. (5.10). The information about

the medium is encoded in the functions V (r) and W (r) which we estimate using the HTL

– 30 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
4

0 1 2 3 4 5
t(fm)

0

2

4

6

8

r(f
m
)

Figure 7. Example of ten random trajectories for the relative distance of a bottom quark-antiquark

pair prepared in a 1S bound state. About half of these trajectories are unphysical, since they

correspond to supraluminal velocity, r(t) > t. To illustrate this we have plotted a dotted line that

corresponds to a luminical velocity with r(0) = 0.

approximation. Note that the resulting value of ∆W (r) and V (r) diverge as r → 0 (for

different reasons though, see e.g. [24]). In [24] the divergence of ∆W (r) was regulated with

the help of an ultraviolet cut-off. Here, we shall use a simpler procedure and choose

γ =
∆W (0)

6T
(5.22)

as a free parameter of our simulation, for which we choose the value γ = 0.19T 2. For

the real part of the potential, we proceed as in [24], that is we define it as the Fourier

transform of a Yukawa potential integrated in momentum space up to a cutoff Λ = 4 GeV.

The coupling constant that appears in V (r) is evaluated at a scale corresponding to the

inverse Bohr radius of the bottomonium (1348 MeV). The spatial dependence of W (r) is

obtained, as already mentioned, from the HTL approximation, and is of the form W (r) =

W (0) + αsTφ(mDr) [15], with αs evaluated at the scale 2πT , and φ(x) a monotonously

increasing function such that φ(x = 0) = 0 and φ(x → ∞) = 1. At small separation, i.e.,

for mDr � 1, φ(x) can be approximated by φ(x) = x2

3 (− log x+ 4
3 − γE).

In figure 7 we show a set of ten random trajectories produced for bottomonium (with

mass Mb = 4881 MeV) at a temperature of T = 350 MeV. We take as initial distribution

of relative distances that obtained from the wave function of the 1S state (which we plot

as an histogram with 1000 events in figure 8 for further comparison). We see that many

of the trajectories are clearly unphysical since they involve supraluminal velocities: this is

because some of the random kicks can occasionally be very strong due to the amplification

produced by the small denominator in eq. (5.12) at small r. A more systematic comparison

can be done by looking at the distribution of relative distances after some time t. This is

shown in figure 9 for t = 5 fm. The histogram reveals that there remains at this time only
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Figure 8. Histogram representing the initial distribution of relative distances given by the square

of the 1S wave-function of the bottomonium.
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Figure 9. Histogram representing the final distribution of relative distances after a time t = 5 fm/c

assuming the initial distribution of figure 8. Note the change in horizontal scale with respect to

figure 8.

a tiny probability to find the pair within a relative distance corresponding to the size of the

bound state: the random color force is clearly too efficient in suppressing the bound state!

5.3.2 Many heavy quark-antiquark pairs

In spite of its shortcomings, the perturbative method remains interesting as it allows us

to treat an assembly with an arbitrary number of quark-antiquark pairs, and address in

particular the issue of recombination. The relevant equations can be constructed along

the lines developed in the previous subsection. We need to take into account not only the

relative coordinates but also the center of mass motions. Moreover the random force does
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Figure 10. Example of random trajectories of fifty heavy quark-antiquark pairs. The pairs are

prepared as explained in the text, and evolve during a time t = 5 fm/c.

not only act between heavy quarks and antiquarks but also between two heavy quarks and

two heavy antiquarks (the equations for the density matrix of a pair of two heavy quark

are given in appendix H). The resulting equations are given by

M r̈a = −CFγṙa + Ξa(t) +

NQ∑
b 6=a

Θab(rab) +

NQ∑
b̂

Θab̂(rab̂, t) , (5.23)

M r̈â = −CFγṙâ + Ξâ(t) +

NQ∑
b̂ 6=â

Θâb̂(râb̂, t) +

NQ∑
j

Θâb(râb, t) , (5.24)

where the noises have vanishing means and correlators given by

〈Ξia(t)Ξjb(t′)〉 =
CF
6

∆W (0)δabδijδ(t− t′) , (5.25)

〈Θi
ab(t)Θ

j
cd(t
′)〉 =

CF
N2
c Γab

F iabF
j
cd δacδbdδ(t− t

′) (5.26)

〈Θi
ab̂

(t)Θj

cd̂
(t′)〉 =

CF
N2
c Γab̂

F i
ab̂
F j
cd̂
δacδb̂d̂δ(t− t

′) (5.27)

〈Θi
âb̂

(t)Θj

ĉd̂
(t′)〉 =

CF
N2
c Γâb̂

F i
âb̂
F j
ĉd̂
δâĉδb̂d̂δ(t− t

′). (5.28)

In these equations NQ is the number of heavy quarks, equal to the number of heavy

antiquarks. The indices a or b are color indices in the 3 representation while the same

with hat are a color indices in the 3̄ representation. The nature of the color index specifies

whether a given quantity refers to a quark or an antiquark. Thus, ra represents the

coordinate of a quark, while râ represents the coordinate of an antiquark. We use also

compact notation, such as rab = ra − rb to denote the relative distance between a quark

of color a and a quark of color b, or rab̂ = ra − rb̂ to denote the relative distance between

a quark of color a and an antiquark of color b̂. Finally, for functions of coordinates, we set

Fâb = F (r̂a − rb), Γab = Γ(ra − rb), and so on.

In figure 10 we plot some random trajectories of fifty pairs of quarks and antiquarks.

The parameters are different from the ones used in the previous section, now the tempera-

ture is T = 250 MeV and the cut-off for V (r) is Λ = 1500 MeV. We keep the same value of
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Figure 11. Histogram of the number of bound states formed in 300 simulations with the same

initial conditions as in figure 10

γ. This new choice of parameters makes the problem of the violent hard kicks less severe,

at the cost of having a cutoff Λ unrealistically small (it is of the order of the inverse of the

Bohr radius of the ground state). The system is prepared in the following way: in a square

of size 2.5 fm we chose fifty random points; in each point we put a quark-antiquark pair

following a probability for the relative coordinate given by

2

πr
sin(Λr) , (5.29)

where Λ is the same cut-off as for the real part of the potential (this distribution becomes a

Dirac delta as Λ→∞). The fifty quark-antiquark pairs then evolve for a time t = 5 fm/c,

according to the stochastic equations displayed above. As can be observed by looking at

figure 10 some of the trajectories remain close enough to allow for “recombinations” into

bound state.

To quantify the phenomenon, we perform a statistical analysis of how many bound

states are observed at the end of the evolution, starting from the previous initial condition.

To define a bound state, we follow the procedure of ref. [24], but with slightly different

parameters. We declare a heavy quark-antiquark pair to be bound if the quark and the

antiquark remain at a distance smaller than 0.5 fm during a time bigger than 0.1 fm/c.

This procedure can become ambiguous when many quarks and antiquarks are found in a

small region, for example in the case in which two quarks and two antiquarks are contained

in a sphere of radius smaller than 0.25 fm. In this situation we count the number of bound

states by choosing the combination that yields the maximum number. The results obtained

after 300 simulations are shown in figure 11. We can see that from the 50 initial bound

states, on average 17 remain after a time of 5 fm/c spent inside the medium. This is to

be contrasted for figure 9 which would suggest that all pairs should become unbound if

they were evolving independently of each other. Of course, we should recall that different

parameters have been used in the two calculations. However, repeating the simulation of
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the previous subsection with the present parameters, one finds that about 10 to 15% of the

bound states would survive after a time t = 5 fm/c. This is about half of what the present

calculation suggests. We may therefore take this result as evidence for recombination, in

line with what was found in ref. [24].

5.4 Langevin equations coupled to random collisions

We now turn to the second strategy presented in the introduction of this section. This will

allow us, in particular, to bypass the limitations of the perturbative diagonalization of the

matrix in eq. (5.4), caused by the vanishing of Γ(r) at small r. Let us then go back to the

small y expansion of eq. (4.22), and let us temporarily neglect the terms that go like y
M or

y2, that is we keep only the kinetic term and the force term. We get

∂tDs =
2i

M
∇r · ∇yDs − 2CFΓ(r)(Ds −Do)− iCFy · F (r)Ds , (5.30)

∂tDo =
2i

M
∇r · ∇yDo −

1

Nc
Γ(r)(Do −Ds) + i

1

2Nc
y · F (r)Do . (5.31)

The equation for Do is not given explicitly in eq. (4.22), but it is easily derived from the

material presented in appendix F. We note that only the terms proportional to Γ(r) mix

singlets and octets, i.e. the terms involving the force preserve the color state of the pair. We

now perform a Wigner transform with respect to the variable y, and define Ps = Ds and

Po = (N2
c −1)Do, the probabilities for the pair to be in a singlet or octet state, respectively.

We get [
∂t +

2p · ∇r

M
− CFF (r) ·∇p

]
Ps = −2CFΓ(r)

(
Ps −

Po

N2
c − 1

)
, (5.32)[

∂t +
2p ·∇r

M
+

1

2Nc
F (r) ·∇p

]
Po = − 1

Nc
Γ(r)(Po − (N2

c − 1)Ps) . (5.33)

The right hand sides of these two equations can be interpreted as a “collision term” in a

Boltzmann equation, with gain and loss terms. Note that these collision terms are opposite

in the singlet and octet channels, as expected:

2CF

(
Ps −

Po
N2
c − 1

)
= − 1

Nc
(Po − (N2

c − 1)Ps). (5.34)

The left hand sides of the equations (5.32) and (5.33) describe the relative motion of the

pair under the influence of the color force F (r). The corresponding classical equations of

motion read

dr

dt
=

2p

M
,

dp

dt
= −CFF(r),

dp

dt
=

1

2Nc
F(r), (5.35)

where the last two equations refer to the singlet and octet channels, respectively.

Thus, instead of treating the singlet-octet transitions as an additional color force in a

Langevin equation, we can treat these transitions as “collisions”. In practice we can solve

the set of equations (5.32) and (5.33) using a Monte Carlo method, deciding at each time

step, according to a probability proportional to the respective decay widths, whether a
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transition takes place or not, and then evolve the system through the time step according

to the classical equations of motion (5.35). This is somewhat analogous to the Monte Carlo

Wave Function method applied to a 2-level problem in ref. [41].

The equations (5.32) and (5.33) capture some of the important physics but they miss

the drag forces and the stochastic forces that have to go with them in order to fulfill the

fluctuation-dissipation theorem. These come from the semi-classical corrections that we

have left out in writing eqs. (5.30). However, if we were to include these corrections as

they appear for instance in eq. (4.22), we would introduce extra couplings between Ds and

Do that would lead in particular to a collision term involving derivatives of Ps,o and we do

not know of any efficient numerical tools to solve the resulting equation. However, if the

system is not too far from the maximum entropy state, terms that go like y2
(
Ps− Po

N2
c−1

)
or

y
M

(
Ps− Po

N2
c−1

)
are small and can be safely neglected. We again rely on the assumption that

color relaxes faster than the relative motion. Under these conditions, and after performing

the Wigner transform, we obtain for the singlet{
∂t + v ·∇r − CFF (r) ·∇p −

1

2
∇p · ηs(r) ·

(
∇p +

v

T

)}
Ps

= −2CFΓ(r)

(
Ps −

Po

N2
c − 1

)
. (5.36)

with

ηs(r) =
CF
2

(H(0) +H(r)) , (5.37)

Comparing the operator in the first line of this equation with that given in eqs. (3.43)

to (3.47), we easily derive the following stochastic equations:

v =
dr

dt
=

2p

M
,

dp

dt
= −CFF (r)− γs · v + ξ(r, t) , (5.38)

where

〈ξi(r, t)ξj(r, t′)〉 = δ(t− t′)ηijs (r)), γs =
1

2T
ηs. (5.39)

These equations are the analogs of eq. (3.49) for the QED case.

Performing completely analogous manipulations, we obtain a similar result for the

octet. The Fokker-Planck equation reads{
∂t + v ·∇r +

1

2Nc
F (r) ·∇p −

1

4
∇ · ηo ·

(
∇p +

v

T

)}
Po

= − 1

Nc
Γ(r)

(
Po − (N2

c − 1)Ps

)
. (5.40)

and the corresponding Langevin equation is

dp

dt
=

1

2Nc
F (r)− γo · v + ξ(r, t) , (5.41)
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Figure 12. Probability of having a static quarkonium in a color state as a function of τ =

2CFαsTt/10 assuming that the initial probability is 1/2 and the temperature T = 250 MeV. We

compare the analytic results with the average of different number of simulations.

with now

ηo(r) =
1

2

(
CFH(0)− 1

2Nc
H(r)

)
, γo =

1

2T
ηo. (5.42)

We shall now present the results of the simulation of these equations, for the case of

a single quark-antiquark pair. We consider first the static limit, and then turn to the full

equations including the semi-classical corrections.

5.4.1 The static limit

The study of the static limit (or infinite mass limit) offers us the possibility to test the

numerical method, since the exact solution can be obtained analytically in this case. In

particular, this will give us an idea of the number of iterations that are needed in order to

get a good estimate. We consider a heavy quark-antiquark pair, whose relative distance

is r = 0.1 fm, and in a well-defined color state, in a quark-gluon plasma at temperature

T = 250 MeV.

The equations to be solved are eqs. (5.1). If the initial conditions are such that singlet

or and octet states are equally probable, i.e., Ps(0) = Po(0), the probability to be in an

octet state at time t is

Po(t) =
N2
c − 1

N2
c

− N2
c − 2

2N2
c

e−NcΓ(r) t , (5.43)

and that to be in a singlet state is Ps(t) = 1− Po(t).

We can compare this result to that of a simulation using the Monte Carlo method

described above. The results are plotted in figure 12, as a function of τ ≡ (2CFαsTt)/10,

with a time step ∆τ = 0.02. We see that for 100 events the results of the simulation match

relatively well the analytic result, although sizeable fluctuations remain. The simulations

to be presented next involve 1000 events.
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Figure 13. Comparison of the evolution of a pair of heavy quarks initially prepared in a J/Ψ state

with or without considering the transition into octet states. The screening radius is rD = m−1D .
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Figure 14. Probability to find a heavy quark-antiquark pair in an octet state at time t, after it

has been prepared at time t = 0 as a J/Ψ state.

5.4.2 Simulation with dynamical quarks

We consider now the full eqs. (5.36) and (5.40). In figure 13 we plot the average mean

distance 〈rcc̄〉 of a pair of charm quarks prepared in a J/Ψ, according to the prescriptions

used in ref. [24]. That is, the radius of the pair is chosen randomly between 0 and 1/mD, and

the relative momentum is chosen according to a Maxwell distribution with most probable

velocity given by v2 = 0.3. Finally one retains only pairs with binding energy bigger than

500 MeV and radius bigger than 0.1 fm. The temperature is taken to be T = 160 MeV, the

charm quark mass Mc = 1460 MeV, and γ/Mc = 0.2 fm. These conditions differ slightly

from those used earlier: the reason is that we want to check our results against those of [24]
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in a domain where they could be compared (see figure 13). Thus, we also use a different

running coupling than above, αs = 0.5/(1 + 0.76 ln(T/160)), and mD = (16παs/3)T 2 (for

two massless flavors). The cutoff on V (r) is 4GeV, while that on W (r) is 4.58mD. The

unit of time in figure 13 is the physical unit fm/c.

We compare the results of the simulation of eqs. (5.36) and (5.40) with those obtained

by neglecting color rotation, i.e., the singlet-octet transitions. The latter case is equivalent

to a QED simulation, and indeed our result in that case reproduce those obtained in [24]

(cp. the corresponding result in figure 13 with figure 5 in [24]). As expected, we see that the

bound state tends to remain bound longer if the transition to octet is not taken into account.

The effect of color rotation is clearly to accelerate the melting of the bound state, although,

according to the criterion used in [24], 〈rcc̄〉 . rD = m−1
D , we may consider the system to

remain bound at time t = 4 fm/c. This is to be contrasted with the result obtained with

the Langevin equation with a color random force: in the present case, the disappearance

of the bound state is a more gradual phenomenon, not amplified by unphysical violent

kicks of a random color force. This gradual transition can be visualized by looking at the

evolution of the probability to find the pair in an octet state, which is plotted in figure 14.

We can see that it takes a non negligible time to lose the information that the system was

initially in a singlet state.

6 Summary and outlook

In this paper we have obtained a set of equations for the time evolution of the reduced

density matrix of a collection of quark-antiquark pairs immersed in a quark-gluon plasma

in thermal equilibrium. These equations are fairly general (they are valid for an arbitrary

number of heavy particles), and rely on two major approximations: weak coupling between

the heavy quarks and the quark-gluon plasma, small frequency approximation for the

plasma response. In the weak coupling approximation, the plasma sees the heavy quarks

as a perturbation, and responds linearly to it. This response is characterized by a set of

correlators, expectations values of gauge fields in the equilibrium state of the plasma, and

because the heavy quark motion is slow on the typical scale of the plasma dynamics, only

static, or nearly static response functions are needed. These functions account for some of

the dominant effects of the plasma on the dynamics of the heavy quarks: the screening of

the instantaneous Coulomb interaction between the heavy quarks, and the effect of soft,

low momentum transfer, collisions of the heavy quarks with the plasma constituents taken

into account by an imaginary potential. The main equations that result from these two

approximations alone generalize the equations that were obtained for an abelian plasma in

the path integral formalism, using the Feynman-Vernon influence functional method [24].

Their structure is close to that of a Lindblad equation, and they are essentially equivalent

to the equations obtained for QCD by Akamatsu [23], although the present formulation

differs from his in several aspects. Recently a Lindblad equation was obtained for the

evolution of the density matrix of a quark-antiquark pair, using similar approximations,

but formulated in the context of a non relativistic effective theory (pNRQCD, [28, 42]).

This formalism puts the emphasis on the singlet-octet transitions, and the validity of the
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employed effective theory requires specific conditions, viz. 1/r � T ∼� E, with E the

typical binding energy. The corresponding Lindblad equation keeps the quantum features

of the problem, however at the price of a high computational cost.

In the case of abelian plasmas, a further approximation, the semi-classical approxima-

tion, leads to a Fokker-Planck equation, and a corresponding Langevin equation, which are

relatively easy to solve numerically. When trying to extend this semi-classical approxima-

tion to QCD, we have to face new features related to color dynamics. In the particular

case of a quark-antiquark pair, this involves the transitions between the singlet and the

octet color configurations of the pair. Taking these transitions into account yields coupled

equations for the two independent components of the density matrix, that are not easily

solved, even when the motion of the heavy particles is treated semi-classically.

We have then explored numerically two strategies to solve approximately these coupled

equations. In the first one, we assume that the color dynamics is fast compared to the

motion of the heavy quarks. In this case, the collisions drive the systen quickly to a

maximum entropy state where all colors are equally probable and uncorrelated. One can

then use the Langevin equations to describe the dynamics in the vicinity of this maximum

color entropy state, using a perturbative approach. This is sufficiently simple that it can

be generalized to a system of an arbitrary number of quarks and antiquarks. However,

the perturbative approach is limited by the fact that the color relaxation is slow when the

size of the quark-antiquark pairs is small, which may lead to unphysical behavior for a

physically relevant choice of parameters. To overcome this limitation, we have explored

another strategy, which appear more promising. It consists in treating the singlet-octet

transitions as collisions, viewing the corresponding equations as Boltzmann equations that

we solved using Monte Carlo techniques.

Although they are fairly general, the equations that we have obtained so far do not

yet capture all the relevant physics. For instance, in the particular case of a single quark-

antiquark pair, the transitions between singlet and octet color states cause rapid changes

in the heavy quark hamiltonian. These are not properly handled, and may be in conflict

with the assumption that the dynamics of the heavy particles is slow compared to that of

the plasma. In addition we have left aside the possibility of absorption or emission of real

gluons from the plasma, that are responsible in particular for gluo-dissociation, known to

be an important mechanism in some temperature range. These shortcomings, and further

aspects of the problem, will be addressed in a forthcoming publication.
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A Correlators

In this appendix, we recall important properties of the correlators (eqs. (2.15)) which are

used in the main text (see also [16]). These correlators depend only on the time difference
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and on the difference of coordinates, which we shall denote respectively by τ and x in this

appendix. They are invariant under the change x→ −x.

After Fourier transform with respect to time, the time ordered propagator ∆(τ,x) can

be written as ∆(ω,x) = ∆R(ωx) + i∆<(ω,x), where ∆R(ω,x) is the retarded propaga-

tor. The correlator ∆<(ω,x) is related to ∆>(ω,x) by the KMS relation, ∆>(ω,x) =

eβω∆<(ω,x), where β = 1/T is the inverse temperature. The two functions allow us to

reconstruct the spectral density ρ(ω,x) = ∆>(ω,x) −∆<(ω,x). From the last two equa-

tions, one easily establishes that ∆<(ω,x) = N(ω)ρ(ω,x), with N(ω) = 1/(eβω−1). From

this relation, and using the fact that the spectral function is an odd function of ω, it is easy

to show that ∆>(−ω,x) = ∆<(ω,x), so that, in particular, ∆<(ω = 0,x) = ∆>(ω = 0,x).

It follows then easily that

d∆>(ω,x)

dω

∣∣∣∣
ω=0

= − d∆<(ω,x)

dω

∣∣∣∣
ω=0

=
β

2
∆<(ω = 0,x). (A.1)

As argued in the main text, all we need to describe the effective dynamics of the heavy

quarks are the plasma correlators at or near zero frequency. More precisely, we need the

following integrals∫ ∞
−∞

dτ ∆(τ,x) = ∆(ω = 0,x) = ∆R(ω = 0,x) + i∆<(ω = 0,x),∫ ∞
0

dττ ∆>(τ,x) = − i
2

∆′>(ω = 0,x),∫ ∞
0

dτ∆>(τ,x)) =
1

2

∫ ∞
0

dτ∆>(τ,x) +
1

2

∫ 0

−∞
dτ∆<(τ,x)

= − i
2

∫ ∞
−∞

dτ∆(τ,x), (A.2)

where we have used ∆<(τ,x) = ∆<(τ,−x) and ∆<(−τ,x) = ∆>(τ,x).

It is convenient to relate the zero frequency time-ordered propagator to an effective

complex potential, V (r) + iW (r) [15, 16]. We set

∆R(0,x) = −V (x), ∆<(0,x) = −W (r). (A.3)

B Alternative time discretization

Our starting point is eq. (2.13), with symmetrical time integrations, of which we take the

time derivative. We get

d

dt
D(t) =

i

2

d

dt

∫ t

t0

dt1

∫ t

t0

dt′1

∫
xx′

T[na(t1,x)nb(t′1,x
′)]D(t0)∆(t1 − t′1,x− x′)

i

2

d

dt

∫ t

t0

dt2

∫ t

t0

dt′2

∫
xx′
D(t0)T̃[na(t2,x)nb(t′2,x

′)]∆̃(t2 − t′2,x− x′)

+
d

dt

∫ t

t0

dt1

∫ t

t0

dt2

∫
xx′

[na(t1,x)D(t0)nb(t2,x
′)]∆>(t2 − t1,x′ − x), (B.1)
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with D the heavy quark reduced density matrix in the interaction picture. Following the

same reasoning as in the main text, we replace D(t0) by D(t̄), where t̄ is an arbitrarily

chosen time between t and t0, the error made in this substitution being at least of order

(H1)2. We then exploit the freedom that we have in choosing t̄. Given the symmetry of

the expression (B.1), it appears natural to choose5

t̄ ≡ t+ t′

2
, τ ≡ t− t′ (B.2)

so that ∫ t

t0

dt1

∫ t

t0

dt′1 −→
∫ t

t0

dt̄

∫
dτ, (B.3)

where the bounds on the τ -integrals are ±(t̄− t0) or ±(t̄− t) depending on whether t̄ < t/2

or t̄ > t/2, respectively. We then exploit the fact that the dynamics of the plasma is fast

compared to that of the heavy quark, and expand n(t) and n(t′) around t̄, assuming that

τ remains small. We get

n(x, t) = n(x, t̄) +
τ

2

dn(x, t̄)

dt̄
, n(x′, t′) = n(x′, t̄)− τ

2

dn(x′, t̄)

dt̄
. (B.4)

When it is integrated with a symmetric function of x− x′, which is the case here, we can

then write the product n(x, t)n(x′, t′) as

n(x, t)n(x′, t′) = n(x, t̄)n(x′, t̄) +
τ

2

[
dn(x, t̄)

dt̄
, n(x′, t̄)

]
. (B.5)

Simlarly, under the same condition,

T
[
n(x, t)n(x′, t′)

]
= n(x, t̄)n(x′, t̄) +

1

2

[
dn(x, t̄)

dt̄
, n(x′, t̄)

]
(τθ(τ)− τθ(−τ)). (B.6)

Since the τ -integrand is limited to small τ (by the correlators ∆(τ)), we may extend the

boundaries of the τ -integration to ±∞. The derivative with respect to time in eq. (B.1)

will then force t̄ = t (see eq. (B.3)). We then obtain

dD
dt

=
i

2

∫
xx′

n(x, t)n(x′, t)D(t)

∫ ∞
−∞

dτ∆(τ,x− x′)

−1

2

∫
xx′

[
ṅ(x, t), n(x′, t)

]
D(t)

∫ ∞
0

dττ∆>(τ,x− x′)

+
i

2

∫
xx′
D(t)n(x, t)n(x′, t))

∫ ∞
−∞

dτ∆̃(τ,x− x′)

+
1

2

∫
xx′
D(t)

[
ṅ(x, t), n(x′, t)

] ∫ ∞
0

dττ∆<(τ,x− x′)

+

∫
xx′

n(x, t)D(t)n(x′, t)

∫ ∞
−∞

dτ ∆>(−τ,x′ − x)

+
1

2

∫
xx′

(
ṅ(x, t)D(t)n(x′, t)− n(x, t)D(t)ṅ(x′t)

) ∫ ∞
−∞

dττ∆>(−τ,x′ − x).

(B.7)

5In the language of stochastic differential equations, this choice corresponds to the Stratonovich choice,

while that adopted in the main text, t̄ = t, corresponds to the Itô prescription.
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At this point we use the values of the time integrals of the correlators that are given in

appendix A, and obtain

dD(t)

dt
= − i

2

∫
x,x′

V (x− x′)
[
n(x)n(x′),D

]
+

1

2

∫
x,x′

W (x− x′)
({
n(x)n(x′),D

}
− 2n(x)Dn(x′)

)
− i

4T

∫
x,x′

W (x− x′)
(
ṅ(x)Dn(x′)− n(x)Dṅ(x′))

)
− i

8T

∫
x,x′

W (x− x′)
{
D, [ṅ(x), n(x′)]

}
. (B.8)

As mentioned in the main text (see the discussion after eq. (2.25)) the structure of

this equation is close to that of a Lindblad equation.6 To make this more obvious, let us

Fourier transform the variables x and x′. One obtains easily

dD(t)

dt
= − i

2

∫
q
V (q)

[
nqn

†
q,D

]
+

1

2

∫
q
W (q)

({
n†qnq,D

}
− 2nqDn†q

)
− i

4T

∫
q
W (q)

(
ṅqDn†q − nqDṅ†q)

)
− i

8T

∫
q
W (q)

{
D, [ṅq, n†q]

}
, (B.9)

with the shorthand notation
∫
q =

∫
d3q/(2π)3, and q the variable conjugate to x in

the Fourier transform. The second line of this equation has the structure of a Lindblad

operator, but this is not so for the last two lines corresponding to the operator L3. However,

it is easy to see that the substitution nq → nq+(i/4T )ṅq in the second line, which obviously

preserves its Lindblad structure, generates all the terms in the last two lines with, in

addition, terms that are quadratic in the time derivative, and are therefore suppressed

with respect to the other terms by a power 1/MT . Thus, to within these terms, one may

consider eq. (B.9) as a Lindblad equation.7 Note that the substitution mentioned above

works only with the present time discretization, and is not immediately applicable to that

used in the main text.

C Comparison between the two discretizations

The two time discretizations differ solely in their respective contributions to L3, and only

in that part of it that we called L3a. In this appendix, we examine this difference in the

6Recall that one of the virtues of the Lindblad equation is to maintain the positivity of the density

matrix [35].
7The necessity of additonnal terms quadratic in velocities in order to obtain the Lindblad equation is

also discussed in [23].
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case of QED. The generalization to QCD is straightforward. In the main text, we obtained

(eq. (3.35))

L3a = − i

8T

∫
xx′

W (x− x′) (2Dṅx′nx − 2nxṅx′D) , (C.1)

while the discretization presented in appendix B yields (eq. (B.8))

L′3a = − i

8T

∫
xx′

W (x− x′) (Dṅx′nx −Dnxṅx′ + ṅx′nxD − nxṅx′D) . (C.2)

By taking the difference one obtains

L′3a − L3a =
i

8T

∫
xx′

W (x− x′) [D, {ṅx′ , nx}] . (C.3)

It is easy to verify that this difference does not contribute to the matrix elements of

the single particle density matrix. Let us then consider the two particle density matrix. A

straightforward calculation yields

L′3a − L3a =
1

4MT

(
∇2Wc + ∇Wc ·∇c

)
.

(C.4)

Changing to the variables of eq. (3.25), and performing the small y expansion, one gets

L′3a − L3a ≈
1

2MT

(
∇2W (r) + ∇W (r) ·∇r + y · H(r) · ∇y

)
. (C.5)

Using the expression of L3 from eq. (3.40), and L′3 − L3 = L′3a − L3a, we obtain

L′3 = − 1

2MT
{Y · (H(0)−H(r)) · ∇Y + y · H(0) · ∇y}

+
1

2MT

(
∇2W (r) + ∇W (r) ·∇r

)
. (C.6)

After taking a Wigner transform this yields

L′3 =
1

2MT

[
(Hij(r)−Hij(0))∇iPP j +Hij(0)∇ippj +∇2W (r) + ∇W (r) ·∇r

]
. (C.7)

This yields a modified Fokker-Planck equation for the relative coordinate, as compared to

that used in the main text, eq. (3.47). However, a simple change of variables allows us to

recover the Langevin equation (3.49). To this end let us set

p′ = p− ∇W (r)

4T
. (C.8)

Then, to within terms that are suppressed in the semi-classical approximation, we have

dp′

dt
= F (r)− 1

2MT
(H(0) +H(r)) · p′ + ξ(r, t),

dr

dt
=

2p′

M
, (C.9)

and a simple calculation shows that, in terms of these variables, the Langevin equation

corresponding to the operator L′, with L′3 given in eq. (C.7) and L′1,2 = L1,2, is identical

to eq. (3.49).
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D Color structure of the density matrix

The density matrix of a color quark is a 3× 3 matrix in color space, which can be written

as follows

D = a0 I + a · t (D.1)

where ti = λi/2, with λi the Gell-Mann matrices. We use the standard normalization

Tr tatb =
1

2
δab. (D.2)

The density matrix (D.1) depends on 9 real parameters, and contains a scalar as well as

a vector (octet) contributions. The density matrix associated to an antiquark may be

written as

D = b0 I− b · t̃. (D.3)

A representation of the density matrix of a quark-antiquark pair may be obtained as

the tensor product

D = (a0I + a · t)⊗ (b0I− b · t̃)
= a0b0 I⊗ I + b0a · t⊗ I− a0I⊗ t̃ · b− aibj ti ⊗ t̃j . (D.4)

For a system invariant under color rotations, only the scalar components of D survive (e.g.

aibj ∝ δij), and the density matrix takes the simpler form

D = D0 I⊗ I +D8 ti ⊗ t̃i. (D.5)

Taking the matrix element, we get

〈αβ|D|γδ〉 = D0 δαγδβδ +D8〈α|ti|γ〉〈β|t̃i|δ〉
= D0 δαγδβδ +D8〈α|ti|γ〉〈δ|ti|β〉. (D.6)

Using the identity

tiαγt
i
δβ =

1

2

(
δαβδγδ −

1

Nc
δαγδβδ

)
, (D.7)

one can write D as

〈αβ|D|γδ〉 =

(
D0 −

D8

2Nc

)
δαγδβδ +

D8

2
δαβδγδ. (D.8)

Alternatively, one can project the quark-antiquark pairs on singlet or octet

configurations:

D = Ds|s〉〈s|+ Do

∑
c

|oc〉〈oc|, (D.9)
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where |s〉 denotes a color singlet and |oc〉 a color octet, with projection c. The states |s〉
and |o〉 are normalized to unity 〈s|s〉 = 1, 〈oc|od〉 = δcd. We have

〈αᾱ|s〉 = δαᾱ
1√
Nc
, 〈αᾱ|oc〉 =

√
2 tc

αᾱ. (D.10)

Thus,

〈αβ|D|γδ〉 =
Ds

Nc
δαβδγδ + 2Dot

i
αβ t̃

i
γδ

=
Ds −Do

Nc
δαβδγδ +Doδαγδβδ. (D.11)

The relations between the coefficients in the two bases are easily obtained. They are

given by

Ds = D0 + CFD8, Do = D0 −
1

2Nc
D8,

D0 =
1

N2
c

[Ds + (N2
c − 1)Do], D8 =

2

Nc
(Ds −Do). (D.12)

Note that the component D0 corresponds to a completely unpolarized system, and can

be written as

D =
∑
αβ

|αβ〉〈αβ| = D0 I⊗ I. (D.13)

The same density matrix in the singlet-octet basis corresponds to Ds = Do.

E Some useful formulae and matrix elements

In this appendix, we list a number of useful formulae, as well as some matrix elements that

facilitate the derivation of the equations presented in the main text.

We start with relations involving color matrices in the fundamental representation.

Using the relations

tatb =
1

2Nc
δab +

1

2

[
ifabc + dabc

]
tc, (E.1)

and

fabcfabd = Ncδ
cd, dabcdabd =

N2
c − 4

Nc
δcd, dabcδab = 0, (E.2)

it is easy to establish the following formulae

tatb ⊗ t̃at̃b =
N2
c − 1

4N2
c

+
N2
c − 2

2Nc
ta ⊗ t̃a,

tatb ⊗ t̃bt̃a =
N2
c − 1

4N2
c

− 1

Nc
tc ⊗ t̃c. (E.3)
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We also need

tatbta =

(
CF −

Nc

2

)
tb = − 1

2Nc
tb. (E.4)

We consider now matrix elements in the singlet-octet basis. We have

〈s|ta ⊗ t̃b|s〉 =
1

2Nc
δab, 〈s|ta ⊗ t̃a|s〉 = CF

〈oc|ta ⊗ t̃a|od〉 = − 1

2Nc
δcd,

〈s|ta ⊗ I|oc〉 =
1√
2Nc

δac,

〈od|ta ⊗ I|oc〉 =
1

2

(
ddac + ifdac

)
. (E.5)

The following matrix elements of the color charge density, or its time derivative, are

also useful. We have singlet-octet matrix elements,

〈r1, r2; s|ρa(x)|r3, r4; oc〉 =
δac√
2Nc
〈r1, r2|n(x)|r3, r4〉 (E.6)

where n(x) is the QED charge density

n(x) = δ(x− r̂)⊗ I− I⊗ δ(x− r̂). (E.7)

We can write the formula above more simply as

〈s|ρa(x)|oc〉 =
δac√
2Nc

n(x). (E.8)

Similarly, we have

〈s|ρ̇a(x)|oc〉 =
δac√
2Nc

ṅ(x). (E.9)

We have also octet-octet matrix elements,

〈r1, r2; od|ρa(x)|r3, r4; oc〉
= δ(r1 − r3)δ(r2 − r4)〈od|

[
δ(x− r1) ta ⊗ I− I⊗ t̃a δ(x− r2)

]
|oc〉

=
1

2
ddac〈r1, r2|n(x)|r3, r4〉+

i

2
fdac〈r1, r2|m(x)|r3, r4〉, (E.10)

or, more simply,

〈od|ρa(x)|oc〉 =
1

2
ddac n(x) +

i

2
fdacm(x), (E.11)

with

m(x) = δ(x− r̂)⊗ I + I⊗ δ(x− r̂). (E.12)

Finally

〈od|ρ̇a(x)|oc〉 =
1

2
ddac ṅ(x) +

i

2
fdac ṁ(x). (E.13)
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F The equations of motion for the density matrix of a heavy quark-

antiquark pair

In this appendix we present the equations of motion for the matrix elements of the reduced

density matrix of a heavy quark-antiquark pair. We consider the two representations of

the density matrix that correspond to the (D0, D8) and the (Ds, Do) basis. In the main

text we have indicated how to obtain the equations for Ds and Do from the corresponding

equations of the abelian case. Depending on the choice of basis, the color algebra proceeds

differently, and the relevant formulae are listed in appendix E. Independently of the way

we proceed, the results should eventually lead to formulae for the various components of

DQ which satisfy the relations (D.12). This constitutes a useful check of the results.

The equations to be presented below correspond to the coordinate space matrix element

〈r1r2|D|r′1r′2〉. Thus, for instance, D0 stands for D0(r1, r2; r′1, r
′
2), and similarly for D8,

or Ds and Do. We use the notation (Ds|L|D) for the contribution of the operator Li to

the time derivative of Ds, that is

dDs

dt
= (Ds|Li|D). (F.1)

and similarly for the other components of the density matrix. Also we use the compact no-

tation introduced in the main text, e.g., W12 = W (r1−r2), ∇1 = ∇r1 , ∇12 = ∇r1−∇r2 ,

and so on, as well as the quantities Wa,b,c,± defined in the main text (see eqs. (3.32)). The

various calculations are straightforward, but lengthy and somewhat tedious. They will not

be presented here, we just list the final results. Those results, listed in the next two sections

for the (D0, D8) basis and the (Ds, Do) basis, respectively, are an exact transcription of

eq. (2.26) to the density matrix of a quark-antiquark pair, without additional approxima-

tion. In the last subsection of this appendix, we list a number of formulae that are useful

to implement the semi-classical approximation.

F.1 (D0, D8) basis

In the (D0, D8) basis the contributions of the operators Li to time derivative of the density

matrix are given by:

(D0|L1|D) = i[V12 − V1′2′ ]
N2
c − 1

4N2
c

D8,

(D8|L1|D) = i[V12 − V1′2′ ]

(
D0 +

N2
c − 2

2Nc
D8

)
. (F.2)

(D0|L2|D) = CF [2W (0)−Wa]D0 +
CF
2Nc

[Wb −Wc]D8,

(D8|L2|D) = [Wb −Wc]D0 + CF [2W (0)−Wc]D8

+
1

2Nc
[Wa +Wc − 2Wb]D8. (F.3)

(D0|L3|D) =
CF

4MT
[2∇2W (0)−∇2Wa −∇Wa ·∇a]D0

− CF
4MT

{
∇2Wc + ∇Wc ·∇c −∇2Wb −∇Wb ·∇b

} D8

2Nc
. (F.4)
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(D8|L3|D) =
1

4MT

{
∇2W b + ∇W b ·∇b −∇2Wc −∇Wc ·∇c

}
D0

+
CF

4MT
[2∇2W (0)−∇2Wc −∇Wc ·∇c]D8

+
1

4MT

{
∇2W a + ∇W a ·∇a +∇2Wc + ∇Wc ·∇c

−2
(
∇2W b + ∇W b ·∇b

)} D8

2Nc
. (F.5)

Note that in the infinite mass limit, the contribution (D0|L2|D) vanishes, while the

second contribution reduces to (D8|L2|D) = −NcΓ(r)D8. These results have a simple

interpretation discussed in the main text.

F.2 (Ds, Do) basis

In the (Ds, Do) basis the contributions of the operators Li to time derivative of the density

matrix are given by:

(Ds|L1|D) = iCF [V12 − V1′2′ ]Ds

(Do|L1|D) = − i

2Nc
[V12 − V1′2′ ]Do. (F.6)

(Ds|L2|D) = CF [2W (0)−Wc]Ds − CFW−Do, (F.7)

(Do|L2|D) = − 1

2Nc
W−Ds +

[
2CFW (0) +

1

2Nc
Wc −

(
N2
c − 4

4Nc
W− +

Nc

4
W+

)]
Do.

(F.8)

(Ds|L3|D) =
CF

4MT

{
2∇2W (0)−∇2Wc −∇Wc ·∇c

}
Ds

− CF
4MT

{
∇2W− +W−∇W− ·∇−

}
Do (F.9)

Note the analogy with the equation (F.7): replace W (0)→ ∇2W (0), Wc → ∇2Wc+∇Wc ·
Wc and W− → ∇2W− + ∇W− ·∇− (the color algebra is the same). Also this equation is

identical to that in QED when Do = Ds.

(Do|L3|D) =
CF

2MT
∇2W (0)Do −

1

4MT
[∇2W− + ∇W− ·∇−]

Ds

2Nc

+
1

4MT

1

2Nc

(
∇2Wc + ∇Wc ·∇c

)
Do (F.10)

− 1

4MT

{
N2
c − 2

2Nc

(
∇2Wa + ∇Wa ·∇a

)
+

1

Nc

(
∇2Wb + ∇Wb ·∇b

)}
Do.

F.3 Equations in the semi-classical approximation

To derive the equations in the semi-classical approximation, the following formulae are

useful.

Wa = W (Y + y/2) +W (Y − y/2) ≈ 2W (0) + Y · H(0) · Y +
1

4
y · H(0) · y,

Wb = W (Y + r) +W (Y − r) ≈ 2W (r) + Y · H(r) · Y ,

Wc = W (r + y/2) +W (r − y/2) ≈ 2W (r) +
1

4
y · H(r) · y. (F.11)
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∇2Wa = ∇2(W11′ +W22′) = 2∇2W (0)

∇2Wb = ∇2(W12′ +W21′) = 2∇2W (r)

∇2Wc = ∇2(W12 +W1′2′) = 2∇2W (r) (F.12)

∇Wa ·∇a ≡ ∇W11′∇11′ + ∇W22′∇22′ = 2Y · H(0) ·∇Y + 2y · H(0) ·∇y

∇Wb ·∇b ≡ ∇W12′∇12′ + ∇W21′∇21′ = 2∇W (r) ·∇r + 2Y · H(r) ·∇Y ,

∇Wc ·∇c ≡ ∇W12 ·∇12 + ∇W1′2′ ·∇1′2′ = 2∇W (r) ·∇r + 2y · H(r) ·∇y, (F.13)

G A single heavy quark in the static limit

As an illustration of the color dynamics we study the case of a single heavy quark in the

infinite mass limit. The density matrix can be written as

D = D0 I +Da
8 t
a , (G.1)

and we leave open the possibility of a vector component (D8). In the infinite mass limit,

D0 and D8 obey the equations

dD0

dt
= 0 ,

dDa
8

dt
=
NcW (0)

2
Da

8 = −NcγQD
a
8 . (G.2)

The first equation reflects the conservation of the trace of the density matrix. The second

equation indicates that the states that have a preferred direction in color space decay

exponentially in time. To illustrate this behaviour imagine that at t = 0 we have a density

matrix corresponding to a heavy quark with a specific color (such that D11 = 1 and the

rest of the components are 0). The evolution of this matrix can be written as

D(t) =
1

3
I +

(
t3 +

t8√
3

)
e−NcγQt, (G.3)

which in terms of the different components means that

D11 =
1

3

(
1 + 2e−NcγQt

)
,

D22 = D33 =
1

3

(
1− e−NcγQt

)
, (G.4)

and the rest of the components are 0. Thus, in a time of order (NcγQ)−1, the density

matrix becomes diagonal, with all diagonal elements equal: the system is driven to the

maximum entropy state, where only the component D0 is non vanishing.

H The case with two heavy quarks

We consider here a system formed by two heavy quarks (rather than a heavy quark-

antiquark pair). Eq. (2.24) is also fulfilled in this case, but the color structure of the
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density matrix of a quark pair differs from that of a heavy quark-antiquark pair. Similarly

to eq. (D.5) we can write

D = D0 I⊗ I +D8 t
a ⊗ ta, (H.1)

while the analog of eq. (D.9) can be written as

D = D3̄P3̄ +D6P6, (H.2)

where P3̄ and P6 denote respectively the projectors on the representation 3̄ and 6 of SU(3).

In writing eq. (H.1) we stick to the notation of eq. (D.5), although in the present case there

is no octet state involved in D8. As for D0 it conserves the interpretation of the maximal

entropy state.

Calculating, as we did for the quark-antiquark pair, the matrix element 〈r1r2|D|r′1r′2〉
of the two-quark density matrix, we obtain for the first line of eq. (2.24)

dD0

dt
= − iCF

2Nc
(V12 − V1′2′)D8 , (H.3)

dD8

dt
= −i(V12 − V1′2′)

(
D0 −

D8

Nc

)
. (H.4)

This set of equations has two eigenvalues with opposite signs (i(V12−V1′2′)(1±Nc)/(2Nc)).

The positive sign corresponds to the color configuration 3̄ and represents an attractive in-

teraction, while the minus sign corresponds to the configuration 6 for which the interaction

is repulsive. The equations for D3̄ and D6 read

dD3̄

dt
= i(V12 − V1′2′)

1 +Nc

2Nc
D3̄, D3̄ = D0 −

Nc + 1

2Nc
D8,

dD6

dt
= i(V12 − V1′2′)

1−Nc

2Nc
D6, D6 = D0 +

Nc − 1

2Nc
D8. (H.5)

Note that the attraction between two quarks in the 3̄ channel is Nc − 1 times weaker than

the attraction of a quark-antiquark pair in the singlet channel. For Nc = 3 this is only a

factor 2, which suggests that the probability to find heavy di-quarks in a plasma may not

be too different from that of finding bound heavy quark-antiquark pairs.

We turn now to the second line of eq. (2.24), which yields

dD0

dt
= CF (2W (0)−Wa)D0 +

CF
2Nc

(Wc −Wb)D8,

dD8

dt
= (Wc −Wb)D0 +

{
CF (2W (0)−Wb) +

1

2Nc
(W+ − 2Wc)

}
D8. (H.6)

Finally, for the third line of eq. (2.24) we obtain

dD0

dt
=

CF
4MT

[
2∇2W (0)−∇2Wa −∇Wa ·∇a

]
D0

+
CF

4MT

[
∇2Wc + ∇Wc ·∇c −∇2Wb −∇Wb ·∇b

] D8

2Nc
, (H.7)
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and

dD8

dt
=

1

4MT
(∇Wc ·∇c −∇Wb ·∇b)D0

+
CF

4MT

{
2∇2W (0)−∇2Wb −∇Wb ·∇b

}
D8

+
1

4MT

1

2Nc

{
2(∇2W (0)−∇2W (r))+∇Wa ·∇a+∇Wb ·∇b−2∇Wc ·∇c

}
D8.

(H.8)

At this point we may use the formulae listed in appendix F in order to perform the

small y expansion. We obtain

∂D0

∂t
= i

(
∇R ·∇Y

2M
+

2∇r · ∇y

M

)
D0 + i

CF
2Nc

y · F (r)D8

−CF
(
Y · H(0) · Y +

1

4
y · H(0) · y

)
D0−

CF
2Nc

(
Y · H(r) · Y − 1

4
y · H(r) · y

)
D8

− CF
2MT

(Y · H(0) ·∇Y + y · H(0) ·∇y)D0

− CF
2MT

[Y · H(r) ·∇Y − y · H(r) ·∇y]
D8

2Nc
, (H.9)

and

∂D8

∂t
= i

(
∇R ·∇Y

2M
+

2∇r ·∇y

M

)
D8 −NcΓ(r)D8

+iy · F (r)

(
D0 −

D8

Nc

)
+

1

2Nc

(
Y · H(0) · Y +

1

4
y · H(0) · y

)
D8

−Y · H(r) · Y
(
N2
c − 2

2Nc
D8 +D0

)
+

1

4
y · H(r) · y

(
D0 −

D8

Nc

)
− 1

2MT
(Y · H(r) ·∇Y − y · H(r) ·∇y)D0 −

CF
2MT

Y · H(r) ·∇YD8

+
Nc

4MT

[
∇2W (0)−∇2W (r)−∇W (r) ·∇r

]
D8

+
1

2MT
[Y · H(0) ·∇Y +y · H(0) ·∇y +Y · H(r) ·∇Y −2y · H(r) ·∇y]

D8

2Nc
.

(H.10)

This pair of equations forms a system that we can diagonalize perturbatively, follow-

ing the procedure of section 5.1. The relevant coefficients that enter eq. (5.7) are easily

identified on the equations above. We then find that the evolution of the component of the

density matrix that is close to the maximum entropy configuration is given by

∂tD
′
0 =

{
i

(
∇R ·∇Y

2M
+

2∇r · ∇y

M

)
− CF

(
Y · H(0) · Y +

1

4
y · H(0) · y

)
− CF

2MT
(Y · H(0) ·∇Y + y · H(0) ·∇y)− CF (y · F (r))2

2N2
c Γ(r)

}
D′0 . (H.11)

Apart from keeping the dynamics of the center of mass explicit, this equation is very similar

to eq. (5.8).
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