
281
J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

Serendipity in  
Recommender Systems

Denis Kotkov



JYVÄSKYLÄ STUDIES IN COMPUTING 281

Denis Kotkov

Serendipity in  
Recommender Systems

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Alfa-salissa

kesäkuun 7. päivänä 2018 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Alfa hall, on June 7, 2018 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2018



Serendipity in  
Recommender Systems



JYVÄSKYLÄ STUDIES IN COMPUTING 281

Denis Kotkov

Serendipity in  
Recommender Systems

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2018



Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-7438-1

URN:ISBN:978-951-39-7438-1
ISBN 978-951-39-7438-1 (PDF)

ISBN 978-951-39-7437-4 (nid.)
ISSN 1456-5390

Copyright © 2018, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2018



ABSTRACT

Kotkov, Denis
Serendipity in Recommender Systems
Jyväskylä: University of Jyväskylä, 2018, 72 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 281)
ISBN 978-951-39-7437-4 (nid.)
ISBN 978-951-39-7438-1 (PDF)
Finnish summary
Diss.

The number of goods and services (such as accommodation or music streaming)
offered by e-commerce websites does not allow users to examine all the avail-
able options in a reasonable amount of time. Recommender systems are auxiliary
systems designed to help users find interesting goods or services (items) on a
website when the number of available items is overwhelming. Traditionally, rec-
ommender systems have been optimized for accuracy, which indicates how often
a user consumed the items recommended by system. To increase accuracy, rec-
ommender systems often suggest items that are popular and suitably similar to
items these users have consumed in the past. As a result, users often lose inter-
est in using these systems, as they either know about the recommended items
already or can easily find these items themselves. One way to increase user satis-
faction and user retention is to suggest serendipitous items. These items are items
that users would not find themselves or even look for, but would enjoy consum-
ing. Serendipity in recommender systems has not been thoroughly investigated.
There is not even a consensus on the concept’s definition. In this dissertation,
serendipitous items are defined as relevant, novel and unexpected to a user.

In this dissertation, we (a) review different definitions of the concept and
evaluate them in a user study, (b) assess the proportion of serendipitous items in a
typical recommender system, (c) review ways to measure and improve serendip-
ity, (d) investigate serendipity in cross-domain recommender systems (systems
that take advantage of multiple domains, such as movies, songs and books) and
(e) discuss challenges and future directions concerning this topic.

We applied a Design Science methodology as the framework for this study
and developed four artifacts: (1) a collection of eight variations of serendipity
definition, (2) a measure of the serendipity of suggested items, (3) an algorithm
that generates serendipitous suggestions, (4) a dataset of user feedback regarding
serendipitous movies in the recommender system MovieLens. These artifacts are
evaluated using suitable methods and communicated through publications.

Keywords: recommender systems, serendipity, relevance, novelty, unexpected-
ness, personalization, evaluation, recommendation algorithms, eval-
uation metrics, offline experiments, user study, serendipity metrics
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“Recommendations and personalization live in the sea of data we all create as we
move through the world, including what we find, what we discover, and what
we love. We’re convinced the future of recommendations will further build on
intelligent computer algorithms leveraging collective human intelligence. The
future will continue to be computers helping people help other people.”

– Smith, B. & Linden, G. 2017. Two decades of recommender systems at amazon.com.
IEEE Internet Computing 21 (3), 12–18.
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1 INTRODUCTION

Many e-commerce websites that appeared in the dot-com bubble in the late 1990s
offered a wide variety of products to their customers. The number of these prod-
ucts varied depending on the website and could even exceed tens of millions.
Although an increase of the number of products meant that each store was likely
to offer a product suitable for a particular user, it became difficult for users to
find suitable products due to the overwhelming number of products (Ricci et al.,
2015).

To overcome this problem, the e-commerce websites started suggesting prod-
ucts from limited catalogs (Ekstrand et al., 2011b). Users could still see the whole
catalog of products, but they were also suggested a list of recommendations,
which was generated based on the history of purchases of these users and on
what these users were looking for at the moment of recommendation generation.

To generate recommendations, e-commerce websites integrated systems that
included graphical user interfaces, databases and algorithms. Originally, researchers
used the term collaborative filtering to refer to these systems (Goldberg et al.,
1992). However, later, researchers widely adopted the term recommender sys-
tems (Resnick and Varian, 1997).

Recommender systems received considerable attention due to their popu-
larity among e-commerce websites (Ricci et al., 2015). However, these systems
were originally designed to help users navigate in the information space rather
than to help users buy goods or increase turnover of online stores (Rich, 1979;
Goldberg et al., 1992). Recommender systems suggest a variety of content, such
as songs, movies or articles, which can be consumed online and do not even have
to be purchased separately, but can be accessed via subscription or for free.

To discuss recommender systems in general, we define recommender sys-
tems as software tools that suggest items of use to users (Ricci et al., 2015), where
an item is “a piece of information that refers to a tangible or digital object, such
as a good, a service or a process that a recommender system suggests to the user
in an interaction through the Web, email or text message” (paper PIII). An item
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can refer to any object, such as a product on Amazon1, a video on YouTube2 or a
song on Spotify3.

Recommender systems suggest items to users and these users decide whether
to consume objects, to which these items refer. For brevity, we use the term item
to describe the reference and the object itself that a recommender system sug-
gests. For example, when a user consumes an item, they can watch a video in
YouTube or buy a product in Amazon.

Recommender systems’ suggestions can be personalized or non-personalized
(Schafer et al., 1999). In case of non-personalized recommendations, each user re-
ceives the same recommendations. For example, in Spotify, a user can receive
a list of songs ordered according to their popularity in the service. In the case
of personalized recommendations, different users receive different recommenda-
tions that are often based on items these users liked in the past. For example,
Spotify can suggest weekly play lists based on the listening activity of the user.
In this dissertation, we focus on personalized recommender systems.

As a rule, recommender systems generate personalized recommendations
based on past user behavior, which is usually represented by user ratings (Ek-
strand et al., 2011b). Users give ratings to items in different ways depending on
the application scenario. For example, in Amazon, a user rates a product by buy-
ing it (Smith and Linden, 2017), while in YouTube, a user might rate a video by
watching it or by clicking on like or dislike buttons (Davidson et al., 2010). In
this dissertation, the term user rating (or simply rating) refers to the expression of
user’s opinion on an item in a recommender system.

User ratings are often noisy and might not correspond to reality. When users
rate items retrospectively, they might not remember the experience of consum-
ing these items well. Different users might use the same account in the system,
which does not allow the system to differentiate between these users. Ratings
can become outdated or users might make mistakes while rating items. In this
dissertation, we do not consider these kinds of problems regarding user ratings.

To generate recommendations for a particular user (target user), recom-
mender systems use information from the profile of the user. A user profile might
include different information, such as an ID, age and location. However, usually
recommender systems employ user ratings or information about items rated by
the target user from their profile.

The process of generating recommendations for a target user can involve
ratings of this user alone or can involve the ratings of other users. Recommen-
dation algorithms that use ratings of only the target user usually generate rec-
ommendations based on attributes of items the target user liked. For example, a
YouTube user likes several videos that are tagged with the keyword “cooking”.
A recommendation based on attributes would be another video tagged with the
same keyword. Recommendation algorithms that integrate the ratings of other
users vary significantly and can also use attributes of items. However, these sys-

1 https://www.amazon.com/
2 https://www.youtube.com/
3 https://www.spotify.com/
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tems usually employ rating patterns that they discover in user ratings. For exam-
ple, a recommendation based on user ratings might be a video that is new to the
target user and is liked by users who also liked favorite videos of the target user.
To generate recommendations, recommender systems can also employ contextual
information, such as time, place or mood of the user (Adomavicius and Tuzhilin,
2015). In this dissertation, we do not consider these kinds of systems that would
also take into account the current context while generating recommendations.

1.1 Motivation and research questions

Traditionally, researchers have measured the success of recommender systems
based on the ratings users assigned to recommended items. For example, an eval-
uation measure for an e-commerce website can depend on the proportion of rec-
ommended products that users bought, while for a movie recommender system
this measure can depend on 5-star ratings that users assigned to recommended
movies. Recommendation algorithms have mostly been competing within this
success measure, which varies depending on the application scenario. In this
dissertation, we refer to this success measure as accuracy evaluation metric, or just
accuracy.

To achieve high accuracy, recommendation algorithms mostly target two
categories of items: popular items (Smith and Linden, 2017; Lu et al., 2012) and
items that are suitably similar to items in the profile of the target user (Iaquinta
et al., 2010). In this dissertation, popularity is related to the absolute number
of ratings an item receives in a recommender system. A high number of item
ratings in the system often corresponds to the popularity of the item outside the
system (for example, a number of sold copies of a book) (Celma Herrada, 2009).
Item similarity is based on either user ratings or item attributes. Two items can
be considered similar if they have common attributes (for example, two movies
belonging to the same genre) or if they were given high ratings by the same users.

Popular items are often given high ratings, as they are of high quality (Celma Her-
rada, 2009; Kotkov et al., 2017). Items similar to items in the profile of the target
user are likely to receive high ratings from this user, as these items correspond to
this user’s tastes (Tacchini, 2012; Kotkov et al., 2017).

Accuracy is one of the most important evaluation metrics, but it does not
always correspond to user satisfaction (McNee et al., 2006). Enjoying an item
is often different from enjoying the recommendation of this item. User ratings
indicate how much a user enjoyed consuming a particular item, but they lack in-
formation whether this user liked the recommendation of this item. Users might
consume and even enjoy consuming items that they are aware of or would con-
sume regardless of recommendation, which results in accurate recommendations.
However, these recommendations often do not satisfy users’ needs when users
want to find items that they would enjoy, but would not be aware of or even be
able to find themselves (Herlocker et al., 2004; McNee et al., 2006). The following
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example illustrates a recommendation of a popular item. A user is looking for a
movie to watch and uses a movie recommender system, which suggests movie
titles. The system suggests the very popular movie The Shawshank Redemption to
this user. The user gives a high rating to this movie, as they already watched and
liked this movie. However, the user does not enjoy the recommendation of this
movie, since the system did not help them find a movie to watch. Meanwhile, the
recommendation of this movie positively contributed to accuracy of the movie
recommender system.

Another example illustrates the recommendation of an item similar to items
in the target user profile. An Amazon user receives a recommendation for a kettle,
because this user recently looked for kettles in the website. The user purchases
the kettle, as their kettle is broken and the accuracy of the recommender system
increases. However, the user was already aware of kettles when they received the
recommendation. In fact, the user would have bought this item anyway. If the
recommender system had not suggested the kettle, the user would have found
this item by searching. An even worse example is when a user is offered a kettle,
because they have just bought one, as it is unlikely that the user would like to
have two different kettles. A better method is to suggest a product that a user
was not aware of or did not think about, but would enjoy using; this would lead
to this user enjoying the website and buying more products.

Suggesting items that are popular and similar to items in the user profile
results in high accuracy and is often appropriate. For example, when a new user
joins a recommender system, they want to see that the recommender system fol-
lows their tastes and suggests high quality items. However, suggesting these
items exclusively repulses users in the long term, since users either already know
these items or would easily find these items themselves. In fact, recommending
a user only items similar to those they rated disallows the user to broaden their
preferences (the so-called overspecialization problem) (Tacchini, 2012; Iaquinta et
al., 2010; Narducci et al., 2013) and disallows the recommender system to learn
new preferences of this user.

One way to improve the user experience and retain users in the system is
to suggest serendipitous items, as these are items the users would not find them-
selves or would not even look for, but would enjoy consuming. In recommender
systems, items that are relevant, novel, and unexpected to a user are considered
serendipitous in most cases. Serendipity of a recommender system is the prop-
erty, which indicates how serendipitous items that this system suggests are (pa-
per PI).

In this dissertation, we investigate serendipity not only in recommender
systems in general, but also in a narrow area of cross-domain recommender sys-
tems. Cross-domain recommender systems take advantage of multiple domains,
where a domain usually consists of items of a particular category, such as songs,
books or movies (Fernández-Tobías et al., 2012; Cantador et al., 2015). These sys-
tems often improve recommendations by enriching the data from the target do-
main with additional datasets from source domains. The former refers to the do-
main from which suggested items are picked, and the latter refers to the domains
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that contain auxiliary information.
This dissertation is dedicated to serendipity in recommender systems. We

made four contributions and answered eleven research questions. The research
questions and motivation for them are as follows (the questions follow the logical
order, while motivation is described in a chronological order):

RQ1. What is serendipity in recommender systems? (Papers PI and PII)

We needed an operationalized definition of the term serendipity in the con-
text of recommender systems to pick a suitable measure and design an algorithm
which could improve this measure. It turned out that there was no consensus
on the definition of the term. We thus picked the definition employed in most
publications. Later, we revisited this research question by reconducting the liter-
ature review, since our experiments (such as conducting a survey and measuring
performance of algorithms) required a more elaborate definition, which resulted
in eight variations of the serendipity definition.

RQ2. What are the effects of items corresponding to different variations of novelty, un-
expectedness and serendipity on users? (Paper PII)

Our literature review suggested that serendipity includes three components:
relevance, novelty and unexpectedness, where relevance indicates how much a
user enjoyed consuming an item, novelty has two variations and indicates famil-
iarity of the user to the item and unexpectedness has four variations and indicates
how much the user is surprised by the item. The variations of serendipity com-
ponents resulted in eight variations of serendipity.

Since our literature review suggested eight variations of serendipity, it be-
came necessary to investigate the difference of variations of novelty, unexpect-
edness and serendipity in terms of user perception. In particular, we looked at
two of the properties of serendipitous items: user preference broadening and user
satisfaction.

RQ3. How rare are serendipitous items among items rated by the users in a typical col-
laborative filtering-based recommender system? To what extent does this kind of system
help users find these items? (Paper PII)

It was necessary to investigate whether it is feasible to suggest serendipitous
items, since in the attempt of suggesting these items, a recommender system is
likely to suggest many irrelevant ones (paper PI). Serendipity might not be worth
optimizing for if it is almost impossible to recommend serendipitous items due
to their rareness.

RQ4. How can we assess serendipity in recommender systems? (Paper PI)

To design a recommendation algorithm that improves serendipity (serendipity-
oriented), it was necessary to review existing serendipity measures in order to
measure what we wanted to improve.

RQ5. What are effective features for detecting serendipitous items? What are the value
ranges of these features for typical serendipitous items? (Paper PII)
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Serendipity metrics are based on assumptions, such as whether serendip-
itous items are unpopular or dissimilar to items in the user profile. These as-
sumptions might not correspond to reality, since they are not based on experi-
ments involving real users (Kotkov et al., 2018). We conducted a user study to
detect important factors for detecting serendipitous items, which helps to design
serendipity metrics and serendipity-oriented algorithms.

RQ6. What are the state-of-the-art recommendation algorithms that suggest serendipi-
tous items? (Paper PI)

To design a serendipity-oriented recommendation algorithm, we had to re-
view existing ones.

RQ7. What are the challenges of serendipity in recommender systems? (Paper PIII)

We reviewed common problems that occur when dealing with serendipity
to be prepared for them in our research.

RQ8. What are the future directions of serendipity in recommender systems? (Paper PI)

We indicated unsolved problems regarding serendipity in recommender
systems to inspire future efforts on this topic.

RQ9. Can source domains improve accuracy in the target domain when only users over-
lap? (Paper PVI)

RQ10. Can a source domain improve accuracy in the target domain when only items
overlap? (Papers PVII and PVIII)

The topic of cross-domain recommender systems is complicated because
of the contradicting results of studies and the lack of publicly available datasets
(paper PVII). We started investigating this topic by measuring the accuracy of
existing algorithms, since accuracy is more easily investigated than serendipity
and accuracy is related to serendipity (serendipitous items are those that users
enjoy consuming).

RQ11. Can a source domain improve serendipity in the target domain when only items
overlap? (Paper PVIII)

Due to the complexity of cross-domain recommender systems, our next
step was to measure the performance of common recommendation algorithms
on cross-domain datasets in terms of serendipity.

1.2 Research process

This dissertation employs a design science research methodology (Peffers et al.,
2007), which consists of six steps:

Step 1. Problem Identification and Motivation

Step 2. Objective of a Solution
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Step 3. Design and Development

Step 4. Demonstration

Step 5. Evaluation

Step 6. Communication

The research methodology is structured in sequential order, but it allows for start-
ing the process from steps 1, 2, 3, or 4, depending on the initiator of the research.
The research methodology also allows iterations in the research process. It is pos-
sible to return from steps 5 and 6 to steps 2 and 3.

In this dissertation, we design four artifacts:

1. A definition of serendipity. By conducting a literature review, we discov-
ered that there was no agreement on definition of serendipity. We therefore
summarized the most common definitions and used them in our user study
(papers PI and PII).

2. An evaluation metric. Since a commonly accepted definition of serendip-
ity is missing, there is no agreement on the evaluation metric to measure
serendipity in recommender systems (Silveira et al., 2017). We therefore
proposed our metric based on the most common definitions of the concept
(papers PV and PIV).

3. A serendipity-oriented algorithm. Due to the lack of a commonly agreed-
upon serendipity metric, existing serendipity-oriented algorithms are opti-
mized for different metrics (Silveira et al., 2017). We designed a serendipity-
oriented recommendation algorithm optimized for our serendipity metric
(Kotkov et al., 2017, 2018).

4. A serendipity-oriented dataset. Datasets containing user feedback regard-
ing serendipity are publicly unavailable. We therefore collected and pub-
lished the dataset containing user ratings indicating whether particular items
are serendipitous to these users (paper PV).

Table 1 demonstrates the research methodology process regarding each artifact
(Peffers et al., 2007). We did not use the dataset containing data on serendipity
to design our algorithm and evaluation metric, as the dataset was collected for
future experiments. The evaluation activity corresponds to design science evalu-
ation methods (Von Alan et al., 2004). We used the following evaluation methods:

Informed argument (descriptive method): We used the literature review to build
convincing arguments for our artifacts’ utility.

Simulation (experimental method): We executed recommendation algorithms on
pre-collected datasets.

Static analysis (analytical method): We examined characteristics of our dataset
by using statistical methods.
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TABLE 1 Design science research methodology process for this dissertation

Artifact
Identify problem
& motivate

Define objectives
of a solution

Design
& development

Demonstration Evaluation Communication

A definition
of serendipity

No agreement
on definition
of serendipity

Develop the most
suitable definition

A collection of
eight definitions
of serendipity

The definitions
are used in
a user study

Informed
argument
(descriptive),
static
analysis
(analytical)

Papers PI, PIII
and PII

An evaluation
metric

Existing
metrics
do not corresponds
to any of the eight
definitions of
serendipity

Measure
serendipity
of a recommender
system according
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The minor contribution of this dissertation is software, which was developed to
evaluate recommendation algorithms, conduct statistical analysis, prepare data
used in the research, build charts and conduct surveys. The source code is publi-
cally available only for experiments conducted to evaluate our serendipity-oriented
recommendation algorithm (papers PIV and PV). The source code can be found
at GitHub4. We used the java open-source framework for recommender systems,
LensKit (Ekstrand et al., 2011a).

1.3 Research methods

In this dissertation, we conducted a literature review, a user study and several
offline experiments for our research.

1.3.1 Literature review

We used the literature review to address RQ1, RQ4, RQ6, RQ7 and RQ8 (Papers
PI and PIII). To collect articles that mention serendipity, we used the following
sources: Google Scholar5, Scopus6 and Web of Science7. Our literature review
4 https://github.com/Bionic1251/SerendipitousAlgorithm
5 https://scholar.google.com/
6 http://www.scopus.com/
7 https://webofknowledge.com/
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process consisted of the following steps:

1. We first conducted preliminary analysis by reading papers returned in re-
sponse to the query “serendipity in recommender systems.” We discovered
that there is no consensus on the definition of serendipity or methods to
measure it (Murakami et al., 2008; Kaminskas and Bridge, 2014; Zhang et
al., 2012).

2. To investigate the existing definitions of serendipity in recommender sys-
tems and ways to assess this property, we selected the top 20 articles re-
trieved by the search engines in response to the search queries “definition
of serendipity in recommender systems,” “serendipity in recommender sys-
tems,” “measure surprise in recommender systems” and “unexpectedness
in recommender systems.” To find more relevant articles, we employed a
forward search (Levy and Ellis, 2006) by picking articles from references of
the selected articles. Eventually, we found another 18 qualifying articles, six
of which presented serendipity evaluation metrics.

3. To find serendipity-oriented algorithms (RQ6), we employed a backward
search (Levy and Ellis, 2006) by picking articles that site articles which pro-
pose methods to measure serendipity.

4. We only selected articles that focus on serendipity in recommender systems
and filtered out the rest.

1.3.2 The user study

To address RQ1, RQ2 and RQ4, we conducted a user study in the movie recom-
mender system MovieLens8 (paper PII). This system has been designed to pro-
vide users with movie recommendations based on movies these users previously
watched. MovieLens users can rate movies retrospectively on a scale from 0.5 to 5
stars with the granularity of 0.5 star. Users might rate a movie in some time after
they watched it, and the system does not allow users to indicate how long ago
they watched the movie. MovieLens also allows users to perform other actions,
such as adding a movie to the list of movies to watch, assigning keywords (tags)
to movies, and adding new movies to the system.

We conducted a survey, in which we asked users questions regarding the
serendipity of movies these users recently watched. On April 1, 2017, we started
inviting users via emails to complete our survey. We selected users based on
their registration date and recent activity. First, we selected users who joined the
system at least one month before the experiment to make sure that users had had
enough time to rate movies they watched a long time ago. Second, among the
selected users, we picked those who assigned ratings of at least 3.5 stars to five
or more movies during the three months before the experiment (from December
30, 2016 till March 30, 2017) and one month after the registration (for those who
joined the system after November 30, 2016).
8 https://movielens.org/
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FIGURE 1 A MovieLens survey page

Figure 1 demonstrates the survey page in MovieLens, where we asked users
to rate the statements. For each user, we picked five movies they rated during the
three months before the experiment and one month after their registration. In
cases where more than five movies satisfied our selection criterion, we picked the
least popular ones (with the smallest number of ratings in the system), expecting
that users encountered these movies in MovieLens, since users were likely to
discover popular movies from other sources, such as social media, TV or friends.

We selected 2,305 users and sent an invitation to take our survey via email;
475 of the invited users gave their feedback on at least one movie. Overall, these
users rated all the statements and answered all the questions about 2166 ratings
(user-movie pairs). We excluded 20 of these ratings, since users indicated they
had not watched these movies (the question regarding how long ago the user
watched the movie included this option). Overall, we analyzed user feedback on
2,146 ratings given by 475 users.

1.3.3 Offline evaluations

We conducted offline evaluation to design our algorithm (Papers PIV and PV)
and answer RQ7, RQ8 and RQ9 (Papers PVII, PVIII and PVI). In offline evalua-
tion, researchers conduct experiments using pre-collected or simulated datasets.
In the experiments, researchers hide some ratings and let an algorithm predict
them based on the rest of the data. The performance of algorithms is usually
presented by evaluation metrics (Herlocker et al., 1999; Shani and Gunawardana,
2011; Ekstrand et al., 2011b).
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We used offline evaluation to answer our research questions regarding cross-
domain recommender systems, where we evaluated common recommendation
algorithms on cross-domain datasets. We also used offline evaluation to itera-
tively improve and demonstrate our serendipity-oriented recommendation algo-
rithm.

1.4 The dissertation structure

The structure of this dissertation is as follows. In the next chapter, we provide lit-
erature review regarding serendipity, recommender systems in general and cross-
domain recommender systems in particular. Chapter 3 describes main results and
contributions of our research. Chapter 4 contains short summaries of articles in-
cluded in this dissertation. Finally, in chapter 5, we provide conclusions along
with limitations, discussion and directions for further research in serendipity in
recommender systems.

This dissertation is a compilation of eight articles; six articles have been
published, one article is currently under review and one article has been accepted
for publication. All the publication outlets (e.g. conference proceedings, journals
and books) are peer reviewed. We received permission to include all eight articles
to this dissertation by publishers and coauthors.



2 RELATED WORK

In this chapter, we provide literature review regarding recommender systems.
We present the history of recommender systems, strategies to evaluate recom-
mendation algorithms and metrics to assess their performance. We also discuss
the history and definitions of serendipity in general and in relation to recom-
mender systems. Finally, we provide an overview of cross-domain recommender
systems.

2.1 Recommender systems

The term recommender system was proposed by Resnick and Varian in 1997
(Leino, 2014; Resnick and Varian, 1997). The authors noticed that the term collab-
orative filtering does not correspond to the variety of systems that suggest items.
According to (Resnick and Varian, 1997), “recommender systems assist and aug-
ment this natural social process” of making “choices without sufficient personal
experience of the alternatives.”

Although similar in the ultimate goal of satisfying users’ information needs,
recommender systems are significantly different from search engines. Tradition-
ally, a search engine receives a query as an input and provides a set of the most
suitable items in response (Brin and Page, 2012). Personalized search engines uti-
lize both queries and information about users. Two different users may receive
different results when entering the same query (Smyth et al., 2011). In contrast,
a recommender system does not receive any query. It receives information about
the past behavior of users and returns a set of items users would enjoy (Ricci et
al., 2015).

2.1.1 History of recommender systems

To the best of our knowledge, the first recommender system was called Grundy
and designed in 1979 (Rich, 1979). Its goal was to suggest books to readers based
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on their personality traits. The system asked a target user questions regarding
their personality in a scripted dialog and suggested a book to read based on an-
swers of this user.

The first collaborative filtering recommender system was Tapestry, the e-
mail filtering system (Goldberg et al., 1992). Tapestry enabled users to annotate
messages that they found interesting or uninteresting. Others, in turn, could use
the annotations to filter or browse the content. The authors used the term collab-
orative filtering to denote the process of individuals helping one another to filter
content through interaction.

Recommender systems attracted considerable attention in the late 90s (Ek-
strand et al., 2011b). It was discovered that these systems can improve sales of
products by introducing users to potentially interesting items. In 2006, Netflix1

presented Netflix Prize, a challenge to develop an algorithm that would outper-
form Netflix’s internal algorithm Cinematch by 10% (Netflix, 2009). The compe-
tition attracted considerable attention due to the $1 million prize. The Netflix
Prize highlighted the importance of recommender systems and motivated many
researchers to contribute to the field.

Recommender systems are now a core function of most popular services,
such as Amazon, Netflix or Quora2 (Amatriain, 2016). Recommender systems
have an effect on the turnover of these services. For example, more than 80%
of movies that users watch in Netflix are chosen after being suggested to users
by the recommender system (Amatriain, 2016). These popular services provide
users with the recommended content first and offer browsing as an alternative
(Amatriain, 2016).

2.1.2 Evaluation strategies

Recommendation algorithms are evaluated in two kinds of experiments: online
and offline (Silveira et al., 2017). An online evaluation of a recommender system
involves users interacting with the system. Researchers can assess the accuracy
of this system by asking users whether they found a particular item relevant.

In offline experiments, researchers run algorithms on a pre-collected dataset.
They split the dataset into two parts: training and test. Algorithms receive train-
ing data as an input and predict test data. The performance of algorithms is
measured with evaluation metrics. Metrics for accuracy are the most common
ones.

Online evaluations are regarded as more representative than offline evalu-
ations. In an online evaluation, researchers receive data from real users, while in
an offline evaluation, users’ behavior is simulated. Meanwhile, conducting an on-
line evaluation is more demanding and requires more resources than an offline
evaluation, since the online evaluation is conducted either in an online recom-
mender system or in a survey consisting of a few phases in which we ask users
to rate items, generate recommendations, suggest them to the users and ask the

1 https://www.netflix.com
2 https://www.quora.com
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TABLE 2 Notations

Symbol Description
I = {i1, i2, ..., i‖I‖} the set of items
Iu, Iu ⊆ I the set of items in profile of user u (rated by user u)

RELu, RELu ⊆ Iu
the set of items relevant for user u (rated highly by
user u)

F = { f1, f2, ..., f‖F‖} the set of features
Fi, Fi ⊆ F the set of features that describe item i
U = {u1, u2, ..., u‖U‖} the set of users
Ui, Ui ⊆ U the set of users who rated item i

RSu(n), RSu(n) ⊆ I
the set of top-n recommendations provided by the
recommender system to user u

rui the rating given by user u to item i
r̂ui the prediction of the rating that user u will give to item i

users to rate the recommended items.

2.1.3 Accuracy metrics

This section presents a review of the most common accuracy metrics that in-
dicate the predictive power of algorithms in an offline experiment. Accuracy
metrics capture how good recommender systems are at predicting relevant items
(items that the user expressed preference for in the system). The following sec-
tion presents prediction accuracy metrics, indicating how good an algorithm is
at predicting user ratings as well as rank-based accuracy metrics, which indicate
how precise an algorithm is at ordering recommended items according to their
relevance for users.

To review evaluation metrics, we first present the notation in table 2. Let I be
a set of items and U be a set of users in a recommender system at a particular mo-
ment of time t. Top-n recommendations suggested by the recommender system
to user u at time t are denoted by RSu(n). The rating that the system predicts user
u will give to item i at time t is denoted by r̂u,i, while the rating that user u will as-
sign to item i after time t is denoted by ru,i. All the items user u rated before time t
are denoted by Iu, Iu ⊆ I. Item i is described with features Fi = { fi,1, fi,2, ..., fi,‖F‖}.
For example, the movie The Shawshank Redemption can be described with features
Fredemption = {prison, escape, narated}, while the song “Jingle Bells” by James Lord
Pierpont can be described with features Fjingle = {christmas, celebration, holiday}.

2.1.3.1 Prediction Accuracy

Many recommendation algorithms provide a prediction of a rating a particular
user will give to an item in the future. One of the ways to evaluate these algo-
rithms is to compare the ratings they predict to those given by the users. In offline
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experiments, an algorithm receives the training part of the dataset as input data
and provides its predictions for the test part of the dataset. Let Rtest be a set
of ratings in the test part. The performance of algorithms in this case is usually
measured by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
(Celma Herrada, 2009; Ning et al., 2015):

MAE =
1

‖Rtest‖ ∑
rui∈Rtest

|rui − r̂ui|, (1)

RMSE =

√
1

‖Rtest‖ ∑
rui∈Rtest

(rui − r̂ui)2. (2)

2.1.3.2 Rank Accuracy

To assess the order of recommendations provided by the algorithm, researchers
employ rank-based accuracy metrics. The basic assumption of these metrics is
that the closer items are to the top of a recommended item list, the more relevant
they are for a user.

Rank-based metrics are widely adopted in information retrieval to compare
ranking models (Liu, 2009). Given a query, a ranking model returns an ordered
list of items. Each list may contain items which are both relevant and irrelevant
to the query. Rank-based metrics were designed to assess the order of items in
retrieved lists.

Precision@k, Recall@k and F1 measure. The assumption behind the metrics is
that a user only becomes familiar with the first k recommendations. Precision@k
indicates a share of relevant items with respect to the length of a recommended
list (McSherry and Najork, 2008):

P@k =
1

‖U‖ ∑
u∈U

‖RSu(k) ∩ RELu‖
k

. (3)

Recall@k reflects a share of relevant items in the first k suggestions:

R@k =
1

‖U‖ ∑
u∈U

‖RSu(k) ∩ RELu‖
‖RELu‖ . (4)

F1 measure represents a combination of precision and recall:

F1@k =
2

1
P@k +

1
R@k

. (5)

Mean Average Precision (MAP). MAP reflects the order of items in the recom-
mended list. The closer the relevant items to the top of the list, the higher the
value of MAP.

MAP =
1

‖U‖ ∑
u∈U

1
‖Ru‖

k=1

∑
‖Ru‖

‖RSu(k) ∩ RELu‖
k

· rel(iuk), (6)
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where iuk corresponds to the item at position k in the recommendation list gen-
erated to user u, while rel(iuk) equals 1 if item iuk is relevant for user u, and 0
otherwise.

Normalized Discounted Cumulative Gain (NDCG). Precision, Recall, F1 mea-
sure and MAP are used to test binary relevance whether an item is either rele-
vant to a user or not. In contrast, NDCG is applied for multiple relevance levels
(Järvelin and Kekäläinen, 2002).

NDCG@K =
1

‖U‖ ∑
u∈U

NDCGu@K, (7)

NDCGu@K =
DCGu@K
IDCGu@K

, (8)

where DCG is discounted cumulative gain defined as follows:

DCGu@K = rui1 +
‖Ru‖
∑
k=2

ruik
log2(ik)

, (9)

where ruik is the rating user u gave to item ik, which is located at position k in
the recommendation list generated for user u. NDCGu is a normalized DCGu.
IDCGu (ideal DCGu) is the DCGu value calculated for the list with perfect order,
where relevant items are at the beginning of the list.

2.1.4 Diversity metrics

The term diversity has been used in different ways in recommender systems, such
as (a) an average diversity of recommendation lists suggested to all users at a
particular point in time (Castells et al., 2015; Kaminskas and Bridge, 2016); (b)
diversity of recommendations suggested to a user over time (Lathia et al., 2010);
or (c) diversity of all recommendations provided for users at a particular point
in time (Adomavicius and Kwon, 2012). In this dissertation, we refer to diversity
as a property of a recommender system which indicates an average pairwise dis-
similarity of items in recommendation lists suggested by the system to users at a
particular point in time (Castells et al., 2015; Kaminskas and Bridge, 2016).

Diversity is often viewed as a valuable property of a recommender system,
since it has been shown to improve user satisfaction (Ziegler et al., 2005), and
since a diversified recommendation list is likely to contain an item satisfying the
user’s current needs (Kaminskas and Bridge, 2016). For example, a user who
bought the book “The Lord of the Rings” is likely to prefer suggestions of books
in a suitable sense similar to this book, such as “The Hobbit” or “The Silmarillion”
over a recommendation list consisting of only different editions of this book.

Diversity is an average pairwise dissimilarity of items in recommendation
lists offered to users by the system, wherein dissimilarity indicates how dissimilar
two items are (Smyth and McClave, 2001):

Divu@n =
1

n · (n − 1) ∑
i∈RSu(n)

∑
j �=i∈RSu(n)

dissim(i, j), (10)
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where dissim(i, j) is any dissimilarity measure suitable in the current context,
while n is the length of the recommendation list (we assume here that all users
are offered recommendation lists of the same length).

2.1.5 Accuracy-oriented algorithms

In this section, we describe accuracy-oriented algorithms, on which some serendipity-
oriented algorithms are based.

2.1.5.1 User-based collaborative filtering

The User-Based Collaborative Filtering (UBCF) algorithm is a rating prediction
algorithm. The assumption behind UBCF is that if users used to agree on a choice
in the past, then they would agree on that choice again in the future (Su and
Khoshgoftaar, 2009; Ekstrand et al., 2011b). For each target user, the algorithm
selects users (a neighborhood) who rated common items similarly based on a
similarity measure. UBCF then picks items rated by users from the neighborhood,
but not rated by the target user, and estimates ratings the target user might give to
these items. Finally, the algorithm can pick top-n items with the highest predicted
rating and suggest them to the user (Ekstrand et al., 2011b).

To calculate similarities, an algorithm can employ different similarity mea-
sures, such as Manhattan distance, Euclidean distance or cosine distance (Am-
atriain et al., 2011). One of the more common similarity measures is Pearson
correlation (Said et al., 2013).

sim(u, v) =
∑i∈Iu∩Iv(rui − ru)(rvi − rv)√

∑i∈Iu∩Iv(rui − ru)2
√

∑i∈Iu∩Iv(rvi − rv)2
, (11)

where sim(u, v) is a similarity measure calculated for users u and v, while
rv is an average rating among all ratings given by user v in the system. The
prediction for a rating is calculated as follows:

r̂ui = ru +
∑v∈Uu sim(u, v)(rvi − rv)

∑v∈Uu |sim(u, v)| , (12)

where Uu is the neighborhood of user u, Uu ⊆ U. In the next step, the
recommender system can order items according to their predicted ratings and
suggest a list to the user.

2.1.5.2 Item-based collaborative filtering

For most online recommender systems, calculating UBCF is time consuming,
since user base of these systems grows faster than item base (Ekstrand et al.,
2011b). One of the solutions to this problem is Item-Based Collaborative Filtering
(IBCF), which is similar to UBCF. IBCF calculates similarities between items in-
stead of users, generates neighborhoods of most similar items for each item and
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TABLE 3 An example of user-item rating matrix

User Movie 1 Movie 2 Movie 3 Movie 4
Mark 1 - 5 -
Alice 2 1 - 1
David - 5 5 -
Bob - - 3 5
John 5 1 2 -

predicts the rating a particular user will give to an item based on these similari-
ties. Item similarities are more stable than user similarities. IBCF thus allows the
recommender system to pre-compute item similarities and generate recommen-
dations faster than UBCF for most online recommender systems.

Similarly to UBCF, IBCF may employ different similarities measures. Here
we provide an example of cosine similarity. Let each item be represented as a
vector i = (ru1i, ru2i, ..., ru‖U‖i), where ruki is a rating user uk gave to item i.

sim(i, j) =
i · j

‖i‖‖j‖ , (13)

The rating is computed as follows:

r̂ui = ri +
∑j∈Ii

sim(i, j)(ruj − rj)

∑j∈Ii
|sim(i, j)| , (14)

where Ii corresponds to the neighborhood of item i, Ii ⊆ I. Both IBCF and UBCF
are often referred to as k-Nearest Neighbor (kNN) algorithms, since they calculate
similarities between users or items and look for the closest neighbors.

2.1.5.3 Matrix Factorization

Matrix Factorization (MF) or Singular Value Decomposition (SVD) algorithms are
based on latent factors that motivate users to consume items (Cremonesi et al.,
2010; Koren and Bell, 2011). For example, in a movie domain latent factors can
be represented by genre, plot or cast of a movie. However, MF algorithms do not
normally return interpretable latent factors. MF algorithms detect latent factors
to predict user behavior.

MF considers a user-item rating matrix R of the size ‖U‖ × ‖I‖ where each
cell corresponds to the rating a user gave to a specific item (Table 3). The task is
to detect k, k < ‖U‖ ∧ k < ‖I‖ latent factors. We thus assume that three matrices
Σ(k×k), U(‖U‖×k) and Q(‖I‖×k) approximate R, where Σ is a diagonal matrix, while
U and Q are orthogonal matrices:

R̂ = U × Σ × QT, (15)

P = U × Σ, (16)
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R ≈ P × QT = R̂, (17)

where the row pu in P corresponds to latent factors of user u and qi in Q cor-
responds to latent factors of item i. A predicted rating, then, is calculated as
follows:

r̂ui = pu · qT
i . (18)

To calculate coefficients in matrices P and Q, an algorithm employs gradient de-
scent with the following optimization task, which may vary depending on the
modification of the algorithm (Zheng et al., 2015):

min ∑
u∈U

∑
i∈Iu

(rui − pu · qT
i )

2 + λ(|pu|2 + |qi|2) (19)

where λ is a regularization parameter to prevent the situation of the model de-
scribing training data very well, but failing to predict testing data (overfitting).
As the optimization task finishes, the algorithm may recommend items based on
matrix of predicted ratings R̂.

2.2 Serendipity: history and definition

The term serendipity was coined by Horace Walpole in his letter to Sir Horace
Mann in 1754 by describing his unexpected discovery and referencing the fairy
tale, “The Three Princes of Serendip.” Originally, the story was written by Amir
Khusrow in 1302. Cristoforo Armeno translated “The Three Princes of Serendip”
from Persian to Italian and published it in 1557 (Cohn and Russell, 2015). The
story describes the journey of three princes of the country Serendippo, who were
sent by their father to explore the world (Boyle, 2000). Horace Walpole in his
letter explained that the princes were “always making discoveries, by accidents
and sagacity, of things which they were not in quest of” (Remer, 1965).

The term “serendipity” has been recognized as one of the most untranslat-
able words (Martin, 2008). According to the dictionary the term has the following
definitions:

• “The faculty of making fortunate discoveries by accident”3

• “The faculty or phenomenon of finding valuable or agreeable things not
sought for; also: an instance of this”4

• “An aptitude for making desirable discoveries by accident”5

• “The fact of finding interesting or valuable things by chance”6

3 https://www.thefreedictionary.com/serendipity
4 https://www.merriam-webster.com/dictionary/serendipity
5 http://www.dictionary.com/browse/serendipity
6 https://dictionary.cambridge.org/dictionary/learner-english/serendipity
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• “The occurrence and development of events by chance in a happy or bene-
ficial way”7

There is no consensus on definition of serendipity in recommender systems (pa-
per PI). Researchers employ different definitions of the concept. Nguyen et al.
(2017) indicated that serendipitous items are dissimilar to items in the user pro-
file: “Serendipity indicates how different the recommendations are from what
users usually consume.” Meanwhile, Karpus et al. (2017) suggested that serendip-
ity includes unexpectedness and relevance: “Serendipity measures the number of
unexpected and interesting items recommended.”

Most authors agree that serendipity includes three components: relevance,
novelty and unexpectedness. For example, Silveira et al. (2017) stated: “The defi-
nition of serendipity consists of three components: utility, novelty and unexpect-
edness.” Here the term utility has the same meaning as relevance in the context
of this dissertation. However, definitions of unexpectedness and novelty vary
depending on a publication. For example, unexpectedness might mean that the
user does not expect to find the item on their own (Herlocker et al., 2004; Ge et
al., 2010; Hijikata et al., 2009) or that the user does not expect to enjoy the item
(Adamopoulos and Tuzhilin, 2014).

Our definition of serendipity is based on literature review. According to
our definition, serendipitous items are relevant, novel and unexpected to users,
where relevance has one variation, novelty has two variations and unexpected-
ness has four variations. This results in eight variations of serendipity.

2.3 Cross-domain recommender systems

Recommender systems often suffer from data sparsity and the cold start problem
(Cantador et al., 2015). Data sparsity is a very common problem which happens
when a recommender system lacks user ratings to produce quality recommenda-
tions. Indeed, datasets of recommender systems are extremely sparse. For exam-
ple, one of the most common datasets published by GroupLens, 10M MovieLens
(Harper and Konstan, 2015), has sparsity of 1 − #ratings

#items·#users = 1 − 10000054
10681·71567 =

0.986. The cold start problem happens in three kinds of situations (Cantador et
al., 2015): (a) the system has not yet received enough ratings from a new user
to generate recommendations for this user, (b) the system has not yet received
enough ratings from users regarding a new item to recommend this item to users,
or (c) the system has not yet received enough ratings to generate quality recom-
mendations to any users.

One way to alleviate these problems is to employ data from other domains,
where the term domain refers to “a set of items that share certain characteris-
tics that are exploited by a particular recommender system” (Fernández-Tobías
et al., 2012). These characteristics include attributes of items and user ratings.

7 https://en.oxforddictionaries.com/definition/serendipity
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Domains can be represented by pictures, songs, movies, venues, Vimeo8 videos
or YouTube videos. Recommender systems that take advantage of multiple do-
mains are called cross-domain recommender systems.

Cross-domain recommender systems usually use data from one or several
domains (source domains) to improve recommendations in another domain (the
target domain) (Cantador et al., 2015). Cross-domain recommender systems sug-
gest items in the target domain to the users of this domain and use data from both
the target domain and the source domain.

For example, let us assume there are target and source domains. Then, let
IT and UT be a set of items and users of the target domain and IS and US be a set
of items and users of the source domain, respectively.

The target and source domains can overlap in four different ways (Cantador
et al., 2015):

1. Item overlap. Items of the target domain overlap with items in the source
domain: IT ∩ IS �= ∅.

2. User overlap. Users of the target domain overlap with users in the source
domain: UT ∩ US �= ∅. In this case, the domains share user ratings.

3. User and item overlap. Users and items of the target domain overlap with
users and items in the source domain: IT ∩ IS �= ∅ ∧ UT ∩ US �= ∅.

4. No overlap. Neither users nor items of the target domain overlap with users
or items in the source domain: IT ∩ IS = ∅ ∧ UT ∩ US = ∅. In this case, the
domains can share user behavioral patterns or data correlations.

The target and source domains can overlap on different levels depending on the
application scenario (Cantador et al., 2015):

• Attribute level. Items of different domains are of the same type, but have
different attributes. For example, one domain is represented by documen-
taries, while another one is represented by comedies.

• Type level. Items of different domains are of similar type and have common
attributes. For example, one domain is represented by songs, while another
is represented by podcasts. Songs and podcasts share attributes, such as
title and length, while songs also have genres and podcasts have topics.

• Item level. Items of different domains are of different types, but have com-
mon attributes. For example, songs and venues have different types, but
share attributes, such as title or language (language spoken at a particular
venue).

• System level. Items belong to different recommender systems. For example,
products sold on Amazon and products sold on Ebay9 belong to different
systems.

8 https://vimeo.com/
9 https://www.ebay.com/
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In this dissertation, we conduct two experiments involving cross-domain rec-
ommender systems (paper PVI). In the first experiment, we collect data from
three online social networks (Foursquare, Twitter and Instagram) related to the
same users, and improve recommendation accuracy by reducing data sparsity in
Foursquare by using data from Twitter and Instagram. In this case, our target
domain is represented by Foursquare, while our source domains are represented
by Twitter and Instagram. These domains differ on an item level and have an
intersection only in the sets of users.

In our second experiment, we collect data regarding music preferences from
vk.com (target domain) and last.fm (source domain) and improve accuracy and
serendipity in vk.com by enriching our dataset with data from last.fm (paper
PVIII). In this case, only items overlap on a system level.



3 MAIN RESULTS AND CONTRIBUTIONS

In this chapter, we provide answers to our research questions and describe our
contributions.

3.1 Serendipity in recommender systems

According to our literature review, there is no consensus on the definition of
serendipity in recommender systems. Furthermore, there is no evidence that
serendipitous items should be recommended to users, and it is unclear whether
it is feasible to recommend them. We therefore picked eight variations of the
most common definitions of serendipity, compared them in our user study using
two user metrics, and assessed the feasibility and benefits of recommending these
items.

3.1.1 Definitions

According to our literature review and user study, serendipity is a property of a
recommender system which reflects how good a recommender system is at sug-
gesting items that are serendipitous. Serendipitous items are relevant, novel and
unexpected to the users. Serendipity thus consists of the three components: rel-
evance, novelty and unexpectedness, where relevance has one variation, novelty
has two variations and unexpectedness has four variations, which results in eight
variations of definitions of serendipity.

The exact definition of relevance usually depends on a particular applica-
tion scenario. For example, in the movie domain, we might regard a movie as
relevant if the user watched the whole movie. In another application scenario,
to consider a movie relevant to the user, we might need a user to assign a high
rating to the same movie. We employ the wider definition of relevance: “an item
is relevant to a user if the user expresses or will express their preference for the
item in the future by liking or consuming the item depending on the application
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scenario” (paper PIV).
Novelty reflects familiarity of a user with an item:

1. Strict novelty. The user has never heard about the item (Kapoor et al., 2015).

2. Motivational novelty. The user has heard about the item, but has not con-
sumed it (Kotkov et al., 2018; Silveira et al., 2017).

The definition of unexpectedness depends on the kind of user expectations. The
user might not expect an item in different ways:

1. Unexpectedness (relevant). The user does not expect the item to be relevant to
them (Adamopoulos and Tuzhilin, 2014).

2. Unexpectedness (find). The user would not have found the item on their own
(Adamopoulos and Tuzhilin, 2014; Herlocker et al., 2004; Ge et al., 2010;
Hijikata et al., 2009; Taramigkou et al., 2013).

3. Unexpectedness (implicit). The item is significantly dissimilar to items the
user usually consumes (Kaminskas and Bridge, 2014; Zhang et al., 2012;
Kotkov et al., 2016; Nguyen et al., 2017).

4. Unexpectedness (recommend). The user does not expect the item to be recom-
mended to them (Kotkov et al., 2018).

Table 4 demonstrates components included in each definition. For example, mo-
tivationally serendipitous (find) items are items that (a) users enjoyed consum-
ing (relevant), (b) users consumed, because these items were recommended to
the users (motivational novelty) and (c) users would not have found these items
on their own (unexpectedness (find)). Multiple variations of serendipity com-
ponents result in eight definitions of serendipity: motivational serendipity (rele-
vant), motivational serendipity (find), motivational serendipity (implicit), moti-
vational serendipity (recommend), strict serendipity (relevant), strict serendipity
(find), strict serendipity (implicit) and strict serendipity (recommend).

To evaluate our variations of serendipity, we conducted a user study (paper
PII) and compared serendipity variations’ results between each other in terms
of user metrics, in which serendipitous items are believed to achieve high re-
sults: preference broadening and user satisfaction. We excluded the user met-
ric of overcoming the overspecialization problem through the design of our user
study. The overspecialization problem happens in content-based recommender
systems, while we conducted an experiment in a recommender system which
mostly uses collaborative filtering algorithms.

RQ1. What is serendipity in recommender systems?
The serendipity of a recommender system is that property, which indicates

how good the recommender system is at suggesting items that are serendipitous.
Serendipitous items are relevant, novel and unexpected to the users, where rele-
vance has one variation, novelty has two variations and unexpectedness has four
variations resulting in eight variations of serendipity definitions. These varia-
tions are explained above.
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TABLE 4 Definitions of serendipity. The sign “+” indicates inclusion of a component to
the definition of serendipity.

Kind of
serendipity

Relevance
Strict
novelty

Motiva-
tional
novelty

Unexpected-
ness
(relevant)

Unexpected-
ness
(find)

Unexpected-
ness
(implicit)

Unexpected-
ness
(recommend)

Strict
serendipity
(relevant)

+ + +

Strict
serendipity
(find)

+ + +

Strict
serendipity
(implicit)

+ + +

Strict
serendipity
(recommend)

+ + +

Motivational
serendipity
(relevant)

+ + +

Motivational
serendipity
(find)

+ + +

Motivational
serendipity
(implicit)

+ + +

Motivational
serendipity
(recommend)

+ + +

3.1.1.1 Effects of variations of novelty and unexpectedness

We conducted the user study in MovieLens to measure the effects of variations of
unexpectedness, novelty and serendipity on users (section 1.3.2). Table 5 demon-
strates statements we asked users to rate regarding each movie in the survey.
Each statement was rated on the scale with the following six values (5-point
Likert-scale and one “don’t remember” option): “strongly agree,” “agree,” “nei-
ther agree nor disagree,” “disagree,” “strongly disagree” and “don’t remember.”
We considered that a movie corresponded to a serendipity component (such as
strict novelty or unexpectedness (relevant)) or a metric (such as user satisfaction
or preference broadening), when the user rated a corresponding statement with
“agree,” or “strongly agree,” except for unexpectedness (relevant). Due to the
formulation of the statement, for this variation of unexpectedness we considered
that a movie corresponded to this variation if the ratings were “neither agree nor
disagree,” “disagree” or “strongly disagree.” All movies we asked users about in
our survey were relevant to those users, since we picked only movies these users
gave at least 3.5 stars out of 5.

To investigate the effects of variations of novelty, unexpectedness and serendip-
ity, we conducted pairwise comparisons of item groups belonging to different
variations. We ran cumulative link mixed-effect regression models (for more de-
tails please see paper PII) and conducted statistical tests on our findings. The
following groups of relevant items were compared:
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TABLE 5 Statements that we asked users to rate regarding each movie.

Serendipity component Statement

Strict novelty
The first time I heard of this movie was when MovieLens
suggested it to me.

Motivational novelty MovieLens influenced my decision to watch this movie.
Unexpectedness
(relevant)

I expected to enjoy this movie before watching it for the
first time.

Unexpectedness
(find)

This is the type of movie I would not normally discover
on my own; I need a recommender system like MovieLens
to find movies like this one.

Unexpectedness
(implicit)

This movie is different (e.g., in style, genre, topic) from
the movies I usually watch.

Unexpectedness
(recommend)

I was (or, would have been) surprised that MovieLens
picked this movie to recommend to me.

Preference
broadening

Watching this movie broadened my preferences. Now
I am interested in a wider selection of movies.

User satisfaction I am glad I watched this movie.

• Each novelty variation against its corresponding non-novelty variation

• Each unexpectedness variation against its corresponding non-unexpectedness
variation

• Each serendipity variation against its corresponding non-serendipity varia-
tion

• Each novelty variation against the other novelty variation

• Each unexpectedness variation against each other unexpectedness variation

• Each serendipity variation against each other serendipity variation

We found that relevance, in combination with any variation of unexpectedness
or novelty, broadens user preferences more than relevance without a correspond-
ing variation. Among items that users eventually gave high ratings to, items that
users did not expect to like or to be recommended to them before consumption
were less enjoyable. Users enjoyed items more when they expected to like the
items and to have them recommended (or had no expectations for the items) be-
fore consuming them.

Variations of unexpectedness are different in terms of preference broaden-
ing and user satisfaction. Unexpectedness (find) and unexpectedness (implicit)
outperform unexpectedness (relevant) in terms of both preference broadening
and user satisfaction. Meanwhile, unexpectedness (find) outperforms unexpect-
edness (implicit) in terms of user satisfaction. Unexpectedness (find) includes
items that users thought they would not find themselves. Unexpectedness(implicit)
indicates items that users considered dissimilar to what they usually consume,
while unexpectedness (relevant) indicates items that users did not expect to like
prior to consuming.
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3.1.1.2 Effects of serendipity variations

We found that serendipitous items outperform relevant non-serendipitous items
in terms of preference broadening, but we could not draw any conclusions re-
garding the pairwise comparisons of serendipity variations in terms of preference
broadening. In particular, items that are serendipitous according to every varia-
tion of serendipity except for motivational serendipity (relevant) broaden user
preferences more than corresponding relevant non-serendipitous ones.

Our results suggested that different kinds of serendipity differ in terms of
user satisfaction, but the differences in results regarding comparisons of serendip-
itous items and corresponding non-serendipitous ones were statistically insignif-
icant. In particular, we found that in terms of user satisfaction, motivational
serendipity (find) outperforms strict serendipity (implicit) which, in turn, out-
performs motivational serendipity (relevant). Meanwhile, strict serendipity (rec-
ommend) outperforms motivational serendipity (recommend) in terms of user
satisfaction.

RQ2. What are the effects of items corresponding to different variations of novelty, un-
expectedness and serendipity on users?

Among relevant items, different variations of novelty, unexpectedness and
serendipity generally have positive effects on preference broadening. Meanwhile,
some of these variations have different effects on preference broadening and user
satisfaction in comparison to each other.

3.1.2 Rareness of serendipitous items

In our user study, we selected movies that users watched on MovieLens, which
allowed us to assess the number of serendipitous items in a typical collaborative
filtering-based recommender system (section 1.3.2) (paper PII). Our sample was
biased, as we selected unpopular relevant movies and users who had been using
the system for at least one month. The selected movies were more likely to be
serendipitous than other movies in the system according to our literature review.
Our sample only represented 0.008% of ratings ( 2146

25650696), 0.8% of users ( 475
58855) and

0.6% of movies ( 1689
278477). We thus provided a rough upper boundary estimation

of the number of serendipitous items in a typical collaborative filtering-based
recommender system.

Among 2,146 ratings that users gave their feedback on, 302 (14%) were
serendipitous according to at least one variation. The entire database of Movie-
Lens contained 25,650,696 ratings, and 15,854,339 (or 61%) of them were higher
than 3.5 stars (we considered these ratings relevant), which suggested that up to
8.5% (0.14 ∗ 0.61 ≈ 0.085) were serendipitous. We inferred the number of movie
recommendations that users took in our survey based on user ratings regard-
ing novelty (strict and motivation novelty in table 5). Our samples included 437
movies (user-movie pairs), and 302 (69%) of them were serendipitous accord-
ing to at least one definition. The information regarding which recommended
MovieLens movies users watched and which of them users enjoyed watching was
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missing. We thus provided a rough upper boundary estimation that up to 69%
of recommendations provided by MovieLens that users watched were serendip-
itous according to at least one variation. For the rarest kind of serendipity, strict
serendipity (recommend), up to 1.8% were serendipitous among all the movies in
MovieLens and 14.4% were serendipitous among recommended and taken ones.
For the most frequent kind of serendipity, strict serendipity (find), these numbers
were 5.1% and 41.4%, respectively.

RQ3. How rare are serendipitous items among items rated by the users in a typical col-
laborative filtering-based recommender system? To what extent does this kind of system
help users find these items?

We assessed the ratio of serendipitous items in a typical collaborative filtering-
based recommender system based on our user study (paper PII). According to
our estimation, among all items users rate in a typical collaborative filtering-
based recommender system, up to 8.5% are serendipitous according to at least
one variation, while among recommendations provided by the system and taken
by users, this proportion is as high as 69%. For the rarest kind of serendipity, strict
serendipity (recommend), these ratios are 1.8% and 14.4%, while for the most
frequent kind of serendipity, strict serendipity (find), they are 5.1% and 41.4%,
respectively.

3.1.3 Assessing serendipity

In the following section, we first present ways to assess serendipity according to
the literature, and then present those results of our user study related to measur-
ing serendipity in an offline setting and designing a serendipity-oriented recom-
mendation algorithm.

3.1.3.1 Online evaluation

An online evaluation of serendipity requires asking a user questions regarding
serendipity. This can be done in two ways: (1) researchers can ask a user whether
the latter finds a particular item serendipitous or not, or (2) researchers can ask a
user several questions, where each question corresponds to one or several com-
ponents of serendipity. For example, in our user study we inquired for serendip-
ity by asking several questions, one question per component variation. Asking
a single question about serendipity might make results uncertain, as the concept
of serendipity is complex and the users might interpret the complex descriptions
in different ways. Meanwhile, asking users to answer several questions is more
demanding for them than just one question.

3.1.3.2 Offline evaluation and evaluation metrics

In the offline evaluation, researchers simulate user behavior in the system by run-
ning recommendation algorithms on datasets that were generated by real users
while they were using the system in the past. Researchers split a dataset into two
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parts: training and test. An algorithm receives the training part as input data,
then returns its predictions for the test data. Researchers simulate user behavior
by comparing predictions of the algorithm with the test part of the dataset. The
performance of the algorithm is measured with evaluation metrics.

Evaluation metrics to assess serendipity offline are divided into two cate-
gories (paper PI): component metrics and full metrics. Component metrics mea-
sure serendipity components separately, while full metrics measure serendipity
as a whole.

For example, Vargas and Castells (2011) proposed a component metric which
measures novelty and neglects other components of serendipity:

nov(i, u) = 1 − ‖Ui‖
‖U‖ , (20)

where Ui corresponds to the set of users who rated item i, Ui ⊆ U. Another
serendipity evaluation metric was originally proposed by Murakami et al. (2008)
and later modified by other researchers. The following is one of the modifications
proposed by Ge et al. (2010):

serge =
‖Ru ∩ RELu \ PM‖

‖Ru‖ (21)

where PM is the set of items recommended by a primitive model (recommender
system). The primitive recommender system is chosen arbitrarily and required
to provide suggestions with low serendipity.

Both component metrics and full metrics provide estimations of serendipity,
but might cause mistakes in the assessment. A combination of component met-
rics might not measure serendipity of a system, as high values of separate metrics
can be caused by different items, where each item has a high value in terms of one
metric, but low values in terms of other metrics. Full metrics can also be confus-
ing, since most of them depend on a primitive recommender system, while there
is no agreement on this system (Kaminskas and Bridge, 2014; Kotkov et al., 2016;
De Pessemier et al., 2014). Different primitive systems result in different values of
the metric. Furthermore, full metrics disregard multiple judgments of serendip-
ity. In terms of these metrics, an item is either serendipitous or not, while in a
real life scenario multiple levels of judgement may appear similar to relevance
(Järvelin and Kekäläinen, 2002).

RQ4. How can we assess serendipity in recommender systems?

Serendipity in a recommender system can be assessed online or offline. In
an online setting, researchers ask users whether a particular item is serendipitous
with one or several questions. In an offline setting, researchers simulate user
behavior using pre-collected datasets and measure the performance of algorithms
with serendipity evaluation metrics. These metrics either capture serendipity as
a whole (full metrics) or capture different components of the concept (component
metrics).
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3.1.3.3 Features important for detecting serendipitous items

To design a serendipity-oriented algorithm and a serendipity metric, we first
need to detect characteristics (or features) useful in detecting serendipitous items.
Items can have many features, such as popularity or similarity to items in the pro-
file of a particular user. However, such features might have different importance
for detecting serendipitous items.

To find features important for detecting serendipitous items, we ran a cumu-
lative link mixed-effect regression model (for more details please see paper PII)
and statistical tests. We discovered four features that are important for detection
of serendipitous movies:

• Predicted rating. MovieLens displays predicted ratings along with informa-
tion about movies. The target user can choose an algorithm, which predicts
their ratings. The majority of users prefer Item-Based Collaborative Filter-
ing (IBCF) and Matrix Factorization (MF) algorithms (section 2.1.5).

• Popularity. The feature is calculated as follows:

logpopi = ln(‖Ui‖), (22)

where ‖Ui‖ is the number of ratings received by movie i during the year
2016 in MovieLens (the study was conducted in 2017). We picked the num-
ber of ratings during that year instead of the overall number of ratings, as
these ratings better correspond to novelty of a movie for a user. Many older
movies have received more ratings, as they had a long time to gather them.
However, these old movies were likely to be unfamiliar to active users in
the system. More well-known movies, such as The Shawshank Redemption,
Toy Story and The Matrix are still among the most popular movies according
to the popularity metric using ratings from the year 2016.

• Average tag-based similarity to the user profile. To calculate the average
tag-based distance we employed the tagging model tag genome (Vig et al.,
2012), which is based on tags users assign to movies themselves. We calcu-
lated the distance as follows:

sim_pro f (u, i) =
1

‖Iu‖ ∑
j∈Iu,j �=i

sim(i, j), (23)

where sim(i, j) is the similarity measure of weighted cosine similarity in
(Vig et al., 2012).

• Average collaborative similarity to user profile. We chose this feature be-
cause this is a common similarity measure in the literature on serendipity
(Kaminskas and Bridge, 2014; Zheng et al., 2015). We calculated this feature
according to Equation 23, where sim(i, j) is the cosine similarity (equation
13) between movie rating vectors i and j.
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Our results only indicate that these four features are important for detecting
serendipitous movies. However, for most features, our results do not suggest that
serendipitous movies tend to have particular value ranges. For example, we can-
not draw a conclusion that serendipitous movies are usually unpopular, but we
can conclude that popularity is an important feature for detecting serendipitous
movies. Our results allowed us to draw a conclusion regarding value ranges only
for the predicted rating feature. According to our results, serendipitous movies
tend to have a higher rating when predicted by a collaborative filtering algorithm,
such as IBCF or MF.

Our findings mostly correspond to our literature review (paper PI), which
suggests that popularity and similarity of items to items users consumed in the
past are features that make items serendipitous. In particular, our literature re-
view suggests that serendipitous items are generally less popular and similar to
a user profile than non-serendipitous ones, but we could not draw these conclu-
sions based on our results.

RQ5. What are effective features for detecting serendipitous items? What are the value
ranges of these features for typical serendipitous items?

According to our study, features that are important for detecting serendip-
itous items are predicted rating, popularity, content and collaborative similarity
to items in a user profile. Serendipitous items have higher ratings predicted by
collaborative filtering algorithms than corresponding non-serendipitous ones.

3.1.4 Serendipity-oriented recommendation algorithms

Serendipity-oriented algorithms can be categorized based on data they employ
or based on their architecture. Categorization based on the data involves three
categories: collaborative-based filtering, content-based filtering and a hybrid cat-
egory. There are two categorizations based on the architecture of algorithms: de-
sign categorization and paradigm categorization.

Design categorization includes three categories:

1. Reranking algorithms (Reranking). To improve serendipity, an algorithm
can leverage ratings predicted by an accuracy-oriented algorithm and rerank
the output of a recommender system.

2. Serendipitous-oriented modification (Modification). This category repre-
sents modifications of accuracy-oriented algorithms. The main difference
between modification and reranking is that reranking algorithms can use
any accuracy-oriented algorithms that assign ranking scores to items, while
modifications can only be applied to a particular algorithm. For example,
an MF algorithm with a different objective function than the original algo-
rithm (Zheng et al., 2015) can be regarded as a modification.

3. Novel algorithms (New). Serendipity-oriented algorithms, which do not
correspond to reranking or modification categories, belong to this category.
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Paradigm categorization is based on the step responsible for the improvement of
serendipity:

• Pre-filtering. A recommendation algorithm preprocesses the input data for
an accuracy-oriented algorithm to improve serendipity.

• Post-filtering. A recommendation algorithm reranks results of accuracy-
oriented algorithms.

• Modeling. Actions for serendipity improvement can be taken in the phase
of generating recommendations.

3.1.4.1 Utility model

An example of a reranking algorithm that uses the post-filtering paradigm is the
algorithm based on utility (Adamopoulos and Tuzhilin, 2014). The algorithm or-
ders items in a recommendation list based on their scores. For each item, the score
is based on the combination of two metrics: unexpectedness utility and quality
utility. Quality utility is based on ratings provided by an accuracy-oriented rec-
ommendation algorithm.

To calculate unexpectedness utility, the algorithm generates a set of expected
items for the target user. The set includes items in the target user profile and items
in a suitable way similar to these items. The unexpectedness utility is based on
similarity of an item to items in the set of expected items.

3.1.4.2 K-furthest neighbor

An example of a modification algorithm that uses the pre-filtering paradigm is
the k-Furthest Neighbor (kFN) algorithm (Said et al., 2013). kFN is based on
UBCF (section 2.1.5.1). To overcome the popularity bias of recommendations
generated by UBCF, kFN suggests items disliked by users dissimilar to the tar-
get user. The algorithm uses the dissimilarity measure, which is calculated based
on a similarity measure, such as Pearson correlation (equation 11) or cosine sim-
ilarity (equation 13), where the ratings of one of the two users are inverted. For
example, if a user rated items (i1, i2, i3) with ratings (1, 1, 4), the inverted ratings
for this user would be (5, 5, 2).

3.1.4.3 Random walk with restarts enhanced with knowledge infusion

An example of an algorithm that belongs to the category of novel serendipity-
oriented algorithms and uses the modeling paradigm is Random Walk With Restarts
Enhanced With Knowledge Infusion (RWR-KI) (de Gemmis et al., 2015). The al-
gorithm orders items in the recommendation list according to their relatedness to
items in the target user profile. The relatedness is inferred by Random Walk With
Restarts (RWR) operating on a similarity graph. In the similarity graph, nodes
correspond to items, while weighted edges correspond to similarities between
connected nodes. The weights of the edges correspond to similarity values. RWR
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receives the similarity graph and the set of starting nodes, Iu as input values
and returns the relatedness of each item to the items from the target user pro-
file. RWR-KI orders items according to their relatedness scores, removes items
already rated by the user and suggests the recommendation list to the user.

RQ6. What are the state-of-the-art recommendation algorithms that suggest serendipi-
tous items?

In our literature review (paper PI), we overviewed serendipity-oriented al-
gorithms and provided two classifications: based on architecture and based on
paradigms.

3.1.5 Challenges and future directions

Designing a serendipity-oriented recommendation algorithm requires to choos-
ing suitable objectives. It is therefore necessary to investigate how to assess
serendipity in recommender systems, which requires a definition of the concept.
Serendipity is difficult to investigate because (a) it contains emotional dimensions
and is therefore very unstable and (b) the lack of observations makes it difficult to
make assumptions regarding serendipity that would be reasonable in most cases.

RQ7. What are the challenges of serendipity in recommender systems?

According to our conference literature review (paper PIII), suggesting serendip-
itous items involves four main challenges: disagreement on the definition of
serendipity, difficulty in measurement, presence of an emotional dimension and
lack of serendipitous encounters.

RQ8. What are the future directions of serendipity in recommender systems?

In our literature review (paper PI), we indicated four future directions of
serendipity-oriented algorithms. The first direction indicates that serendipity-
oriented algorithms and evaluation metrics should take into account both item
popularity and similarity to items in a user profile. The second direction involves
context-aware recommender systems (Adomavicius and Tuzhilin, 2015). Because
context-aware recommender systems can pick items based on the context rather
than user tastes, they might suggest more serendipitous items. The third direc-
tion includes cross-domain recommender systems (Cantador et al., 2015). Having
information from additional domains, a recommender system can infer which
items are familiar to a user, suggest items relevant to the user and select items
that fit the context. The fourth direction is dedicated to group recommendations
(Efthymiou et al., 2017; Masthoff, 2015). It is difficult to suggest items serendipi-
tous to each user in a group of individuals, because the tastes of each user must
be considered.
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3.2 Serendipity in cross-domain recommender systems

To investigate serendipity and accuracy in cross-domain recommender systems,
we conducted three sets of offline experiments. We conducted the first set of ex-
periments to investigate whether source domains can improve accuracy in the
target domains, when the domains differ on an item level and only sets of users
overlap (paper PVI). We collected data from three online social networks: Twitter,
Foursquare and Instagram. We used these data to improve recommendation ac-
curacy in Foursquare. We extracted four feature spaces from each domain: venue
categories (Foursquare), Linguistic Inquiry and Word Count (Twitter) (Francis
and Booth, 1993), Latent Dirichlet Allocation (Twitter) (Blei et al., 2003) and im-
age concepts (Instagram). We used these feature spaces to calculate user sim-
ilarities in User-Based Collaborative Filtering (UBCF), which generated recom-
mendations of Foursquare venue categories to users. We then combined outputs
from UBCF employing each feature space and achieved an increase in accuracy
of recommending venue categories to users.

In the second set of experiments (paper PVII), we investigated whether a
source domain can improve accuracy in the target domain when only items over-
lap on a system level. We collected data from the online social network vk.com
and music recommendation service last.fm regarding audio recordings to which
users of these websites listen. We employed Item-Based Collaborative Filtering
(IBCF) and content based filtering to generate recommendations of audio record-
ings to users in the dataset from vk.com. We then added different portions of data
from last.fm to the data from vk.com and observed an increase of recommenda-
tion accuracy in the dataset collected from vk.com. Our results also suggested
that with the increase of data from the source domain, the accuracy in the target
domain increases.

Finally, in the third set of experiments (paper PVIII), we investigated whether
a source domain can improve both accuracy and serendipity in the target domain
when only items overlap on a system level. We conducted the same experiments
as in the second set of experiments. The main differences were that we also mea-
sured serendipity of the generated recommendations and used slightly different
amounts of data from the source domain. Our results demonstrated an increase
of accuracy and serendipity in the target domain, when the data from both do-
mains were combined.

RQ9. Can source domains improve accuracy in the target domain when only users over-
lap?

According to our results (paper PVI), source domains can improve accu-
racy in a target domain when only users overlap. In our experiment, we used
data of the same users collected from the three popular online social networks:
Foursquare, Instagram and Twitter. We improved recommendation performance
in Foursquare by combining user data from Instagram, Twitter and Foursquare.

RQ10. Can a source domain improve accuracy in the target domain when only items
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overlap?

According to our results (papers PVII and PVIII), a source domain can im-
prove accuracy in the target domain when only items overlap on a system level.
Our results suggest that the integration of the source domain results in a decrease
of accuracy for content-based filtering and an increase of accuracy for collabora-
tive filtering. Our results indicate that the more items overlap in source and target
domains with respect to the whole dataset the higher the improvement of accu-
racy for collaborative filtering.

RQ11. Can a source domain improve serendipity in the target domain when only items
overlap?

According to our results (paper PVIII), the source domain can improve serendip-
ity in the target domain when only items overlap on a system level for both col-
laborative filtering and content-based filtering algorithms.

3.3 Contributions

In this section, we describe the four contributions of this dissertation: a definition
of serendipity, serendipity evaluation metric, serendipity-oriented algorithm and
serendipity-oriented dataset.

3.3.1 A definition of serendipity in recommender systems

Based on the literature review (paper PI), we operationalized eight variations of
serendipity in recommender systems (RQ1). Each variation includes three com-
ponents: relevance, novelty and unexpectedness, where novelty and unexpect-
edness have multiple variations.

3.3.2 A serendipity evaluation metric

To measure serendipity in an offline experiment, we designed a serendipity met-
ric prior to our user study. The metric is based on assumptions regarding serendip-
ity from our literature review (paper PI). Our serendipity metric is based on a tra-
ditional full metric that was originally proposed by Murakami et al. (2008). Al-
though the traditional serendipity metric successfully captures the relevance and
popularity of recommendations, it disregards similarity of recommendations to
items in the user profile. Our metric takes this feature into account by using the
set of potentially unexpected items UNEXPu. This set contains items that have
features unfamiliar to the user (the user has not yet rated any items with these
features). We add an item to UNEXPu, if this item has at least one feature new to
user u. Our serendipity metric is calculated as follows:

Seru@n =
‖(RSu(n)\PM) ∩ RELu ∩ UNEXPu‖

n
, (24)
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where PM is the set of items recommended by a primitive recommender system
(more details in section 3.1.3.2). We tested our serendipity metric on two Movie-
Lens datasets: 100K ML and HetRec. The inclusion criteria for the set can vary
depending on the application scenario. In our experiments, we populated the set
of unexpected items, UNEXPu, with movies that have at least one genre new to
the target user.

3.3.3 A serendipity-oriented greedy algorithm

In papers PIV and PV, we proposed the Serendipity-Oriented Greedy (SOG) al-
gorithm, which is based on the Topic Diversification (TD) algorithm. According
to our classification (section 3.1.4), the SOG algorithm is a reranking algorithm
that uses the post-filtering paradigm.

Algorithm 1: Description of the SOG algorithm using pseudocode
Input : RSu(n): top–n recommendations for user u
Output: Res: recommendation list
r̂ui: predicted rating of item i for user u,
Res =<>;
C = RSu(n);
i′ = i with max r̂ui, i ∈ C;
Res[0] = i′;
C = C \ {i′};
while ‖Res‖ < n do

B = set(Res);// set converts a list to a set
i = i with max g(u, i, B), i ∈ C;
Add i′ to the top of Res;
C \ {i′};

end

The main idea of both reranking algorithms, SOG and TD, is described by
Algorithm 1. The reranking algorithm receives a set of n recommendations pro-
vided by an accuracy-oriented algorithm RSu(n) (table 2) along with ratings pre-
dicted for these recommendations rui. The reranking algorithm initializes the set
of candidate items, C, with the set of top-n recommendations, RSu(n). The algo-
rithm then iteratively removes items from the candidate set, C, and adds them to
the top of the recommendation list Res. The algorithm chooses all the items from
the candidate set C, except for the first item, based on the value of scoring func-
tion g(u, i, B). The algorithm chooses the first item based on the rating predicted
by the accuracy-oriented algorithm.

The main difference between the SOG and TD algorithms is the scoring
function g(u, i, B). In the case of TD, the function represents an adjustable trade-
off between diversification of the list Res and predicted relevance of items, while
the function employed by the SOG algorithm is an adjustable trade-off between
diversification, relevance and similarity of items to items in the target user profile.
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For the SOG algorithm, the function is calculated as follows:

g(u, i, B) = (1 − ΘF) · r̂ui + ΘF · c(u, i, B), (25)

c(u, i, B) = diB + ΘS · ( max
f∈(Fi\Fu)

(r̂u f ) + unexpui), (26)

where ΘS and ΘF are a serendipity weight and damping factor responsible for
serendipity and diversity of the recommendation list Res, respectively. Rating r̂u f
is a predicted rating of feature f for user u (table 2), which represents how likely
user u is to enjoy consuming an item having feature f . If the target user is familiar
with all the features of our dataset Fi\Fu = ∅, then max f∈(Fi\Fu)(r̂u f ) = 0. Fea-
ture ratings and item ratings are normalized to the range [0, 1]. Unexpectedness
unexpui depends on the number of features new to the user u that appear in item
i:

unexpu,i =
‖Fi\Fu‖
‖F\Fu‖ , (27)

where Fi and Fu are feature sets of item i and of items rated by user u, respectively.
Dissimilarity diB indicates how dissimilar item i is to the set of items added to the
recommendation list, B. Dissimilarity is responsible for diversification of recom-
mendation list Res and is calculated as follows:

diB =
1

‖B‖ ∑
j∈B

1 − jacc(i, j), (28)

Where jacc(i, j) is the Jaccard similarity between items i and j based on item fea-
tures:

jacc(i, j) =
‖Fi ∩ Fj‖
‖Fi ∪ Fj‖ . (29)

Feature ratings r̂u f are predicted by the MF algorithm, which receives a user-
feature matrix as an input. In the user-feature matrix, each feature rating is an
average of ratings given by a user to all items that have this feature:

ru f =
1

‖Iu f ‖ ∑
i∈Iu f

rui, (30)

where Iu f is a set of items that have feature f and that are rated by user u. To
predict a feature rating, we run the MF algorithm on the user-feature matrix.

The computational complexity of the algorithm is O(n3) (excluding precal-
culation), where n is the number of items in the top-n recommendations RSu(n).

Our algorithm has three key differences when compared to TD:

• The SOG algorithm takes into account relevance scores instead of positions
of items in the top-n recommendations provided by an accuracy-oriented
algorithm.

• The SOG algorithm employs not only the damping factor responsible for
diversity, but also the serendipity weight.
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• The SOG algorithm predicts how likely a user is to like a particular feature
of a recommended item.

The SOG algorithm has four main advantages:

1. The objective function of the algorithm corresponds to the common def-
inition of serendipity. The algorithm takes into account relevance by us-
ing ratings provided by an accuracy-oriented algorithm, unexpectedness by
picking items with features new to users and novelty by picking items that
users are likely to be unfamiliar with, because they contain features new to
the users.

2. The SOG algorithm takes into account both serendipity and diversity.

3. The SOG algorithm can receive ratings from any accuracy-oriented algo-
rithm, which might be useful for an online recommender system. The rerank-
ing can be done on the client side of a client-server application.

4. The SOG algorithm is flexible and can be adjusted with parameters ΘF and
ΘS. The parameters can have different values for different users.

We evaluated our algorithm and compared it with the state-of-the-art serendipity-
oriented algorithms and TD using two datasets, 100K ML (Harper and Konstan,
2015) and HetRec (Cantador et al., 2011). According to our results, our algorithm
outperforms the state-of-the-art serendipity-oriented algorithms in terms of di-
versity and serendipity, but underperforms them in terms of accuracy. Compared
with TD, our algorithm has higher accuracy and serendipity, but slightly lower
diversity.

3.3.4 A serendipity-oriented dataset

In our user study, we surveyed users regarding serendipity in MovieLens. To
inspire future efforts on serendipity in recommender systems, we published the
dataset collected during the study. The dataset is available on the GroupLens
website1.

Note that the published dataset is slightly different from the one used in
paper PII, because these data were updated, while we were reporting the results.

The dataset contains user answers to our questions and additional informa-
tion, such as past ratings of these users, recommendations they received before
replying to our survey and movie descriptions. The dataset contains user ratings
given from November 11, 2009, until January 6, 2018. The dataset was generated
on January 15, 2018. Overall, there are 10,000,000 ratings. The dataset contains
the following information:

• User answers. We included user answers to our survey. The survey in-
cluded eight statements (one statement for user satisfaction, one for pref-
erence broadening, two for novelty and four for unexpectedness) and one

1 https://grouplens.org/datasets/serendipity-2018/
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question asking how long ago the user watched the movie (section 1.3.2).
Overall, we published the answers of 481 users regarding 2,150 ratings
(user-movie pairs).

• User ratings. The dataset also contains user ratings given or updated (users
can update their ratings at any time) from November 11, 2009, until January
6, 2018. The dataset contains all the ratings of the 481 users given in the
specified period of time.

• User recommendations. We also included the last eight recommendations
that the 481 users received prior to the user study.

• Movie descriptions. We provided description of each movie used in the
dataset. The movie descriptions included release dates, lists of directors,
cast, genres and IDs.

• Tag genome description. We included the tag genome description for 11,005
movies in our dataset, because these data were available only for these
movies. The tag genome represents a number of features inferred from tags
and ratings users assign to movies in MovieLens.



4 SUMMARY OF THE ORIGINAL ARTICLES

In this chapter, we provide summaries of articles included in this dissertation.

4.1 Article PI: “A survey of serendipity in recommender systems.
Knowledge-Based Systems”

Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. A survey of serendipity
in recommender systems. Knowledge-Based Systems, 111:180-192, 2016. doi:
http://dx.doi.org/10.1016/j.knosys.2016.08.014.

Research problem

In this paper, we present a literature review on serendipity in recommender sys-
tems. We review (a) definitions of serendipity (RQ1), (b) the state-of-the-art
serendipity-oriented recommendation algorithms (RQ6), (c) serendipity metrics
(RQ4) and (d) future directions of the topic (RQ8).

Results

We found that there was no agreement on the definition of serendipity in recom-
mender systems, but most researchers indicated that serendipity includes rele-
vance, novelty and unexpectedness. We developed two categorizations for seren-
dipity-oriented recommendation algorithms based on algorithm architecture (re-
ranking, modification and new) and on the paradigm (pre-filtering, modeling and
post-filtering). We developed a categorization for serendipity metrics: full met-
rics and component metrics. Finally, we provided future directions of serendipity
in recommender systems: (a) further development of serendipity-oriented algo-
rithms and serendipity evaluation metrics, (b) serendipity in context-aware rec-
ommender systems, (c) serendipity in cross-domain recommender systems and
(d) serendipity in group recommendations.
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Author’s contribution

The author conducted the literature review and completed the first draft of the
article. The coauthors provided their comments regarding the content and orga-
nization of the article. The final version of the article was written in close collab-
oration with the coauthors.

4.2 Article PII: “Investigating Serendipity in Recommender Sys-
tems Based on Real User Feedback”

Denis Kotkov, Joseph A. Konstan, Qian Zhao, and Jari Veijalainen. Investigating
Serendipity in Recommender Systems Based on Real User Feedback. Proceedings
of SAC 2018: Symposium on Applied Computing, 2018 (Accepted).

Research problem

This paper presents (a) variations of novelty, unexpectedness and serendipity that
are supported by the literature review (RQ1); (b) the effects of these variations on
users (RQ2); (c) upper boundary estimation of the proportion of serendipitous
items (RQ3) and (d) features important for detecting serendipitous items (RQ5).

Results

To investigate variations of novelty, unexpectedness and serendipity, we con-
ducted the user study in MovieLens, where we surveyed users regarding movies
they found serendipitous. The study allowed us to collect and publish the first
serendipity-oriented dataset.

We found that among relevant items, different variations of novelty, unex-
pectedness and serendipity generally have positive effects on preference broad-
ening. Meanwhile, these variations have different effects on preference broaden-
ing and user satisfaction in comparison to each other.

Based on our user study, we assessed the proportion of serendipitous items
in a typical collaborative filtering-based recommender system. According to our
estimation, among all items users rate in a typical collaborative filtering-based
recommender system, up to 8.5% are serendipitous according to at least one
variation, while among recommendations provided by the system and taken by
users, this proportion is up to 69%. For the rarest kind of serendipity, strict
serendipity (recommend), these ratios are 1.8% and 14.4%, while for the most
frequent kind of serendipity, strict serendipity (find), they are 5.1% and 41.4%,
respectively.

We found that features important for detecting serendipitous items are pre-
dicted ratings, popularity, content and collaborative similarity to items in a user
profile. We also found that serendipitous items have higher predicted ratings
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than corresponding non-serendipitous ones.

Author’s contribution

The author analyzed ways to conduct the user study, implemented the survey
in MovieLens, conducted the study, analyzed collected data, prepared the col-
lected dataset for publication and completed the first draft of the article. The
coauthors provided their comments and guidance on each stage of the research
during the whole research process, including but not limited to preparation for
the user study, implementation of the survey, analysis and communication of the
results of the study. The final version of the article was written in close collab-
oration with the coauthors. The research was also conducted in collaboration
with the GroupLens team and the MineSocMed project members, who are not
the coauthors of the article, but who also provided their comments and guidance
during this research.

4.3 Article PIII: “Challenges of Serendipity in Recommender Sys-
tems”

Denis Kotkov, Jari Veijalainen, and Shuaiqiang Wang. Challenges of serendip-
ity in recommender systems. In Proceedings of the 12th International Confer-
ence on Web Information Systems and Technologies, volume 2, pages 251-256.
SCITEPRESS, 2016. doi: 10.5220/0005879802510256.

Research problem

This paper presents a literature review different from the one provided in paper
PI and discusses challenges of serendipity in recommender systems (RQ7).

Results

We discussed four challenges of serendipity in recommender systems: the dis-
agreement on the definition of serendipity, the presence of the emotional dimen-
sion, the lack of serendipitous encounters and the disagreement on serendipity
metrics. The first challenge is that there is no consensus on the definition of
serendipity, which causes a disagreement on ways to measure serendipity. The
second challenge is that serendipity depends on users’ emotions more than rele-
vance, since relevance is a component of serendipity. The third challenge is that
it is difficult to study serendipity, because serendipitous encounters are very rare.
The final challenge is related to measuring serendipity, because there is no agree-
ment on its definition and it is difficult to draw reliable conclusions due to the
lack of serendipitous encounters.
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Author’s contribution

The author conducted the literature review, came up with the challenges and
completed the first draft of the article. The final version of the article was com-
pleted in close collaboration with the coauthors, who provided their comments
and contributed to the content.

4.4 Article PIV: “A Serendipity-Oriented Greedy Algorithm for Rec-
ommendations”

Denis Kotkov, Jari Veijalainen, and Shuaiqiang Wang. A serendipity-oriented
greedy algorithm for recommendations. In Proceedings of the 13th International
conference on web information systems and technologies. SCITEPRESS, 2017
(Best paper award). doi: 10.5220/0006232800320040

Research problem

This paper presents our serendipity-oriented recommendation algorithm (contri-
bution 3).

Results

We described our serendipity-oriented recommendation algorithm and compared
it to the state-of-the-art serendipity-oriented algorithms. We measured accuracy,
diversity and serendipitiy. According to our results, our algorithm outperforms
the baseline algorithms in terms of serendipity and diversity, but underperforms
them in terms of accuracy.

Author’s contribution

The author implemented the baseline algorithms, designed and evaluated the
serendipity-oriented algorithm and completed the first draft of the article. The
final version of the article was completed in a close collaboration with the coau-
thors, who provided their comments and contributed to the content.

4.5 Article PV: “A Serendipity-Oriented Greedy Algorithm and a
Complete Serendipity Metric for Recommendation Purposes”

Denis Kotkov, Jari Veijalainen, and Shuaiqiang Wang. A Serendipity-Oriented
Greedy Algorithm and a Complete Serendipity Metric for Recommendation Pur-
poses. Springer Computing (Submitted for publication).
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Research problem

This paper presents our serendipity-oriented recommendation algorithm (contri-
bution 3) and serendipity evaluation metric (contribution 2).

Results

This article is an extended version of Article PIV. In this article, we present our
serendipity-oriented algorithm and serendipity metric. We conduct the same ex-
periments as in Article PIV but provide more details on our serendipity evalua-
tion metric.

Author’s contribution

The author implemented the baseline algorithms, designed and evaluated the
serendipity-oriented algorithm and completed the first draft of the article. The fi-
nal version of the article was completed in close collaboration with the coauthors,
who provided their comments and contributed to the content.

4.6 Article PVI: “Cross-Social Network Collaborative Recommen-
dation”

Aleksandr Farseev, Denis Kotkov, Alexander Semenov, Jari Veijalainen, and Tat-
Seng Chua. Cross-social network collaborative recommendation. In Proceed-
ings of the ACM Web Science Conference, pages 38:1-38:2. ACM, 2015. doi:
10.1145/2786451.2786504.

Research problem

This paper is dedicated to cross-domain recommender systems. We investigate
whether it is possible to improve accuracy in the target domain by enriching our
dataset with information from source domains when domains differ on an item
level and only sets of users overlap (RQ9).

Results

We utilized a subset of the NUS-MSS dataset (Farseev et al., 2015), which contains
data on the same users from Foursquare, Twitter and Instagram. We used data
from each online social network to calculate similarities between users for User-
Based Collaborative Filtering (UBCF) (section 2.1.5). Each source of information
corresponded to one or two feature spaces. Each baseline algorithm was repre-
sented by UBCF employing a particular feature space. We also employed two
ways of combining results provided by these baselines. We demonstrated that
one of the combinations outperformed single-domain baselines, which suggests
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that source domains can improve recommendation accuracy in the target domain
when only users overlap and the domains are different on an item level.

Author’s contribution

The author evaluated user-based collaborative filtering utilizing data from a sin-
gle domain and contributed to the content of the paper. The data collection, fea-
ture extraction and combination of results of multiple baselines were performed
by the coauthors. The final version of the article was completed in close collabo-
ration with the coauthors.

4.7 Article PVII: “Cross-domain recommendations with overlap-
ping items”

Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. Cross-domain recommen-
dations with overlapping items. In Proceedings of the 12th International con-
ference on web information systems and technologies, volume 2, pages 131-138.
SCITEPRESS, 2016. doi: 10.5220/0005851301310138.

Research problem

In this paper, we investigate whether the source domain can improve accuracy in
the target domain when only items overlap on a system level (RQ10).

Results

We collected two datasets related to music from two websites: the online social
network vk.com and the music recommendation service last.fm. The datasets
contained ratings that users assigned to audio recordings on these two websites.
We matched the two datasets using song metadata and built three datasets by
enriching the dataset collected from vk.com with different portions of data from
last.fm. We then measured accuracy of content-based filtering and item-based
filtering (section 2.1.5) on these three datasets and found that the source domain
can improve accuracy in the target domain when only items overlap on a system
level. In fact the higher the portion of overlapping items the higher the improve-
ment.

Author’s contribution

The author collected the datasets, implemented and evaluated recommendation
algorithms and completed the first draft of the article. The coauthors provided
their comments regarding the experiments, the content and the organization of
the article. The final version of the article was written in close collaboration with
the coauthors.
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4.8 Article PVIII: “Improving Serendipity and Accuracy in Cross-
Domain Recommender Systems”

Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. Improving Serendipity and
Accuracy in Cross-Domain Recommender Systems. Web Information Systems
and Technologies, 2017. doi: 10.1007/978-3-319-66468-2_6

Research problem

In this paper, we investigate whether the source domain can improve accuracy
and serendipity in the target domain when only items overlap on a system level
(RQ10 and RQ11).

Results

This paper is the extended version of Article PIV. In addition to investigating the
improvement of accuracy, we also investigated the improvement of serendipity in
cross-domain recommender systems. We conducted the same experiments with
slightly different portions of overlapping recordings, but also measured serendip-
ity. We found that the source domain can improve serendipity in the target do-
main when only items overlap on a system level.

Author’s contribution

The author collected the datasets, implemented and evaluated recommendation
algorithms and completed the first draft of the article. The coauthors provided
their comments regarding the content and organization of the article. The final
version of the article was written in close collaboration with the coauthors.



5 CONCLUSIONS

In this dissertation, we answered eleven research questions and made four contri-
butions. We reviewed definitions of serendipity in recommender systems, ways
to assess serendipity and serendipity-oriented recommendation algorithms. We
investigated the effects of different variations of serendipity on users and as-
sessed a portion of serendipitous items in a typical collaborative filtering-based
recommender system. We also looked at serendipity and accuracy in the context
of cross-domain recommender systems. Finally, we discussed challenges and fu-
ture directions of serendipity in recommender systems.

We conducted a literature review and found that although there was no
consensus on the definition of serendipity in recommender systems, most re-
searchers agreed that serendipitous items are relevant, novel and unexpected
to a user. We also found that definitions of novelty and unexpectedness vary,
which resulted in eight variations of serendipity. In our literature review, we re-
viewed serendipity evaluation metrics and proposed their categorization. We
also reviewed serendipity-oriented recommendation algorithms and proposed
two categorizations. Based on the reviewed literature, we discussed the chal-
lenges of serendipity in recommender systems and suggested future directions
of this topic.

We conducted the user study, in which we surveyed users of the movie rec-
ommender system MovieLens. We found that all variations of serendipity, nov-
elty and unexpectedness have positive effects on user preference broadening, but
these variations have different effects on preference broadening and user satisfac-
tion when they are compared with each other. We also estimated the proportion
of serendipitous items in typical collaborative filtering-based recommender sys-
tems. We only provided an upper boundary estimation because our sample was
biased toward serendipitous items and it only represented around 0.008% of rat-
ings, 0.8% of users and 0.6% of items in the recommender system. Among items
users rate in a recommender system, up to 8.5% are serendipitous according to
at least one variation of serendipity, while among recommendations that users
receive and follow in this system, this ratio is up to 69%.

We initially investigated serendipity and accuracy in cross-domain recom-
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mender systems by conducting experiments on pre-collected datasets. We found
that a source domain can improve serendipity and accuracy in the target domain
when only items overlap on a system level. We also found that source domains
can improve recommendation accuracy in the target domain when the overlap
happens in the sets of users and domains are different on an item level.

The four contributions of this dissertation are the definition of serendipity,
the serendipity evaluation metric, the serendipity-oriented recommendation al-
gorithm and the serendipity-oriented dataset. Our definition is based on a litera-
ture review and evaluated in our user study. According our definition, serendip-
ity includes three components: relevance, novelty and unexpectedness, where
novelty has two variations and unexpectedness has four variations. This results
in eight variations of serendipity. Our serendipity metric is based on a tradi-
tional metric and captures popularity of items and their similarity to items in the
user profile. Our Serendipity-Oriented Greedy (SOG) algorithm is a reranking
algorithm, which is based on the existing greedy algorithm, Topic Diversification
(TD). Our algorithm outperforms other serendipity-oriented recommendation al-
gorithms in terms of serendipity and diversity and underperforms them in terms
of accuracy. To the best of our knowledge, our serendipity-oriented dataset is
the first publicly available dataset that contains user feedback on serendipitous
items.

5.1 Limitations

We used three methods for our research (section 1.3): the literature review, the
user study and offline evaluation. Each of these methods had a number of limi-
tations.

Our literature review might lack relevant sources for two reasons. First, be-
cause we used Google Scholar, Scopus and Web of Science to find articles, our
literature review is missing articles that are not indexed by these three search en-
gines. Second, our literature review might also lack sources that discuss serendip-
ity using different terms than those we used in our search queries, such as “non-
obviousness” or “luck”.

Our offline evaluation has two limitations. First, to demonstrate our al-
gorithm and serendipity metric, we used datasets collected in MovieLens. The
results of evaluation using datasets collected in another recommender system
might produce different results. Second, in general, offline evaluation might not
correspond to a real-life scenario (Garcin et al., 2014).

In our user study, we only looked at two user metrics: preference broaden-
ing and user satisfaction. The decision was based on the literature review, but
other metrics, such as user retention or trust (Gunawardana and Shani, 2015),
are also important to investigate. The users that we selected for our survey are
more active than the rest of the users in the system meaning that they do not
represent the whole population of MovieLens users. Compared to the number of
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ratings in MovieLens, the number of ratings we received user feedback on can be
considered insufficient. We analyzed user replies regarding 2,146 ratings, which
represented only around 0.008% of ratings, 0.8% of users and 0.6% of movies in
MovieLens. Finally, to receive enough observations of serendipitous items for
our analysis, we selected items that were more likely to be serendipitous than
other items, which limited our findings to the investigation of serendipitous items
among relevant ones.

We conducted the user study after designing our algorithm and evaluation
metric, meaning that both the algorithm and the metric employ features slightly
different from those important for detecting serendipitous items. However, both
artifacts can be adjusted according to the discovered features.

5.2 Discussion

Our findings indicate that serendipitous items are worth suggesting because they
broaden user preference usually without hurting user satisfaction, and given our
sample, serendipitous items do not seem to be too rare to make an attempt to
recommend them. Depending on the application scenario and context, serendip-
itous items can be very useful, as mentioned by Smith and Linden (2017):

When someone is clearly seeking something specific, recommendations should be narrow to
help them quickly find what they need. But when intent is unclear or uncertain, discovery and
serendipity should be the goal.

The findings of our study and experiments mostly correspond to findings re-
ported in other studies and experiments. For example, most studies on serendip-
ity in recommender systems indicate that popularity, content and collaborative
similarities of an item to items in the user profile are important features for de-
tecting serendipitous items (Adamopoulos and Tuzhilin, 2014; Kaminskas and
Bridge, 2014, 2016; Lu et al., 2012; Murakami et al., 2008; Zhang et al., 2012; Zheng
et al., 2015). However, one of our findings suggests that the higher the rating pre-
dicted by a collaborative filtering algorithm, the higher the serendipity, which
contradicts most studies on the topic. This finding suggests that collaborative
algorithms, such as MF or IBCF, are good at suggesting serendipitous items be-
cause the ratings they provide correlate with serendipity, at least among relevant
items. However, further research is needed to draw a more informed conclusion.

Compared to other topics in recommender systems, such as relevance or
diversity, serendipity still remains an underexplored topic, which opens oppor-
tunities for researchers to investigate it.

5.3 Further research

We indicated future directions of serendipity in recommender systems in our
answer to RQ8 (section 3.1.5). We indicated the four following directions: fur-
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ther development of serendipity-oriented algorithms and serendipity metrics that
take into account features important for detecting serendipitous items, serendip-
ity in context-aware recommender systems, serendipity in cross-domain recom-
mender systems and serendipity in group recommendations.

In addition to these directions, further research on serendipity in recom-
mender systems should include more experiments involving real users in online
recommender systems because serendipity is a complex concept that significantly
depends on the emotional responses of users, which are difficult to simulate in
an offline experiment. Even offline evaluations regarding relevance often fail to
represent real-life scenarios (Garcin et al., 2014). Meanwhile, serendipity not only
includes relevance, but also novelty and unexpectedness.

We encourage researchers to conduct more experiments regarding the ef-
fects of serendipity on users and consider not only preference broadening and
user satisfaction, but also other metrics, such as trust or risk (Gunawardana and
Shani, 2015). It would be useful to investigate how serendipity affects user reten-
tion and rating activity and when users need serendipity the most.
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YHTEENVETO (FINNISH SUMMARY)

Onnekkuus suosittelujärjestelmissä

Internetin sähköisten kauppapaikkojen runsas sisältötarjonta (kuten majoi-
tuspalvelut tai suoratoistomusiikki) tekee käyttäjille mahdottomaksi tutustua si-
ihen järkevässä ajassa. Suosittelujärjestelmät ovat avustavia järjestelmiä, jotka
on alunperin suunniteltu auttamaan sivuston käyttäjiä löytämään sivustolta ki-
innostavia tavaroita ja palveluita (nimikkeitä), kun niiden määrä on suuri. Per-
inteisesti suosittelujärjestelmät on optimoitu saavuttamaan korkea suositustark-
kuus, jota mitataan sillä, kuinka usein käyttäjä ostaa tai kuluttaa järjestelmän su-
ositteleman nimikkeen. Suositustarkkuuden kohottamiseksi suosittelujärjestelmät
ehdottavat usein käyttäjille nimikkeitä, jotka ovat yleisesti suosittuja ja sopivassa
mielessä samankaltaisia käyttäjän aiemmin ostamien tai kuluttamien nimikkei-
den kanssa. Tämän seurauksena käyttäjät usein menettävät kiinnostuksensa käyt-
tää sivuston suosittelujärjestelmää tai jopa koko sivustoa, koska suositellut nimik-
keet ovat jo entuudestaan tuttuja tai ne ovat muuten helposti löydettävissä ilman
apuakin.

Yksi tapa lisätä käyttäjätyytyväisyyttä ja käyttäjien sitoutumista on suosit-
taa käyttäjälle ns. onnekkaita nimikkeitä. Sellaisia käyttäjät eivät omatoimisesti
löytäisi, eivätkä edes huomaisi etsiä, mutta olisivat tyytyväisiä tutustuttuaan nii-
hin järjestelmän suosituksen pohjalta. Onnekkuuden käsitettä ei ole tutkittu pe-
rusteellisesti suosittelujärjestelmien yhteydessä. Tällä hetkellä ei ole edes yhteistä
näkemystä siitä, mitä alakäsitteitä onnekkuuden määritelmään pitäisi sisällyttää.
Tässä väitöskirjassa onnekkaina pidetään suositeltuja nimikkeitä, jotka ovat käyt-
täjän näkökulmasta asiaankuuluvia, uusia ja yllätyksellisiä.

Tässä väitöskirjassa: tutustutaan erilaisiin onnekkuuden määritelmiin kir-
jallisuudessa ja evaluoidaan niiden toimivuutta käyttäjätutkimuksessa, arvioi-
daan onnekkaiden nimikesuositusten esiintyvyyttä yhdessä suosittelujärjestel-
mässä, käydään läpi tapoja mitata suositusten onnekkuutta ja parantaa sitä, tutk-
itaan onnekkuutta monialuesuosittelijoissa, jotka hyödyntävät useampia nimike-
tyyppejä (esim. elokuvat, musiikki, kirjat) suosituksia tuottaessaan; ja tarkastel-
laan onnekkaita nimikesuosituksia tuottavien suosittelujärjestelmien haasteita ja
kehityssuuntia.

Työssä on sovellettu suunnittelutieteen metodologista kehystä ja kehitetty
neljä artefaktia: (1) kahdeksan ehdokasta onnekkuuden määritelmäksi, (2) suo-
siteltujen nimikkeiden onnekkuuden mittari; (3) onnekkaita suosituksia gene-
roiva algoritmi; (4) elokuvasuositusten onnekkuutta mittaava datajoukko, joka
on koottu MovieLens-suosittelujärjestelmän käyttäjäpalautekyselyn avulla. Nämä
artefaktit on evaluoitu käyttäen tieteellisiä menetelmiä ja kommunikoitu tiedey-
hteisölle julkaisujen muodossa.

Avainsanat: suosittelujärjestelmät, onnekkuus, asianmukaisuus, uutuus, yllätyk-
sellisyys, personointi, suosittelualgoritmit, evaluointi, evaluointimetriikat,
simuloidut käyttäjäkokeet, käyttäjäpalautekyselyt, onnekkuuden mittarit
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Recommender systems use past behaviors of users to suggest items. Most tend to offer items similar to 

the items that a target user has indicated as interesting. As a result, users become bored with obvious 

suggestions that they might have already discovered. To improve user satisfaction, recommender systems 

should offer serendipitous suggestions: items not only relevant and novel to the target user, but also sig- 

nificantly different from the items that the user has rated. However, the concept of serendipity is very 

subjective and serendipitous encounters are very rare in real-world scenarios, which makes serendipitous 

recommendations extremely difficult to study. To date, various definitions and evaluation metrics to mea- 

sure serendipity have been proposed, and there is no wide consensus on which definition and evaluation 

metric to use. In this paper, we summarize most important approaches to serendipity in recommender 

systems, compare different definitions and formalizations of the concept, discuss serendipity-oriented rec- 

ommendation algorithms and evaluation strategies to assess the algorithms, and provide future research 

directions based on the reviewed literature. 
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1. Introduction 

Many online stores offer thousands of different products, such 

as movies, songs, books and various services. With a wide range of 

goods, a store is likely to have a product that fits user preferences. 

However, the growth of choice does not always lead to user satis- 

faction, as sometimes it is difficult to find a product a user would 

like to purchase due the overwhelming number of available prod- 

ucts [1] . 

To overcome the flood of information, online stores have widely 

adopted recommender systems [2] . In this paper, the term recom- 

mender system (RS) refers to a software tool that suggests items in- 

teresting to users [1] . An item is “a piece of information that refers 

to a tangible or digital object, such as a good, a service or a pro- 

cess that an RS suggests to the user in an interaction through the 

Web, email or text message” [3] . For example, an item can refer to 

a movie, a song or even a friend in an online social network. A user 

is generally understood to mean a person who uses an RS for any 

purpose. For example, a user might be an individual looking for a 

movie to watch or a company representative looking for goods to 

purchase. 

Recommendation algorithms can be divided into categories: 

non-personalized and personalized [4] . Non-personalized algo- 
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(S. Wang), jari.veijalainen@jyu.fi (J. Veijalainen). 

rithms suggest the same items to each user. For example, recom- 

mendations based on the popularity of items can be considered 

non-personalized. Personalized algorithms suggest different items 

depending on the target user. In this case, two users might receive 

different recommendations. In this paper, we focus on personalized 

RSs. 

As a rule, personalized RSs provide suggestions based on user 

profile. A user profile might include any information about a user, 

such as an ID, age, gender and actions the user has performed with 

items in the past. In this paper, the term user profile refers to a 

set of items rated by the user [3] . Generation of recommendations 

can be based on (1) ratings a target user and others have given to 

items, (2) attributes of items rated by the target user or (3) both 

ratings and attributes [5] . One RS might suggest items that could 

be interesting to users who like many items in common with the 

target user. Another might recommend items that have many com- 

mon attributes with items liked by the target user. For example, if 

a user rates many comedies, an RS will suggest more comedies. 

Currently, RSs are widely adopted for different purposes. The 

ultimate goal of services that host RSs is to increase turnover [1] . 

Depending on the application scenarios, ways to achieve the goal 

might differ. One RS might suggest expensive items over interest- 

ing ones for a particular user, as the profit of the hosting service 

depends on user purchases. The RS of a service that sells subscrip- 

tions might suggest items interesting to users to encourage users 

to visit the service again. The business goal of the RS thus may 

differ from the goals of the users of the service [6] . 

http://dx.doi.org/10.1016/j.knosys.2016.08.014 

0950-7051/© 2016 Elsevier B.V. All rights reserved. 



D. Kotkov et al. / Knowledge-Based Systems 111 (2016) 180–192 181 

1.1. Motivation 

Users may interact with an RS for different purposes, such as 

expressing themselves, influencing others or just browsing the cat- 

alog of items. However, the main reason the majority of individu- 

als would use an RS is to discover novel and interesting items. It 

is demanding to look for items manually among an overwhelming 

number of options [3,6,7] . 

Most recommendation algorithms are evaluated based on ac- 

curacy, which does not correspond to user needs, as high accu- 

racy indicates that the algorithm has prediction power but ne- 

glects the novelty and unexpectedness of suggested items [3,8–10] . 

To achieve high accuracy, RSs tend to suggest items similar to a 

user profile [3,11] . Consequently, the user receives recommenda- 

tions only of items in some sense similar to items the user rated 

initially when she/he started to use the service (the so-called over- 

specialization problem). This has been observed to lead to a low 

user satisfaction [3,6,11,12] . 

One of the ways to overcome the overspecialization problem is 

to increase the serendipity of an RS. At this point we tentatively 

consider an RS to be serendipitous if it is able to suggest novel, in- 

teresting and unexpected items to a particular user. We will elab- 

orate various definitions in Section 2.2 . Serendipity-oriented algo- 

rithms can be used to slightly expand user tastes [13] or they can 

be applied as an additional “surprise me” option of an RS [14] . It 

is challenging to suggest serendipitous items for the following rea- 

sons [3] : 

• There is no consensus on the definition of serendipity in RSs, 

as many papers present different definitions and formalizations 

of the concept [3,15] . 
• It is not clear how to measure serendipity, as there is no agree- 

ment on the definition of the concept [12] . 
• Serendipity includes an emotional dimension, which is very 

subjective [9,16] . Consequently, it is difficult to infer reasons 

why a user considers an item to be serendipitous [2] . 
• Serendipitous suggestions are less frequent than relevant ones, 

as not only must serendipitous items be relevant, but also novel 

and unexpected to a user [3] . As a result, it is often more diffi- 

cult to capture and induce serendipitous recommendations than 

relevant ones in an experiment [17] . 

1.2. Methods and logistics 

In this paper, we focus on serendipity, a poorly investigated 

concept that remarkably influences user satisfaction [11,18,19] . We 

aim at answering the following research questions: 

RQ1 What is serendipity in recommender systems? What makes 

certain items serendipitous for particular users? 

RQ2 What are the state-of-the-art recommendation approaches 

that suggest serendipitous items? 

RQ3 How can we assess serendipity in recommender systems? 

RQ4 What are the future directions of serendipity in RSs? 

To address the research questions, we collected articles that 

mention serendipity using Google Scholar 1 , Scopus 2 and Web of 

Science 3 . 

1. Preliminary analysis. By investigating articles received by enter- 

ing the query “serendipity in recommender systems,” we in- 

ferred that researchers employ different definitions of serendip- 

ity and different metrics to measure serendipity in RSs [19–21] . 

1 https://scholar.google.com/ . 
2 http://www.scopus.com/ . 
3 https://webofknowledge.com/ . 

2. Serendipity definitions and metrics. To answer RQ1 and RQ3 , 

we looked for papers that proposed definitions of serendip- 

ity in RSs and methods to measure it. We selected the first 

20 articles retrieved by the search engines in response to the 

search queries “definition of serendipity in recommender sys- 

tems,” “serendipity in recommender systems,” “measure sur- 

prise in recommender systems” and “unexpectedness in recom- 

mender systems.” To find papers that propose definitions of the 

concept and methods to measure it, we paid attention to re- 

lated works and evaluation metrics used in the articles (forward 

search [22] ). Eventually, we found 18 qualifying articles, six of 

which presented serendipity evaluation metrics (more detail is 

provided in Section 5 ). 

3. Serendipity-oriented algorithms. To answer RQ2 , we looked for 

algorithm proposals that improve the serendipity metrics dis- 

covered, searching papers that cite articles with proposals of 

serendipity metrics (backward search [22] ). 

4. Filter. Many of the articles mention serendipity in RSs, but 

mainly focus on other topics. We therefore primarily selected 

relevant high-quality articles. 

The goal of the paper is to give a definition of serendipity and 

an overview of existing recommendation approaches and evalua- 

tion metrics, and thus to guide and inspire future effort s on rec- 

ommendation serendipity. The main contributions of this paper are 

summarized as follows: 

• Review of definitions and formalizations of serendipity and re- 

lated concepts, such as relevance, novelty and unexpectedness. 
• Review and classification of serendipity-oriented recommenda- 

tion algorithms. 
• Review of evaluation strategies to assess serendipity in RSs. 
• Future directions to improve serendipity in RSs. 

This paper is organized as follows. We answer RQ1 in Section 2 , 

which is dedicated to the definition of serendipity in RSs. In 

Section 3 , we review serendipity-oriented recommendation algo- 

rithms and answer RQ2 . Sections 4 and 5 describe strategies to as- 

sess serendipity and evaluation metrics ( RQ3 ), respectively. Finally, 

we provide future directions ( RQ4 ) and conclude in Sections 6 and 

7 , respectively. 

2. Concepts 

The degree of uncertainty around the terminology related to 

serendipity requires us to set up vocabulary to be used through- 

out the paper. In this section we answer RQ1 by defining serendip- 

ity in RSs and describing what kinds of items are serendipitous for 

particular users. 

2.1. Components of serendipity 

Serendipity is a complex concept which includes other con- 

cepts. In this section, we provide those related concepts, such as 

relevance, novelty and unexpectedness. 

2.1.1. Relevance 

Depending on a particular application scenario, we may con- 

sider different actions that a user performs with items to indicate 

his/her interest. For example, we might regard an item as relevant 

for a user if she/he has gaven it a high rating and/or if she/he has 

purchased it. Therefore, to combine different terms that mean the 

same in the context of this paper, we define a relevant item as an 

item that a user likes, consumes or is interested in, depending on 

the application scenario of a particular RS. 
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2.1.2. Novelty 

The term novel item has different meanings that can be sum- 

marized as follows [3] : 

1. Item novel to an RS. A recently added item that users have not 

yet rated [23] (so-called cold start problem [24] ). 

2. Forgotten item. A user might forget that she/he consumed the 

item some time ago [23] . 

3. Unknown item. A user has never consumed the item in his/her 

life [23] . 

4. Unrated item. An unrated by the target user regardless of 

whether she/he is familiar with the item [7] . 

In this paper, the term novel item corresponds to definition 3 

due to the popularity of the definition in studies on serendipity 

[9,12,25,26] . A novel item is a relevant or irrelevant item that a 

target user has never seen or heard about in his/her life [23] . How- 

ever, a user does not normally rate all the items with which she/he 

is familiar. 

It is often necessary to estimate how probable it is that a user 

has already seen an item. A user is more likely to be familiar with 

items similar to what she/he consumes and popular among other 

users [6,27] . In this paper, popularity indicates how likely users are 

to be familiar with certain items. Popularity might correspond to a 

number of ratings assigned to an item in a dataset used by an RS. 

Popular items are widely recognized by an individual, since she/he 

might have heard about the items from others or mass media, such 

as TV, radio or popular web-sites. A user might also be aware of 

items that are similar to what she/he usually consumes. For exam- 

ple, a jazz lover is likely to attend a small jazz concert rather than 

a rock concert. By attending the jazz concert she/he is likely to dis- 

cover some unpopular jazz music. Novelty therefore includes two 

subcomponents: unpopularity and dissimilarity to a user profile [13] . 

For example, a jazz lover is likely to consider a very unpopular jazz 

song and relatively popular classical song as novel. In contrast, the 

user might have already listened to a classical hit on the radio as 

well as a relatively popular jazz song in a jazz club. 

2.1.3. Unexpectedness 

Unexpectedness and surprise are terms frequently used in the lit- 

erature [10,20,28,29] , but to the best of our knowledge there is no 

consensus on the terms’ definitions. In this paper, the terms unex- 

pected and surprising refer to items that significantly differ from the 

profile of the user regardless of how novel or relevant those items 

are. For example, a classical song recommended to a jazz lover is 

likely to be more unexpected than a jazz song. 

There are two differences between novelty and unexpectedness. 

First, a user may find an item unexpected even if she/he is familiar 

with the item. Second, to surprise a user, unexpected items have to 

differ from the user profile more than novel items. 

2.2. Concept of serendipity 

Serendipity is a difficult concept to study [3] , as it includes an 

emotional dimension [9,16] . It is challenging to define serendip- 

ity in recommender systems as well as what kind of items are 

serendipitous and why [3,15] , since generally serendipitous en- 

counters are very rare [17] . 

The term serendipity has been recognized as one of the most 

untranslatable words [30] . The first known use of the term was 

found in a letter by Horace Walpole to Sir Horace Mann on Jan- 

uary 28, 1754. The author described his discovery by referencing 

a Persian fairy tale, “The Three Princes of Serendip”. The story de- 

scribed a journey taken by three princes of the country Serendip 

to explore the world [31] . In the letter, Horace Walpole indicated 

that the princes were “always making discoveries, by accidents & 

sagacity, of things which they were not in quest of” [32] . 

According to the dictionary [33] , serendipity is “the faculty of 

making fortunate discoveries by accident.” The word “discovery”

indicates the novelty of serendipitous encounters, while the word 

“fortunate” indicates that the discovery must be relevant and un- 

expected. 

2.2.1. Serendipity in a computational context 

As serendipity is a complicated concept, Van Andel discussed 

whether a computer can generate serendipitous information [34] : 

[P]ure serendipity is not amenable to generation by a computer. 

The very moment I can plan or programme ‘serendipity’ it cannot 

be called serendipity anymore. All I can programme is, that, if the 

unforeseen happens, the system alerts the user and incites him to 

observe and act by himself by trying to make a correct abduction 

of the surprising fact or relation. 

The author suggests that computer programs cannot generate 

but can help a user find serendipitous information. Based on [34] , 

we suppose that as recommender systems are designed to “assist 

and augment” a process of making “choices without sufficient per- 

sonal experience of the alternatives” [35] , they can also assist a 

process of making “fortunate discoveries” [33] . 

Corneli et al. investigated serendipity in a computational con- 

text and proposed a framework to describe the concept [36] . 

The authors considered focus shift a key condition for serendipity, 

which happens when something initially perceived irrelevant, neu- 

tral or even negative becomes relevant. According to the authors, 

the concept of serendipity includes four components: 

• Prepared mind (focus on something an explorer is looking for). 

The component indicates that an explorer should be focused on 

what she/he wants to investigate. 
• Serendipity trigger (inspiration for a novel result). The act of 

drawing initial attention to a serendipitous object or phe- 

nomenon. 
• Bridge (inference). Investigation of a discovered object or phe- 

nomenon. 
• Result (an outcome). This can be a new artifact, process, phe- 

nomenon, hypothesis or problem. 

The framework can be illustrated using the example of the mi- 

crowave oven invention. Once Percy Spencer was working with a 

radar set and noticed that a candy bar in his pocket had melted. 

Later, the researcher investigated this phenomenon and invented 

the first microwave oven. In the example, a focus shift happened 

when the once uninteresting melted candy bar attracted the re- 

searcher’s attention. Percy Spencer had a prepared mind , as he was 

initially working with radar. The researcher experienced a serendip- 

ity trigger when he noticed that the candy bar had melted. A bridge 

occurred when he investigated why it had melted. Finally, the re- 

sult is the invention of the microwave oven. 

2.2.2. Serendipity in the context of recommender systems 

The framework proposed by Corneli et al. can also apply to RSs. 

In this case, a focus shift happens when initially uninteresting items 

become interesting. A user has a prepared mind , as she/he expects 

that an RS will suggest items similar to his/her profile [10] . The 

attention of the user drawn by the items represents a serendipity 

trigger . The investigation of the items by the user is a bridge . Fi- 

nally, the result for the user is the obtained knowledge. 

According to the framework, an item serendipitous for a user 

should meet certain requirements. First, the serendipitous item is 

required to be unexpected and relevant to create a focus shift . A 

user is likely to consider an item irrelevant at first sight if the item 

is significantly different from his/her profile (unexpected). Mean- 

while, the item is required to be relevant to eventually become in- 

teresting for the user. To create a serendipity trigger , the item must 
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Table 1 

Definitions of serendipity in related works. 

Articles Definition of serendipity Components 

McNee et al. [29] “serendipity in a recommender is the experience of receiving an unexpected and 

fortuitous item recommendation. But even if we remove that component, the 

unexpectedness part of this concept the novelty of the received recommendations is 

still difficult to measure”

Relevance, novelty and 

unexpectedness 

Adamopoulos and Tuzhilin [10,28] “serendipity, the most closely related concept to unexpectedness, involves a positive 

emotional response of the user about a previously unknown (novel) [...] serendipitous 

recommendations are by definition also novel.”

Relevance, novelty and 

unexpectedness 

Sridharan [37] “serendipity is defined as the accident of finding something good or useful while not 

specifically searching for it. Serendipity is thus closely related to unexpectedness and 

involves a positive emotional response of the user about a previously unknown item. It 

measures how surprising the unexpected recommendations are [...] serendipity is 

concerned with the novelty of recommendations and in how far recommendations 

may positively surprise users”

Relevance, novelty and 

unexpectedness 

Zhang et al. [19] “serendipity represents the “unusualness” or “surprise” of recommendations” Novelty and unexpectedness 

Maksai et al. [39] “Serendipity is the quality of being both unexpected and useful.” Relevance and 

unexpectedness 

be novel for the user; otherwise the user would not pay attention 

to the item. As a result, to be serendipitous for a user, items must 

be relevant, novel and unexpected. 

Many authors indicate that novelty, relevance and unexpect- 

edness are important for serendipity, yet these authors often 

do not define these concepts, which might cause confusion 

[8,9,21,28,29,37] . The majority of papers include each of these 

three components to the definition of serendipity [9,28,29,37] . One 

example is the definition proposed by Iaquinta et al. [26] : 

A serendipitous recommendation helps the user to find a surpris- 

ingly interesting item that she might not have otherwise discovered 

(or it would have been really hard to discover). [...] Serendipity 

cannot happen if the user already knows what is recommended 

to her, because a serendipitous happening is by definition some- 

thing new. Thus the lower is the probability that user knows an 

item, the higher is the probability that a specific item could result 

in a serendipitous recommendation . 

Iaquinta et al. suggest that serendipitous items are always rele- 

vant, novel and unexpected to a user [26] . In contrast, Kaminskas 

and Bridge consider even items a user is aware of to be serendipi- 

tous [21] . Their definition includes only relevance and unexpected- 

ness [21] : 

Serendipity consists of two components - surprise and relevance 

[...] we also do not require a surprising item to be novel, but only 

different from the user’s expectations, which are represented by a 

set of items . 

Another definition was proposed by Chiu et al. [38] . The authors 

proposed completely different definitions adopted towards online 

social networks. According to Chiu et al. [38] , a serendipitous item 

is novel for a target user, but familiar to the user’s friends, defined 

as contacts in an online social network: “Items are not yet accessed 

(implicit) or rated (explicit). But the user’s friends (in the social 

network) have accessed before” [38] . Table 1 provides additional 

summarized examples of definitions of serendipity. 

To answer RQ1 , in this paper, we refer to serendipity as a 

property of an RS that indicates how good the RS is at suggest- 

ing serendipitous items [7] , where serendipitous items are relevant, 

novel and unexpected for a user [3,10,12,26,29,37] . 

In terms of popularity and similarity to a user profile, serendip- 

itous items are limited by novelty and unexpectedness. First, as 

serendipity includes novelty, serendipitous items should be unpop- 

ular [40] and dissimilar to a user profile [19] , otherwise the user 

is likely to be familiar with them ( Section 2.1.2 ). Second, the unex- 

pectedness component requires serendipitous items to significantly 

differ from a user profile ( Section 2.1.3 ). 

Fig. 1. Euler diagram of items from a user’s point of view at a given moment of 

time (snapshot). 

Fig. 1 illustrates set intersections of familiar, novel, rated, rel- 

evant, unexpected and serendipitous items perceived by a user at 

a particular moment of time. Suppose that an RS contains I items 

and a user is familiar with items I fam 

⊆ I . The items that the user 

has never heard of are novel I nov = I \ I fam 

. The RS has informa- 

tion that the user is aware of items she/he rated I u ⊆ I fam 

. We 

assume that the user rates only items with which she/he is fa- 

miliar. Items interesting to the user are relevant I rel ⊆ I . They are 

distributed among the categories familiar, rated, novel and unex- 

pected. Unexpected items I unexp ⊆ I differ from items the user rated 

and can be novel or familiar to the user. In rare cases, unexpected 

items can also be rated. Rated items are likely to be unexpected if 

they differ from the rest of the rated items. Serendipitous items are 

relevant, novel and unexpected I ser = I rel ∩ I nov ∩ I unexp . The task of 

the serendipity-oriented RS is to suggest to the user serendipitous 

items I ser based on rated items I u . 

The proposed restrictions of serendipitous items can have ex- 

ceptions. For example, a user might consider a popular item novel 

and serendipitous. We apply these restrictions for simplification 

and assume they are reasonable in most cases. 

In general, the increase of serendipity decreases accuracy for 

two reasons. First, as users tend to like items similar to items they 

already find interesting, many items different from the users’ pro- 

files are irrelevant. Second, considering the number of low-quality 

items among unpopular ones [6] , increasing serendipity is likely to 

increase the number of irrelevant items recommended. An algo- 

rithm has to offer risky suggestions to increase serendipity. 

Depending on user needs, requirements for serendipity- 

oriented algorithms might differ. A user might want to discover 

relevant items. In this case, it is important to keep a trade-off be- 

tween accuracy and serendipity [19,21,41] . However, a user might 
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look for serendipitous items in particular. For example, a “surprise 

me” algorithm could be offered to the user as an additional option 

[14] . In this case, it might be more important to increase serendip- 

ity regardless of accuracy. 

2.2.3. Difference between serendipity and similar concepts 

It is important to clarify the difference between novelty and 

serendipity. First, serendipitous items are relevant, while novel 

items can be irrelevant. Second, as serendipitous items are unex- 

pected, they significantly differ from items a user rated in an RS, 

which is not necessary for novel items. For example, let us assume 

a jazz lover logs into an RS to discover a few songs. A suggestion 

of a jazz song that the user is unaware of, regardless of whether 

she/he likes it, is likely to be novel, but not serendipitous. 

Another concept which might be confused with serendipity is 

diversity. The concept reflects how different items are from each 

other [7,27] . Diversity is a desirable property in an RS, as users 

often become bored with recommendation lists containing items 

very similar to each other. For example, a poker player might en- 

joy a recommendation list of books about poker, combinatorics and 

math more than a list containing only poker books. 

There are two key differences between diversity and serendip- 

ity. First, diversity is based on the comparison of recommended 

items between each other, while serendipity is based on the com- 

parison of recommended items and a user profile [27] . Second, 

diversity does not include relevance, a necessary component for 

serendipity. 

2.2.4. Conclusions and discussion 

In this section, we answered RQ1 based on the reviewed liter- 

ature related to serendipity in RSs. Serendipity is a property that 

indicates how good an RS is at suggesting serendipitous items that 

are relevant, novel and unexpected for a particular user. Serendip- 

itous items are by definition unpopular and significantly different 

from the user profile. 

It is worth mentioning that serendipity is not always a neces- 

sary component in suggesting items. Some services might need an 

RS to suggest only relevant items, regardless of how serendipitous 

those items are. For example, an RS that suggests friends might be 

required to offer only those individuals with whom a target user 

is familiar. Furthermore, users might prefer obvious suggestions 

over serendipitous ones [42] . For example, user intention to receive 

risky recommendations might increase with the growth of experi- 

ence of using the system [6] . However, in many cases, serendipity 

is perceived as a purely positive property of an RS [28,29,41] . 

3. Approaches 

In the section, we are going to review serendipity-oriented al- 

gorithms and answer RQ2 . Recommendation algorithms can be di- 

vided into the following categories [43] . 

• Content-based filtering (CBF) utilizes items’ attributes to gen- 

erate recommendations [43] . This kind of algorithm considers 

choices a user has made in the past to suggest items the user 

will consume in the future. For example, if a user has watched 

a comedy movie, then a CBF algorithm would suggest another 

comedy movie to the user. 
• Collaborative filtering (CF) considers only ratings users have 

gaven to items [43] . For example, if two users have rated many 

common items similarly, then a CF algorithm would probably 

recommend items highly rated by the first user that the second 

user has not yet rated and vice versa. 

– Memory-based CF typically uses similarity measures based 

on user ratings [5,43] . This approach generates recommen- 

dations for a target user based on what similar users have 

rated or based on items similar to items the target user has 

consumed. 

– Model-based CF utilizes a model that receives user ratings as 

input and generates recommendations [5,43] . 

• Hybrid filtering takes into account both ratings and attributes of 

items [43–45] . 

Serendipity-oriented RSs can be classified depending on the 

data they use (CF, CBF, hybrid) or on the architecture of recom- 

mendation algorithms. We divide serendipity-oriented approaches 

into three categories: 

• Reranking algorithms (Reranking). To improve serendipity, an al- 

gorithm can leverage ratings predicted by an accuracy-oriented 

approach and rerank the output of an RS. An accuracy-oriented 

algorithm finds items relevant for a target user, while a rerank- 

ing algorithm assigns low ranks to obvious suggestions. 
• Serendipity-oriented modification (Modification). This category 

represents modifications of accuracy-oriented algorithms. The 

main difference between modification and reranking is that 

reranking algorithms can use any accuracy-oriented algorithms 

that assign ranking scores to items, while modifications can 

only be applied to certain kinds of algorithms. An example is 

the k-furthest neighbor approach [18] , which is a modification 

of the k-nearest neighbor algorithm (user-based CF). Instead 

of suggesting items liked by users similar to a target user, a 

k-furthest neighbor algorithm recommends items disliked by 

users dissimilar to a target user. 
• Novel algorithms (New). This category includes serendipity- 

oriented algorithms that are not based on any common 

accuracy-oriented algorithms. Approaches from this category 

are very diverse and use different techniques, such as clustering 

[46] and random walk with restarts [8,14] . One of the exam- 

ples is the TANGENT algorithm, which detects groups of like- 

minded users and suggests items simultaneously liked by users 

from the group of the target user and other groups [14] . Recom- 

mended items are related to previous choices of the user and 

likely to be surprising, as these items are chosen by users from 

a group different than the one of the target user. 

We may take actions to improve the serendipity of recommen- 

dation at different stages of the recommendation process. Similarly 

to [47] , we suggest three paradigms for serendipity-oriented rec- 

ommendation algorithms: 

• Pre-filtering: A recommendation algorithm preprocesses the 

input data for an accuracy-oriented algorithm to improve 

serendipity. 
• Modeling: A recommendation algorithm improves serendipity 

in the phase of generating recommendations. 
• Post-filtering: A recommendation algorithm reranks the results 

of accuracy-oriented algorithms. 

Table 2 demonstrates classification of the state-of-the-art 

serendipity-oriented approaches. The majority of approaches are 

either modifications or of uncertain basis. In terms of the data that 

algorithms use, we reviewed at least one algorithm from each cate- 

gory (CF, CBF and hybrid). Serendipity subcomponents include pop- 

ularity ( pop ) and similarity to a user profile ( sim ), which the algo- 

rithms take into account. By assessing the parameter, we examined 

whether the model takes into account the subcomponents. Among 

the approaches presented, the algorithms proposed by Zheng et al. 

[13] and Zhang et al. [19] capture both popularity and similarity to 

a user profile. 

To review serendipity-oriented algorithms, we present notation 

in Table 3 . Let I be a set of available items and U be a set of users. 

User u rates or interacts with items I u , I u ⊆ I . A recommender sys- 

tem suggests R u items to user u . Each item i , i ∈ I is represented as 
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Table 2 

Classification of serendipity-oriented algorithms (MF - matrix factorization, kNN - k-nearest neighbor, unpop - unpopularity, dissim - dissimilarity to a 

user profile). 

Name Approach type Serendipity subcomponents Paradigm Recommendation generation 

Utility Model [10] Hybrid dissim Post-filtering Reranking 

Full Auralist [19] Model-based CF unpop + dissim Post-filtering Reranking 

K-Furthest Neighbor [18] Memory-based CF unpop Pre-filtering Modification of kNN 

kNN with item taxonomy [48] Hybrid dissim Modeling Modification of kNN 

Search-time-based-RS [49] Hybrid unpop Modeling Modification of kNN 

Unexpectedness-Augmented Utility Model [13] Model-based CF unpop + dissim Modeling Modification of MF 

Serendipitous Personalized Ranking [41] Model-based CF unpop Modeling Modification of MF 

Distance-based Model [46] CBF dissim Modeling New 

TANGENT [14] Model-based CF dissim Modeling New 

RWR-KI [8] CBF unpop Modeling New 

Table 3 

Notations. 

I = (i 1 , i 2 , . . . , i n ) the set of items 

F = ( f 1 , f 2 , . . . , f z ) feature set 

i = ( f i, 1 , f i, 2 , . . . , f i,z ) representation of item i 

U = (u 1 , u 2 , . . . , u m ) the set of users 

I u , I u ⊆ I the set of items rated by user u (user profile) 

R u , R u ⊆ I the set of items recommended to user u 

rel u ( i ) 1 if item i relevant for user u and 0 otherwise 

U i the set of users who rated item i 

a vector i = ( f i, 1 , f i, 2 , . . . , f i,z ) in a multidimensional feature space 

F . For example, a feature can be a genre of a movie on a web-site. If 

F = (d rama, comed y, romance ) then the movie “Forrest Gump” can 

be represented as i F orrest = (0 . 4 , 0 . 2 , 0 . 4) , where the numbers indi- 

cate how strongly the movie belongs to the genre. 

3.1. Reranking 

This section is dedicated to serendipity-oriented recommenda- 

tion algorithms that rerank results of accuracy-oriented ones to in- 

crease serendipity. 

3.1.1. Utility model 

Adamopoulos and Tuzhilin proposed a serendipity-oriented al- 

gorithm that reranks the results of any accuracy-oriented algo- 

rithm that produces relevance scores [10] . The algorithm assigns 

overall scores to items based on two metrics: (1) unexpectedness 

utility and (2) quality utility. Unexpectedness utility indicates ob- 

viousness of items for a user, while quality utility reflects their rel- 

evance for the user. The algorithm consists of the following steps: 

1. Computation of the set of expected items E u ; 

2. Filtering of items that are likely to be irrelevant based on the 

relevance score provided by an accuracy-oriented algorithm; 

3. Filter of items that are too obvious for a user based on expected 

items E u ; 

4. Overall utility calculation; 

5. Recommendation of items based on the overall utility. 

The set of expected items E u is represented by items previously 

consumed by a user I u or by items similar or related to I u , where 

relatedness is inferred by various data mining techniques. In steps 

2 and 3, the algorithm uses a threshold to remove items obvious or 

irrelevant to a user. On the last step, the algorithm suggests items 

with the highest overall utility to the user. Overall utility consists 

of unexpectedness utility and quality utility. Unexpectedness util- 

ity depends on the average distance between an item and user ex- 

pectations E u , where the distance is based on user ratings (collab- 

orative) and on item attributes (content-based). Quality utility is 

based on ratings provided by an accuracy-oriented algorithm. 

The proposed algorithm seems to recommend more items that 

differ from items a target user usually consumes due to filtering 

based on user expectations. However, the algorithm might still rec- 

ommend popular items, as it does not explicitly take popularity 

into account. 

3.1.2. Full auralist 

Seeking to improve diversity, novelty and serendipity while 

keeping acceptable accuracy, Zhang et al. proposed a recommen- 

dation algorithm called Full Auralist [19] . Full Auralist consists of 

three algorithms: 

• Basic auralist is responsible for the relevance of recommenda- 

tions. 
• Listener diversity provides a diversified recommendation list. 
• Declustering is designed to suggest items unexpected for a user. 

Each algorithm returns a ranked list of items. Full Auralist , in 

turn, integrates generated ranks using their linear combination. 

The algorithm appears to capture both the popularity of items 

and their similarity to a user profile. However, Full Auralist might 

be quite difficult to implement, as it contains three different algo- 

rithms. 

3.2. Modification 

This section is dedicated to serendipity-oriented recommenda- 

tion algorithms based on accuracy-oriented ones. 

3.2.1. K-furthest neighbor 

Seeking to improve novelty, Said et al. has proposed k-furthest 

neighbor (kFN) recommendation algorithm, similar to kNN [18] . As 

kNN is biased towards popular items, which results in poor per- 

sonalization, kFN is designed to overcome this problem. Instead of 

suggesting items that neighborhood users like, kFN forms neigh- 

borhoods of users dissimilar to a target user. By selecting items 

dissimilar users dislike, kFN is supposed to overcome the bias of 

items liked by the majority [18] . 

By overcoming the popularity bias, the algorithm seems to sug- 

gest more novel items, at least with respect to kNN. However, it 

is questionable whether it recommends serendipitous items, as it 

does not explicitly improve the dissimilarity of recommendations 

to a target user profile. 

3.2.2. Knn with item taxonomy 

Nakatsuji et al. designed a novelty-oriented recommendation 

algorithm [48] . The authors modified kNN by replacing the simi- 

larity measure with relatedness . By forming a neighborhood of re- 

lated users and picking items from their profiles, the algorithm is 

supposed to improve the novelty of recommendations, over that of 

a classical kNN. 
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The algorithm is a modification of kNN, which calculates rat- 

ings based on relatedness. Relatedness is inferred by utilizing ran- 

dom walk with restarts (RWR) on a user similarity graph [50] . In 

RWR a random particle travels from node to node with a proba- 

bility equivalent to an edge weight. During each step, the particle 

has a probability to return to its starting node. The particle visits 

nodes a different number of times depending on the starting node. 

After a sufficient number of random walks, the ratio of the number 

of transitions and number of visits of a certain node stabilizes. The 

obtained probabilities indicate relatedness between starting node 

and other nodes. 

In a user similarity graph, nodes correspond to users, while 

edges correspond to similarities. User similarities are based on 

a taxonomy of items. The similarities are calculated considering 

items and classes of items that a user rated. 

By picking users who are dissimilar but related to a target user, 

the algorithm seems to suggest more items that are dissimilar 

to the target user profile. Furthermore, user similarity calculation 

might be especially useful with a rich taxonomy of items. However, 

even related users might still give high ratings to popular items, 

which might result in suggestions with which a target user is al- 

ready familiar. 

3.2.3. Search-time-based-RS 

Kawamae proposed a recommendation algorithm based on esti- 

mated search time [49,51] . The author employed the following def- 

inition of serendipity: “a serendipitous recommendation helps the 

user find a surprisingly interesting item he might not have other- 

wise discovered” [49] . In other words, the more difficult it is to 

find an item, the more probable that the item is serendipitous to a 

user. 

The algorithm consists of three steps [49] . First, for each tar- 

get user the algorithm detects similar users (innovators) who have 

common tastes and who discover recently released items better 

than the target user. Second, the algorithm measures how likely it 

is that a target user will consume a particular item from a profile 

of an innovator. Third, the algorithm combines these two probabil- 

ity parameters into ranking score and sorts a suggestion list. 

The advantage of the algorithm is that it takes into account 

when items were released and consumed by users. In terms of 

similarity to a user profile and popularity, the algorithm seems to 

suggest unpopular items, as personal innovator probability gives 

high scores to recently released items that have not yet become 

popular. However, as the algorithm searches for users who have 

rated many common items with the target user, it is likely that a 

recommended item would be similar to a target user profile. 

3.2.4. Unexpectedness-augmented utility model 

Zheng et al. proposed a recommendation algorithm [13] based 

on PureSVD (variation of singular value decomposition (SVD)) [52] . 

The main difference between PureSVD and the proposed algorithm 

is the optimization task: 

min 
∑ 

u ∈ U 

∑ 

i ∈ I 
( ̃  r u,i − p u · q T i ) 2 w u,i + λ(| p u | 2 + | q i | 2 ) (1) 

w u,i = 

(
1 − | U i | 

| U| 
)

+ 

∑ 

j∈ I u d ist(i, j ) 

| I u | , (2) 

where p u and q i are user and item feature vectors, respectively, 

while ˜ r u,i corresponds to the ratings user u gave to item i with 

the absence of a rating represented by zero. The set of users who 

rated item i is represented by U i . The weight w u,i increases the 

contribution of unexpected items, which forces a gradient descent 

algorithm to pay additional attention to the ratings of those items 

[13] . 

The proposed algorithm captures both popularity and similar- 

ity to a user profile. Consequently, it suggests more novel and 

serendipitous items than PureSVD. 

3.2.5. Serendipitous personalized ranking 

Lu et al. suggested a serendipitous personalized ranking algo- 

rithm (SPR), based on SVD. The objective of SPR is to maximize 

the serendipitous area under the ROC (receiver operating charac- 

teristic) curve (SAUC). SAUC is based on AUC (area under the curve) 

and defined as follows [41] : 

SAUC(u ) = 

1 

| I + u || I \ I + u | 
∑ 

i ∈ I + u 

∑ 

j∈ (I \ I + u ) 
σ ( ̂ r u,i − ˆ r u, j )( pop( j)) 

α (3) 

where σ is a 0–1 loss function: σ (x ) = 1 if x > 0, σ (x ) = 0 other- 

wise, while ˆ r u,i is a preference prediction of user u for item i . Rel- 

evant items are represented by I + u , consequently, I \ I + u corresponds 
to unrated and irrelevant items. Popularity weight corresponds to 

pop ( i ), pop ( i ) ∝ | U i |. 

The proposed algorithm appears to have high novelty due to the 

popularity parameter. However, the algorithm might not suggest 

serendipitous items, as it disregards dissimilarity to a user profile. 

3.3. New 

This section is dedicated to serendipity-oriented recommen- 

dation algorithms that are not based on any common accuracy- 

oriented algorithms. 

3.3.1. Distance-based model 

Akiyama et al. proposed a content-based algorithm to improve 

the serendipity of an RS. First, the recommendation algorithm clus- 

ters items from a user profile based on item attributes. Second, the 

algorithm assigns scores to unrated items based on their distance 

from discovered clusters and on how unexpected they are for the 

user. Finally, the algorithm ranks unrated items according to their 

scores and suggests the recommendation list to the user [46] . 

The algorithm does not have many parameters, which makes it 

easy to control. Besides, an algorithm’s content-based nature might 

positively result in computational time depending on the dataset. 

However, the algorithm disregards the popularity subcomponent of 

serendipity. 

3.3.2. TANGENT 

Onuma et al. proposed the TANGENT algorithm to broaden user 

tastes [14] . The algorithm performs on a bipartite graph, where 

users and items correspond to nodes, while ratings correspond to 

edges. TANGENT detects groups of likeminded users and suggests 

items relevant to users from different groups. For example, if a 

target user belongs to comedy fans, the algorithm will suggest a 

movie relevant not only to comedy fans, but also to users from 

other groups, such as action fans or romance fans. 

The proposed algorithm appears to broaden user tastes and re- 

tain the accuracy of recommendations. However, TANGENT might 

suggest popular items that users already know well, as items liked 

by users from different groups are likely to be popular. 

3.3.3. RWR-KI 

De Gemmis et al. proposed a serendipity-oriented RWR-KI al- 

gorithm [8] . RWR-KI stands for random walk with restarts enhanced 

with knowledge infusion . The algorithm suggests items based on the 

results of RWR that exploits an item similarity graph, where sim- 

ilarity indicates relatedness of items. The authors used WordNet 

and Wikipedia to calculate item similarities. By using uncommon 

similarity measure, the algorithm is supposed to suggest serendip- 

itous items. 
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The algorithm suggests items based on the result of RWR, 

which receives a graph of item similarities and a set of start- 

ing nodes as an input. The item similarity graph contains nodes 

that correspond to items, and weighted edges, where weights cor- 

respond to similarities between connected items. Item similari- 

ties are inferred using item descriptions, WordNet and Wikipedia. 

Given an item similarity graph and a set of starting nodes I u (items 

rated by a user), RWR returns relatedness between items and a 

user profile. Items the user has not yet rated are ranked according 

to inferred relatedness values and suggested to the user. 

The RWR-KI algorithm might suggest serendipitous items, as 

the algorithm uses an uncommon similarity measure that indicates 

relatedness of items instead of similarity. Furthermore, as the al- 

gorithm does not depend on user ratings, recommendations seem 

to be unbiased towards popular items. However, suggested items 

might still be similar to a user profile, since they might have sim- 

ilar descriptions. Besides, RWR-KI requires information enrichment 

using sources, such as WordNet or Wikipedia, which requires ad- 

ditional effort. 

4. Evaluation strategies 

To address RQ3 , in this section we discuss evaluation strategies 

used to assess serendipity in recommender systems (RSs). We re- 

view offline and online evaluation strategies. 

Depending on the specific domain, it is necessary to choose 

a suitable objective for an RS. For example, the goal of an RS 

that suggests friends might be to offer items with which a user 

is likely to be familiar. However, a music RS might suggest only 

novel items. It is crucial for the friend RS to have high accuracy. 

Meanwhile, the music recommendations require both accuracy and 

novelty [6] . Requirements of an RS therefore influence the choice 

of evaluation metrics and the decision on a recommendation algo- 

rithm [7] . According to different objectives, the evaluation metrics 

of the recommendation algorithms could be different as well. 

Traditionally, evaluation strategies are divided into two cate- 

gories: offline evaluation and online evaluation. In offline evalua- 

tion, researchers conduct experiments using pre-collected or sim- 

ulated datasets. In the experiments, researchers hide some ratings 

and let an algorithm predict them based on the rest of the data. 

The performance of algorithms is usually presented by evaluation 

metrics. Based on results, researchers may choose a suitable algo- 

rithm [2,7,53] . 

Online evaluation involves real users interacting with a rec- 

ommender system. For example, users might explicitly indicate 

whether they find recommended items novel or interesting. On- 

line experiments can be conducted by using an RS prototype or a 

deployed functioning RS [2,7] . 

Usually, online evaluation is demanding and complicated, as it 

involves real users. Researchers, therefore, conduct offline experi- 

ments prior to the implementation of an online RS [7] . 

4.1. Offline evaluation 

In offline experiments, researchers use pre-collected implicit or 

explicit user preferences to simulate the behavior of users and as- 

sess recommendation algorithms. Even though this kind of exper- 

iment only lets researchers answer a limited number of questions 

normally related to the prediction power of algorithms, it is often 

necessary to conduct offline experiments prior to online evalua- 

tion to decrease the number of candidate algorithms [7] . Regarding 

the evaluation of serendipity, many papers provide both qualitative 

and quantitative analysis of recommendation algorithms [7,21] . 

4.1.1. Quantitative analysis 

In offline experiments, researchers select a number of test users 

and hide some of their ratings. The hidden data are regarded as a 

test set and the rest as a training set. The candidate algorithms re- 

ceive the training data as an input and predict the test set. The 

researchers filter candidate algorithms by their predictive ability 

[2,7] . 

Current datasets contain data regarding items relevant to a par- 

ticular user, but lack data regarding serendipitous items. To assess 

serendipity in offline experiments, researchers make assumptions 

regarding serendipitous items and measure serendipity using the 

metrics described in Section 5 . 

4.1.2. Qualitative analysis 

It is possible to manually assess the serendipity of recommen- 

dations by comparing recommended items and user profiles. For 

example, Kaminskas and Bridge presented a qualitative analysis 

of suggestion lists offered by three popular recommendation algo- 

rithms [21] . One of the goals in the paper was to propose evalua- 

tion metrics for unexpectedness. To support the results of quan- 

titative analysis, the authors compared a target user profile and 

recommended items for the user, including values of the pro- 

posed evaluation metrics. The items in user profiles and the rec- 

ommended items referred to music artists. 

4.2. Online evaluation 

We regard online evaluation as evaluation that involves users 

interacting with the recommender system. This kind of evaluation 

may have different forms, such as questionnaires and experiments 

where users interact with a deployed RS [7] . 

Conducting online experiments is especially important for an 

assessment of novelty and serendipity, since it allows asking a user 

if she/he finds a recommended item unexpected or novel. On the 

one hand, these kinds of experiments are more representative than 

offline experiments, since they involve real users interacting with 

the RS [29] . On the other hand, online experiments are more de- 

manding to conduct [7] . 

The main challenge in assessing serendipity in an online ex- 

periment is that it is difficult for a user to detect serendipitous 

items, since they are new to a user. Many papers have used differ- 

ent methods to investigate serendipity and novelty in RSs. In this 

section, we review the most common approaches mentioned in pa- 

pers dedicated to serendipity. 

4.2.1. Questionnaire 

Many RSs provide suggestions and explicitly ask users whether 

they find an item serendipitous [18–20,54] . A user might detect 

relevant and novel items, but it is difficult for the user to deter- 

mine whether an item is unexpected, since the concept of unex- 

pectedness is quite vague and might depend on many factors, such 

as mood, time of day and experimental setting. It is important to 

formulate a question about serendipity that a user would under- 

stand. For example, in [18] the authors asked participants whether 

they thought the recommendations were serendipitous. The results 

of the experiment were not statistically significant. The authors 

assumed this happened because most users were not sure what 

serendipity meant, as the term is difficult to translate to other lan- 

guages. Table 4 reviews questions that were used in questionnaires 

to assess the serendipity of recommended items. 

Regarding novelty, it is possible to utilize the setting suggested 

in [25] . In the context of music recommendation, a user might be 

offered a list of songs without any metadata. The user would listen 

to each song for 30 s and then inform a researcher whether she/he 

knows and likes the song. 
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Table 4 

Serendipity assessment in experiments. 

Article Application Question 

[19] Music songs “Exactly what I listen to normally... Something I would never have listened to otherwise” (Likert scale) 

[54] Music artists “Did you find artists you wouldn’t have found easily on your own and which you would like to listen 

to from now on?”

[20] TV shows “We inquired about serendipity for recommended shows, which means whether the recommended 

shows had hardly ever been heard of before by viewers but seemed to be interesting or whether 

they were already known but were unexpected”

[18] Movies “Are the recommendations serendipitous?”

[55] IBM Connections Participants indicated whether an item is surprising to them. 

[8] Movies Analysis of facial expressions 

4.2.2. Qualitative analysis 

It might be beneficial to ask users to give feedback on the rec- 

ommendation list as a whole. Users might indicate what they liked 

or disliked the most or what they would improve and why [19,56] . 

For example, Zhang et al. presented a qualitative analysis based on 

users’ comments on an RS [19] . The authors proposed a recom- 

mendation approach which was evaluated online. In the experi- 

ment, different RSs suggested music artists to users. Users not only 

rated suggested artists but also left comments on provided recom- 

mendation lists. The authors analyzed the comments and inferred 

factors that affected user perception of recommendation lists in 

the experiment. 

4.2.3. Deployed RS 

Sometimes it is necessary to improve an algorithm inside an al- 

ready existing and deployed RS. Users can be divided into groups 

and introduced to the output of different recommendation algo- 

rithms. In the settings, researchers assume that users are not aware 

of the experiment. By analyzing user behavior, researchers make a 

decision between algorithms [7] . 

Assessing the impact of serendipitous items on user satisfaction 

in an online experiment with a deployed RS might be challeng- 

ing for two reasons. First, by introducing serendipitous items, an 

RS might affect users differently depending on their level of ex- 

perience [6] . Second, it might be difficult to detect an impact of 

serendipitous items on user behavior due to the emotional dimen- 

sion of serendipity [9,16] . However, to the best of our knowledge, 

the number of experiments on serendipity in RSs that involve de- 

ployed RS is very limited. 

5. Formal definitions of serendipity 

To answer RQ3 , in this section, we are going to review evalu- 

ation metrics that measure serendipity in recommender systems 

(RSs). The section provides a comparison of different metrics that 

have been proposed [19–21] , the section provides their compari- 

son, including their advantages and disadvantages. 

Serendipity metrics can be divided into two categories: compo- 

nent metrics and full metrics. Component metrics measure differ- 

ent components of serendipity, such as novelty or unexpectedness, 

while full metrics measure serendipity as a whole. 

5.1. Component metrics 

Each component of serendipity can be measured in different 

ways. In this section, we are going to review serendipity compo- 

nent metrics that measure novelty and unexpectedness. 

5.1.1. Novelty 

Vargas and Castells proposed two novelty metrics [27] . The first 

metric is based on an items distance from items a user has con- 

sumed (user profile) and has two variations: 

nov dist1 v a (i, u ) = min 
j∈ I u 

d ist(i, j ) (4) 

nov dist2 v a (i, u ) = 

1 

| I u | 
∑ 

j∈ I u 
dist(i, j) (5) 

where dist ( i , j ) indicates the distance between items i and j and is 

formalized as follows: 

d ist(i, j ) = 1 − sim (i, j) , (6) 

where sim ( i , j ) is any kind of similarity between items i and j 

( sim ( i , j ) ∈ [0, 1]). For example, it might be content-based cosine 

distance [57] . The second novelty metric is based on popularity 

and has two variations: 

nov pop1 v a (i, u ) = 1 − | U i | 
| U| , (7) 

nov pop2 v a (i, u ) = − log 2 
| U i | 
| U| . (8) 

Nakatsuji et al. proposed a novelty metric similar to Eq. (4) [48] . 

They considered a taxonomy of items, where an item belongs 

to one of classes CLS = (cls 1 , cls 2 , . . . , cls k ) . The novelty metric is 

based on a minimum distance between an item and a user pro- 

file in an item taxonomy. 

nov na (i, u ) = min 
j∈ I u 

(dis (cls j , cls i )) , (9) 

where cls k is a class of item k in an item taxonomy, while dis ( cls j , 

cls i ) is the distance between classes cls j and cls i in the taxonomy. 

5.1.2. Unexpectedness 

Kaminskas and Bridge suggested that serendipity includes two 

components: unexpectedness and relevance [21] . The authors in- 

dicated that unexpectedness reflects how dissimilar a suggested 

item is to a user profile, while relevance can be measured by 

accuracy metrics [2] . To measure unexpectedness, Kaminskas and 

Bridge suggested two pair-wise similarity metrics [21] : (1) point- 

wise mutual information and (2) content-based similarity. 

Point-wise mutual information indicates how similar two items 

are based on the numbers of users who have rated both items and 

each item separately: 

P MI(i, j) = − log 2 
p(i, j) 

p(i ) p( j) 
/ log 2 p(i, j) , (10) 

where p ( i ) is the probability that any user has rated item i , while 

p ( i , j ) is the probability that items i and j are rated together. PMI 

ranges from −1 to 1, where −1 indicates that two items are never 
rated together, while 1 indicates that two items are always rated 

together. Based on point-wise mutual information, unexpectedness 

metrics have two variations: 

unexp co−occ1 
kam 

(i, u ) = max 
j∈ I u 

P MI(i, j) (11) 

unexp co−occ2 
kam 

(i, u ) = 

1 

| I u | 
∑ 

j∈ I u 
P MI(i, j) (12) 
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Table 5 

Primitive systems used in serendipity metrics. 

Metric Article Primitive system 

ser ad Adamopoulos and Tuzhilin [10,28] Used two systems: one based on users’ profiles and another based on the highest rating among the most popular items. 

de Gemmis et al. [8] Used two systems: popularity and average rating. 

ser ge Ge et al. [25] Suggested a system based on popularity. 

Lu et al. [41] Used a system based on popularity. 

Sridharan [37] Used a systems based on popular and highly rated items. 

ser mur Murakami et al. [20] Used models based on users’ profiles. 

Maksai et al. [39] Used a systems based on popular items. 

The content-based unexpectedness metric is based on item at- 

tributes and has two variations. Both variations correspond to nov- 

elty metrics proposed by Vargas and Castells [27] ( Eq. ([4,5] )), 

where similarity is represented by Jaccard similarity. 

5.2. Full metrics 

Murakami et al. proposed a serendipity metric based on a prim- 

itive recommender system [20] : 

ser mur (u ) = 

∑ 

i ∈ R u 
max (P r u (i ) − P rim u (i ) , 0) · rel u (i ) , (13) 

where Pr u ( i ) and Prim u ( i ) is the confidence of recommending item i 

to user u by the examined and the primitive models (RSs), respec- 

tively. The list of recommendations is represented by R u , while the 

relevance of an item corresponds to rel u ( i ) ( Table 3 ). A primitive 

RS is chosen arbitrarily and required to provide suggestions with 

low serendipity. Furthermore, Murakami et al. proposed the rank 

sensitive metric [20] : 

ser _ r mur (u ) = 

1 

| R u | 
| R u | ∑ 

j=1 
max (P r u (i j ) 

−P rim u (i j ) , 0) · rel u (i j ) ·
count u ( j) 

j 
, (14) 

where count u ( j ) is the number of relevant items for user u with a 

rank lower or equal to j . Later Ge et al. modified proposed metric 

(13) [25] : 

ser ge (u ) = 

1 

| R u | 
∑ 

i ∈ (R u \ PM) 

rel u (i ) , (15) 

where PM is a set of items generated by a primitive recommender 

model. Adamopoulos and Tuzhilin then modified metric (15) by us- 

ing an additional set of items [28] : 

ser ad (u ) = 

1 

| R u | 
∑ 

i ∈ (R u \ (E u ∪ PM)) 

rel u (i ) , (16) 

where E u is a set of items that matches the interests of user u . 

Table 5 demonstrates the classification of papers in terms of 

primitive RS. The serendipity metric ser ad includes popularity, sim- 

ilarity to a user profile and relevance. Other metrics ser ge , ser mur 

and ser _ r mur would also capture these components if the primitive 

model simultaneously captured user interests and the popularity 

of items. 

De Pessemier et al. generalized the serendipity metric originally 

proposed in [7] . The metric is calculated as follows [58] : 

ser pe (i, u ) = 

1 + n I u ,max − n I u , f (i ) 

1 + n I u ,max 

· rel u ( i ) , (17) 

n I u ,max = max 
f∈ F 

(n I u , f ) , (18) 

where n I u , f is the number of items with attribute f from user 

profile I u , while n I u ,max is the maximum number of items with the 

same attribute from the user profile. The attribute of item i is rep- 

resented by f ( i ). 

5.3. Analysis of the evaluation metrics 

Both component metrics and full metrics have their advantages 

and disadvantages [3] . Component metrics could be useful in mea- 

suring different aspects, such as popularity or similarity to a user 

profile. However, these metrics could be mistaken. For example, 

an algorithm suggests items 1, 2, 3, and 4, where items 1 and 2 

are irrelevant, novel and unexpected, while items 3 and 4 are rel- 

evant but familiar and expected. The algorithm does not suggest 

any serendipitous items, but it might have high novelty, unexpect- 

edness and accuracy. 

Full metrics measure serendipity as a whole, but they also have 

disadvantages. Most full metrics are sensitive to primitive recom- 

mender systems [3,21,58] . By changing this parameter, one might 

obtain completely different and even contradictory results. Full 

metrics also disregard multiple levels of serendipity. As the rel- 

evance component of serendipity can be assessed using multiple 

judgments [59] , one item might be more serendipitous than an- 

other. Full metrics that are not based on a primitive recommender 

system often disregard some serendipity subcomponents. For ex- 

ample, ser pe ( i , u ) measures relevance and dissimilarity of items to 

a user profile and ignores unpopularity. 

To answer RQ3 , in this section we classified and reviewed pro- 

posed metrics to assess serendipity in RSs. We did not include 

serendipity metrics designed to measure serendipity in particular 

domains such as friend recommendation [12] , as they might not 

be applicable in other domains. 

6. Future directions 

In this section we are going to answer RQ4 by providing ways to 

improve serendipity in recommender systems (RSs) that have not 

yet been widely adopted but that seem promising. Based on the 

reviewed literature, we are going to indicate four directions: (1) 

popularity and similarity in RSs, (2) context-aware RSs, (3) cross- 

domain RSs and (4) group RSs. 

6.1. Popularity and similarity in RSs 

According to the reviewed literature, most novelty-oriented and 

serendipity-oriented recommendation algorithms as well as eval- 

uation metrics consider either popularity of items [8,18,41,49] or 

their similarity to a user profile [10,46,48] . One of the promising 

directions is the development of algorithms and evaluation metrics 

that capture both subcomponents of serendipity. 

As we mentioned in Section 2.2 , popularity is an important sub- 

component of serendipity, as a user is likely to be familiar with 

globally popular items. A user might become aware of these items 

through different channels of information, such as radio, TV or 

friends [11] . 

Similarity of recommended items to a user profile is also impor- 

tant, since a user tends to look for items similar to what she/he 

likes, with the aim of finding more items she/he would enjoy. A 
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user therefore might be aware of items similar to his/her profile 

[27] . 

It is challenging to suggest items that are relevant, unpopular 

and dissimilar to a user profile for two reasons. First, as most un- 

popular items are of low quality, a user is likely to consider them 

irrelevant [6] . Second, as a user tends to enjoy items similar to 

what she/he already likes, by increasing the number of items dis- 

similar to the user profile, an RS is likely to suggest items the user 

simply dislikes [42] . 

One of the ways to suggest items that are relevant, unpopu- 

lar and dissimilar to a user profile is to combine each of these 

requirements into an optimization objective. For example, Zheng 

et al. suggested an optimization function of an SVD algorithm that 

combines relevance, popularity and similarity to a user profile [13] . 

Another way is to split a recommendation algorithm into different 

stages and handle one requirement per stage. For example, Full Au- 

ralist consists of three algorithms, each of which is responsible for 

one of the objectives [19] . 

6.2. Context-aware RSs 

In this paper, we assume that user tastes do not change with 

time; neither do they depend on the environment. However, many 

factors, such as weather, mood or location, can influence user pref- 

erence for items [47,60,61] . For example, a user might prefer listen- 

ing to soft music in the evening and energetic music in the morn- 

ing. Suggesting songs according to the time of day would result in 

the improvement of user satisfaction. 

Many recommender systems aim at predicting ratings users 

would give to items based on available ratings [47,61] . In contrast, 

context-aware RSs consider additional information, such as time, 

mood or location that might be relevant for generating recommen- 

dations [61,62] . 

The definition of serendipity should include the context, as each 

component of the concept is context-dependent [3] . An item that 

was serendipitous yesterday might not be serendipitous tomorrow. 

Serendipity thus could consist of relevance, novelty and unexpect- 

edness in a given context. 

Leveraging the context can be beneficial for suggesting 

serendipitous items, as context-aware RSs aim at suggesting items 

relevant to a user in a particular context. By using context, an RS 

can recommend items different from what the user usually con- 

sumes but also relevant, since the suggestions would fit a partic- 

ular situation. For example, if a user who does not usually listen 

to rock and roll drives to Las Vegas, then the novel for the user 

song “Viva Las Vegas” by Elvis Presley would likely be considered 

serendipitous. 

6.3. Cross-domain RSs 

Most RSs generate recommendations based on a single domain. 

In this paper, the term domain refers to “a set of items that share 

certain characteristics that are exploited by a particular recom- 

mender system” [63] . Cross-domain RSs take advantage of data 

from multiple domains [64] . For example, a cross-domain RS might 

leverage information from a book domain to improve recommen- 

dation performance in a movie domain [65] . 

Several types of cross-domain RSs can improve the serendipity 

of recommendations: 

• User modeling. By using information from multiple domains, 

this kind of system can infer items with which users are al- 

ready familiar. Leveraging additional information may also help 

discover additional interests of users, which might result in 

serendipitous suggestions. 

• Relevance. Use of additional domains may help to recommend 

more items relevant for a user, improving serendipity, as rele- 

vance is one of serendipity’s components. 
• Context. Additional domains may contain information regard- 

ing context [64,66] . By using this kind of data, one may ap- 

ply context-aware recommendation algorithms and improve 

serendipity, as indicated in Section 6.2 . 

Cross-domain RSs can suggest combinations of items from dif- 

ferent domains. For example, a user could receive a recommenda- 

tion of a venue to visit and a song to listen to in that particular 

venue. Combinations of items affect the definition of the concept, 

as it is not clear whether a combination or each item in the com- 

bination has to be novel, unexpected and relevant [3] . 

6.4. Group RSs 

Most recommender systems suggest items to an individual user 

[67] . However, in some cases it is important to generate recom- 

mendations for a group of users. For example, a few friends might 

need to choose a movie to watch together. 

Suggesting items serendipitous to a group of users is more chal- 

lenging than suggesting these kinds of items to an individual, as 

items serendipitous to the group must be novel, unexpected and 

relevant to each individual in the group. Items serendipitous to 

the group could be represented by an intersection of sets contain- 

ing items serendipitous to each user in the group. The cardinality 

of the intersection is less than or equal to the cardinality of each 

user’s set of serendipitous items. The serendipity of a group rec- 

ommendation could be assessed by measuring serendipity for each 

user in the group. 

The presence of different individuals in the group could be 

considered as the context of the recommendation. An item not 

serendipitous to a particular user might become serendipitous 

when it is consumed around certain individuals. To the best of our 

knowledge, effort s on recommendation of serendipitous items to a 

group of users are very limited. 

7. Conclusion 

In this paper, we investigated serendipity in recommender sys- 

tems (RSs) and answered our research questions. 

RQ1. What is serendipity in recommender systems? What makes 

certain items serendipitous for particular users? 

In Section 2 , we defined serendipity as a property that reflects 

how good an RS is at suggesting serendipitous items that are rel- 

evant, novel and unexpected. Novelty and unexpectedness require 

serendipitous items to be relatively unpopular and significantly dif- 

ferent from a user profile. 

RQ2. What are the state-of-the-art recommendation approaches 

that suggest serendipitous items? 

We overviewed serendipity-oriented algorithms and provided 

two classifications of them in Section 3 . The first classification is 

based on the architecture of the algorithms, while the second clas- 

sifies algorithms depending on the phase of recommendation that 

is responsible for serendipity. 

RQ3. How can we assess serendipity in recommender systems? 

We overviewed evaluation strategies to assess serendipity in 

RSs in Section 4 . We discussed qualitative and quantitative meth- 

ods used in experimental studies related to serendipity. 

We also presented two categories of serendipity metrics in 

Section 5 : component metrics and full metrics. Component met- 

rics measure serendipity components, while full metrics measure 

serendipity as a whole. 

RQ4. What are the future directions of serendipity in RSs? 
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In Section 6 , we indicated four future directions of serendipity- 

oriented algorithms. The first direction indicates that serendipity- 

oriented algorithms and evaluation metrics should take into ac- 

count both item popularity and similarity to a user profile. The 

second direction involves context-aware recommender systems. As 

context-aware RSs can pick items based on the context rather than 

user tastes, this kind of system might suggest more serendipitous 

items. The third direction includes cross-domain RS. Having in- 

formation from additional domains, an RS can infer which items 

are familiar to a user, suggest items relevant to the user and se- 

lect items that fit the context. The fourth direction is dedicated to 

group recommendations. It is difficult to suggest items serendipi- 

tous to each user in a group of individuals, as the tastes of each 

user must be considered. 

We hope not only that this paper will make the reader aware 

of serendipity and related concepts in RSs, but also that it will 

help one conduct one’s own experiments by picking suitable algo- 

rithms, evaluation strategies and metrics. We also hope that, as a 

result, the presented overview will contribute to the development 

and improvement of recommendation algorithms focused on user 

satisfaction rather than on accuracy metrics. 
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ABSTRACT

Over the past several years, research in recommender systems has
emphasized the importance of serendipity, but there is still no con-
sensus on the definition of this concept and whether serendipitous
items should be recommended is still not a well-addressed question.
According to the most common definition, serendipity consists of
three components: relevance, novelty and unexpectedness, where
each component has multiple variations. In this paper, we looked
at eight different definitions of serendipity and asked users how
they perceived them in the context of movie recommendations. We
surveyed 475 users of the movie recommender system, MovieLens
regarding 2146 movies in total and compared those definitions of
serendipity based on user responses. We found that most kinds
of serendipity and all the variations of serendipity components
broaden user preferences, but one variation of unexpectedness
hurts user satisfaction. We found effective features for detecting
serendipitous movies according to definitions that do not include
this variation of unexpectedness. We also found that different vari-
ations of unexpectedness and different kinds of serendipity have
different effects on preference broadening and user satisfaction.
Among movies users rate in our system, up to 8.5% are serendipi-
tous according to at least one definition of serendipity, while among
recommendations that users receive and follow in our system, this
ratio is up to 69%.

CCS CONCEPTS

• Information systems → Recommender systems; Personal-
ization;

©Denis Kotkov | ACM 2018. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record will be
published in Proceedings of SAC 2018: Symposium on Applied Computing, April 9–13,
2018, Pau, France, http://dx.doi.org/10.1145/3167132.3167276.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167276

KEYWORDS

recommender systems; serendipity; relevance; novelty; unexpect-
edness

ACM Reference Format:

Denis Kotkov, Joseph A. Konstan, Qian Zhao, and Jari Veijalainen. 2018.
Investigating Serendipity in Recommender Systems Based on Real User
Feedback. In Proceedings of SAC 2018: Symposium on Applied Computing

(SAC 2018). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3167132.3167276

1 INTRODUCTION

Recommender systems are designed to help users find interesting
items, when the number of these items is overwhelming [24]. In
this paper, the term item refers to a piece of information, which is
a reference to an object, such as a good, service or process that a
recommender system suggests to the user [17]. An item can refer
to any object, such as a movie, song or book.

Traditionally, recommendation algorithms have been optimized
for accuracy [15], which indicates the predictive power of these
algorithms. However, recently the focus of the recommender sys-
tems community started shifting towards factors beyond accuracy
[15], as accuracy alone does not always result in user satisfaction.
One of the factors of recommender systems beyond accuracy is
serendipity [15].

According to the dictionary, serendipity is “the faculty of making
fortunate discoveries by accident”1. The term serendipity was first
introduced in the context of recommender systems in early 2000s
[10]. Many researchers employed their definitions of this concept,
but there is no consensus on the definition of serendipity yet [17,
19]. The most common definitions of the concept include three
components: relevance, novelty and unexpectedness [13, 19, 21],
while these components have multiple definitions [19].

It is unclear whether serendipitous items should be recom-
mended to users. According to most claims from the literature on
serendipity in recommender systems, there are two main reasons
for collaborative recommender systems [8] to suggest serendip-
itous items: they broaden user preferences [10, 29, 30] and in-
crease user satisfaction [1, 20, 22, 29]. However, the studies showing

1http://www.thefreedictionary.com/serendipity
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that serendipitous items are in any way better than relevant non-
serendipitous ones are very limited and often have a small number
of samples [26, 27, 29].

Novelty and unexpectedness have multiple definitions [16], but
it is unclear whether different variations of the same component
have different effects on our metrics. In this paper, the term metrics

refers to preference broadening and user satisfaction.
Researchers often indicate that serendipitous items are very rare

[4, 17]. However, it is unclear exactly how rare these items are,
as it might not be worth of suggesting them due to their rareness
and a high risk of suggesting irrelevant items, while optimizing for
serendipity [19].

This paper presents the first study that looks across multiple
definitions of serendipity. It compares these definitions and their
components in terms of their value for a user in a user study. We
employ the most common definition of the concept, which requires
serendipity to include three components: relevance, novelty and
unexpectedness, where each component has multiple definitions
resulting in eight definitions of serendipity. We detect the most
important features for predicting serendipitous items and estimate
the ratio of these items among items rated in a typical collaborative-
filtering-based recommender system [8]. We conduct this study in
the online movie recommender system, MovieLens2, where we ask
users retrospectively about movies they have rated. In this paper,
we address the following research questions (RQs):

RQ1. What are the effects of variations of serendipity components

on broadening user preferences and user satisfaction?

RQ2. What are the effects of different kinds of serendipity on broad-

ening user preferences and user satisfaction?

RQ3. What are the effective features for detecting serendipitous

movies? What are the value ranges of these features for typical

serendipitous movies?

RQ4. How rare are serendipitous movies among movies rated by the

users in a typical collaborative-filtering-based recommender system?

To what extent does this kind of system help users find these movies?

Most serendipity-oriented algorithms are evaluated based on
publicly available datasets that lack user feedback regarding
serendipitous items. To label certain items serendipitous to users,
researchers tend to make assumptions regarding serendipity, such
as serendipitous items are unpopular [20, 22, 30] or dissimilar to
items users rated in the past [1]. These assumptions might not
correspond to real life scenarios. We therefore publish our collected
dataset to allow other researchers conduct experiments related to
serendipity in recommender systems3. This paper has the following
contributions:

• We conduct literature review and operationalize common
definitions of serendipity.

• We compare different definitions of serendipity and their
components in terms of preference broadening and user
satisfaction.

• We find a subset of features that are effective for detect-
ing movies that are serendipitous according to certain def-
initions, which might be useful for suggesting these these

2movielens.org
3The dataset is available on the GroupLens website:
https://grouplens.org/datasets/movielens/

serendipitous movies in an off-line evaluation of recommen-
dation algorithms.

• We estimate the ratio of serendipitous movies, which might
help to decide whether it is worth optimizing for serendipity.

• We publish the first dataset that includes user feedback re-
garding serendipitous movies to allow other researchers
conduct their experiments.

In this study, we surveyed 475 users and found that most kinds
of serendipity and all the variations of serendipity components
broaden user preferences, but one variation of unexpectedness
hurts user satisfaction. We found effective features for detecting
movies that are serendipitous according to definitions that do not in-
clude this variation of unexpectedness. These features are predicted
rating, popularity, content-based and collaborative similarity to
movies users watched in the past. We also found that different vari-
ations of unexpectedness and different kinds of serendipity have
different effects on preference broadening and user satisfaction.
Among movies users rate in a typical collaborative-filtering-based
system, up to 8.5% are serendipitous according to at least one def-
inition of serendipity, while among recommendations that users
receive and follow in the system, this ratio is up to 69%. We only
provide an upper bound estimation due to the bias of our dataset
(we selected relatively unpopular movies).

The paper is organized as follows: in section 2, we briefly review
related work. Section 3 describes our survey and the method to
invite users to our study. Section 4 describes the dataset we collected.
In section 5, we analyze the collected data and answer our research
questions. In section 6, we discuss the results, while in section 7
we discuss limitations of our study and future work. Finally, we
conclude in section 8.

2 RELATEDWORK

Many authors focused on different aspects of serendipity and used
different definitions of the concept. In this section, we focus on (1)
the value of serendipitous items for users due to the objective of
our research, (2) definitions of serendipity, as this is the key concept
of our research and (3) inquiring for serendipity, as we conduct a
survey where we ask users to indicate serendipitous movies.

2.1 Why Serendipitous Items?

Most previous studies on this topic indicate three reasons to recom-
mend serendipitous items. Researchers have claimed that serendip-
itous items help overcome the overspecialization problem (for
content-based filtering algorithms) [1, 13], broaden user prefer-
ences [10, 29, 30] and increase user satisfaction [1, 20, 22, 29].

However, studies that provide evidence for the benefit of recom-
mending serendipitous items are very limited. The only study we
found that measured the benefit of serendipitous recommendations
was conducted by Zhang at el. [29]. In the study, 21 users were
offered recommendations from serendipity-oriented and accuracy-
oriented algorithms. Although users gave lower ratings to recom-
mendations provided by the serendipity-oriented algorithm than
those provided by the accuracy-oriented algorithm, the majority of
users preferred using the serendipity-oriented one [29].

To the best of our knowledge, there are no studies that compare
items corresponding to different definitions of serendipity in terms



Investigating Serendipity in Recommender Systems Based on Real User Feedback SAC 2018, April 9–13, 2018, Pau, France

of their value for users. In this paper, we compare different defi-
nitions of serendipity in terms of preference broadening and user
satisfaction. We do not consider the overspecialization problem, as
in MovieLens, users mostly receive recommendations generated by
collaborative filtering algorithms [7], while the overspecialization
problem is more prominent for content-based filtering algorithms
[13].

2.2 The Definitions of Serendipity

There is no consensus on the definition of serendipity in recom-
mender systems [17, 19]. However, most authors indicate that
serendipitous items must be relevant, novel and unexpected to
a user [17]. An item is relevant to a user if the user expresses or
will express their preference for the item in the future by liking
or consuming the item depending on the application scenario [18].
Novelty of an item to a user depends on how familiar the user is
with the item. An item can be novel to a user in different ways:

(1) The user has never heard about the item [16].
(2) The user has heard about the item, but has not consumed it.
(3) The user has consumed the item and forgot about it [16].

Studies on serendipity in recommender systems often neglect the
definition of unexpectedness. We present a number of definitions
corresponding to the component. An item can be unexpected to
the user if:

(1) The user does not expect this item to be relevant to them
[1].

(2) The user does not expect this item to be recommended to
them.

(3) The user would not have found this item on their own [1, 9–
11, 27].

(4) The item is significantly dissimilar to items the user usually
consumes [14, 19, 29].

(5) The user does not expect to find this item, as the user is
looking for other kinds of items [1].

In this paper, we investigate serendipity according to different def-
initions: serendipitous items are relevant, novel and unexpected,
where unexpectedness corresponds to definitions 1–4 and nov-
elty corresponds to all the definitions listed above (we merged
definitions 1 and 3 together). We do not consider definition 5 of
unexpectedness, as many users in MovieLens do not normally look
for particular kinds of movies. Furthermore, if they know what
they are looking for, they are unlikely to remember what kinds of
movies they were looking for after they have watched the movie
they found.

2.3 Inquiry About Serendipity

There are two ways of inquiring about serendipity in surveys: pos-
ing questions concerning serendipity while viewing it as atomic, or
exposing its components and posing suitable questions concerning
them. The former way of inquiring requires less effort from a user
and simplifies the analysis of user answers. However, asking one
question does not allow to investigate components of serendipity
and is likely to be confusing for users due to the complexity of
the concept [25]. For example, Said et al. compared results of col-
laborative filtering algorithms in terms of serendipity in an online

experiment [25]. The authors directly asked users whether they
found recommendations serendipitous and received statistically
insignificant results in terms of serendipity when they compared
performance of the algorithms. The authors noted that this insignif-
icance was caused by the complexity of the concept especially for
non-native speakers [25].

Inquiring about each component of serendipity requires the users
to answer several questions, where one or more questions measure
one concept at a time. For example, Zhang et al. considered an item
serendipitous to a user, when that user gave an item a high rating
and indicated that this item was novel and unexpected to them
[29]. Although this way of inquiring about serendipity is more
demanding for users, it allows to investigate each component of
serendipity and measure serendipity more precisely than asking
just the one question.

It is also possible to use implicit user feedback on items to assess
serendipity. For example, de Gemmis et al. analyzed facial expres-
sions of users to detect the movies that were serendipitous to these
users [6].

In this paper, we conduct a survey, where we inquire about
serendipity by asking users one question per component of serendip-
ity according to each definition employed in this research, as our
goal of investigating each definition of serendipity requires precise
assessment of the concept and its components.

3 THE SURVEY DESIGN

The main functionality of MovieLens allows users to rate movies
they watched on the scale from 0.5 to 5 stars with the granularity
of 0.5 star and receive recommendations generated based on the
ratings. MovieLens does not allow users to indicate how long ago
they had watched a particular movie. Users might rate a movie in
a while after they had watched it. MovieLens also allows users to
perform other actions, such as adding a movie to the list of movies
to watch (a watch list), assigning keywords (tags) to movies, and
adding new movies to the system.

The ideal way to measure serendipity in a movie domain would
be to inquire a user about novelty and unexpectedness before the
user has watched themovie and inquire the user about the relevance
of this movie afterwards. MovieLens allows us to implement this
experimental setting by conducting two surveys: the first one, when
a user adds movies to their watch list and the second one, when the
user rates movies from their watch list. However, this setting has
two main disadvantages: (a) users mostly add movies they expect
to enjoy watching to their watch lists, and (b) only a few users use
the functionality of adding movies into watch lists and even fewer
users rate movies from their watch lists. We therefore decided to
ask users about their experience retrospectively.

We invited users via emails to complete an online survey re-
garding movies they rated during the last three months before the
experiment. We chose three months, because it is likely that users
still remember their experience of rating those movies when the
users take our survey. Our inclusion criteria for users was as fol-
lows: we selected users who rated at least five movies with a rating
of at least 3.5 stars from December 30, 2016 till March 30, 2017 (the
experiment started on April 1, 2017) and at least one month after
their registrations (for users who joined MovieLens after November
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30, 2016). We assumed that users rate movies that they watched be-
fore the registration during the first month after their registration.
In our survey, we picked five movies rated during the three months
before the experiment and asked users to answer five questions and
rate forty statements about the five movies we picked for each user
(one question and eight statements per movie). We picked the least
popular movies (i.e. those with the smallest number of ratings in
the system) among movies users rated during that period of time.
We expected that users discovered these movies in our system, as
users are likely to hear about popular movies from other sources,
such as friends, family and TV.

We emailed 2305 users who met our inclusion criteria and re-
ceived a response from 522 users, but only 475 users rated all the
statements and answered the question about at least one movie.
In total, these users rated all the statements and answered all the
questions about 2166 movies.

Table 1 demonstrates statements we asked users to rate. Serendip-
ity components that correspond to the statements and the defini-
tions of serendipity. We asked each user to rate eight statements
using the following scale: “strongly agree”, “agree”, “neither agree
nor disagree”, “disagree”, “strongly disagree”, “don’t remember”.
Each definition of serendipity consists of three components: rele-
vance, novelty and unexpectedness. As we only asked users about
movies they rated with at least 3.5 stars, we assumed that all the
movies we asked users about are relevant to these users. We picked
four definitions of unexpectedness and two definitions of novelty:

• Unexpectedness to be relevant (unexp_rel) corresponds to
the original definition of unexpectedness 1 from the litera-
ture review section (section 2.2).

• Unexpectedness to be found (unexp_find) corresponds to the
original definition of unexpectedness 3.

• Implicit unexpectedness (unexp_imp) corresponds to the
original definition of unexpectedness 4.

• Unexpectedness to be recommended (unexp_rec) corre-
sponds to the original definition of unexpectedness 2.

• Strict novelty (s_nov) corresponds to the original definitions
of novelty 1 and 3.

• Motivationally novelty (m_nov) corresponds to the original
definition of novelty 2.

This resulted in eight sets of serendipitous movies. For exam-
ple, we considered a movie motivationally serendipitous (implicit)
if a user rated statements 2 and 5 (m_nov and unexp_imp) with
replies “strongly agree” or “agree”. One movie can belong to several
definitions simultaneously.

In this paper, the term movie refers to a user-movie pair. For
example, a relevant movie corresponds to a user-movie pair, where
the user considers the movie relevant, while other users might not
consider this movie relevant.

4 SUMMARY STATISTICS OF THE DATASET

Figure 1 demonstrates the distribution of the answers to the ques-
tion of how long ago users watchedmovies we picked for the survey.
Users watched around 60% of the movies we asked them about less
than 6 months before the survey and therefore it is likely that they
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Figure 1: Distribution of answers to the question “When did

you watch this movie for the first time?”

2%

9%

46%

56%

47%

66%

58%

84%

88%

65%

32%

28%

25%

23%

18%

13%

10%

26%

22%

16%

28%

12%

23%

2%...I heard [from] [the system]...(1)

[The system] influenced my decision(2)

I expected to enjoy this movie...(3)

...I would not normally discover...(4)

...movie is different...(5)

..surprised that [the system] picked this
movie(6)

I am glad I watched this movie(7)

...broadened my preferences...(8)

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 2: Distributions of answers (“1” - strongly diagree, “2”

- disagree, “3” - neither agree nor disagree, “4” - agree, “5” -

strongly agree)

still remember their watching experience for the movies. We re-
moved movies that users indicated they did not watch (20 movies
or 1%) from our dataset.

Figure 2 demonstrates distributions of the user responses. Users
indicated that they were glad they watched the majority of movies
we asked them about, which might have resulted from our inclu-
sion criteria (we picked movies users rated at least 3.5 stars in
MovieLens).

Table 2 demonstrates the numbers of movies that are serendipi-
tous according to the different definitions along with all the movies
we picked for the survey. The sets of different kinds of serendipitous
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Table 1: Statements 1-6 correspond to components of serendipity, statements 7 and 8 correspond to our metrics and “+” in-

dicates inclusion of a component to the definition of serendipity, i.e. the user checks "agree" or "strongly agree" to the corre-

sponding statement, except for Statement 3 where inclusion means checking “disagree”, “strongly disagree” or “neither agree

nor disagree”.

Statement # 1 2 3 4 5 6 7 8

Statement

The first
time I

heard of
this movie
was when
MovieLens
suggested
it to me.

MovieLens
influenced
my decision
to watch this

movie.

I expected to
enjoy this

movie before
watching it for
the first time.

This is the
type of
movie I

would not
normally discover

on my own;
I need a

recommender
system like
MovieLens to
find movies
like this one.

This movie is
different (e.g.,
in style, genre,
topic) from
the movies

I usually watch.

I was (or,
would have been)
surprised that

MovieLens picked
this movie to

recommend to me.

I am glad I
watched

this movie.

Watching this
movie

broadened
my preferences.

Now I am
interested
in a wider
selection
of movies.

Name s_nov m_nov unexp_rel unexp_find unexp_imp unexp_rec Satisfaction
Preference
broadening

Description

A novelty
component

(strict
novelty)

A novelty
component
(motivational

novelty)

An
unexpectedness
component

(unexpectedness
(relevance))

An
unexpectedness
component

(unexpectedness
(find))

An
unexpectedness
component

(unexpectedness
(implicit))

An
unexpectedness
component

(unexpectedness
(recommend))

Our
satisfaction

metric

Our
preference
broadening

metric

s_ser_rel + +
s_ser_find + +
s_ser_imp + +
s_ser_rec + +
m_ser_rel + +
m_ser_find + +
m_ser_imp + +
m_ser_rec + +

movies overlap. For example, 48 m_ser_imp movies are at the same
time m_ser_rec.

5 ANALYSIS

In this section, we explain how we analyzed the collected data set.
All the movies we picked are considered relevant by users due to
our inclusion criteria. In the following text, we omit indicating that
the movies are relevant for brevity.

We employed a cumulative link mixed-effect regression model
[5]. We used this model to predict a dependent ordinal variable Y
with independent binary variables x1,x2, ...,xn . Consider an obser-
vation from thekth user. Themodel fits probability of the dependent
variable to fall in j = 1, 2, ..., J categories as follows:

loд

(
P(Y � j)

1 − P(Y � j)

)
= α j + β1x1 + ... + βnxn + uk , (1)

where P(Y � j) is a cumulative probability that Y � j, while
β1, β2, ..., βn are the coefficients of the model, where n depends
on the number of independent variables included in the model.
Parameter α j corresponds to the intercept for category j, while
uk is a random intercept for the kth user and uk ∼ Gaussian(0,σ )
where σ is an additional parameter describing the dispersion of the
random intercept effect. See [2] for more details on this analytical
model for ordinal response data. We use the R ordinal package (a
standard implementation of the model) to conduct the analysis [5].

In our analysis, the dependent variables correspond to the likert-
scale responses users gave to the statements 7 and 8 (preference
broadening or user satisfaction, separately). They take values from 1
to 5. Our independent variables correspond towhether amovie satis-
fies a particular definition of serendipity or a variation of serendipity
component.

We conducted statistical tests for each coefficient of the regres-
sion models, where the null hypothesis was that the coefficient
equals zero meaning that changes in the independent variable were
not associated with changes in the dependent variable. To control
false discoveries, we used Bonferroni correction procedure, which
adjusted our critical p-value from 0.05 to 0.0005 [12].

5.1 Effects of the Serendipity Components

To answer RQ1 and investigate the effects of variations of serendip-
ity components separately, we ran twelve cumulative link mixed-
effect regression models, two models per component variation. In
each model, we predicted the dependent variable (user responses
to the preference broadening or user satisfaction question) with
a binary independent variable, i.e. whether a movie belongs to a
particular variation of the component. The results are summarized
in Table 3. It shows that:

(1) Movies that are novel according to either definition of nov-
elty have a positive effect on preference broadening com-
pared with the corresponding non-novel movies.
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Table 2: General characteristics of the dataset. Strict

serendipity is the union of all kinds of strict serendip-

ity (movies corresponding to at least one definition of

serendipity that requires strict novelty (s_nov)), motiva-

tional serendipity is the union of all kinds of motivational

serendipity, and serendipity is the union of all kinds of

serendipity.

Concept Movies Users
All 2146 475
Strictly serendipitous (relevant) (s_ser_rel) 77 61
Strictly serendipitous (find) (s_ser_find) 181 119
Strictly serendipitous (implicit) (s_ser_imp) 115 80
Strictly serendipitous (recommend)
(s_ser_rec)

63 50

Strictly serendipitous 205 131
Motivationally serendipitous (relevant)
(m_ser_rel)

91 64

Motivationally serendipitous (find)
(m_ser_find)

163 101

Motivationally serendipitous (implicit)
(m_ser_imp)

128 88

Motivationally serendipitous (recommend)
(m_ser_rec)

71 49

Motivationally serendipitous 218 122
Serendipitous 302 173

Table 3: The fixed effects (coefficients) of the twelve cumu-

lative link mixed-effect regression models. Each cell corre-

sponds to a coefficient of an ordinal regression with a single

independent variable. Dependent variables are our metrics

(broadening or satisfaction), while independent variables

are variations of serendipity components (metric ∼ compo-

nent). Significance codes: “*” < 0.0005.

Component Broadening Satisfaction
s_nov 0.7412* 0.1259
m_nov 0.7827* 0.307
unexp_rel 0.5972* -0.9133*
unexp_find 2.1161* 0.1934
unexp_imp 1.8698* -0.03029
unexp_rec 1.0889* -0.451

(2) Movies that are unexpected according to each definition of
unexpectedness have a positive effect on preference broad-
ening compared with the corresponding non-unexpected
movies.

(3) unexp_rel movies have a negative effect on user satisfaction
compared with the non unexp_rel movies.

All variations of novelty and unexpectedness broaden user prefer-
ences (observations 1 and 2), but unexpectedness (relevant) (movies
that are unexpected to be relevant) hurts user satisfaction (observa-
tion 3).

Next, we conducted direct comparisons between the variations
of novelty and unexpectedness. For the unexpectedness component,

Table 4: The fixed effects (coefficients) of the twelve cumu-

lative link mixed-effect regression models. Each cell corre-

sponds to a coefficient of an ordinal regression with a sin-

gle independent variable run on a dataset consisting of in-

stances belonging to variations of unexpectedness indicated

in the left column and top row. Dependent variables are

our metrics (broadening or satisfaction), while independent

variables are variations of unexpectedness indicated in the

left column (metric ∼ component). Significance codes: “*” <

0.0005

Broadening
Component unexp_rel unexp_find unexp_imp
unexp_find 0.8206*
unexp_imp 0.6325* -0.1343
unexp_rec 0.4079 -0.3932 -0.1857

Satisfaction
Component unexp_rel unexp_find unexp_imp
unexp_find 0.6373*
unexp_imp 0.4634* -0.1463*
unexp_rec 0.1436 -0.4529 -0.3270

we ran twelve cumulative link mixed-effect regression models, two
models per comparison. We ran each model on a subset of the
collected dataset where we included only observations belonging
to the two variations that were being compared. In the dataset,
we repeated observations belonging to the two variations simulta-
neously. Table 4 summarizes the results for the variations of the
unexpectedness component. It shows that:

(1) unexp_find and unexp_imp movies have positive effects on
preference broadening and user satisfaction, when compared
with unexp_rel movies.

(2) unexp_find movies have a positive effect on user satisfaction,
when compared with unexp_imp movies.

Variations of unexpectedness components turned out to differ
in terms of our metrics. Unexpectedness (relevant) broadens user
preferences less and results in a lower user satisfaction than unex-
pectedness (find and implicit) (observation 1), while unexpected-
ness (find) outperforms unexpectedness (implicit) in terms of user
satisfaction (observation 2).

We omitted the results for the variations of novelty, because
we did not find any statistically significant results in comparisons
between strict and motivational novelty in terms of preference
broadening and user satisfaction.

5.2 Effects of Serendipity

To address RQ2, we ran sixteen cumulative link mixed-effect regres-
sion models, two models per serendipity definition. In each model,
the dependent variable corresponds to the metric (preference broad-
ening or satisfaction), while the independent variable is a binary
variable, which equals true if the movie is serendipitous according
to a particular definition of serendipity and false otherwise.

Table 5 summarizes the results and shows that movies that
are serendipitous according to seven definitions of serendipity
(s_ser_rel, s_ser_find, s_ser_imp, s_ser_rec, m_ser_find, m_ser_imp,
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Table 5: The fixed effects (coefficients) of the sixteen cumulative link mixed-effect regression models. Each cell corresponds

to a coefficient of an ordinal regression with a single independent variable. Dependent variables are the metrics (preference

broadening or satisfaction), while the independent variables correspond to whether a movie is serendipitous according to a

particular definition (metric ∼ serendipity). Significance codes: “*” < 0.0005

s_ser_rel s_ser_find s_ser_imp s_ser_rec m_ser_rel m_ser_find m_ser_imp m_ser_rec
Broadening 0.979* 1.471* 1.581* 1.605* 0.663 1.667* 1.354* 1.307*
Satisfaction -0.347 0.322 0.284 0.276 -0.166 0.486 0.164 0.265

m_ser_rec) broaden user preferences more than the corresponding
non-serendipitous ones.

To compare different kinds of serendipity with each other, we
conducted direct comparisons between them. Similarly, to compare
variations of serendipity components, we ran each comparison on
an altered dataset, which included only observations of the two
kinds of serendipity that were being compared and repeated obser-
vations belonging to both kinds simultaneously. Overall, we ran
fifty-six cumulative link mixed-effect regression models (twenty-
eight models per metric). We omitted the results for preference
broadening, as we did not find any statistically significant results.
Table 6 demonstrates the fixed effects (coefficients) of the regression
models run for user satisfaction. The following observations can
be noticed:

• m_ser_find movies are more enjoyable than s_ser_imp
movies.

• s_ser_impmovies are more enjoyable than m_ser_rel movies.
• s_ser_rec movies are more enjoyable than m_ser_rec movies.

Motivational serendipity (find) outperforms strict serendipity
(implicit), which, in turn, outperforms motivational serendipity
(relevant) in terms of user satisfaction (observations 1 and 2). Mean-
while, strict serendipity (recommend) outperforms motivational
serendipity (recommend) (observation 3).

5.3 Detecting Serendipitous Items

To answer RQ3, we come up with different features of movies and
selected the effective subset for detecting serendipitous movies
corresponding to the union of the six kinds of serendipity defini-
tions, i.e. all except the two definitions s_ser_rel and m_ser_rel.
We excluded these two from the union because (a) these two def-
initions include unexp_rel, for which we have evidence showing
that it hurts user satisfaction and (b) we do not have evidence
showing that m_ser_find broadens user preferences more than non
m_ser_find. We predicted the union of the six serendipity defini-
tions that broaden user preferences more than their corresponding
non-serendipitous items.

To support feature calculation, we first define an average simi-
larity of a movie to a user profile or to the recommendations this
user previously received. In this paper, the term user profile refers
to ratings this user assigned to items in the past. We define the
average similarity of a movie to a user profile as follows:

sim_pro fu,i =
1

| |Iu | |

∑
j ∈Iu , j�i

simi, j (2)

where Iu is the set of movies rated by user u, while simi, j is the
similarity between movies i and j. The way we calculate similarity
depends on the movie representation. For example, to calculate

genre similarity, we modeled movies as sets of genres and used the
Jaccard similarity. For collaborative similarity, we modeled movies
as rating vectors, where each value corresponded to a user rating,
and cosine similarity was used. We define the average similarity
of a movie to the recommendations a user previously received as
follows:

sim_recu,i =
1

| |Ru | |

∑
j ∈Ru , j�i

simi, j (3)

where Ru is the set of the eight last movies recommended to user u
byMovieLens. In summary, we came up with the following features:

• Popularity (logpop). We used popularity because it is one
of the most common attributes used in studies dedicated to
serendipity in recommender systems [19, 20, 30]. We calcu-
lated popularity as follows: loдpopi = ln(Ui ), where Ui is
the number of ratings received by movie i during the last
year (2016) in MovieLens. We picked the number of ratings
during the last year instead of the overall number of ratings,
because many old movies received many ratings if they were
released a long time ago. However, these movies were likely
to be unfamiliar to the active users in the system. The most
famous movies, such as “The Shawshank Redemption”, “Toy
Story” and “The Matrix” are still among the most popular
movies according to our last-year popularity metric.

• Predicted rating (predicted_rating). We used this feature be-
cause the expectation of users might be affected by the sys-
tem’s predictions, while they are browsingmovie pages (note
that in MovieLens, the predicted ratings are displayed along
with the movie information). The algorithm that predicts the
rating depends on the choice of the user because MovieLens
offers several recommendation algorithms, among which
item-based collaborative filtering and matrix factorization
are used by the majority of the users.

• Release year (year). We picked this attribute because recency
of movies might affect users’ familiarity with them. Users
might be more familiar with recently released movies than
the older ones.

• Average tag-based similarity to the user
profile (tag_sim_prof). Similarly to popularity, we picked
this feature because content-based similarity is commonly
considered in the literature [15, 19, 29, 30]. To calculate the
average tag-based distance we employed the tagging model,
tag genome [28], which is based on tags users assign to
movies. We calculated the distance according to Equation
2, where simi, j is the similarity measure of weighted cosine
distance in [28].
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Table 6: The fixed effects (coefficients) of the twenty-eight cumulative link mixed-effect regression models. Each cell corre-

sponds to a coefficient of an ordinal regression with the independent variable run on a dataset consisting of observations

belonging to the kinds of serendipity indicated in the left column and the top row. The dependent variable corresponds to

user satisfaction, while independent variables correspond to the variations of unexpectedness indicated in the left column

(satisfaction ∼ serendipity). Significance codes: “*” < 0.0005

Serendipity s_ser_rel s_ser_find s_ser_imp s_ser_rec m_ser_rel m_ser_find m_ser_imp
s_ser_find 0.570
s_ser_imp 0.503 -0.045
s_ser_rec 0.071 0.092 -0.052
m_ser_rel 0.185 -0.536 -0.445* -0.520
m_ser_find 0.733 0.047 0.140* 0.063 0.522
m_ser_imp 0.514 -0.244 -0.091 0.017 0.274 -0.309
m_ser_rec 1.069 -0.135 -0.145 0.355* 0.600 0.005 0.153

• Average tag-based similarity to recommendations the user
received from MovieLens (tag_sim_rec). We picked this fea-
ture because users’ expectation might depend on the recom-
mendations our system generates. We calculated this fea-
ture according to Equation 3 using the similarity measure of
weighted cosine distance in [28].

• Average genre-based similarity to
the user profile (genre_sim_prof). We picked this feature
as an additional content-based similarity and calculated it ac-
cording to Equation 2, where simi, j is the Jaccard similarity
between the sets of genres of the movies i and j.

• Average genre-based similarity to recommendations the user
received from the system (genre_sim_rec). We picked this
feature as an additional content-based similarity and calcu-
lated it according to Equation 3 using the Jaccard similarity.

• Average collaborative similarity to user profile (c_sim_prof).
We picked this feature because this is a common similarity
measure in the literature on serendipity [14, 30]. We calcu-
lated this feature according to Equation 2, where simi, j is
the cosine similarity between movie rating vectors i and j.

• Average collaborative similarity to recommendations the
user received from the system (c_sim_rec).We calculated this
feature according to Equation 3 using the cosine similarity.

We detected effective features for predicting serendipitous
movies by running a logistic regression model on our dataset. We
used the logistic regression model for the sake of interpretability. In
our dataset, we labeled eachmovie based onwhether this movie was
serendipitous to a user and performed the 10-fold cross validation.

To select effective features for the prediction of serendipity, we
employed the forward search strategy, where we iteratively picked
features based on the performance of the logistic regression model
when gradually adding these features into the model. To compare
models, we used the metric: Area Under the ROC Curve (AUC),
which is a commonly used for assessing performance of binary
classifiers. We also reported AIC (Akaike Information Criterion),
which evaluates the quality of a statistical model (the lower the
value, the better the model) [3].

Table 7 demonstrates the results of the forward feature selection
strategy. We only included the first four features, because further
incorporating more features decreases AUC. According to the ob-
tained results, the most effective features for serendipitous movies

Table 7: The results of feature selection with logistic regres-

sion, where the dependent variable is a binary variable indi-

cating whether amovie belongs to the union of the six kinds

of serendipity (excluding s_ser_rel and m_ser_rel).

Features AIC AUC
predicted_rating 1468.628 0.609

predicted_rating + logpop 1464.008 0.621
predicted_rating + logpop

+ tag_sim_prof
1459.707 0.624

predicted_rating + logpop
+ tag_sim_prof + c_sim_prof

1459.840 0.627

according to at least one of the six definitions are predicted rating,
popularity, the average tag-based similarity to the user profile and
the average collaborative similarity to the user profile.

Table 8: The coefficients of the logistic regression model,

where the dependent variable is a binary variable indicating

whether a movie is serendipitous according to the union of

the six definitions, while the four independent variables cor-

respond to the selected features

Feature Parameter
Standard
Error

predicted_rating 2.954* 0.624
logpop -1.223 0.392
tag_sim_prof 0.508 0.260
c_sim_prof -0.816 1.057

Table 8 shows the coefficients of the final logistic regression
model. It shows that movies that are serendipitous according to at
least one of the six definitions have higher predicted ratings than
corresponding non-serendipitous movies. Other coefficients are
not statistically significant after correction, but the model shows a
trend that serendipitous movies tend to be less popular compared
with non-serendipitous ones.
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5.4 How Rare Are Serendipitous Items?

According to Table 2, among 2146 movies that users gave their
feedback on, 302 (14%) are serendipitous according to at least one
definition. The entire database of MovieLens contains 25,650,696
ratings and 15,854,339 (or 61%) of them are higher than 3.5, which
suggests that up to 8.5% (0.14 ∗ 0.61 ≈ 0.085) are serendipitous. Our
samples include 437 movies that our system encouraged users to
watch, which can be considered as the number of recommendations
that users took. This suggests that up to 69% of recommendations
provided by our system that users watch are serendipitous accord-
ing to at least one definition.

The dataset includes 275 movies that correspond to the union
of the six definitions of serendipity, which have a positive effect
on preference broadening. This suggests that our system contains
up to 5.9% of these movies and 47.4% of them among the recom-
mendations. For the smallest kind of serendipity, strict serendipity
(recommend), these ratios are 1.8% and 14.4%, while for the largest
kind of serendipity, strict serendipity (find), they are 5.1% and 41.4%,
respectively.

6 DISCUSSION

We reviewed a set of techniques for operationalizing serendipity,
finding that different definitions have different effects on preference
broadening and user satisfaction, but confirming that in general
serendipitous recommendations broaden preferences (usually with-
out hurting satisfaction).

We found that there are sufficient serendipitous items to recom-
mend (particularly across the span of definitions), making it feasible
to recommend serendipitous items in contexts where preference
broadening would be useful. We do not look explicitly at which
contexts may benefit most, but leave that to others.

The results of our study regarding features effective for the
detection of serendipitous items mostly correspond to the prior
literature. Content-based similarity to a user profile, collaborative
similarity to a user profile and popularity have been acknowledged
as important features [1, 14, 15, 20, 22, 29, 30]. However, most
studies employ popularity and disregard similarity to a user profile
in offline evaluations of recommendation algorithms [20, 22, 30].

Surprisingly, our results showed that ratings provided by recom-
mender systems are a good predictor for serendipity. In fact, the
higher the rating the more likely an item to be perceived serendip-
itous. This might suggest that even recommendation algorithms
optimized for accuracy assist users to encounter serendipitous items
at least within the limitations of our dataset. This contradicts to the
common claim that recommender systems narrow users’ interests
and trap them in filter bubbles [23, 27, 29]. However, the design of
our experiment does not allow us to support or reject this claim.

7 LIMITATIONS AND FUTUREWORK

Conducting a study of movie recommender system users based
on their previously-rated movies has several limitations. First, we
were limited in the reasons we could explore for movie performance
on our metrics. For example, serendipitous movies might broaden
user preferences more than non-serendipitous ones due to other
reasons than that these movies are serendipitous. Second, our study
is limited in domain to movies. While we hope our results are

generalizable at least in related domains, further study is needed
to evaluate user impact, even in this domain. In our future work,
we are going to design a serendipity-oriented algorithm using the
collected dataset and evaluate it in an experimental setting with real
users, where we control for serendipity with the novel algorithm.

The specific design of our study had other limitations. We only
looked at performance of different kinds of items in terms of pref-
erence broadening and user satisfaction, which was based on the
literature review. Future work should consider other metrics. We
selected only relatively unpopular relevant movies for our survey
to increase the chance of asking users about serendipitous movies,
which only allowed us to compare unpopular serendipitous movies
and unpopular relevant non-serendipitous ones. As a result, our
sample is biased, and may not represent average performance. Fi-
nally we limited our study to active users (duration of use of at
least a month, minimum number of ratings), which may not reflect
the experience of one-time or very infrequent users.

8 CONCLUSION

In this paper, we conducted a survey asking 475 real users about
2146 movies with questions designed based on different serendipity
definitions synthesized from the prior literature. Through this sur-
vey, we collected the first dataset that has real user evaluation on
the serendipity of the items. We only asked about relevant movies
to (i.e. highly rated by) those users and therefore the effects we
found in this work are all relative to items that are relevant but not
serendipitous. The following research questions are addressed.

RQ1. What are the effects of various serendipity components on

broadening user preferences and user satisfaction?

We found that all variations of the unexpectedness and novelty
components broaden user preferences, but one type of unexpect-
edness (unexpected to be relevant) hurts user satisfaction. Movies
that users found novel and unexpected according to any definition
employed in this paper broaden user preferences more than movies
users found non-novel and non-unexpected, respectively. Movies
that users did not expect to like and be recommended are less en-
joyable than movies users expected to like and be recommended
(or had no expectations), respectively.

Variations of the unexpectedness component are different in
terms of our metrics. Two variations of unexpected movies: (a)
movies that users did not expect to find and (b) movies that users
thought were different from movies these users usually watch are
better than the variation: (c) movies users did not expect to like in
terms of both preference broadening and user satisfaction. Mean-
while, movies that users did not expect to find are more enjoyable
than the ones that users found different from movies these users
usually watch.

RQ2. What are the effects of different kinds of serendipity on broad-

ening user preferences and user satisfaction?

We found that serendipitous movies generally broaden user
preferences more than non-serendipitous ones, but we did not
find any effects of serendipity on user satisfaction. In particular,
movies that are serendipitous according to seven definitions of
serendipity broaden user preferences more than corresponding
non-serendipitous ones.
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We also found that different kinds of serendipity differ in terms
of user satisfaction. In particular, motivational serendipity (find)
outperforms strict serendipity (implicit), which, in turn, outper-
forms motivational serendipity (relevant), while strict serendipity
(recommend) outperforms motivational serendipity (recommend).

RQ3. What are the effective features for detecting serendipitous

movies? What are the value ranges of these features for typical

serendipitous movies?

We found features most important for detecting movies that are
serendipitous according to six definitions of serendipity that do not
include unexpectedness (relevant), which hurts user satisfaction.
These features are predicted ratings, popularity, content-based and
collaborative similarity to a user profile. Our results also show
that these serendipitous movies have higher predicted ratings than
corresponding non-serendipitous ones.

RQ4. How rare are serendipitous movies among movies rated by the

users in a typical collaborative-filtering-based recommender system?

To what extent does this kind of system help users find these movies?

We discovered that in the best case scenario, among movies
users rate in a typical movie recommender system, up to 8.5% are
serendipitous according to at least one definition, while among
movies recommended by the system that users watch, this ratio is
up to 69%. We only provide an upper bound estimation due to the
bias of our dataset.
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Abstract: Most recommender systems suggest items similar to a user profile, which results in boring recommendations

limited by user preferences indicated in the system. To overcome this problem, recommender systems should

suggest serendipitous items, which is a challenging task, as it is unclear what makes items serendipitous

to a user and how to measure serendipity. The concept is difficult to investigate, as serendipity includes

an emotional dimension and serendipitous encounters are very rare. In this paper, we discuss mentioned

challenges, review definitions of serendipity and serendipity-oriented evaluation metrics. The goal of the

paper is to guide and inspire future efforts on serendipity in recommender systems.

1 INTRODUCTION

With the growth of information on the Internet it be-
comes difficult to find content interesting to a user.
Hopefully, recommender systems are designed to
solve this problem. In this paper, the term recom-
mender system refers to a software tool that suggests
items of use to users (Ricci et al., 2011). An item is a
piece of information that refers to a tangible or digital
object, such as a good, a service or a process that a
recommender system suggests to the user in an inter-
action through the Web, email or text message (Ricci
et al., 2011). For example, an item can be a reference
to a movie, a song or even a friend in an online social
network.

Recommender systems and search engines are dif-
ferent kinds of systems that aim at satisfying user in-
formation needs. Traditionally, a search engine re-
ceives a query and, in some cases, a user profile as an
input and provides a set of the most suitable items in
response (Smyth et al., 2011). In contrast, a recom-
mender system does not receive any query, but a user
profile and returns a set of items users would enjoy
(Ricci et al., 2011). The term user profile refers to ac-
tions a user performed with items in the past. A user
profile is often represented by ratings a user gave to
items.

Recommender systems are widely adopted by
different services to increase turnover (Ricci et al.,
2011). Meanwhile, users need a recommender sys-
tem to discover novel and interesting items, as it is
demanding to search items manually among the over-

whelming number of them (Shani and Gunawardana,
2011; Celma Herrada, 2009).

Most recommendation algorithms are evaluated
based on accuracy that indicates how good an algo-
rithm is at offering interesting items regardless of how
obvious and familiar to a user the suggestions are
(de Gemmis et al., 2015).To achieve high accuracy,
recommender systems tend to suggest items similar
to a user profile (Tacchini, 2012). As a result, the
user receives recommendations only of items similar
to items the user rated initially. Accuracy-based al-
gorithms limit the number of items that can be rec-
ommended to the user (so-called overspecialization
problem), which lowers user satisfaction (Celma Her-
rada, 2009; Tacchini, 2012). To overcome over-
specialization problem and broaden user preferences,
a recommender system should suggest serendipitous
items.

Suggesting serendipitous items is challenging
(Foster and Ford, 2003). Currently, there is no con-
sensus on definition of serendipity in recommender
systems (Maksai et al., 2015; Iaquinta et al., 2010).
It is difficult to investigate serendipity, as the con-
cept includes an emotional dimension (Foster and
Ford, 2003) and serendipitous encounters are very
rare (André et al., 2009). As different definitions of
serendipity have been proposed (Maksai et al., 2015;
Iaquinta et al., 2010), it is not clear how to mea-
sure serendipity in recommender systems (Murakami
et al., 2008; Zhang et al., 2012).

In this paper we are going to discuss mentioned
challenges to guide and inspire future efforts on

Kotkov, D., Veijalainen, J. and Wang, S.
Challenges of Serendipity in Recommender Systems.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 2, pages 251-256
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

251

challenges, review definitions of serendipity and serendipity oriented evaluation metrics. The goal of the

paper is to guide and inspire future efforts on serendipity in recommender systems.

1 INTRODUCTION
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rada, 2000099; Tacchini, 2012). To overcome over-
specialization problem and broaden user preferences,



serendipity in recommender systems. We review def-
initions of serendipity. We also review and classify
evaluation metrics to measure serendipity and indi-
cate their advantages and disadvantages.

2 CHALLENGES OF
SERENDIPITY IN
RECOMMENDER SYSTEMS

Suggesting serendipitous items involves certain chal-
lenges. We are going to present the most important of
them. Designing a serendipity-oriented recommenda-
tion algorithm requires to choose suitable objectives.
It is therefore necessary to investigate how to assess
serendipity in recommender systems, which requires
a definition of the concept.

2.1 Definition

It is challenging to define what serendipity is in rec-
ommender systems, what kind of items are serendipi-
tous and why, since serendipity is a complex concept
(Maksai et al., 2015; Iaquinta et al., 2010).

According to the dictionary1, serendipity is “the
faculty of making fortunate discoveries by accident”.
The term was coined by Horace Walpole in the let-
ter to Sir Horace Mann in 1754. The author de-
scribed his unexpected discovery by referencing the
fairy tale, “The Three Princes of Serendip”. Horace
Walpole in his letter explained that the princes were
“always making discoveries, by accidents and sagac-
ity, of things which they were not in quest of” (Remer,
1965).

One of the examples of serendipity is the discov-
ery of penicillin. On September 3, 1928, Alexander
Fleming was sorting petri dishes and noticed a dish
with a blob of mold. The mold in the dish killed one
type of bacteria, but did not affect another. Later, the
active substance from the mold was named penicillin
and used to treat a wide range of diseases, such as
pneumonia, skin infections or rheumatic fever. The
discovery of penicillin can be regarded as serendipi-
tous, as it led to the result positive for the researcher
and happened by accident.

To introduce discoveries similar to the discovery
of penicillin in recommender systems, it is neces-
sary to define and strictly formalize the concept of
serendipity. We therefore reviewed definitions em-
ployed in publications on recommender systems.

Corneli et al. investigated serendipity in a compu-
tational context including recommender systems and

1http://www.thefreedictionary.com/serendipity

proposed the framework to describe the concept (Cor-
neli et al., 2014). The authors considered an essential
key condition, focus shift. A focus shift happens when
something that initially was uninteresting, neutral or
even negative becomes interesting.

One of definitions used in recommender systems
was employed by Zhang et al.: “Serendipity repre-
sents the “unusualness” or “surprise” of recommen-
dations” (Zhang et al., 2012). The definition does not
require serendipitous items to be interesting to a user,
but surprising.

In contrast, Maksai et al. indicated that serendip-
itous items must be not only unexpected (surprising),
but also useful to a user: “Serendipity is the quality
of being both unexpected and useful” (Maksai et al.,
2015).

Adamopoulos and Tuzhilin used another defini-
tion. The authors mentioned the following compo-
nents related to serendipity: unexpectedness, novelty
and a positive emotional response, which can be re-
garded as relevance of an item for a user:

Serendipity, the most closely related concept
to unexpectedness, involves a positive emo-
tional response of the user about a previ-
ously unknown (novel) [...] serendipitous rec-
ommendations are by definition also novel.
(Adamopoulos and Tuzhilin, 2014).

A similar definition was employed by Iaquinta et
al. According to (Iaquinta et al., 2010), serendipitous
items are interesting, unexpected and novel to a user:

A serendipitous recommendation helps the
user to find a surprisingly interesting item that
she might not have otherwise discovered (or it
would have been really hard to discover). [...]
Serendipity cannot happen if the user already
knows what is recommended to her, because a
serendipitous happening is by definition some-
thing new. Thus the lower is the probabil-
ity that user knows an item, the higher is the
probability that a specific item could result
in a serendipitous recommendation (Iaquinta
et al., 2010).

Definitions used in (Iaquinta et al., 2010) and
(Adamopoulos and Tuzhilin, 2014) seem to corre-
spond to the dictionary definition and the framework
proposed by Corneli et al. As a serendipitous item
is novel and unexpected, the item can be perceived
as uninteresting, at first sight, but eventually the item
will be regarded as interesting, which creates a focus
shift, a necessary condition for serendipity (Corneli
et al., 2014). The definition also corresponds to the
dictionary definition, as novel, unexpected and inter-
esting to a user item is likely to be a “fortunate dis-
covery”.
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Publications dedicated to serendipity in recom-
mender systems do not often elaborate the compo-
nents of serendipity (Iaquinta et al., 2010; Maksai
et al., 2015; Zhang et al., 2012). It is not entirely clear
in what sense items should be novel and unexpected
to a user.

Kapoor et al. indicated three different definitions
of novelty in recommender systems (Kapoor et al.,
2015):

1. Novel to a recommender system item. A recently
added item that users have not yet assessed.

2. Forgotten item. A user might forget that she con-
sumed the item some time ago in the past.

3. Unknown item. A user has never seen or heard
about the item in her life.

In addition, Shani and Gunawardana suggested that
we may regard a novel item as one not rated by the
target user regardless of whether she is familiar with
the item (Shani and Gunawardana, 2011).

Unexpectedness might also have different mean-
ings depending on expectations of a user. A user
might expect a recommender system to suggest items
similar to her profile, popular among other users or
both similar and popular (Kaminskas and Bridge,
2014; Zheng et al., 2015).

2.1.1 Serendipity in a Context

Most recommender systems do not consider any con-
textual information, such as time, location or mood
of a user (Adomavicius and Tuzhilin, 2011). Mean-
while, the context may significantly affect the rele-
vance of items for a user (Adomavicius and Tuzhilin,
2011). An item that was relevant for a user yester-
day might not be relevant tomorrow. A context may
include any information related to recommendations.
For example, a recommender system may consider
current weather to suggest a place to visit. Context-
aware recommender systems use contextual informa-
tion to suggest items interesting to a user.

Serendipity depends on a context, as each of its
components is context-dependant. An item that was
relevant, novel and unexpected to a user in one con-
text might not be perceived the same in another con-
text. The inclusion of a context affects the definition
of serendipity. For example, contextual unexpected-
ness would indicate how unexpected an item is in a
given context, which might be different from unex-
pectedness in general. Serendipity might consist of
novelty, unexpectedness and relevance in a given con-
text.

As the context has a very broad definition (Dey,
2001), it is challenging to estimate what contextual

information is the most important in a particular situ-
ation. For example, weather is an important factor for
most outdoor activities, while user mood is important
for music suggestion (Kaminskas and Ricci, 2012).

2.1.2 Serendipity in Cross-domain
Recommender Systems

Most recommender systems suggest items from a
single domain, where the term domain refers to “a
set of items that share certain characteristics that
are exploited by a particular recommender system”
(Fernández-Tobı́as et al., 2012). These characteristics
are items’ attributes and users’ ratings. Different do-
mains can be represented by movies and books, songs
and places, MovieLens2 movies and Netflix3 movies
(Cantador and Cremonesi, 2014).

Recommender systems that suggest items using
multiple domains are called cross-domain recom-
mender systems. Cross-domain recommender sys-
tems can use information from several domains, sug-
gest items from different domains or both consider
different domains and suggest items from them (Can-
tador and Cremonesi, 2014). For example, a cross-
domain recommender system may take into account
movie preferences of a user and places that the user
visits to recommend watching a particular movie in a
cinema suitable for the user.

Consideration of additional domains affects the
definition of serendipity, as cross-domain recom-
mender systems may suggest combinations of items.
It is questionable whether in this case items in the
recommended combination must be novel and unex-
pected.

2.1.3 Discussion

According to literature review, to date, there is no con-
sensus on definition of serendipity in recommender
systems (Maksai et al., 2015; Iaquinta et al., 2010).
We suggest that the definition of serendipity should
include combinations of items from different domains
and a context, which might encourage researchers to
propose serendipity-oriented recommendation algo-
rithm that would be more satisfying to users. For ex-
ample, suppose, two young travelers walk in a cold
rain in a foreign city without much money. A rec-
ommendation of a hostel would be obvious in this
situation, as the travelers would look for a hostel on
their own. A suggestion of sleeping in a local cinema,
which would cost less than a hostel, is likely to be
serendipitous in that situation. The recommendation

2https://movielens.org/
3https://www.netflix.com/
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we may regard a novel item as one not rated by the
target user regardless of whether she is familiar with
the item (Shani and Gunawardana, 2011).
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According to literature review, to date, there is no con-
sens s on definition of serendipit in recommender



Table 1: Notation

I = (i1, i2, ..., in) the set of items

F = ( f1, f2, ..., fz) feature set

i = ( fi,1, fi,2, ..., fi,z) representation of item i
U = (u1,u2, ...,un) the set of users

Iu, Iu ⊆ I the set of items rated
by user u (user profile)

Ru,Ru ⊆ I the set of items
recommended to user u

relu(i)
1 if item i relevant for
user u and 0 otherwise

would be even more satisfying to the travelers if the
recommender system also suggested the longest and
cheapest movie in that cinema and an energetic song
to cheer up the travelers.

2.2 Emotional Dimension

Relevance of an item for a user might depend on user
mood (Kaminskas and Ricci, 2012). This contextual
information is difficult to capture without explicitly
asking the user. As serendipity is a complex con-
cept, which includes relevance (Iaquinta et al., 2010;
Adamopoulos and Tuzhilin, 2014), this concept de-
pends on the current user mood in a higher degree.
An emotional dimension makes serendipity unstable
and therefore difficult to investigate (Foster and Ford,
2003).

2.3 Lack of Serendipitous Encounters

As serendipitous items must be relevant, novel and
unexpected to a user, they are rare (André et al., 2009)
and valuable. Due to the lack of observations it is dif-
ficult to make assumptions regarding serendipity that
would be reasonable in most cases.

2.4 Evaluation Metrics

We are going to review evaluation metrics that mea-
sure serendipity in recommender systems. As dif-
ferent metrics have been proposed (Murakami et al.,
2008; Kaminskas and Bridge, 2014; Zhang et al.,
2012), the section provides their comparison, includ-
ing advantages and disadvantages. To review evalua-
tion metrics, we first present notation in table 1.

The following evaluation metrics consider a rec-
ommender system with I available items and U users.
User u rates or interacts with items Iu, Iu ⊆ I. A
recommender system suggests Ru items to user u.
Each item i, i ∈ I is represented as a vector i =
( fi,1, fi,2, ..., fi,z) in a multidimensional feature space
F . For example, a feature can be a genre of a movie

on a web-site. If F = (drama,crime,action) then the
movie “The Shawshank Redemption” can be repre-
sented as iShawshank = (0.4,0.4,0.1).

Seeking to measure serendipity of a recommender
system, researchers proposed different evaluation
metrics. Based on reviewed literature we classify
them into three categories: content-based unexpect-
edness, collaborative unexpectedness and primitive
recommender-based serendipity.

2.4.1 Content-based Unexpectedness

Content-based unexpectedness metrics are based on
attributes of items. These metrics indicate the dissim-
ilarity of suggestions to a user profile.

One of the content-based unexpectedness metrics
was proposed by Vargas and Castells (Vargas and
Castells, 2011). Later, the metric was adopted by
Kaminskas and Bridge to measure unexpectedness
(Kaminskas and Bridge, 2014). The authors sug-
gested that serendipity consists of two components:
relevance and unexpectedness. Content-based unex-
pectedness metrics can be used to measure unexpect-
edness, while accuracy metrics such as root mean
square error (RMSE), mean absolute error (MAE) or
precision (Ekstrand et al., 2011) can be used to assess
relevance. The metric is calculated as follows:

unexpc(i,u) =
1

|Iu| ∑
j∈Iu

1− sim(i, j) (1)

where sim(i, j) is any kind of similarity between items
i and j. For example, it might be content-based cosine
distance (Lops et al., 2011).

2.4.2 Collaborative Unexpectedness

Collaborative unexpectedness metrics are based on
ratings users gave to items. Kaminskas and Bridge
proposed a metric that can measure unexpectedness
based on user ratings (Kaminskas and Bridge, 2014).
User ratings can indicate similarities between items.
Items can be considered similar if they are rated by the
same set of users. The authors therefore proposed a
co-occurrence unexpectedness metric, which is based
on normalized point-wise mutual information:

unexpr(i,u) =
1

|Iu| ∑
j∈Iu

− log2

p(i, j)
p(i)p( j)

/ log2 p(i, j)

(2)
where p(i) is the probability that users have rated item
i, while p(i, j) is the probability that the same users
have rated items i and j.
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Relevance of an item for a user might depend onn ususerer
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ratings users gave to items. Kaminskas and Bridge
proposed a metric that can measure unexpectedness



2.4.3 Primitive Recommender-based Serendipity

The metric is based on suggestions generated by a
primitive recommender system, which is expected
to generate recommendations with low unexpected-
ness. Originally the metric was proposed by Mu-
rakami (Murakami et al., 2008) and later modified
(Ge et al., 2010; Adamopoulos and Tuzhilin, 2014).
Modification proposed by Adamopoulos and Tuzhilin
is calculated as follows:

serpm(u) =
1

|Ru| ∑
i∈(Ru\(Eu∪PM))

relu(i), (3)

where PM is a set of items generated by a primi-
tive recommender system, while Eu is a set items
that matches interests of user u. In the experiments
conducted by Adamopoulos and Tuzhilin, the primi-
tive recommender system generated non-personalized
recommendations consisting of popular and highly
rated items. Meanwhile, Eu contained items similar
to what user u consumes.

2.4.4 Analysis of the Evaluation Metrics

Content-based and collaborative metrics capture the
difference between recommended items and a user
profile, but have a disadvantage. These metrics mea-
sure unexpectedness separately from relevance. The
high score of both metrics can be obtained by suggest-
ing many unexpected irrelevant and expected relevant
items that would probably not be serendipitous.

Depending on a primitive recommender system,
the metrics based on a primitive recommender sys-
tem capture item popularity and dissimilarity to a
user profile, but also have a disadvantage. Primitive
recommender-based metrics are sensitive to a prim-
itive recommender system (Kaminskas and Bridge,
2014). By changing this parameter, one might obtain
contradictory results.

Designing a serendipity-oriented algorithm that
takes into account a context and combinations of
items from different domains requires a correspond-
ing serendipity definition and serendipity metric. An
item might be represented by a combination of items
from different domains and considered serendipitous,
depending on a particular situation. The reviewed
metrics disregard a context and additional domains
due to the lack of serendipity definitions that consider
this information. One of the reasons might be that
recommender systems do not usually have the infor-
mation on the context. Another reason might be the
disadvantages of offline evaluation.

Even offline evaluation of only relevance with-
out considering the context or additional domains

may not correspond to results of experiments in-
volving real users (Said et al., 2013; Garcin et al.,
2014). Offline evaluation may help choose candidate
algorithms (Shani and Gunawardana, 2011), but on-
line evaluation is still necessary, especially in assess-
ing serendipity, as serendipitous items are novel by
definition (Iaquinta et al., 2010; Adamopoulos and
Tuzhilin, 2014) and it is difficult to assess whether
a user is familiar with an item without asking her.

3 CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we discussed challenges of serendipity
in recommender systems. Serendipity is challenging
to investigate, as it includes an emotional dimension,
which is difficult to capture, and serendipitous en-
counters are very rare, since serendipity is a complex
concept that includes other concepts.

According to the reviewed literature, currently
there is no consensus on definition of serendipity
in recommender systems, which makes it difficult
to measure the concept. The reviewed serendip-
ity evaluation metrics can be divided into three
categories: content-based unexpectedness, collabo-
rative unexpectedness and primitive recommender-
based serendipity. The main disadvantage of content-
based and collaborative unexpectedness metrics is
that they measure unexpectedness separately from rel-
evance, which might cause mistakes. The main disad-
vantage of primitive recommender-based serendipity
metrics is that they are sensitive to a primitive recom-
mender.

In our future work, we are going to propose a def-
inition of serendipity in recommender systems, de-
velop serendipity metrics and design recommenda-
tion algorithms that suggest serendipitous items. We
are also planning to conduct experiments using pre-
collected datasets and involving real users. We hope
that this paper will guide and inspire future research
on recommendation algorithms focused on user satis-
faction.
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Milano.

Vargas, S. and Castells, P. (2011). Rank and relevance in
novelty and diversity metrics for recommender sys-
tems. In Proceedings of the Fifth ACM Conference
on Recommender Systems, pages 109–116, New York,
NY, USA. ACM.
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Abstract: Most recommender systems suggest items to a user that are popular among all users and similar to items the

user usually consumes. As a result, a user receives recommendations that she/he is already familiar with or

would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should sug-

gest novel, relevant and unexpected, i.e. serendipitous items. In this paper, we propose a serendipity-oriented

algorithm, which improves serendipity through feature diversification and helps overcome the overspecial-

ization problem. To evaluate our algorithm and compare it with others, we employ a serendipity metric that

captures each component of serendipity, unlike the most common metric.

1 INTRODUCTION

Recommender systems are software tools that suggest
items of use to users (Ricci et al., 2011; Kotkov et al.,
2016a). An item is “a piece of information that refers
to a tangible or digital object, such as a good, a service
or a process that a recommender system suggests to
the user in an interaction through the Web, email or
text message” (Kotkov et al., 2016a). For example,
an item could refer to a movie, a song or a new friend.

To increase the number of items that will receive
high ratings most recommender systems tend to sug-
gest items that are (1) popular, as these items are con-
sumed by many individuals and often of high qual-
ity in many domains (Celma Herrada, 2009) and (2)
similar to which the user has assigned high ratings,
as these items correspond to user’s preferences (Tac-
chini, 2012; Kotkov et al., 2016a; Kotkov et al.,
2016b). As a result, users might become bored with
the suggestions provided, as (1) users are likely to
be familiar with popular items, while the main rea-
son these users would use a recommender system is to
find novel and relevant items (Celma Herrada, 2009)
and (2) users often lose interest in using the system
when they are offered only items similar to highly
rated ones from their profiles (the so-called overspe-
cialization problem) (Tacchini, 2012; Kotkov et al.,

∗The research was conducted while the author was
working for the University of Jyvaskyla, Finland

2016a; Kotkov et al., 2016b). Here the term user pro-
file refers to the set of items rated by the target user,
though it might include information, such as name, ID
and age in other papers.

To suggest novel and interesting items and over-
come the overspecialization problem, recommender
systems should suggest serendipitous items. Some
researchers consider novel and unexpected items
serendipitous (Zhang et al., 2012), while others sug-
gest that serendipitous items are relevant and unex-
pected (Maksai et al., 2015). Although there is no
agreement on the definition of serendipity (Kotkov
et al., 2016b), in this paper, the term serendipitous
items refers to items relevant, novel and unexpected
to a user (Kotkov et al., 2016a; Kotkov et al., 2016b):

• An item is relevant to a user if the user has ex-
pressed or will express preference for the item.
The user might express his/her preference by lik-
ing or consuming the item depending on the appli-
cation scenario of a particular recommender sys-
tem (Kotkov et al., 2016a; Kotkov et al., 2016b).
In different scenarios, ways to express preference
might vary. For example, we might regard a
movie relevant to a user if the user gave it more
than 3 stars out of 5 (Zheng et al., 2015; Lu et al.,
), while we might regard a song relevant to a user
if the user listened to it more than twice. The sys-
tem is aware that a particular item is relevant to a
user if the user rates the item, and unaware of this
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would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should sug-

gest novel, relevant and unexpected, i.e. serendipitous items. In this paper, we propose a serendipity-oriented

algorithm, which improves serendipityty ththrorougugh feature diversification and helps overcome the overspecial-

ization problem. To evaluate our allgogorithm and cocompmpare it with others, we employ a serendipity metric that

captures each component of serenndidipity, unlike the moostst common metric.

1 IINNTTRROODDUUCCTTIIOONN
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too a ta tanangigiblble oe or dr digigititalal obobjeectct s, sucuch ah as as a gogoodod a, a seservrvicicee
or a process that a recommender systemm susuggggesests to
the user in an interaction through the Web,b, ememaiail ol orr
text message” (Kotkov et al., 2016a). For examplele,
an item could refer to a movie, a song or a new friend.

To increase the number of items that will receive
high ratings most recommender systems tend to sug-
gest items that are (1) popular, as these items are con-

20201616a;a; KoKotktkovov ett alal., 20201616b)b) H. Herere te thehe teermrm ususerer prpro-
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thoughgh it mighghtt innclludde iinfoformrm tatiion,n, susuchch as name, I, ID
and age in other papapeers.
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cocomeme ththe oe ovversspepecicialalizizatatioion pn proroblblemem r, rececomommemendnder
systems should sd suuggest serendipitous items. Some
researchers ccononssider novel and unexpected items
serendipitouus (s (ZZhang et al., 2012), while others sug-
gegestst tht at seerenndipitous items are relevant and unex-
pectctede (MMakkssai et al., 2015). Although there is no
agreemenent ot on the definition of serendipity (Kotkov
et al., 2016b), in this paper, the term serendipitous



relevance otherwise.

• An item is novel to a user if the user has not con-
sumed it yet (Kotkov et al., 2016a; Kotkov et al.,
2016b). Items novel to a user are usually unpopu-
lar, as users are often familiar with popular items,
where popularity can be measured by the number
of ratings given in a recommender system (Kotkov
et al., 2016a; Kotkov et al., 2016b; Celma Her-
rada, 2009). Novel items also have to be relatively
dissimilar to a user profile, as the user is likely to
be familiar with items similar to the ones she/he
has rated (Kotkov et al., 2016a; Kotkov et al.,
2016b).

• An item is unexpected to a user if the user does not
anticipate this item to be recommended to him/her
(Kotkov et al., 2016a; Kotkov et al., 2016b). The
user does not expect items that are dissimilar to
the ones usually recommended to him/her. Gener-
ally, recommender systems suggest items similar
to items rated by the user (Tacchini, 2012; Kotkov
et al., 2016a; Kotkov et al., 2016b). Consequently,
an item dissimilar to the rated ones is regarded as
unexpected (Kotkov et al., 2016a; Kotkov et al.,
2016b). The measure of dissimilarity could be
based on user ratings or item attributes depend-
ing on the application scenario of a recommender
system (Kaminskas and Bridge, 2014).

State-of-the-art serendipity-oriented recommen-
dation algorithms are barely compared with one an-
other and often employ different serendipity metrics
and definitions of the concept, as there is no agree-
ment on the definition of serendipity in recommender
systems (Zhang et al., 2012; Lu et al., ; Kotkov et al.,
2016b).

In this paper, we propose a serendipity-oriented
recommendation algorithm based on our definition
above. We compare our algorithm with state-of-the-
art serendipity-oriented algorithms. We also show
that the serendipity metric we use in the experiments
includes each of the three components of serendipity,
unlike the most common serendipity metric.

Our serendipity-oriented algorithm reranks rec-
ommendations provided by an accuracy-oriented al-
gorithm and improves serendipity through feature
diversification. The proposed algorithm is based
on an existing reranking algorithm and outperforms
this algorithm in terms of accuracy and serendipity.
Our algorithm also outperforms the state-of-the-art
serendipity-oriented algorithms in terms of serendip-
ity and diversity.

The paper has the following contributions:

• We propose a serendipity-oriented recommenda-
tion algorithm.

Table 1: Notations.

I = {i1, i2, ..., inI} the set of items

Iu, Iu ⊆ I the set of items rated by
user u (user profile)

F = { f1, f2, ..., fnF } the set of features

Fi,Fi ⊆ F the set of features of item i
U = {u1,u2, ...,unU } the set of users

Ui,Ui ⊆U the set of users who rated
item i

RSu(n),RSu(n)⊆ I
the set of top–n
recommendations provided
by an algorithm to user u

ru,i
the rating given by user u
to item i

r̂u,i
the prediction of the rating
given by user u to item i

• We evaluate existing serendipity-oriented recom-
mendation alorithms.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed algorithm. Section 3 is
dedicated to experimental setting, while section 4 re-
ports the results of the experiments. Finally, section 5
draws conclusions and indicates future work.

2 A SERENDIPITY-ORIENTED
GREEDY ALGORITHM

To describe the proposed algorithm, we present the
notation in Table 1. Let I be a set of available items
and U be a set of users. User u rates or interacts
with items Iu, Iu ⊆ I. A recommender system suggests
RSu(n) items to user u. Each item can have a number
of features Fi = { fi,1, fi,2, ..., fi,nF,i}. The rating user
u has gaven to item i is represented by ru,i, while the
predicted rating is represented by r̂u,i.

2.1 Description

We propose a serendipity-oriented greedy (SOG) al-
gorithm, which is based on a topic diversification al-
gorithm (TD) (Ziegler et al., 2005). The objective
of TD is to increase the diversity of a recommenda-
tion list. Both SOG and TD belong to the group of
greedy reranking algorithms (Castells et al., 2015).
According to the classification provided in (Kotkov
et al., 2016b), we propose a hybrid reranking algo-
rithm following the post-filtering paradigm and con-
sidering unpopularity and dissimilarity.

Algorithm 1 describes the proposed approach. An
accuracy-oriented algorithm predicts item ratings r̂u,i
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the ones usually recommended to him/her. Gener-
ally, recommender systems suggest items similar
to items rated by the user (Tacchini, 2012; Kootktkovov
et al., 2016a; Kotkov et al., 2016b). Conseququently,
an item dissimilar to the rated ones is reegagarded as
unexpected (Kotkov et al., 2016a; KKototkkov et al.,
2016b). The measure of dissimilalaririty could be
based on user ratings or item atattrtriibutes depend-
ining og on tn thhe appplplicicatatioion sn cecenanaririo oof af a reecocommmmenendeder
sysyststemem (KKamaminskas annd Briridgdge, 20144)..

State-of-the-art serendipipitityy-oriented recommenn--
dation algog rithms are barely cy comompap red with one anan-
ottheher ar andnd ofofteten en empmploloy dy dififfefererentnt seserendndipipitity my metetriricsc
and definitions of the concept, as there ie is ns no aaggree-
ment on the definition of serendipity in recomommemendnder
systems (Zhang et al., 2012; Lu et al., ; Kotkokov ev et at all.,
2016b).

In this paper, we propose a serendipity-oriented
recommendation algorithm based on our definition
above. We compare our algorithm with state-of-the-

• We evaluate existing serendipity-oriented recom-
mendation alorithms.

The rest of the paper is organized as follows. Sec-
tiionon 2 describes the proposed algorithm. Section 3 is
dedicacateted td to eo experimental setting, while section 4 re-
portrtss the results oof tf theh experiments. Finally, section 5
drdraaws conclusions and id indndicates future work.

2 AA SERREENNDDIIPPIITTYY-OORRIIEENNTTEEDD
GREEDYY AALGORITHM

To describe the pe prroposed algorithm, we present the
notation in Tabblee 1. Let I be a set of available items
and U be a ssett of users. User u rates or interacts
wiwith items IIuIIII , IIuuIIII ⊆ I. A recommender system suggests
RSRSu((nn)) ititemems tto user u. Each item can have a number
of feeataturu es FFiFF = { fiff ,1, fiff ,2, ..., fiff ,nF,i}. The rating user
u has gaven to item i is represented by ru,i, while the
predicted rating is represented by r̂ i



Input : RSu(n): top–n recommendation set,
ΘF : damping factor

Output: Res: picked item list
B′: candidate set,
r̂u,i: predicted rating of an item,
r̂u, f : predicted rating of a feature;
Res[0]← i with max r̂u,i;
for z ← 1 to n do

B ← set(Res);// set converts a list to a set
B′ ← RSu(n)\B;
calculate cu,B,i, i ∈ B′;
normalize cu,B,i, r̂u, f and r̂u,i, i ∈ B′ to [0,1];
forall the i ∈ B′ do

calculate scoreu,i
end
Res[z]← i with max scoreu,i;

end
Algorithm 1: Description of SOG.

and generates top–n suggestions RSu(n) for user u.
SOG iteratively picks items from set RSu(n) to fill di-
versified list Res. In each iteration the algorithm gen-
erates a candidate set B′ which contains top–n recom-
mendations RSu(n) except picked items from list Res
(or from set B). A candidate item with the highest
score is added to diversified list Res. The score is cal-
culated as follows:

scoreu,i = (1−ΘF) · r̂u,i +ΘF · cu,B,i, (1)

cu,B,i = du,B +ΘS · ( max
f∈(Fi\Fu)

(r̂u, f )+unexpu,i), (2)

where ΘS is a serendipity weight, while ΘF is a
damping factor, which is responsible for diversity of
reranked recommendation list Res. The predicted rat-
ing of feature f for user u is represented by r̂u, f ,
r̂u, f ∈ [0,1]. Feature rating indicates how likely a user
is to like an item that has a particular feature. As an
item might have several features, we select the rating
of a feature that is novel and most relevant to a user.
If an item does not have any novel features Fi\Fu = /0
then max f∈(Fi\Fu)(r̂u, f ) = 0. Unexpectedness is based
on the number of new features of an item for a user:

unexpu,i =
||Fi\Fu||
||F\Fu|| , (3)

where F corresponds to the set of all features,
Fi corresponds to features of item i, and Fu cor-
responds to features of items rated by user u.
Suppose selected features correspond to movie
genres F = {comedy, drama, horror, adventure,
crime}, the movie “The Shawshank Redemp-
tion” could be represented as follows Fshawshank =
{drama, crime}, while the user might rate come-
dies and dramas Fu = {comedy, drama}. For

u1
u2
u3
u4
u5

i1 i2 i3 i4
5   4
2   2      5
4       4

4   3
2       5  5

user-item matrix

u1
u2
u3
u4
u5

f1 f2 f3
5

2   2  5
4   4

4
2       5

user-feature matrix

4.5

3.5

3.5

F {f1, f2}i1=
F {f1}i2=
F {f2}i3=
F {f3}i4=

;;

Figure 1: An example of user-item and user-feature
matrices.

user u the movie “The Shawshank Redemption” has
the following unexpectedness: unexpu,shawshank =

||{drama,crime}\{comedy,drama}||
||{comedy,drama,horror,adventure,crime}\{comedy,drama}|| =

1
3 .

If the user rates items of all features F , we regard the
feature that is the least familiar to the user as novel.
If the user has not rated any features Fu = /0, all the
features are regarded as novel.

Dissimilarity of an item to picked items is calcu-
lated as follows:

di,B =
1

||B|| ∑
j∈B

1− simi, j, (4)

where similarity simi, j can be any kind of similarity
measure. In our experiments we used content-based
Jaccard similarity:

simi, j =
||Fi ∩Fj||
||Fi ∪Fj|| . (5)

To predict feature ratings r̂u, f , we apply an
accuracy-oriented algorithm to a user-feature matrix.
A user-feature matrix is based on user-item matrix,
where a rating given by a user to a feature corresponds
to the mean rating given to items having this feature
by this user:

ru, f =
1

||Iu, f || ∑
i∈Iu, f

ru,i, (6)

where Iu, f is a set of items having feature f and rated
by user u.

Figure 1 demonstrates an example of user-item
and user-feature matrices. Suppose users have rated
items i1, i2, i3 and i4 on the scale from 1 to 5 (user-
item matrix). Each item has a number of features. For
example, item i1 has features f 1 and f 2, while item
i2 only has feature f 1. User-feature matrix contains
feature ratings based on user-item matrix (eq. 6). For
example, the rating of feature f 1 for user u1 is 4.5, as
items i1 and i2 have feature f 1 and the user gave a 5
to item i1 and a 4 to item i2.

2.2 Analysis

Our algorithm considers each component of serendip-
ity:
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and generates top–n suggestions RSu(n) for useserr uu..
SOG iteratively picks items from set RSu(n) too fifill di-
versified list Res. In each iteration the algorritithhm gen-
erates a candidate set B′ which contains ttopop–n recom-
mendations RSu(n) except picked itemms fs from list Res
(or from set B). A candidate item wiwith the highest
sccorre ie is as addddeded too didiveversrsifiifieded lilistst ReR ss T. Thehe sccorore ie is cs calal-
cuulalateted ad as fs folollowws:

scoreu,i = (1−ΘF)) · ˆ̂rru,i +ΘF · cu,B,i, (11))

ccuu,,BB,,ii == dduu,,BB ++ΘΘSS ·· (( mamaxx
f∈(FiFF \FuFF )

(( ˆ̂rruu,, ff )+)+unu exexppuu,,ii)),, (2(2))

where ΘS is a serendipity weight, whiilele ΘΘFF is a
damping factor, which is responsible for divverersisityty fof
reranked recommendation list Res. The predicted rat-
ing of feature f for user u is represented by r̂u, f ,
r̂u, f ∈ [0,1]. Feature rating indicates how likely a user
is to like an item that has a particular feature. As an
item might have several features we select the rating

lated as follows:

di,B =
1

||B|| ∑
j∈B

1− simi, j, (4)

wherre se simimililarariti y simi, j can be any kind of similarity
meeasa ure. In our er expxpere iments we used content-based
JaJacccard similarity:

siimmi, j ==
||| FFiFF ∩∩FFjjFF ||||
|||FFiiFFF ∪∪FFjjFF |||| . (5( )

To predict feaatuture ratings r̂u, f , we apply an
aca cucuraracycy-ooriiene teted ad alglgororitithmh toto a ua useser-r fefeataturure me matatririx.
A uA useser-r fefeataturure mmatatririx ix is bs basaseded onon ususerer-iitetem mm matatririx,
where a rating gigiveven by a user to a feature corresponds
to the mean raatinng given to items having this feature
by this user:

ru, f =
1

||IuII , f || ∑
i∈IuII , f

ru,i, (6)

where IuII f is a set of items having feature f and rated



• Ratings r̂u,i and r̂u, f correspond to relevance.

• unexpu,i corresponds to unexpectedness.

• Novelty is handled implicitly. SOG suggests
items with features novel to users, leading to the
relative unpopularity of the items, as they have un-
popular features.

Although SOG is based on TD, our algorithm has
three key differences with respect to TD:

• SOG considers item scores instead of positions of
items in lists, which leads to more accurate scores
(scoreu,i).

• SOG employs a serendipity weight that controls
how likely the algorithm is to suggest an item with
a novel feature.

• SOG predicts features a user will like.

Our algorithm has four main advantages:

• The algorithm considers each component of
serendipity.

• As our algorithm is based on the diversification al-
gorithm, SOG improves both serendipity and di-
versity.

• As SOG is a reranking algorithm, it can be ap-
plied to any accuracy-oriented algorithm, which
might be useful for a live recommender system
(reranking can be conducted on the client’s side
of a client-server application).

• Our algorithm has two parameters, which adjust
the algorithm according to different requirements.
The parameters could be different for each user
and be adjusted as the user becomes familiar with
the system.

The computational complexity of the algorithm is
O(n3) (excluding pre-calculation), where n is a num-
ber of items in input set RSu(n) (in our experiments
n = 20).

3 EXPERIMENTS

To evaluate existing algorithms and test the pro-
posed serendipity metric, we conducted experiments
using two datasets: HetRec (Harper and Konstan,
2015) and 100K MovieLens. The HetRec dataset
contains 855,598 ratings given by 2,113 users to
10,197 movies (density 3.97%). The 100K Movie-
Lens (100K ML) dataset contains 100,000 ratings
given by 943 users to 1,682 movies (density 6.3%).
The HetRec dataset is based on the MovieLens10M

dataset published by grouplens2. Movies in the Het-
Rec dataset are linked with movies on IMDb3 and
Rotten Tomatoes4 websites.

In our experimental setting, we hid 20 ratings of
each evaluated user and regarded the rest of the rat-
ings as training data. We performed a 5-fold cross-
validation. Each evaluated algorithm ranked test
items for a particular user based on training data.

This experimental setting was chosen due to the
evaluation task. Other settings either let an algorithm
rank all the items in the system or a limited number
of them assuming that items unknown by a user are
irrelevant. This assumption is not suitable for evalu-
ation of serendipity, as serendipitous items are novel
by definition (Iaquinta et al., 2010; Adamopoulos and
Tuzhilin, 2014; Kotkov et al., 2016a). The experi-
ments were conducted using Lenskit framework (Ek-
strand et al., 2011).

3.1 Baselines

We implemented the following baseline algorithms:

• POP ranks items according to the number of rat-
ings each item received in descending order.

• SVD is a singular value decomposition algorithm
which ranks items according to generated scores
(Zheng et al., 2015). The objective function of the
algorithm is the following:

min ∑
u∈U

∑
i∈Iu

(ru,i − puqT
i )

2 +β(||pu||2 + ||qi||2),
(7)

where pu and qi are user-factor vector and
item-factor vector, respectively, while β(||pu||2 +
||q j||2) represents the regularization term.

• SPR (serendipitous personalized ranking) is an
algorithm based on SVD that maximizes the
serendipitous area under the ROC (receiver oper-
ating characteristic) curve (Lu et al., ):

max ∑
u∈U

f (u), (8)

f (u) = ∑
i∈I+u

∑
j∈Iu\I+u

zu ·σ(0, r̂u,i − r̂u, j)(||Uj||)α,

(9)
where I+u is a set of items a user likes. We consid-
ered that a user likes items that she/he rates higher
than threshold θ (in our experiments θ = 3). Nor-
malization term zu is calculated as follows: zu =

1
||I+u ||||Iu\I+u || . We used hinge loss function to calcu-

late σ(x) and set popularity weight α to 0.5, as the

2http://www.grouplens.org
3http://www.imdb.com
4http://www.rottentomatoes.com
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Our algorithm has four main advantages:

• The algorithm considers each componentnt ofof
serendipity.

• As our algorithm is based on the diverssifiification al-
gorithm, SOG improves both serenndidippity and di-
versity.

•• AsAs SOSOG iG is aa rereraranknkinng ag alglgororitthmhm, i, it ct canan bebe apap-
plplieied td to ao anyny acaccucuraracycy-oorienenteted algorrithmhm, w, whihich
mimighght bt be usesefuful fl foror a la livivee rececoommendnderer sysyststemem
(reranking can be conduductctede on the client’s siddee
ofof a ca clilienent-t-seservrverer apapplicicatatioion)n)..

• Our algorithm has two parameters, wwhihichch adadjust
the algorithm according to different requuirirememenentsts..
The parameters could be different for each userer
and be adjusted as the user becomes familiar with
the system.

The computational complexity of the algorithm is
O(n3) (excluding pre calculation) where n is a num

3.1 Baselines

WeWe implemented the following baseline algorithms:

• POPOPP raranknks is tems according to the number of rat-
ini gs each itemm rerececeived in descending order.

•• SVD is a singular valaluue decomposition algorithm
whwhiichh ranksk ititems accorordidingg to gegeneeratedd scorres
(ZZhehengng etet aal.,, 20201515).). ThThe oe objbjecectitivev fufuncnctitionon ofof ththe
alalggorithm im is ts thehe fofollllowowining:g:

min ∑∑
uu∈∈UU

∑∑
ii∈∈IIuII

((rru,i − ppuqT
ii ))

2 +ββ((||||ppu|||2 + ||qqi||||2),
(7)

where pu anand qi are user-factor vector and
item-factoor vvector, respectively, while β(||pu||2 +
||q j||2) rreprpresents the regularization term.

•• SPPRR (s(serreendipitous personalized ranking) is an
allgogoririththmm based on SVD that maximizes the
serendipitous area under the ROC (receiver oper-

i h i i ) (L l )



algorithm performs the best with these parameters
according to (Lu et al., ).

• Zheng’s is an algorithm based on SVD that
considers observed and unobserved ratings and
weights the error with unexpectedness (Zheng
et al., 2015):

min ∑
u∈U

∑
i∈Iu

(r̃u,i − puqT
i )

2 ·wu,i+

+β(||pu||2 + ||qi||2),
(10)

where r̃u,i corresponds to observed and unob-
served ratings a user u gave to item i. The un-
obseved ratings equal to 0. The weight w is calcu-
lated as follows:

wui =

(
1− ||Ui||

max j∈I(||Uj||)
)
+

∑ j∈Iu di f f (i, j)
||Iu|| ,

(11)
where max j∈I(||Uj||) is the maximum number of
ratings given to an item. A collaborative dissim-
ilarity between items i and j is represented by
di f f (i, j). The dissimilarity is calculated as fol-
lows di f f (i, j) = 1 − ρi, j, where similarity ρi, j
corresponds to the Pearson correlation coefficient:

ρi, j =
∑u∈Si, j(ru,i − ru)(ru, j − ru)√

∑u∈Si, j(ru,i − ru)2
√

∑u∈Si, j(ru j − ru)2
,

(12)
where Si, j is the set of users rated both items i and
j, while ru corresponds to an average rating for
user u.

• TD is a topic diversification algorithm, where dis-
similarity corresponds to eq. 4. Similarly to
(Ziegler et al., 2005), we set ΘF = 0.9.

• SOG is the proposed serendipity-oriented greedy
algorithm (ΘF = 0.9, ΘS = 0.6). We set ΘF sim-
ilarly to (Ziegler et al., 2005) and ΘS slightly
higher than 0.5 to emphasize the difference be-
tween SOG and TD. To predict feature ratings
we used SVD, which received user-genre matrix.
User ratings in the matrix correspond to mean rat-
ings given by a user to items with those genres.

• SOGBasic is SOG algorithm without predicting
genre ratings (r̂u f = 0).

3.2 Evaluation Metrics

The main objective of our algorithm is to improve
serendipity of a recommender system. A change of
serendipity might affect other properties of a recom-
mender system. To demonstrate the dependence of
different properties and features of the baselines, we

employed evaluation metrics to measure four prop-
erties of recommender systems: (1) accuracy, as it
is a common property (Kotkov et al., 2016b), (2)
serendipity, as SPR, Zhengs, SOG and SOGBasic are
designed to improve this property (Lu et al., ; Zheng
et al., 2015), (3) diversity, as this is one of the objec-
tives of TD, SOG and SOGBasic (Ziegler et al., 2005)
and (4) novelty, as SPR, Zhengs, SOG and SOGBa-
sic are designed to improve this property (Lu et al., ;
Zheng et al., 2015).

To measure serendipity, we employed two met-
rics: traditional serendipity metric and our serendip-
ity metric. The traditional serendipity metric disre-
gards unexpectedness of items to a user, while our
serendipity metric takes into account each component
of serendipity. We provided results for both metrics
to demonstrate their difference. Overall, we used five
metrics:

• To measure a ranking ability of an algorithm,
we use normalized discounted cumulative gain
(NDCG), which, in turn, is based on discounted
cumulative gain (DCG) (Järvelin and Kekäläinen,
2000):

DCGu@n = relu(1)+
n

∑
i=2

relu(i)
log2(i)

, (13)

where relu(i) indicates relevance of an item with
rank i for user u, while n indicates the number of
top recommendations selected. The NDCG met-
ric is calculated as follows:

NDCGu@n =
DCGu@n
IDCGu@n

, (14)

where IDCGu@n is DCGu@n value calculated
for a recommendation list with an ideal order ac-
cording to relevance.

• The traditional serendipity metric is based on a
primitive recommender system which suggests
items known and expected by a user. Evalu-
ated recommendation algorithms are penalized for
suggesting items that are irrelevant or generated
by a primitive recommender system. Similarly to
(Zheng et al., 2015), we used a slight modification
of the serendipity metric:

SerPopu@n =
RSu(n)\PM∩RELu

n
, (15)

where PM is a set of items generated by the prim-
itive recommender system. We selected the 100
most popular items for PM following one of the
most common strategies (Zheng et al., 2015; Lu
et al., ). Items relevant to user u are represented
by RELu,RELu = {i ∈ TestSetu|rui > θ}, where
TestSetu is a ground truth for user u, while θ is the
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where max j∈I(||UjU ||) is the maximum number of
ratings given to an item. A collaborative dissisim-m
ilarity between items i and j is representeted bd by
di f f (i, j). The dissimilarity is calculateed ad as fol-
lows di f f (i, j) = 1 − ρi, j, where simimilalarity ρi, j
corresponds to the Pearson correlationon coefficient:

ρi,, jj =
∑∑uu∈∈SSi, j(ruu,i − rruu)()(rruu, jj −− ruu))√√

∑∑
√√√√

u∈∈Sii, jj((ru,,i −− rruu))22
√√√
22 ∑∑
√√

u∈Si, j((rru jj − rru))22
,

(12)2)
whwhereree SSii,, jj isis ththe se setet ofo ususerers rs ratatede bobothth ititememss ii anandd
j, whihilel ru correspondds to an aveeraragege ra itingng fof r
user u.

• TD is a topic diversification algorithm, whwherere de disis-
similarity corresponds to eq. 4. Similarly to
(Ziegler et al., 2005), we set ΘF = 0.9.

• SOG is the proposed serendipity-oriented greedy
algorithm (ΘF = 0.9, ΘS = 0.6). We set ΘF sim-

• To measure a ranking ability of an algorithm,
we use normalized discounted cumulative gain
(NDCG), which, in turn, is based on discounted
cuc mulative gain (DCG) (Jarvelin and Kek¨ al¨ ainen,¨
20200000):):

DCGu@n = relluu(1)+
n

∑
ii=22

relu(i)
lologg2((ii))

, (13)

whwhereree rerellu((i)) inindidicacatetes rs relelevevanancece oof anan ititemem wiwith
raannk i for uuseerr uu w, whihilele nn inindidicacatetess thehe nunumbmberer of
top recommenddatations selected. The NDCG met-
riric ic is cs calalcuc lalateted ad as fs folollolowsws::

NDNDCGu@n =
DCGu@n
IDCGu@n

, (14)

where IDDCGCGu@n is DCGu@n value calculated
fofor a reeccommmendation list with an ideal order ac-
cocording ttoo relevance.

• The traditional serendipity metric is based on a
primitive recommender system which suggests



threshold rating, which in our experiments equals
to 3.

• Our serendipity metric is based on the traditional
one. Although the traditional serendipity met-
ric successfully captures relevance and novelty of
recommendations by setting a threshold for rat-
ings and taking into account the number of rat-
ings assigned to an item, the metric disregards un-
expectedness. In this paper, we consider an item
unexpected to a user if the item has at least one
feature novel to the user e.g. a feature, of which
the user has not yet rated an item. We therefore
calculate the serendipity metric as follows:

Seru@n =
RSu(n)\PM∩RELu ∩UNEXPu

n
,

(16)
where UNEXPu is a set of items that have at least
one feature novel to user u. In our experiments, a
movie with at least one genre, which the user has
not rated a movie of is considered unexpected.

• To measure diversity, we employed an intra-list
dissimilarity metric (Zheng et al., 2015):

Divu@n =
1

n · (n−1) ∑
i∈RSu(n)

∑
j �=i∈RSu(n)

1− simi, j,

(17)
where similarity simi, j is based on Jaccard simi-
larity using item sets based on movie genres (eq.
5).

• Novelty is based on the number of ratings as-
signed to an item (Zhang et al., 2012):

novi = 1− ||Ui||
max j∈I(||Uj||) . (18)

4 RESULTS

Table 2 demonstrates performance of baselines mea-
sured with different evaluation metrics. The following
observations can be observed for both datasets:

1. SOG outperforms TD in terms of accuracy and
slightly underperforms it in terms of diversity. For
example, the improvement of NDCG@10 is 5.3%
on the HetRec dataset, while on the 100K ML
dataset the improvement is 5.9%. The decrease
of Div@10 is less than 2%.

2. SOG outperforms other algorithms in terms of
our serendipity metric and the state-of-the-art
serendipity-oriented algorithms in terms of di-
versity, while the highest value of traditional
serendipity metric belongs to SPR. TD achieves
the highest diversity among the presented algo-
rithms.

3. SOG outperforms SOGBasic in terms of our
serendipity metric. For example, the improve-
ment of Ser@10 is 5.9% on the HetRec dataset,
while on the 100K ML dataset the improvement
is 10.9%.

4. SOG slightly outperforms SOGBasic in terms of
NDCG@n (< 1%) and the traditional serendipity
metric SerPop@n (< 1%) and underperforms in
terms of Div@n (< 1% for the HetRec dataset and
1−2% for the 100K ML dataset).

5. Popularity baseline outperforms SOGBasic, SOG
and TD in terms of NDCG@n, but underperforms
all the presented algorithms in terms of serendip-
ity.

Observation 1 indicates that our algorithm im-
proves TD in terms of both serendipity and accu-
racy, having an insignificant decrease in diversity.
TD provides slightly more diverse recommendations
than SOG, as these algorithms have different objec-
tives. The main objective of TD is to increase di-
versity (Ziegler et al., 2005), while SOG is designed
not only to diversify recommendations, but also ex-
pose more recommendations with novel genres to a
user. SOG therefore picks movies less expected and
slightly less diverse than TD. Surprisingly, suggesting
movies with genres novel to a user increases accuracy,
which might be caused by diverse user preferences re-
garding movies. The improvements of accuracy and
serendipity seem to overcompensate for the insignifi-
cant decrease of diversity.

Observation 2 suggests that our algorithm
provides the most serendipitous recommendations
among the presented baselines, which is partly due
to ΘF = 0.9 for our algorithm. This parameter also
causes the high diversity of TD. We set ΘF the same
as (Ziegler et al., 2005) to emphasize the difference
between SOG and TD. SPR achieves the highest tra-
ditional serendipity due to its objective function (Lu
et al., ). This algorithm is designed to suggest relevant
unpopular items to users.

The prediction of genres a user is likely to find
relevant improves serendipity, according to observa-
tion 3. Meanwhile, accuracy, traditional serendipity
and diversity remain almost the same, as observation
4 suggests. SOG appears to increase the number of
relevant, novel and unexpected movies and supplant
some relevant and expected movies from recommen-
dation lists with respect to SOGBasic, as novel and
unexpected movies suggested by SOG are more likely
to also be relevant to users than those suggested by
SOGBasic.

According to observation 5, our algorithm under-
performs the non-personalized baseline in terms of
NDCG@n. Accuracy of POP is generally relatively
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movie with at least one genre, which the user has
not rated a movie of is considered unexpectedd.

• To measure diversity, we employed an intntrra-list
dissimilarity metric (Zheng et al., 2015))::

Divu@n =
1

n · (n−1) ∑
i∈RSu(n)

∑∑
j �=�� i∈∈RSRSu(n)

1− simi, j,

(1(17)7)
whwherere se simimilarity simi, jj iis baassedd on JJacccacardrd sisimimi-
lalarirityty uusiing ig ittem s tets bs baaseded ono movie ge genenreres (s (eqeq.
5).

•• NoNoveveltlty iy is bs basaseded ono ththe ne numumbeb r or of rf ratatiningsgs asas--
isign ded to an item (Zhang et all., 201212):):

novi = 1− ||UiUU ||
max j∈I(||UjU ||) . (1(18)8)

4 RESULTS

TD provides slightly more diverse recommendations
than SOG, as these algorithms have different objec-
tives. The main objective of TD is to increase di-
veversr ity (Ziegler et al., 2005), while SOG is designed
not oonlnly ty to diversify recommendations, but also ex-
posee more reecocommmmendations with novel genres to a
ussere . SOG therefore pe picicksks movies less expected and
slslightly less diverse than Tn TD. Surprisingly, suggesting
mom viviess wiwithth gegenrress nonovevel tl to ao ususerer inincrcreaeaseses as accccururacacy,
whwhiich mmigightht bebe ccaususeded byby didiveversrse ue useser pr prerefefererencnceses rre-
gardiningg movieiess. ThThe ie impmprorovevemementnts os of af accccururacacy ay and
serendipity seem to oo overcompensate for the insignifi-
ccantnt dedecrcreaeasese ofof didivev rsrsitity.y.

Observation 22 suggests that our algorithm
provides the mmoost serendipitous recommendations
among the prpresseented baselines, which is partly due
toto ΘF = 0.99 foor our algorithm. This parameter also
cacauseses ththe hhiggh diversity of TD. We set ΘF the same
as (Z(Zieieglg er etet al., 2005) to emphasize the difference
between SOG and TD. SPR achieves the highest tra-
ditional serendipity due to its objective function (Lu



Table 2: Performance of algorithms.

HetRec dataset 100K ML dataset

Algorithm NDCG@5 NDCG@10 NDCG@15 Algorithm NDCG@5 NDCG@10 NDCG@15

TD 0,761 0,800 0,840 TD 0,736 0,776 0,823

SOGBasic 0,824 0,841 0,873 SOGBasic 0,800 0,821 0,859

SOG 0,825 0,842 0,873 SOG 0,801 0,822 0,859

POP 0,824 0,848 0,878 POP 0,804 0,833 0,869

SPR 0,854 0,873 0,894 SPR 0,821 0,839 0,868

Zheng’s 0,857 0,874 0,898 Zheng’s 0,836 0,859 0,887

SVD 0,871 0,894 0,916 SVD 0,844 0,868 0,897

Algorithm SerPop@5 SerPop@10 SerPop@15 Algorithm SerPop@5 SerPop@10 SerPop@15

POP 0,224 0,393 0,476 POP 0,039 0,178 0,297

Zheng’s 0,323 0,440 0,497 Zheng’s 0,215 0,284 0,328

TD 0,457 0,482 0,493 TD 0,318 0,324 0,328

SOGBasic 0,493 0,494 0,501 SOGBasic 0,332 0,331 0,333

SOG 0,493 0,495 0,501 SOG 0,333 0,332 0,333

SVD 0,501 0,544 0,546 SVD 0,338 0,353 0,357

SPR 0,431 0,550 0,563 SPR 0,255 0,373 0,394

Algorithm Ser@5 Ser@10 Ser@15 Algorithm Ser@5 Ser@10 Ser@15

POP 0,072 0,112 0,136 POP 0,010 0,055 0,114

Zheng’s 0,100 0,122 0,135 Zheng’s 0,061 0,094 0,127

SVD 0,159 0,156 0,151 SVD 0,129 0,136 0,144

SPR 0,128 0,162 0,158 SPR 0,086 0,150 0,165

TD 0,192 0,177 0,158 TD 0,166 0,171 0,156

SOGBasic 0,284 0,204 0,168 SOGBasic 0,239 0,193 0,166

SOG 0,305 0,216 0,174 SOG 0,278 0,214 0,174

Algorithm Div@5 Div@10 Div@15 Algorithm Div@5 Div@10 Div@15

Zheng’s 0,782 0,795 0,798 SPR 0,788 0,792 0,796

SVD 0,787 0,795 0,799 Zheng’s 0,783 0,794 0,799

SPR 0,797 0,797 0,796 SVD 0,787 0,795 0,800

POP 0,794 0,803 0,803 POP 0,813 0,810 0,808

SOG 0,944 0,891 0,850 SOG 0,938 0,891 0,853

SOGBasic 0,948 0,893 0,851 SOGBasic 0,959 0,901 0,856

TD 0,952 0,894 0,852 TD 0,964 0,903 0,857

high, as users on average tend to give high ratings
to popular movies (Amatriain and Basilico, 2015).
However, accuracy in this case is unlikely to reflect
user satisfaction, as users are often already familiar
with popular movies suggested. Despite being rel-
atively accurate, POP suggests familiar and obvious
movies, which is supported by both serendipity met-
rics. The relatively low accuracy of our algorithm was
caused by the high damping factor ΘF .

4.1 Serendipity Weight Analysis

Figure 2 indicates performance of SOG and SOGBa-
sic algorithms with the change of serendipity weight
ΘS from 0 to 1 with the step of 0.1 (without cross-
validation) on the HetRec dataset (on the 100K ML
dataset the observations are the same). The two
following trends can be observed: (1) serendipity

declines with the increase of accuracy, as with the
growth of ΘS our algorithms tend to suggest more
movies that users do not usually rate, and (2) diver-
sity declines with the increase of serendipity, as with
the growth of ΘS our algorithms tend to suggest more
movies of genres novel to the user limiting the num-
ber of genres recommended.

As SOG predicts genres a user likes, its Ser@10
is slightly higher than that of SOGBasic for the same
values of NDCG@10. SOG tends to suggest more
movies of genres not only novel, but also interesting
to a user, which slightly hurts diversity, but improves
serendipity.

4.2 Qualitative Analysis

Table 3 demonstrates the recommendations provided
for a randomly selected user, who rated 25 movies in
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SPR 0,431 0,550 0,563 SPR 0,255 0,373 0,394

Algorithm Ser@5 Ser@10 Ser@155 Algorithm Ser@5 Ser@10 Ser@15

POP 0,072 0,112 0,1366 POP P 0,010 0,055 0,114

Zheng’s 0,100 0,122 0,,13135 Zhheneng’g s 0,061 0,094 0,127

SVD 0,159 0,156 0,0,151 SVD 0,0,129 0,136 0,144

SPR 0,128 0,162 0,158 SPRR 0,080866 0,150 0,165

TD 0,192 0,177 0,158 TDD 0,166 0,0 171 0,156

SOSOGBGBasasicic 0,0,282844 0,0,202044 0,0,161688 SOSOGBGBasasicic 0,0,232 9 0,0,19933 0,0,161666

SOOGG 0,0,303055 0,0 212166 0,0 171744 SOSOGG 0,0 22788 0,0,22144 00,171744

AlAlgogoririththmm DiDi @v@55 DiDiv@v@110 DiDiv@v@1515 Algoriithhm DDiv@v@55 DiD v@v@1010 DiDiv@v@1515

Zheng’s 0,782 0,0,7795 0,798 SPR 0,788 0,792 0,796

SVSVDD 0,0,787877 0,0,797955 0,0,797999 ZhZhenng’g s 0,0 78833 0,0 79944 0,0,797999

SPSPRR 00,797977 00,797977 00,797966 SVSVDD 00,7887 0,0 797955 0,0 808000

POP 0,794 0,803 0,0 80033 POP 0,8113 0,810 0,808

SOG 0,944 0,891 0,0,858500 SOG 0,,99388 0,891 0,853

SOGBasic 0,948 0,893 0,858511 SOS GBasic 00,9559 0,901 0,856

TD 0,952 0,894 0,852 TDTD 0,9964 0,903 0,857

high, as users on average tend to give high ratings
to popular movies (Amatriain and Basilico, 2015).

declines with the increase of accuracy, as with the
growth of ΘS our algorithms tend to suggest more



Figure 2: Performance of SOG and SOGBasic algorithms on the Hetrec dataset.

Table 3: Suggestions generated to a random user from the Hetrec dataset (novel genres are in bold).

User profile

Name Genres Rating nov
Major League Comedy 3.5 0.882

The Shawshank Redemption Drama 4.5 0.137

Stargate Action Adventure Sci-Fi 4.5 0.572

Robin Hood: Men in Tights Comedy 3.5 0.684

The Three Musketeers Action Adventure Comedy 3.5 0.789

SPR recommendations

Name Genres Rating nov
V for Vendetta Thriller 5 0.438

Enemy of the State Action Thriller 3.5 0.620

The Count of Monte Cristo Drama 3.5 0.787

Free Enterprise Comedy Romance Sci-Fi 4.5 0.989

First Knight Action Drama Romance 3.5 0.962

SOG recommendations

Name Genres Rating nov
V for Vendetta Thriller 5 0.438

The Untouchables Thriller Crime Drama 4.5 0.604

Monsters. Inc. Animation Children Comedy Fantasy 4 0.331

Minority Report Action Crime Mystery Sci-Fi Thriller 3 0.260

Grease Comedy Musical Romance 3 0.615

the HetRec dataset. The algorithms received 5 ratings
as the training set and regarded 20 ratings as the test
set for the user. We provided recommendations gener-
ated by two algorithms: (1) SOG due to high Ser@n,
and (2) SPR due to high SerPop@n.

Although SPR suggested less popular movies than
SOG, our algorithm outperformed SPR at overcoming
the overspecialization problem, as it introduced more
novel genres (8 genres) to the user than SPR (2 gen-
res). Our algorithm also provided a more diversified
recommendation list than SPR.

The suggestion of the movie “Monsters Inc.”
seems to significantly broaden user tastes, as the sug-
gestion is relevant and introduces three new genres to
the user. Provided that the movie is serendipitous to
the user, it is likely to inspire the user to watch more

cartoons in the future.

Analysis of tables 2 and 3 suggests that the tra-
ditional serendipity metric captures only novelty and
relevance by penalizing algorithms for suggesting
popular and irrelevant items, while Ser@n takes into
account each component of serendipity, which allows
assessment of the ability of the algorithm to overcome
overspecialization.

5 CONCLUSIONS AND FUTURE
RESEARCH

We proposed a serendipity-oriented greedy (SOG)
recommendation algorithm. We also provided eval-

A Serendipity-Oriented Greedy Algorithm for Recommendations

39

The Shawshank Redemption Drama 4.5 0.137

Stargate Action AdA venture Sci-Fi 4.5 0.572

Robin Hood: Men in Tights Comemeddy 3.5 0.684

The Three Musketeers AcActition Adventure Ce Como edy 3.5 0.789

SPR recommendatioionsns

Name Genres Rating nov
V for Vendetta Thriller 5 0.438

EnE eemy oy f tf thehe StStatate AActition ThTh irillller 3.3.55 00.626200

ThT e Ce Count of MoMonte Ce Criisto DDrama 3.3.55 00.787877

FrFreeee EnEnteterprpririsee CoComemedydy RoRomam nce Scci-i-Fi 4.4.55 0.0.99899

First Knight Action DrDraama Romance 3.5 0.962

SOSOG rG rececomommemendndatatioionsns

Name Genrreses Rating nov
V for Vendetta ThThririlller 5 0.438

The Untouchables ThThririllllerer CrCrimime Drama 4.5 0.604

Monsters. Inc. Animation CChih ldldrer n Comeedydy FFantasy 4 0.331

Minority Report Action Crime MMysysteryry ScScii-FiFi Thriller 3 0.260

Grease Comedy Musical Rommana cee 3 0.615



uation results of our algorithm and state-of-the-art al-
gorithms using different serendipity metrics.

SOG is based on the topic diversification (TD) al-
gorithm (Ziegler et al., 2005) and improves its accu-
racy and serendipity for the insignificant price of di-
versity.

Our serendipity-oriented algorithm outperforms
the state-of-the-art serendipity-oriented algorithms in
terms of serendipity and diversity, and underperforms
them in terms of accuracy.

Unlike the traditional serendipity metric, the
serendipity metric we employed in this study captures
each component of serendipity. The choice of this
metric is supported by qualitative analysis.

In our future research, we intend to further inves-
tigate serendipity-oriented algorithms. We will also
involve real users to validate our results.

ACKNOWLEDGEMENTS

The research at the University of Jyväskylä was per-
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Abstract Most recommender systems suggest items that are popular among
all users and similar to items a user usually consumes. As a result, the user
receives recommendations that she/he is already familiar with or would find
anyway, leading to low satisfaction. To overcome this problem, a recommender
system should suggest novel, relevant and unexpected i.e., serendipitous items.
In this paper, we propose a serendipity-oriented, reranking algorithm called a
serendipity-oriented greedy (SOG) algorithm, which improves serendipity of
recommendations through feature diversification and helps overcome the over-
specialization problem. In order to evaluate our algorithm and compare it with
other proposed ones, we defined and employed a new serendipity metric that
captures all three components of serendipity, in contrast to the commonly used
one. The evaluations were performed off-line using two datasets from the movie
domain, HetRec and 100K ML. We compared our SOG algorithm with topic
diversification, popularity baseline, singular value decomposition, serendipi-
tous personalized ranking and Zheng’s algorithms relying on the above two
datasets. For the recommendation lists generated by the above algorithms, we
calculated accuracy, different serendipity metrics, and diversity. SOG generally
outperforms other algorithms, but other algorithms might outperform SOG in
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one measured property, like diversity or serendipity, while being simultane-
ously inferior in other measured dimensions.

Keywords Recommender Systems, Learning to Rank, Serendipity, Novelty,
Unexpectedness, Algorithms, Evaluation, HetRec, 100K ML

1 Introduction

Recommender systems are software tools that suggest items of use to users [29,
19]. An item is “a piece of information that refers to a tangible or digital object,
such as a good, a service or a process that a recommender system suggests to
the user in an interaction through the Web, email or text message” [19]. For
example, an item could refer to a movie, a song or a new friend.

To increase the number of items that will receive high ratings most recom-
mender systems tend to suggest items that are (a) popular, as these items are
consumed by many individuals and are often of high quality in many domains
[7] and (b) similar to those the user has assigned high ratings, as these items
correspond to users’ preferences [32,19,21]. As a result, users might become
bored with the suggestions provided, as (1) users are likely to be familiar with
popular items, while the main reason these users would use a recommender
system is to find novel and relevant items [7] and (b) users often lose interest in
using the system when they are offered only items similar to items from their
profiles (the so-called overspecialization problem) [32,19,21,20]. Here the term
user profile refers to the unique ID and the set of items rated by the target
user [19], though it might include information, such as real name, user name
and age in other papers.

To suggest novel and interesting items and overcome the overspecialization
problem, recommender systems should suggest serendipitous items. Some re-
searchers consider novel and unexpected items serendipitous [33], while others
suggest that serendipitous items are relevant and unexpected [24]. Although
there is no agreement on the definition of serendipity [21], in this paper, the
term serendipitous items refers to items relevant, novel and unexpected to a
user [19,21,20]:

– An item is relevant to a user if the user has expressed or will express pref-
erence for the item. The user might express his/her preference by liking or
consuming the item depending on the application scenario of a particular
recommender system [19,21]. In different scenarios, ways to express pref-
erence might vary. For example, we might regard a movie as relevant to
a user if the user gave it more than 3 stars out of 5 [34,23], whereas we
might regard a song as relevant to a user if the user listened to it more
than twice. The system is aware that a particular item is relevant to a user
if the user rates the item, and unaware of this relevance otherwise.

– An item is novel to a user if the user has not consumed it yet [19,21,20].
Items novel to a user are usually unpopular, as users are often familiar
with popular items, where popularity can be measured by the number of
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ratings given to it in the system [19,21,20,7]. Novel items also have to be
relatively dissimilar to a user profile, as the user is likely to be familiar
with items similar to the ones she/he has rated [19,21].

– An item is unexpected to a user if the user does not anticipate this item to
be recommended to him/her [19,21]. The user does not expect items that
are dissimilar to the ones usually recommended to him/her. Generally,
recommender systems suggest items similar to items rated by the user
[32,19,21]. Consequently, an item dissimilar to the rated ones is regarded
as unexpected [19,21]. The measure of dissimilarity could be based on
user ratings or item attributes depending on the application scenario of a
recommender system [17].

State-of-the-art serendipity-oriented recommendation algorithms are
barely compared with one another and often employ different serendipity met-
rics and definitions of the concept, as there is no agreement on the definition
of serendipity in recommender systems [33,23,21].

In this paper, we propose a serendipity-oriented recommendation algorithm
based on our definition above. We compare our algorithm with state-of-the-art
serendipity-oriented algorithms. We also show how the serendipity metric we
use in the experiments includes each of the three components of serendipity,
unlike the most common serendipity metric [25] we use for comparison.

Our serendipity-oriented algorithm reranks recommendations provided by
an accuracy-oriented algorithm and improves serendipity through feature di-
versification. The proposed algorithm is based on the existing reranking algo-
rithm, topic diversification (TD) [35], and outperforms this algorithm in terms
of accuracy and serendipity. Our algorithm also outperforms the state-of-the-
art serendipity-oriented algorithms in terms of serendipity and diversity.

Our algorithm has the following advantages:

– It considers each component of serendipity.
– It improves both serendipity and diversity.
– It can be applied to any accuracy-oriented algorithm.
– Our algorithm has two parameters, which adjust the algorithm according

to different requirements.

The paper has the following contributions:

– We propose a serendipity-oriented recommendation algorithm.
– We evaluate existing serendipity-oriented recommendation algorithms.
– We use a novel serendipity metric that takes into account each component

of serendipity.

The rest of the paper is organized as follows. Section 2 discusses earlier
work in the field. Section 3 describes the proposed algorithm. Section 4 is
dedicated to experimental setting, while Section 5 reports the results of the
experiments. Finally, Section 7 draws conclusions and indicates future work.
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2 Related works

In this section, we will discuss definitions of serendipity and diversity, and
overview algorithms that improve these metrics.

2.1 Definition of Serendipity

The term serendipity was coined by Horace Walpole by referencing a Persian
fairytale, “The Three Princess of Serendip,” in 1758. In the fairytale, the
three princes of the country Serendip ventured out to explore the world and
made many unexpected discoveries on their way1. In his letter, Horace Walpole
mentioned that the princes were “always making discoveries, by accidents &
sagacity, of things which they were not in quest of” [28].

The dictionary definition of serendipity is “the faculty of making fortunate
discoveries by accident”2. However, there is no consensus on the definition
of serendipity in recommender systems. Some researchers require items to be
relevant and unexpected to be considered serendipitous [24,21], whereas other
researchers suggest that serendipitous items are novel and unexpected [33,
21]. However, the most common definition of serendipity includes all three
components: relevance, novelty and unexpectedness [20,19,20].

2.2 Improving Serendipity

There are three categories for serendipity-oriented algorithms [21]: (a) rerank-
ing algorithms (these algorithms change the order of items in recommenda-
tion lists using relevance scores provided by accuracy-oriented algorithms);
(b) serendipity-oriented modifications (these algorithms are based on particu-
lar accuracy-oriented algorithms); and (c) novel algorithms (these algorithms
are not based on any common accuracy-oriented algorithms, but rather utilize
different techniques to improve serendipity).

Reranking algorithms improve serendipity by changing the order of the
output of accuracy-oriented algorithms [21]. These algorithms often use rele-
vance scores to filter out potentially irrelevant items first and then use other
techniques to promote potentially serendipitous ones. For example, the algo-
rithm proposed by Adamopoulos and Tuzhilin first filters out items likely to
be irrelevant and obvious to a user and then orders items based on their overall
utility for the user. The latter is based on how different an item is to users’
expectations and on relevance scores for this item provided by an accuracy-
oriented algorithm [1]. Another example is the algorithm proposed by Zhang
et. al, Auralist [33]. The algorithm consists of the three other algorithms: Basic
Auralist, which is responsible for relevance scores, Listener Diversity, which is

1 “The Three Princes of Serendip” by Boyle Richard, 2000.
2 http://www.thefreedictionary.com/serendipity



A Serendipity-Oriented Greedy Algorithm and a Complete Serendipity Metric 5

responsible for diversity, and Declustering, which is responsible for unexpect-
edness. The algorithm orders items in the recommendation list according to
the final score, which is represented by a linear combination of the scores
provided by the three algorithms.

Serendipity-oriented modifications refer to common accuracy-oriented al-
gorithms modified with a purpose of increasing serendipity [21]. The main
difference between reranking algorithms and modifications is that modifica-
tions are always based on particular accuracy-oriented algorithms, whereas
a particular reranking process can be applied to any accuracy-oriented algo-
rithm, which provides relevance scores. For example, Nakatsuji et al. modified
a common user-based collaborative filtering algorithm (k-nearest neighbor al-
gorithm) [11] by replacing the user similarity measure with relatedness. It is
calculated using random walks with restarts on a user similarity graph [26].
The graph consists of nodes corresponding to users and edges corresponding
to similarities based on an item taxonomy. By utilizing the relatedness, for a
target user, the algorithm picks a neighborhood of users who are not necessar-
ily similar, but who are in some way related to the target user [26]. Another
example of modifications is the algorithm proposed by Zheng et al. The algo-
rithm is based on PureSVD (a variation of the singular value decomposition
algorithm) [9]. The main difference between PureSVD and its modification is
that the objective function of the modification includes components responsi-
ble for unexpectedness, whereas the objective function of PureSVD lacks these
components [34].

Novel serendipity-oriented algorithms neither fall into reranking nor into
modifications categories, as they are not based on any common accuracy-
oriented algorithms and do not use relevance scores provided by any accuracy-
oriented algorithms [21]. For example, TANGENT recommends items using
relevance scores and bridging scores, where both kinds of scores are inferred
using a bipartite graph [27]. The graph contains nodes that represent users and
items, and edges that represent ratings. The algorithm calculates relevance
scores using random walks with restarts and bridging scores based on the
calculated relevance scores [27]. Another example of an algorithm that belongs
to the category of novel algorithms is random walk with restarts enhanced
with knowledge infusion [12]. The algorithm orders items in recommendation
lists according their relatedness to a user profile. The relatedness is calculated
using random walks with restarts on an item similarity graph, where nodes
correspond to items, and edges correspond to similarities between these items.
To calculate the similarities, the authors used the spreading activation network
based on Wikipedia and WordNet [12].

2.3 Definition of Diversity

Diversity is a property of a recommender system reflecting how dissimilar
items are to each other in a recommendation list [6,18]. To measure diver-
sity, researchers often calculate an average pairwise dissimilarity of items in
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a recommendation list [6,18], where dissimilarity can be represented by any
metric, which reflects how dissimilar items are to one another. A dissimilarity
metric is often based on attributes of items. The higher the average pairwise
dissimilarity, the higher the diversity of the list.

Diversity is considered as a desirable property of a recommender system,
as it was proven to improve user satisfaction [35], and by diversifying the
recommendation results, we are likely to suggest an item satisfying a current
need of a target user [18]. A fan of the movie The Matrix is likely to prefer
a recommendation list of movies similar to The Matrix, including this movie,
rather than a recommendation list consisting of The Matrix sequels only.

Diversity is not always related to dissimilarity of items in a particular rec-
ommendation list. The term can also refer to diversity of recommendations
provided by different recommender systems [5], diversity across recommenda-
tion lists suggested to all the users of a particular system [2], or diversity of
recommendations to the same user in a particular system over time [22].

2.4 Improving Diversity

Greedy reranking algorithms are very common in improving diversity of rec-
ommendation lists. They create two lists of items (a candidate list and a
recommendation list), and iteratively move items from the candidate list to
the recommendation list [18,6]. In each iteration, these algorithms calculate
different scores, which depend on the algorithm. Based on these scores, the
algorithms pick an item from the candidate list to be moved to the recom-
mendation list [18,6]. For example, the TD algorithm, which our algorithm is
based on, calculates in each iteration average similarities between each item in
the candidate list and items in the recommendation list and uses the obtained
scores to pick an item that is the most relevant but at the same time the most
dissimilar to the items already added to the recommendation list [35].

Another group of the algorithms optimized for diversity take diversity into
account in the process of generating recommendations. For example, Su et al.
proposed an algorithm that integrates diversification in a traditional matrix
factorization model [31]. Another example of an algorithm falling into this
category is diversified collaborative filtering algorithm (DCF) that employs a
combination of support vector machine and parametrized matrix factorization
to generate accurate and diversified recommendation lists [8].

3 A Serendipity-Oriented Greedy Algorithm

To describe the proposed algorithm, we present the notation in Table 1. Let
I be a fixed set of available items and U be a fixed set of users of a particular
recommendation system at a particular point in time t. User u has rated or
interacted with items Iu, Iu ⊆ I. The recommender system suggests RSu(n)
items to user u (at time t). Each item i can have a number of features Fi =
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Table 1: Notations

Symbol Description
I = {i1, i2, ..., inI } the set of items

Iu, Iu ⊆ I
the set of items rated by
user u (user profile)

F = {f1, f2, ..., fnF } the set of features
Fi, Fi ⊆ F the set of features of item i

U = {u1, u2, ..., unU } the set of users

Ui, Ui ⊆ U
the set of users who rated
item i

RSu(n), RSu(n) ⊆ I
the set of top–n
recommendations provided
by an algorithm to user u

ru,i
the rating given by user u
to item i

r̂u,i
the prediction of the rating
given by user u to item i

{fi,1, fi,2, ..., fi,nF,i
}, that describe item i. For example, the movie, Pulp Fic-

tion can be described with features: Ffiction = {Tarantino, crime, violent};
the song “I Will Survive” by Gloria Gaynor can be described with features:
Fsurvive = {famous, 70s, disco}. The unique rating user u has given to item
i before t is represented by ru,i, whereas the predicted rating generated by an
algorithm is represented by r̂u,i.

3.1 Description

We propose a SOG algorithm that is based on a TD algorithm [35]. The
objective of TD is to increase the diversity of a recommendation list. Both
SOG and TD belong to the group of greedy reranking algorithms, meaning that
these algorithms change the order of items provided by another algorithm [6].
According to the classification provided in [21], we propose a hybrid reranking
algorithm following the post-filtering paradigm and considering unpopularity
and dissimilarity.

Algorithm 1 describes the proposed approach. An accuracy-oriented algo-
rithm predicts item ratings r̂u,i and generates top–n suggestions RSu(n) for
user u. SOG iteratively picks items from the set corresponding to RSu(n) to fill
diversified list Res. In each iteration the algorithm generates a candidate set
B′ that contains top–n recommendations RSu(n) except items already picked
to the list Res (converted to the set B). A candidate item with the highest
score is added to the diversified list Res. The result Res contains the same
items as RSu(n), but in a (possibly) different order.

The score is calculated as follows:

scoreu,i = (1−ΘF ) · r̂u,i +ΘF · cu,B,i , (1)



8 Denis Kotkov et al.

Input : RSu(n): top–n recommendation set, ΘF : damping factor
Output: Res: picked item list
B′: candidate set,
r̂u,i: predicted rating of an item,
r̂u,f : predicted rating of a feature;
Res[0] ← i with max r̂u,i;
for z ← 1 to n do

B ← set(Res);// set converts a list to a set
B′ ← RSu(n)\B;
calculate cu,B,i, i ∈ B′;
normalize cu,B,i, r̂u,f and r̂u,i, i ∈ B′ to [0, 1];
forall i ∈ B′ do

calculate scoreu,i
end
Res[z] ← i with max scoreu,i;

end

Algorithm 1: Description of SOG

cu,B,i = du,B +ΘS · ( max
f∈(Fi\Fu)

(r̂u,f ) + unexpu,i) , (2)

where ΘS is a serendipity weight and ΘF is a damping factor that is responsible
for diversity of the reranked recommendation list Res. The predicted rating of
feature f for user u is represented by r̂u,f , r̂u,f ∈ [0, 1]. Feature rating indicates
how likely a user is to like an item that has a particular feature. As an item
might have several features, we select the rating of a feature that is unfamiliar
and most relevant to a user. If an item does not have any features unfamiliar
to a user Fi\Fu = ∅, then maxf∈(Fi\Fu)(r̂u,f ) = 0. Unexpectedness is based
on the number of new features of an item for a user:

unexpu,i =
||Fi\Fu||
||F\Fu|| , (3)

where F refers to the set of all features, Fi refers to the features of item
i, and Fu refers to all features of items rated by user u. Suppose se-
lected features correspond to movie genres F = {comedy, drama, horror,
adventure, crime}, the movie The Shawshank Redemption could be repre-
sented as follows Fshawshank = {drama, crime}, whereas the user might rate
comedies and dramas Fu = {comedy, drama}. For user u, the movie The
Shawshank Redemption has the following unexpectedness: unexpu,shawshank

= ||{drama,crime}\{comedy,drama}||
||{comedy,drama,horror,adventure,crime}\{comedy,drama}|| =

1
3 . If the user rates

items of all features F , then we regard the feature that is the least familiar to
the user as novel. If the user has not rated any features Fu = ∅, then all the
features are regarded as novel.

Dissimilarity of an item i to picked items in B (algorithm 1) is calculated
as follows:

di,B =
1

||B||
∑
j∈B

1− simi,j , (4)
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;;

Fig. 1: An example of user-item and user-feature matrices

where similarity simi,j can be any kind of similarity measure. In our experi-
ments we used content-based Jaccard similarity:

simi,j =
||Fi ∩ Fj ||
||Fi ∪ Fj || . (5)

To predict feature ratings r̂u,f , we apply an accuracy-oriented algorithm
to a user-feature matrix. A rating given by a user to an item i is considered
to concern all features fk ∈ Fi. A user-feature matrix is based on a user-item
matrix, where a rating given by a user to a feature corresponds to the mean
rating given by this user to items having this feature:

ru,f =
1

||Iu,f ||
∑

i∈Iu,f

ru,i , (6)

where Iu,f is a set of items that have feature f and that were rated by user u.
Figure 1 demonstrates an example of user-item and user-feature matrices.

Suppose users have rated items i1, i2, i3 and i4 on the scale from 1 to 5 (user-
item matrix). Each item has a number of features. For example, item i1 has
features f1 and f2, whereas item i2 only has feature f1. A user-feature matrix
contains feature ratings based on a user-item matrix (eq. 6). For example, the
rating of feature f1 for user u1 is 4.5, as items i1 and i2 have feature f1
and the user gave a 5 to item i1 and a 4 to item i2. Further, because Fi4

only contains one feature, f3, all ratings given by users to item i4 also occur
directly in the user-feature matrix.

3.2 Analysis

Our algorithm considers each component of serendipity:

– Ratings r̂u,i and r̂u,f correspond to relevance.
– unexpu,i corresponds to unexpectedness.
– Novelty is handled implicitly. Some items are rated more often than oth-

ers. Therefore, features of rarely rated (unpopular) items are rated less
often than features of items that are rated often (popular). Although it is
possible that an unpopular item has a popular feature, suggesting items
with unpopular features is likely to increase the chance of suggesting an
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unpopular items compared to suggesting items with popular features. SOG
suggests items with features novel to users, which is likely to lead to the
relative unpopularity of the suggested items, as items with low numbers of
ratings often have rarely rated features.

Although SOG is based on TD [35], our algorithm has three key differences
with respect to TD:

– SOG considers item scores instead of positions of items in lists, which leads
to more accurate scores (scoreu,i).

– SOG employs a serendipity weight that controls how likely the algorithm
is to suggest an item with a novel feature.

– SOG predicts features a user will like.

Our algorithm has four main advantages:

– The algorithm considers each component of serendipity.
– As our algorithm is based on the diversification algorithm, SOG improves

both serendipity and diversity.
– As SOG is a reranking algorithm, it can be applied to any accuracy-oriented

algorithm, which might be useful for a live recommender system (reranking
could also be conducted on the client’s side in a client-server application
scenario).

– Our algorithm has two parameters, damping factor ΘF and serendipity
weight ΘS , which adjust the algorithm according to different requirements.
The parameters could be different for each user and be adjusted as the user
becomes familiar with the system.

3.3 Computational complexity

The algorithm contains three loops (algorithm 1): the loop from 1 to n, the
loop from 1 to ||B′||, and the loop from 1 to ||B|| to calculate di,B (eq. 4). The
overall number of actions can be calculated as follows:

(n− 1) · 1 + (n− 2) · 2 + (n− 3) · 3 + ...+ (n− n) · n =

= n · (1 + 2 + 3 + ...+ n)− (12 + 22 + 32 + ...+ n2) =

= n · n · 1 + n

2
− n(n+ 1)(2n+ 1)

6
=

n3 − 2n2 + n

6
;

(7)

O
(
n3 − 2n2 + n

6

)
= O(n3) . (8)

The computational complexity of the algorithm is O(n3) (excluding pre-
calculation), where n is the number of items in the input set RSu(n). In our
experiments n = 20.
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4 Experiments

To evaluate existing algorithms and test the proposed serendipity metric,
we conducted off-line experiments using two datasets: HetRec [13] and 100K
MovieLens. The HetRec dataset contains 855,598 ratings given by 2,113 users
to 10,197 movies (density; i.e., the average number of movies rated by a user
is 405/10197 = 3.97%, because each user issued ca. 405 ratings on average).
The 100K MovieLens (100K ML) dataset contains 100,000 ratings given by
943 users to 1,682 movies (density 6.3%). The HetRec dataset is based on
the MovieLens10M dataset published by Grouplens3. Movies in the HetRec
dataset are linked with movies on IMDb4 and Rotten Tomatoes5 websites.

In our experimental setting, we performed a five-fold cross-validation,
where in each fold one-fifth of users (ca. 420 and 190 users in the HetRec
and 100K ML datasets, respectively) had their (randomly picked) 20 ratings
in the test set and the rest of their data along with the data of other users be-
long to the training set. When a current fold included users with 20 ratings or
less, all the data of these users belonged to the current test set. Each evaluated
algorithm ranked test items for a particular user based on the training data
and produced a recommendation list consisting of up to 20 items (depending
on the number of ratings a user had in the current test set). Accuracy was
based on the ratings from the test set (ground truth) and the position of each
item in a recommendation list provided to each evaluated user. Serendipity
was calculated based on the number of movies that were serendipitous accord-
ing to a particular serendipity metric that appeared in the top-N positions of
each recommendation list. Diversity was based on the average dissimilarity of
movies on top-N positions of each recommendation lists. The results reported
below are averaged values of the five cross validation rounds over all users in
the two data sets, respectively.

This experimental setting was chosen due to the evaluation task. Other
settings either let an algorithm rank all the items in the system or a limited
number of them assuming that items unknown to a user are irrelevant. This
assumption is not suitable for evaluation of serendipity, as serendipitous items
are novel by definition [15,1,19]. The experiments were conducted using the
Lenskit framework [10].

4.1 Baselines

We implemented the following baseline algorithms:

– POP ranks items according to the number of ratings each item received
in descending order.

3 http://www.grouplens.org
4 http://www.imdb.com
5 http://www.rottentomatoes.com
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– SVD is a singular value decomposition algorithm that ranks items accord-
ing to generated scores [34]. The objective function of the algorithm is the
following:

min
∑
u∈U

∑
i∈Iu

(ru,i − puq
T
i )

2 + β(||pu||2 + ||qi||2) , (9)

where pu and qi are user-factor vector and item-factor vector, respectively,
while β(||pu||2 + ||qj ||2) represents the regularization term.

– SPR (serendipitous personalized ranking) is an algorithm based on SVD
that maximizes the serendipitous area under the ROC (receiver operating
characteristic) curve [23]:

max
∑
u∈U

f(u) , (10)

f(u) =
∑
i∈I+

u

∑
j∈Iu\I+

u

zu · σ(0, r̂u,i − r̂u,j)(||Uj ||)α , (11)

where I+
u is a set of items a user likes. We considered that a user likes

items that she/he rates higher than threshold θ (in our experiments θ = 3).
Normalization term zu is calculated as follows: zu = 1

||I+
u ||||Iu\I+

u || . We used

hinge loss function to calculate σ(x) and set popularity weight α to 0.5, as
the algorithm performs the best with these parameters according to [23].

– Zheng’s is an algorithm based on SVD that considers observed and un-
observed ratings and weights the error with unexpectedness [34]:

min
∑
u∈U

∑
i∈Iu

(r̃u,i − puq
T
i )

2 · wu,i+

+β(||pu||2 + ||qi||2) ,

(12)

where r̃u,i corresponds to observed and unobserved ratings a user u gave
to item i. The unobseved ratings equal to 0. The weight w is calculated as
follows:

wui =

(
1− ||Ui||

maxj∈I(||Uj ||)
)
+

∑
j∈Iu

diff(i, j)

||Iu|| , (13)

where maxj∈I(||Uj ||) is the maximum number of ratings given to an item.
A collaborative dissimilarity between items i and j is represented by
diff(i, j). The dissimilarity is calculated as diff(i, j) = 1 − ρi,j , where
similarity ρi,j corresponds to the Pearson correlation coefficient:

ρi,j =

∑
u∈Si,j

(ru,i − ru)(ru,j − ru)√∑
u∈Si,j

(ru,i − ru)2
√∑

u∈Si,j
(ruj − ru)2

, (14)

where Si,j is the set of users rated both items i and j, while ru corresponds
to an average rating for user u.



A Serendipity-Oriented Greedy Algorithm and a Complete Serendipity Metric 13

– TD is a topic diversification algorithm, where dissimilarity corresponds to
eq. 4. Similarly to [35], we set ΘF = 0.9.

– SOG is the proposed serendipity-oriented greedy algorithm (ΘF = 0.9,
ΘS = 0.6). We set ΘF similarly to [35] and ΘS slightly higher than 0.5 to
emphasize the difference between SOG and TD. To predict feature ratings
we used SVD, which received a user-genre matrix. User ratings in the
matrix correspond to mean ratings given by a user to items with those
genres.

– SOGBasic is the SOG algorithm without predicting genre ratings, which
means r̂uf = 0 in eq. 2.

4.2 Evaluation metrics

The main objective of our algorithm is to improve serendipity of a recom-
mender system. A change of serendipity might affect other properties of a
recommender system. To demonstrate the dependence of different properties
and features of the baselines, we employed evaluation metrics to measure four
properties of recommender systems: (a) accuracy, as it is a common property
[21]; (b) serendipity, as SPR, Zheng’s, SOG and SOGBasic are designed to
improve this property [23,34]; (c) diversity, as this is one of the objectives of
TD, SOG and SOGBasic [35]; and (d) novelty, as SPR, Zheng’s, SOG and
SOGBasic are designed to improve this property [23,34].

To measure serendipity, we employed two metrics: traditional serendipity
metric and our serendipity metric. The traditional serendipity metric disre-
gards unexpectedness of items to a user, whereas our serendipity metric takes
into account each component of serendipity. We provided results for both met-
rics to demonstrate their difference. Overall, we used five metrics:

– To measure a ranking ability of an algorithm, we use normalized discounted
cumulative gain (NDCG), which, in turn, is based on discounted cumulative
gain (DCG) [16]:

DCGu@n = relu(1) +

n∑
i=2

relu(i)

log2(pos(i))
, (15)

where relu(i) indicates relevance of item i with rank pos(i) for user u,
while n indicates the number of top recommendations selected. pos(i) is
the distance of the item from the beginning of the list (1, 2, 3, ..., n). The
NDCG metric is calculated as follows:

NDCGu@n =
DCGu@n

IDCGu@n
, (16)

where IDCGu@n is DCGu@n value calculated for a recommendation list
with an ideal order according to relevance.
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– The traditional serendipity metric is based on a primitive recommender
system that suggests items known and expected by a user [25]. Evaluated
recommendation algorithms are penalized for suggesting items that are
irrelevant or generated by a primitive recommender system. Similarly to
[34], we used a slight modification of the serendipity metric:

SerPopu@n =
||(RSu(n)\PM) ∩RELu||

n
, (17)

where PM is a set of items generated by the primitive recommender sys-
tem. We selected the 100 most popular items for PM following one of the
most common strategies [34,23]. Items relevant to user u are represented
by RELu = {i ∈ TestSetu|ru,i > θ}, where TestSetu is a ground truth for
user u, while θ is the threshold rating, which in our experiments equals 3.

– Our serendipity metric is based on the traditional one. Although the tra-
ditional serendipity metric successfully captures relevance and novelty of
recommendations by setting a threshold for ratings and taking into ac-
count the number of ratings assigned to an item, the metric disregards
unexpectedness. In this paper, we consider an item unexpected to a user
if the item has at least one feature unfamiliar to the user e.g., a feature,
of which the user has not yet rated an item. We therefore calculate the
serendipity metric as follows:

Seru@n =
||(RSu(n)\PM) ∩RELu ∩ UNEXPu||

n
, (18)

where UNEXPu is a set of items that have at least one feature novel to
user u. In our experiments, a movie with at least one genre with which
the user has not rated any movie is considered unexpected. We use this
feature space as an example. A serendipity metric can also be based on
other feature spaces, such as movie directors, casts or descriptions.

– To measure diversity, we employed an intra-list dissimilarity metric [34]:

Divu@n =
1

n · (n− 1)

∑
i∈RSu(n)

∑
j �=i∈RSu(n)

1− simi,j , (19)

where similarity simi,j is based on Jaccard similarity using item sets based
on movie genres (eq. 5).

– Novelty is based on the number of ratings assigned to an item [33]:

novi = 1− ||Ui||
maxj∈I(||Uj ||) . (20)

5 Results

Table 2 demonstrates performance of baselines measured with different eval-
uation metrics. We evaluated performance of the algorithms only for recom-
mendation lists of lengths 5, 10 and 15, as diversity and serendipity metrics



A Serendipity-Oriented Greedy Algorithm and a Complete Serendipity Metric 15

Table 2: Performance of algorithms

HetRec dataset 100K ML dataset

Algorithm NDCG@5 NDCG@10 NDCG@15 Algorithm NDCG@5 NDCG@10 NDCG@15
TD 0,761 0,800 0,840 TD 0,736 0,776 0,823
SOGBasic 0,824 0,841 0,873 SOGBasic 0,800 0,821 0,859
SOG 0,825 0,842 0,873 SOG 0,801 0,822 0,859
POP 0,824 0,848 0,878 POP 0,804 0,833 0,869
SPR 0,854 0,873 0,894 SPR 0,821 0,839 0,868
Zheng’s 0,857 0,874 0,898 Zheng’s 0,836 0,859 0,887
SVD 0,871 0,894 0,916 SVD 0,844 0,868 0,897

Algorithm SerPop@5 SerPop@10 SerPop@15 Algorithm SerPop@5 SerPop@10 SerPop@15
POP 0,224 0,393 0,476 POP 0,039 0,178 0,297
Zheng’s 0,323 0,440 0,497 Zheng’s 0,215 0,284 0,328
TD 0,457 0,482 0,493 TD 0,318 0,324 0,328
SOGBasic 0,493 0,494 0,501 SOGBasic 0,332 0,331 0,333
SOG 0,493 0,495 0,501 SOG 0,333 0,332 0,333
SVD 0,501 0,544 0,546 SVD 0,338 0,353 0,357
SPR 0,431 0,550 0,563 SPR 0,255 0,373 0,394

Algorithm Ser@5 Ser@10 Ser@15 Algorithm Ser@5 Ser@10 Ser@15
POP 0,072 0,112 0,136 POP 0,010 0,055 0,114
Zheng’s 0,100 0,122 0,135 Zheng’s 0,061 0,094 0,127
SVD 0,159 0,156 0,151 SVD 0,129 0,136 0,144
SPR 0,128 0,162 0,158 SPR 0,086 0,150 0,165
TD 0,192 0,177 0,158 TD 0,166 0,171 0,156
SOGBasic 0,284 0,204 0,168 SOGBasic 0,239 0,193 0,166
SOG 0,305 0,216 0,174 SOG 0,278 0,214 0,174

Algorithm Div@5 Div@10 Div@15 Algorithm Div@5 Div@10 Div@15
Zheng’s 0,782 0,795 0,798 SPR 0,788 0,792 0,796
SVD 0,787 0,795 0,799 Zheng’s 0,783 0,794 0,799
SPR 0,797 0,797 0,796 SVD 0,787 0,795 0,800
POP 0,794 0,803 0,803 POP 0,813 0,810 0,808
SOG 0,944 0,891 0,850 SOG 0,938 0,891 0,853
SOGBasic 0,948 0,893 0,851 SOGBasic 0,959 0,901 0,856
TD 0,952 0,894 0,852 TD 0,964 0,903 0,857

disregard the order of items in top-N recommendations. The following obser-
vations can be observed for both datasets:

1. SOG outperforms TD in terms of accuracy and slightly underperforms it
in terms of diversity. For example, the improvement of NDCG@10 is 5.3%
on the HetRec dataset, whereas on the 100K ML dataset the improvement
is 5.9%. The decrease of Div@10 is less than 2%.

2. SOG outperforms other algorithms in terms of our serendipity metric and
the state-of-the-art serendipity-oriented algorithms in terms of diversity,
whereas the highest value of traditional serendipity metric belongs to SPR.
TD achieves the highest diversity among the presented algorithms.

3. SOG outperforms SOGBasic in terms of our serendipity metric. For exam-
ple, the improvement of Ser@10 is 5.9% on the HetRec dataset, whereas
on the 100K ML dataset the improvement is 10.9%.

4. SOG slightly outperforms SOGBasic in terms of NDCG@n (< 1%) and
the traditional serendipity metric SerPop@n (< 1%) and underperforms
in terms of Div@n (< 1% for the HetRec dataset and 1− 2% for the 100K
ML dataset).

5. Popularity baseline outperforms SOGBasic, SOG and TD in terms of
NDCG@n, but underperforms all the presented algorithms in terms of
serendipity.
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Observation 1 indicates that our algorithm improves TD in terms of both
serendipity and accuracy, having an insignificant decrease in diversity. TD pro-
vides slightly more diverse recommendations than SOG, as these algorithms
have different objectives. The main objective of TD is to increase diversity
[35], whereas SOG is designed not only to diversify recommendations, but also
to expose more recommendations with novel genres to a user. SOG there-
fore picks movies that are less expected and slightly less diverse than TD.
Surprisingly, suggesting movies with genres that are novel to a user increases
accuracy, which might be caused by diverse user preferences regarding movies.
The improvements of accuracy and serendipity seem to overcompensate for
the insignificant decrease of diversity.

Observation 2 suggests that our algorithm provides the most serendipitous
recommendations among the presented baselines, which is partly due to ΘF =
0.9 for our algorithm. This parameter also causes the high diversity of TD. We
set ΘF to the same value as [35] did to emphasize the difference between SOG
and TD. SPR achieves the highest traditional serendipity due to its objective
function [23]. This algorithm is designed to suggest relevant unpopular items
to users.

The prediction of genres a user is likely to find relevant improves serendip-
ity, according to observation 3. Meanwhile, accuracy, traditional serendipity
and diversity remain almost the same, as observation 4 suggests. SOG appears
to increase the number of relevant, novel and unexpected movies and supplant
some relevant and expected movies from recommendation lists with respect to
SOGBasic. This is because novel and unexpected movies suggested by SOG
are more likely to also be relevant to users than those suggested by SOGBasic.

According to observation 5, our algorithm underperforms the non-
personalized baseline in terms of NDCG@n. Accuracy of POP is generally
relatively high, as users on average tend to give high ratings to popular movies
[4]. However, accuracy in this case is unlikely to reflect user satisfaction, as
users are often already familiar with popular movies suggested. Despite be-
ing relatively accurate, POP suggests familiar and obvious movies, which is
supported by both serendipity metrics. The relatively low accuracy of our
algorithm was caused by the high damping factor ΘF .

5.1 Serendipity Weight Analysis

Figure 2 indicates performance of SOG and SOGBasic algorithms with the
change of serendipity weight ΘS from 0 to 1 with the step of 0.1 (without
cross-validation) on the HetRec dataset (on the 100K ML dataset the observa-
tions are the same). The two following trends can be observed: (1) serendipity
declines with the increase of accuracy, as with the growth of ΘS our algorithms
tend to suggest more movies that users do not usually rate, and (2) diversity
declines with the increase of serendipity, as with the growth of ΘS our algo-
rithms tend to suggest more movies of genres novel to the user limiting the
number of genres recommended.
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Fig. 2: Performance of SOG and SOGBasic algorithms on the Hetrec dataset

Table 3: Suggestions generated to a random user from the Hetrec dataset
(novel genres are in bold)

User profile
Name Genres Rating nov
Major League Comedy 3.5 0.882
The Shawshank Redemption Drama 4.5 0.137
Stargate Action Adventure Sci-Fi 4.5 0.572
Robin Hood: Men in Tights Comedy 3.5 0.684
The Three Musketeers Action Adventure Comedy 3.5 0.789

SPR recommendations
Name Genres Rating nov
V for Vendetta Thriller 5 0.438
Enemy of the State Action Thriller 3.5 0.620
The Count of Monte Cristo Drama 3.5 0.787
Free Enterprise Comedy Romance Sci-Fi 4.5 0.989
First Knight Action Drama Romance 3.5 0.962

SOG recommendations
Name Genres Rating nov
V for Vendetta Thriller 5 0.438
The Untouchables Thriller Crime Drama 4.5 0.604
Monsters. Inc. Animation Children Comedy Fantasy 4 0.331
Minority Report Action Crime Mystery Sci-Fi Thriller 3 0.260
Grease Comedy Musical Romance 3 0.615

As SOG predicts genres a user likes, its Ser@10 is slightly higher than that
of SOGBasic for the same values of NDCG@10. SOG tends to suggest more
movies of genres not only novel, but also interesting to a user, which slightly
hurts diversity, but improves serendipity.

5.2 Qualitative Analysis

Table 3 demonstrates the recommendations provided for a randomly selected
user, who rated 25 movies in the HetRec dataset. The algorithms received 5
ratings as the training set and regarded 20 ratings as the test set for the user.
We provided recommendations generated by two algorithms: (1) SOG due to
high Ser@n, and (2) SPR due to high SerPop@n.

Although SPR suggested less popular movies than SOG, our algorithm out-
performed SPR at overcoming the overspecialization problem, as it introduced
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more novel genres (8 genres) to the user than SPR (2 genres). Our algorithm
also provided a more diversified recommendation list than SPR.

The suggestion of the movie Monsters Inc. seems to significantly broaden
user tastes, as the suggestion is relevant and introduces three new genres to
the user. Provided that the movie is serendipitous to the user, it is likely to
inspire the user to watch more cartoons in the future.

Analysis of tables 2 and 3 suggests that the traditional serendipity metric
captures only novelty and relevance by penalizing algorithms for suggesting
popular and irrelevant items, whereas Ser@n takes into account each compo-
nent of serendipity, which allows assessment of the ability of the algorithm to
overcome overspecialization.

6 Discussion

A universal algorithm achieving the highest values in all the metrics and suit-
able for all the tasks a user might need to complete (such as finding good items,
finding a credible recommender system and just browsing [30]) does not seem
to exist. However, some algorithms might solve particular recommendation
tasks better than others.

SOG is flexible by design. It can be adjusted by each user or for each task
or by a system for each user. In fact, future recommender systems should not
only personalize the content, but also the way of producing recommendations
[3]. A recent study shows that different users need different settings [14].

This study has a number of limitations. First, we only evaluated our algo-
rithm on pre-collected datasets. Second, our data comes only from the movie
domain. Third, to measure serendipity, we only considered a genre feature
space, whereas other feature spaces, such as casts, directors or keywords might
be important.

7 Conclusions and future research

We proposed a SOG recommendation algorithm. We also provided evalua-
tion results of our algorithm and state-of-the-art algorithms using different
serendipity metrics.

SOG is based on the TD algorithm [35] and improves its accuracy and
serendipity for the insignificant price of diversity.

Our serendipity-oriented algorithm outperforms the state-of-the-art
serendipity-oriented algorithms in terms of serendipity and diversity, and un-
derperforms them in terms of accuracy.

Unlike the traditional serendipity metric, the serendipity metric we em-
ployed in this study captures each component of serendipity. The choice of
this metric is supported by qualitative analysis.

In our future research, we intend to further investigate serendipity-oriented
algorithms. We will also involve real users to validate our results.
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ABSTRACT
Online social networks have become an essential part of our
daily life, and an increasing number of users are using mul-
tiple online social networks simultaneously. We hypothesize
that the integration of data from multiple social networks
could boost the performance of recommender systems. In
our study, we perform cross-social network collaborative rec-
ommendation and show that fusing multi-source data en-
ables us to achieve higher recommendation performance as
compared to various single-source baselines.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
The fast expanding multi-modal social media data serves

as an important resource to perform relevant recommen-
dation and comprehensive user profiling in many applica-
tion domains. In particular, venue category recommenda-
tion (e.g. restaurant, museum, or park) is an important
task in tourism and advertisement for suggesting interesting
venues near users’ current location. At the same time, most
internet-active adults prefer to use multiple social services
simultaneously to satisfy their different information needs1,
and thus, interests of such users can be better inferred from
different perspectives using multiple online social networks
(OSNs).

Up to now, only a few studies investigated multi-source
data processing, while the usefulness of the multi-source
data integration for venue recommendation remains unclear.
For example, according to [1, 4], multi-source data inte-
gration may help to achieve higher recommendation perfor-
mance. However, there has not been much research done on

1According Pew Research Internet Project’s
(www.pewinternet.org) Social Media Update 2013
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multi-source multi-modal recommender systems, while most
existing works focus on either multi-source or multi-modal
data.
In this paper, we investigate multi-source and multi-modal

recommender systems and report the results of an initial ex-
perimental study. We seek to address the following research
question: is it possible to improve the recommendation per-
formance by incorporating multi-source multi-modal data?
To address this question, we employed a subset of

NUS-MSS [2] dataset that includes user-generated content
posted by the same users in three popular OSNs: Twitter,
Foursquare and Instagram. We made the assumption that
the social media data from the same user on different social
network presents users activities in different perspectives,
which are correlated to overall user profile. We therefore
built a recommender system that exploits the multi-source
multi-modal data and suggests categories of venues visited
and unvisited by a particular user. Since location recom-
mendation is especially useful when it is based on the user’s
current location, we recommend venue categories. It allows
an individual to immediately discover the newly suggested
places. The task can also be considered as user profiling for
content and location-based recommendation. Furthermore,
we also address the source integration problem and evaluate
our proposed approach against single-source baselines.

2. MULTI-SOURCE DATA
To address the research question, we employed a subset

of NUS-MSS dataset [2] by considering only those users
who performed activities on each of the following three
OSNs: Twitter, Foursquare and Instagram, from 10 July
till 29 September 2014 in Singapore region. The result-
ing dataset used for the experimentation contains 3,058,833
tweets, 81,755 check-ins and 87,672 Instagram posts, gener-
ated by 4,172 users.
2.1 Feature extraction
We model the users as vectors in m-dimensional feature

space: ui,F = (fi,1, fi,2, ..., fi,m), where fk is the kth fea-
ture for user ui,f using features space F . Overall, we lever-
age 4 types of features: Linguistic Inquiry and Word Count
(LIWC) from Twitter, Latent Dirichlet Allocation (LDA)
from Twitter, Instagram image concepts and Foursquare
venue categories2. Each user is, thus, represented by 4 fea-
ture vectors:

• ui,LIWC = (liwci,1, liwci,2, ..., liwci,70), where liwci,k is a
normalized LIWC feature;

• ui,LDA = (ldai,1, ldai,2, ..., ldai,50), where ldai,k is the
probability that the tweets of user ui are about topic k;

2Detailed features description is given in [2]



• ui,IN = (ini,1, ini,2, ..., ini,1000), where ini,k is a normal-
ized number of pictures posted by user i with a concept
ink;

• ui,SQ = (sqi,1, sqi,2, ..., sqi,546), where sqi,k is a normalized
number of the times user i visited venue category sqk.

3. RECOMMENDATION APPROACHES
We recommended venue categories based on each data

source independently and based on the fusion of data from
multiple sources.

3.1 Single-source recommendation
To recommend venue categories, we implemented user-

based collaborative filtering. In the case of single-source
recommendation, the list of suggested categories is sorted
according to the ratings of items. Rating of each item for
each user is calculated as follows:

r̂(ui,F , j) =

∑
k∈U,k �=i sqk,j · cos(ui,F , uk,F )
∑

k∈U,k �=i cos(ui,F , uk,F )
, (1)

where r̂(ui,F , j) is the rating calculated using feature vector
ui,F such as ui,LDA, ui,LIWC , ui,SQ or ui,IN ; ui,F is a target
user that receives a recommendation list with item j; sqk,j
is the weight of item j for user k; and cos(ui,F , uk,F ) is the
cosine similarity measure between users i and k.

3.2 Multi-source recommendation
We performed different fusion approaches at the different

stages of collaborative filtering.
As a simple baseline, we first employed an early fusion

approach [3] to fuse multi-source data, where features de-
rived from each source were concatenated into a single fea-
ture vector:

u′
i = (sqi,1, ..., sqi,546, ldai,1, ..., ldai,50,

liwci,1, ..., liwci,70, ini,1, ..., ini,1000).
(2)

Seeking to boost the recommendation performance, we
developed a new late fusion re-ranking approach. We
linearly combined the outputs from different sources, where
the weight of each source is learned based on a stochastic
hill climbing with random restart (SHCR) optimization al-
gorithm. Each source is assigned a real-valued weight of
between 0 to 1 and the rank of ith item in the final recom-
mendation output is computed as follows:

Rankf (itemi) =
1

n

n∑

s=1

ws

Ranks(itemi)
, (3)

where Ranks(itemi) is the rank of ith item in recommen-
dation list for source s; ws corresponds to the weight of the
source s; n is a total number of sources (in our case, n = 4).
The venue categories in final recommendation list are sorted
in increasing order according to their rank. We optimize
the multi-source recommendation performance (measured
by F − measure@10) in 1000 SHCR iterations that gives
a good chance to find reasonable source weights.

4. EXPERIMENTAL RESULTS
In our experiments, the recommender system suggests a

sorted number of categories to each user. We trained the
model using the whole dataset and evaluated based on 736
users who have checked-in in at least 20 categories in the
training set and 8 categories in the test set.

To measure the recommendation performance we use
F − measure@K = 2·P@K·R@K

P@K+R@K
, where P@K and R@K

are precision and recall at K, respectively, and K indicates
the number of selected items from the top of the recommen-
dation list.

Figure 1 demonstrates that multi-source multi-modal
data fusion helps to improve the recommendation perfor-
mance. Specifically, the proposed late fusion re-ranking ap-
proach outperforms all the baselines starting from K > 6.
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Figure 1: The evaluation of recommendation perfor-
mance in terms of F-measure@K

The lower recommendation performance of multi-source ap-
proach for K < 6 could be explained by the significant noise
level in Twitter data, while for K > 9 Twitter features are
able to archive better generalization ability of the proposed
model.
Another observation is the failure of the early fused model

to improve the recommendation performance as compared
to single source baselines, where the shape of the perfor-
mance curve is similar to that of the Instagram approach.
The possible reason is the unbalanced sparsity of different
feature vectors, since features were derived from different
multi-modal sources.
5. CONCLUSION
In this study, we investigated the impact of multi-modal

data from different social media sources on the recommen-
dation performance. Based on the NUS-MSS dataset [2], we
incorporated multi-source multi-modal data and compared
its performance with single-source baselines. Our results in-
dicated that the fusion of multi-source multi-modal data is
able to boost the recommendation performance significantly.
Our future work includes the development of new efficient

source fusion solutions. Also we plan to work on new feature
types, data completion techniques and multi-source recom-
mendation models.
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Abstract: In recent years, there has been an increasing interest in cross-domain recommender systems. However, most

existing works focus on the situation when only users or users and items overlap in different domains. In

this paper, we investigate whether the source domain can boost the recommendation performance in the target

domain when only items overlap. Due to the lack of publicly available datasets, we collect a dataset from

two domains related to music, involving both the users’ rating scores and the description of the items. We

then conduct experiments using collaborative filtering and content-based filtering approaches for validation

purpose. According to our experimental results, the source domain can improve the recommendation perfor-

mance in the target domain when only items overlap. However, the improvement decreases with the growth

of non-overlapping items in different domains.

1 INTRODUCTION

Recommender systems use past user behavior to sug-
gest items interesting to users (Ricci et al., 2011). An
item is a piece of information that refers to a tangible
or digital object, such as a good, a service or a process
that a recommender system suggests to the user in an
interaction through the Web, email or text message.

The majority of recommender systems suggest
items based on a single domain. In this paper, the
term domain refers to “a set of items that share certain
characteristics that are exploited by a particular rec-
ommender system” (Fernández-Tobı́as et al., 2012).
These characteristics are items’ attributes and users’
ratings.

However, the single domain recommender sys-
tems often suffer from data sparsity and cold start
problems. In order to overcome these limitations it
is possible to consider data from different domains.
Recommender systems that take advantage of mul-
tiple domains are called cross-domain recommender
systems (Fernández-Tobı́as et al., 2012; Cantador and
Cremonesi, 2014).

In this paper, we consider a cross-domain recom-
mendation task (Cantador and Cremonesi, 2014), that
requires one target domain and at least one source do-
main. The former refers to the domain that suggested
items are picked from, and similarly the latter refers
to the additional domain that contains auxiliary infor-

mation.

Cross-domain recommender systems can be clas-
sified based on domain levels (Cantador and Cre-
monesi, 2014):

• attribute level - items can be assigned to different
domains according to their descriptions. One may
contain jazz music, while another may consist of
pop audio recordings;

• type level - items may have different types, but
share common attributes. Movie and book do-
mains have common genres, such as drama, com-
edy and horror, while movies and books have dif-
ferent types;

• item level - items from different domains may
have completely different attributes and types.
Songs and books might not share any common at-
tributes;

• system level - items may belong to different rec-
ommender systems, have the same type and share
many common attributes. For example, movies
from IMDb1 and MovieLens2 may belong to dif-
ferent domains.

Depending on whether overlapping occurs in the
set of users or items (Cremonesi et al., 2011), there

1http://www.imdb.com/
2https://movielens.org/
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two domains related to music, involving both the users’ rating scores and the description of the items. We

then conduct experiments using collaborative filtering and content-based filtering approaches for validation
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are four situations that enable cross-domain recom-
mendations: a) no overlap between items and users,
b) user sets of different domains overlap, c) item sets
overlap, and d) item and user sets overlap.

In this work, we investigate whether the source
domain improves the recommendation performance
in the target domain on system level in the situation
when only items overlap. The idea behind the paper
is as follows. Traditional cross-domain recommender
systems utilize overlapping users to discover addi-
tional interests of users, leading to the improvement
of the recommendation diversity. When the items
overlap, the source domain lets detect more accurate
similarities between items, which should positively
result in recommendation performance in the target
domain.

Due to the lack of publicly available datasets for
cross-domain recommender systems with overlapping
items (Berkovsky et al., 2008; Kille et al., 2013), we
collected data from Vkontakte3 (VK) – Russian on-
line social network (OSN) and Last.fm4 (FM) – mu-
sic recommender service. We then matched VK and
FM audio recordings and developed the cross-domain
recommender system that suggests VK recordings to
VK users based on data from both domains. Each au-
dio recording is represented by its metadata excluding
the actual audio file. VK recordings thus represent
the target domain, while the source domain consists
of FM recordings. VK and FM recordings share titles
and artists, but have different user ratings and other
attributes.

In order to address the research question and illus-
trate the potential of additional data, we chose sim-
ple but popular recommendation algorithms to con-
duct experiments for validation: collaborative filter-
ing based on users’ ratings and content-based filtering
based on the descriptions of the items.

Our results indicate that the source domain can
improve the recommendation performance in the tar-
get domain. Furthermore, with the growth of non-
overlapping items in different domains, the improve-
ment of recommendation performance decreases.
This paper thus has the following contributions:

• we initially investigate the cross-domain recom-
mendation problem in the situation when only
items overlap;

• we collect a novel dataset to conduct the experi-
ments for addressing the research question.

The paper might be useful in real life scenarios.
For example, according to our results, the perfor-
mance of a recommender system lacking user rat-

3http://vk.com/
4http://last.fm/

ings to achieve an acceptable performance can be im-
proved using ratings collected from another recom-
mender system that suggests items of the same type.
However, the performance might decrease if the rec-
ommender systems do not have enough overlapping
items.

The rest of the paper is organized as follows. Sec-
tion 2 overviews related works. Section 3 describes
the datasets used to conduct experiments. Section 4 is
dedicated to recommendation approaches, while sec-
tion 5 describes conducted experiments. Finally, sec-
tion 6 draws final concussions.

2 RELATED WORKS

Most existing approaches consider additional infor-
mation about users to boost the recommendation per-
formance. For example, one of the first studies dedi-
cated to cross-domain recommender systems investi-
gated the effectiveness of source domains with over-
lapping users (Winoto and Tang, 2008). In the exper-
iment, undergraduates from a local university were
asked to rate items from different domains, such as
movies, songs and books. The authors measured rec-
ommendation performance in different domain com-
binations and concluded that source domains decrease
the recommendation performance, but may improve
the diversity of recommendations.

In contrast, other studies demonstrated that source
domains can boost the recommendation performance
in the target domain in situations when users or both
users and items overlap. For example, Sang demon-
strated the feasibility of utilizing the source domain.
The study was conducted on a dataset collected from
Twitter5 and YouTube6. The author established rela-
tionships between items from different domains using
topics (Sang, 2014). Similarly to Sang, Shapira et al.
also linked items from different domains, where 95
participants rated movies and allowed the researches
to collect data from their Facebook pages. The re-
sults suggested that additional domains improve the
recommendation performance (Shapira et al., 2013).
Another study with positive results was conducted by
Abel et al. The dataset contained information related
to the same users from 7 different OSNs (Abel et al.,
2013). Sahebi et al. demonstrated the usefulness
of recommendations based on additional domains to
overcome cold start problem (Sahebi and Brusilovsky,
2013).

Most works on cross-domain recommender sys-
tems focus on the situation when users or both users

5https://twitter.com/
6https://www.youtube.com/
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items (Berkovsky et al., 2008; Kille et al., 2013), we
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Figure 1: Data collection chart.

and items of several domains overlap (Cantador and
Cremonesi, 2014). However, to the best of our knowl-
edge, the efforts on the impact of source domains on
the target domain with only overlapping items involv-
ing a real cross-domain dataset is very limited.

3 DATASETS

Due to the lack of publicly available datasets for
cross-domain recommender systems with overlapping
items (Berkovsky et al., 2008; Kille et al., 2013) we
collected data from VK and FM. The construction of
the dataset included three phases (Figure 1): 1) VK
recordings collection, 2) duplicates matching, and 3)
FM recordings collection.

3.1 VK Recordings Collection

The VK interface provides the functionality to add
favorite recordings to users’ pages. By generating
random user ids we collected disclosed VK users’
favorite audio recordings using VK API. Our VK
dataset consists of 97,737 (76,177 unique) audio
recordings added by 864 users.

Each VK user is allowed to share any audio or
video recording. The interface of the OSN provides
the functionality to add favorite recordings to the
users page. VK users are allowed not only to add
favorite audio recordings to their pages, but also to
rename them. The dataset thus contains a noticeable
number of duplicates with different names. To assess
this number we randomly selected 100 VK recordings
and manually split them into three categories:

• correct names - the name of the recording is cor-
rectly written without any grammatical mistakes
or redundant symbols;

• misspelled names - the name is guessable, even
if the name of the recording is replaced with
the combination of artist and recording name or
lyrics;

• meaningless names – the name does not contain
any information about the recording. For exam-
ple, “unknown” artist and “The song” recording.

Out of 100 randomly selected recordings we detected
14 misspelled and 2 meaningless names. The example
can be seen from table 1.

Table 1: Examples of recordings.

Artist name Recording name

Correct names

Beyonce Halo

Madonna Frozen

Misspelled

Alice DJ Alice DJ - Better of Alone.mp3

Reamonn Oh, tonight you kill me with your smile

� Lady Gaga Christmas Tree

Meaningless

Unknown classic

Unknown party

3.2 Duplicates Matching

In order to match misspelled recordings, we de-
veloped a duplicate matching algorithm that detects
duplicates based on recordings’ names, mp3 links
and durations. The algorithm compares recordings’
names based on Levenshtein distance and the number
of common words excluding stop words.

We then removed some popular meaningless
recordings such as “Unknown”, “1” or “01”, because
they represent different recordings and do not indicate
users’ preferences. Furthermore, some users assign
wrong popular artists’ names to the recordings. To re-
strict the growth of this kind of mistakes, the matching
algorithm considers artists of the duplicate recordings
to be different. By using the presented matching ap-
proach, the number of unique recordings decreased
from 76,177 to 68,699.

3.3 FM Recordings Collection

In order to utilize the source domain we collected
FM recordings that correspond to 48,917 selected
VK recordings that were added by at least two users
or users that have testing data. Each FM record-
ing contains descriptions such as FM tags added by
FM users. FM tags indicate additional information
such as genre, language or mood. Overall, we col-
lected 10,962 overlapping FM recordings and 20,214
(2,783 unique) FM tags.

It is also possible to obtain FM users who like a
certain recording (top fans). For each FM recording,
we collected FM users who like at least one more FM
recording from our dataset according to the distribu-
tion of VK users among those recordings. In fact,
some unpopular FM recordings are missing top fans.
We thus collected 17,062 FM users, where 7,083 of
them like at least two recordings from our database.

In this work, we constructed three datasets. Each
of them includes the collected FM data and different
parts of the VK data:
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• 0% - the dataset contains only overlapping record-
ings rated by VK and FM users;

• 50% - the dataset contains overlapping recordings
and the half of randomly selected VK recordings
that do not correspond to FM recordings;

• 100% - the dataset contains all collected VK and
FM recordings.

The statistics of the datasets are presented in ta-
ble 2. The number of VK users varies in different
dataset, due to the lack of ratings after removing non-
overlaping VK recordings.

4 RECOMMENDATION
APPROACHES

In order to emphasize the importance of additional
data we implemented simple, but popular collabora-
tive filtering and content-based filtering algorithms.

4.1 Item-based Collaborative Filtering

Each recording is represented as a vector in the mul-
tidimensional feature space, where each feature is a
user’s choice. VK recording is represented as follows:
ivk

j = (uvk
1, j, uvk

2, j, ...,u
vk
n, j), where uvk

k, j equals to 1 if VK

user k picks VK recording j and 0 otherwise. The
representation changes if we consider the FM users:

ivk, f m
j = (uvk

1, j, uvk
2, j, ...,u

vk
n, j, u f m

1, j ,u
f m
2, j , ...,u

f m
n, j ).

In order to rank items in the suggested list we
use sum of similarities of recordings (Ekstrand et al.,
2011):

score(uvk
k , ivk

j ) = ∑ivk
h ∈I

uvk
k

sim(ivk
j , i

vk
h ), (1)

where Iuvk
k

is the set of items picked by uvk
k user. We

use conditional probability as similarity measure (Ek-
strand et al., 2011):

p(i j, ih) =
Freq(i j ∧ ih)

Freq(i j) ·Freq(ih)α , (2)

where Freq(i j) is the number of users that liked item
i j, while Freq(i j ∧ ih) is the number of users that liked
both items i j and ih. The parameter α is a demping
factor to decrese the similarity for popular items. In
our experiments α = 1.

It is worth mentioning that item vectors based on
FM users contain remarkably more dimensions than
vectors based on VK users. In order to alleviate the
problem we compared recordings using the following
rule:

sim(i j, ih)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(ivk
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h ), ∃ivk

j ∧∃ivk
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p(i f m
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h ∧
(�ivk

j ∨�ivk
h )

p(ivk, f m
j , ivk, f m

h ), ∃ivk
j ∧∃ivk

h ∧
∃i f m

j ∧∃i f m
h

. (3)

We compare items in each pair using only do-
mains that contain users’ ratings for both items.

4.2 Content-based Filtering

In a content-based approach similarly to an item-
based approach each recording is represented as a
vector, but each dimension corresponds to an attribute
of the item. In our case, these attributes are VK FM
artists and FM tags. It is worth mentioning that FM
and VK artists correspond to each other.

An audio recording thus is represented as follows:
iaj = (a1, j, a2, j, ...,ad, j), where ak, j equals to 1 if the
recording i j is performed by the artist ak and 0 oth-
erwise. The user then can be represented similarly:
ua

j = (a1, j,a2, j, ...,ad, j), where ak, j equals to 1 if user
k picks the recording perfromed by the artist ak and 0
otherwise.

The representation chages if we consider FM tags:
itj = (w1, j,w2, j, ...,wq, j), where wk, j corresponds to
the term frequencyinverse document frequency (Lops
et al., 2011). The user vector then is denoted as fol-
lows: ut

j = (t1, j, t2, j, ..., tq, j), where tk, j is a number of
recodings that have tag tk and are picked by user u j.

The recommender system compares audio record-
ings’ vectors and a user vector using cosine similar-
ity (Ekstrand et al., 2011). First, the suggested list
is sorted according to the similarity based on artists.
Second, list fragments that consist of items with the
same artists’ similarity are sorted according to the FM
tag similarity.

5 EXPERIMENTS

In this section, we conduct experiments to demon-
strate whether the source domain improves the rec-
ommendation performance in the target domain when
only items overlap.

5.1 Evaluation Metrics

We used precision@K, recall@K, mean average pre-
cision (MAP) and normalized discounted cumula-
tive gain (NDCG) to evaluate our approaches (Zhao,
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Table 2: The Statistics of the Datasets.

0% 50% 100%

VK FM VK FM VK FM

Users 661 7,083 850 7,083 864 7,083

Ratings 14,207 40,782 62,435 40,782 96,737 40,782

Items 4,605 4,605 39,831 4,605 68,699 4,605

Artists 1,986 1,986 19,930 1,986 31,861 1,986

Tags - 20,167 - 20,167 - 20,167

2013), as these metrics are the most popular in infor-
mation retrieval. Precision@K, recall@K and mean
average precision (MAP) are used to assess quality of
recommended lists with binary relevance. Binary rel-
evance requires each item to be relevant or irrelevant
for a particular user. As in our case a user can only
indicate relevance of a recording by adding it to her
page, we regarded added recordings as equally rele-
vant for a user. We regarded the rest recordings as
irrelevant. Precision@K and recall@K for a specific
user are calculated as follows:

Pu@K =
ru(K)

K
, (4)

Ru@K =
ru(K)

ru
, (5)

where ru(K) is the number of items relevant for user
u in the first K results, while ru indicates the number
of relevant items in the list recommended to user u.
Overall precision@K and recall@K are average val-
ues.

Precision@K =
1

||U || ∑
u∈U

Pu@K, (6)

Recall@K =
1

||U || ∑
u∈U

Ru@K, (7)

where U is a set of evaluated users. MAP then can be
calculated in the following way:

MAP =
1

||U || ∑
u∈U

1

ru

(
h

∑
i=1

ru,i ·Pu@i

)
, (8)

where ru,i = 1 if an item at position i in the recom-
mended list is relevant for user u and ru,i = 0 other-
wise. In our experiments h was set to 30.

We also evaluated our approaches using NDCG
(Järvelin and Kekäläinen, 2002). The metric consid-
ers positions of items in recommended lists and multi-
ple levels of relevance. We employed NDCG to mea-
sure the quality of recommendations with binary rel-
evance. The metric is calculated as follows:

NDCGu@K = Zn ·
K

∑
i=1

{
2ru,i −1, i = 1
2

ru,i−1
log2(i)

, i > 1
, (9)

NDCG@K =
1

||U || ∑
u∈U

NDCGu@K, (10)

where Zn is the normalization constant.

5.2 Results

Following the datasets sampling strategy in (Ekstrand
et al., 2011), we split each of our datasets into training
and test datasets. In particular, we selected 40% of
the users who rated the most VK recordings, and then
chose 30% of their ratings as the testing dataset. We
then regarded the rest ratings as the training dataset.

We used offline evaluation to compare results of
proposed methods with baselines. The recommender
system suggested 30 popular VK recordings to each
testing VK user excluding recordings that the user has
already added in the training set. In each approach the
recommendation list consists of the same items. We
chose popular items for evaluation, due to the high
probability that users have seen them already.

In this study, we demonstrate the performance
improvement resulting from the source domain with
three simple but popular algorithms: (1) POP, (2) Col-
laborative Filtering (CF), and (3) Content-based Fil-
tering (CBF). In particular, POP is a non-personalized
recommendation algorithm, which orders items in the
suggested list according to their popularity in the VK
dataset. For the CF and the CBF algorithms, we ob-
tained two performance results based on only VK and
VK+FM data.

• POP - ordering items according to their popular-
ity using the VK dataset.

• CF(VK) - item-based collaborative filtering using
the VK dataset.

• CF(VK+FM) - item-based collaborative filtering
using VK and FM datasets.

• CBF(VK) - content-based filtering using the VK
dataset.

• CBF(VK+FM) - content-based filtering using
VK and FM datasets.

Figures 2, 3 and 4 demonstrate the experimental
results based on three datasets presented in Section 3.
From the figures we can observe that:

1. The source domain can improve the recommenda-
tion performance in the target domain when only
items overlap. For the 0% dataset, the CF algo-
rithm achieves 0.0216, 0.0273, 0.0139 and 0.0287
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(a) Precision@K (0%) (b) Recall@K (0%)

(c) Precision@K (50%) (d) Recall@K (50%)

(e) Precision@K (100%) (f) Recall@K (100%)

Figure 2: Precision@K and Recall@K for experiments conducted using datasets with different fractions of non-overlapping
items.

in terms of precision@10, recal@10, MAP and
NDCG@10 based on VK dataset, while these
numbers are 0.0297, 0.0372, 0.0179 and 0.0387
based on VK+FM dataset, making the improve-
ment of 37.5%, 36.3%, 28.8% and 34.8%, respec-
tively. Similar improvements can be observed for
the CBF algorithm.

2. The improvement declines with the growth of
non-overlapping items in different domains. For
example, the improvement of CBF in terms of
NDCG@10 decreases as follows: 20.1%, 5.4%
and 5.0% using 0%, 50% and 100% datasets,
respectively. For the CF algorithm, the declin-
ing trend is even sharper. The source domain
decreases the performance of the CF algorithm
by 11.8% and 7.0% in terms of NDCG@5 and
NDCG@10 respectively using 100% dataset. A

similar trend can be observed for other numbers
of first K results and evaluation metrics.

3. CF(VK) and CBF(VK) perform worse than POP
in different cases, especially using the dataset
that contains only overlapping recordings (0%).
CF(VK) algorithm outperforms the popularity
baseline with the increase of non-overlapping
recordings. CF(VK) achieves 0.0139, while POP
outperforms them with the number 0.0180 in
terms of MAP using 0% dataset. For 100%
dataset the situation is opposite. POP achieves
0.0029, while CF(VK) reaches 0.0031. POP out-
performs CBF(VK) algorithm in most cases. For
0% and 100% datasets, CBF(VK) performs 1.9%
and 8.4% worse than POP in terms of MAP, re-
spectively.

Observation 1 illustrates the global correlation of
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Figure 2: Precision@K and Recall@K for experiments conducteted ud usising datasesets wwith different fractions of non-overlapping
items.
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(a) MAP (0%) (b) MAP (50%) (c) MAP (100%)

Figure 3: MAP (30 recommendations) for experiments conducted using datasets with different fractions of non-overlapping
items.

(a) NDCG@5 (b) NDCG@10

Figure 4: NDCG@K for experiments conducted using datasets with different fractions of non-overlapping items.

users’ preferences in different domains (Winoto and
Tang, 2008; Fernández-Tobı́as et al., 2012). Al-
though, the data belongs to different domains, users’
ratings from the source domain indicate similarities
between items that improve the recommendation per-
formance in the target domain.

Observation 2 supports the claim (Fernández-
Tobı́as et al., 2012), that the improvement cased by
the source domain rises with the growth of the overlap
between target and source domains. The decrease in
the recommendation performance of the CF algorithm
with the FM data is caused by the different lengths of
item vectors in source and target domains, where vec-
tors of FM items contain significantly more dimen-
sions than vectors of VK items.

In observation 3, the non-personalized algorithm
POP outperforms both the personalized algorithms
in different cases. CF algorithm performs worse
than POP due to data sparsity, which is alleviated by
adding more VK recordings to the dataset. Low per-
formance of CBF is caused by the poor quality of item
descriptions, as in the VK dataset items are described
with artists only.

Figures 2, 3 and 4 demonstrate four evaluation
metrics that are not always consistent. However, the
described observations can still be notices.

6 CONCLUSION

In this paper we investigated cross-domain recom-
mendations in the situation when only items overlap
on system level. We collected data from VK and FM
and built three datasets that contain different fractions
of non-overlapping items from source and target do-
mains. We then conducted experiments using collab-
orative filtering and content-based filtering algorithms
to demonstrate the importance of additional data.

According to our results, the source domain can
boost the recommendation performance in the target
domain when only items overlap resulting from the
correlation of users’ preferences among different do-
mains (Winoto and Tang, 2008). However, similarly
to (Fernández-Tobı́as et al., 2012) our results indi-
cated that the more items overlap in source and target
domains with respect to the whole dataset the higher
the improvement.
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Abstract. Cross-domain recommender systems use information from
source domains to improve recommendations in a target domain, where
the term domain refers to a set of items that share attributes and/or
user ratings. Most works on this topic focus on accuracy but disregard
other properties of recommender systems. In this paper, we attempt to
improve serendipity and accuracy in the target domain with datasets
from source domains. Due to the lack of publicly available datasets,
we collect datasets from two domains related to music, involving user
ratings and item attributes. We then conduct experiments using collab-
orative filtering and content-based filtering approaches for the purpose
of validation. According to our results, the source domain can improve
serendipity in the target domain for both approaches. The source domain
decreases accuracy for content-based filtering and increases accuracy for
collaborative filtering. The improvement of accuracy decreases with the
growth of non-overlapping items in different domains.

Keywords: Recommender systems · Serendipity · Cross-domain
recommendations · Collaborative filtering · Content-based filtering ·
Data collection

1 Introduction

Recommender systems use past user behavior to suggest items interesting to
users [17]. An item is “a piece of information that refers to a tangible or digital
object, such as a good, a service or a process that a recommender system suggests
to the user in an interaction through the Web, email or text message” [12].
Recommender systems use algorithms to generate recommendations.

Traditional recommendation algorithms mainly aim to improve accuracy,
which indicates how good an algorithm is at suggesting items a user usually
consumes. In this paper, they are referred to as accuracy-oriented algorithms.
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Generally speaking, accuracy-oriented algorithms often suggest popular items,
as these items are widely consumed by individuals. To improve accuracy, rec-
ommendation algorithms also tend to suggest items similar to a user profile
(a set of items rated by the user [12]), as these items match previous user tastes.
As a result, a user is recommended (1) items that are popular and therefore
familiar to the user [6] and (2) items that the user can easily find him/herself,
which is referred to as the overspecialization problem [21]. In particular, as two
main categories of recommendation algorithms, collaborative filtering algorithms
often suggest popular items due to the popularity bias in most datasets, while
content-based filtering algorithms often suffer from the overspecialization prob-
lem due to insufficient information regarding attributes of items.

Typically, the main reason why a user joins a recommender system is to
find novel and interesting items the user would not find him/herself [21]. To
improve user satisfaction, a recommender system should suggest serendipitous
items [12]. In this paper, we follow the definitions of [2,10,12], which indicate
that serendipitous items must be relevant, novel and unexpected to a user.

The mentioned problems can be tackled by cross-domain recommender sys-
tems, which could predict serendipitous items by enriching the training data
from the target domain with additional datasets from other domains. Here the
term domain refers to “a set of items that share certain characteristics that are
exploited by a particular recommender system” [9]. These characteristics are
item attributes and user ratings. Recommender systems that take advantage of
multiple domains are called cross-domain recommender systems [4,9,13].

In this paper, we explore the cross-domain recommendation task [4,13], that
requires one target domain and at least one source domain. The former refers to
the domain from which suggested items are picked from, and similarly the latter
refers to the domain that contains auxiliary information.

In this work, we seek to address the following research question: Can the
source domain improve serendipity in the target domain? Due to the lack of
publicly available datasets for cross-domain recommender systems [3,11,13], we
collected data from Vkontakte1 (VK) – Russian online social network (OSN)
and Last.fm2 (FM) – music recommender service. We then matched VK and
FM audio recordings and developed the cross-domain recommender system that
suggests VK recordings to VK users based on data from both domains. Each
audio recording is represented by its metadata excluding the actual audio file. VK
recordings thus represent the target domain, while the source domain consists of
FM recordings. VK and FM recordings share titles and artists, but have different
user ratings and other attributes.

We regard items that share certain attributes and belong to different domains
as overlapping, while those that do not as non-overlapping. In our case, VK and
FM recordings that have the same titles and artists are overlapping items.

To address the research question and illustrate the potential of additional
data, we chose simple but popular recommendation algorithms to conduct exper-

1 http://vk.com/.
2 http://last.fm/.
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iments for validation: collaborative filtering based on user ratings and content-
based filtering based on the descriptions of the items.

Our results indicate that the source domain can improve serendipity in
the target domain for both collaborative filtering and content-based filtering
algorithms:

– The traditional collaborative filtering algorithms tend to suggest popular
items, as most datasets contain rich information regarding these items in
terms of user ratings. Combing datasets of different domains decreases the
popularity bias.

– Content-based filtering algorithms often suffer from the overspecialization
problem due to poor data regarding item attributes. Enriching item attributes
alleviates the problem and increases serendipity.

According to our results, the source domain has a negative impact on accu-
racy for content-based filtering, and a positive impact on accuracy of collabora-
tive filtering. Furthermore, with the growth of non-overlapping items in different
domains, the improvement of accuracy for collaborative filtering decreases.
This paper has the following contributions:

– We initially investigate the cross-domain recommendation problem in terms
of serendipity.

– We collect a novel dataset to conduct the experiments for addressing the
research question.

The rest of the paper is organized as follows. Section 2 overviews related
works. Section 3 describes the datasets used to conduct experiments. Section 4
is dedicated to recommendation approaches, while Sect. 5 describes conducted
experiments. Finally, Sect. 6 draws final conclusions.

2 Related Works

In this section, we survey state-of-the-art efforts regarding serendipity and cross-
domain recommendations.

2.1 Serendipity in Recommender Systems

According to the dictionary3, serendipity is “the faculty of making fortunate
discoveries by accident”. The term was coined by Horace Walpole, who referenced
the fairy tale, “The Three Princes of Serendip”, to describe his unexpected
discovery [16].

Currently, there is no agreement on definition of serendipity in recommender
systems. Researchers employ different definitions in their studies. In this paper,
we employ the most common definition, which indicates that serendipitous items
are relevant, novel and unexpected [2,10,12].

3 http://www.thefreedictionary.com/serendipity.
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Given the importance of serendipity, researchers have proposed different
serendipity-oriented recommendation algorithms. For example, Lu et al. pre-
sented a serendipitous personalized ranking algorithm [15]. The algorithm is
based on matrix factorization with the objective function that incorporates rel-
evance and popularity of items. Another matrix factorization based algorithm is
proposed by Zheng, Chan and Ip [24]. The authors proposed the unexpectedness-
augmented utility model, which takes into account relevance, popularity and
similarity of items to a user profile. In contrast, Zhang et al. provided the rec-
ommendation algorithm Full Auralist [23]. It consists of three algorithms, each
being responsible for relevance, diversity and unexpectedness. To the best of our
knowledge, studies that focus on improving serendipity using source domains are
of restricted availability.

2.2 Cross-Domain Recommendations

Cross-domain recommender systems use multiple domains to generate recom-
mendations, which can be categorized based on domain levels [4,5]:

– Attribute level. Items have the same type and attributes. Two items are
assigned to different domains if they have different values of a particular
attribute. A pop song and jazz song might belong to different domains.

– Type level. Items have similar types and share some common attributes.
Two items are assigned to different domains if they have different subsets
of attributes. A photograph and animated picture might belong to different
domains. Even though both items have common attributes, such as a title,
publisher and tags, other attributes might be different (duration attribute for
animated pictures).

– Item level. Items have different types and all or almost all attributes. Two
items are assigned to different domains if they have different types. A song
and book might belong to different domains, as almost all attributes of the
items are different.

– System level. Two items are assigned to different domains if they belong to
different systems. For example, movies from IMDb4 and MovieLens5 might
belong to different domains.

Depending on whether overlapping occurs in the set of users or items [7], there
are four situations that enable cross-domain recommendations: (a) no overlap
between items and users, (b) user sets of different domains overlap while item
sets do not overlap, (c) item sets overlap while user sets do not overlap, and (d)
item and user sets overlap.

Most efforts on cross-domain recommendations focus on the situation when
users or both users and items overlap [13]. For example, Sang demonstrated
the feasibility of utilizing the source domain. The study was conducted on a

4 http://www.imdb.com/.
5 https://movielens.org/.
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dataset collected from Twitter6 and YouTube7. The author established relation-
ships between items from different domains using topics [19]. Similarly to Sang,
Shapira, Rokach and Freilikhman also linked items from different domains, where
95 participants rated movies and allowed the researches to collect data from
their Facebook pages [20]. The results suggested that source domains improve
the recommendation performance [20]. Another study with positive results was
conducted by Abel et al. The dataset contained information related to the same
users from 7 different OSNs [1]. Sahebi and Brusilovsky demonstrated the use-
fulness of recommendations based on source domains to overcome cold start
problem [18].

Most works on cross-domain recommendations focus on accuracy. To the
best of our knowledge, the efforts on the impact of source domains on the tar-
get domain in terms of serendipity involving a real cross-domain dataset are
very limited. In this paper, we investigate whether source domains can improve
serendipity in the target domain when only items overlap on system level.

3 Datasets

Due to the lack of publicly available datasets for cross-domain recommender
systems with overlapping items [3,11] we collected data from VK and FM. The
construction of the dataset included three phases (Fig. 1): (1) VK recordings
collection, (2) duplicates matching, and (3) FM recordings collection.

Fig. 1. Data collection chart.

3.1 VK Recordings Collection

The VK interface provides the functionality to add favored recordings to users’
pages. By generating random user IDs we collected accessible VK users’ favored
audio recordings using VK API. Each audio recording is represented by its meta-
data excluding the actual audio file. Our VK dataset consists of 97, 737 (76, 177
unique) audio recordings added by 864 users.

Each VK user is allowed to share any audio or video recording. The interface
of the OSN provides the functionality to add favored recordings to the users
page. VK users are allowed not only to add favored audio recordings to their

6 https://twitter.com/.
7 https://www.youtube.com/.
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pages, but also to rename them. The dataset thus contains a noticeable number
of duplicates with different names. To assess this number we randomly selected
100 VK recordings and manually split them into three categories:

– Correct names - the name of the recording is correctly written without any
grammatical mistakes or redundant symbols.

– Misspelled names - the name is guessable, even if the name of the recording
is replaced with the combination of artist and recording name or lyrics.

– Meaningless names - the name does not contain any information about the
recording. For example, “unknown” artist and “the song” recording.

Out of 100 randomly selected recordings we detected 14 misspelled and 2 mean-
ingless names. The example can be seen from Table 1.

Table 1. Examples of recordings.

Artist name Recording name

Correct names

Beyonce Halo

Madonna Frozen

Misspelled

Alice DJ Alice DJ - Better of Alone.mp3

Reamonn Oh, tonight you kill me with your smile

● Lady Gaga Christmas Tree

Meaningless

Unknown Classic

Unknown Party

3.2 Duplicates Matching

To match misspelled recordings, we developed a duplicate matching algorithm
that detects duplicates based on recordings’ names, mp3 links and durations.
The algorithm compares recordings’ names based on the Levenshtein distance
and the number of common words excluding stop words.

We then removed some popular meaningless recordings such as “Unknown”,
“1” or “01”, because they represent different recordings and do not indicate user
preferences. Furthermore, some users assign wrong popular artists’ names to
the recordings. To restrict the growth of these kinds of mistakes, the matching
algorithm considers artists of the duplicate recordings to be different. By using
the presented matching approach, the number of unique recordings decreased
from 76, 177 to 68, 699.
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3.3 FM Recordings Collection

To utilize the source domain we collected FM recordings that correspond to
48, 917 selected VK recordings that were added by at least two users or users
that have testing data. Each FM recording contains descriptions such as FM
tags added by FM users. FM tags indicate additional information such as genre,
language or mood. Overall, we collected 10, 962 overlapping FM recordings and
20, 214 (2, 783 unique) FM tags.

It is also possible to obtain FM users who like a certain recording (top fans).
For each FM recording, we collected FM users who like at least one more FM
recording from our dataset according to the distribution of VK users among those
recordings. In fact, some unpopular FM recordings are missing top fans. We thus
collected 17, 062 FM users, where 7, 083 of them like at least two recordings from
our database. FM users liked 4, 609 FM recordings among those collected.

3.4 The Statistics of the Datasets

In this work, we constructed three datasets. Each of them includes the collected
FM data and different parts of the VK data (percentage indicates the fraction
of overlapping items):

– 100% - the dataset contains only overlapping recordings picked by VK and
FM users;

– 50% - the dataset contains equal number of overlapping and non-overlapping
recordings;

– 7% - the dataset contains all collected VK and FM recordings. The fraction
of overlapping recordings is 6.7%.

The 7% dataset contains all the collected and processed data. We presented
results for 50% and 100% datasets to demonstrate how serendipity and accuracy
change when a dataset contains different fraction of overlapping items.

Table 2. The statistics of the datasets.

100% 50% 7%

VK FM VK FM VK FM

Users 665 7, 083 795 7, 083 864 7, 083

Ratings 14,526 40, 782 33,680 40, 782 96,737 40, 782

Items 4,609 4, 609 9,218 4, 609 68,699 4, 609

Artists 1,986 1, 986 4,595 1, 986 31,861 1, 986

Tags - 20, 167 - 20, 167 - 20, 167

The statistics of the datasets are presented in Table 2. The number of VK
users varies in different datasets, due to the lack of ratings after removing non-
overlapping VK recordings.
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Fig. 2. Popularity distributions of VK and FM datasets.

According to Fig. 2, each recording has different popularity among VK and
FM users. The FM dataset contains rich information in terms of user ratings
regarding recordings unpopular in the VK dataset. In the figure, popularity is
based on the number of users who picked a particular item:

Popularityi =
Freq(i)

Freqmax
, (1)

where Freq(i) is the number of users who picked recording i, while Freqmax

corresponds to the maximum number of users picked the same recording in a
dataset.

4 Recommendation Approaches

In this section, we implement and observe simple but popular collaborative fil-
tering and content-based filtering algorithms to demonstrate the impact of the
data from source domains.

4.1 Item-Based Collaborative Filtering

We chose item-based collaborative filtering as the first experimental algorithm.
It is a representative recommendation algorithm that has been widely used in
industry due to its scalability [8]. In item-based collaborative filtering, each audio
recording (item) is represented as a vector in a multidimensional feature space,
where each feature is a user’s choice (rating). VK recording is represented as fol-
lows: ivk = (uvk

1,i, u
vk
2,i, ..., u

vk
n,i), and each element uvk

k,i ∈ {0, 1} for k = 1, ..., ||U ||,
where U is a set of users, while uvk

k,i equals to 1 if VK user k picks VK record-

ing ivk and 0 otherwise. To integrate the source domain (FM) with our target
domain (VK), we included FM users as follows: ivkfm = (uvk

1,i, uvk
2,i, ..., uvk

n,i,

ufm
1,i , u

fm
2,i , ..., u

fm
n,i ).

To generate recommendations, item-based collaborative filtering first detects
recordings that are most similar to recordings picked by the target user. The
algorithm then ranks recordings based on the obtained similarities.

To measure similarity, we used conditional probability, which is a common
similarity measure for situations in which users only indicate items they like
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without specifying how much they like these items (unary data) [8]. Conditional
probability is calculated as follows:

p(i, j) =
Freq(i ∧ j)

Freq(i) · Freq(j)α
, (2)

where Freq(i) is the number of users that picked item i, while Freq(i∧ j) is the
number of users that picked both items i and j. The parameter α is a damping
factor to decrease the similarity for popular items. In our experiments α = 1.

Item vectors based on FM users contain remarkably more dimensions than
vectors based on VK users. To alleviate the problem, we compared recordings
using the following rule:

sim(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(ivk, jvk), ∃ivk ∧ ∃jvk∧
(�ifm ∨ �jfm)

p(ifm, jfm), ∃ifm ∧ ∃jfm∧
(�ivk ∨ �jvk)

p(ivkfm, jvkfm), ∃ivk ∧ ∃jvk∧
∃ifm ∧ ∃jfm

. (3)

We compared items in each pair using domains that contain user ratings for
both items. To rank items in the suggested list, we used sum of similarities of
recordings [8]:

score(u, i) =
∑

j∈Iu
sim(i, j), (4)

where Iu is the set of items picked by user u (user profile).

4.2 Content-Based Filtering

We chose content-based filtering algorithm, as this algorithm uses item attributes
instead of user ratings to generate recommendations. In our case, these attributes
are VK - FM artists and FM tags. Each FM artist corresponds to a particular
VK artist.

To represent items, we used a common weighting scheme, term frequency-
inverse document frequency (TF-IDF). TF-IDF weight consists of two parts:

tfidfattr,i = tfattr,i · idfattr, (5)

where tfattr,i corresponds to the frequency of attribute attr for item i (term
frequency), while idfattr corresponds to the inverse frequency of attribute attr
(inverse document frequency). The term frequency is based on the number of
times an attribute appears among attributes of an item with respect to the
number of item attributes:

tfattr,i =
nattr,i

ni
, (6)

where ni is the number of attributes of item i, while nattr,i is the number of times
attribute attr appears among attributes of item i. In our case, nattr,i = 1 for each
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item, while ni varies depending on the item. The term frequency increases with
the decrease of the number of item attributes. The inverse document frequency
is based on the number of items with an attribute in the dataset:

idfattr = ln
||I||

||Iattr|| , (7)

where I is a set of all the items, while Iattr is a set of items that have attribute
attr. The inverse document frequency is high for rare attributes and low for
popular ones. TF-IDF weighting scheme assigns high weights to rare attributes
that appear in items with low number of attributes.

An audio recording is represented as follows: ia = (a1,i, a2,i, ..., ad,i), where
ak,i corresponds to the TF-IDF weight of artist ak [14]. The user is represented
as follows: ua = (a1,u, a2,u, ..., ad,u), where ak,u corresponds to the number of
recordings picked by user u performed by artist ak.

To integrate FM data, we considered FM tags as follows: iat = (a1,i,
a2,i, ..., ad,i, t1,i, t2,i, ..., tq,i), where tk,i corresponds to the TF-IDF weight of
tag tk [14]. The user vector then is denoted as follows: uat = (a1,u, a2,u, ..., ad,u,
t1,u, t2,u, ..., tq,u), where tk,u is the number of recordings picked by user u having
tag tk.

The recommender system compares audio recordings’ vectors and a user vec-
tor using cosine similarity [8]:

cos(u, i) =
u · i

||u||||i|| , (8)

where u and i are user and item vectors. To suggest recordings, content-based
filtering ranks recordings according to cos(u, i). In our experiments, we used
cos(ua, ia) for VK data and cos(uat, iat) for VK and FM data.

5 Experiments

In this section, we detail experiments conducted to demonstrate whether the
source domain improves serendipity and accuracy in the target domain when
only items overlap.

5.1 Evaluation Metrics

To assess the performance of algorithms we used two metrics: (1) Precision@K
to measure accuracy and (2) a traditional serendipity metric Ser@K.

Precision@K is a commonly used metric to assess quality of recommended
lists with binary relevance. In our datasets, recordings added by a user to his/her
page are relevant, while the rest of the recordings are irrelevant to the user.
Precision@K reflects the fraction of relevant recordings retrieved by a recom-
mender system in the first K results. The metric is calculated as follows:

Precision@K =
1

||U ||
∑
u∈U

||RSu(K) ∩RELu||
K

, (9)
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where U is a set of users, while RSu(K) is a set of top-K suggestions for user u.
Recordings from the test set (ground truth) for user u are represented by RELu.

The traditional serendipity metric is based on (1) a primitive recommender
system, which suggests items known and expected by a user, and (2) a set of items
similar to a user profile. Evaluated recommendation algorithms are penalized
for suggesting items that are irrelevant, generated by a primitive recommender
system or included in the set of items similar to a user profile. Similarly to [2],
we used a slight modification of the serendipity metric:

Ser@K =
1

||U ||
∑
u∈U

||(RSu(K)\PM\Eu) ∩RELu||
K

, (10)

where PM is a set of suggestions generated by the primitive recommender sys-
tem, while Eu is a set of recordings similar to recordings picked by user u. We
selected the 10 most popular recordings for PM following one of the most com-
mon strategies [15,24]. Set of items similar to a user profile Eu represents all
the recordings that have common artists with recordings user u picked. User u
can easily find recordings from set Eu by artist name, we therefore regard these
recordings as obvious.

5.2 Results

Following the datasets sampling strategy in [8], we split each of our datasets into
training and test datasets and applied 3-fold cross-validation. We selected 40%
of the users who picked the most VK recordings, and chose 30% of their ratings
as the testing dataset. We then regarded the rest of the ratings as the training
dataset.

To compare the results of various baselines, we used offline evaluation. The
recommender system suggested 30 popular VK recordings to each testing VK
user excluding recordings that the user has already added in the training set.
In each approach the recommendation list consists of the same items. We chose
popular items for evaluation, as the users are likely to be familiar with those
items.

In this study, we demonstrate serendipity and accuracy improvements result-
ing from the source domain with three simple but popular algorithms: (1) POP,
(2) Collaborative Filtering (CF), and (3) Content-Based Filtering (CBF). It is
important to note that POP is a non-personalized recommendation algorithm,
which orders items in the suggested list according to their popularity in the
VK dataset. For the CF and the CBF algorithms, we obtained two performance
results based on (1) data collected from VK and (2) data collected from both
VK and FM.

– POP - ordering items according to their popularity using the VK dataset.
– CF(VK) - item-based collaborative filtering using the VK dataset.
– CF(VKFM) - item-based collaborative filtering using VK and FM datasets.
– CBF(VK) - content-based filtering using the VK dataset.
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Fig. 3. Precision@K and Ser@K for experiments conducted using datasets with dif-
ferent fractions of non-overlapping items.

– CBF(VKFM) - content-based filtering using VK and FM datasets.

Figure 3 demonstrates the experimental results based on three datasets pre-
sented in Sect. 3. From the figure we can observe that:

1. The source domain can improve serendipity in the target domain. On all
datasets, CBF based on VK and FM data outperforms CBF based on only
VK data in terms of serendipity. For collaborative filtering the situation is
very similar, except the decrease of serendipity for recommendation lists of
length 10 and 15 on the 7% dataset. For the 50% dataset, the CF algorithm
achieves 0.0156, 0.0147 and 0.0142 in terms of Ser@5, Ser@10 and Ser@15
based on VK data, while these numbers are 0.0190, 0.0164 and 0.0146 based
on VK and FM data, making the improvement of 22.2%, 11.7% and 2.7%,
respectively.

2. For collaborative filtering, the source domain can improve accuracy in the tar-
get domain when only items overlap. For the 100% dataset, the CF algorithm
achieves 0.0208, 0.0196 and 0.0189 in terms of Precision@5, Precision@10
and Precision@15 based on VK data, while these numbers are 0.0271, 0.0260
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and 0.0252 based on VK and FM data, making the improvement of 30.6%,
32.4% and 33.7%, respectively.

3. The improvement of accuracy declines with the growth of non-overlapping
items for collaborative filtering. The improvement of CF in terms of
Precision@5 decreases as follows: 30.6%, 6.1% and 6.0% using 100%, 50%
and 7% datasets, respectively.

4. The source domain decreases accuracy of content-based filtering. For the
100% dataset, CBF based on VK and FM data decreases Precision@5,
Precision@10 and Precision@15 by 31.9%, 24.0% and 11.2%, respectively.

5. Despite being accurate, popularity baseline has a very low serendipity. POP
outperforms other algorithms in terms of accuracy on the 100% dataset.
Meanwhile, the algorithm fails to suggest any serendipitous items in top-5
recommendations on each dataset.

According to observations 1 and 2, CF(VKFM) outperforms CF(VK) in
terms of both serendipity and accuracy. The improvement of accuracy illustrates
the global correlation of user preferences in different domains [9,22]. Although,
the data belongs to different domains, user ratings from the source domain indi-
cate similarities between items that improve the recommendation performance
in the target domain. The improvement of serendipity is caused by the growth
of accuracy and by different popularity distributions in VK and FM datasets.

Observation 3 supports the claim [9], that the improvement caused by the
source domain rises with the growth of the overlap between target and source
domains. The decrease of accuracy for the CF algorithm with the FM data is
caused by the different lengths of item vectors in source and target domains,
where vectors of FM items contain significantly more dimensions than vectors
of VK items.

Observations 1 and 4 indicate that the FM data positively contributes to
serendipity and negatively affects accuracy of the content-based filtering algo-
rithm. As users tend to add recording of the same artist, CBF(VK) significantly
outperforms CBF(VKFM). However, most recordings suggested by CBF(VK)
are obvious to a user, as the user can find these recordings him/herself. As a
result, the serendipity of CBF(VK) is very low. FM tags help recommend sim-
ilar recordings of artists novel to the user. Recordings that share the same FM
tags do not necessarily share the same artists, which results in the decrease of
accuracy and increase of serendipity.

Observation 5 indicates that POP has very low serendipity, despite being
accurate. Popular recommendations are likely to be accurate, as users tend to
add familiar recordings. However, popular recordings are widely recognized by
users and therefore regarded as obvious.

6 Conclusion

In this paper, we first initially investigated the cross-domain recommendation
problem in terms of serendipity. We collected data from VK and FM and built
three datasets that contain different fractions of non-overlapping items from
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source and target domains. We then conducted extensive experiments with col-
laborative filtering and content-based filtering algorithms to demonstrate the
impact of source domains on performance gains of the target domain.

According to our results, the source domain can improve serendipity in the
target domain when only items overlap on system level for both collaborative
filtering and content-based filtering algorithms. The integration of the source
domain resulted in the decrease of accuracy for content-based filtering and the
increase of accuracy for collaborative filtering. Similarly to [9] our results indi-
cated that the more items overlap in source and target domains with respect
to the whole dataset the higher the improvement of accuracy for collaborative
filtering.
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