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Abstract—The rapid growing trend of mobile devices continues
to soar causing massive increase in cyber security threats.
Most pervasive threats include ransom-ware, banking malware,
premium SMS fraud. The solitary hackers use tailored techniques
to avoid detection by the traditional antivirus. The emerging need
is to detect these threats by any flow-based network solution.
Therefore, we propose and evaluate a network based model
which uses ensemble Machine Learning (ML) methods in order
to identify the mobile threats, by analyzing the network flows
of the malware communication. The ensemble ML methods not
only protect over-fitting of the model but also cope with the issues
related to the changing behavior of the attackers. The focus of this
study is on android based mobile malwares due to its popularity
among users. We have used ensemble methods to combine output
of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and
Ridor. Based on the evaluation results, the proposed model was
found efficient at detecting known and unknown threats with the
accuracy of 98.2%.

Index Terms—Intrusion Detection, Machine Learning, Ensem-
ble Methods, Supervised Machine Learning, Mobile Threats,
Anomaly Detection

I. INTRODUCTION

According to research by Sophos [1], by 2020 more than 6
billion users will be using mobile devices. Mobile devices are
rapidly overtaking personal computers from web surfing to
mobile banking, due to their portability and smart features.
Therefore, the potential usage has caught the attention of
cybercriminals who maximize their efforts to obtain user
information. Most of the users do not care about the security
measure of their devices and thus become the victim of these
threats. These applications could lead to several mobile threats,
such as theft of financial information, ransom-ware, misuse of
premium SMS and theft of personal information. A traditional
anti-virus can detect only 50% of the threats and on the other
hand around 71% of the smart-phone users do not use any
kind of anti-virus [2]. Thus there is a need for an extra layer of
security at the network side to protect the users from advanced
threats, which a traditional anti-virus could not detect.

Most of the NIDS use signatures to detect attacks and
therefore capable of detecting only known attacks [3]. A minor
modification in attack can bypass a signature based NIDS
and could generate up to 90% of false alarms [4]. Deep
packet inspection is also difficult when the traffic is encrypted
and computationally expensive [5]. Flow based techniques
are useful in combating several issues caused by encrypted

traffic [6]. Machine learning methods are getting popular in
the detection of advanced threats. This transition is supported
by Arp et al [7].

To build a ML classifier, a dataset is required. The well-
known datasets available in the field of intrusion detection,
which uses network traffic features are KDD99, DARPA
1998/1999 and ISCX 2012 IDS dataset. However, some short-
comings were observed in these datasets by [8] and [9]. These
datasets are quite old and not applicable to mobile attacks.
Due to non-availability of public datasets in this domain,
we have used a dataset which was created in our previous
research [10] for evaluation purpose. This dataset was build
using the traffic generated by several benign and malicious
samples. The dataset is based on bidirectional flows extracted
from real malware traffic, which makes it unique. The dataset
contains several threats such as unauthorized premium SMS
sender, Spam sender, bots, back-door, root exploit, fake anti-
virus, ransom-ware and information theft. These datasets were
used to train and build the ML classifiers using several ML
algorithms. The classifier is used to make predictions on new
data to detect normal or malicious patterns in the traffic. A
signature-based NIDS could miss the threats in the traffic, for
which the signature is not yet known. However, ML classifiers
can detect known and unknown threats by analyzing traffic
patterns.

The main focus of this paper is the performance evaluation
of ensemble ML techniques that combines output of several
ML algorithms. The benefit of using ensemble method is not
only to increase the efficiency of the classifier but also to
reduce the risk of over-fitting the model. This can also address
the problem caused by minor changes in the attack pattern,
in order to avoid concept drift situation. The concept drift
situation occurs in machine learning methods when the relation
between the features used to train the model and target to
be predicted changes over an interval of time. The concept
drift causes decrease in accuracy when prediction is made on
unseen data.

The structure of this paper is as follows. Section 2 focuses
on previous research conducted in this area. Section 3 de-
scribes the machine learning algorithms used in this study. Sec-
tion 4 focuses methodology of this research. Section 5 is based
on the performance evaluation of ensemble machine learning
classifiers using different datasets. Several experiments that are



performed for evaluation purposes are also explained. Finally,
in Section 6, conclusion and future work of this research are
outlined.

II. RELATED WORK

Recently, a lot of research has been done in the area of
machine learning to solve many cybersecurity issues. Most of
the research done in the field of using ML techniques to detect
Android-based malware is based on features such as system or
API calls. There are only a few studies which have focused on
network-based intrusion detection for android malwares [10]
[11]. In some of the studies [12] [7] [13] [14], the detection
engine or model need to be installed on the mobile phone
to detect e.g. intrusions or malicious applications. However,
most of the smartphone users do not install security solutions
in their phones.

Arp et al. [7] developed Drebin which uses Support Vector
Machine (SVM) to detect malicious android applications.
Drebin is based on the features such as permissions, API calls
and Network addresses. The detection of Drebin is limited
when the malwares uses dynamic code or any obfuscation
technique. Many researchers [12] [13] used malwares from
MalGenome [15] dataset to generate traffic and build classi-
fiers on various traffic based features. The concept drift has
been seen in some studies [12] where the classifiers produced
significant decrease in the TPR when evaluated on the unseen
traffic. Input features used to train the model play important
role in the field of machine learning as the attackers change
their behavior with time to avoid detection. Features like IP
address could lead to produce concept drift in the model. In
some of the studies [13] [11], the classifiers were not tested
on unseen data which is crucial part in the evaluation of ML
classifiers.

Many researchers [16] [17] [6] used flow-based mod-
els for network traffic classification. Furthermore, the flow-
based techniques to detect botnets were studied by several
researchers [18] [19] [20]. Most of network traffic in the
malware communication is encrypted [5] and therefore flow-
based features seems to be efficient in detecting these threats
[6].

III. MACHINE LEARNING ALGORITHMS

In this research work, we have used the ensemble of several
machine learning algorithms such as Random Forest, J48,
RIDOR, JRIP and PART. The performance evaluation of these
algorithms was already performed individually in our previous
work [10]. In this study, we have used ensemble methods
to combine the output of these ML algorithms to increase
the effectiveness of the ML classifiers.The combination meth-
ods used in our study such as majority voting, maximum
probability and product of probabilities were adopted from
[21] [22]. ML classifiers used in the network traffic analysis
becomes less efficient with time as the attackers change their
behavior and this situation is known as concept drift. During
the model building, each algorithm has different weight-age
for each feature. Some of the algorithms have built-in feature

selection algorithms and they make the decisions on limited
features. If there is any change in traffic pattern, each algorithm
behaves differently. Combining the output of these individual
algorithms not only increases the efficiency but also the
stability in case of minor changes in the traffic pattern.

J48 is the WEKA Implementation of C4.5 [23] algorithm
which was developed by Ross Quinlan in 1993. C4.5 is a
decision tree based algorithm, which works on the ”divide
and conquer” rule. C4.5 first divides the training dataset with
highest single class instances, then it checks the feature with
the highest information gain in the subset and splits it into
further subsets according to that feature. It repeats these steps
for each subset [23].

The Random Forest(RF) [24] is one of the most popular
ML algorithms used for classification, developed in 2011 by
Leo Breimen. Random forest is the collection of decision trees
built from random subsets of dataset (bootstraps) with random
features selected in each subset. Each tree is trained by 2/3
of the dataset and remaining 1/3 is used to estimate error
rate. This 1/3 of the dataset is same as the validation set in
other ML algorithms, therefore there is no need for a separate
validation dataset. The output of the random forest is based
on the majority vote by each decision tree output.

Ridor is the WEKA implementation of Ripple-Down Rule
Learner [25], which was developed by Gaines and Compton
in 1995. Ridor uses Incremental reduced error pruning (IREP)
algorithm [26] to build its rules. Pseudo code for IREP is
mentioned in Figure 1 of [27]. Ridor generates its first rule
as a default rule for one class and then builds the rules for
other classes depending on the weighted error rate known as
exception rules. Let’s suppose there are two classes ”Deny”
and ”Allow”. First, it makes a default rule for ”Deny” and
then it builds up the rules for ”Allow” [25].

JRIP is a WEKA implementation of RIPPER, which was
proposed by William Cohen in 1995, as an optimized version
of IREP [26], [27]. JRIP divides the training set into two
subsets in the ratio of 2:1 in the form of grow:prune.

PART is a partial decision tree algorithm developed by
Frank [28] in 1998. This algorithm works on the separate-
and-conquer rule and is a combination of C4.5 rules and
RIPPER algorithm, excluding the global optimization feature.
This algorithm produces rules in ordered sets, which makes a
decision list. The rules are based on ”Best” leaf of the partial
C4.5 decision tree [28].

J48 and Random Forest are the tree based algorithms while
RIDOR, JRIP and PART are rule based algorithms. All of
these ML algorithms have some internal validation function
for tuning to avoid over-fitting e.g Random forest [24] uses
1/3 of the dataset for estimating the error rate. JRIP [27] and
RIDOR [25] both use IREP which selects 2/3 of the dataset
for training and 1/3 of the dataset for the pruning of the model.
J48 [23] has an internal mechanism of pre-pruning and post-
pruning to avoid over-fitting and PART [28] is the combination
of J48 and JRIP.

Random Forest has several advantages, such as high accu-
racy and effectiveness on large datasets [29]. Random Forest



Fig. 1: Ensemble Machine Learning model for Intrusion Detection



is an ensemble of multiple decision trees. Although the output
of Random Forest is hard to understand, the performance of
this classifier makes it outstanding. J48 provides speed over
Random Forest, but the accuracy is not as high as that of
Random Forest. J48 is a decision tree so it is easy to under-
stand. RIDOR, PART and JRIP are rule-based algorithms, so
the rules generated by these algorithms can be used in any
knowledge-based expert system.

IV. METHODOLOGY AND IMPLEMENTATION

In this research, an ensemble ML based Network intrusion
detection system is proposed and evaluated, shown in Fig. 1.
The first step was traffic generation, followed by filtration,
feature extraction and labeling of the dataset. The dataset was
used to build the ML Classifiers using WEKA [30]. In this
study, the focus is only on the evaluation of ensemble ML
classification model, as the evaluation of individual classifiers
is already done in our previous work [10].

The overall implementation and evaluation of this model
performed in four main phases, as shown in Fig. 1, comprised
of Traffic generation, preprocessing, model building and eval-
uation of the ML model.

TABLE I: Feature List

Feature No. Feature Description Value
1 Duration Connection Duration Real
2 DP Destination Port Real
3 PktSent Packet Sent Real
4 PktRcv Packets Received Real
5 PLBytesSent Payload bytes sent Real
6 PLBytesRcv Payload bytes received Real
7 IFlagF Initial Flags in Forward Direction Nominal
8 IFlagR Initial Flags in Reverse Direction Nominal
9 UFlagsF Union of Flags in Forward Direction Nominal
10 UFlagR Union of Flags in Reverse Direction Nominal

Traffic was generated for both benign and malicious appli-
cations using the method mentioned in our previous research
[10]. A number of benign applications were used to generate
real traffic which were installed from Google playstore. These
applications were executed at a different interval of time. Wire-
shark was used to capture the packets on the interface of the
virtual machines. The samples of malware families (FakeAV,
DroidKungFu, OPFake, GinMaster, FakeInst and Anserver)
were downloaded from Virustotal using several conditions.
The number of samples completed for the study was around
600. Traffic was generated through a public sandbox ”Anubis
(Andrubis)” [31] and ”Cuckoo” [32].

During Processing feature extraction and labeling of traffic
flows was done. The features were extracted using RFC-5103
BiFlow export method [33]. The following features (see Table
I) were extracted from the flows of the traffic of benign and
malicious applications. Instances were then labeled as normal
or malicious respectively.

A. Machine learning classifiers

In this study, we have evaluated the combination of 5
decision tree and rule based algorithms. Output of these
algorithms can be easily interpreted by security experts and

can be integrated with the traditional NIDS. The classifiers
build from these ML algorithms produce rules and trees which
can be used to make predictions on new traffic to identify
threats. By using ensemble methods, the combination of these
ML classifiers was used to increase the efficiency of the
classification model as shown in Fig. 1.

V. PERFORMANCE EVALUATION AND RESULTS

Several well-known parameters were used to evaluate en-
semble ML classifiers.

TABLE II: Confusion Matrix

Predicted
Malicious Normal

Actual Malicious TruePositive FalseNegative
Normal FalsePositive TrueNegative

True Positive (TP): Malicious instance classified as Malicious.
False Positive (FP): Benign instance classified as Malicious.
False Negative (FN): Malicious instance classified as Normal.
True Negative (TN): Benign Instance classified as Normal.

TPR = TP
TP+FN

FPR = FP
FP+TN

TNR = TN
TN+FP

FNR = FN
TP+FN

Accuracy = TP+TN
TP+FP+TN+FN

ROC (Receiver Operating Characteristic) curve is a plot
between TPR and FPR at various threshold settings [34]. Area
under ROC Curve (AUC) is also an important parameter in
evaluating the ML classifier, this value is derived from the
ROC curve and it can tell which model makes best predictions.
A higher AUC value shows a better ML Classifier. Accuracy
is also an important parameter to consider as it is based on
both TPR and FPR.

A. Evaluation of Classification Model

We have performed two experiments in order to evaluate the
performance of the ML classifiers using ensemble methods. In
the first experiment, we have tested the classifiers using cross
validation and percentage split of the same data. In the second
experiment the evaluation was performed using the new unseen
dataset.

1) Experiment 1 - Ensemble Methods : Ensemble methods
combine output of several ML classifiers by different tech-
niques such as weighted voting or measuring probability as
shown in Fig 1. In this experiment, we combined the output
of several classifiers by 3 combination rules as shown in the
Table III - IV.

These tables show the detailed performance evaluation of
ensemble methods using different combination. In Experiment
1a, we have used 10 fold cross validation method which
is most widely used validation method. This method splits



TABLE III: Experiment 1a (Ensemble Methods) using Cross Validation

Performance Evaluation by combining J48, RF, JRIP, RIDOR and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.995 0.030 0.970 0.005 0.991 0.984
Maximum Probability 0.983 0.005 0.995 0.017 0.985 0.999
Product of Probabilities 0.999 0.005 0.995 0.001 0.998 0.999

Performance Evaluation by combining J48, Random Forest, JRIP and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.041 0.959 0.004 0.990 0.978
Maximum Probability 0.993 0.030 0.970 0.007 0.989 0.999
Product of Probabilities 0.994 0.025 0.975 0.006 0.991 0.987

Performance Evaluation by combining J48, RF and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.023 0.977 0.004 0.993 0.986
Maximum Probability 0.993 0.043 0.957 0.007 0.987 0.999
Product of Probabilities 0.994 0.039 0.961 0.006 0.989 0.993

TABLE IV: Experiment 1b (Ensemble Methods) using Percentage Split Validation

Performance Evaluation by combining J48, RF, JRIP, RIDOR and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.995 0.030 0.970 0.005 0.991 0.982
Maximum Probability 0.983 0.005 0.995 0.017 0.985 0.999
Product of Probabilities 0.999 0.005 0.995 0.001 0.998 0.981

Performance Evaluation by combining J48, Random Forest, JRIP and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.041 0.959 0.004 0.990 0.982
Maximum Probability 0.993 0.030 0.970 0.007 0.989 0.999
Product of Probabilities 0.994 0.025 0.975 0.006 0.991 0.978

Performance Evaluation by combining J48, Random Forest and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.023 0.977 0.004 0.993 0.982
Maximum Probability 0.993 0.043 0.957 0.007 0.987 0.999
Product of Probabilities 0.994 0.039 0.961 0.006 0.989 0.981

the original dataset into ten pieces and repeats the training
and testing for ten times using holdout technique. Cross
validation method reduce the chances of over-fitting the model.
In experiment 2a, percentage split was used to divide the
dataset into two pieces and 70% of the data was used for

training while the remaining 30% was used for testing. This
method is very useful when the model needs to be used for
predictions. The best results were obtained by the majority
voting of output by Random Forest, PART and J48 classifiers.
The TPR of 99.5% was observed using ensemble methods



TABLE V: Performance Evaluation of Experiment 2a - Detecting Unknowns

Evaluation on ML classifiers on unknown dataset
ML Algorithm TPR FPR TNR FNR Accuracy AUC
Random Forest 1.000 0.029 0.971 0.000 0.975 0.998
PART 1.000 0.117 0.883 0.000 0.900 0.917
JRIP 1.000 0.043 0.957 0.000 0.964 0.979
Ensemble Methods 1.000 0.021 0.979 0.000 0.982 0.989

TABLE VI: Performance Evaluation of Experiment 2b - Detecting Unknowns

Evaluation on ML classifiers on unknown dataset after interval of time
ML Algorithm TPR FPR TNR FNR Accuracy AUC
Random Forest 0.932 0.038 0.962 0.068 0.955 0.947
PART 0.926 0.112 0.888 0.074 0.897 0.893
JRIP 0.919 0.047 0.953 0.081 0.945 0.937
Ensemble Method 0.939 0.025 0.975 0.061 0.966 0.957

which was better than that of Random Forest. However, the
FPR of 4.1% observed which is higher than Random Forest. It
can also be seen that the best accuracy is seen by combining
output of the five classifiers using the product of probabilities.

2) Experiment 2 - Detecting Unknown: This experiment
was performed to evaluate the performance of ensemble ML
classifiers on a new dataset that contains unknown instances
from malicious samples and contains new traffic from different
benign applications. We have limit this experiment to 3 ML
Algorithms (Random Forest, PART and JRIP) as these ML
algorithms produced the best results in individual evaluation.
We have combined the output of these ML algorithms by
majority vote method as shown in the Table V.

In Table V, performance evaluation of different classifiers
can be seen. The RF performed best in individual classifiers
with the highest TPR and lower FPR. The FPR produced by
PART was significantly high. However, the ensemble classifier
outperformed all the individual classifiers. In Table V, it can
be seen that ensemble method performed better than RF in
detecting unknown threats with the accuracy of 98.2% and
the FPR was reduced to 2.1%.

This experiment showed that the ensemble methods are not
only able to detect unknown threats but they are also good at
identifying benign traffic. True Negative Rate (TNR) produced
by these ensemble classifiers is also high which shows the
efficiency of the classifier in distinguishing between normal
and malicious instances.

Another experiment 2b (see Table V) was performed to
check the performance of the classifiers after an interval of
time. For that purpose, unseen traffic from some new malicious
and benign applications was added to the test dataset. The
performance of the individual classifiers decreased a bit with
time due to the changes in the traffic patterns generated by
the new malware samples. The ensemble methods increased
the performance by combining the output of these individual
classifiers. It can be clearly seen that the ensemble methods

produced the highest accuracy and AUC value by combining
the output of these classifiers.

VI. CONCLUSION

The ensemble methods used in this study were able to
detect known and unknown threats. This study is the first
step towards a more advanced ML based intrusion detection
system. Ensemble methods not only produce better results but
also reduce the chance of concept drift. Intrusion detection
systems which rely only on ML techniques need frequent
retraining. Otherwise, the decrease in TPR could be seen.
In our previous studies, several experiments were performed
to compare the ML model with antivirus vendors and we
observed that ML classifiers were more efficient than some
of the traditional antivirus. Furthermore, the efficiency of the
ML classifiers was enhanced by using ensemble methods and
these methods also helped with concept drift. Moreover, we
have observed that the feature extraction and selection play an
important role in the output of the classifier. Wrong features
such as ”IP Address” could over-fit the model and produce
concept drift condition in the system.

The ensemble ML classifiers built were able to detect
malicious traffic with a TPR of 99.9%, while the output from
individual classifiers was observed between 94%-99.6%. As
the ML classifiers are built for predictions, it is also important
to evaluate the performance of the ML classifiers on new
data. In this research, we have evaluated ML classifiers on
unseen data and the accuracy of 98.2% was observed by
ensemble methods while the accuracy observed by individual
classifiers was between 90% - 97.5%. These results showed
that the ensemble methods are more efficient than individual
classifiers. Future work in progress aims to integrate the
ML classifiers with traditional NIDS and to introduce some
innovative methods in order to reduce the chance of concept
drift.
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